WorldWideScience

Sample records for human kras promoter

  1. Clinical Relevance of KRAS in Human Cancers

    Directory of Open Access Journals (Sweden)

    Sylwia Jančík

    2010-01-01

    Full Text Available The KRAS gene (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog is an oncogene that encodes a small GTPase transductor protein called KRAS. KRAS is involved in the regulation of cell division as a result of its ability to relay external signals to the cell nucleus. Activating mutations in the KRAS gene impair the ability of the KRAS protein to switch between active and inactive states, leading to cell transformation and increased resistance to chemotherapy and biological therapies targeting epidermal growth factor receptors. This review highlights some of the features of the KRAS gene and the KRAS protein and summarizes current knowledge of the mechanism of KRAS gene regulation. It also underlines the importance of activating mutations in the KRAS gene in relation to carcinogenesis and their importance as diagnostic biomarkers, providing clues regarding human cancer patients' prognosis and indicating potential therapeutic approaches.

  2. FXR silencing in human colon cancer by DNA methylation and KRAS signaling.

    Science.gov (United States)

    Bailey, Ann M; Zhan, Le; Maru, Dipen; Shureiqi, Imad; Pickering, Curtis R; Kiriakova, Galina; Izzo, Julie; He, Nan; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Liang, Han; Kopetz, Scott; Powis, Garth; Guo, Grace L

    2014-01-01

    Farnesoid X receptor (FXR) is a bile acid nuclear receptor described through mouse knockout studies as a tumor suppressor for the development of colon adenocarcinomas. This study investigates the regulation of FXR in the development of human colon cancer. We used immunohistochemistry of FXR in normal tissue (n = 238), polyps (n = 32), and adenocarcinomas, staged I-IV (n = 43, 39, 68, and 9), of the colon; RT-quantitative PCR, reverse-phase protein array, and Western blot analysis in 15 colon cancer cell lines; NR1H4 promoter methylation and mRNA expression in colon cancer samples from The Cancer Genome Atlas; DNA methyltransferase inhibition; methyl-DNA immunoprecipitation (MeDIP); bisulfite sequencing; and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) knockdown assessment to investigate FXR regulation in colon cancer development. Immunohistochemistry and quantitative RT-PCR revealed that expression and function of FXR was reduced in precancerous lesions and silenced in a majority of stage I-IV tumors. FXR expression negatively correlated with phosphatidylinositol-4, 5-bisphosphate 3 kinase signaling and the epithelial-to-mesenchymal transition. The NR1H4 promoter is methylated in ~12% colon cancer The Cancer Genome Atlas samples, and methylation patterns segregate with tumor subtypes. Inhibition of DNA methylation and KRAS silencing both increased FXR expression. FXR expression is decreased early in human colon cancer progression, and both DNA methylation and KRAS signaling may be contributing factors to FXR silencing. FXR potentially suppresses epithelial-to-mesenchymal transition and other oncogenic signaling cascades, and restoration of FXR activity, by blocking silencing mechanisms or increasing residual FXR activity, represents promising therapeutic options for the treatment of colon cancer.

  3. Novel molecular targets for kRAS downregulation: promoter G-quadruplexes

    Science.gov (United States)

    2016-11-01

    proteins studied. 6. Products: • Publications, conference papers , and presentations o Journal Publications • Morgan, RK; Batra, H; Gaerig, VC; Hockings, J... papers , and presentations • Batra, H; Brooks, TA. Binding and function of regulatory proteins to the kRAS promoter: a role in pancreatic cancer. 6th...development due to difficulties with delivery and excessive albumin binding, and antisoma’s G-rich phosphodiester oligonucleotide AS1411, a DNA aptamer with

  4. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Toyota, M; Sanchez-Cespedes, M; Capella, G; Peinado, M A; Watkins, D N; Issa, J P; Sidransky, D; Baylin, S B; Herman, J G

    2000-05-01

    O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that removes mutagenic and cytotoxic adducts from the O6 position of guanine. O6-methylguanine mispairs with thymine during replication, and if the adduct is not removed, this results in conversion from a guanine-cytosine pair to an adenine-thymine pair. In vitro assays show that MGMT expression avoids G to A mutations and MGMT transgenic mice are protected against G to A transitions at ras genes. We have recently demonstrated that the MGMT gene is silenced by promoter methylation in many human tumors, including colorectal carcinomas. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of K-ras mutations, we studied 244 colorectal tumor samples for MGMT promoter hypermethylation and K-ras mutational status. Our results show a clear association between the inactivation of MGMT by promoter hypermethylation and the appearance of G to A mutations at K-ras: 71% (36 of 51) of the tumors displaying this particular type of mutation had abnormal MGMT methylation, whereas only 32% (12 of 37) of those with other K-ras mutations not involving G to A transitions and 35% (55 of 156) of the tumors without K-ras mutations demonstrated MGMT methylation (P = 0.002). In addition, MGMT loss associated with hypermethylation was observed in the small adenomas, including those that do not yet contain K-ras mutations. Hypermethylation of other genes such as p16INK4a and p14ARF was not associated with either MGMT hypermethylation or K-ras mutation. Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to a particular genetic change in human cancer, specifically G to A transitions in the K-ras oncogene.

  5. The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice

    International Nuclear Information System (INIS)

    Plowman, Sarah J.; Arends, Mark J.; Brownstein, David G.; Luo Feijun; Devenney, Paul S.; Rose, Lorraine; Ritchie, Ann-Marie; Berry, Rachel L.; Harrison, David J.; Hooper, Martin L.; Patek, Charles E.

    2006-01-01

    Ras proteins function as molecular switches in signal transduction pathways, and, here, we examined the effects of the K-ras4A and 4B splice variants on cell function by comparing wild-type embryonic stem (ES) cells with K-ras tmΔ4A/tmΔ4A (exon 4A knock-out) ES cells which express K-ras4B only and K-ras -/- (exons 1-3 knock-out) ES cells which express neither splice variant, and intestinal epithelium from wild-type and K-ras tmΔ4A/tmΔ4A mice. RT-qPCR analysis found that K-ras4B expression was reduced in K-ras tmΔ4A/tmΔ4A ES cells but unaffected in small intestine. K-Ras deficiency did not affect ES cell growth, and K-Ras4A deficiency did not affect intestinal epithelial proliferation. K-ras tmΔ4A/tmΔ4A and K-ras -/- ES cells showed a reduced capacity for differentiation following LIF withdrawal, and K-ras -/- cells were least differentiated. K-Ras4A deficiency inhibited etoposide-induced apoptosis in ES cells and intestinal epithelial cells. However, K-ras tmΔ4A/tmΔ4A ES cells were more resistant to etoposide-induced apoptosis than K-ras -/- cells. The results indicate that (1) K-Ras4A promotes apoptosis while K-Ras4B inhibits it, and (2) K-Ras4B, and possibly K-Ras4A, promotes differentiation. The findings raise the possibility that alteration of the K-Ras4A/4B isoform ratio modulates tumorigenesis by differentially affecting stem cell survival and/or differentiation. However, K-Ras4A deficiency did not affect life expectancy or spontaneous overall tumor incidence in aging mice

  6. KRAS (G12D Cooperates with AML1/ETO to Initiate a Mouse Model Mimicking Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    2014-01-01

    Full Text Available Background/Aims: It has been demonstrated that KRAS mutations represent about 90% of cancer-associated mutations, and that KRAS mutations play an essential role in neoplastic transformation. Cancer-associated RAS mutations occur frequently in acute myeloid leukemia (AML, suggesting a functional role for Ras in leukemogenesis. Methods: We successfully established a mouse model of human leukemia by transplanting bone marrow cells co-transfected with the K-ras (G12D mutation and AML1/ETO fusion protein. Results: Mice transplanted with AML/ETO+KRAS co-transduced cells had the highest mortality rate than mice transplanted with AML/ETO- or KRAS-transduced cells (115d vs. 150d. Upon reaching a terminal disease stage, EGFP-positive cells dominated their spleen, lymph nodes, peripheral blood and central nervous system tissue. Immunophenotyping, cytologic analyses revealed that AML/ETO+KRAS leukemias predominantly contained immature myeloid precursors (EGFP+/c-Kit+/Mac-1-/Gr-1-. Histologic analyses revealed that massive leukemic infiltrations were closely packed in dense sheets that effaced the normal architecture of spleen and thymus in mice transplanted with AML1/ETO + KRAS co-transduced cells. K-ras mRNA and protein expression were upregulated in bone marrow cells of the K-ras group and AML1/ETO + Kras group. The phosphorylation of MEK/ERK was significantly enhanced in the AML1/ETO + Kras group. The similar results of the AML1/ETO + Nras group were consistent with those reported previously. Conclusion: Co-transduction of KrasG12D and AML1/ETO induces acute monoblastic leukemia. Since expression of mutant K-ras alone was insufficient to induce leukemia, this model may be useful for investigating the multi-step leukemogenesis model of human leukemia.

  7. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    Science.gov (United States)

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  8. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Science.gov (United States)

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  9. EGFR, HER-2 and KRAS in canine gastric epithelial tumors: a potential human model?

    Directory of Open Access Journals (Sweden)

    Rossella Terragni

    Full Text Available Epidermal growth factor receptor (EGFR or HER-1 and its analog c-erbB-2 (HER-2 are protein tyrosine kinases correlated with prognosis and response to therapy in a variety of human cancers. KRAS mediates the transduction of signals between EGFR and the nucleus, and its mutation has been identified as a predictor of resistance to anti-EGFR drugs. In human oncology, the importance of the EGFR/HER-2/KRAS signalling pathway in gastric cancer is well established, and HER-2 testing is required before initiating therapy. Conversely, this pathway has never been investigated in canine gastric tumours. A total of 19 canine gastric epithelial neoplasms (5 adenomas and 14 carcinomas were retrospectively evaluated for EGFR/HER-2 immunohistochemical expression and KRAS mutational status. Five (35.7% carcinomas were classified as intestinal-type and 9 (64.3% as diffuse-type. EGFR was overexpressed (≥ 1+ in 8 (42.1% cases and HER-2 (3+ in 11 (57.9% cases, regardless of tumour location or biological behaviour. The percentage of EGFR-positive tumours was significantly higher in the intestinal-type (80% than in the diffuse-type (11.1%, p = 0.023. KRAS gene was wild type in 18 cases, whereas one mucinous carcinoma harboured a point mutation at codon 12 (G12R. EGFR and HER-2 may be promising prognostic and therapeutic targets in canine gastric epithelial neoplasms. The potential presence of KRAS mutation should be taken into account as a possible mechanism of drug resistance. Further studies are necessary to evaluate the role of dog as a model for human gastric cancer.

  10. K-Ras and β-catenin mutations cooperate with Fgfr3 mutations in mice to promote tumorigenesis in the skin and lung, but not in the bladder

    Directory of Open Access Journals (Sweden)

    Imran Ahmad

    2011-07-01

    The human fibroblast growth factor receptor 3 (FGFR3 gene is frequently mutated in superficial urothelial cell carcinoma (UCC. To test the functional significance of FGFR3 activating mutations as a ‘driver’ of UCC, we targeted the expression of mutated Fgfr3 to the murine urothelium using Cre-loxP recombination driven by the uroplakin II promoter. The introduction of the Fgfr3 mutations resulted in no obvious effect on tumorigenesis up to 18 months of age. Furthermore, even when the Fgfr3 mutations were introduced together with K-Ras or β-catenin (Ctnnb1 activating mutations, no urothelial dysplasia or UCC was observed. Interestingly, however, owing to a sporadic ectopic Cre recombinase expression in the skin and lung of these mice, Fgfr3 mutation caused papilloma and promoted lung tumorigenesis in cooperation with K-Ras and β-catenin activation, respectively. These results indicate that activation of FGFR3 can cooperate with other mutations to drive tumorigenesis in a context-dependent manner, and support the hypothesis that activation of FGFR3 signaling contributes to human cancer.

  11. KRAS mutations and CDKN2A promoter methylation show an interactive adverse effect on survival and predict recurrence of rectal cancer.

    Science.gov (United States)

    Kohonen-Corish, Maija R J; Tseung, Jason; Chan, Charles; Currey, Nicola; Dent, Owen F; Clarke, Stephen; Bokey, Les; Chapuis, Pierre H

    2014-06-15

    Colonic and rectal cancers differ in their clinicopathologic features and treatment strategies. Molecular markers such as gene methylation, microsatellite instability and KRAS mutations, are becoming increasingly important in guiding treatment decisions in colorectal cancer. However, their association with clinicopathologic variables and utility in the management of rectal cancer is still poorly understood. We analyzed CDKN2A gene methylation, CpG island methylator phenotype (CIMP), microsatellite instability and KRAS/BRAF mutations in a cohort of 381 rectal cancers with extensive clinical follow-up data. BRAF mutations (2%), CIMP-high (4%) and microsatellite instability-high (2%) were rare, whereas KRAS mutations (39%), CDKN2A methylation (20%) and CIMP-low (25%) were more common. Only CDKN2A methylation and KRAS mutations showed an association with poor overall survival but these did not remain significant when analyzed with other clinicopathologic factors. In contrast, this prognostic effect was strengthened by the joint presence of CDKN2A methylation and KRAS mutations, which independently predicted recurrence of cancer and was associated with poor overall and cancer-specific survival. This study has identified a subgroup of more aggressive rectal cancers that may arise through the KRAS-p16 pathway. It has been previously shown that an interaction of p16 deficiency and oncogenic KRAS promotes carcinogenesis in the mouse and is characterized by loss of oncogene-induced senescence. These findings may provide avenues for the discovery of new treatments in rectal cancer. © 2013 UICC.

  12. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S.

    Directory of Open Access Journals (Sweden)

    Lu Huang

    Full Text Available In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigenesis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118 have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.

  13. Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    De Oliveira Tiago

    2012-04-01

    Full Text Available Abstract Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC cells. Methods Syndecan-2 (SDC-2 expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.

  14. Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population.

    Directory of Open Access Journals (Sweden)

    Rupal Sinha

    Full Text Available Colorectal cancer (CRC development involves underlying modifications at genetic/epigenetic level. This study evaluated the role of Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation together/independently in sporadic CRC in Indian population and correlation with clinicopathological variables of the disease.One hundred and twenty four consecutive surgically resected tissues (62 tumor and equal number of normal adjacent controls of primary sporadic CRC were included and patient details including demographic characteristics, lifestyle/food or drinking habits, clinical and histopathological profiles were recorded. Polymerase chain reaction - Restriction fragment length polymorphism and direct sequencing for Kras gene mutation and Methylation Specific-PCR for RASSF1A, FHIT and MGMT genes was performed.Kras gene mutation at codon 12 & 13 and methylated RASSF1A, FHIT and MGMT gene was observed in 47%, 19%, 47%, 37% and 47% cases, respectively. Alcohol intake and smoking were significantly associated with presence of Kras mutation (codon 12 and MGMT methylation (p-value <0.049. Tumor stage and metastasis correlated with presence of mutant Kras codon 12 (p-values 0.018, 0.044 and methylated RASSF1A (p-values 0.034, 0.044, FHIT (p-values 0.001, 0.047 and MGMT (p-values 0.018, 0.044 genes. Combinatorial effect of gene mutation/methylation was also observed (p-value <0.025. Overall, tumor stage 3, moderately differentiated tumors, presence of lymphatic invasion and absence of metastasis was more frequently observed in tumors with mutated Kras and/or methylated RASSF1A, FHIT and MGMT genes.Synergistic interrelationship between these genes in sporadic CRC may be used as diagnostic/prognostic markers in assessing the overall pathological status of CRC.

  15. Identification of a New G-Quadruplex Motif in the KRAS Promoter and Design of Pyrene-Modified G4-Decoys with Antiproliferative Activity in Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Paramasivam, Manikandan; Filitchev, Vyacheslav Viatcheslav

    2009-01-01

    A new quadruplex motif located in the promoter of the human KRAS gene, within a nuclease hypersensitive element (NHE), has been characterized. Oligonucleotides mimicking this quadruplex are found to compete with a DNA-protein complex between NHE and a nuclear extract from pancreatic cancer cells........ When modified with (R)-1-O-[4-1-(1-pyrenylethynyl) phenylmethyl]glycerol insertions (TINA), the quadruplex oligonucleotides showed a dramatic increase of the Tm (ΔTm from 22 to 32 °C) and a strong antiproliferative effects in Panc-1 cells....

  16. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    Science.gov (United States)

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  17. Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers

    International Nuclear Information System (INIS)

    Liu, Yang; Gao, Weimin; Siegfried, Jill M; Weissfeld, Joel L; Luketich, James D; Keohavong, Phouthone

    2007-01-01

    Epidemiological studies indicate that some characteristics of lung cancer among never-smokers significantly differ from those of smokers. Aberrant promoter methylation and mutations in some oncogenes and tumor suppressor genes are frequent in lung tumors from smokers but rare in those from never-smokers. In this study, we analyzed promoter methylation in the ras-association domain isoform A (RASSF1A) and the death-associated protein kinase (DAPK) genes in lung tumors from patients with primarily non-small cell lung cancer (NSCLC) from the Western Pennsylvania region. We compare the results with the smoking status of the patients and the mutation status of the K-ras, p53, and EGFR genes determined previously on these same lung tumors. Promoter methylation of the RASSF1A and DAPK genes was analyzed by using a modified two-stage methylation-specific PCR. Data on mutations of K-ras, p53, and EGFR were obtained from our previous studies. The RASSF1A gene promoter methylation was found in tumors from 46.7% (57/122) of the patients and was not significantly different between smokers and never-smokers, but was associated significantly in multiple variable analysis with tumor histology (p = 0.031) and marginally with tumor stage (p = 0.063). The DAPK gene promoter methylation frequency in these tumors was 32.8% (40/122) and did not differ according to the patients' smoking status, tumor histology, or tumor stage. Multivariate analysis adjusted for age, gender, smoking status, tumor histology and stage showed that the frequency of promoter methylation of the RASSF1A or DAPK genes did not correlate with the frequency of mutations of the K-ras, p53, and EGFR gene. Our results showed that RASSF1A and DAPK genes' promoter methylation occurred frequently in lung tumors, although the prevalence of this alteration in these genes was not associated with the smoking status of the patients or the occurrence of mutations in the K-ras, p53 and EGFR genes, suggesting each of

  18. TRAIL receptor upregulation and the implication of KRAS/BRAF mutations in human colon cancer tumours

    Czech Academy of Sciences Publication Activity Database

    Oikonomou, E.; Kosmidou, V.; Katseli, A.; Kothonidis, K.; Mourtzoukou, D.; Kontogeorgos, G.; Anděra, Ladislav; Zografos, G.; Pintzas, A.

    2009-01-01

    Roč. 125, č. 9 (2009), s. 2127-2135 ISSN 0020-7136 R&D Projects: GA MŠk 1M0506 Grant - others:EC(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorectal tumours * TRAIL receptors expression * KRAS/ BRAF oncogenic mutations Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.722, year: 2009

  19. Tumorigenesis of K-ras mutation in human endometrial carcinoma via upregulation of estrogen receptor.

    Science.gov (United States)

    Tu, Zheng; Gui, Liming; Wang, Jianliu; Li, Xiaoping; Sun, Pengming; Wei, Lihui

    2006-05-01

    To investigate the tumorigenesis of mutant [12Asp]-K-ras in endometrial carcinoma and its relationship with ER. We constructed pcDI-[12Asp]K-ras4B by inserting full-length [12Asp]K-ras4B from human endometrial carcinoma Hec-1A cells, into pcDI vector. Cell proliferation of NIH3T3 after transfection with pcDI-[12Asp]K-ras4B was measured by MTT assay. The cell transformation was determined by colony formation and tumor nodule development. [12Asp]-K-ras4B-NIH3T3 cells were transfected with constitutively active pCMV-RafCAAX and dominant-negative pCMV-RafS621A. Cell growth was measured by MTT assay and [3H]thymidine incorporation. After transfected with pcDI-[12Asp]K-ras4B or pCMV-RafS621A, the cells were harvested for Western blot and reporter assay to determine the expression and transcriptional activity of ERalpha and ERbeta, respectively. [12Asp]-K-ras4B enhanced NIH3T3 cells proliferation after 48 h post-transfection (P ras4B-NIH3T3 cells (13.48%) than pcDI-NIH3T3 (4.26%) or untreated NIH3T3 (2.33%). The pcDI-[12Asp]-K-ras4B-NIH3T3 cells injected to the nude mice Balb/C developed tumor nodules with poor-differentiated cells after 12 days. An increase of ERalpha and ERbeta was observed in pcDI-[12Asp]-K-ras4B-NIH3T3 cells. RafS621A downregulated ERalpha and ERbeta expression. Estrogen induced the ER transcriptional activity by 5-fold in pcDI-NIH3T3 cells, 13-fold in pcDI-[12Asp]K-ras4B-NIH3T3 and 19-fold in HEC-1A. RafS621A suppressed the ER transcriptional activity. K-ras mutation induces tumorigenesis in endometrium, and this malignant transformation involves Raf signaling pathway and ER.

  20. Mouse model of proximal colon-specific tumorigenesis driven by microsatellite instability-induced Cre-mediated inactivation of Apc and activation of Kras.

    Science.gov (United States)

    Kawaguchi, Yasuo; Hinoi, Takao; Saito, Yasufumi; Adachi, Tomohiro; Miguchi, Masashi; Niitsu, Hiroaki; Sasada, Tatsunari; Shimomura, Manabu; Egi, Hiroyuki; Oka, Shiro; Tanaka, Shinji; Chayama, Kazuaki; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2016-05-01

    KRAS gene mutations are found in 40-50% of colorectal cancer cases, but their functional contribution is not fully understood. To address this issue, we generated genetically engineered mice with colon tumors expressing an oncogenic Kras(G12D) allele in the context of the Adenomatous polyposis coli (Apc) deficiency to compare them to tumors harboring Apc deficiency alone. CDX2P9.5-G22Cre (referred to as G22Cre) mice showing inducible Cre recombinase transgene expression in the proximal colon controlled under the CDX2 gene promoter were intercrossed with Apc (flox/flox) mice and LSL-Kras (G12D) mice carrying loxP-flanked Apc and Lox-Stop-Lox oncogenic Kras(G12D) alleles, respectively, to generate G22Cre; Apc(flox/flox); Kras(G12D) and G22Cre; Apc(flox/flox); KrasWT mice. Gene expression profiles of the tumors were analyzed using high-density oligonucleotide arrays. Morphologically, minimal difference in proximal colon tumor was observed between the two mouse models. Consistent with previous findings in vitro, Glut1 transcript and protein expression was up-regulated in the tumors of G22Cre;Apc (flox/flox) ; Kras(G12D) mice. Immunohistochemical staining analysis revealed that GLUT1 protein expression correlated with KRAS mutations in human colorectal cancer. Microarray analysis identified 11 candidate genes upregulated more than fivefold and quantitative PCR analysis confirmed that Aqp8, Ttr, Qpct, and Slc26a3 genes were upregulated 3.7- to 30.2-fold in tumors with mutant Kras. These results demonstrated the validity of the G22Cre; Apc(flox/flox) ;Kras (G12D) mice as a new mouse model with oncogenic Kras activation. We believe that this model can facilitate efforts to define novel factors that contribute to the pathogenesis of human colorectal cancer with KRAS mutations.

  1. H-RAS, K-RAS, and N-RAS gene activation in human bladder cancers.

    Science.gov (United States)

    Przybojewska, B; Jagiello, A; Jalmuzna, P

    2000-08-01

    Bladder cancer is one of the leading causes of cancer death in most developed countries. In this work, 19 bladder cancer specimens, along with their infiltrations of the urinary bladder wall from the same patients, were examined for the presence of H-RAS, K-RAS, and N-RAS activation using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The H-RAS activation was found in 15 (about 84%) of the 19 bladder cancers studied. The same results were obtained in the infiltrating urinary bladder wall samples. N-RAS gene mutations were observed in all cases (except 1) in which H-RAS gene mutations were detected. The results suggest a strong relationship between H-RAS and N-RAS gene activation in bladder cancer. Changes in the K-RAS gene in bladder cancers seem to be a rare event; this is in agreement with findings of other authors. We found activation of the gene in one specimen of bladder cancer and its infiltration of the urinary bladder wall in the same patient.

  2. MLH1-deficient Colorectal Carcinoma With Wild-type BRAF and MLH1 Promoter Hypermethylation Harbor KRAS Mutations and Arise From Conventional Adenomas.

    Science.gov (United States)

    Farchoukh, Lama; Kuan, Shih-Fan; Dudley, Beth; Brand, Randall; Nikiforova, Marina; Pai, Reetesh K

    2016-10-01

    Between 10% and 15% of colorectal carcinomas demonstrate sporadic DNA mismatch-repair protein deficiency as a result of MLH1 promoter methylation and are thought to arise from sessile serrated adenomas, termed the serrated neoplasia pathway. Although the presence of the BRAF V600E mutation is indicative of a sporadic cancer, up to 30% to 50% of colorectal carcinomas with MLH1 promoter hypermethylation will lack a BRAF mutation. We report the clinicopathologic and molecular features of MLH1-deficient colorectal carcinoma with wild-type BRAF and MLH1 promoter hypermethylation (referred to as MLH1-hypermethylated BRAF wild-type colorectal carcinoma, n=36) in comparison with MLH1-deficient BRAF-mutated colorectal carcinoma (n=113) and Lynch syndrome-associated colorectal carcinoma (n=36). KRAS mutations were identified in 31% of MLH1-hypermethylated BRAF wild-type colorectal carcinomas compared with 0% of MLH1-deficient BRAF-mutated colorectal carcinomas and 37% of Lynch syndrome-associated colorectal carcinomas. When a precursor polyp was identified, MLH1-hypermethylated BRAF wild-type colorectal carcinomas arose from precursor polyps resembling conventional tubular/tubulovillous adenomas in contrast to MLH1-deficient BRAF-mutated colorectal carcinomas, which arose from precursor sessile serrated adenomas (PMLH1-hypermethylated BRAF wild-type colorectal carcinoma and MLH1-deficient BRAF-mutated colorectal carcinoma had a predilection for the right colon compared with Lynch syndrome-associated colorectal carcinoma (86% vs. 92% vs. 49%, P0.05). In conclusion, our results indicate that MLH1-hypermethylated BRAF wild-type colorectal carcinomas can harbor KRAS mutations and arise from precursor polyps resembling conventional tubular/tubulovillous adenomas.

  3. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Phuoc T Tran

    Full Text Available KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.

  4. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xin Cai

    Full Text Available Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  5. Analysis of human induced changes in a karst landscape - the filling of dolines in the Kras plateau, Slovenia.

    Science.gov (United States)

    Kovačič, Gregor; Ravbar, Nataša

    2013-03-01

    A comprehensive analysis of the increased pressure on karst landscapes due to expansive economic and urban development is presented with the aim of evaluating changes in land use and their deleterious effects on karst relief forms. The study focuses on two areas surrounding the relatively quickly growing settlements of Hrpelje-Kozina and Divača on the Kras plateau (Slovenia) that have been subjected to intensive urban and business development and traffic since the motorway was brought to their vicinity fifteen years ago. National legislation loopholes and technological improvement were the cause of the commonly unsupervised human encroachment which caused the widespread degradation of the landscape. By comparing different topographical and ortophotographical materials from the past four decades and by detailed field inspection of land use and environmental changes, as well as the morphometrical characterization of dolines, the following results have been found: due to the population growth in the past four decades (39% and 50%, respectively), an increase of settlement area by 18 and 11 percentage points took place. Consequently, between 25 and 27% of dolines have disappeared or have been extensively modified (filled up and leveled). According to the local spatial plans, an additional 18% to 28% dolines are endangered. Broad human induced changes in the karst landscape have resulted in a noticeable increase in landscape deterioration, which is consistent with similar phenomena observed in other regions. Due to the extreme susceptibility of the karst to human activities that may lead to the degradation of its exceptional esthetic and environmental value, the alteration of karst processes such as corrosion, endangering of unique habitats and the quality of non-renewable natural resources, it is necessary to promptly define measures for its protection at the national level. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. NMR 1H,13C, 15N backbone and 13C side chain resonance assignment of the G12C mutant of human K-Ras bound to GDP.

    Science.gov (United States)

    Sharma, Alok K; Lee, Seung-Joo; Rigby, Alan C; Townson, Sharon A

    2018-05-02

    K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1 H N, 15 N, and 13 C resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RAS G12C-GDP ), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1 H- 15 N correlations have been assigned for all non-proline residues, except for the first methionine residue.

  7. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Lim, Jae-Cheong; Cho, Eun-Ha; Jung, Sung-Hee [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of). Radioisotope Research Div.

    2016-04-01

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with {sup 125}I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  8. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    International Nuclear Information System (INIS)

    Lee, So-Young; Lim, Jae-Cheong; Cho, Eun-Ha; Jung, Sung-Hee

    2016-01-01

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with 125 I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  9. Coamplification in tumors of KRAS2, type 2 inositol 1,4,5 triphosphate receptor gene, and a novel human gene, KRAG

    Energy Technology Data Exchange (ETDEWEB)

    Heighway, J.; Betticher, D.C.; Altermatt, H.J. [Univ. Hospital of Berne (Switzerland)] [and others

    1996-07-01

    Analysis of a region of DNA, coamplified in tumors with KRAS2, resulted in the identification of the human homologue of the mouse KRAG gene. The gene was widely expressed in range of cell lines, tumors, and normal tissue and demonstrated a high degree of alternate splicing. A human KRAG cDNA sequence, with a structure similar to that encoded by the amplified gene in mouse Y1 adrenal carcinoma cells, was isolated by RT-PCR. The predicted amino acid similarity between the two sequences was 91%, and hydrophobicity plots suggested a structure closely resembling that of transmembrane 4 superfamily members. Identification of a PCR-based restriction fragment length polymorphism allele-specific splicing differences in tumors. Northern analysis of mRNA derived from a range of tissues suggested high level expression in muscle and confirmed alternate splicing. To facilitate the analysis of exon junctions, a YAC clone encoding the genomic sequence was identified. This allowed the localization of KRAG to human chromosome 12p11.2. Isolation of one end of this nonchimeric clone demonstrated a perfect match with a 247-bp sequence within the 3{prime} untranslated region of the type 2 1,4,5-inositol triphosphate receptor gene. Multiplex PCR confirmed the inclusion of both genes. Multiplex PCR confirmed the inclusion of both genes in the KRAS2 amplicon in human malignancy, suggesting that either may contribute to the malignant phenotypes. 35 refs., 6 figs., 1 tab.

  10. A comparative investigation of DNA strand breaks, sister chromatid exchanges and K-ras gene mutations induced by cadmium salts in cultured human cells

    International Nuclear Information System (INIS)

    Mouron, Silvana Andrea; Grillo, Claudia Alejandra; Dulout, Fernando Noel; Golijow, Carlos Daniel

    2004-01-01

    Cadmium (Cd) is a toxic heavy metal of continuing occupational and environmental concern with a wide variety of adverse effects. Several studies have shown that cadmium produces DNA strand breaks, DNA-protein cross-links, oxidative DNA damage, chromosomal aberrations, dysregulation of gene expression resulting in enhanced proliferation, depressed apoptosis and/or altered DNA repair. This study was undertaken to investigate the ability of cadmium chloride (CdCl 2 ) and cadmium sulphate (CdSO 4 ) to induce point mutations in codon 12 of the K-ras protooncogene assessed by polymerase chain reaction-single strand conformation polymorphisms (PCR-SSCP) and RFLP-enriched PCR methods. Also their genotoxic effects were analyzed by the comet assay and sister chromatid exchanges test. The human lung fibroblast cell line MRC-5 was used for the experiments. Sister chromatid exchanges assay (SCEs) frequencies were significantly increased in cells exposed to cadmium salts in relation to controls (p < 0.001). Despite the slow increment observed in the three comet parameters considered when cells were treated with cadmium chloride, significant differences between groups were only found in the variable comet moment (CM) (p < 0.005). On the other hand, when cells were exposed to cadmium sulphate, the Kruskal-Wallis test showed highly significant differences between groups for migration, tail moment and comet moment parameters (p < 0.001). Nevertheless, a null or weak point mutation induction in K-ras protooncogene was detected using polymerase chain reaction-low ionic strength-single strand conformation polymorphisms (PCR-LIS-SSCP) and RFLP-enriched PCR methods when cells were treated with cadmium salts. Thus, inorganic cadmium produces genotoxicity in human lung fibroblast MRC-5 cells, in the absence of significant point mutation of the K-ras gene

  11. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis.

    Science.gov (United States)

    Qian, Jiaying; Niu, Jiangong; Li, Ming; Chiao, Paul J; Tsao, Ming-Sound

    2005-06-15

    Genetic analysis of pancreatic ductal adenocarcinomas and their putative precursor lesions, pancreatic intraepithelial neoplasias (PanIN), has shown a multistep molecular paradigm for duct cell carcinogenesis. Mutational activation or inactivation of the K-ras, p16(INK4A), Smad4, and p53 genes occur at progressive and high frequencies in these lesions. Oncogenic activation of the K-ras gene occurs in >90% of pancreatic ductal carcinoma and is found early in the PanIN-carcinoma sequence, but its functional roles remain poorly understood. We show here that the expression of K-ras(G12V) oncogene in a near diploid HPV16-E6E7 gene immortalized human pancreatic duct epithelial cell line originally derived from normal pancreas induced the formation of carcinoma in 50% of severe combined immunodeficient mice implanted with these cells. A tumor cell line established from one of these tumors formed ductal cancer when implanted orthotopically. These cells also showed increased activation of the mitogen-activated protein kinase, AKT, and nuclear factor-kappaB pathways. Microarray expression profiling studies identified 584 genes whose expression seemed specifically up-regulated by the K-ras oncogene expression. Forty-two of these genes have been reported previously as differentially overexpressed in pancreatic cancer cell lines or primary tumors. Real-time PCR confirmed the overexpression of a large number of these genes. Immunohistochemistry done on tissue microarrays constructed from PanIN and pancreatic cancer samples showed laminin beta3 overexpression starting in high-grade PanINs and occurring in >90% of pancreatic ductal carcinoma. The in vitro modeling of human pancreatic duct epithelial cell transformation may provide mechanistic insights on gene expression changes that occur during multistage pancreatic duct cell carcinogenesis.

  12. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma.

    Science.gov (United States)

    Jeannot, Victor; Busser, Benoit; Vanwonterghem, Laetitia; Michallet, Sophie; Ferroudj, Sana; Cokol, Murat; Coll, Jean-Luc; Ozturk, Mehmet; Hurbin, Amandine

    2016-01-01

    Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (gefitinib) or a multi-targeted kinase inhibitor (sorafenib) in combination with a histone deacetylase inhibitor (vorinostat) on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT)-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G 2 /M cell cycle arrest without apoptosis. The sorafenib and vorinostat combination sustained the IGF-1R-, AKT-, and mitogen-activated protein kinase-dependent signaling pathways. These results showed that there was synergistic cytotoxicity when vorinostat was combined with gefitinib for both lung adenocarcinoma and hepatocarcinoma with mutant KRAS in vitro and in vivo but that the combination of vorinostat with sorafenib did not show any benefit. These findings highlight the important role of the IGF-1R/AKT pathway in the resistance to targeted therapies and support the use of histone deacetylase inhibitors in combination with EGFR-tyrosine kinase inhibitors, especially for

  13. TIMP-1 is under regulation of the EGF signaling axis and promotes an aggressive phenotype in KRAS-mutated colorectal cancer cells

    DEFF Research Database (Denmark)

    Tarpgaard, Line S; Ørum-Madsen, Maj Sofie; Christensen, Ib J

    2016-01-01

    EGFR inhibitors. Metalloproteinase inhibitor 1 (TIMP-1) is a pleiotropic factor predictive of survival outcome of CRC patients. Levels of TIMP-1 were measured in pre-treatment plasma samples (n = 426) of metastatic CRC patients randomized to Nordic FLOX (5-fluorouracil and oxaliplatin) +/- cetuximab...... (NORDIC VII study). Multivariate analysis demonstrated a significant interaction between plasma TIMP-1 protein levels, KRAS status and treatment with patients bearing KRAS mutated tumors and high TIMP-1 plasma level (> 3rd quartile) showing a significantly longer overall survival if treated with cetuximab...

  14. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma [Retraction

    Directory of Open Access Journals (Sweden)

    Lin FO

    2016-10-01

    Full Text Available The Editor-in-Chief and Publisher of OncoTargets and Therapy have been alerted to unacceptable levels of duplication with another published paper: Zhang D, Ni Z, Xu X, and Xiao J. MiR-32 Functions as a Tumor Suppressor and Directly Targets EZH2 in Human Oral Squamous Cell Carcinoma. Medical Science Monitor. 20:2527–2535, 2014.Accordingly, we retract Lin FO, Yao LJ, Xiao J, Liu DF, and Ni ZY. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma. OncoTargets and Therapy. 2014;7:1583–1591.This Retraction relates to 

  15. Multi-Center Evaluation of the Fully Automated PCR-Based Idylla™ KRAS Mutation Assay for Rapid KRAS Mutation Status Determination on Formalin-Fixed Paraffin-Embedded Tissue of Human Colorectal Cancer

    DEFF Research Database (Denmark)

    Solassol, Jérôme; Vendrell, Julie; Märkl, Bruno

    2016-01-01

    , was assessed on archived formalin-fixed paraffin-embedded (FFPE) tissue sections by comparing its results with the results previously obtained by routine reference approaches for KRAS genotyping. In case of discordance, samples were assessed further by additional methods. Among the 374 colorectal cancer FFPE...

  16. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Jeannot V

    2016-11-01

    Full Text Available Victor Jeannot,1,2 Benoit Busser,1–3 Laetitia Vanwonterghem,1,2 Sophie Michallet,1,2 Sana Ferroudj,1,2 Murat Cokol,4 Jean-Luc Coll,1,2 Mehmet Ozturk,1,2,5 Amandine Hurbin1,2 1INSERM U1209, Department Cancer Targets and Experimental Therapeutics, Grenoble, France; 2University Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France; 3Department of Biochemistry, Toxicology and Pharmacology, Grenoble University Hospital, Grenoble, France; 4Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey; 5Faculty of Medicine, Dokuz Eyul University, Izmir Biomedicine and Genome Center, Izmir, Turkey Abstract: Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR-tyrosine kinase inhibitor (gefitinib or a multi-targeted kinase inhibitor (sorafenib in combination with a histone deacetylase inhibitor (vorinostat on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G2/M cell cycle arrest without

  17. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways.

    Directory of Open Access Journals (Sweden)

    Minzhao Huang

    Full Text Available Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2 and cell cycle (cyclin D1, CDK2, and CDK6, and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax. In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8, and metastasis (MMP-2 and MMP-9 in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and

  18. KRAS Mutation and Epithelial-Macrophage Interplay in Pancreatic Neoplastic Transformation.

    Science.gov (United States)

    Bishehsari, Faraz; Zhang, Lijuan; Barlass, Usman; Preite, Nailliw; Turturro, Sanja; Najor, Matthew S; Shetuni, Brandon B; Zayas, Janet P; Mahdavinia, Mahboobeh; Abukhdeir, Abde M; Keshavarzian, Ali

    2018-05-14

    Pancreatic ductal adenocarcinoma (PDA) is characterized by epithelial mutations in KRAS and prominent tumor-associated inflammation, including macrophage infiltration. But knowledge of early interactions between neoplastic epithelium and macrophages in PDA carcinogenesis is limited. Using a pancreatic organoid model, we found that the expression of mutant KRAS in organoids increased i) ductal to acinar gene expression ratios, ii) epithelial cells proliferation, and iii) colony formation capacity in vitro, and endowed pancreatic cells with the ability to generate neoplastic tumors in vivo. KRAS mutations induced a pro-tumorigenic phenotype in macrophages. Altered macrophages decreased epithelial Pigment Epithelial Derived Factor (PEDF) expression and induced a cancerous phenotype. We validated our findings using annotated patient samples from The Cancer Genome Atlas (TCGA) as well as in our human PDA specimens. Epithelium-macrophage cross talk occurs early in pancreatic carcinogenesis where KRAS directly induces cancer-related phenotypes in epithelium, and also promotes a pro-tumorigenic phenotype in macrophages, in turn augmenting neoplastic growth. This article is protected by copyright. All rights reserved. © 2018 UICC.

  19. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation.

    Science.gov (United States)

    Zhang, Qiang; Zhang, Yaqing; Parsels, Joshua D; Lohse, Ines; Lawrence, Theodore S; Pasca di Magliano, Marina; Sun, Yi; Morgan, Meredith A

    2016-11-01

    Pancreatic cancers driven by KRAS mutations require additional mutations for tumor progression. The tumor suppressor FBXW7 is altered in pancreatic cancers, but its contribution to pancreatic tumorigenesis is unknown. To determine potential cooperation between Kras mutation and Fbxw7 inactivation in pancreatic tumorigenesis, we generated P48-Cre;LSL-Kras G12D ;Fbxw7 fl/fl (KFC fl/fl ) compound mice. We found that KFC fl/fl mice displayed accelerated tumorigenesis: all mice succumbed to pancreatic ductal adenocarcinoma (PDA) by 40 days of age, with PDA onset occurring by 2 weeks of age. PDA in KFC fl/fl mice was preceded by earlier onset of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions, and associated with chromosomal instability and the accumulation of Fbxw7 substrates Yes-associated protein (Yap), c-Myc, and Notch. Using KFC fl/fl and FBXW7-deficient human pancreatic cancer cells, we found that Yap silencing attenuated growth promotion by Fbxw7 deletion. Our data demonstrate that Fbxw7 is a potent suppressor of Kras G12D -induced pancreatic tumorigenesis due, at least in part, to negative regulation of Yap. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Detection of up to 65% of Precancerous Lesions of the Human Colon and Rectum by Mutation Analysis of APC, K-Ras, B-Raf and CTNNB1

    International Nuclear Information System (INIS)

    Schneider, Mandy; Scholtka, Bettina; Gottschalk, Uwe; Faiss, Siegbert; Schatz, Daniela; Berghof-Jäger, Kornelia; Steinberg, Pablo

    2010-01-01

    In the present study a recently conceived 4-gene marker panel covering the Wnt and Ras-Raf-MEK-MAPK signaling pathways was used to analyze 20 colorectal serrated lesions and 41 colorectal adenoma samples and to determine the percentage of each of the above-mentioned potentially precancerous lesions carrying at least one of the four above-mentioned genes in a mutated form. CTNNB1 and B-Raf were screened by PCR-single-strand conformation polymorphism analysis, K-Ras by restriction fragment length polymorphism analysis and the APC gene mutation cluster region (codons 1243–1567) by direct DNA sequencing. APC mutations were only detected in 10% of the serrated lesions but in 34% of the adenomas. Twenty percent of the serrated lesions and 14% of the adenomas carried a mutated K-Ras. B-Raf was found to be mutated in 50% of the serrated lesions and in 22% of the adenomas. CTNNB1 was altered in 12% of the adenomas, but not in serrated lesions. By using the above gene marker panel it could be shown that 65% of the serrated lesions and 61% of the adenomas carried at least one of the four genes in a mutated form. Based on its excellent performance in detecting mutations in sporadic preneoplastic (in this study) and neoplastic lesions (in a previous study) of the human colon and rectum, this primer combination might also be suited to efficiently and non-invasively detect genetic alterations in stool DNA of patients with early colorectal cancer

  1. Detection of up to 65% of Precancerous Lesions of the Human Colon and Rectum by Mutation Analysis of APC, K-Ras, B-Raf and CTNNB1

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Mandy; Scholtka, Bettina, E-mail: scholtka@uni-potsdam.de [Chair of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur- Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Gottschalk, Uwe [Maria Heimsuchung Caritas-Klinik Pankow, Breite Straße 46/47, 13187 Berlin (Germany); Faiss, Siegbert [III. Medizinische Abteilung - Gastroenterologie und Hepatologie, Asklepios Klinik Barmbek, Rubenkamp 220, 22291 Hamburg (Germany); Schatz, Daniela; Berghof-Jäger, Kornelia [BIOTECON Diagnostics GmbH, Hermannswerder Haus 17, 14473 Potsdam (Germany); Steinberg, Pablo, E-mail: scholtka@uni-potsdam.de [Chair of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur- Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover (Germany)

    2010-12-29

    In the present study a recently conceived 4-gene marker panel covering the Wnt and Ras-Raf-MEK-MAPK signaling pathways was used to analyze 20 colorectal serrated lesions and 41 colorectal adenoma samples and to determine the percentage of each of the above-mentioned potentially precancerous lesions carrying at least one of the four above-mentioned genes in a mutated form. CTNNB1 and B-Raf were screened by PCR-single-strand conformation polymorphism analysis, K-Ras by restriction fragment length polymorphism analysis and the APC gene mutation cluster region (codons 1243–1567) by direct DNA sequencing. APC mutations were only detected in 10% of the serrated lesions but in 34% of the adenomas. Twenty percent of the serrated lesions and 14% of the adenomas carried a mutated K-Ras. B-Raf was found to be mutated in 50% of the serrated lesions and in 22% of the adenomas. CTNNB1 was altered in 12% of the adenomas, but not in serrated lesions. By using the above gene marker panel it could be shown that 65% of the serrated lesions and 61% of the adenomas carried at least one of the four genes in a mutated form. Based on its excellent performance in detecting mutations in sporadic preneoplastic (in this study) and neoplastic lesions (in a previous study) of the human colon and rectum, this primer combination might also be suited to efficiently and non-invasively detect genetic alterations in stool DNA of patients with early colorectal cancer.

  2. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yanagihara Kazuyoshi

    2009-06-01

    -type KRAS resulted in the inhibition of cell growth and suppression of p44/42 MAP kinase and AKT activity. Conclusion Our study highlights the utility of DGS for identification of copy-number alterations. Using DGS, we identified KRAS as a gene that is amplified in human gastric cancer. We demonstrated that gene amplification likely forms the molecular basis of overactivation of KRAS in gastric cancer. Additional studies using a larger cohort of gastric cancer specimens are required to determine the diagnostic and therapeutic implications of KRAS amplification and overexpression.

  3. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    International Nuclear Information System (INIS)

    Mita, Hiroaki; Yanagihara, Kazuyoshi; Fujita, Masahiro; Hosokawa, Masao; Kusano, Masanobu; Sabau, Sorin Vasile; Tatsumi, Haruyuki; Imai, Kohzoh; Shinomura, Yasuhisa; Tokino, Takashi; Toyota, Minoru; Aoki, Fumio; Akashi, Hirofumi; Maruyama, Reo; Sasaki, Yasushi; Suzuki, Hiromu; Idogawa, Masashi; Kashima, Lisa

    2009-01-01

    suppression of p44/42 MAP kinase and AKT activity. Our study highlights the utility of DGS for identification of copy-number alterations. Using DGS, we identified KRAS as a gene that is amplified in human gastric cancer. We demonstrated that gene amplification likely forms the molecular basis of overactivation of KRAS in gastric cancer. Additional studies using a larger cohort of gastric cancer specimens are required to determine the diagnostic and therapeutic implications of KRAS amplification and overexpression

  4. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-01-01

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF. PMID:29507676

  5. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells.

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-02-06

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF.

  6. STK33 kinase activity is nonessential in KRAS-dependent cancer cells.

    Science.gov (United States)

    Babij, Carol; Zhang, Yihong; Kurzeja, Robert J; Munzli, Anke; Shehabeldin, Amro; Fernando, Manory; Quon, Kim; Kassner, Paul D; Ruefli-Brasse, Astrid A; Watson, Vivienne J; Fajardo, Flordeliza; Jackson, Angela; Zondlo, James; Sun, Yu; Ellison, Aaron R; Plewa, Cherylene A; San, Miguel Tisha; Robinson, John; McCarter, John; Schwandner, Ralf; Judd, Ted; Carnahan, Josette; Dussault, Isabelle

    2011-09-01

    Despite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors. As expected, KRAS downregulation decreased the survival of KRAS-dependent cells. In contrast, STK33 downregulation or dominant mutant overexpression had no effect on KRAS signaling or survival of these cells. Similarly, a synthetic lethal siRNA screen conducted in a broad panel of KRAS wild-type or mutant cells identified KRAS but not STK33 as essential for survival. We also obtained similar negative results using small molecule inhibitors of the STK33 kinase identified by high-throughput screening. Taken together, our findings refute earlier proposals that STK33 inhibition may be a useful therapeutic approach to target human KRAS mutant tumors. ©2011 AACR.

  7. Non-covalent interactions of the carcinogen (+)-anti-BPDE with exon 1 of the human K-ras proto-oncogene

    Science.gov (United States)

    Rodriguez, Jorge H.; Deligkaris, Christos

    2013-03-01

    Investigating the complementary, but different, effects of physical (non-covalent) and chemical (covalent) mutagen-DNA and carcinogen-DNA interactions is important for understanding possible mechanisms of development and prevention of mutagenesis and carcinogenesis. A highly mutagenic and carcinogenic metabolite of the polycyclic aromatic hydrocarbon benzo[ α]pyrene, namely (+)-anti-BPDE, is known to undergo both physical and chemical complexation with DNA. The major covalent adduct, a promutagenic, is known to be an external (+)-trans-anti-BPDE-N2-dGuanosine configuration whose origins are not fully understood. Thus, it is desirable to study the mechanisms of external non-covalent BPDE-DNA binding and their possible relationships to external covalent trans adduct formation. We present a detailed codon-by-codon computational study of the non-covalent interactions of (+)-anti-BPDE with DNA which explains and correctly predicts preferential (+)-anti-BPDE binding at minor groove guanosines. Due to its relevance to carcinogenesis, the interaction of (+)-anti-BPDE with exon 1 of the human K-ras gene has been studied in detail. Present address: Department of Physics, Drury University

  8. Myocardial KRAS(G12D) expression does not cause cardiomyopathy in mice.

    Science.gov (United States)

    Dalin, Martin G; Zou, Zhiyuan; Scharin-Täng, Margareta; Safari, Roghaiyeh; Karlsson, Christin; Bergo, Martin O

    2014-02-01

    Germ-line mutations in genes encoding components of the RAS/mitogen-activated protein kinase (MAPK) pathway cause developmental disorders called RASopathies. Hypertrophic cardiomyopathy (HCM) is the most common myocardial pathology and a leading cause of death in RASopathy patients. KRAS mutations are found in Noonan and cardio-facio-cutaneous syndromes. KRAS mutations, unlike mutations of RAF1 and HRAS, are rarely associated with HCM. This has been attributed to the fact that germ-line KRAS mutations cause only a moderate up-regulation of the MAPK pathway. Highly bioactive KRAS mutations have been hypothesized to cause severe cardiomyopathy incompatible with life. The aim of this study was to define the impact of KRAS(G12D) expression in the heart. To generate mice with endogenous cardiomyocyte-specific KRAS(G12D) expression (cKRAS(G12D) mice), we bred mice with a Cre-inducible allele expressing KRAS(G12D) from its endogenous promoter (Kras2(LSL)) to mice expressing Cre under control of the cardiomyocyte-specific α-myosin heavy chain promoter (αMHC-Cre). cKRAS(G12D) mice showed high levels of myocardial ERK and AKT signalling. However, surprisingly, cKRAS(G12D) mice were born in Mendelian ratios, appeared healthy, and had normal function, size, and histology of the heart. Mice with cardiomyocyte-specific KRAS(G12D) expression do not develop heart pathology. These results challenge the view that the level of MAPK activation correlates with the severity of HCM in RASopathies and suggests that MAPK-independent strategies may be of interest in the development of new treatments for these syndromes.

  9. Specific and Efficient Regression of Cancers Harboring KRAS Mutation by Targeted RNA Replacement.

    Science.gov (United States)

    Kim, Sung Jin; Kim, Ju Hyun; Yang, Bitna; Jeong, Jin-Sook; Lee, Seong-Wook

    2017-02-01

    Mutations in the KRAS gene, which persistently activate RAS function, are most frequently found in many types of human cancers. Here, we proposed and verified a new approach against cancers harboring the KRAS mutation with high cancer selectivity and efficient anti-cancer effects based on targeted RNA replacement. To this end, trans-splicing ribozymes from Tetrahymena group I intron were developed, which can specifically target and reprogram the mutant KRAS G12V transcript to induce therapeutic gene activity in cells. Adenoviral vectors containing the specific ribozymes with downstream suicide gene were constructed and then infection with the adenoviruses specifically downregulated KRAS G12V expression and killed KRAS G12V-harboring cancer cells additively upon pro-drug treatment, but it did not affect the growth of wild-type KRAS-expressing cells. Minimal liver toxicity was noted when the adenoviruses were administered systemically in vivo. Importantly, intratumoral injection of the adenoviruses with pro-drug treatment specifically and significantly impeded the growth of xenografted tumors harboring KRAS G12V through a trans-splicing reaction with the target RNA. In contrast, xenografted tumors harboring wild-type KRAS were not affected by the adenoviruses. Therefore, RNA replacement with a mutant KRAS-targeting trans-splicing ribozyme is a potentially useful therapeutic strategy to combat tumors harboring KRAS mutation. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. Human platelet lysate versus minoxidil stimulates hair growth by activating anagen promoting signaling pathways.

    Science.gov (United States)

    Dastan, Maryam; Najafzadeh, Nowruz; Abedelahi, Ali; Sarvi, Mohammadreza; Niapour, Ali

    2016-12-01

    Minoxidil and human platelet lysate (HPL) are commonly used to treat patients with hair loss. However, the roles of HPL versus minoxidil in hair follicle biology largely remain unknown. Here, we hypothesized that bulge and dermal papilla (DP) cells may express specific genes, including Kras, Erk, Akt, Shh and β-catenin after exposure to minoxidil or HPL. The mouse hair follicles were isolated on day 10 after depilation and bulge or DP regions were dissected. The bulge and DP cells were cultured for 14days in DMEM/F12 medium. Then, the cells were treated with 100μM minoxidil and 10% HPL for 10 days. Nuclear morphology was identified using DAPi staining. Reverse transcriptase and real-time polymerase chain reaction (PCR) analysis were also performed to examine the expression of Kras, Erk, Akt, Shh and β-catenin mRNA levels in the treated bulge and DP regions after organ culture. Here, we found that minoxidil influences bulge and DP cell survival (Pminoxidil treatment in both bulge and DP cells. HPL mediated Erk upregulation in both bulge and DP cells (Pminoxidil-treated bulge cells. In contrast, the expression of β-cateinin and Shh in the DP cells was not meaningfully increased after treatment with HPL. Our results suggest that minoxidil and HPL can promote hair growth by activating the main anagen inducing signaling pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability.

    Science.gov (United States)

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D; Silkworth, Whitney; Ross, Nathan T; Scherer, Christina A; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A; Stern, Andrew M; Schreiber, Stuart L; Golub, Todd R

    2012-02-21

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.

  12. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Nicolas Piton

    2015-01-01

    Full Text Available KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27% and specificity (64% in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100% and specificity (100% in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer.

  13. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Science.gov (United States)

    Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe

    2015-01-01

    KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer. PMID:25983749

  14. Concurrent Targeting of KRAS and AKT by MiR-4689 Is a Novel Treatment Against Mutant KRAS Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Masayuki Hiraki

    2015-01-01

    Full Text Available KRAS mutations are a major cause of drug resistance to molecular-targeted therapies. Aberrant epidermal growth factor receptor (EGFR signaling may cause dysregulation of microRNA (miRNA and gene regulatory networks, which leads to cancer initiation and progression. To address the functional relevance of miRNAs in mutant KRAS cancers, we transfected exogenous KRASG12V into human embryonic kidney 293 and MRC5 cells with wild-type KRAS and BRAF genes, and we comprehensively profiled the dysregulated miRNAs. The result showed that mature miRNA oligonucleotide (miR-4689, one of the significantly down-regulated miRNAs in KRASG12V overexpressed cells, was found to exhibit a potent growth-inhibitory and proapoptotic effect both in vitro and in vivo. miR-4689 expression was significantly down-regulated in cancer tissues compared to normal mucosa, and it was particularly decreased in mutant KRAS CRC tissues. miR-4689 directly targets v-ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS and v-akt murine thymoma viral oncogene homolog 1(AKT1, key components of two major branches in EGFR pathway, suggesting KRAS overdrives this signaling pathway through inhibition of miR-4689. Overall, this study provided additional evidence that mutant KRAS functions as a broad regulator of the EGFR signaling cascade by inhibiting miR-4689, which negatively regulates both RAS/mitogen-activated protein kinase (MAPK and phosphoinositide 3-kinase (PI3K/AKT pathways. These activities indicated that miR-4689 may be a promising therapeutic agent in mutant KRAS CRC.

  15. Functional analysis of human and chimpanzee promoters.

    Science.gov (United States)

    Heissig, Florian; Krause, Johannes; Bryk, Jaroslaw; Khaitovich, Philipp; Enard, Wolfgang; Pääbo, Svante

    2005-01-01

    It has long been argued that changes in gene expression may provide an additional and crucial perspective on the evolutionary differences between humans and chimpanzees. To investigate how often expression differences seen in tissues are caused by sequence differences in the proximal promoters, we tested the expression activity in cultured cells of human and chimpanzee promoters from genes that differ in mRNA expression between human and chimpanzee tissues. Twelve promoters for which the corresponding gene had been shown to be differentially expressed between humans and chimpanzees in liver or brain were tested. Seven showed a significant difference in activity between the human promoter and the orthologous chimpanzee promoter in at least one of the two cell lines used. However, only three of them showed a difference in the same direction as in the tissues. Differences in proximal promoter activity are likely to be common between humans and chimpanzees, but are not linked in a simple fashion to gene-expression levels in tissues. This suggests that several genetic differences between humans and chimpanzees might be responsible for a single expression difference and thus that relevant expression differences between humans and chimpanzees will be difficult to predict from cell culture experiments or DNA sequences.

  16. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice.

    Science.gov (United States)

    Cheon, Eric C; Strouch, Matthew J; Barron, Morgan R; Ding, Yongzeng; Melstrom, Laleh G; Krantz, Seth B; Mullapudi, Bhargava; Adrian, Kevin; Rao, Sambasiva; Adrian, Thomas E; Bentrem, David J; Grippo, Paul J

    2011-06-15

    Diets containing omega-6 (ω-6) fat have been associated with increased tumor development in carcinogen-induced pancreatic cancer models. However, the effects of ω-6 fatty acids and background strain on the development of genetically-induced pancreatic neoplasia is unknown. We assessed the effects of a diet rich in ω-6 fat on the development of pancreatic neoplasia in elastase (EL)-Kras(G12D) (EL-Kras) mice in two different backgrounds. EL-Kras FVB mice were crossed to C57BL/6 (B6) mice to produce EL-Kras FVB6 F1 (or EL-Kras F1) and EL-Kras B6 congenic mice. Age-matched EL-Kras mice from each strain were compared to one another on a standard chow. Two cohorts of EL-Kras FVB and EL-Kras F1 mice were fed a 23% corn oil diet and compared to age-matched mice fed a standard chow. Pancreata were scored for incidence, frequency, and size of neoplastic lesions, and stained for the presence of mast cells to evaluate changes in the inflammatory milieu secondary to a high fat diet. EL-Kras F1 mice had increased incidence, frequency, and size of pancreatic neoplasia compared to EL-Kras FVB mice. The frequency and size of neoplastic lesions and the weight and pancreatic mast cell densities in EL-Kras F1 mice were increased in mice fed a high ω-6 fatty acid diet compared to mice fed a standard chow. We herein introduce the EL-Kras B6 mouse model which presents with increased frequency of pancreatic neoplasia compared to EL-Kras F1 mice. The phenotype in EL-Kras F1 and FVB mice is promoted by a diet rich in ω-6 fatty acid. Copyright © 2010 UICC.

  17. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer

    DEFF Research Database (Denmark)

    Vallejo, Adrian; Perurena, Naiara; Guruceaga, Elisabet

    2017-01-01

    KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identifica...

  18. Human cytomegalovirus and Epstein-Barr virus infection impact on {sup 18}F-FDG PET/CT SUVmax, CT volumetric and KRAS-based parameters of patients with locally advanced rectal cancer treated with neoadjuvant therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Claudio V. [Instituto de Radiomedicina, Department of Radiation Oncology, Santiago (Chile); School of Medicine Complutense University, Madrid (Spain); Calvo, Felipe A. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Ferrer, Carlos [Hospital Provincial de Castellon, Institute of Oncology, Castellon de la Plana (Spain); School of Medicine Cardenal Herrera-CEU University, Castellon de la Plana (Spain); Alvarez, Emilio [School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Pathology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute for Sanitary Research, Madrid (Spain); Carreras, Jose L. [School of Medicine Complutense University, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Radiology and Medical Physics, Madrid (Spain); Ochoa, Enrique [Hospital Provincial de Castellon, Institute of Oncology, Castellon de la Plana (Spain)

    2014-10-01

    It has long been debated whether human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) are associated with rectal cancer. The gene products of HCMV and EBV contribute to cell-cycle progression, mutagenesis, angiogenesis and immune evasion. The aim of this prospective study was to analyse the association between infection of a tumour by HCMV and EBV and clinical, histological, metabolic ({sup 18}F-FDG uptake), volumetric (from CT) and molecular (KRAS status) features and long-term outcomes in a homogeneously treated group of patients with locally advanced rectal cancer. HCMV and EBV were detected in pretreatment biopsies using polymerase chain reaction (PCR). The Cox proportional hazards regression model was used to explore associations between viral infection and disease-free survival (DFS) and overall survival (OS). We analysed 37 patients with a median follow-up of 74 months (range 5-173 months). Locoregional control, OS and DFS at 5 years were 93 %, 74 % and 71 %, respectively. Patients with HCMV/EBV coinfection had a significantly higher maximum standardized uptake value than patients without viral coinfection (p = 0.02). Significant differences were also observed in staging and percentage relative reduction in tumour volume between patients with and without HCMV infection (p < 0.01) and EBV infection (p < 0.01). KRAS wildtype status was significantly more frequently observed in patients with EBV infection (p <0.01) and HCMV/EBV co-infection (p = 0.04). No significant differences were observed in OS or DFS between patients with and without EBV infection (p = 0.88 and 0.73), HCMV infection (p = 0.84 and 0.79), and EBV/CMV coinfection (p = 0.24 and 0.39). This pilot study showed that viral infections were associated with metabolic staging differences, and differences in the evolution of metabolic and volumetric parameters and KRAS mutations. Further findings of specific features will help determine the best candidates for metabolic and volumetric staging and

  19. Human cytomegalovirus and Epstein-Barr virus infection impact on 18F-FDG PET/CT SUVmax, CT volumetric and KRAS-based parameters of patients with locally advanced rectal cancer treated with neoadjuvant therapy

    International Nuclear Information System (INIS)

    Sole, Claudio V.; Calvo, Felipe A.; Ferrer, Carlos; Alvarez, Emilio; Carreras, Jose L.; Ochoa, Enrique

    2015-01-01

    It has long been debated whether human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) are associated with rectal cancer. The gene products of HCMV and EBV contribute to cell-cycle progression, mutagenesis, angiogenesis and immune evasion. The aim of this prospective study was to analyse the association between infection of a tumour by HCMV and EBV and clinical, histological, metabolic ( 18 F-FDG uptake), volumetric (from CT) and molecular (KRAS status) features and long-term outcomes in a homogeneously treated group of patients with locally advanced rectal cancer. HCMV and EBV were detected in pretreatment biopsies using polymerase chain reaction (PCR). The Cox proportional hazards regression model was used to explore associations between viral infection and disease-free survival (DFS) and overall survival (OS). We analysed 37 patients with a median follow-up of 74 months (range 5-173 months). Locoregional control, OS and DFS at 5 years were 93 %, 74 % and 71 %, respectively. Patients with HCMV/EBV coinfection had a significantly higher maximum standardized uptake value than patients without viral coinfection (p = 0.02). Significant differences were also observed in staging and percentage relative reduction in tumour volume between patients with and without HCMV infection (p < 0.01) and EBV infection (p < 0.01). KRAS wildtype status was significantly more frequently observed in patients with EBV infection (p <0.01) and HCMV/EBV co-infection (p = 0.04). No significant differences were observed in OS or DFS between patients with and without EBV infection (p = 0.88 and 0.73), HCMV infection (p = 0.84 and 0.79), and EBV/CMV coinfection (p = 0.24 and 0.39). This pilot study showed that viral infections were associated with metabolic staging differences, and differences in the evolution of metabolic and volumetric parameters and KRAS mutations. Further findings of specific features will help determine the best candidates for metabolic and volumetric staging and

  20. Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway.

    Science.gov (United States)

    Han, Chang Woo; Jeong, Mi Suk; Jang, Se Bok

    2017-09-16

    Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Coexistence of K-ras mutations and HPV infection in colon cancer

    Directory of Open Access Journals (Sweden)

    Tezol Ayda

    2006-05-01

    Full Text Available Abstract Background Activation of the ras genes or association with human papillomavirus infection have been extensively studied in colorectal cancer. However, the correlation between K-ras mutations and HPV in colorectal cancer has not been investigated yet. In this study we aimed to investigate the presence of K-ras mutations and their correlation with HPV infection in colon cancer. Methods K-ras mutations were analyzed by a mutagenic PCR assay and digestion with specific restriction enzymes to distinguish the wild-type and mutant codons. HPV infection was analyzed by PCR amplification and hybridization with specific probes by Southern blotting. Stattistical analyses were performed by the chi-square and Fisher's exact tests Results HPV gene fragments were detected in 43 tumors and 17 normal tissue samples. HPV 18 was the prevalent type in the tumor tissue. A mutation at codon 12 of the K-ras gene was present in 31 patients. 56% of the HPV-positive tumors also harbored a K-ras mutation. Codon 13 mutations were not observed. These data indicate that infection with high risk HPV types and mutational activation of the K-ras gene are frequent events in colorectal carcinogenesis. Conclusion Our findings suggest that mutational activation of the K-ras gene is a common event in colon carcinogenesis and that HPV infection may represent an important factor in the development of the premalignant lesions leading to the neoplastic phenotype.

  2. A high level of liver-specific expression of oncogenic KrasV12 drives robust liver tumorigenesis in transgenic zebrafish

    Directory of Open Access Journals (Sweden)

    Anh Tuan Nguyen

    2011-11-01

    Human liver cancer is one of the deadliest cancers worldwide, with hepatocellular carcinoma (HCC being the most common type. Aberrant Ras signaling has been implicated in the development and progression of human HCC, but a complete understanding of the molecular mechanisms of this protein in hepatocarcinogenesis remains elusive. In this study, a stable in vivo liver cancer model using transgenic zebrafish was generated to elucidate Ras-driven tumorigenesis in HCC. Using the liver-specific fabp10 (fatty acid binding protein 10 promoter, we overexpressed oncogenic krasV12 specifically in the transgenic zebrafish liver. Only a high level of krasV12 expression initiated liver tumorigenesis, which progressed from hyperplasia to benign and malignant tumors with activation of the Ras-Raf-MEK-ERK and Wnt–β-catenin pathways. Histological diagnosis of zebrafish tumors identified HCC as the main lesion. The tumors were invasive and transplantable, indicating malignancy of these HCC cells. Oncogenic krasV12 was also found to trigger p53-dependent senescence as a tumor suppressive barrier in the pre-neoplastic stage. Microarray analysis of zebrafish liver hyperplasia and HCC uncovered the deregulation of several stage-specific and common biological processes and signaling pathways responsible for krasV12-driven liver tumorigenesis that recapitulated the molecular hallmarks of human liver cancer. Cross-species comparisons of cancer transcriptomes further defined a HCC-specific gene signature as well as a liver cancer progression gene signature that are evolutionarily conserved between human and zebrafish. Collectively, our study presents a comprehensive portrait of molecular mechanisms during progressive Ras-induced HCC. These observations indicate the validity of our transgenic zebrafish to model human liver cancer, and this model might act as a useful platform for drug screening and identifying new therapeutic targets.

  3. The promotion of radioimmunoassay in human health

    International Nuclear Information System (INIS)

    Dudley, R.A.

    1983-01-01

    Radioimmunoassay is an analytical technique which makes use of highly specific and sensitive antibodies to segregate particular substances of interest and radioactive tracers to permit quantification of minute amounts. Some procedures use specific biological ''reagents'' other than antibodies and tracers other than radionuclides. Radioimmunoassay plays an enormous role in medical diagnosis and research. Depending on the services to be performed, the radioimmunoassay laboratories are classified into 4 categories. The laboratory of each category is staffed and equipped with facilities according to its scope and quantity of work. From 1980-1982, nearly US$ 2 million had been used under the Agency's Technical Cooperation Programme for the promotion of radioimmunoassay in human health

  4. Promotion of radioimmunoassay in human health

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, R A [International Atomic Energy Agency, Vienna (Austria). Div. of Life Sciences

    1983-06-01

    Radioimmunoassay is an analytical technique which makes use of highly specific and sensitive antibodies to segregate particular substances of interest and radioactive tracers to permit quantification of minute amounts. Some procedures use specific biological ''reagents'' other than antibodies and tracers other than radionuclides. Radioimmunoassay plays an enormous role in medical diagnosis and research. Depending on the services to be performed, the radioimmunoassay laboratories are classified into 4 categories. The laboratory of each category is staffed and equipped with facilities according to its scope and quantity of work. From 1980-1982, nearly US $2 million had been used under the Agency's Technical Cooperation Programme for the promotion of radioimmunoassay in human health.

  5. Promotion of health and human functionality

    Directory of Open Access Journals (Sweden)

    Ana Cristhina de Oliveira Brasil

    2013-08-01

    diverse environmental barriers, whether they are physical, geographic, technological, legal, among others(5. Such health problems that generated those impairments are harmful not only to the citizens but also to the State, since they burden the social security system (health, welfare and social security, leading to decreased quality of life, especially of those affected by such problems. Despite the finding of facts as the major expenses with medium and high complexity services in health, sickness benefit and early retirements that could have been avoided, one can perceive the lack of specific and properly planned actions, the implementation of which depends on political and administrative will and on a paradigm shift regarding the expanded focus on the etiology of all these health problems. And yet, no public policies are known in Brazil, to follow up, in a transversal and integral way, all the stages of the life cycle or to delineate the profile of functionality and the monitoring of the incidence of disabilities, but also, in particular, actions focused on future generations, based on the expanded concept of health proposed by WHO and defended in the principles and guidelines of SUS. Far more required than simply creating reintegration services is to avoid / prevent social restriction. Therefore, policies must be drawned with a new perspective on the human being, that respects the constitutional principles and guidelines of the NHS and meet the consequences of demographic and epidemiological transitions in order to promote health so that people live without major disabilities an increased life expectancy that has already been settled in Brazil. At the 13th National Conference on Health, the unprecedented proposal n.144 has been approved on Axis II - Public Policies for Health and Quality of Life: SUS in Social Security and the Pact for Health, along with the motion n. 84, aiming to develop and implement a national health functional policy crossing all health policies

  6. Promotion of Health and Human Functionality

    Directory of Open Access Journals (Sweden)

    Ana Cristhina de Oliveira Brasil

    2013-03-01

    environmental barriers, whether they are physical, geographic, technological, legal, among others(5.Such health problems that generated those impairments are harmful not only to the citizens but also to the State, since they burden the social security system (health, welfare and social security, leading to decreased quality of life, especially of those affected by such problems.Despite the finding of facts as the major expenses with medium and high complexity services in health, sickness benefit and early retirements that could have been avoided, one can perceive the lack of specific and properly planned actions, the implementation of which depends on political and administrative will and on a paradigm shift regarding the expanded focus on the etiology of all these health problems.And yet, no public policies are known in Brazil, to follow up, in a transversal and integral way, all the stages of the life cycle or to delineate the profile of functionality and the monitoring of the incidence of disabilities, but also, in particular, actions focused on future generations, based on the expanded concept of health proposed by WHO and defended in the principles and guidelines of SUS.Far more required than simply creating reintegration services is to avoid / prevent social restriction. Therefore, policies must be drawned with a new perspective on the human being, that respects the constitutional principles and guidelines of the NHS and meet the consequences of demographic and epidemiological transitions in order to promote health so that people live without major disabilities an increased life expectancy that has already been settled in Brazil.At the 13th National Conference on Health, the unprecedented proposal n.144 has been approved on Axis II - Public Policies for Health and Quality of Life: SUS in Social Security and the Pact for Health, along with the motion n. 84, aiming to develop and implement a national health functional policy crossing all health policies at their different

  7. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH.

    Science.gov (United States)

    Yun, Jihye; Mullarky, Edouard; Lu, Changyuan; Bosch, Kaitlyn N; Kavalier, Adam; Rivera, Keith; Roper, Jatin; Chio, Iok In Christine; Giannopoulou, Eugenia G; Rago, Carlo; Muley, Ashlesha; Asara, John M; Paik, Jihye; Elemento, Olivier; Chen, Zhengming; Pappin, Darryl J; Dow, Lukas E; Papadopoulos, Nickolas; Gross, Steven S; Cantley, Lewis C

    2015-12-11

    More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/Kras(G12D) mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations. Copyright © 2015, American Association for the Advancement of Science.

  8. Eficacia de la terapia génica antisentido utilizando oligonucleótidos anti K-ras y antitelomerasa en cáncer colorrectal

    OpenAIRE

    Lledó, S.; Alfonso, R.; Aliño, S. F.

    2005-01-01

    Aim: to test the efficacy of anti-k-ras and antitelomerase oligonucleotides for disabling colorectal cancer cell growth. Material and methods: an established human colorectal cancer cell line (SW 480, ATTC®) was used. Oligodeoxiribonucleotides (ODNs) have a phosphorotioate modification to ensure intracellular intake. We used an antitelomerase ODN (Telp5) and two anti-k-ras ODNs (AS-KRAS and ISIS). AS-KRAS is designed to join the k-ras oncogene's exon 1. ISIS links to the terminal transcriptio...

  9. Methylation associated inactivation of RASSF1A and its synergistic effect with activated K-Ras in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Jing

    2009-12-01

    Full Text Available Abstract Background Epigenetic silencing of tumor suppressor genes associated with promoter methylation is considered to be a hallmark of oncogenesis. RASSF1A is a candidate tumor suppressor gene which was found to be inactivated in many human cancers. Although we have had a prelimilary cognition about the function of RASSF1A, the exact mechanisms about how RASSF1A functions in human cancers were largely unknown. Moreover, the effect of mutated K-Ras gene on the function of RASSF1A is lacking. The aim of this study was to investigate the expression profile and methylation status of RASSF1A gene, and to explore its concrete mechanisms as a tumor suppressor gene in Nasopharyngeal Carcinoma. Methods We examined the expression profile and methylation status of RASSF1A in two NPC cell lines, 38 primary nasopharyngeal carcinoma and 14 normal nasopharyngeal epithelia using RT-PCR and methylated specific PCR(MSP respectively. 5-aza-dC was then added to confirm the correlation between hypermethylation status and inactivation of RASSF1A. The NPC cell line CNE-2 was transfected with exogenous pcDNA3.1(+/RASSF1A plasmid in the presence or absence of mutated K-Ras by liposome-mediated gene transfer method. Flow cytometry was used to examine the effect of RASSF1A on cell cycle modulation and apoptosis. Meanwhile, trypan blue dye exclusion assays was used to detect the effect of RASSF1A transfection alone and the co-transfection of RASSF1A and K-Ras on cell proliferation. Results Promoter methylation of RASSF1A could be detected in 71.05% (27/38 of NPC samples, but not in normal nasopharyngeal epithelia. RASSF1A expression in NPC primary tumors was lower than that in normal nasopharyngeal epithelial (p p p p Conclusion Expression of RASSF1A is down-regulated in NPC due to the hypermethylation of promoter. Exogenous expression of RASSF1A is able to induce growth inhibition effect and apoptosis in tumor cell lines, and this effect could be enhanced by activated

  10. Dry wall Kras 2011

    Directory of Open Access Journals (Sweden)

    Domen Zupančič

    2012-01-01

    Full Text Available Despite the modesty of hiska, they show a simple understanding of corbelling technique. One could say they are all examples of human landscape cultivation. Although there is no evident common line when comparing all types of hiska, the cunning eye may observe one shared feature: the positioning of the entrance. More or less all the documented shelters have south or south-western facing entrances. The burja is a cold northerly wind; from the south (Adriatic Sea the winds are warmer. When resting, the setting sun is taken as a sign of the ending of the working day and a reward for the whole day’s efforts. Entrances are the only openings to these structures, and they should serve as well as possible - to watch over the crops, to wait when hunting, to enjoy the calm of evening light, to breathe the sea wind.The syntax of the architectural language of layering stone and shaping the pattern of the landscape remain an inventive realisation of spatial ideas from the past until today. Not only ideas of shaping space - these ideas are basic interventions in the natural habitat which contribute to survival. Culture and an awareness of its values are the origins of local development and reasonable heritage preservation. The next step are tutorial days with workshops on how to build dry stone structures, walls and other stone architecture, as the DSWA organisation in the UK is doing.

  11. Endogenous retroviral promoter exaptation in human cancer

    Directory of Open Access Journals (Sweden)

    Artem Babaian

    2016-12-01

    Full Text Available Abstract Cancer arises from a series of genetic and epigenetic changes, which result in abnormal expression or mutational activation of oncogenes, as well as suppression/inactivation of tumor suppressor genes. Aberrant expression of coding genes or long non-coding RNAs (lncRNAs with oncogenic properties can be caused by translocations, gene amplifications, point mutations or other less characterized mechanisms. One such mechanism is the inappropriate usage of normally dormant, tissue-restricted or cryptic enhancers or promoters that serve to drive oncogenic gene expression. Dispersed across the human genome, endogenous retroviruses (ERVs provide an enormous reservoir of autonomous gene regulatory modules, some of which have been co-opted by the host during evolution to play important roles in normal regulation of genes and gene networks. This review focuses on the “dark side” of such ERV regulatory capacity. Specifically, we discuss a growing number of examples of normally dormant or epigenetically repressed ERVs that have been harnessed to drive oncogenes in human cancer, a process we term onco-exaptation, and we propose potential mechanisms that may underlie this phenomenon.

  12. RAF Suppression Synergizes with MEK Inhibition in KRAS Mutant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Simona Lamba

    2014-09-01

    Full Text Available KRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthetic lethal with MEK inhibition. An unbiased kinome short hairpin RNA (shRNA-based screen confirmed this synthetic lethal interaction in colorectal as well as in lung cancer cells bearing KRAS mutations. Compounds targeting RAF kinases can reverse resistance to the MEK inhibitor selumetinib. MEK inhibition induces RAS activation and BRAF-RAF1 dimerization and sustains MEK-ERK signaling, which is responsible for intrinsic resistance to selumetinib. Prolonged dual blockade of RAF and MEK leads to persistent ERK suppression and efficiently induces apoptosis. Our data underlie the relevance of developing combinatorial regimens of drugs targeting the RAF-MEK pathway in KRAS mutant tumors.

  13. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    International Nuclear Information System (INIS)

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-01

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35–40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our “gene therapy” approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce ∼ 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by ∼ 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  14. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Naumov, Inna [Integrated Cancer Prevention Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Kazanov, Dina [Integrated Cancer Prevention Center, Tel Aviv (Israel); Lisiansky, Victoria [Integrated Cancer Prevention Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Starr, Alex [Lung and Allergy Institute, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Aroch, Ilan; Shapira, Shiran; Kraus, Sarah [Integrated Cancer Prevention Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Arber, Nadir, E-mail: narber@post.tau.ac.il [Integrated Cancer Prevention Center, Tel Aviv (Israel); Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  15. Loss of RASSF1A Expression in Colorectal Cancer and Its Association with K-ras Status

    Directory of Open Access Journals (Sweden)

    Dan Cao

    2013-01-01

    Full Text Available Background. The RAS-association domain family 1 A (RASSF1A is a classical member of RAS effectors regulating cell proliferation and apoptosis. Loss of RASSF1A expression may shift the balance towards a growth-promoting effect without the necessity of activating K-ras mutations. Its potential association with K-ras mutations in colorectal cancer (CRC is unclear. Methods. RASSF1A expression was examined in normal mucosa, adenoma, and tumor tissues of colon and rectum, respectively. We examined the association of RASSF1A expression, mutations of K-ras, and EGFR status in 76 primary CRCs. The relationship between clinicopathological characteristics and RASSF1A expression was also analyzed. Results. RASSF1A expression level decreased progressively in normal mucosa, adenoma and, tumor tissues, and the loss of RASSF1A expression occurred more frequently in tumor tissues. Of 76 primary CRCs, loss of RASSF1A expression and/or K-ras mutations were detected in 77% cases. Loss of RASSF1A expression was more frequent in K-ras wild-type than in mutation cases (63% versus 32%, . Conclusions. Our study indicates that loss of RASSF1A may be involved in pathogenesis of CRC, its expression was found predominantly in K-ras wild-type CRCs, suggesting that it may be another way of affecting RAS signaling, in addition to K-ras mutations.

  16. Obstructive jaundice promotes bacterial translocation in humans.

    Science.gov (United States)

    Kuzu, M A; Kale, I T; Cöl, C; Tekeli, A; Tanik, A; Köksoy, C

    1999-01-01

    Significant bacterial translocation was demonstrated following experimental biliary obstruction, however very little is known about the importance and the prevalence of gut-origin sepsis in obstructive jaundice patients. Therefore, the aim of this study was to investigate the concept of gut-origin sepsis in obstructive jaundiced patients and its clinical importance. Twenty-one patients requiring laparotomy for obstructive jaundice (group I) and thirty patients operated on electively mainly for chronic cholecystitis (group II) were studied. Peritoneal swab, mesenteric lymph node, portal venous blood, liver wedge biopsy and bile were sampled for culture immediately after opening the peritoneum. Additionally, peripheral blood samples were taken pre- and post-operatively from all patients. Post-operatively, patients were monitored for infectious complications. The mean serum bilirubin concentration, gamma glutamyl transferase and alkaline phosphatase levels in jaundiced patients before therapeutic intervention were significantly higher than in control patients. Five patients demonstrated bacterial translocation in group I (24%), whereas only one did so in group II (3.5%, p jaundice significantly promotes bacterial translocation in humans, however, its clinical importance has yet to be defined.

  17. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    Science.gov (United States)

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  18. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Science.gov (United States)

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  19. The impact of KRAS mutations on VEGF-A production and tumour vascular network

    International Nuclear Information System (INIS)

    Figueras, Agnès; Arbos, Maria Antonia; Quiles, Maria Teresa; Viñals, Francesc; Germà, Josep Ramón; Capellà, Gabriel

    2013-01-01

    The malignant potential of tumour cells may be influenced by the molecular nature of KRAS mutations being codon 13 mutations less aggressive than codon 12 ones. Their metabolic profile is also different, with an increased anaerobic glycolytic metabolism in cells harbouring codon 12 KRAS mutations compared with cells containing codon 13 mutations. We hypothesized that this distinct metabolic behaviour could be associated with different HIF-1α expression and a distinct angiogenic profile. Codon13 KRAS mutation (ASP13) or codon12 KRAS mutation (CYS12) NIH3T3 transfectants were analyzed in vitro and in vivo. Expression of HIF-1α, and VEGF-A was studied at RNA and protein levels. Regulation of VEGF-A promoter activity was assessed by means of luciferase assays using different plasmid constructs. Vascular network was assessed in tumors growing after subcutaneous inoculation. Non parametric statistics were used for analysis of results. Our results show that in normoxic conditions ASP13 transfectants exhibited less HIF-1α protein levels and activity than CYS12. In contrast, codon 13 transfectants exhibited higher VEGF-A mRNA and protein levels and enhanced VEGF-A promoter activity. These differences were due to a differential activation of Sp1/AP2 transcription elements of the VEGF-A promoter associated with increased ERKs signalling in ASP13 transfectants. Subcutaneous CYS12 tumours expressed less VEGF-A and showed a higher microvessel density (MVD) than ASP13 tumours. In contrast, prominent vessels were only observed in the latter. Subtle changes in the molecular nature of KRAS oncogene activating mutations occurring in tumour cells have a major impact on the vascular strategy devised providing with new insights on the role of KRAS mutations on angiogenesis

  20. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.

    Science.gov (United States)

    He, Ping; Yang, Jong Won; Yang, Vincent W; Bialkowska, Agnieszka B

    2018-04-01

    Activating mutations in KRAS are detected in most pancreatic ductal adenocarcinomas (PDACs). Expression of an activated form of KRAS (KrasG12D) in pancreata of mice is sufficient to induce formation of pancreatic intraepithelial neoplasia (PanINs)-a precursor of PDAC. Pancreatitis increases formation of PanINs in mice that express KrasG12D by promoting acinar-to-ductal metaplasia (ADM). We investigated the role of the transcription factor Krüppel-like factor 5 (KLF5) in ADM and KRAS-mediated formation of PanINs. We performed studies in adult mice with conditional disruption of Klf5 (Klf5 fl/fl ) and/or expression of Kras G12D (LSL-Kras G12D ) via Cre ERTM recombinase regulated by an acinar cell-specific promoter (Ptf1a). Activation of Kras G12D and loss of KLF5 was achieved by administration of tamoxifen. Pancreatitis was induced in mice by administration of cerulein; pancreatic tissues were collected, analyzed by histology and immunohistochemistry, and transcriptomes were compared between mice that did or did not express KLF5. We performed immunohistochemical analyses of human tissue microarrays, comparing levels of KLF5 among 96 human samples of PDAC. UN-KC-6141 cells (pancreatic cancer cells derived from Pdx1-Cre;LSL-Kras G12D mice) were incubated with inhibitors of different kinases and analyzed in proliferation assays and by immunoblots. Expression of KLF5 was knocked down with small hairpin RNAs or CRISPR/Cas9 strategies; cells were analyzed in proliferation and gene expression assays, and compared with cells expressing control vectors. Cells were subcutaneously injected into flanks of syngeneic mice and tumor growth was assessed. Of the 96 PDAC samples analyzed, 73% were positive for KLF5 (defined as nuclear staining in more than 5% of tumor cells). Pancreata from Ptf1a-Cre ERTM ;LSL-Kras G12D mice contained ADM and PanIN lesions, which contained high levels of nuclear KLF5 within these structures. In contrast, Ptf1a-Cre ERTM ;LSL-Kras G12D ;Klf5 fl

  1. H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences.

    Science.gov (United States)

    Drosten, Matthias; Simón-Carrasco, Lucía; Hernández-Porras, Isabel; Lechuga, Carmen G; Blasco, María T; Jacob, Harrys K C; Fabbiano, Salvatore; Potenza, Nicoletta; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano

    2017-02-01

    Genetic studies in mice have provided evidence that H-Ras and K-Ras proteins are bioequivalent. However, human tumors display marked differences in the association of RAS oncogenes with tumor type. Thus, to further assess the bioequivalence of oncogenic H-Ras and K-Ras, we replaced the coding region of the murine K-Ras locus with H-Ras G12V oncogene sequences. Germline expression of H-Ras G12V or K-Ras G12V from the K-Ras locus resulted in embryonic lethality. However, expression of these genes in adult mice led to different tumor phenotypes. Whereas H-Ras G12V elicited papillomas and hematopoietic tumors, K-Ras G12V induced lung tumors and gastric lesions. Pulmonary expression of H-Ras G12V created a senescence-like state caused by excessive MAPK signaling. Likewise, H-Ras G12V but not K-Ras G12V induced senescence in mouse embryonic fibroblasts. Label-free quantitative analysis revealed that minor differences in H-Ras G12V expression levels led to drastically different biological outputs, suggesting that subtle differences in MAPK signaling confer nonequivalent functions that influence tumor spectra induced by RAS oncoproteins. Cancer Res; 77(3); 707-18. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Genetic analysis of tumorigenesis: XXXII. Localization of constitutionally amplified KRAS sequences to Chinese hamster chromosomes X and Y by in situ hybridization.

    Science.gov (United States)

    Stenman, G; Anisowicz, A; Sager, R

    1988-11-01

    The KRAS gene is constitutionally amplified in the Chinese hamster. We have mapped the amplified sequences by in situ hybridization to two major sites on the X and Y chromosomes, Xq4 and Yp2. No autosomal site was detected despite a search under relaxed hybridization conditions. KRAS DNA is amplified about 50-fold compared to a human cell line known to have a diploid number of KRAS sequences, whereas mRNA expression is 5- to 10-fold lower than in normal human cells. While mRNA expression levels do not necessarily parallel gene copy number, the low expression level strongly suggests that the amplified sequences are transcriptionally silent. It is suggested that the amplified sequences arose from the original KRAS gene on chromosome 8 and that the KRAS sequences on the Y chromosome arose by X-Y recombination.

  3. Targeting the PI3K signaling pathway in KRAS mutant colon cancer

    International Nuclear Information System (INIS)

    Hong, Suntaek; Kim, SoYoung; Kim, Hye Youn; Kang, Myunghee; Jang, Ho Hee; Lee, Won-Suk

    2015-01-01

    Metastatic colorectal cancer (CRC) patients with v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are resistant to monoclonal antibody that targets the epidermal growth factor receptor such as cetuximab. BKM120 targets phosphatidylinositide-3-kinase (PIK3CA), but it is unknown whether BKM120 can reverse cetuximab resistance in KRAS mutant CRC. Human CRC cell lines with KRAS mutations (DLD-1, HCT116, and LoVo) were used to test the effect of cetuximab, BKM120, and cetuximab plus BKM120 on cell proliferation in vitro and in vivo. BKM120 reduced cell proliferation in a concentration-dependent manner in the LoVo (PI3KCA wild type) as well as the HCT116 and DLD1 cells (that carry a PI3KCA mutation). BKM120 only inhibited ERK phosphorylation in LoVo cells (PIK3CA wild type), but not in DLD1 or HCT116 cells at a concentration of 1 μmol/L. Treatment with cetuximab and BKM120 significantly reduced the growth of xenograft tumors originating from KRAS mutant cells compared with cetuximab alone (P = 0.034). BKM120 may overcome cetuximab resistance in colon cancer cells with KRAS mutation

  4. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    Science.gov (United States)

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  5. Higher prevalence of KRAS mutations in colorectal cancer in Saudi ...

    African Journals Online (AJOL)

    We studied retrospectively tumor samples of 83 Saudi metastatic CRC patients for KRAS mutations in codon 12 and codon 13, to evaluate the relevance of KRAS mutation positive colorectal cancers with metastatic sites. KRAS mutation was observed in 42.2% (35/83) patients with CRC. The most common mutations were in ...

  6. Characterization of a novel oncogenic K-ras mutation in colon cancer

    International Nuclear Information System (INIS)

    Akagi, Kiwamu; Uchibori, Ryosuke; Yamaguchi, Kensei; Kurosawa, Keiko; Tanaka, Yoichiro; Kozu, Tomoko

    2007-01-01

    Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity

  7. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Ferino, Annalisa; Miglietta, Giulia

    2018-01-01

    KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. W...

  8. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma.

    Science.gov (United States)

    Miller, A; McLeod, L; Alhayyani, S; Szczepny, A; Watkins, D N; Chen, W; Enriori, P; Ferlin, W; Ruwanpura, S; Jenkins, B J

    2017-05-25

    Lung cancer is the leading cause of cancer death worldwide, and is frequently associated with the devastating paraneoplastic syndrome of cachexia. The potent immunomodulatory cytokine interleukin (IL)-6 has been linked with the development of lung cancer as well as cachexia; however, the mechanisms by which IL-6 promotes muscle wasting in lung cancer cachexia are ill-defined. In this study, we report that the gp130 F/F knock-in mouse model displaying hyperactivation of the latent transcription factor STAT3 via the common IL-6 cytokine family signalling receptor, gp130, develops cachexia during Kras-driven lung carcinogenesis. Specifically, exacerbated weight loss, early mortality and reduced muscle and adipose tissue mass were features of the gp130 F/F :Kras G12D model, but not parental Kras G12D mice in which STAT3 was not hyperactivated. Gene expression profiling of muscle tissue in cachectic gp130 F/F :Kras G12D mice revealed the upregulation of IL-6 and STAT3-target genes compared with Kras G12D muscle tissue. These cachectic features of gp130 F/F :Kras G12D mice were abrogated upon the genetic normalization of STAT3 activation or ablation of IL-6 in gp130 F/F :Kras G12D :Stat3 -/+ or gp130 F/F :Kras G12D :Il6 -/- mice, respectively. Furthermore, protein levels of the soluble IL-6 receptor (sIL-6R), which is the central facilitator of IL-6 trans-signalling, were elevated in cachectic muscle from gp130 F/F :Kras G12D mice, and the specific blockade of IL-6 trans-signalling, but not classical signalling, with an anti-IL-6R antibody ameliorated cachexia-related characteristics in gp130 F/F :Kras G12D mice. Collectively, these preclinical findings identify trans-signalling via STAT3 as the signalling modality by which IL-6 promotes muscle wasting in lung cancer cachexia, and therefore support the clinical evaluation of the IL-6 trans-signalling/STAT3 axis as a therapeutic target in advanced lung cancer patients presenting with cachexia.

  9. The proto-oncogene KRAS and BRAF profiles and some clinical characteristics in colorectal cancer in the Turkish population.

    Science.gov (United States)

    Ozen, Filiz; Ozdemir, Semra; Zemheri, Ebru; Hacimuto, Gizem; Silan, Fatma; Ozdemir, Ozturk

    2013-02-01

    The aim of the current study was to investigate the prevalence and predictive significance of the KRAS and BRAF mutations in Turkish patients with colorectal cancer (CRC). Totally, 53 fresh tumoral tissue specimens were investigated in patients with CRC. All specimens were obtained during routine surgery of patients who were histopathologically diagnosed and genotyped for common KRAS and BRAF point mutations. After DNA extraction, the target mutations were analyzed using the AutoGenomics INFINITI(®) assay, and some samples were confirmed by quantitative real-time polymerase chain reaction fluorescence melting curve analyses. KRAS mutations were found in 26 (49.05%) CRC samples. Twenty-seven samples (50.95%) had wild-type profiles for KRAS codon 12, 13, and 61 in the current cohort. In 17 (65.38%) samples, codon 12; in 7 (26.93%) samples, codon 13; and in 2 (7.69%) samples, codon 61 were found to be mutated, particularly in grade 2 of tumoral tissues. No point mutation was detected in BRAF codon Val600Glu for the studied CRC patients. Our study, based on a representative collection of human CRC tumors, indicates that KRAS gene mutations were detected in 49.05% of the samples, and the most frequent mutation was in the G12D codon. Results also showed that codons 12 and 13 of KRAS are relatively frequently without BRAF mutation in a CRC cohort from the Turkish population.

  10. KRAS and BRAF mutations in anal carcinoma

    DEFF Research Database (Denmark)

    Serup-Hansen, Eva; Linnemann, Dorte; Høgdall, Estrid

    2015-01-01

    the frequency and the prognostic value of KRAS and BRAF mutations in a large cohort of patients with anal cancer. One hundred and ninety-three patients with T1-4N0-3M0-1 anal carcinoma were included in the study. Patients were treated with curative (92%) or palliative intent (8%) between January 2000...

  11. Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase

    Directory of Open Access Journals (Sweden)

    Kosuke Toda

    2016-11-01

    Full Text Available A number of clinical trials have shown that KRAS mutations of colorectal cancer (CRC can predict a lack of responses to anti-epidermal growth factor receptor–based therapy. Recently, there have been several studies to elucidate metabolism reprogramming in cancer. However, it remains to be investigated how mutated KRAS can coordinate the metabolic shift to sustain CRC tumor growth. In this study, we found that KRAS mutation in CRC caused alteration in amino acid metabolism. KRAS mutation causes a marked decrease in aspartate level and an increase in asparagine level in CRC. Using several human CRC cell lines and clinical specimens of primary CRC, we demonstrated that the expression of asparagine synthetase (ASNS, an enzyme that synthesizes asparagine from aspartate, was upregulated by mutated KRAS and that ASNS expression was induced by KRAS-activated signaling pathway, in particular PI3K-AKT-mTOR pathway. Importantly, we demonstrated that KRAS-mutant CRC cells could become adaptive to glutamine depletion through asparagine biosynthesis by ASNS and that asparagine addition could rescue the inhibited growth and viability of cells grown under the glutamine-free condition in vitro. Notably, a pronounced growth suppression of KRAS-mutant CRC was observed upon ASNS knockdown in vivo. Furthermore, combination of L-asparaginase plus rapamycin markedly suppressed the growth of KRAS-mutant CRC xenografts in vivo, whereas either L-asparaginase or rapamycin alone was not effective. These results indicate ASNS might be a novel therapeutic target against CRCs with mutated KRAS.

  12. The KRAS Strip Assay for detection of KRAS mutation in Egyptian patients with colorectal cancer (CRC): A pilot study

    International Nuclear Information System (INIS)

    Abd El Kader, Y.; Safwat, E.; Kassem, H.A.; Kassem, N.M.; Emera, G.

    2013-01-01

    Background: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefltinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. Purpose: Detection of KRAS mutation in Egyptian colorectal cancer (CRC) patients by the KRAS Strip Assay. Methods: Examination of 20 colorectal cancer (CRC) patients is done to detect KRAS mutations by KRAS Strip Assay. For the Strip Assay, a mutant-enriched PCR was followed by hybridization to KRAS-specific probes bound to a nitrocellulose strip. Results: Among 20 patients, KRAS mutations were identified in 80% of patients by the KRAS Strip Assay. Conclusions: Our preliminary results suggest that KRAS Strip Assay is an alternative to protocols currently in use for KRAS mutation detection

  13. Promotion of Human Rights in the Republic of Kosovo

    Directory of Open Access Journals (Sweden)

    MSc. Albulena Ukimeraj

    2016-07-01

    Full Text Available Fundamental rights and freedoms are constitutional category of democratic states whereas the standards for guaranteeing these rights have been determined in the highest international acts of the United Nations. Promotion of equality and compliance with human rights initially originated in social developments in antiquity period. The Greek philosophy represented by world class philosophers Plato and Aristotle, created the foundation for complying with these rights which still serve as principles in the modern times and democratic developments. In later stages of social developments, despite the progress, compliance with human rights in the slavery era but even in the medieval times was faced with many challenges. Meanwhile, the development of the modern world, as an enlightening historic moment, it is the French Revolution, which was of course preceded by important documents in the history of development and advancement of human rights such as: Magna Carta Libertatum and the US Constitution. The reason for addressing this topic consists in the fact that these fundamental rights and freedoms are parts of constitutions of many countries including Kosovo, which are proclaimed and protected by different acts and norms, however they continue to be infringed either by individuals or institutions. Thus, with the aim of promotion of human rights and legal basis related to them in the Republic of Kosovo, this paper will elaborate development of human rights and the legal infrastructure for protection and compliance of human rights in a chronological manner by providing conclusions on the promotion of human rights in the Republic of Kosovo.

  14. Computational analysis of KRAS mutations: implications for different effects on the KRAS p.G12D and p.G13D mutations.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Chen

    Full Text Available BACKGROUND: The issue of whether patients diagnosed with metastatic colorectal cancer who harbor KRAS codon 13 mutations could benefit from the addition of anti-epidermal growth factor receptor therapy remains under debate. The aim of the current study was to perform computational analysis to investigate the structural implications of the underlying mutations caused by c.38G>A (p.G13D on protein conformation. METHODS: Molecular dynamics (MD simulations were performed to understand the plausible structural and dynamical implications caused by c.35G>A (p.G12D and c.38G>A (p.G13D. The potential of mean force (PMF simulations were carried out to determine the free energy profiles of the binding processes of GTP interacting with wild-type (WT KRAS and its mutants (MT. RESULTS: Using MD simulations, we observed that the root mean square deviation (RMSD increased as a function of time for the MT c.35G>A (p.G12D and MT c.38G>A (p.G13D when compared with the WT. We also observed that the GTP-binding pocket in the c.35G>A (p.G12D mutant is more open than that of the WT and the c.38G>A (p.G13D proteins. Intriguingly, the analysis of atomic fluctuations and free energy profiles revealed that the mutation of c.35G>A (p.G12D may induce additional fluctuations in the sensitive sites (P-loop, switch I and II regions. Such fluctuations may promote instability in these protein regions and hamper GTP binding. CONCLUSIONS: Taken together with the results obtained from MD and PMF simulations, the present findings implicate fluctuations at the sensitive sites (P-loop, switch I and II regions. Our findings revealed that KRAS mutations in codon 13 have similar behavior as KRAS WT. To gain a better insight into why patients with metastatic colorectal cancer (mCRC and the KRAS c.38G>A (p.G13D mutation appear to benefit from anti-EGFR therapy, the role of the KRAS c.38G>A (p.G13D mutation in mCRC needs to be further investigated.

  15. Promoting Instructional Improvement: A Strategic Human Resource Management Perspective

    Science.gov (United States)

    Smylie, Mark A.; Wenzel, Stacy A.

    2006-01-01

    This report argues that instructional improvement, which goes hand-in-hand with efforts at education reform, can be promoted through the strategic use of human resource management (HRM) practices at the school, district, and state levels. The authors present information from the organizational and management literatures on how firms in several…

  16. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...... protein in a manner reminiscent of DNA in a nucleosome. This notion is further supported by the finding that the periodic bendability is caused mainly by the complementary triplet pairs CAG/CTG and GGC/GCC, which previously have been found to correlate with nucleosome positioning. We present models where......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...

  17. Alterations in the K-ras and p53 genes in rat lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Swafford, D.S.; Finch, G.L.; Mitchell, C.E. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States)] [and others

    1997-06-01

    Activation of the K-ras protooncogene and inactivation of the p53 tumor suppressor gene are events common to many types of human cancers. Molecular epidemiology studies have associated mutational profiles in these genes with specific exposures. The purpose of this paper is to review investigations that have examined the role of the K-ras and p53 genes in lung tumors induced in the F344 rat by mutagenic and nonmutagenic exposures. Mutation profiles within the K-ras and p53 genes, if present in rat lung tumors, would help to define some of the molecular mechanisms underlying cancer induction by various environmental agents. Pulmonary adenocarcinomas or squamous cell carcinomas were induced by tetranitromethane (TNM), 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), beryllium metal, plutonium-239, X-ray, diesel exhaust, or carbon black. These agents were chosen because the tumors they produced could arise via different types of DNA damage. Mutation of the K-ras gene was determined by approaches that included DNA transfection, direct sequencing, mismatch hybridization, and restriction fragment length polymorphism analysis. The frequency for mutation of the K-ras gene was exposure dependent. The transition mutations formed could have been derived from deamination of cytosine. Alteration in the p53 gene was assessed by immunohistochemical analysis for p53 protein and single-strand conformation polymorphism (SSCP) analysis of exons 4 to 9. None of the 93 adenocarinomas examined was immunoreactive toward the anti-p53 antibody CM1. In contrast, 14 of 71 squamous cell carcinomas exhibited nuclear p53 immunoreactivity with no correlation to type of exposure. However, SSCP analysis only detected mutations in 2 of 14 squamous cell tumors that were immunoreactive, suggesting that protein stabilization did not stem from mutations within the p53 gene. Thus, the p53 gene does not appear to be involved in the genesis of most rat lung tumors. 2 figs., 2 tabs., 48 refs.

  18. Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

    International Nuclear Information System (INIS)

    Kalari, Krishna R.; Rossell, David; Necela, Brian M.; Asmann, Yan W.; Nair, Asha

    2012-01-01

    KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

  19. Multiple distinct stimuli increase measured nucleosome occupancy around human promoters.

    Directory of Open Access Journals (Sweden)

    Chuong D Pham

    Full Text Available Nucleosomes can block access to transcription factors. Thus the precise localization of nucleosomes relative to transcription start sites and other factor binding sites is expected to be a critical component of transcriptional regulation. Recently developed microarray approaches have allowed the rapid mapping of nucleosome positions over hundreds of kilobases (kb of human genomic DNA, although these approaches have not yet been widely used to measure chromatin changes associated with changes in transcription. Here, we use custom tiling microarrays to reveal changes in nucleosome positions and abundance that occur when hormone-bound glucocorticoid receptor (GR binds to sites near target gene promoters in human osteosarcoma cells. The most striking change is an increase in measured nucleosome occupancy at sites spanning ∼1 kb upstream and downstream of transcription start sites, which occurs one hour after addition of hormone, but is lost at 4 hours. Unexpectedly, this increase was seen both on GR-regulated and GR-non-regulated genes. In addition, the human SWI/SNF chromatin remodeling factor (a GR co-activator was found to be important for increased occupancy upon hormone treatment and also for low nucleosome occupancy without hormone. Most surprisingly, similar increases in nucleosome occupancy were also seen on both regulated and non-regulated promoters during differentiation of human myeloid leukemia cells and upon activation of human CD4+ T-cells. These results indicate that dramatic changes in chromatin structure over ∼2 kb of human promoters may occur genomewide and in response to a variety of stimuli, and suggest novel models for transcriptional regulation.

  20. High-Affinity Interaction of the K-Ras4B Hypervariable Region with the Ras Active Site

    Science.gov (United States)

    Chavan, Tanmay S.; Jang, Hyunbum; Khavrutskii, Lyuba; Abraham, Sherwin J.; Banerjee, Avik; Freed, Benjamin C.; Johannessen, Liv; Tarasov, Sergey G.; Gaponenko, Vadim; Nussinov, Ruth; Tarasova, Nadya I.

    2015-01-01

    Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible. PMID:26682817

  1. A Potent and Selective Quinoxalinone-Based STK33 Inhibitor Does Not Show Synthetic Lethality in KRAS-Dependent Cells

    Science.gov (United States)

    2012-01-01

    The KRAS oncogene is found in up to 30% of all human tumors. In 2009, RNAi experiments revealed that lowering mRNA levels of a transcript encoding the serine/threonine kinase STK33 was selectively toxic to KRAS-dependent cancer cell lines, suggesting that small-molecule inhibitors of STK33 might selectively target KRAS-dependent cancers. To test this hypothesis, we initiated a high-throughput screen using compounds in the Molecular Libraries Small Molecule Repository (MLSMR). Several hits were identified, and one of these, a quinoxalinone derivative, was optimized. Extensive SAR studies were performed and led to the chemical probe ML281 that showed low nanomolar inhibition of purified recombinant STK33 and a distinct selectivity profile as compared to other STK33 inhibitors that were reported in the course of these studies. Even at the highest concentration tested (10 μM), ML281 had no effect on the viability of KRAS-dependent cancer cells. These results are consistent with other recent reports using small-molecule STK33 inhibitors. Small molecules having different chemical structures and kinase-selectivity profiles are needed to fully understand the role of STK33 in KRAS-dependent cancers. In this regard, ML281 is a valuable addition to small-molecule probes of STK33. PMID:23256033

  2. Galectin-3 mediates cross-talk between K-Ras and Let-7c tumor suppressor microRNA.

    Directory of Open Access Journals (Sweden)

    Ran Levy

    Full Text Available BACKGROUND: Galectin-3 (Gal-3 and active (GTP-bound K-Ras contribute to the malignant phenotype of many human tumors by increasing the rate of cell proliferation, survival, and migration. These Gal-3-mediated effects result from a selective binding to K-Ras.GTP, causing increased nanoclustering in the cell membrane and leading to robust Ras signaling. Regulation of the interactions between Gal-3 and active K-Ras is not fully understood. METHODS AND FINDINGS: To gain a better understanding of what regulates the critical interactions between these two proteins, we examined the role of Gal-3 in the regulation of K-Ras by using Gal-3-knockout mouse embryonic-fibroblasts (Gal-3-/- MEFs and/or Gal-3/Gal-1 double-knockout MEFs. We found that knockout of Gal-3 induced strong downregulation (∼60% of K-Ras and K-Ras.GTP. The downregulation was somewhat more marked in the double-knockout MEFs, in which we also detected robust inhibition(∼50% of ERK and Akt activation. These additional effects are probably attributable to inhibition of the weak interactions of K-Ras.GTP with Gal-1. Re-expression of Gal-3 reversed the phenotype of the Gal-3-/- MEFs and dramatically reduced the disappearance of K-Ras in the presence of cycloheximide to the levels seen in wild-type MEFs. Furthermore, phosphorylation of Gal-3 by casein kinase-1 (CK-1 induced translocation of Gal-3 from the nucleus to the cytoplasm and the plasma membrane, leading to K-Ras stabilization accompanied by downregulation of the tumor suppressor miRNA let-7c, known to negatively control K-Ras transcription. CONCLUSIONS: Our results suggest a novel cross-talk between Gal-3-mediated downregulation of let 7c microRNA (which in turn negatively regulates K-Ras transcription and elucidates the association among Gal-3 let-7c and K-Ras transcription/translation, cellular compartmentalization and activity.

  3. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.

    Science.gov (United States)

    Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2016-02-01

    K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers. © 2016 Federation of European Biochemical Societies.

  4. Mutations of the KRAS oncogene in endometrial hyperplasia and carcinoma.

    Directory of Open Access Journals (Sweden)

    Wiesława Niklińska

    2009-05-01

    Full Text Available The aim of this study was to examine the prevalence and clinicopathological significance of KRAS point mutation in endometrial hyperplasia and carcinoma. We analysed KRAS in 11 cases of complex atypical hyperplasia and in 49 endometrial carcinomas using polymerase chain reaction associated with restriction fragment length polymorphism (PCR-RFPL. Point mutations at codon 12 of KRAS oncogene were identified in 7 of 49 (14,3% tumor specimens and in 2 of 11 (18,2% hyperplasias. No correlation was found between KRAS gene mutation and age at onset, histology, grade of differentiation and clinical stage. We conclude that KRAS mutation is a relatively common event in endometrial carcinogenesis, but with no prognostic value.

  5. KRAS rs61764370 is associated with HER2-overexpressed and poorly-differentiated breast cancer in hormone replacement therapy users: a case control study

    Directory of Open Access Journals (Sweden)

    Cerne Jasmina-Ziva

    2012-03-01

    Full Text Available Abstract Background A single nucleotide polymorphism located in the 3'-untranslated region of the KRAS oncogene (KRAS variant; rs61764370 disrupts a let-7 miRNA binding and was recently reported to act as a genetic marker for increased risk of developing human cancers. We aimed to investigate an association of the KRAS variant with sporadic and familial breast cancer and breast tumor characteristics. Methods Genotyping was accomplished in 530 sporadic postmenopausal breast cancer cases, 165 familial breast cancer cases (including N = 29, who test positive for BRCA1/2 mutations and 270 postmenopausal control women using the flurogenic 5' nuclease assay. Information on hormone replacement therapy (HRT use and tumor characteristics in sporadic breast cancer cases was ascertained from a postal questionnaire and pathology reports, respectively. Associations between the KRAS genotype and breast cancer or breast tumor characteristics were assessed using chi-square test and logistic regression models. Results No evidence of association was observed between the KRAS variant and risk of sporadic and familial breast cancer - either among BRCA carriers or non-BRCA carriers. The KRAS variant was statistically significantly more often associated with human epidermal growth factor receptor 2 (HER2 - positive tumors and tumors of higher histopathologic grade. However, both associations were detected only in HRT users. Conclusion Our data do not support the hypothesis that the KRAS variant rs61764370 is implicated in the aetiology of sporadic or of familial breast cancer. In postmenopausal women using HRT, the KRAS variant might lead to HER2 overexpressed and poorly-differentiated breast tumors, both indicators of a worse prognosis.

  6. KRAS rs61764370 is associated with HER2-overexpressed and poorly-differentiated breast cancer in hormone replacement therapy users: a case control study

    International Nuclear Information System (INIS)

    Cerne, Jasmina-Ziva; Stegel, Vida; Gersak, Ksenija; Novakovic, Srdjan

    2012-01-01

    A single nucleotide polymorphism located in the 3'-untranslated region of the KRAS oncogene (KRAS variant; rs61764370) disrupts a let-7 miRNA binding and was recently reported to act as a genetic marker for increased risk of developing human cancers. We aimed to investigate an association of the KRAS variant with sporadic and familial breast cancer and breast tumor characteristics. Genotyping was accomplished in 530 sporadic postmenopausal breast cancer cases, 165 familial breast cancer cases (including N = 29, who test positive for BRCA1/2 mutations) and 270 postmenopausal control women using the flurogenic 5' nuclease assay. Information on hormone replacement therapy (HRT) use and tumor characteristics in sporadic breast cancer cases was ascertained from a postal questionnaire and pathology reports, respectively. Associations between the KRAS genotype and breast cancer or breast tumor characteristics were assessed using chi-square test and logistic regression models. No evidence of association was observed between the KRAS variant and risk of sporadic and familial breast cancer - either among BRCA carriers or non-BRCA carriers. The KRAS variant was statistically significantly more often associated with human epidermal growth factor receptor 2 (HER2) - positive tumors and tumors of higher histopathologic grade. However, both associations were detected only in HRT users. Our data do not support the hypothesis that the KRAS variant rs61764370 is implicated in the aetiology of sporadic or of familial breast cancer. In postmenopausal women using HRT, the KRAS variant might lead to HER2 overexpressed and poorly-differentiated breast tumors, both indicators of a worse prognosis

  7. Diet, Lifestyle and risk of K-ras mutation-positive and -negative colorectal adenomas

    NARCIS (Netherlands)

    Wark, P.A.; Kuil, van der W.; Ploemacher, J.; Muijen, van G.N.P.; Mulder, Ch.J.J.; Weijenberg, M.P.; Kok, F.J.; Kampman, E.

    2006-01-01

    K-ras mutation-positive (K-ras+) and -negative (K-ras-) colorectal adenomas may differ clinically and pathologically. As environmental compounds may cause mutations in the growth-related K-ras oncogene or affect clonal selection depending on mutational status, we evaluated whether the aetiology of

  8. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  9. Promoter Methylation Analysis of IDH Genes in Human Gliomas

    International Nuclear Information System (INIS)

    Flanagan, Simon; Lee, Maggie; Li, Cheryl C. Y.; Suter, Catherine M.; Buckland, Michael E.

    2012-01-01

    Mutations in isocitrate dehydrogenase (IDH)-1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132) or IDH2 (R172). But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a “toxic gain-of-function” to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumor suppressor gene. As most, if not all, tumor suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumors, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumor suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumors, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumors examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumors. These findings do not support a tumor suppressor role for IDH genes in human gliomas.

  10. Mechanosensitive promoter region in the human HB-GAM gene

    DEFF Research Database (Denmark)

    Liedert, Astrid; Kassem, Moustapha; Claes, Lutz

    2009-01-01

    Mechanical loading is essential for maintaining bone mass in the adult skeleton. However, the underlying process of the transfer of the physical stimulus into a biochemical response, which is termed mechanotransduction is poorly understood. Mechanotransduction results in the modulation of gene...... cells. Analysis of the human HB-GAM gene upstream regulatory region with luciferase reporter gene assays revealed that the upregulation of HB-GAM expression occurred at the transcriptional level and was mainly dependent on the HB-GAM promoter region most upstream containing three potential AP-1 binding...

  11. APA efforts in promoting human rights and social justice.

    Science.gov (United States)

    Leong, Frederick T L; Pickren, Wade E; Vasquez, Melba J T

    2017-11-01

    This article reviews the American Psychological Association's (APA) efforts in promoting human rights and social justice. Beginning with a historical review of the conceptualizations of human rights and social justice, the social challenges that have faced the United States over time are discussed in relation to the APA's evolving mission and strategic initiatives enacted through its boards, committees, and directorates. From early efforts on the Board for Social and Ethical Responsibility in Psychology and the Board of Ethnic Minority Affairs to the establishment of the Public Interest Directorate, the APA's efforts to address these human rights and social justice challenges through its task force reports, guidelines, and policies are described. Specifically, issues related to diversity and underrepresentation of minority group members and perspective within the APA, as well as women's issues (prochoice, violence against women, sexualization of young girls, human trafficking) were central to these efforts. These minority groups included racial and ethnic minority groups; immigrants and refugees; lesbian, gay, bisexual, transgendered, and queer individuals; and those with disabilities. Later attention shifted to broader social justice challenges within a public health perspective, such as AIDS, obesity, and violence. Also included is a brief discussion of the Hoffman Report. The article ends with a discussion of future directions for the APA's efforts related to human rights and social justice related to health disparities, violent extremism, social inequality, migration, cultural and racial diversity, and an evidence-based approach to programming. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. SNAI2/Slug promotes growth and invasion in human gliomas

    International Nuclear Information System (INIS)

    Yang, Hong Wei; Menon, Lata G; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2010-01-01

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  13. EGFR and KRAS mutation coexistence in lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Vitor Manuel Leitão de Sousa

    2015-04-01

    Full Text Available Lung cancer is one of the most common causes of cancer deaths. The development of EGFR targeted therapies, including monoclonal antibodies and tyrosine kinase inhibitors have generated an interest in the molecular characterization of these tumours. KRAS mutations are associated with resistance to EGFR TKIs. EGFR and KRAS mutations have been considered as mutually exclusive. This paper presents three bronchial-pulmonary carcinomas, two adenocarcinomas and one pleomorphic sarcomatoid carcinoma, harboring EGFR and KRAS mutations. Case 1 corresponded to an adenocarcinoma with EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; case 2, a  mucinous adenocarcinoma expressed coexistence of EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; and case 3 a sarcomatoid carcinoma with EGFR exon 19 deletion – del 9bp and KRAS codon 12 point mutation (G12C - cysteine. Based on our experience and on the literature, we conclude that EGFR and KRAS mutations can indeed coexist in the same bronchial-pulmonary carcinoma, either in the same histological type or in different patterns. The biological implications of this coexistence are still poorly understood mainly because these cases are not frequent or currently searched. It is therefore necessary to study larger series of cases with the two mutations to better understand the biological, clinical and therapeutic implications.

  14. K-ras mutations in sinonasal cancers in relation to wood dust exposure

    International Nuclear Information System (INIS)

    Bornholdt, Jette; Vogel, Ulla; Husgafvel-Pursiainen, Kirsti; Wallin, Håkan; Hansen, Johnni; Steiniche, Torben; Dictor, Michael; Antonsen, Annemarie; Wolff, Henrik; Schlünssen, Vivi; Holmila, Reetta; Luce, Danièle

    2008-01-01

    in 13% of adenocarcinomas. In this study and previously published studies of sinonasal cancer the found K-ras mutations, were almost exclusively G → A transitions. In conclusion, our study, based on a large representative collection of human SNC tumours, indicates that K-ras mutations are relatively infrequent, and most commonly occur in adenocarcinomas. Wood dust exposure alone was not found to be explanatory for the G→A mutations, but combination of exposure to tobacco, wood dust, and possibly other occupational agents may be a more likely explanation. Overall, the study suggests a limited role for K-ras mutations in development of sinonasal cancer

  15. Identification and characterization of the human SOX6 promoter

    International Nuclear Information System (INIS)

    Ikeda, Toshiyuki; Saito, Taku; Ushita, Masahiro; Yano, Fumiko; Kan, Akinori; Itaka, Keiji; Moro, Toru; Nakamura, Kozo; Kawaguchi, Hiroshi; Chung, Ung-il

    2007-01-01

    The present study attempted to identify and characterize the embryonic promoter of Sox6, a determinant regulator of chondrogenic differentiation. A common transcription start region for human and mouse Sox6 was initially identified, which contained a highly conserved sequence, A-box. Tandem repeats of A-box had a strong transcriptional activity both at the basal level and in response to Sox9. Cells carrying the 4xA-box-DsRed2 reporter fluoresced only upon chondrogenic differentiation. The 46-bp core enhancer region (CES6) was then identified in the 3' half of A-box, within which a C/EBP-binding motif was identified. Overexpressed C/EBPβ activated the Sox6 promoter, and mutant 4xCES6 constructs lacking the C/EBP motif lost their basal activity. CES6 and nuclear extracts formed a specific complex, which was supershifted by anti-C/EBPβ antibody, and in vitro translated C/EBPβ specifically bound to CES6. Thus, we successfully identified the Sox6 promoter and its core enhancer and characterized the interactions with regulatory transcription factors

  16. CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations.

    Science.gov (United States)

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Loda, Massimo; Fuchs, Charles S

    2006-11-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation seems to be a distinct epigenotype of colorectal cancer. However, no study has comprehensively examined features of colorectal cancer with less extensive promoter methylation (designated as "CIMP-low"). Using real-time polymerase chain reaction (MethyLight), we quantified DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1] in 840 relatively unbiased, population-based colorectal cancer samples, obtained from two large prospective cohort studies. CIMP-low (defined as 1/5 to 3/5 methylated promoters) colorectal cancers were significantly more common among men (38 versus 30% in women, P = 0.01) and among KRAS-mutated tumors (44 versus 30% in KRAS/BRAF wild-type tumors, P = 0.0003; 19% in BRAF-mutated tumors, P CIMP-low tumors (47%) than in CIMP-high tumors (with > or =4/5 methylated promoters, 12%, P CIMP-0 tumors (with 0/5 methylated promoters, 37%, P = 0.007). The associations of CIMP-low tumors with male sex and KRAS mutations still existed after tumors were stratified by microsatellite instability status. In conclusion, CIMP-low colorectal cancer is associated with male sex and KRAS mutations. The hypothesis that CIMP-low tumors are different from CIMP-high and CIMP-0 tumors needs to be tested further.

  17. [miR-143 inhibits cell proliferation through targeted regulating the expression of K-ras gene in HeLa cells].

    Science.gov (United States)

    Qin, H X; Cui, H K; Pan, Y; Hu, R L; Zhu, L H; Wang, S J

    2016-12-23

    Objective: To explore the effect of microRNA miR-143 on the proliferation of cervical cancer HeLa cells through targeted regulating the expression of K-ras gene. Methods: The luciferase report carrier containing wild type 3'-UTR of K-ras gene (K-ras-wt) or mutated 3'-UTR of the K-ras (K-ras-mut) were co-transfected with iR-143 mimic into the HeLa cells respectively, and the targeting effect of miR-143 in the transfectants was verified by the dual luciferase report system. HeLa cells were also transfected with miR-143 mimic (miR-143 mimic group), mimic control (negative control group), and miR-143 mimic plus K-ras gene (miR-143 mimic+ K-ras group), respectively. The expression of miR-143 in the transfected HeLa cells was detected by real-time PCR (RT-PCR), and the expression of K-ras protein was detected by Western blot. The cell proliferation activity of each group was examined by MTT assay. In addition, human cervical cancer tissue samples ( n =5) and cervical intraepithelial neoplasia tissue samples ( n =5) were also examined for the expression of miR-143 and K-ras protein by RT-PCR and Western blot, respectively. Results: The luciferase report assay showed that co-transfection with miR-143 mimic decreased the luciferase activity of the K-ras-wt significantly, but did not inhibit the luciferase activity of the K-ras-mut. The expression of miR-143 in the HeLa cells transfected with miR-143 mimic was significantly higher than that in the HeLa cells transfected with the mimic control (3.31±0.45 vs 0.97±0.22, P cell proliferative activity of the miR-143 mimic group was significantly lower than that of the negative control group ( P cell proliferative activity of the miR-143 mimic+ K-ras group was also significantly lower than the control group ( P HeLa cells through targeted regulating the expression of K-ras gene. In human cervical cancer tissues of a small sample set, the expression of miR-143 is downregulated, and the expression of K-ras is upregulated.

  18. How Can Humanities Interventions Promote Progress in the Environmental Sciences?

    Directory of Open Access Journals (Sweden)

    Sally L. Kitch

    2017-10-01

    Full Text Available Environmental humanists make compelling arguments about the importance of the environmental humanities (EH for discovering new ways to conceptualize and address the urgent challenges of the environmental crisis now confronting the planet. Many environmental scientists in a variety of fields are also committed to incorporating socio-cultural analyses in their work. Despite such intentions and rhetoric, however, and some humanists’ eagerness to incorporate science into their own work, “radical interdisciplinarity [across the humanities and sciences] is ... rare ... and does not have the impact one would hope for” (Holm et al. 2013, p. 32. This article discusses reasons for the gap between transdisciplinary intentions and the work being done in the environmental sciences. The article also describes a project designed to address that gap. Entitled “From Innovation to Progress: Addressing Hazards of the Sustainability Sciences”, the project encourages humanities interventions in problem definition, before any solution or action is chosen. Progress offers strategies for promoting expanded stakeholder engagement, enhancing understanding of power struggles and inequities that underlie problems and over-determine solutions, and designing multiple future scenarios based on alternative values, cultural practices and beliefs, and perspectives on power distribution and entitlement.

  19. c-Raf in KRas Mutant Cancers: A Moving Target.

    Science.gov (United States)

    McCormick, Frank

    2018-02-12

    Therapies for KRas cancers remain a major clinical need. In the current issue of Cancer Cell, Sanclemente and coworkers in Mariano Barbacid's group validate c-Raf as a prime target for these cancers. c-Raf ablation caused regression of advanced KRas G12V /Trp53 tumors, without obvious systemic toxicity and without affecting MAPK signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Gold thread implantation promotes hair growth in human and mice

    Science.gov (United States)

    Kim, Jong-Hwan; Cho, Eun-Young; Kwon, Euna; Kim, Woo-Ho; Park, Jin-Sung; Lee, Yong-Soon

    2017-01-01

    Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated dorsal skin of mice, gold thread or polyglycolic acid (PGA) thread, similarly to 5% minoxidil, significantly increased the number of hair follicles on day 14 after implantation. And, hair re-growth promotion in the gold threadimplanted mice were significantly higher than that in PGA thread group on day 11 after depilation. In particular, the skin tissue of gold thread-implanted mice showed stronger PCNA staining and higher collagen density compared with control mice. These results indicate that gold thread implantation can be an effective way to promote hair re-growth although further confirmatory study is needed for more information on therapeutic mechanisms and long-term safety. PMID:29399026

  1. The human oxytocin gene promoter is regulated by estrogens.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  2. Characterization of KRAS Rearrangements in Metastatic Prostate Cancer

    Science.gov (United States)

    Wang, Xiao-Song; Shankar, Sunita; Dhanasekaran, Saravana M.; Ateeq, Bushra; Sasaki, Atsuo T.; Jing, Xiaojun; Robinson, Daniel; Cao, Qi; Prensner, John R.; Yocum, Anastasia K.; Wang, Rui; Fries, Daniel F.; Han, Bo; Asangani, Irfan A.; Cao, Xuhong; Li, Yong; Omenn, Gilbert S.; Pflueger, Dorothee; Gopalan, Anuradha; Reuter, Victor E.; Kahoud, Emily Rose; Cantley, Lewis C.; Rubin, Mark A.; Palanisamy, Nallasivam; Varambally, Sooryanarayana; Chinnaiyan, Arul M.

    2011-01-01

    Using an integrative genomics approach called Amplification Breakpoint Ranking and Assembly (ABRA) analysis, we nominated KRAS as a gene fusion with the ubiquitin-conjugating enzyme UBE2L3 in the DU145 cell line, originally derived from prostate cancer metastasis to the brain. Interestingly, analysis of tissues revealed that 2 of 62 metastatic prostate cancers harbored aberrations at the KRAS locus. In DU145 cells, UBE2L3-KRAS produces a fusion protein, specific knock-down of which, attenuates cell invasion and xenograft growth. Ectopic expression of the UBE2L3-KRAS fusion protein exhibits transforming activity in NIH 3T3 fibroblasts and RWPE prostate epithelial cells in vitro and in vivo. In NIH 3T3 cells, UBE2L3-KRAS attenuates MEK/ERK signaling, commonly engaged by oncogenic mutant KRAS, and instead signals via AKT and p38 MAPK pathways. This is the first report of a gene fusion involving Ras family suggesting that this aberration may drive metastatic progression in a rare subset of prostate cancers. PMID:22140652

  3. TWIST1 promotes invasion through mesenchymal change in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wakimoto Hiroaki

    2010-07-01

    Full Text Available Abstract Background Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which orchestrates carcinoma metastasis through an epithelial mesenchymal transition (EMT is upregulated in GBM and promotes invasion of the SF767 GBM cell line in vitro. Results To further define TWIST1 functions in GBM we tested the impact of TWIST1 over-expression on invasion in vivo and its impact on gene expression. We found that TWIST1 significantly increased SNB19 and T98G cell line invasion in orthotopic xenotransplants and increased expression of genes in functional categories associated with adhesion, extracellular matrix proteins, cell motility and locomotion, cell migration and actin cytoskeleton organization. Consistent with this TWIST1 reduced cell aggregation, promoted actin cytoskeletal re-organization and enhanced migration and adhesion to fibronectin substrates. Individual genes upregulated by TWIST1 known to promote EMT and/or GBM invasion included SNAI2, MMP2, HGF, FAP and FN1. Distinct from carcinoma EMT, TWIST1 did not generate an E- to N-cadherin "switch" in GBM cell lines. The clinical relevance of putative TWIST target genes SNAI2 and fibroblast activation protein alpha (FAP identified in vitro was confirmed by their highly correlated expression with TWIST1 in 39 human tumors. The potential therapeutic importance of inhibiting TWIST1 was also shown through a decrease in cell invasion in vitro and growth of GBM stem cells. Conclusions Together these studies demonstrated that TWIST1 enhances GBM invasion in concert with mesenchymal change not involving the canonical cadherin switch of carcinoma EMT. Given the recent recognition that mesenchymal change in GBMs is

  4. KRAS mutation detection in colorectal cancer by a commercially available gene chip array compares well with Sanger sequencing.

    Science.gov (United States)

    French, Deborah; Smith, Andrew; Powers, Martin P; Wu, Alan H B

    2011-08-17

    Binding of a ligand to the epidermal growth factor receptor (EGFR) stimulates various intracellular signaling pathways resulting in cell cycle progression, proliferation, angiogenesis and apoptosis inhibition. KRAS is involved in signaling pathways including RAF/MAPK and PI3K and mutations in this gene result in constitutive activation of these pathways, independent of EGFR activation. Seven mutations in codons 12 and 13 of KRAS comprise around 95% of the observed human mutations, rendering monoclonal antibodies against EGFR (e.g. cetuximab and panitumumab) useless in treatment of colorectal cancer. KRAS mutation testing by two different methodologies was compared; Sanger sequencing and AutoGenomics INFINITI® assay, on DNA extracted from colorectal cancers. Out of 29 colorectal tumor samples tested, 28 were concordant between the two methodologies for the KRAS mutations that were detected in both assays with the INFINITI® assay detecting a mutation in one sample that was indeterminate by Sanger sequencing and a third methodology; single nucleotide primer extension. This study indicates the utility of the AutoGenomics INFINITI® methodology in a clinical laboratory setting where technical expertise or access to equipment for DNA sequencing does not exist. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Edible Mushrooms: Improving Human Health and Promoting Quality Life

    Directory of Open Access Journals (Sweden)

    María Elena Valverde

    2015-01-01

    Full Text Available Mushrooms have been consumed since earliest history; ancient Greeks believed that mushrooms provided strength for warriors in battle, and the Romans perceived them as the “Food of the Gods.” For centuries, the Chinese culture has treasured mushrooms as a health food, an “elixir of life.” They have been part of the human culture for thousands of years and have considerable interest in the most important civilizations in history because of their sensory characteristics; they have been recognized for their attractive culinary attributes. Nowadays, mushrooms are popular valuable foods because they are low in calories, carbohydrates, fat, and sodium: also, they are cholesterol-free. Besides, mushrooms provide important nutrients, including selenium, potassium, riboflavin, niacin, vitamin D, proteins, and fiber. All together with a long history as food source, mushrooms are important for their healing capacities and properties in traditional medicine. It has reported beneficial effects for health and treatment of some diseases. Many nutraceutical properties are described in mushrooms, such as prevention or treatment of Parkinson, Alzheimer, hypertension, and high risk of stroke. They are also utilized to reduce the likelihood of cancer invasion and metastasis due to antitumoral attributes. Mushrooms act as antibacterial, immune system enhancer and cholesterol lowering agents; additionally, they are important sources of bioactive compounds. As a result of these properties, some mushroom extracts are used to promote human health and are found as dietary supplements.

  6. [Work as a basic human need and health promoting factor].

    Science.gov (United States)

    Bertazzi, P A

    2010-01-01

    The Italian Constitution (1948) defines 'work' as the founding value of the Italian Republic. This choice was not motivated by mere economic reasons, but rather stemmed from the recognition that work is the most appropriate tool for the expression of the human personality in society, that it is an asset and a right that will increase the dignity of every person, and which corresponds to a fundamental human desire to fulfil oneself in relationship with other persons and the entire world This view of work, including its technical and manual aspects, was unknown to the ancient mentality and became familiar to us through the monastic orders of the early middle ages, which began to conceive and practise human work as a means of participating in the work of creation and transmitted this value over the centuries. As we experience today, if occupation is lacking, a basic condition for the development of the person and for his/her contribution to the growth of society is lost. Given the meaning of work in human experience, it is not surprising that unemployment represents not only a worrisome economic indicator, but also the cause of ill health. At the end of 2009 unemployment in the European Union reached 10%, similar to the rate in the US; in Italy it was estimated at 8.5% in December 2009 and is expected to reach 10% in 2010. In Lombardy, although employment had been constantly increasing between 1995 and 2008, and the current unemployment rate is as low as 4.9%, 100,000 jobs were lost in 2009. Several scientific papers have demonstrated the association between lack of occupation and lack of physical and mental health. In the present period of crisis, increases of 30% in cases of anxiety syndrome and of 15% in cases of depression have been reported. An increase in suicides among unemployed persons has been documented in several countries even if there are still problems of interpretation of the causal chain of events. Mortality among the unemployed increased, not only

  7. Comparison of HER2 gene amplification and KRAS alteration in eyelid sebaceous carcinomas with that in other eyelid tumors.

    Science.gov (United States)

    Kwon, Mi Jung; Shin, Hyung Sik; Nam, Eun Sook; Cho, Seong Jin; Lee, Min Joung; Lee, Samuel; Park, Hye-Rim

    2015-05-01

    Eyelid sebaceous carcinoma (SC) represents a highly aggressive malignancy. Despite the poor prognosis, genetic alterations as potential molecular targets are not available. KRAS mutation and HER2 gene amplification may be candidates related to their genetic alterations. We examined the HER2 and KRAS alteration status in eyelid SCs and compared it with that in other eyelid tumors. The controversial topics of the human papillomavirus (HPV) and p16 expression were also investigated. HER2 amplification was determined by silver in situ hybridization, while immunohistochemistry was performed to study protein expressions in 14 SCs and controls, including 23 other eyelid malignancies and 14 benign tumors. Peptide nucleic acid-mediated PCR clamping and direct sequencing were used to detect KRAS mutations. HER2 protein overexpression was observed in 85.7% (12/14) of the SCs, of which two-thirds showed HER2 gene amplification. HER2 protein overexpression and HER2 amplification were found more frequently in eyelid SCs than in other eyelid tumors. All SCs harbored wild type KRAS genes. No HPV infections were identified in the SCs. Nevertheless, p16 overexpression was found in 71.4% (10/14) of SCs, irrespective of the status of HPV infection. Furthermore, p16 overexpression in eyelid SCs was also significantly higher than that in other eyelid tumors. HER2 protein overexpression, HER2 gene amplifications, and wild type KRAS genes are common in eyelid SCs. HER2 gene amplification may represent potential therapeutic targets for the treatment of eyelid SCs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Purified Human Dental Pulp Stem Cells Promote Osteogenic Regeneration.

    Science.gov (United States)

    Yasui, T; Mabuchi, Y; Toriumi, H; Ebine, T; Niibe, K; Houlihan, D D; Morikawa, S; Onizawa, K; Kawana, H; Akazawa, C; Suzuki, N; Nakagawa, T; Okano, H; Matsuzaki, Y

    2016-02-01

    Human dental pulp stem/progenitor cells (hDPSCs) are attractive candidates for regenerative therapy because they can be easily expanded to generate colony-forming unit-fibroblasts (CFU-Fs) on plastic and the large cell numbers required for transplantation. However, isolation based on adherence to plastic inevitably changes the surface marker expression and biological properties of the cells. Consequently, little is currently known about the original phenotypes of tissue precursor cells that give rise to plastic-adherent CFU-Fs. To better understand the in vivo functions and translational therapeutic potential of hDPSCs and other stem cells, selective cell markers must be identified in the progenitor cells. Here, we identified a dental pulp tissue-specific cell population based on the expression profiles of 2 cell-surface markers LNGFR (CD271) and THY-1 (CD90). Prospectively isolated, dental pulp-derived LNGFR(Low+)THY-1(High+) cells represent a highly enriched population of clonogenic cells--notably, the isolated cells exhibited long-term proliferation and multilineage differentiation potential in vitro. The cells also expressed known mesenchymal cell markers and promoted new bone formation to heal critical-size calvarial defects in vivo. These findings suggest that LNGFR(Low+)THY-1(High+) dental pulp-derived cells provide an excellent source of material for bone regenerative strategies. © International & American Associations for Dental Research 2015.

  9. EBV promotes human CD8 NKT cell development.

    Directory of Open Access Journals (Sweden)

    Yuling He

    2010-05-01

    Full Text Available The reports on the origin of human CD8(+ Valpha24(+ T-cell receptor (TCR natural killer T (NKT cells are controversial. The underlying mechanism that controls human CD4 versus CD8 NKT cell development is not well-characterized. In the present study, we have studied total 177 eligible patients and subjects including 128 healthy latent Epstein-Barr-virus(EBV-infected subjects, 17 newly-onset acute infectious mononucleosis patients, 16 newly-diagnosed EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. We have established human-thymus/liver-SCID chimera, reaggregated thymic organ culture, and fetal thymic organ culture. We here show that the average frequency of total and CD8(+ NKT cells in PBMCs from 128 healthy latent EBV-infected subjects is significantly higher than in 17 acute EBV infectious mononucleosis patients, 16 EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. However, the frequency of total and CD8(+ NKT cells is remarkably increased in the acute EBV infectious mononucleosis patients at year 1 post-onset. EBV-challenge promotes CD8(+ NKT cell development in the thymus of human-thymus/liver-SCID chimeras. The frequency of total (3% of thymic cells and CD8(+ NKT cells ( approximately 25% of NKT cells is significantly increased in EBV-challenged chimeras, compared to those in the unchallenged chimeras (<0.01% of thymic cells, CD8(+ NKT cells undetectable, respectively. The EBV-induced increase in thymic NKT cells is also reflected in the periphery, where there is an increase in total and CD8(+ NKT cells in liver and peripheral blood in EBV-challenged chimeras. EBV-induced thymic CD8(+ NKT cells display an activated memory phenotype (CD69(+CD45RO(hiCD161(+CD62L(lo. After EBV-challenge, a proportion of NKT precursors diverges from DP thymocytes, develops and differentiates into mature CD8(+ NKT cells in thymus in EBV-challenged human-thymus/liver-SCID chimeras or

  10. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis

    DEFF Research Database (Denmark)

    Tran, Phuoc T; Shroff, Emelyn H; Burns, Timothy F

    2012-01-01

    KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer...

  11. Promotion of Bilateral Cooperative Programs in Nuclear Human Resources Development

    International Nuclear Information System (INIS)

    Lee, E. J.; Han, K. W.; Nam, Y. M.

    2009-08-01

    The purpose of this project is strengthening of bilateral cooperation with those countries for sharing Korea's technology, and providing of education and training on Korean experience regarding national nuclear policy, technology self reliance, and technology itself, in the field of nuclear power generation and the application of radioisotopes and radiation. This project covers an analysis on the need of nuclear human resource development in countries having interest in the introduction of nuclear power and/or promotion of the use of nuclear energy, and provision of courses on 'nuclear power policy, planning and management' and 'design and operation of nuclear research reactor, and application of radiation technology' along with the country specific needs. Education and training of key members in nuclear energy development from Egypt: It was implemented through bilateral cooperation and support by KOICA program. The first part, which targeted staff members from Egypt Nuclear Commission, was held for 2 months providing a KOICA course on policy, planning and management for nuclear power project, and second part was on the job training in Korea Hydro and Nuclear Power and Korea Institute of Nuclear Safety, KAERI respectively. On the job training of 1 scientist from Vietnam was implemented on the basis of bilateral cooperation in a research laboratory on radioactive waste treatment technology, at KAERI. Education and training for scientists from South East RCA countries were carried out for 11 participants from Vietnam, Thailand, Indonesia, China, Pakistan, Malaysia, Philippines, and Bangladesh. The course dealt with nuclear research reactor and radiation application technology. Development of nuclear education and training programs for key persons involved in nuclear power projects from countries of Middle East: The developed program consists of 15 courses addressing 3 technical levels, i.e. high level policy makers, middle level project implementers, and beginners

  12. Promotion of Bilateral Cooperative Programs in Nuclear Human Resources Development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. J.; Han, K. W.; Nam, Y. M. (and others)

    2009-08-15

    The purpose of this project is strengthening of bilateral cooperation with those countries for sharing Korea's technology, and providing of education and training on Korean experience regarding national nuclear policy, technology self reliance, and technology itself, in the field of nuclear power generation and the application of radioisotopes and radiation. This project covers an analysis on the need of nuclear human resource development in countries having interest in the introduction of nuclear power and/or promotion of the use of nuclear energy, and provision of courses on 'nuclear power policy, planning and management' and 'design and operation of nuclear research reactor, and application of radiation technology' along with the country specific needs. Education and training of key members in nuclear energy development from Egypt: It was implemented through bilateral cooperation and support by KOICA program. The first part, which targeted staff members from Egypt Nuclear Commission, was held for 2 months providing a KOICA course on policy, planning and management for nuclear power project, and second part was on the job training in Korea Hydro and Nuclear Power and Korea Institute of Nuclear Safety, KAERI respectively. On the job training of 1 scientist from Vietnam was implemented on the basis of bilateral cooperation in a research laboratory on radioactive waste treatment technology, at KAERI. Education and training for scientists from South East RCA countries were carried out for 11 participants from Vietnam, Thailand, Indonesia, China, Pakistan, Malaysia, Philippines, and Bangladesh. The course dealt with nuclear research reactor and radiation application technology. Development of nuclear education and training programs for key persons involved in nuclear power projects from countries of Middle East: The developed program consists of 15 courses addressing 3 technical levels, i.e. high level policy makers, middle level project

  13. Personalized treatment for advanced colorectal cancer: KRAS and beyond

    International Nuclear Information System (INIS)

    Patel, Gargi Surendra; Karapetis, Christos S

    2013-01-01

    Targeted therapies have improved the survival of patients with advanced colorectal cancer (CRC). However, further improvements in patient outcomes may be gained by the development of predictive biomarkers in order to select individuals who are most likely to benefit from treatment, thus personalizing treatment. Using the epidermal growth-factor receptor (EGFR) pathway, we discuss the existing and potential predictive biomarkers in clinical development for use with EGFR-targeted agents in metastatic CRC. The data and technological issues surrounding such biomarkers as expression of EGFR or its family members or ligands, KRAS-, NRAS-, and BRAF-mutation status, PI3K/PTEN expression, and imaging and clinical biomarkers, such as rash and hypomagnesemia, are summarized. Although the discovery of KRAS mutations has improved patient selection for EGFR-targeted treatments, further biomarkers are required, especially for those patients who exhibit KRAS mutations rather than the wild-type gene

  14. Employing the Mass Media for the Promotion of Human Rights in ...

    African Journals Online (AJOL)

    The place of the mass media in the promotion of human rights in any given society cannot be overemphasised; the mass media generally, can be used to bring about positive attitudinal change in the individuals. Thus, the paper examines the role of the media in the promotion of human rights in Nigeria; it explores the ...

  15. Distinct Clinicopathological Patterns of Mismatch Repair Status in Colorectal Cancer Stratified by KRAS Mutations.

    Directory of Open Access Journals (Sweden)

    Wenbin Li

    Full Text Available In sporadic colorectal cancer (CRC, the BRAFV600E mutation is associated with deficient mismatch repair (MMR status and inversely associated with to KRAS mutations. In contrast to deficient MMR (dMMR CRC, data on the presence of KRAS oncogenic mutations in proficient MMR (pMMR CRC and their relationship with tumor progression are scarce. We therefore examined the MMR status in combination with KRAS mutations in 913 Chinese patients and correlated the findings obtained with clinical and pathological features. The MMR status was determined based on detection of MLH1, MSH2, MSH6 and PMS2 expression. KRAS mutation and dMMR status were detected in 36.9% and 7.5% of cases, respectively. Four subtypes were determined by MMR and KRAS mutation status: KRAS (+/pMMR (34.0%, KRAS (+/dMMR (2.9%, KRAS (-/pMMR (58.5% and KRAS (-/dMMR (4.6%. A higher percentage of pMMR tumors with KRAS mutation were most likely to be female (49.0%, proximal located (45.5%, a mucinous histology (38.4%, and to have increased lymph node metastasis (60.3%, compared with pMMR tumors without BRAFV600E and KRAS mutations (36.0%, 29.3%, 29.4% and 50.7%, respectively; all P < 0.01. To the contrary, compared with those with KRAS(-/dMMR tumors, patients with KRAS(+/dMMR tumors demonstrated no statistically significant differences in gender, tumor location, pT depth of invasion, lymph node metastasis, pTNM stage, and histologic grade. This study revealed that specific epidemiologic and clinicopathologic characteristics are associated with MMR status stratified by KRAS mutation. Knowledge of MMR and KRAS mutation status may enhance molecular pathologic staging of CRC patients and metastatic progression in CRC can be estimated based on the combination of these biomarkers.

  16. Characterization of the distal promoter of the human pyruvate carboxylase gene in pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Ansaya Thonpho

    Full Text Available Pyruvate carboxylase (PC is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse. RT-PCR analysis performed with cDNA prepared from human liver and islets showed that the distal promoter, but not the proximal promoter, of the human PC gene is active in pancreatic beta cells. A 1108 bp fragment of the human PC distal promoter was cloned and analyzed. It contains no TATA box but possesses two CCAAT boxes, and other putative transcription factor binding sites, similar to those of the distal promoter of rat PC gene. To localize the positive regulatory region in the human PC distal promoter, 5'-truncated and the 25-bp and 15-bp internal deletion mutants of the human PC distal promoter were generated and used in transient transfections in INS-1 832/13 insulinoma and HEK293T (kidney cell lines. The results indicated that positions -340 to -315 of the human PC distal promoter serve as (an activator element(s for cell-specific transcription factor, while the CCAAT box at -71/-67, a binding site for nuclear factor Y (NF-Y, as well as a GC box at -54/-39 of the human PC distal promoter act as activator sequences for basal transcription.

  17. The Relation between Law and Fraternity as a Promotional Instrument for Human Dignity in Labor Law

    OpenAIRE

    Guilherme Domingos de Luca; Lafayette Pozzoli

    2015-01-01

    Examine in this study as a problem, the relationship of law and Fraternity as a promotional instrument of Human Dignity in Labour Law, pointing out the means by which positive law has constitutionalized the fundamental guarantees of man labor law. Understand the relationship of human labor versus the dignity of the human person, and the idea of fraternity as a promotional function. The research was based on bibliographic compared. The main object is to understand the role of the fraternity an...

  18. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    Science.gov (United States)

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  19. Tourism And Environment: Toward Promoting Sustainable Development Of Tourism: A Human Rights Perspective

    Directory of Open Access Journals (Sweden)

    Ni Ketut Supasti Dharmawan

    2012-01-01

    Full Text Available Tourism activities in era globalization bring positive and negative impacts especially for the host countries destination. To minimize the negative impacts it is very important to always promote the sustainable development of tourism including from a human rights perspective. This paper will discuss concerning who have responsibility to promote a human rights related with sustainable development of tourism. To explore the topic in this article, Author will study both international human rights instruments and environmental convention as well as the soft law regarding the tourism sector such as the UN WTO Global Code Of Ethics. The Law No. 10 Year 2009 concerning Indonesia Tourism Law is also part of legal material studied in this paper. There are national, international legal instruments of the human rights as well as UNWTO Global Codes of Ethics which can be utilized to promote sustainable tourism through human rights perspective. It is considered that all stakeholders have responsibility to promote sustainable development of tourism.

  20. Effect of TNFα on activities of different promoters of human apolipoprotein A-I gene

    International Nuclear Information System (INIS)

    Orlov, Sergey V.; Mogilenko, Denis A.; Shavva, Vladimir S.; Dizhe, Ella B.; Ignatovich, Irina A.; Perevozchikov, Andrej P.

    2010-01-01

    Research highlights: → TNFα stimulates the distal alternative promoter of human apoA-I gene. → TNFα acts by weakening of promoter competition within apoA-I gene (promoter switching). → MEK1/2 and nuclear receptors PPARα and LXRs take part in apoA-I promoter switching. -- Abstract: Human apolipoprotein A-I (ApoA-I) is a major structural and functional protein component of high-density lipoproteins. The expression of the apolipoprotein A-I gene (apoA-I) in hepatocytes is repressed by pro-inflammatory cytokines such as IL-1β and TNFα. Recently, two novel additional (alternative) promoters for human apoA-I gene have been identified. Nothing is known about the role of alternative promoters in TNFα-mediated downregulation of apoA-I gene. In this article we report for the first time about the different effects of TNFα on two alternative promoters of human apoA-I gene. Stimulation of HepG2 cells by TNFα leads to activation of the distal alternative apoA-I promoter and downregulation of the proximal alternative and the canonical apoA-I promoters. This effect is mediated by weakening of the promoter competition within human apoA-I 5'-regulatory region (apoA-I promoter switching) in the cells treated by TNFα. The MEK1/2-ERK1/2 cascade and nuclear receptors PPARα and LXRs are important for TNFα-mediated apoA-I promoter switching.

  1. Beyond KRAS mutation status: influence of KRAS copy number status and microRNAs on clinical outcome to cetuximab in metastatic colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    Mekenkamp Leonie JM

    2012-07-01

    Full Text Available Abstract Background KRAS mutation is a negative predictive factor for treatment with anti-epidermal growth factor receptor (EGFR antibodies in metastatic colorectal cancer (mCRC. Novel predictive markers are required to further improve the selection of patients for this treatment. We assessed the influence of modification of KRAS by gene copy number aberration (CNA and microRNAs (miRNAs in correlation to clinical outcome in mCRC patients treated with cetuximab in combination with chemotherapy and bevacizumab. Methods Formalin-fixed paraffin-embedded primary tumour tissue was used from 34 mCRC patients in a phase III trial, who were selected based upon their good (n = 17 or poor (n = 17 progression-free survival (PFS upon treatment with cetuximab in combination with capecitabine, oxaliplatin, and bevacizumab. Gene copy number at the KRAS locus was assessed using high resolution genome-wide array CGH and the expression levels of 17 miRNAs targeting KRAS were determined by real-time PCR. Results Copy number loss of the KRAS locus was observed in the tumour of 5 patients who were all good responders including patients with a KRAS mutation. Copy number gains in two wild-type KRAS tumours were associated with a poor PFS. In KRAS mutated tumours increased miR-200b and decreased miR-143 expression were associated with a good PFS. In wild-type KRAS patients, miRNA expression did not correlate with PFS in a multivariate model. Conclusions Our results indicate that the assessment of KRAS CNA and miRNAs targeting KRAS might further optimize the selection of mCRC eligible for anti-EGFR therapy.

  2. Sibling rivalry among paralogs promotes evolution of the human brain.

    Science.gov (United States)

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Getting to Equal : Promoting Gender Equality through Human Development

    OpenAIRE

    World Bank

    2011-01-01

    To achieve gender equality and empower women, it is essential to invest in human development. The World Development Report 2012: Gender Equality and Development (hereafter WDR 2012) brings the best global evidence to bear on the relationship between gender equality and development. A central theme running through the report is how investments and outcomes in human development namely health...

  4. Evaluation in health promotion: thoughts from inside a human research ethics committee.

    Science.gov (United States)

    Allen, Judy; Flack, Felicity

    2015-12-01

    Health promotion research, quality improvement and evaluation are all activities that raise ethical issues. In this paper, the Chair and a member of human resear ch ethics committees provide an insiders' point of view on how to demonstrate ethical conduct in health promotion research and quality improvement. Several common issues raised by health promotion research and evaluation are discussed including researcher integrity, conflicts of interest, use of information, consent and privacy.

  5. KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Lin Lin

    Full Text Available Molecular biomarkers to determine the effectiveness of targeted therapies in cancer treatment have been widely adopted in colorectal cancer (CRC, but those to predict chemotherapy sensitivity remain poorly defined. We tested our hypothesis that KRAS mutation may be a predictor of oxaliplatin sensitivity in CRC. KRAS was knocked-down in KRAS-mutant CRC cells (DLD-1(G13D and SW480(G12V by small interfering RNAs (siRNA and overexpressed in KRAS-wild-type CRC cells (COLO320DM by KRAS-mutant vectors to generate paired CRC cells. These paired CRC cells were tested by oxaliplatin, irinotecan and 5FU to determine the change in drug sensitivity by MTT assay and flow cytometry. Reasons for sensitivity alteration were further determined by western blot and real-time quantitative reverse transcriptase polymerase chain reaction (qRT -PCR. In KRAS-wild-type CRC cells (COLO320DM, KRAS overexpression by mutant vectors caused excision repair cross-complementation group 1 (ERCC1 downregulation in protein and mRNA levels, and enhanced oxaliplatin sensitivity. In contrast, in KRAS-mutant CRC cells (DLD-1(G13D and SW480(G12V, KRAS knocked-down by KRAS-siRNA led to ERCC1 upregulation and increased oxaliplatin resistance. The sensitivity of irinotecan and 5FU had not changed in the paired CRC cells. To validate ERCC1 as a predictor of sensitivity for oxaliplatin, ERCC1 was knocked-down by siRNA in KRAS-wild-type CRC cells, which restored oxaliplatin sensitivity. In contrast, ERCC1 was overexpressed by ERCC1-expressing vectors in KRAS-mutant CRC cells, and caused oxaliplatin resistance. Overall, our findings suggest that KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells by the mechanism of ERCC1 downregulation.

  6. Concept Analysis: Health-Promoting Behaviors Related to Human Papilloma Virus (HPV) Infection.

    Science.gov (United States)

    McCutcheon, Tonna; Schaar, Gina; Parker, Karen L

    2015-01-01

    The concept of health-promoting behaviors incorporates ideas presented in the Ottawa Charter of Public Health and the nursing-based Health Promotion Model. Despite the fact that the concept of health-promoting behaviors has a nursing influence, literature suggests nursing has inadequately developed and used this concept within nursing practice. A further review of literature regarding health promotion behaviors and the human papilloma virus suggest a distinct gap in nursing literature. This article presents a concept analysis of health-promoting behaviors related to the human papilloma virus in order to encourage the application of the concept into nursing practice, promote continued nursing research regarding this concept, and further expand the application of health-promoting behaviors to other situations and populations within the nursing discipline. Attributes of health-promoting behaviors are presented and include empowerment, participation, community, and a positive concept of health. Antecedents, consequences, and empirical referents are also presented, as are model, borderline, and contrary cases to help clarify the concept. Recommendations for human papilloma virus health-promoting behaviors within the nursing practice are also provided. © 2014 Wiley Periodicals, Inc.

  7. Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Alessandra Pisciotta

    Full Text Available Human dental pulp is a promising alternative source of stem cells for cell-based tissue engineering in regenerative medicine, for the easily recruitment with low invasivity for the patient and for the self-renewal and differentiation potential of cells. So far, in vitro culture of mesenchymal stem cells is usually based on supplementing culture and differentiation media with foetal calf serum (FCS. FCS is known to contain a great quantity of growth factors, and thus to promote cell attachment on plastic surface as well as expansion and differentiation. Nevertheless, FCS as an animal origin supplement may represent a potential means for disease transmission besides leading to a xenogenic immune response. Therefore, a significant interest is focused on investigating alternative supplements, in order to obtain a sufficient cell number for clinical application, avoiding the inconvenients of FCS use. In our study we have demonstrated that human serum (HS is a suitable alternative to FCS, indeed its addition to culture medium induces a high hDPSCs proliferation rate and improves the in vitro osteogenic differentiation. Furthermore, hDPSCs-collagen constructs, pre-differentiated with HS-medium in vitro for 10 days, when implanted in immunocompromised rats, are able to restore critical size parietal bone defects. Therefore these data indicate that HS is a valid substitute for FCS to culture and differentiate in vitro hDPSCs in order to obtain a successful bone regeneration in vivo.

  8. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  9. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    Science.gov (United States)

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  10. Promoting the Reading Culture Towards Human Capital and Global Development

    Science.gov (United States)

    Olasehinde, M. O.; Akanmode, O. A.; Alaiyemola, A. T.; Babatunde, O. T.

    2015-01-01

    It is commonly agreed that a country cannot be fully developed without large-scale investment in her educational scheme since the breakthrough of a country is directly proportional to her educational level. Since the acquisition of effective reading skills has a positive effect on all school subjects, then reading is sine-qua-non for human capital…

  11. Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer.

    Science.gov (United States)

    Zeng, Linjuan; Li, Jingguo; Wang, Yong; Qian, Chenchen; Chen, Yinting; Zhang, Qiubo; Wu, Wei; Lin, Zhong; Liang, Jianzhong; Shuai, Xintao; Huang, Kaihong

    2014-02-01

    The synergetic inhibitory effects on human pancreatic cancer by nanoparticle-mediated siRNA and arsenic therapy were investigated both in vitro and in vivo. Poly(ethylene glycol)-block-poly(L-lysine) were prepared to form siRNA-complexed polyplex and poly(ethylene glycol)-block-poly(DL-lactide) were prepared to form arsenic-encapsulated vesicle, respectively. Down-regulation of the mutant Kras gene by siRNA caused defective abilities of proliferation, clonal formation, migration, and invasion of pancreatic cancer cells, as well as cell cycle arrest at the G0/G1 phase, which substantially enhanced the apoptosis-inducing effect of arsenic administration. Consequently, co-administration of the two nanomedicines encapsulating siRNA or arsenic showed ideal tumor growth inhibition both in vitro and in vivo as a result of synergistic effect of the siRNA-directed Kras oncogene silencing and arsenic-induced cell apoptosis. These results suggest that the combination of mutant Kras gene silencing and arsenic therapy using nanoparticle-mediated delivery strategy is promising for pancreatic cancer treatment. Treatment of pancreatic cancer remains a major challenge. These authors demonstrate a method that combines a siRNA-based Kras silencing with arsenic delivery to pancreatic cancer cells using nanoparticles, resulting in enhanced apoptosis induction in the treated cells. © 2013.

  12. Gold thread implantation promotes hair growth in human and mice

    OpenAIRE

    Kim, Jong-Hwan; Cho, Eun-Young; Kwon, Euna; Kim, Woo-Ho; Park, Jin-Sung; Lee, Yong-Soon; Yun, Jun-Won; Kang, Byeong-Cheol

    2017-01-01

    Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated...

  13. Oncogenic K-Ras Activates p38 to Maintain Colorectal Cancer Cell Proliferation during MEK Inhibition

    Directory of Open Access Journals (Sweden)

    Winan J. van Houdt

    2010-01-01

    Full Text Available Background: Colon carcinomas frequently contain activating mutations in the K-ras proto-oncogene. K-ras itself is a poor drug target and drug development efforts have mostly focused on components of the classical Ras-activated MEK/ERK pathway. Here we have studied whether endogenous oncogenic K-ras affects the dependency of colorectal tumor cells on MEK/ERK signaling.

  14. A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution

    OpenAIRE

    Grace R. Anderson; Peter S. Winter; Kevin H. Lin; Daniel P. Nussbaum; Merve Cakir; Elizabeth M. Stein; Ryan S. Soderquist; Lorin Crawford; Jim C. Leeds; Rachel Newcomb; Priya Stepp; Catherine Yip; Suzanne E. Wardell; Jennifer P. Tingley; Moiez Ali

    2017-01-01

    Combinatorial inhibition of effector and feedback pathways is a promising treatment strategy for KRAS mutant cancers. However, the particular pathways that should be targeted to optimize therapeutic responses are unclear. Using CRISPR/Cas9, we systematically mapped the pathways whose inhibition cooperates with drugs targeting the KRAS effectors MEK, ERK, and PI3K. By performing 70 screens in models of KRAS mutant colorectal, lung, ovarian, and pancreas cancers, we uncovered universal and tiss...

  15. [Ethics and methodology: the importance of promoting, evaluating and implementing education and humanities research in health].

    Science.gov (United States)

    Consejo-Y Chapela, Carolina; González-Martínez, José Francisco

    2017-01-01

    In this editorial we initially expose the agreements that have set the mechanisms to guarantee safety and fair treatment to human subjects in research. Later on, we offer alternatives from translational and multidisciplinary research to promote education and humanities research in health.

  16. Inhibition of prenylated KRAS in a lipid environment.

    Directory of Open Access Journals (Sweden)

    Johanna M Jansen

    Full Text Available RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.

  17. KRAS mutation: should we test for it, and does it matter?

    Science.gov (United States)

    Roberts, Patrick J; Stinchcombe, Thomas E

    2013-03-10

    Lung cancer is the leading cause of cancer mortality in the United States and worldwide. Previously, lung cancer was simplistically divided into non-small-cell lung cancer (NSCLC) and small-cell lung cancer. However, in the last decade, we have gone from a simplistic binary system of classifying lung cancer to defining NSCLC on the basis of molecular subsets. KRAS mutations represent the most common molecular change in NSCLC. The presence of KRAS mutation has been shown to be associated with a poor prognosis in NSCLC, but this is of little clinical utility. More important is determining the clinical utility of KRAS mutational analysis for predicting benefit of chemotherapy, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), anti-EGFR monoclonal antibodies, or other novel therapeutics. Current data does not support the routine use of KRAS mutational analysis for predicting chemotherapy benefit. Additionally, there was significant interest in using KRAS status to select patients for EGFR TKI and anti-EGFR monoclonal antibodies. However, the EGFR mutational status has demonstrated significant predictive value in the selection of patients for EGFR TKI therapy and is now the preferred test. An association between KRAS mutational status and benefit of anti-EGFR monoclonal antibodies has not been demonstrated in NSCLC. Here we review, in the context of NSCLC, the underlying biology of KRAS mutations, the predictive value of KRAS mutations for therapeutic intervention, and the integration of KRAS mutational testing into our current clinical paradigms.

  18. Delocalized Claudin-1 promotes metastasis of human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Yuekui; Chen, Changqiong; Li, Bo; Tian, Xiaobin, E-mail: drtxb_guiyang@sina.com

    2015-10-23

    Tight junction proteins (TJPs) including Claudins, Occludin and tight junction associated protein Zonula occludens-1 (ZO-1), are the most apical component of junctional complex that mediates cell–cell adhesion in epithelial and endothelial cells. In human malignancies, TJPs are often deregulated and affect cellular behaviors of tumor cells. In this study, we investigated alternations of TJPs and related biological characteristics in human osteosarcoma (OS). Claudin1 was increased in the metastatic OS cells (KRIB and KHOS) compared with the normal osteoblast cells (hFOB1.19) or primary tumor cells (HOS and U2OS), whereas no significant difference was found in Occludin and ZO-1. Immunohistochemistry, immunofluorescence and Western blotting revealed that Claudin1 was initially localized at cell junctions of normal osteoblasts, but substantially delocalized to the nucleus of metastatic OS cells. Phenotypically, inhibition of the nucleus Claudin1 expression compromised the metastatic potential of KRIB and KHOS cells. Moreover, we found that protein kinase C (PKC) but not PKA phosphorylation influenced Claudin1 expression and cellular functions, as PKC inhibitor (Go 6983 and Staurosporine) or genetic silencing of PKC reduced Claudin1 expression and decreased the motility of KRIB and KHOS cells. Taken together, our study implied that delocalization of claudin-1 induced by PKC phosphorylation contributes to metastatic capacity of OS cells. - Highlights: • Claudin1 is increased during the malignant transformation of human OS. • Delocalization of Claudin1 in metastatic OS cells. • Silencing nuclear Claudin1 expression inhibits cell invasion of OS. • Deregulated Claudin1 is regulated by PKC.

  19. The Relation between Law and Fraternity as a Promotional Instrument for Human Dignity in Labor Law

    Directory of Open Access Journals (Sweden)

    Guilherme Domingos de Luca

    2015-12-01

    Full Text Available Examine in this study as a problem, the relationship of law and Fraternity as a promotional instrument of Human Dignity in Labour Law, pointing out the means by which positive law has constitutionalized the fundamental guarantees of man labor law. Understand the relationship of human labor versus the dignity of the human person, and the idea of fraternity as a promotional function. The research was based on bibliographic compared. The main object is to understand the role of the fraternity and the right to promote dignity in labor law. Specifically, to understand the role of the principle of brotherhood and human dignity in the protection of labor Fundamental Rights. It is a guided research in the hypothetical-deductive research method, starting from the hypothesis that the community contributes to the correct application of the law as the dignity of labor instrument.

  20. The PTEN/NRF2 Axis Promotes Human Carcinogenesis

    DEFF Research Database (Denmark)

    Rojo, Ana I; Rada, Patricia; Mendiola, Marta

    2014-01-01

    and tumorigenic advantage. Tissue microarrays from endometrioid carcinomas showed that 80% of PTEN-negative tumors expressed high levels of NRF2 or its target heme oxygenase-1 (HO-1). INNOVATION: These results uncover a new mechanism of oncogenic activation of NRF2 by loss of its negative regulation by PTEN/GSK-3....../β-TrCP that may be relevant to a large number of tumors, including endometrioid carcinomas. CONCLUSION: Increased activity of NRF2 due to loss of PTEN is instrumental in human carcinogenesis and represents a novel therapeutic target. Antioxid. Redox Signal. 21, 2498-2514....

  1. Conciliatory gestures promote forgiveness and reduce anger in humans.

    Science.gov (United States)

    McCullough, Michael E; Pedersen, Eric J; Tabak, Benjamin A; Carter, Evan C

    2014-07-29

    Conflict is an inevitable component of social life, and natural selection has exerted strong effects on many organisms to facilitate victory in conflict and to deter conspecifics from imposing harms upon them. Like many species, humans likely possess cognitive systems whose function is to motivate revenge as a means of deterring individuals who have harmed them from harming them again in the future. However, many social relationships often retain value even after conflicts have occurred between interactants, so natural selection has very likely also endowed humans with cognitive systems whose function is to motivate reconciliation with transgressors whom they perceive as valuable and nonthreatening, notwithstanding their harmful prior actions. In a longitudinal study with 337 participants who had recently been harmed by a relationship partner, we found that conciliatory gestures (e.g., apologies, offers of compensation) were associated with increases in victims' perceptions of their transgressors' relationship value and reductions in perceptions of their transgressors' exploitation risk. In addition, conciliatory gestures appeared to accelerate forgiveness and reduce reactive anger via their intermediate effects on relationship value and exploitation risk. These results strongly suggest that conciliatory gestures facilitate forgiveness and reduce anger by modifying victims' perceptions of their transgressors' value as relationship partners and likelihood of recidivism.

  2. Airway surface irregularities promote particle diffusion in the human lung

    International Nuclear Information System (INIS)

    Martonen, T.; North Carolina Univ., Chapel Hill, NC; Zhang, Z.; Yang, Y.; Bottei, G.

    1995-01-01

    Current NCRP and ICRP particle deposition models employed in risk assessment analyses treat the airways of the human lung as smooth-walled tubes. However, the upper airways of the tracheobronchial (TB) tree are line with cartilaginous rings. Recent supercomputer simulations of in vivo conditions (cited herein), where cartilaginous ring morphologies were based upon fibre-optic bronchoscope examinations, have clearly demonstrated their profound effects upon fluid dynamics. A physiologically based analytical model of fluid dynamics is presented, focusing upon applications to particle diffusion within the TB tree. The new model is the first to describe particle motion while simultaneously simulating effects of wall irregularities, entrance conditions and tube curvatures. This study may explain the enhanced deposition by particle diffusion detected in replica case experiments and have salient implications for the clinically observed preferential distributions of bronchogenic carcinomas associated with inhaled radionuclides. (author)

  3. Development and oversight of ethical health promotion quality assurance and evaluation activities involving human participants.

    Science.gov (United States)

    Sainsbury, Peter

    2015-12-01

    This paper considers the role of ethics and ethics review processes in the development of health promotion quality assurance and evaluation activities involving human participants. The Australian National Health and Medical Research Council (NHMRC) National Statement on Ethical Conduct in Human Research and associated documents provide the framework for the ethical conduct and independent review of research (including quality assurance and evaluation) involving humans in Australia. Identifying the level of risk to which participants may be exposed by participation in quality assurance and evaluation activities is essential for health promotion workers undertaking such activities. Organisations can establish processes other than review by a Human Research Ethics Committee for negligible and low risk research activities. Health promotion quality assurance and evaluation activities often involve negligible and low risk to participants. Seven triggers that indicate the need for ethics review of quality assurance and evaluation activities and a procedural checklist for developing ethical quality assurance and evaluation activities are provided. Health promotion workers should be familiar with the NHMRC's National Statement on Ethical Conduct in Human Research. When ethical considerations underpin the planning and conduct of all quality assurance and evaluation from the very beginning, the activity is the better for it, independent 'ethics approval' can mostly be secured without much trouble and workers' frustration levels are reduced. So what? Health promotion quality assurance and evaluation activities must be ethically justified. Health promotion workers should be familiar with the NHMRC's National Statement on Ethical Conduct in Human Research and should use it when developing health promotion quality assurance and evaluation activities.

  4. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  5. Nerve growth factor promotes human hemopoietic colony growth and differentiation

    International Nuclear Information System (INIS)

    Matsuda, H.; Coughlin, M.D.; Bienenstock, J.; Denburg, J.A.

    1988-01-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been clones. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. These experiments indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by 125 I-polyclonal and monoclonal antibodies to NGF. The authors conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, they postulate that NGF plays an important biological role in a variety of repair processes

  6. Promotion of The Human Skeletal Heritage: A Milanese Perspective

    Directory of Open Access Journals (Sweden)

    Cristina Cattaneo

    2015-06-01

    Full Text Available The history and cultural heritage of a city can be evaluated not only through the study of the works of art, artifacts or buildings, but also through the examination of the remains of persons who walked the city in the past millennia. Therefore several thousands of skeletal remains found in Lombardia, especially in Milano, act as cultural assets, though in an the ethical scenario of full respect of human remains. In this way the skeletons tell a history concerning the conditions of health, the richness, culture and even violence, which may confirm, integrate or deny the historical sources when available. Preliminary studies performed on skeletons from different areas of Lombardia have already demonstrated the potential of skeletal material in highlighting for example the evolution of infectious diseases from the Roman age to the Middle Ages, the multiethnicity of Milan at the time of St Ambrose, the heavy labor of children which seems to be present among the Longobards who inhabited the geographic areas of Bergamo as well as Manzoni’s plague affecting the remains found under the Spanish walls. How were they different from us for what concerns life expectancy, diseases, interpersonal violence and lifestyle? In this the skeleton comes through as a true cultural asset.

  7. Nattokinase-promoted tissue plasminogen activator release from human cells.

    Science.gov (United States)

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration. Copyright 2009 S. Karger AG, Basel.

  8. Identification of Differentially Expressed K-Ras Transcript Variants in Patients With Leiomyoma.

    Science.gov (United States)

    Zolfaghari, Nooshin; Shahbazi, Shirin; Torfeh, Mahnaz; Khorasani, Maryam; Hashemi, Mehrdad; Mahdian, Reza

    2017-10-01

    Molecular studies have demonstrated a wide range of gene expression variations in uterine leiomyoma. The rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase (RAS/RAF/MAPK) is the crucial cellular pathway in transmitting external signals into nucleus. Deregulation of this pathway contributes to excessive cell proliferation and tumorigenesis. The present study aims to investigate the expression profile of the K-Ras transcripts in tissue samples from patients with leiomyoma. The patients were leiomyoma cases who had no mutation in mediator complex subunit 12 ( MED12) gene. A quantitative approach has been applied to determine the difference in the expression of the 2 main K-Ras messenger RNA (mRNA) variants. The comparison between gene expression levels in leiomyoma and normal myometrium group was performed using relative expression software tool. The expression of K-Ras4B gene was upregulated in leiomyoma group ( P = .016), suggesting the involvement of K-Ras4B in the disease pathogenesis. Pairwise comparison of the K-Ras4B expression between each leiomyoma tissue and its matched adjacent normal myometrium revealed gene upregulation in 68% of the cases. The expression of K-Ras4A mRNA was relatively upregulated in leiomyoma group ( P = .030). In addition, the mean expression of K-Ras4A gene in leiomyoma tissues relative to normal samples was 4.475 (95% confidence interval: 0.10-20.42; standard error: 0.53-12.67). In total, 58% of the cases showed more than 2-fold increase in K-Ras4A gene expression. Our results demonstrated increased expression of both K-Ras mRNA splicing variants in leiomyoma tissue. However, the ultimate result of KRAS expression on leiomyoma development depends on the overall KRAS isoform balance and, consequently, on activated signaling pathways.

  9. Colorectal cancer patients with low abundance of KRAS mutation may benefit from EGFR antibody therapy.

    Directory of Open Access Journals (Sweden)

    Shaorong Yu

    Full Text Available Epidermal growth factor receptor monoclonal antibody was approved for treatment of metastatic colorectal cancer patients carrying KRAS wild type DNA. However, recent studies showed that patients with KRAS G13D mutation may benefit from EGFR antibody therapy. In this study we tried to explore whether the abundance of KRAS mutation could affect the efficacy of EGFR antibody therapy. We firstly established a PNA-PCR method which could calculate the percentage of KRAS mutation in total DNA and proved its ability on 47 colorectal cancer samples bearing KRAS mutations. Then we analyzed the correlation between the abundance of KRAS mutations and efficacy of EGFR antibody therapy in another 35 metastatic colorectal cancer patients. We proved that PNA-PCR assay could calculate the abundance of KRAS mutation and the percentage of mutant DNA in tumor cells varied a lot (10.8%∼98.3% on the 47 colorectal cancer patients. The efficacy of EGFR antibody correlated with the abundance of KRAS mutations: in the KRAS mutation less than 30% group, the disease control rate was 44.4% (4/9; the disease control rate of 30∼80% group was 5.6% (1/18 and the >80% group was 12.5% (1/8 (P = 0.038. In summary, our study showed that PNA-PCR method could easily detect the percentage of KRAS mutation in tumor cells and colorectal cancer patients with low abundance of KRAS mutation might benefit from EGFR antibody therapy.

  10. Repurposing Lesogaberan to Promote Human Islet Cell Survival and β-Cell Replication

    Directory of Open Access Journals (Sweden)

    Jide Tian

    2017-01-01

    Full Text Available The activation of β-cell’s A- and B-type gamma-aminobutyric acid receptors (GABAA-Rs and GABAB-Rs can promote their survival and replication, and the activation of α-cell GABAA-Rs promotes their conversion into β-cells. However, GABA and the most clinically applicable GABA-R ligands may be suboptimal for the long-term treatment of diabetes due to their pharmacological properties or potential side-effects on the central nervous system (CNS. Lesogaberan (AZD3355 is a peripherally restricted high-affinity GABAB-R-specific agonist, originally developed for the treatment of gastroesophageal reflux disease (GERD that appears to be safe for human use. This study tested the hypothesis that lesogaberan could be repurposed to promote human islet cell survival and β-cell replication. Treatment with lesogaberan significantly enhanced replication of human islet cells in vitro, which was abrogated by a GABAB-R antagonist. Immunohistochemical analysis of human islets that were grafted into immune-deficient mice revealed that oral treatment with lesogaberan promoted human β-cell replication and islet cell survival in vivo as effectively as GABA (which activates both GABAA-Rs and GABAB-Rs, perhaps because of its more favorable pharmacokinetics. Lesogaberan may be a promising drug candidate for clinical studies of diabetes intervention and islet transplantation.

  11. Detection of TET2, KRAS and CBL variants by Next Generation ...

    African Journals Online (AJOL)

    Dilara Fatma Akin

    2015-10-01

    Oct 1, 2015 ... sarcoma viral oncogene homolog (KRAS), and Casitas B-cell ... AML by screening hot-spot exons of TET2, KRAS, and CBL using Next Generation Sequencing ... Methods: Eight patients who were diagnosed with pediatric AML at Losante ..... mutations in pre-leukemic stem cells in acute myeloid leukemia.

  12. An oligonucleotide-tagged microarray for routine diagnostics of colon cancer by genotyping KRAS mutations

    DEFF Research Database (Denmark)

    Liu, Yuliang; Guðnason, Haukur; Li, Yiping

    2014-01-01

    Colorectal cancer (CRC) is one of the most prevalent types of cancer, causing significant morbidity and mortality worldwide. CRC is curable if diagnosed at an early stage. Mutations in the oncogene KRAS play a critical role in early development of CRC. Detection of activated KRAS is of diagnostic...

  13. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  14. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts.

    Science.gov (United States)

    Kakudo, Natsuko; Minakata, Tatsuya; Mitsui, Toshihito; Kushida, Satoshi; Notodihardjo, Frederik Zefanya; Kusumoto, Kenji

    2008-11-01

    This study evaluated changes in platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets by platelet-rich plasma activation, and the proliferation potential of activated platelet-rich plasma and platelet-poor plasma on human adipose-derived stem cells and human dermal fibroblasts. Platelet-rich plasma was prepared using a double-spin method, with the number of platelets counted in each preparation stage. Platelet-rich and platelet-poor plasma were activated with autologous thrombin and calcium chloride, and levels of platelet-released PDGF-AB and TGF-beta1 were determined by enzyme-linked immunosorbent assay. Cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 5% whole blood plasma, nonactivated platelet-rich plasma, nonactivated platelet-poor plasma, activated platelet-rich plasma, or activated platelet-poor plasma. In parallel, these cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 1%, 5%, 10%, or 20% activated platelet-rich plasma. The cultured human adipose-derived stem cells and human dermal fibroblasts were assayed for proliferation. Platelet-rich plasma contained approximately 7.9 times as many platelets as whole blood, and its activation was associated with the release of large amounts of PDGF-AB and TGF-beta1. Adding activated platelet-rich or platelet-poor plasma significantly promoted the proliferation of human adipose-derived stem cells and human dermal fibroblasts. Adding 5% activated platelet-rich plasma to the medium maximally promoted cell proliferation, but activated platelet-rich plasma at 20% did not promote it. Platelet-rich plasma can enhance the proliferation of human adipose-derived stem cells and human dermal fibroblasts. These results support clinical platelet-rich plasma application for cell-based, soft-tissue engineering and wound healing.

  15. The Challenge of Promoting Algorithmic Thinking of Both Sciences- and Humanities-Oriented Learners

    Science.gov (United States)

    Katai, Z.

    2015-01-01

    The research results we present in this paper reveal that properly calibrated e-learning tools have potential to effectively promote the algorithmic thinking of both science-oriented and humanities-oriented students. After students had watched an illustration (by a folk dance choreography) and an animation of the studied sorting algorithm (bubble…

  16. Affective Education: A Teacher's Manual to Promote Student Self-Actualization and Human Relations Skills.

    Science.gov (United States)

    Snyder, Thomas R.

    This teacher's manual presents affective education as a program to promote student self-actualization and human relations skills. Abraham Maslow's hierarchy of needs and Erik Erikson's life stages of psychosocial development form the conceptual base for this program. The goals and objectives of this manual are concerned with problem-solving…

  17. Human SIRT6 promotes DNA end resection through CtIP deacetylation

    DEFF Research Database (Denmark)

    Kaidi, Abderrahmane; Weinert, Brian T; Choudhary, Chunaram

    2010-01-01

    SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired the accu...

  18. Stakeholder Capability Enhancement as a Path to Promote Human Dignity and Cooperative Advantage

    NARCIS (Netherlands)

    Westermann-Behaylo, M.K.; Van Buren III, H.J.; Berman, S.L.

    2016-01-01

    Promoting dignity is at the heart of the human capability approach to development. We introduce the concept of stakeholder capability enhancement, beginning with a discussion of the capability approach to development proposed by Sen (1985) and further advanced by Nussbaum (1990) to incorporate

  19. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  20. Two distinct promoters drive transcription of the human D1A dopamine receptor gene.

    Science.gov (United States)

    Lee, S H; Minowa, M T; Mouradian, M M

    1996-10-11

    The human D1A dopamine receptor gene has a GC-rich, TATA-less promoter located upstream of a small, noncoding exon 1, which is separated from the coding exon 2 by a 116-base pair (bp)-long intron. Serial 3'-deletions of the 5'-noncoding region of this gene, including the intron and 5'-end of exon 2, resulted in 80 and 40% decrease in transcriptional activity of the upstream promoter in two D1A-expressing neuroblastoma cell lines, SK-N-MC and NS20Y, respectively. To investigate the function of this region, the intron and 245 bp at the 5'-end of exon 2 were investigated. Transient expression analyses using various chloramphenicol acetyltransferase constructs showed that the transcriptional activity of the intron is higher than that of the upstream promoter by 12-fold in SK-N-MC cells and by 5.5-fold in NS20Y cells in an orientation-dependent manner, indicating that the D1A intron is a strong promoter. Primer extension and ribonuclease protection assays revealed that transcription driven by the intron promoter is initiated at the junction of intron and exon 2 and at a cluster of nucleotides located 50 bp downstream from this junction. The same transcription start sites are utilized by the chloramphenicol acetyltransferase constructs employed in transfections as well as by the D1A gene expressed within the human caudate. The relative abundance of D1A transcripts originating from the upstream promoter compared with those transcribed from the intron promoter is 1.5-2.9 times in SK-N-MC cells and 2 times in the human caudate. Transcript stability studies in SK-N-MC cells revealed that longer D1A mRNA molecules containing exon 1 are degraded 1.8 times faster than shorter transcripts lacking exon 1. Although gel mobility shift assay could not detect DNA-protein interaction at the D1A intron, competitive co-transfection using the intron as competitor confirmed the presence of trans-acting factors at the intron. These data taken together indicate that the human D1A gene has

  1. The Promotion and Integration of Human Rights in EU External Trade Relations

    Directory of Open Access Journals (Sweden)

    Samantha Velluti

    2016-09-01

    Full Text Available The European Union (EU has made the upholding of human rights an integral part of its external trade relations and requires that all trade, cooperation, partnership and association agreements with third countries, including unilateral trade instruments, contain with varying modalities and intensity a commitment to the respect for human rights. The paper discusses selected aspects of the EU’s promotion and integration of human rights in its external trade relations and assesses the impact of the changes introduced by the 2009 Treaty of Lisbon (ToL on EU practice.

  2. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  3. Neuron-derived orphan receptor 1 promoted human pulmonary artery smooth muscle cells proliferation.

    Science.gov (United States)

    Wang, Chang-Guo; Lei, Wei; Li, Chang; Zeng, Da-Xiong; Huang, Jian-An

    2015-05-01

    As a transcription factor of the nuclear receptor superfamily, neuron-derived orphan receptor 1 (NOR1) is induced rapidly in response to various extracellular stimuli. But, it is still unclear its role in pulmonary artery smooth muscle cells proliferation. Human PASMCs were cultured in vitro and stimulated by serum. The special antisense oligodeoxynucleotides (AS-ODNs) were used to knockdown human NOR1 gene expression. Real-time PCR and Western-blot were used to evaluate the gene expression and protein levels. Fetal bovine serum (FBS) induced human PASMCs proliferation in a dose dependent manner. Furthermore, FBS promoted NOR1 gene expression in a dose dependent manner and a time dependent manner. 10% FBS induced a maximal NOR1 mRNA levels at 2 h. FBS also induced a significant higher NOR1 protein levels as compared with control. The NOR1 over-expressed plasmid significantly promoted DNA synthesis and cells proliferation. Moreover, the special AS-ODNs against human NOR1 not only prevented NOR1 expression but also inhibited DNA synthesis and cells proliferation significantly. The NOR1 over-expression plasmid could up-regulate cyclin D1 expression markedly, but the AS-ODNs inhibited cyclin D1 expression significantly. So, we concluded that NOR1 could promote human PASMCs proliferation. Cyclin D1 might be involved in this process.

  4. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  5. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    International Nuclear Information System (INIS)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-01-01

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  6. Characterization of the promoter region of the human c-erbB-2 protooncogene

    International Nuclear Information System (INIS)

    Ishii, S.; Imamoto, F.; Yamanashi, Y.; Toyoshima, K.; Yamamoto, T.

    1987-01-01

    Three overlapping genomic clones that contain the 5'-terminal portion of the human c-erbB-2 gene (ERBB2) were isolated. The promoter region was identified by nuclease S1 mapping with c-erbB-2 mRNA. Seven transcriptional start sites were identified. DNA sequence analysis showed that the promoter region contains a TATA box and a CAAT box about 30 and 80 base pairs (bp), respectively, upstream of the most downstream RNA initiation site. Two putative binding sites for transcription factor Sp1 were identified about 50 and 110 bp upstream of the CAAT box, and six GGA repeats were found between the CAAT box and the TATA box. This region had strong promoter activity when placed upstream of the bacterial chloramphenicol acetyltransferase gene and transfected into monkey CV-1 cells. These data indicate that the promoter of the human c-erbB-2 protooncogene is different from that of the protooncogene c-erbB-1 (epidermal growth factor receptor gene), which does not contain either a TATA box or a CAAT box. Comparison of the promoter sequences and activities of the two protooncogenes should be helpful in analysis of the regulatory mechanism of expression of their gene products, which are growth-factor receptors

  7. Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor

    International Nuclear Information System (INIS)

    Wang, C.-P.; Lee, Y.-F.; Chang, C.; Lee, H.-J.

    2006-01-01

    The human testicular receptor 4 (TR4) shares structural homology with members of the nuclear receptor superfamily. Some other members of this superfamily were able to regulate the transcriptional activity of the human oxytocin (OXT) promoter by binding to the first DR0 regulatory site. However, little investigation was conducted systematically in the study of the second dDR4 site of OXT proximal promoter, and the relationship between the first and the second sites of OXT promoter. Here, we demonstrated for the first time that TR4 could increase the proximal promoter activity of the human OXT gene via DR0, dDR4, and OXT (both DR0 and dDR4) elements, respectively. TR4 might induce OXT gene expression through the OXT element in a dose-dependent manner. However, there is no synergistic effect between DR0 and dDR4 elements during TR4 transactivation. Taken together, these results suggested that TR4 should be one of important regulators of OXT gene expression

  8. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines

    International Nuclear Information System (INIS)

    Mameli, Giuseppe; Astone, Vito; Khalili, Kamel; Serra, Caterina; Sawaya, Bassel E.; Dolei, Antonina

    2007-01-01

    Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNFα, interferon-γ, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-β is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNFα had the ability to activate the ERVWE1 promoter through an NF-κB-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNFα enhances the binding of the p65 subunit of NF-κB, to its cognate site within the promoter. The effect of TNFα is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNFα-mediated induction of syncytin-1 in multiple sclerosis

  9. New localization and function of calpain-2 in nucleoli of colorectal cancer cells in ribosomal biogenesis: effect of KRAS status.

    Science.gov (United States)

    Telechea-Fernández, Marcelino; Rodríguez-Fernández, Lucia; García, Concha; Zaragozá, Rosa; Viña, Juan; Cervantes, Andrés; García-Trevijano, Elena R

    2018-02-06

    Calpain-2 belongs to a family of pleiotropic Cys-proteases with modulatory rather than degradative functions. Calpain (CAPN) overexpression has been controversially correlated with poor prognosis in several cancer types, including colorectal carcinoma (CRC). However, the mechanisms of substrate-recognition, calpain-2 regulation/deregulation and specific functions in CRC remain elusive. Herein, calpain subcellular distribution was studied as a key event for substrate-recognition and consequently, for calpain-mediated function. We describe a new localization for calpain-2 in the nucleoli of CRC cells. Calpain-2 nucleolar distribution resulted dependent on its enzymatic activity and on the mutational status of KRAS. In KRASWT/- cells serum-starvation induced CAPN2 expression, nucleolar accumulation and increased binding to the rDNA-core promoter and intergenic spacer (IGS), concomitant with a reduction in pre-rRNA levels. Depletion of calpain-2 by specific siRNA prevented pre-rRNA down-regulation after serum removal. Conversely, ribosomal biogenesis proceeded in the absence of serum in unresponsive KRASG13D/- cells whose CAPN2 expression, nucleolar localization and rDNA-occupancy remained unchanged during the time-course of serum starvation. We propose here that nucleolar calpain-2 might be a KRAS-dependent sensor to repress ribosomal biogenesis in growth limiting conditions. Under constitutive activation of the pathway commonly found in CRC, calpain-2 is deregulated and tumor cells become insensitive to the extracellular microenvironment.

  10. Functional analysis of the human calcyclin gene promoter in a panel of human melanoma cell lines

    NARCIS (Netherlands)

    van Groningen, J. J.; Weterman, M. A.; Swart, G. W.; Bloemers, H. P.

    1995-01-01

    By comparing two subsequent human tumor stages we previously described calcyclin as a new potential melanoma associated neoplastic progression marker positively linked with metastasis. In this study the calcyclin expression levels in a representative panel of human melanoma cell lines were

  11. Emphasizing humanities in medical education: Promoting the integration of medical scientific spirit and medical humanistic spirit.

    Science.gov (United States)

    Song, Peipei; Tang, Wei

    2017-05-23

    In the era of the biological-psychological-social medicine model, an ideal of modern medicine is to enhance the humanities in medical education, to foster medical talents with humanistic spirit, and to promote the integration of scientific spirit and humanistic spirit in medicine. Throughout the United States (US), United Kingdom (UK), other Western countries, and some Asian countries like Japan, many medical universities have already integrated the learning of medical humanities in their curricula and recognized their value. While in China, although medical education reform over the past decade has emphasized the topic of medical humanities to increase the professionalism of future physicians, the integration of medical humanity courses in medical universities has lagged behind the pace in Western countries. In addition, current courses in medical humanities were arbitrarily established due to a lack of organizational independence. For various reasons like a shortage of instructors, medical universities have failed to pay sufficient attention to medical humanities education given the urgent needs of society. The medical problems in contemporary Chinese society are not solely the purview of biomedical technology; what matters more is enhancing the humanities in medical education and fostering medical talents with humanistic spirit. Emphasizing the humanities in medical education and promoting the integration of medical scientific spirit and medical humanistic spirit have become one of the most pressing issues China must address. Greater attention should be paid to reasonable integration of humanities into the medical curriculum, creation of medical courses related to humanities and optimization of the curriculum, and actively allocating abundant teaching resources and exploring better methods of instruction.

  12. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J; Chavan, Tanmay S; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I; Nussinov, Ruth; Gaponenko, Vadim

    2015-04-10

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  14. Thyrotropin-releasing hormone (TRH promotes wound re-epithelialisation in frog and human skin.

    Directory of Open Access Journals (Sweden)

    Natalia T Meier

    Full Text Available There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression. Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters.

  15. Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin

    Science.gov (United States)

    Zhang, Guo-You; Emelianov, Vladimir; Paredes, Roberto; Debus, Sebastian; Augustin, Matthias; Funk, Wolfgang; Amaya, Enrique; Kloepper, Jennifer E.; Hardman, Matthew J.; Paus, Ralf

    2013-01-01

    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters. PMID:24023889

  16. [Progesterone Promotes Human Bone Marrow Mesenchymal Stem Cells to Synthesize Fibronectin via ERK Pathway].

    Science.gov (United States)

    Wu, Zhen-Yong; Chen, Jing-Li; Huang, Shu; Zhang, Hui; Wang, Fang; Wang, Yan; Bi, Xiao-Yun; Guo, Zi-Kuan

    2015-12-01

    To investigate whether the progesterone can promote fibronection (FN) synthesis by human bone marrow mesenchymal stem cells (MSCs) and to explore the potential underlying mechanism. The human bone marrow MSCs were cultured in a serum-free medium with progesterone for 72 hours, the MTT test was performed to observe the proliferation status and adhension ability of the treated cells. Western blot was used to detect the content of FN in MSDs with GAPDH as the internal reference, the phosphorylation of ERK1/2, as well as the FN content in MSC treated by PD98059, a specific inhibitor of ERK1/2. The progesterone at a range of certain doses not effect on the proliferation of human bone marrow MSCs. Progesterone (25 µg/L) treatment enhanced the FN expression and adherent ability of marrow MSCs. Progesterone could induce prompt phosphorylation of ERK 1/2 and its promoting effects on FN synthesis was reversed by PD98059. The progesterone can promote FN synthesis by human bone marrow MSCs via ERK 1/2 pathway, and it might be used to culture MSCs in serum-free medium.

  17. The value of KRAS mutation testing with CEA for the diagnosis of pancreatic mucinous cysts

    Science.gov (United States)

    Kadayifci, Abdurrahman; Al-Haddad, Mohammad; Atar, Mustafa; Dewitt, John M.; Forcione, David G.; Sherman, Stuart; Casey, Brenna W.; Fernandez-del Castillo, Carlos; Schmidt, C. Max; Pitman, Martha B.; Brugge, William R.

    2016-01-01

    Background and aims: Pancreatic cyst fluid (PCF) CEA has been shown to be the most accurate preoperative test for detection of cystic mucinous neoplasms (CMNs). This study aimed to assess the added value of PCF KRAS mutational analysis to CEA for diagnosis of CMNs. Patients and methods: This is a retrospective study of prospectively collected endoscopic ultrasonography (EUS) fine-needle aspiration (FNA) data. KRAS mutation was determined by direct sequencing or equivalent methods. Cysts were classified histologically (surgical cohort) or by clinical (EUS or FNA) findings (clinical cohort). Performance characteristics of KRAS, CEA and their combination for detection of a cystic mucinous neoplasm (CMN) and malignancy were calculated. Results: The study cohort consisted of 943 patients: 147 in the surgical cohort and 796 in the clinical cohort. Overall, KRAS and CEA each had high specificity (100 % and 93.2 %), but low sensitivity (48.3 % and 56.3 %) for the diagnosis of a CMN. The positivity of KRAS or CEA increased the diagnostic accuracy (80.8 %) and AUC (0.84) significantly compared to KRAS (65.3 % and 0.74) or CEA (65.8 % and 0.74) alone, but only in the clinical cohort (P < 0.0001 for both). KRAS mutation was significantly more frequent in malignant CMNs compared to histologically confirmed non-malignant CMNs (73 % vs. 37 %, P = 0.001). The negative predictive value of KRAS mutation was 77.6 % in differentiating non-malignant cysts. Conclusions: The detection of a KRAS mutation in PCF is a highly specific test for mucinous cysts. It outperforms CEA for sensitivity in mucinous cyst diagnosis, but the data does not support its routine use. PMID:27092317

  18. CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer.

    Science.gov (United States)

    Smeby, J; Sveen, A; Merok, M A; Danielsen, S A; Eilertsen, I A; Guren, M G; Dienstmann, R; Nesbakken, A; Lothe, R A

    2018-05-01

    The prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer (CRC) varies with microsatellite instability (MSI) status. The gene expression-based consensus molecular subtypes (CMSs) of CRC define molecularly and clinically distinct subgroups, and represent a novel stratification framework in biomarker analysis. We investigated the prognostic value of these mutations within the CMS groups. Totally 1197 primary tumors from a Norwegian series of CRC stage I-IV were analyzed for MSI and mutation status in hotspots in KRAS (codons 12, 13 and 61) and BRAF (codon 600). A subset was analyzed for gene expression and confident CMS classification was obtained for 317 samples. This cohort was expanded with clinical and molecular data, including CMS classification, from 514 patients in the publically available dataset GSE39582. Gene expression signatures associated with KRAS and BRAFV600E mutations were used to evaluate differential impact of mutations on gene expression among the CMS groups. BRAFV600E and KRAS mutations were both associated with inferior 5-year overall survival (OS) exclusively in MSS tumors (BRAFV600E mutation versus KRAS/BRAF wild-type: Hazard ratio (HR) 2.85, P CMS1, leading to negative prognostic impact in this subtype (OS: BRAFV600E mutation versus wild-type: HR 7.73, P = 0.001). In contrast, the poor prognosis of KRAS mutations was limited to MSS tumors with CMS2/CMS3 epithelial-like gene expression profiles (OS: KRAS mutation versus wild-type: HR 1.51, P = 0.011). The subtype-specific prognostic associations were substantiated by differential effects of BRAFV600E and KRAS mutations on gene expression signatures according to the MSI status and CMS group. BRAFV600E mutations are enriched and associated with metastatic disease in CMS1 MSS tumors, leading to poor prognosis in this subtype. KRAS mutations are associated with adverse outcome in epithelial (CMS2/CMS3) MSS tumors.

  19. The prevalence and prognostic significance of KRAS mutation subtypes in lung adenocarcinomas from Chinese populations

    Directory of Open Access Journals (Sweden)

    Zheng DF

    2016-02-01

    Full Text Available Difan Zheng,1,2,* Rui Wang,1,2,* Yang Zhang,1,2 Yunjian Pan,1,2 Xinghua Cheng,3 Chao Cheng,1,2 Shanbo Zheng,1,2 Hang Li,1,2 Ranxia Gong,1,2 Yuan Li,2,4 Xuxia Shen,2,4 Yihua Sun,1,2 Haiquan Chen1–3,51Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 2Department of Oncology, Shanghai Medical College, Fudan University, 3Shanghai Chest Hospital, Shanghai Jiao Tong University, 4Department of Pathology, Fudan University Shanghai Cancer Center, 5Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China*These authors contributed equally to this workBackground: We performed this retrospective study to identify the prevalence of KRAS mutation in Chinese populations and make a comprehensive investigation of the clinicopathological features of KRAS mutation in these patients.Patients and methods: Patients from 2007 to 2013 diagnosed with primary lung adenocarcinoma who received a radical resection were examined for KRAS, EGFR, HER2, BRAF mutations, and ALK, RET, and ROS1 fusions. Clinicopathological features, including sex, age, tumor–lymph node–metastasis stage, tumor differentiation, smoking status, histological subtypes, and survival information were analyzed.Result: KRAS mutation was detected in 113 of 1,368 patients. Nine different subtypes of KRAS mutation were identified in codon 12, codon 13, and codon 61. KRAS mutation was more frequently found in male patients and former/current smoker patients. Tumors with KRAS mutation had poorer differentiation. Invasive mucinous adenocarcinoma predominant and solid predominant subtypes were more frequent in KRAS mutant patients. No statistical significance was found in relapse-free survival or overall survival between patients with KRAS mutation and patients with other mutations.Conclusion: In Chinese populations, we identified KRAS mutation in 8.3% (113/1,368 of the patients with lung adenocarcinoma. KRAS mutation defines a molecular subset of

  20. Promoting positive human development and social justice: Integrating theory, research and application in contemporary developmental science.

    Science.gov (United States)

    Lerner, Richard M

    2015-06-01

    The bold claim that developmental science can contribute to both enhancing positive development among diverse individuals across the life span and promoting social justice in their communities, nations and regions is supported by decades of theoretical, methodological and research contributions. To explain the basis of this claim, I describe the relational developmental systems (RDS) metamodel that frames contemporary developmental science, and I present an example of a programme of research within the adolescent portion of the life span that is associated with this metamodel and is pertinent to promoting positive human development. I then discuss methodological issues associated with using RDS-based models as frames for research and application. Finally, I explain how the theoretical and methodological ideas associated with RDS thinking may provide the scholarly tools needed by developmental scientists seeking to contribute to human thriving and to advance social justice in the Global South. © 2015 International Union of Psychological Science.

  1. Cloning and characterization of the human integrin β6 gene promoter.

    Directory of Open Access Journals (Sweden)

    Mingyan Xu

    Full Text Available The integrin β6 (ITGB6 gene, which encodes the limiting subunit of the integrin αvβ6 heterodimer, plays an important role in wound healing and carcinogenesis. The mechanism underlying ITGB6 regulation, including the identification of DNA elements and cognate transcription factors responsible for basic transcription of human ITGB6 gene, remains unknown. This report describes the cloning and characterization of the human ITGB6 promoter. Using 5'-RACE (rapid amplification of cDNA ends analysis, the transcriptional initiation site was identified. Promoter deletion analysis identified and functionally validated a TATA box located in the region -24 to -18 base pairs upstream of the ITGB6 promoter. The regulatory elements for transcription of the ITGB6 gene were predominantly located -289 to -150 from the ITGB6 promoter and contained putative binding sites for transcription factors such as STAT3 and C/EBPα. Using chromatin immunoprecipitation assays, this study has demonstrated, for the first time, that transcription factors STAT3 and C/EBPα are involved in the positive regulation of ITGB6 transcription in oral squamous cell carcinoma cells. These findings have important implications for unraveling the mechanism of abnormal ITGB6 activation in tissue remodeling and tumorigenesis.

  2. Promoter characterization and genomic organization of the human X11β gene APBA2.

    LENUS (Irish Health Repository)

    Hao, Yan

    2012-02-15

    Overexpression of neuronal adaptor protein X11β has been shown to decrease the production of amyloid-β, a toxic peptide deposited in Alzheimer\\'s disease brains. Therefore, manipulation of the X11β level may represent a potential therapeutic strategy for Alzheimer\\'s disease. As X11β expression can be regulated at the transcription level, we determined the genomic organization and the promoter of the human X11β gene, amyloid β A4 precursor protein-binding family A member 2 (APBA2). By RNA ligase-mediated rapid amplification of cDNA ends, a single APBA2 transcription start site and the complete sequence of exon 1 were identified. The APBA2 promoter was located upstream of exon 1 and was more active in neurons. The core promoter contains several CpG dinucleotides, and was strongly suppressed by DNA methylation. In addition, mutagenesis analysis revealed a putative Pax5-binding site within the promoter. Together, APBA2 contains a potent neuronal promoter whose activity may be regulated by DNA methylation and Pax5.

  3. Genome-wide mapping of autonomous promoter activity in human cells.

    Science.gov (United States)

    van Arensbergen, Joris; FitzPatrick, Vincent D; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J; van Steensel, Bas

    2017-02-01

    Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of the sequences that could be tested. Here we present 'survey of regulatory elements' (SuRE), a method that assays more than 10 8 DNA fragments, each 0.2-2 kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library of random genomic fragments upstream of a 20-bp barcode is constructed, and decoded by paired-end sequencing. This library is used to transfect cells, and barcodes in transcribed RNA are quantified by high-throughput sequencing. When applied to the human genome, we achieve 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide in K562 cells. By computational modeling we delineate subregions within promoters that are relevant for their activity. We show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites.

  4. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma.

    Science.gov (United States)

    Williams, Christopher S; Zhang, Baolin; Smith, J Joshua; Jayagopal, Ashwath; Barrett, Caitlyn W; Pino, Christopher; Russ, Patricia; Presley, Sai H; Peng, DunFa; Rosenblatt, Daniel O; Haselton, Frederick R; Yang, Jin-Long; Washington, M Kay; Chen, Xi; Eschrich, Steven; Yeatman, Timothy J; El-Rifai, Wael; Beauchamp, R Daniel; Chang, Min S

    2011-10-01

    The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.

  5. Glucose metabolism in pigs expressing human genes under an insulin promoter.

    Science.gov (United States)

    Wijkstrom, Martin; Bottino, Rita; Iwase, Hayoto; Hara, Hidetaka; Ekser, Burcin; van der Windt, Dirk; Long, Cassandra; Toledo, Frederico G S; Phelps, Carol J; Trucco, Massimo; Cooper, David K C; Ayares, David

    2015-01-01

    Xenotransplantation of porcine islets can reverse diabetes in non-human primates. The remaining hurdles for clinical application include safe and effective T-cell-directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown. On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h)CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon. This preliminary study did not show definite evidence of β-cell deficiencies, even when three transgenes were expressed under the insulin promoter. Of seven animals, all were normoglycemic at fasting, and five of seven had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed. Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Identification of cis-acting regulatory elements in the human oxytocin gene promoter.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1991-12-01

    The expression of hormone-inducible genes is determined by the interaction of trans-acting factors with hormone-inducible elements and elements mediating basal and cell-specific expression. We have shown earlier that the gene encoding the hypothalamic nonapeptide oxytocin (OT) is under the control of an estrogen response element (ERE). The present study was aimed at identifying cis-acting elements mediating basal expression of the OT gene. A construct containing sequences -381 to +36 of the human OT gene was linked to a reporter gene and transiently transfected into a series of neuronal and nonneuronal cell lines. Expression of this construct was cell specific: it was highest in the neuroblastoma-derived cell line, Neuro-2a, and lowest in NIH 3T3 and JEG-3 cells. By 5' deletion analysis, we determined that a segment from -49 to +36 was capable of mediating cells-pecific promoter activity. Within this segment, we identified three proximal promoter elements (PPE-1, PPE-2, and PPE-3) that are each required for promoter activity. Most notably, mutation of a conserved purine-rich element (GAGAGA) contained within PPE-2 leads to a 10-fold decrease in promoter strength. Gel mobility shift analysis with three different double-stranded oligonucleotides demonstrated that each proximal promoter element binds distinct nuclear factors. In each case, only the homologous oligonucleotide, but neither of the oligonucleotides corresponding to adjacent elements, was able to act as a competitor. Thus, a different set of factors appears to bind independently to each element. By reinserting the homologous ERE or a heterologous glucocorticoid response element upstream of intact or altered proximal promoter segments we determined that removal or mutation of proximal promoter elements decreases basal expression, but does not abrogate the hormone responsiveness of the promoter. In conclusion, these results indicate that an important component of the transcriptional activity of the OT

  7. Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain.

    Science.gov (United States)

    Cao-Lei, Lei; Suwansirikul, Songkiet; Jutavijittum, Prapan; Mériaux, Sophie B; Turner, Jonathan D; Muller, Claude P

    2013-11-01

    Glucocorticoids and the glucocorticoid (GR) and mineralocorticoid (MR) receptors have been implicated in many processes, particularly in negative feedback regulation of the hypothalamic-pituitary-adrenal axis. Epigenetically programmed GR alternative promoter usage underlies transcriptional control of GR levels, generation of GR 3' splice variants, and the overall GC response in the brain. No detailed analysis of GR first exons or GR transcript variants throughout the human brain has been reported. Therefore we investigated post mortem tissues from 28 brain regions of 5 individuals. GR first exons were expressed throughout the healthy human brain with no region-specific usage patterns. First exon levels were highly inter-correlated suggesting that they are co-regulated. GR 3' splice variants (GRα and GR-P) were equally distributed in all regions, and GRβ expression was always low. GR/MR ratios showed significant differences between the 28 tissues with the highest ratio in the pituitary gland. Modification levels of individual CpG dinucleotides, including 5-mC and 5-hmC, in promoters 1D, 1E, 1F, and 1H were low, and diffusely clustered; despite significant heterogeneity between the donors. In agreement with this clustering, sum modification levels rather than individual CpG modifications correlated with GR expression. Two-way ANOVA showed that this sum modification was both promoter and brain region specific, but that there was however no promoter*tissue interaction. The heterogeneity between donors may however hide such an interaction. In both promoters 1F and 1H modification levels correlated with GRα expression suggesting that 5-mC and 5-hmC play an important role in fine tuning GR expression levels throughout the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The prognostic value of KRAS mutated plasma DNA in advanced non-small cell lung cancer

    DEFF Research Database (Denmark)

    Nygaard, Anneli Dowler; Garm Spindler, Karen-Lise; Pallisgaard, Niels

    2013-01-01

    BACKGROUND: Lung cancer is one of the most common malignant diseases worldwide and associated with considerable morbidity and mortality. New agents targeting the epidermal growth factor system are emerging, but only a subgroup of the patients will benefit from the therapy. Cell free DNA (cf......DNA) in the blood allows for tumour specific analyses, including KRAS-mutations, and the aim of the study was to investigate the possible prognostic value of plasma mutated KRAS (pmKRAS) in patients with non-small cell lung cancer (NSCLC). MATERIAL AND METHODS: Patients with newly diagnosed, advanced NSCLC eligible....... RESULTS: The study included 246 patients receiving a minimum of 1 treatment cycle, and all but four were evaluable for response according to RECIST. Forty-three patients (17.5%) presented with a KRAS mutation. OS was 8.9 months and PFS by intention to treat 5.4 months. Patients with a detectable plasma...

  9. Biochip-Based Detection of KRAS Mutation in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Barbara Ziegler

    2011-11-01

    Full Text Available This study is aimed at evaluating the potential of a biochip assay to sensitively detect KRAS mutation in DNA from non-small cell lung cancer (NSCLC tissue samples. The assay covers 10 mutations in codons 12 and 13 of the KRAS gene, and is based on mutant-enriched PCR followed by reverse-hybridization of biotinylated amplification products to an array of sequence-specific probes immobilized on the tip of a rectangular plastic stick (biochip. Biochip hybridization identified 17 (21% samples to carry a KRAS mutation of which 16 (33% were adenocarcinomas and 1 (3% was a squamous cell carcinoma. All mutations were confirmed by DNA sequencing. Using 10 ng of starting DNA, the biochip assay demonstrated a detection limit of 1% mutant sequence in a background of wild-type DNA. Our results suggest that the biochip assay is a sensitive alternative to protocols currently in use for KRAS mutation testing on limited quantity samples.

  10. A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution

    Directory of Open Access Journals (Sweden)

    Grace R. Anderson

    2017-07-01

    Full Text Available Combinatorial inhibition of effector and feedback pathways is a promising treatment strategy for KRAS mutant cancers. However, the particular pathways that should be targeted to optimize therapeutic responses are unclear. Using CRISPR/Cas9, we systematically mapped the pathways whose inhibition cooperates with drugs targeting the KRAS effectors MEK, ERK, and PI3K. By performing 70 screens in models of KRAS mutant colorectal, lung, ovarian, and pancreas cancers, we uncovered universal and tissue-specific sensitizing combinations involving inhibitors of cell cycle, metabolism, growth signaling, chromatin regulation, and transcription. Furthermore, these screens revealed secondary genetic modifiers of sensitivity, yielding a SRC inhibitor-based combination therapy for KRAS/PIK3CA double-mutant colorectal cancers (CRCs with clinical potential. Surprisingly, acquired resistance to combinations of growth signaling pathway inhibitors develops rapidly following treatment, but by targeting signaling feedback or apoptotic priming, it is possible to construct three-drug combinations that greatly delay its emergence.

  11. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunjun [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China); Zhang, Jinqian, E-mail: jingwanghou@yahoo.com.cn [Capital Medical University, Institute of Infectious Diseases, Beijing Ditan Hospital (China); Zhao, Ming [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Shi, Zujin [Peking University, Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering (China); Chen, Xin; He, Xihui; Han, Nanyin, E-mail: jingwanghou@sina.com [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Xu, Ruxiang, E-mail: everbright999@163.com [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China)

    2013-08-15

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  12. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Science.gov (United States)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  13. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  14. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling.

    Science.gov (United States)

    Arno, Anna I; Amini-Nik, Saeid; Blit, Patrick H; Al-Shehab, Mohammed; Belo, Cassandra; Herer, Elaine; Tien, Col Homer; Jeschke, Marc G

    2014-02-24

    The prevalence of nonhealing wounds is predicted to increase due to the growing aging population. Despite the use of novel skin substitutes and wound dressings, poorly vascularized wound niches impair wound repair. Mesenchymal stem cells (MSCs) have been reported to provide paracrine signals to promote wound healing, but the effect of human Wharton's jelly-derived MSCs (WJ-MSCs) has not yet been described in human normal skin. Human WJ-MSCs and normal skin fibroblasts were isolated from donated umbilical cords and normal adult human skin. Fibroblasts were treated with WJ-MSC-conditioned medium (WJ-MSC-CM) or nonconditioned medium. Expression of genes involved in re-epithelialization (transforming growth factor-β2), neovascularization (hypoxia-inducible factor-1α) and fibroproliferation (plasminogen activator inhibitor-1) was upregulated in WJ-MSC-CM-treated fibroblasts (P≤0.05). WJ-MSC-CM enhanced normal skin fibroblast proliferation (P≤0.001) and migration (P≤0.05), and promoted wound healing in an excisional full-thickness skin murine model. Under our experimental conditions, WJ-MSCs enhanced skin wound healing in an in vivo mouse model.

  15. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yuli; Yin, Ying; Jiang, Fei; Chen, Ning

    2015-02-01

    Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.

  16. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells

    Directory of Open Access Journals (Sweden)

    Malik Mohammed T

    2005-01-01

    Full Text Available Abstract Background Pituitary tumor transforming gene1 (PTTG1 is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3 cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293 cells. Results We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8. Conclusions Our results

  17. Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer

    International Nuclear Information System (INIS)

    Sánchez-Muñoz, Alfonso; Gallego, Elena; Luque, Vanessa de; Pérez-Rivas, Luís G; Vicioso, Luís; Ribelles, Nuria; Lozano, José; Alba, Emilio

    2010-01-01

    Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. We found no evidence of KRAS oncogenic mutations in all analyzed tumors. This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases

  18. Genomic organization and promoter cloning of the human X11α gene APBA1.

    LENUS (Irish Health Repository)

    Chai, Ka-Ho

    2012-05-01

    X11α is a brain specific multi-modular protein that interacts with the Alzheimer\\'s disease amyloid precursor protein (APP). Aggregation of amyloid-β peptide (Aβ), an APP cleavage product, is believed to be central to the pathogenesis of Alzheimer\\'s disease. Recently, overexpression of X11α has been shown to reduce Aβ generation and to ameliorate memory deficit in a transgenic mouse model of Alzheimer\\'s disease. Therefore, manipulating the expression level of X11α may provide a novel route for the treatment of Alzheimer\\'s disease. Human X11α is encoded by the gene APBA1. As evidence suggests that X11α expression can be regulated at transcription level, we have determined the gene structure and cloned the promoter of APBA1. APBA1 spans over 244 kb on chromosome 9 and is composed of 13 exons and has multiple transcription start sites. A putative APBA1 promoter has been identified upstream of exon 1 and functional analysis revealed that this is highly active in neurons. By deletion analysis, the minimal promoter was found to be located between -224 and +14, a GC-rich region that contains a functional Sp3 binding site. In neurons, overexpression of Sp3 stimulates the APBA1 promoter while an Sp3 inhibitor suppresses the promoter activity. Moreover, inhibition of Sp3 reduces endogenous X11α expression and promotes the generation of Aβ. Our findings reveal that Sp3 play an essential role in APBA1 transcription.

  19. The Role of Vocational Education and Training in Palestine in Addressing Inequality and Promoting Human Development

    Directory of Open Access Journals (Sweden)

    Randa Hilal

    2016-10-01

    Full Text Available UNESCO's new emphasis on vocational education and training as transformative, and concerns in particular with equity and sustainable human development, has been strongly influenced by a recent literature on VET and human development that has a particular focus on the most marginalised, especially young women, and is concerned with how their aspirations, agency and achievement of wellbeing can be promoted in the face of wide-ranging structural obstacles. This article seeks to further develop that account through an even stronger emphasis on VET in the context of extreme poverty, inequality and marginalisation as faced in Palestine. VET in Palestine serves many of the poorest and most disenfranchised in Palestinian society in a context of profound structural obstacles to wellbeing achievement. Our analysis show a very positive story of how VET has helped highly disadvantaged young Palestinians, particularly young women, to make progress on their human development.

  20. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Science.gov (United States)

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  1. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kazuya Kitamura

    Full Text Available Many therapeutic interventions for spinal cord injury (SCI using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF, which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  2. Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.

    Science.gov (United States)

    Tencomnao, T; Yu, R K; Kapitonov, D

    2001-02-16

    UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.

  3. Human sex hormone-binding globulin gene expression- multiple promoters and complex alternative splicing

    Directory of Open Access Journals (Sweden)

    Rosner William

    2009-05-01

    Full Text Available Abstract Background Human sex hormone-binding globulin (SHBG regulates free sex steroid concentrations in plasma and modulates rapid, membrane based steroid signaling. SHBG is encoded by an eight exon-long transcript whose expression is regulated by a downstream promoter (PL. The SHBG gene was previously shown to express a second major transcript of unknown function, derived from an upstream promoter (PT, and two minor transcripts. Results We report that transcriptional expression of the human SHBG gene is far more complex than previously described. PL and PT direct the expression of at least six independent transcripts each, resulting from alternative splicing of exons 4, 5, 6, and/or 7. We mapped two transcriptional start sites downstream of PL and PT, and present evidence for a third SHBG gene promoter (PN within the neighboring FXR2 gene; PN regulates the expression of at least seven independent SHBG gene transcripts, each possessing a novel, 164-nt first exon (1N. Transcriptional expression patterns were generated for human prostate, breast, testis, liver, and brain, and the LNCaP, MCF-7, and HepG2 cell lines. Each expresses the SHBG transcript, albeit in varying abundance. Alternative splicing was more pronounced in the cancer cell lines. PL- PT- and PN-derived transcripts were most abundant in liver, testis, and prostate, respectively. Initial findings reveal the existence of a smaller immunoreactive SHBG species in LNCaP, MCF-7, and HepG2 cells. Conclusion These results extend our understanding of human SHBG gene transcription, and raise new and important questions regarding the role of novel alternatively spliced transcripts, their function in hormonally responsive tissues including the breast and prostate, and the role that aberrant SHBG gene expression may play in cancer.

  4. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Wataru [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574 (Japan); Suenaga, Yusuke, E-mail: ysuenaga@chiba-cc.jp [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Yokoi, Sana [Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Nio, Masaki [Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574 (Japan); Nakagawara, Akira, E-mail: nakagawara-a@koseikan.jp [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan)

    2015-06-05

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase.

  5. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    International Nuclear Information System (INIS)

    Shoji, Wataru; Suenaga, Yusuke; Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer; Yokoi, Sana; Nio, Masaki; Nakagawara, Akira

    2015-01-01

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase

  6. Individualized therapies in colorectal cancer: KRAS as a marker for response to EGFR-targeted therapy

    Directory of Open Access Journals (Sweden)

    Li Kuiyuan

    2009-04-01

    Full Text Available Abstract Individualized therapies that are tailored to a patient's genetic composition will be of tremendous value for treatment of cancer. Recently, Kirsten ras (KRAS status has emerged as a predictor of response to epidermal growth factor receptor (EGFR targeted therapies. In this article, we will discuss targeted therapies for colorectal cancers (CRC based on EGFR signaling pathway and review published data about the potential usefulness of KRAS as a biological marker for response to these therapies. Results from relevant studies published since 2005 and unpublished results presented at national meetings were retrieved and summarized. These studies reflected response (or lack of response to EGFR-targeted therapies in patients with metastatic CRC as a function of KRAS status. It has become clear that patients with colorectal cancer whose tumor has an activating mutation in KRAS do not respond to monoclonal antibody therapies targeting EGFR. It should now become a standard practice that any patients being considered for EGFR targeted therapies have their tumors tested for KRAS status and only those with wild-type KRAS being offered such therapies.

  7. Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Mei; Lu, Jia; Li, Lianbo; Feru, Frederic; Quan, Chunshan; Gero, Thomas W.; Ficarro, Scott B.; Xiong, Yuan; Ambrogio, Chiara; Paranal, Raymond M.; Catalano, Marco; Shao, Jay; Wong, Kwok-Kin; Marto, Jarrod A.; Fischer, Eric S.; Jänne, Pasi A.; Scott, David A.; Westover, Kenneth D.; Gray, Nathanael S. (DFCI); (UTSMC); (Harvard-Med); (NYUSM)

    2017-08-01

    Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.

  8. Concurrent mutation in exons 1 and 2 of the K-ras oncogene in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fiorella Guadagni

    2012-01-01

    Full Text Available The K-ras gene is frequently mutated in colorectal cancer and has been associated with tumor initiation and progression; approximately 90% of the activating mutations are found in codons 12 and 13 of exon 1 and just under 5% in codon 61 located in exon 2. These mutations determine single aminoacidic substitutions in the GTPase pocket leading to a block of the GTP hydrolytic activity of the K-ras p21 protein, and therefore to its constitutive activation. Point mutations in sites of the K-ras gene, other than codons 12, 13 and 61, and other types of genetic alterations, may occur in a minority of cases, such as in the less frequent cases of double mutations in the K-ras gene. However, all mutations in this gene, even those which occur in non-canonical sites or double mutations, are relevant oncogenic alterations in colorectal cancer and may underlie K-ras pathway hyperactivation. In the present study, we report the case of a patient with colorectal cancer presenting a concurrent point mutation in exons 1 and 2 of the K-ras gene, a GGT to TGT substitution (Glycine to Cysteine at codon 12, and a GAC to AAC substitution (Aspartic Acid to Asparagine at codon 57. In addition, we found in the same patient’s sample a silent polymorphism at codon 11 (Ala11Ala of exon 1. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 729–733

  9. Regulation of the human ADAMTS-4 promoter by transcription factors and cytokines

    International Nuclear Information System (INIS)

    Thirunavukkarasu, Kannan; Pei, Yong; Moore, Terry L.; Wang, He; Yu, Xiao-peng; Geiser, Andrew G.; Chandrasekhar, Srinivasan

    2006-01-01

    ADAMTS-4 (aggrecanase-1) is a metalloprotease that plays a role in aggrecan degradation in the cartilage extracellular matrix. In order to understand the regulation of ADAMTS-4 gene expression we have cloned and characterized a functional 4.5 kb human ADAMTS-4 promoter. Sequence analysis of the promoter revealed the presence of putative binding sites for nuclear factor of activated T cells (NFAT) and Runx family of transcription factors that are known to regulate chondrocyte maturation and differentiation. Using promoter-reporter assays and mRNA analysis we have analyzed the role of chondrocyte-expressed transcription factors NFATp and Runx2 and have shown that ADAMTS-4 is a potential downstream target of these two factors. Our results suggest that inhibition of the expression/function of NFATp and/or Runx2 may enable us to modulate aggrecan degradation in normal physiology and/or in degenerative joint diseases. The ADAMTS-4 promoter would serve as a valuable mechanistic tool to better understand the regulation of ADAMTS-4 expression by signaling pathways that modulate cartilage matrix breakdown

  10. Antisense gene therapy using anti-k-ras and antitelomerase oligonucleotides in colorectal cancer Eficacia de la terapia génica antisentido utilizando oligonucleótidos anti K-ras y antitelomerasa en cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    S. Lledó

    2005-07-01

    Full Text Available Aim: to test the efficacy of anti-k-ras and antitelomerase oligonucleotides for disabling colorectal cancer cell growth. Material and methods: an established human colorectal cancer cell line (SW 480, ATTC® was used. Oligodeoxiribonucleotides (ODNs have a phosphorotioate modification to ensure intracellular intake. We used an antitelomerase ODN (Telp5 and two anti-k-ras ODNs (AS-KRAS and ISIS. AS-KRAS is designed to join the k-ras oncogene's exon 1. ISIS links to the terminal transcription unit 5' of k-ras. Telp5 joins the template region of the hTR telomerase subunit. ODNs have been tested in different concentrations (1, 5, 10, 20 micromolar. Cell viability has been tested at 48 and 72 hours. Statistical analysis and graphic design were made with the statistical package "Analyzing Data with GraphPad Prism-1999", GraphPad Sofware Inc., San Diego CA©. We used the Student's t test for statistical analysis. Results: the lowest dose (1 µM was not effective. Using the highest dose (20 mM for 48 hours of combined AS-KRAS and Telp5 cell viability decreased to 99.67%. The rest of results varied depending on ODN type, dose, and exposure time. Conclusions: tested antisense ODNs stop colorectal cancer cell growth, and a combination of anti-telomerase and anti-k-ras is the most useful treatment. Efficacy is best with a higher dose and longer treatment period.Objetivo: evaluar la eficacia de oligonucleótidos anti k-ras y antitelomerasa para detener el crecimiento tumoral en el cáncer colorrectal. Material y métodos: se ha empleado una línea celular establecida de cáncer colorrectal humano (SW 480, ATTC®. Los oligodesoxirribonucleótidos (ODN utilizados en el presente trabajo presentan modificación fosforotioato con el fin de mejorar su estabilidad en presencia de fluidos biológicos. Hemos utilizado un ODN antitelomerasa (Telp5, y dos ODN anti k-ras (AS-KRAS e ISIS. AS-KRAS actúa en el exón 1 e ISIS actúa a nivel de la unidad terminal de

  11. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    International Nuclear Information System (INIS)

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-01-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  12. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  13. KRAS exon 2 mutations influence activity of regorafenib in an SW48-based disease model of colorectal cancer.

    Science.gov (United States)

    Camaj, Peter; Primo, Stefano; Wang, Yan; Heinemann, Volker; Zhao, Yue; Laubender, Ruediger Paul; Stintzing, Sebastian; Giessen-Jung, Clemens; Jung, Andreas; Gamba, Sebastian; Bruns, Christiane Josephine; Modest, Dominik Paul

    2015-01-01

    To investigate the impact of KRAS mutation variants on the activity of regorafenib in SW48 colorectal cancer cells. Activity of regorafenib was evaluated in isogenic SW48 KRAS wild-type (WT) and mutant cells. Subcutaneous xenografts (KRAS WT and G12C mutant variants) in NOD/SCID mice were analyzed to elucidate the effect of regorafenib treatment in vivo. Compared with KRAS WT cells, all mutant variants seemed associated with some degree of resistance to regorafenib-treatment in vitro. In vivo, activation of apoptosis (TUNEL) and reduction of proliferation (Ki67) after treatment with regorafenib were more pronounced in KRAS WT tumors as compared with G12C variants. In SW48 cells, exon 2 mutations of the KRAS gene may influence antitumor effects of regorafenib.

  14. MRG15 activates the cdc2 promoter via histone acetylation in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Pena, AndreAna N., E-mail: andreana.pena@gmail.com [Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Tominaga, Kaoru; Pereira-Smith, Olivia M. [Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2011-07-01

    Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110 bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.

  15. MRG15 activates the cdc2 promoter via histone acetylation in human cells

    International Nuclear Information System (INIS)

    Pena, AndreAna N.; Tominaga, Kaoru; Pereira-Smith, Olivia M.

    2011-01-01

    Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110 bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.

  16. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  17. Structure of the gene for human β2-adrenergic receptor: expression and promoter characterization

    International Nuclear Information System (INIS)

    Emorine, L.J.; Marullo, S.; Delavier-Klutchko, C.; Kaveri, S.V.; Durieu-Trautmann, O.; Strosberg, A.D.

    1987-01-01

    The genomic gene coding for the human β 2 -adrenergic receptor (β 2 AR) from A431 epidermoid cells has been isolated. Transfection of the gene into eukaryotic cells restores a fully active receptor/GTP-binding protein/adenylate cyclase complex with β 2 AR properties. Southern blot analyses with β 2 AR-specific probes show that a single β 2 AR gene is common to various human tissues and that its flanking sequences are highly conserved among humans and between man and rabbit, mouse, and hamster. Functional significance of these regions is supported by the presence of a promoter region (including mRNA cap sites, two TATA boxes, a CAAT box, and three G + C-rich regions that resemble binding sites for transcription factor Sp1) 200-300 base pairs 5' to the translation initiation codon. In the 3' flanking region, sequences homologous to glucocorticoid-response elements might be responsible for the increased expression of the β 2 AR gene observed after treatment of the transfected cells with hydrocortisone. In addition, 5' to the promoter region, an open reading frame encodes a 251-residue polypeptide that displays striking homologies with protein kinases and other nucleotide-binding proteins

  18. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Keita, E-mail: uchino13@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirano, Gen [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirahashi, Minako [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tsuneyoshi, Masazumi [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Akashi, Koichi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  19. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    International Nuclear Information System (INIS)

    Uchino, Keita; Hirano, Gen; Hirahashi, Minako; Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi; Tsuneyoshi, Masazumi; Akashi, Koichi

    2012-01-01

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: ► Nanog maintains pluripotency by regulating embryonic stem cells differentiation. ► Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. ► Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. ► Nanog pseudogene8 promotes cancer stem cells proliferation. ► Nanog pseudogene8 is involved in gastrointestinal cancer development.

  20. A human thymic epithelial cell culture system for the promotion of lymphopoiesis from hematopoietic stem cells.

    Science.gov (United States)

    Beaudette-Zlatanova, Britte C; Knight, Katherine L; Zhang, Shubin; Stiff, Patrick J; Zúñiga-Pflücker, Juan Carlos; Le, Phong T

    2011-05-01

    A human thymic epithelial cell (TEC) line expressing human leukocyte antigen-ABC and human leukocyte antigen-DR was engineered to overexpress murine Delta-like 1 (TEC-Dl1) for the purpose of establishing a human culture system that supports T lymphopoiesis from hematopoietic progenitor cells (HPCs). Cord blood or bone marrow HPCs were co-cultured with either the parental TEC line expressing low levels of the Notch ligands, Delta-like 1 and Delta-like 4, or with TEC-Dl1 to determine if these cell lines support human lymphopoiesis. In co-cultures with cord blood or bone marrow HPCs, TEC-Dl1 cells promote de novo generation of CD7(pos)CD1a(pos) T-lineage committed cells. Most CD7(pos)CD1a(hi) cells are CD4(pos)CD8(pos) double-positive (DP). We found that TEC-Dl1 cells are insufficient to generate mature CD3(hi) CD4(pos) or CD3(hi) CD8(pos) single-positive (SP) T cells from the CD4(pos)CD8(pos) DP T cells; however, we detected CD3(lo) cells within the DP and SP CD4 and CD8 populations. The CD3(lo) SP cells expressed lower levels of interleukin-2Rα and interleukin-7Rα compared to CD3(lo) DP cells. In contrast to the TEC-Dl1 line, the parental TEC-84 line expressing low levels of human Notch ligands permits HPC differentiation to the B-cell lineage. We report for the first time a human TEC line that supports lymphopoiesis from cord blood and bone marrow HPC. The TEC cell lines described herein provide a novel human thymic stroma model to study the contribution of human leukocyte antigen molecules and Notch ligands to T-cell commitment and maturation and could be utilized to promote lymphopoiesis for immune cell therapy. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  1. Lysophosphatidic acid acyltransferase β (LPAATβ promotes the tumor growth of human osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Farbod Rastegar

    2010-12-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2 in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated.Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma.Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially attractive given the availability of selective

  2. Construction of predictive promoter models on the example of antibacterial response of human epithelial cells

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2005-01-01

    Full Text Available Abstract Background Binding of a bacteria to a eukaryotic cell triggers a complex network of interactions in and between both cells. P. aeruginosa is a pathogen that causes acute and chronic lung infections by interacting with the pulmonary epithelial cells. We use this example for examining the ways of triggering the response of the eukaryotic cell(s, leading us to a better understanding of the details of the inflammatory process in general. Results Considering a set of genes co-expressed during the antibacterial response of human lung epithelial cells, we constructed a promoter model for the search of additional target genes potentially involved in the same cell response. The model construction is based on the consideration of pair-wise combinations of transcription factor binding sites (TFBS. It has been shown that the antibacterial response of human epithelial cells is triggered by at least two distinct pathways. We therefore supposed that there are two subsets of promoters activated by each of them. Optimally, they should be "complementary" in the sense of appearing in complementary subsets of the (+-training set. We developed the concept of complementary pairs, i.e., two mutually exclusive pairs of TFBS, each of which should be found in one of the two complementary subsets. Conclusions We suggest a simple, but exhaustive method for searching for TFBS pairs which characterize the whole (+-training set, as well as for complementary pairs. Applying this method, we came up with a promoter model of antibacterial response genes that consists of one TFBS pair which should be found in the whole training set and four complementary pairs. We applied this model to screening of 13,000 upstream regions of human genes and identified 430 new target genes which are potentially involved in antibacterial defense mechanisms.

  3. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    Directory of Open Access Journals (Sweden)

    Pathan AAK

    2016-05-01

    Full Text Available Akbar Ali Khan Pathan,1,2,* Bhavana Panthi,3,* Zahid Khan,1 Purushotham Reddy Koppula,4–6 Mohammed Saud Alanazi,1 Sachchidanand,3 Narasimha Reddy Parine,1 Mukesh Chourasia3,* 1Genome Research Chair (GRC, Department of Biochemistry, College of Science, King Saud University, 2Integrated Gulf Biosystems, Riyadh, Kingdom of Saudi Arabia; 3Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India; 4Department of Internal Medicine, School of Medicine, 5Harry S. Truman Memorial Veterans Affairs Hospital, 6Department of Radiology, School of Medicine, Columbia, MO, USA *These authors contributed equally to this work Objective: Kirsten rat sarcoma (K-Ras protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods: In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results: Interestingly, the designed compounds exhibit a binding preference for the

  4. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.

    Science.gov (United States)

    Philip, Bincy; Roland, Christina L; Daniluk, Jaroslaw; Liu, Yan; Chatterjee, Deyali; Gomez, Sobeyda B; Ji, Baoan; Huang, Haojie; Wang, Huamin; Fleming, Jason B; Logsdon, Craig D; Cruz-Monserrate, Zobeida

    2013-12-01

    Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This

  5. The Prognostic Impact of K-RAS Mutations in Adult Acute Myeloid Leukemia Patients Treated with High Dose Cytarabine

    International Nuclear Information System (INIS)

    Ahmad, E.I.; Gawish, H.H.; Al-Azizi, N.M.A.; El-Hefni, A.M.

    2009-01-01

    Cytarabine 343 free survival (DFS) between mutRAS and wtRAS groups (p=0.923). MutRAS patients treated with HDAC had a statistically higher cumulative DFS than mutRAS patients treated with LDAC (p=0.001). Patients with wtRAS also benefited from HDAC but to a lesser extent. Among patients with wtRAS, those treated with HDAC showed higher cumulative and median DFS than patients treated with LDAC (p=0.031). Conclusion: Adult AML patients carrying mutations in the K-RAS gene benefit from higher cytarabine doses more than wtRAS patients, so pretreatment mutation detection could be an important predictor for treatment strategy and survival of adult AML patients. These findings counter the prevailing bias that oncogene mutations lead to more aggressive behavior in human malignancies

  6. The prognostic impact of K-RAS mutations in adult acute myeloid leukemia patients treated with high-dose cytarabine

    Directory of Open Access Journals (Sweden)

    Ahmad EI

    2011-07-01

    RAS patients treated with HDAC, cumulative OS was significantly higher than those treated with LDAC (P = 0.001. This was not the case in the wtRAS group (P = 0.285. There was no significant difference in disease-free survival (DFS between mutRAS and wtRAS groups (P = 0.923. mutRAS patients treated with HDAC had a statistically higher cumulative DFS than mutRAS patients treated with LDAC (P = 0.001. Patients with wtRAS also benefited from HDAC, but to a lesser extent. Among patients with wtRAS, those treated with HDAC showed higher cumulative and median DFS than patients treated with LDAC (P = 0.031. Conclusion: It was concluded that adult AML patients carrying mutations in the K-RAS gene benefit from higher ara-C doses more than wtRAS patients, so pretreatment mutation detection could be an important predictor for treatment strategy and survival of adult AML patients. These findings counter the prevailing bias that oncogene mutations lead to more aggressive behavior in human malignancies.Keywords: K-RAS gene, acute myeloid leukemia, cytarabine (ara-C

  7. EDAG promotes the expansion and survival of human CD34+ cells.

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    Full Text Available EDAG is multifunctional transcriptional regulator primarily expressed in the linloc-kit+Sca-1+ hematopoietic stem cells (HSC and CD34+ progenitor cells. Previous studies indicate that EDAG is required for maintaining hematopoietic lineage commitment balance. Here using ex vivo culture and HSC transplantation models, we report that EDAG enhances the proliferative potential of human cord blood CD34+ cells, increases survival, prevents cell apoptosis and promotes their repopulating capacity. Moreover, EDAG overexpression induces rapid entry of CD34+ cells into the cell cycle. Gene expression profile analysis indicate that EDAG knockdown leads to down-regulation of various positive cell cycle regulators including cyclin A, B, D, and E. Together these data provides novel insights into EDAG in regulation of expansion and survival of human hematopoietic stem/progenitor cells.

  8. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis.

    Science.gov (United States)

    Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A

    2010-08-01

    Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.

  9. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun; Wang, Jing [Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Chen, Guian [Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Reproductive Medical Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Fan, Dongsheng, E-mail: dsfan@yahoo.cn [Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Deng, Min, E-mail: dengmin1706@yahoo.com.cn [Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China); Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191 (China)

    2011-01-14

    Research highlights: {yields} Nicotinamide inhibit Sirt1. {yields} MASH1 and Ngn2 activation. {yields} Increase the expression of HB9. {yields} Motoneurons formation increases significantly. -- Abstract: Several protocols direct human embryonic stem cells (hESCs) toward differentiation into functional motoneurons, but the efficiency of motoneuron generation varies based on the human ESC line used. We aimed to develop a novel protocol to increase the formation of motoneurons from human ESCs. In this study, we tested a nuclear histone deacetylase protein, Sirt1, to promote neural precursor cell (NPC) development during differentiation of human ESCs into motoneurons. A specific inhibitor of Sirt1, nicotinamide, dramatically increased motoneuron formation. We found that about 60% of the cells from the total NPCs expressed HB9 and {beta}III-tubulin, commonly used motoneuronal markers found in neurons derived from ESCs following nicotinamide treatment. Motoneurons derived from ESC expressed choline acetyltransferase (ChAT), a positive marker of mature motoneuron. Moreover, we also examined the transcript levels of Mash1, Ngn2, and HB9 mRNA in the differentiated NPCs treated with the Sirt1 activator resveratrol (50 {mu}M) or inhibitor nicotinamide (100 {mu}M). The levels of Mash1, Ngn2, and HB9 mRNA were significantly increased after nicotinamide treatment compared with control groups, which used the traditional protocol. These results suggested that increasing Mash1 and Ngn2 levels by inhibiting Sirt1 could elevate HB9 expression, which promotes motoneuron differentiation. This study provides an alternative method for the production of transplantable motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease.

  10. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells

    International Nuclear Information System (INIS)

    Zhang, Yun; Wang, Jing; Chen, Guian; Fan, Dongsheng; Deng, Min

    2011-01-01

    Research highlights: → Nicotinamide inhibit Sirt1. → MASH1 and Ngn2 activation. → Increase the expression of HB9. → Motoneurons formation increases significantly. -- Abstract: Several protocols direct human embryonic stem cells (hESCs) toward differentiation into functional motoneurons, but the efficiency of motoneuron generation varies based on the human ESC line used. We aimed to develop a novel protocol to increase the formation of motoneurons from human ESCs. In this study, we tested a nuclear histone deacetylase protein, Sirt1, to promote neural precursor cell (NPC) development during differentiation of human ESCs into motoneurons. A specific inhibitor of Sirt1, nicotinamide, dramatically increased motoneuron formation. We found that about 60% of the cells from the total NPCs expressed HB9 and βIII-tubulin, commonly used motoneuronal markers found in neurons derived from ESCs following nicotinamide treatment. Motoneurons derived from ESC expressed choline acetyltransferase (ChAT), a positive marker of mature motoneuron. Moreover, we also examined the transcript levels of Mash1, Ngn2, and HB9 mRNA in the differentiated NPCs treated with the Sirt1 activator resveratrol (50 μM) or inhibitor nicotinamide (100 μM). The levels of Mash1, Ngn2, and HB9 mRNA were significantly increased after nicotinamide treatment compared with control groups, which used the traditional protocol. These results suggested that increasing Mash1 and Ngn2 levels by inhibiting Sirt1 could elevate HB9 expression, which promotes motoneuron differentiation. This study provides an alternative method for the production of transplantable motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease.

  11. Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Toyo; Inagaki, Kenjiro [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Sakai, Mashito; Ogawa, Wataru; Hosooka, Tetsuya [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Iguchi, Haruhisa; Watanabe, Eijiro; Matsuki, Yasushi; Hiramatsu, Ryuji [Genomic Science Laboratories, DainipponSumitomo Pharma Co. Ltd., 4-2-1 Takatsukasa, Takarazuka 665-8555 (Japan); Kasuga, Masato [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655 (Japan)

    2009-04-17

    The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.

  12. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Characterization of the promoter of human CRTh2, a prostaglandin D{sub 2} receptor

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, Russell; Madsen, Norman [Department of Medicine, Division of Pulmonary Medicine, Pulmonary Research Group, 574B Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2 (Canada); Cameron, Lisa [Department of Medicine, Division of Pulmonary Medicine, Pulmonary Research Group, 574B Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2 (Canada)

    2007-11-30

    Chemoattractant-receptor homologous molecule expressed on Th2 cells (CRTh2) is a receptor for prostaglandin (PG)D{sub 2}, a lipid mediator involved in allergic inflammation. CRTh2 is expressed by Th2 cells, eosinophils and basophils and PDG{sub 2}-CRTh2 signaling induces calcium mobilization, cell migration and expression of the Th2 cytokines IL-4, IL-5, and IL-13. Despite the role of CRTh2 in allergic inflammation, transcriptional regulation of this gene has not been studied. Here, we demonstrated that a reporter construct of the CRTh2 promoter was induced following T cell stimulation. This activity could be further enhanced by over-expression of GATA-3, but not NFAT2 or STAT6. Electromobility shift assay demonstrated GATA-3 binding to a probe from the CRTh2 promoter. This study provides the first detailed analysis of transcriptional regulation of the human CRTh2 promoter. These findings may help identify strategies to attenuate expression of this gene and influence the maintenance and proliferation of Th2 cells in allergic inflammation.

  14. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    International Nuclear Information System (INIS)

    Xie, Xin; Dai, Hui; Zhuang, Binyu; Chai, Li; Xie, Yanguang; Li, Yuzhen

    2016-01-01

    The effects and the underlying mechanisms of hydrogen sulfide (H 2 S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H 2 S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H 2 S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H 2 S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H 2 S promotes keratinocyte proliferation and differentiation. • The effects of H 2 S on proliferation and differentiation is modulated by autophagy. • Exogenous H 2 S has no effect on keratinocyte apoptosis.

  15. Identification and characterization of an alternative promoter of the human PGC-1α gene

    International Nuclear Information System (INIS)

    Yoshioka, Toyo; Inagaki, Kenjiro; Noguchi, Tetsuya; Sakai, Mashito; Ogawa, Wataru; Hosooka, Tetsuya; Iguchi, Haruhisa; Watanabe, Eijiro; Matsuki, Yasushi; Hiramatsu, Ryuji; Kasuga, Masato

    2009-01-01

    The transcriptional regulator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1α expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1α transcript (designated PGC-1α-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1α-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca 2+ - and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1α-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1α expression in contracting muscle.

  16. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  17. Molecular analysis of p53 and K-ras in lung carcinomas of coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, F.H.; Li, Y.W.; Vallyathan, V. [Wayne State University, Detroit, MI (United States). School of Medicine, Dept. of Pathology

    2001-10-01

    Thirty-three cases of non-small cell lung cancers (NSCLC) from the archives of National Coal Workers' Autopsy Study were studied for mutational alterations in p53 and K-ras using PCR-SSCP, DNA sequencing and PCR-oligonucleotide probe hybridization techniques. Mutations of the p53 were observed in 4 smokers (19%) and one in a never smoker (8%). Two polymorphisms in smokers were detected at codon 213, a common site for sequence variation. Among the smokers the p53 mutations were in the heavy smokers. In never smokers there was only a single p53 mutation and two K-ras mutations. In never smokers the frequency of K-ras mutations was similar (17%) in smokers, but one never smoker had two K-ras mutations. Mutations of p53 were more frequent in adenocarcinomas (27%) and they were AT-GC transitions. There were two large cell undifferentiated carcinomas with p53 mutation and one with a K-ras mutation. Two of the 16 squamous cell carcinomas were positive for p53 mutation, while no K-ras mutations were found in this group. The results of these preliminary studies indicate a moderately different mutational spectrum of p53 and K-ras in coal miners independent of cigarette smoking. The mutational spectrum observed in this study of coal miners with heavy cigarette smoking history suggest a protective effect of coal mine dust in preventing abnormal mutations induced by chemical carcinogens in cigarette smoke or reactive oxygen species.

  18. The higher level of complexity of K-Ras4B activation at the membrane

    Science.gov (United States)

    Jang, Hyunbum; Banerjee, Avik; Chavan, Tanmay S.; Lu, Shaoyong; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2016-01-01

    Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5′-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released state. On the anionic membrane, the catalytic domain adopts multiple orientations, including parallel (∼180°) and perpendicular (∼90°) alignments of the allosteric helices, with respect to the membrane surface direction. In the autoinhibited state, the HVR is sandwiched between the effector lobe and the membrane; in the active state, with membrane-anchored farnesyl and unrestrained HVR, the catalytic domain fluctuates reinlessly, exposing its effector-binding site. Dimerization and clustering can reduce the fluctuations. This achieves preorganized, productive conformations. Notably, we also observe HVR-autoinhibited K-Ras4B-GTP states, with GDP-bound-like orientations of the helices. Thus, we propose that the GDP/GTP exchange may not be sufficient for activation; instead, our results suggest that the GDP/GTP exchange, HVR sequestration, farnesyl insertion, and orientation/localization of the catalytic domain at the membrane conjointly determine the active or inactive state of K-Ras4B. Importantly, K-Ras4B-GTP can exist in active and inactive states; on its own, GTP binding may not compel K-Ras4B activation.—Jang, H., Banerjee, A., Chavan, T. S, Lu, S., Zhang, J., Gaponenko, V., Nussinov, R. The higher level of complexity of K-Ras4B activation at the membrane. PMID:26718888

  19. The higher level of complexity of K-Ras4B activation at the membrane.

    Science.gov (United States)

    Jang, Hyunbum; Banerjee, Avik; Chavan, Tanmay S; Lu, Shaoyong; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2016-04-01

    Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5'-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released state. On the anionic membrane, the catalytic domain adopts multiple orientations, including parallel (∼180°) and perpendicular (∼90°) alignments of the allosteric helices, with respect to the membrane surface direction. In the autoinhibited state, the HVR is sandwiched between the effector lobe and the membrane; in the active state, with membrane-anchored farnesyl and unrestrained HVR, the catalytic domain fluctuates reinlessly, exposing its effector-binding site. Dimerization and clustering can reduce the fluctuations. This achieves preorganized, productive conformations. Notably, we also observe HVR-autoinhibited K-Ras4B-GTP states, with GDP-bound-like orientations of the helices. Thus, we propose that the GDP/GTP exchange may not be sufficient for activation; instead, our results suggest that the GDP/GTP exchange, HVR sequestration, farnesyl insertion, and orientation/localization of the catalytic domain at the membrane conjointly determine the active or inactive state of K-Ras4B. Importantly, K-Ras4B-GTP can exist in active and inactive states; on its own, GTP binding may not compel K-Ras4B activation.-Jang, H., Banerjee, A., Chavan, T. S, Lu, S., Zhang, J., Gaponenko, V., Nussinov, R. The higher level of complexity of K-Ras4B activation at the membrane. © FASEB.

  20. Competitive amplification of differentially melting amplicons (CADMA improves KRAS hotspot mutation testing in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Kristensen Lasse

    2012-11-01

    Full Text Available Abstract Background Cancer is an extremely heterogeneous group of diseases traditionally categorized according to tissue of origin. However, even among patients with the same cancer subtype the cellular alterations at the molecular level are often very different. Several new therapies targeting specific molecular changes found in individual patients have initiated the era of personalized therapy and significantly improved patient care. In metastatic colorectal cancer (mCRC a selected group of patients with wild-type KRAS respond to antibodies against the epidermal growth factor receptor (EGFR. Testing for KRAS mutations is now required prior to anti-EGFR treatment, however, less sensitive methods based on conventional PCR regularly fail to detect KRAS mutations in clinical samples. Methods We have developed sensitive and specific assays for detection of the seven most common KRAS mutations based on a novel methodology named Competitive Amplification of Differentially Melting Amplicons (CADMA. The clinical applicability of these assays was assessed by analyzing 100 colorectal cancer samples, for which KRAS mutation status has been evaluated by the commercially available TheraScreen® KRAS mutation kit. Results The CADMA assays were sensitive to at least 0.5% mutant alleles in a wild-type background when using 50 nanograms of DNA in the reactions. Consensus between CADMA and the TheraScreen kit was observed in 96% of the colorectal cancer samples. In cases where disagreement was observed the CADMA result could be confirmed by a previously published assay based on TaqMan probes and by fast COLD-PCR followed by Sanger sequencing. Conclusions The high analytical sensitivity and specificity of CADMA may increase diagnostic sensitivity and specificity of KRAS mutation testing in mCRC patients.

  1. K-RAS and N-RAS mutations in testicular germ cell tumors

    Directory of Open Access Journals (Sweden)

    Bekir Muhammet Hacioglu

    2017-05-01

    Full Text Available Testicular cancer is a relatively rare tumor type, accounting for approximately 1% of all cancers in men. However, among men aged between 15 and 40 years, testicular cancer is the most commonly diagnosed malignancy. Testicular germ cell tumors (TGCTs are classified as seminoma and non-seminoma. The RAS oncogene controls several cellular functions, including cell proliferation, apoptosis, migration, and differentiation. Thus, RAS signaling is important for normal germ cell development. Mutations of the Kirsten RAS (K-RAS gene are present in over 20% of all cancers. RAS gene mutations have also been reported in TGCTs. We investigated K-RAS and N-RAS mutations in seminoma and non-seminoma TGCT patients. A total of 24 (55% pure seminoma cases and 19 (45% non-seminoma cases were included in the study. K-RAS and N-RAS analyses were performed in our molecular pathology laboratory, using K-RAS and N-RAS Pyro Kit 24 V1 (Qiagen. In total, a RAS mutation was present in 12 patients (27%: 7 seminoma (29% and 5 non-seminoma cases (26% [p = 0.55]. A K-RAS mutation was present in 4 pure seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63], and an N-RAS mutation was observed in 4 seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63]. Both, K-RAS and N-RAS mutations were present in two patients: one with seminoma tumor and the other with non-seminoma tumor. To date, no approved targeted therapy is available for the treatment of TGCTs. The analysis of K-RAS and N-RAS mutations in these tumors may provide more treatment options, especially in platinum-resistant tumors.

  2. Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmina, Nina S., E-mail: nin-kuzmin@youndex.ru; Lapteva, Nellya Sh.; Rubanovich, Alexander V.

    2016-04-15

    Some human genes known to undergo age-related promoter hypermethylation. These epigenetic modifications are similar to those occurring in the course of certain diseases, e.g. some types of cancer, which in turn may also associate with age. Given external genotoxic factors may additionally contribute to hypermethylation, this study was designed to analyzes, using methylation-sensitive polymerase chain reaction (PCR), the CpG island hypermethylation in RASSF1A, CDKN2A (including p16/INK4A and p14/ARF) and GSTP1 promoters in peripheral blood leukocytes of individuals exposed to ionizing radiation long time ago. One hundred and twenty-four irradiated subjects (24–77 years old at sampling: 83 Chernobyl Nuclear Power Plant clean-up workers, 21 nuclear workers, 20 residents of territories with radioactive contamination) and 208 unirradiated volunteers (19–77 years old at sampling) were enrolled. In addition, 74 non-exposed offspring (2–51 years old at sampling) born to irradiated parents were examined. The frequency of individuals displaying promoter methylation of at least one gene in exposed group was significantly higher as compared to the control group (OR=5.44, 95% CI=2.62–11.76, p=3.9×10{sup −7}). No significant difference was found between the frequency of subjects with the revealed promoter methylation in the group of offspring born to irradiated parents and in the control group. The increase in the number of methylated loci of RASSF1A and p14/ARF was associated with age (β=0.242; p=1.7×10{sup −5}). In contrast, hypermethylation of p16/INK4A and GSTP1 genes correlated with the fact of radiation exposure only (β=0.290; p=1.7×10{sup −7}). The latter finding demonstrates that methylation changes in blood leukocytes of healthy subjects exposed to radiation resemble those reported in human malignancies. Additional studies are required to identify the dose-response of epigenetic markers specifically associating with radiation-induced premature aging

  3. Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure

    International Nuclear Information System (INIS)

    Kuzmina, Nina S.; Lapteva, Nellya Sh.; Rubanovich, Alexander V.

    2016-01-01

    Some human genes known to undergo age-related promoter hypermethylation. These epigenetic modifications are similar to those occurring in the course of certain diseases, e.g. some types of cancer, which in turn may also associate with age. Given external genotoxic factors may additionally contribute to hypermethylation, this study was designed to analyzes, using methylation-sensitive polymerase chain reaction (PCR), the CpG island hypermethylation in RASSF1A, CDKN2A (including p16/INK4A and p14/ARF) and GSTP1 promoters in peripheral blood leukocytes of individuals exposed to ionizing radiation long time ago. One hundred and twenty-four irradiated subjects (24–77 years old at sampling: 83 Chernobyl Nuclear Power Plant clean-up workers, 21 nuclear workers, 20 residents of territories with radioactive contamination) and 208 unirradiated volunteers (19–77 years old at sampling) were enrolled. In addition, 74 non-exposed offspring (2–51 years old at sampling) born to irradiated parents were examined. The frequency of individuals displaying promoter methylation of at least one gene in exposed group was significantly higher as compared to the control group (OR=5.44, 95% CI=2.62–11.76, p=3.9×10 −7 ). No significant difference was found between the frequency of subjects with the revealed promoter methylation in the group of offspring born to irradiated parents and in the control group. The increase in the number of methylated loci of RASSF1A and p14/ARF was associated with age (β=0.242; p=1.7×10 −5 ). In contrast, hypermethylation of p16/INK4A and GSTP1 genes correlated with the fact of radiation exposure only (β=0.290; p=1.7×10 −7 ). The latter finding demonstrates that methylation changes in blood leukocytes of healthy subjects exposed to radiation resemble those reported in human malignancies. Additional studies are required to identify the dose-response of epigenetic markers specifically associating with radiation-induced premature aging and/or with

  4. Human FAN1 promotes strand incision in 5'-flapped DNA complexed with RPA.

    Science.gov (United States)

    Takahashi, Daisuke; Sato, Koichi; Hirayama, Emiko; Takata, Minoru; Kurumizaka, Hitoshi

    2015-09-01

    Fanconi anaemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. FA-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In this study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5'-flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5'-flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5'-flapped DNA covered by RPA. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.

    Science.gov (United States)

    Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R

    2014-10-09

    The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.

  6. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10).

    Science.gov (United States)

    Li, Haonan; Yang, Allison L; Chung, Yeon Tae; Zhang, Wanying; Liao, Jie; Yang, Guang-Yu

    2013-09-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.

  7. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization.

    Science.gov (United States)

    Buttari, Brigitta; Profumo, Elisabetta; Domenici, Giacomo; Tagliani, Angela; Ippoliti, Flora; Bonini, Sergio; Businaro, Rita; Elenkov, Ilia; Riganò, Rachele

    2014-07-01

    Neuropeptide Y (NPY), a major autonomic nervous system and stress mediator, is emerging as an important regulator of inflammation, implicated in autoimmunity, asthma, atherosclerosis, and cancer. Yet the role of NPY in regulating phenotype and functions of dendritic cells (DCs), the professional antigen-presenting cells, remains undefined. Here we investigated whether NPY could induce DCs to migrate, mature, and polarize naive T lymphocytes. We found that NPY induced a dose-dependent migration of human monocyte-derived immature DCs through the engagement of NPY Y1 receptor and the activation of ERK and p38 mitogen-activated protein kinases. NPY promoted DC adhesion to endothelial cells and transendothelial migration. It failed to induce phenotypic DC maturation, whereas it conferred a T helper 2 (Th2) polarizing profile to DCs through the up-regulation of interleukin (IL)-6 and IL-10 production. Thus, during an immune/inflammatory response NPY may exert proinflammatory effects through the recruitment of immature DCs, but it may exert antiinflammatory effects by promoting a Th2 polarization. Locally, at inflammatory sites, cell recruitment could be amplified in conditions of intense acute, chronic, or cold stress. Thus, altered or amplified signaling through the NPY-NPY-Y1 receptor-DC axis may have implications for the development of inflammatory conditions.-Buttari, B., Profumo, E., Domenici, G., Tagliani, A., Ippoliti, F., Bonini, S., Businaro, R., Elenkov, I., Riganò, R. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. © FASEB.

  8. Association of a Human FABP1 Gene Promoter Region Polymorphism with Altered Serum Triglyceride Levels.

    Directory of Open Access Journals (Sweden)

    Xian-E Peng

    Full Text Available Liver fatty acid-binding protein (L-FABP, also known as fatty acid-binding protein 1 (FABP1, is a key regulator of hepatic lipid metabolism. Elevated FABP1 levels are associated with an increased risk of cardiovascular disease (CVD and metabolic syndromes. In this study, we examine the association of FABP1 gene promoter variants with serum FABP1 and lipid levels in a Chinese population. Four promoter single-nucleotide polymorphisms (SNPs of FABP1 gene were genotyped in a cross-sectional survey of healthy volunteers (n = 1,182 from Fuzhou city of China. Results showed that only the rs2919872 G>A variant was significantly associated with serum TG concentration(P = 0.032.Compared with the rs2919872 G allele, rs2919872 A allele contributed significantly to reduced serum TG concentration, and this allele dramatically decreased the FABP1 promoter activity(P < 0.05. The rs2919872 A allele carriers had considerably lower serum FABP1 levels than G allele carriers (P < 0.01. In the multivariable linear regression analysis, the rs2919872 A allele was negatively associated with serum FABP1 levels (β = -0.320, P = 0.003, while serum TG levels were positively associated with serum FABP1 levels (β = 0.487, P = 0.014. Our data suggest that compared with the rs2919872 G allele, the rs2919872 A allele reduces the transcriptional activity of FABP1 promoter, and thereby may link FABP1 gene variation to TG level in humans.

  9. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  10. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  11. How to challenge a culturalization of human existence? Promoting interculturalism and ethical thinking in education

    Directory of Open Access Journals (Sweden)

    Frédérique Brossard Børhaug

    2016-04-01

    Full Text Available What if culture appears to be a universal solution – and problem – to all human encounters in the multicultural school? When teachers explain the problems encountered by minority pupils simply by reference to their cultural (religious backgrounds, one faces the danger of culturalization where the other’s difference is explained only by his/her ethnicity. Culturalization is highly problematic because it emphasizes stereotyped inter-group differences and by doing so erases intra-group and inter-individual differences. The article argues that culture is fundamental in human existence, but it should not be an ambiguous dimension if the school seeks to help the learner get a stronger capacity of voice and aspiration. In order to challenge culturalization of human existence, it is crucial for education to promote the paradigm of interculturalism. Such a paradigm requires educators to acknowledge multiple forms of identity belongings for the individual and to resist the interpretation of culture as common sense. Education becomes intercultural and provides liberating categorizations for the individual when it acknowledges the true value of chosen cultural affiliations and individual aspirations. Nonetheless, promoting interculturalism might not be sufficient. Facing the potential danger of culturalization, we also need to foster ethics in education, in order to deconstruct the categories of cultural identity and belonging. Drawing on the philosophy of Emmanuel Levinas (1905-1995 the article argues that loving the other implies the act of loving the other person as a brother and as a stranger. Responsibility understood as an ethical responsibility opens up the community’s traditional structures and promotes a politics of ethical difference. Justice, thus, is not only about how well rights and duties are enforced, but also a matter of the other’s right to be other. Difference as a category is in other words not cultural but refers to the

  12. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome.

    Science.gov (United States)

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred; Llosa, Matxalen

    2017-06-15

    -specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination. Copyright © 2017 American Society for Microbiology.

  13. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC Promote Trophoblast Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Nan Yu

    Full Text Available Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo-secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β and leukemia inhibitory factor (LIF expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR. The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP-2 (MMP-2, MMP-9, vascular endothelial growth factor (VEGF, tissue inhibitor of metalloproteinase (TIMP-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion.

  14. Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    Science.gov (United States)

    Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha

    2011-01-01

    Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was

  15. Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer

    International Nuclear Information System (INIS)

    Kitkumthorn, Nakarin; Mutirangura, Apiwat; Yanatatsanajit, Pattamawadee; Kiatpongsan, Sorapop; Phokaew, Chureerat; Triratanachat, Surang; Trivijitsilp, Prasert; Termrungruanglert, Wichai; Tresukosol, Damrong; Niruthisard, Somchai

    2006-01-01

    The aim of this study was to evaluate epigenetic status of cyclin A1 in human papillomavirus-associated cervical cancer. Y. Tokumaru et al., Cancer Res 64, 5982-7 (Sep 1, 2004)demonstrated in head and neck squamous-cell cancer an inverse correlation between cyclin A1 promoter hypermethylation and TP53 mutation. Human papillomavirus-associated cervical cancer, however, is deprived of TP53 function by a different mechanism. Therefore, it was of interest to investigate the epigenetic alterations during multistep cervical cancer development. In this study, we performed duplex methylation-specific PCR and reverse transcriptase PCR on several cervical cancer cell lines and microdissected cervical cancers. Furthermore, the incidence of cyclin A1 methylation was studied in 43 samples of white blood cells, 25 normal cervices, and 24, 5 and 30 human papillomavirus-associated premalignant, microinvasive and invasive cervical lesions, respectively. We demonstrated cyclin A1 methylation to be commonly found in cervical cancer, both in vitro and in vivo, with its physiological role being to decrease gene expression. More important, this study demonstrated that not only is cyclin A1 promoter hypermethylation strikingly common in cervical cancer, but is also specific to the invasive phenotype in comparison with other histopathological stages during multistep carcinogenesis. None of the normal cells and low-grade squamous intraepithelial lesions exhibited methylation. In contrast, 36.6%, 60% and 93.3% of high-grade squamous intraepithelial lesions, microinvasive and invasive cancers, respectively, showed methylation. This methylation study indicated that cyclin A1 is a potential tumor marker for early diagnosis of invasive cervical cancer

  16. Neutral evolution of drug resistant colorectal cancer cell populations is independent of their KRAS status.

    Directory of Open Access Journals (Sweden)

    Krastan B Blagoev

    Full Text Available Emergence of tumor resistance to an anti-cancer therapy directed against a putative target raises several questions including: (1 do mutations in the target/pathway confer resistance? (2 Are these mutations pre-existing? (3 What is the relative fitness of cells with/without the mutation? We addressed these questions in patients with metastatic colorectal cancer (mCRC. We conducted an exhaustive review of published data to establish a median doubling time for CRCs and stained a cohort of CRCs to document mitotic indices. We analyzed published data and our own data to calculate rates of growth (g and regression (d, decay of tumors in patients with CRC correlating these results with the detection of circulating MT-KRAS DNA. Additionally we estimated mathematically the caloric burden of such tumors using data on mitotic and apoptotic indices. We conclude outgrowth of cells harboring intrinsic or acquired MT-KRAS cannot explain resistance to anti-EGFR (epidermal growth factor receptor antibodies. Rates of tumor growth with panitumumab are unaffected by presence/absence of MT-KRAS. While MT-KRAS cells may be resistant to anti-EGFR antibodies, WT-KRAS cells also rapidly bypass this blockade suggesting inherent resistance mechanisms are responsible and a neutral evolution model is most appropriate. Using the above clinical data on tumor doubling times and mitotic and apoptotic indices we estimated the caloric intake required to support tumor growth and suggest it may explain in part cancer-associated cachexia.

  17. Promotion of health and human functionality - 10.5020/18061230.2013.p5

    Directory of Open Access Journals (Sweden)

    Ana Cristhina de Oliveira Brasil

    2013-08-01

    diverse environmental barriers, whether they are physical, geographic, technological, legal, among others(5. Such health problems that generated those impairments are harmful not only to the citizens but also to the State, since they burden the social security system (health, welfare and social security, leading to decreased quality of life, especially of those affected by such problems. Despite the finding of facts as the major expenses with medium and high complexity services in health, sickness benefit and early retirements that could have been avoided, one can perceive the lack of specific and properly planned actions, the implementation of which depends on political and administrative will and on a paradigm shift regarding the expanded focus on the etiology of all these health problems. And yet, no public policies are known in Brazil, to follow up, in a transversal and integral way, all the stages of the life cycle or to delineate the profile of functionality and the monitoring of the incidence of disabilities, but also, in particular, actions focused on future generations, based on the expanded concept of health proposed by WHO and defended in the principles and guidelines of SUS. Far more required than simply creating reintegration services is to avoid / prevent social restriction. Therefore, policies must be drawned with a new perspective on the human being, that respects the constitutional principles and guidelines of the NHS and meet the consequences of demographic and epidemiological transitions in order to promote health so that people live without major disabilities an increased life expectancy that has already been settled in Brazil. At the 13th National Conference on Health, the unprecedented proposal n.144 has been approved on Axis II - Public Policies for Health and Quality of Life: SUS in Social Security and the Pact for Health, along with the motion n. 84, aiming to develop and implement a national health functional policy crossing all health policies

  18. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jong Hyun; Kim, Hyung Woo; Cha, Kyoung Je; Han, Jiyou; Jang, Yu Jin; Kim, Dong Sung; Kim, Jong-Hoon

    2016-03-22

    Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.

  19. Biological stimulation of the Human skin applying health promoting light and plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Awakowicz, P.; Bibinov, N. [Center for Plasma Science and Technology, Ruhr-University, Bochum (Germany); Born, M.; Niemann, U. [Philips Research, Aachen (Germany); Busse, B. [Zell-Kontakt GmbH, Noerten-Hardenberg (Germany); Gesche, R.; Kuehn, S.; Porteanu, H.E. [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Helmke, A. [University of Applied Sciences and Arts, Goettingen (Germany); Kaemling, A.; Wandke, D. [CINOGY GmbH, Duderstadt (Germany); Kolb-Bachofen, V.; Liebmann, J. [Institute for Immunobiology, Heinrich-Heine University, Duesseldorf (Germany); Kovacs, R.; Mertens, N.; Scherer, J. [Aurion Anlagentechnik GmbH, Seligenstadt (Germany); Oplaender, C.; Suschek, C. [Clinic for Plastic Surgery, University Clinic, Aachen (Germany); Vioel, W. [Laser-Laboratorium, Goettingen (Germany); University of Applied Sciences and Arts, Goettingen (Germany)

    2009-10-15

    In the frame of BMBF project ''BioLiP'', new physical treatment techniques aiming at medical treatment of the human skin have been developed. The acronym BioLiP stands for ''Desinfektion, Entkeimung und biologische Stimulation der Haut durch gesundheitsfoerdernde Licht- und Plasmaquellen'' (Disinfection, germ reduction and biological stimulation of the human skin by health promoting light and plasma sources). A source applying a low-temperature dielectric barrier discharge plasma (DBD) has been investigated on its effectiveness for skin disinfection and stimulation of biological material. Alternatively an atmospheric plasma source consisting of a microwave resonator combined with a solid state power oscillator has been examined. This concept which allows for a compact and efficient design avoiding external microwave power supply and matching units has been optimized with respect to nitrogen monoxide (NO) production in high yields. In both cases various application possibilities in the medical and biological domain are opened up. Light sources in the visible spectral range have been investigated with respect to the proliferation of human cell types. Intensive highly selective blue light sources based on LED technology can slow down proliferation rates without inducing toxic effects which offers new opportunities for treatments of so-called hyperproliferative skin conditions (e.g. with psoriasis or in wound healing) using UV-free light. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    International Nuclear Information System (INIS)

    Ohshimo, Shinichiro; Yokoyama, Akihito; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-01-01

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-β. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases

  1. Human Rights Promotion through Transnational Investment Regimes: An International Political Economy Approach

    Directory of Open Access Journals (Sweden)

    Claire Cutler

    2013-05-01

    Full Text Available International investment agreements are foundational instruments in a transnational investment regime that governs how states regulate the foreign-owned assets and the foreign investment activities of private actors. Over 3,000 investment agreements between states govern key governmental powers and form the basis for an emerging transnational investment regime. This transnational regime significantly decentralizes, denationalizes, and privatizes decision-making and policy choices over foreign investment. Investment agreements set limits to state action in a number of areas of vital public concern, including the protection of human and labour rights, the environment, and sustainable development. They determine the distribution of power between foreign investors and host states and their societies. However, the societies in which they operate seldom have any input into the terms or operation of these agreements, raising crucial questions of their democratic legitimacy as mechanisms of governance. This paper draws on political science and law to explore the political economy of international investment agreements and asks whether these agreements are potential vehicles for promoting international human rights. The analysis provides an historical account of the investment regime, while a review of the political economy of international investment agreements identifies what appears to be a paradox at the core of their operation. It then examines contract theory for insight into this apparent paradox and considers whether investment agreements are suitable mechanisms for advancing international human rights.

  2. Infrared A radiation promotes survival of human melanocytes carrying ultraviolet radiation-induced DNA damage.

    Science.gov (United States)

    Kimeswenger, Susanne; Schwarz, Agatha; Födinger, Dagmar; Müller, Susanne; Pehamberger, Hubert; Schwarz, Thomas; Jantschitsch, Christian

    2016-06-01

    The link between solar radiation and melanoma is still elusive. Although infrared radiation (IR) accounts for over 50% of terrestrial solar energy, its influence on human skin is not well explored. There is increasing evidence that IR influences the expression patterns of several molecules independently of heat. A previous in vivo study revealed that pretreatment with IR might promote the development of UVR-induced non-epithelial skin cancer and possibly of melanoma in mice. To expand on this, the aim of the present study was to evaluate the impact of IR on UVR-induced apoptosis and DNA repair in normal human epidermal melanocytes. The balance between these two effects is a key factor of malignant transformation. Human melanocytes were exposed to physiologic doses of IR and UVR. Compared to cells irradiated with UVR only, simultaneous exposure to IR significantly reduced the apoptotic rate. However, IR did not influence the repair of UVR-induced DNA damage. IR partly reversed the pro-apoptotic effects of UVR via modification of the expression and activity of proteins mainly of the extrinsic apoptotic pathway. In conclusion, IR enhances the survival of melanocytes carrying UVR-induced DNA damage and thereby might contribute to melanomagenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  4. One-step isothermal detection of multiple KRAS mutations by forming SNP specific hairpins on a gold nanoshell.

    Science.gov (United States)

    Chung, Chan Ho; Kim, Joong Hyun

    2018-04-24

    We developed a one-step isothermal method for typing multiple KRAS mutations using a designed set of primers to form a hairpin on a gold nanoshell upon being ligated by a SNP specific DNA ligase after binding of targets. As a result, we could detect as low as 20 attomoles of KRAS mutations within 1 h.

  5. New comprehensive denaturing-gradient-gel-electrophoresis assay for KRAS mutation detection applied to paraffin-embedded tumours

    NARCIS (Netherlands)

    Hayes, VM; Westra, JL; Verlind, E; Bleeker, W; Plukker, JT; Hofstra, RMW; Buys, CHCM

    2000-01-01

    A comprehensive mutation detection assay is presented for the entire coding region and all splice site junctions of the KRAS oncogene. The assay is based on denaturing gradient gel electrophoresis and applicable to archival paraffin-embedded tumour material. All KRAS amplicons are analysed within

  6. Statin use is not associated with improved progression free survival in cetuximab treated KRAS mutant metastatic colorectal cancer patients: results from the CAIRO2 study

    NARCIS (Netherlands)

    Krens, Lisanne L.; Simkens, Lieke H. J.; Baas, Jara M.; Koomen, Els R.; Gelderblom, Hans; Punt, Cornelis J. A.; Guchelaar, Henk-Jan

    2014-01-01

    Statins may inhibit the expression of the mutant KRAS phenotype by preventing the prenylation and thus the activation of the KRAS protein. This study was aimed at retrospectively evaluating the effect of statin use on outcome in KRAS mutant metastatic colorectal cancer patients (mCRC) treated with

  7. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xin [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Dai, Hui [Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province (China); Zhuang, Binyu [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Chai, Li; Xie, Yanguang [Institute of Dermatology of Heilongjiang Province, Harbin, 150001, Heilongjiang Province (China); Li, Yuzhen, E-mail: liyuzhen@medmail.com.cn [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China)

    2016-04-08

    The effects and the underlying mechanisms of hydrogen sulfide (H{sub 2}S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H{sub 2}S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H{sub 2}S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H{sub 2}S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H{sub 2}S promotes keratinocyte proliferation and differentiation. • The effects of H{sub 2}S on proliferation and differentiation is modulated by autophagy. • Exogenous H{sub 2}S has no effect on keratinocyte apoptosis.

  8. Evidence for a relief of repression mechanism for activation of the human telomerase reverse transcriptase promoter.

    Science.gov (United States)

    Wang, Shuwen; Zhu, Jiyue

    2003-05-23

    The transcriptional activation of human telomerase reverse transcriptase (hTERT) is an important step during cellular immortalization and tumorigenesis. To study how this activation occurs during immortalization, we have established a set of genetically related pre-crisis cells and their immortal progeny. As expected, hTERT mRNA was detected in our telomerase-positive immortal cells but not in pre-crisis cells or telomerase-negative immortal cells. However, transiently transfected luciferase reporters controlled by hTERT promoter sequences exhibited similar levels of luciferase activity in both telomerase-positive and -negative cells, suggesting that the endogenous chromatin context is likely required for hTERT regulation. Analysis of chromatin susceptibility to DNase I digestion consistently identified a DNase I hypersensitivity site (DHS) near the hTERT transcription initiation site in telomerase-positive cells. In addition, the histone deacetylase inhibitor trichostatin A (TSA) induced hTERT transcription and also a general increase in chromatin sensitivity to DNase treatment in telomerase-negative cells. The TSA-induced hTERT transcription in pre-crisis cells was accompanied by the formation of a DHS at the hTERT promoter. Furthermore, the TSA-induced hTERT transcription and chromatin alterations were not blocked by cycloheximide, suggesting that this induction does not require de novo protein synthesis and that TSA induces hTERT expression through the inhibition of histone deacetylation at the hTERT promoter. Taken together, our results suggest that the endogenous chromatin environment plays a critical role in the regulation of hTERT expression during cellular immortalization.

  9. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice

    International Nuclear Information System (INIS)

    Kim, Su Jin; Cho, Hyun Hwa; Kim, Yeon Jeong; Seo, Su Yeong; Kim, Han Na; Lee, Jae Bong; Kim, Jae Ho; Chung, Joo Seop; Jung, Jin Sup

    2005-01-01

    Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation

  10. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter

    Energy Technology Data Exchange (ETDEWEB)

    Yanagawa, H.; Nishio, H.; Takeshima, Y. [Kobe Univ. School of Medicine (Japan)] [and others

    1994-09-01

    The dystrophin gene, which is muted in patients with Duchenne and Becker muscular dystrophies, is the largest known human gene. Five alternative promoters have been characterized until now. Here we show that a novel dystrophin isoform with a different first exon can be produced through transcription initiation at a previously-unidentified alternative promoter. The case study presented is that of patient with Duchenne muscular dystrophy who had a deletion extending from 5{prime} end of the dystrophin gene to exon 2, including all promoters previously mapped in the 5{prime} part of the gene. Transcripts from lymphoblastoid cells were found to contain sequences corresponding to exon 3, indicating the presence of new promoter upstream of this exon. The nucleotide sequence of amplified cDNA corresponding to the 5{prime} end of the new transcript indicated that the 5{prime} end of exon 3 was extended by 9 codons, only the last (most 3{prime}) of which codes for methionine. The genomic nucleotide sequence upstream from the new exon, as determined using inverse polymerase chain reaction, revealed the presence of sequences similar to a TATA box, an octamer motif and an MEF-2 element. The identified promoter/exon did not map to intron 2, as might have been expected, but to a position more than 500 kb upstream of the most 5{prime} of the previously-identified promoters, thereby adding 500 kb to the dystrophin gene. The sequence of part of the new promoter region is very similar to that of certain medium reiteration frequency repetitive sequences. These findings may help us understand the molecular evolution of the dystrophin gene.

  11. Rethinking urban nature to promote human well-being and livelihoods

    DEFF Research Database (Denmark)

    Raymond, Christopher; Gulsrud, Natalie Marie; Rodela, Romina

    On the 25thJanuary, 25 researchers, social entrepreneurs and policy makers attended a MOVIUM and SLU Urban Futures funded workshop on “Rethinking urban nature to promote human well-being and livelihoods”. The objectives of the workshop wereto identify and discuss integrated digital, social...... of urbannature in Malmö. Each group was asked to present their presentation to the wider group, what inspired them the most from the workshop activity and how their understanding of integrated solutions in urban nature changed over the day.This report presents a summary of each group’screations and findings...... and nature solutions for the use, management and governance of urban nature in the City of Malmö;and to provide a platform for knowledge sharing and networking between researchers and practitioners.Multiple enlightening presentations on how to plan, design and manage urban nature were provided by the cities...

  12. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro.

    Science.gov (United States)

    Yao, Xiuhua; Huang, Huiling; Li, Zhou; Liu, Xiaohua; Fan, Weijia; Wang, Xinping; Sun, Xuelian; Zhu, Jianmin; Zhou, Hongrui; Wei, Huaying

    2017-08-01

    Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.

  13. Effect of Different Skin Penetration Promoters in Halobetasol Propionate Permeation and Retention in Human Skin

    Directory of Open Access Journals (Sweden)

    Paulina Carvajal-Vidal

    2017-11-01

    Full Text Available Halobetasol propionate (HB is a potent synthetic corticosteroid used against inflammatory skin diseases, such as dermatitis, eczema, and psoriasis, among others. The aim of this study is to define how the presence of different skin penetration enhancers (nonane, menthone, limonene, azone, carene, decanol, linoleic acid and cetiol affects the penetration and retention in skin of HB. To determine drug penetration through skin, 5% of each promoter was used in an ex vivo system with human skin on Franz cells. The results showed that the highest permeation occurs in the presence of menthone, followed by nonane. Permeation parameters were determined. The in vivo test was assessed, and the formulation containing HB-menthone presented better anti-inflammatory efficacy. These results are useful to generate a specific treatment according to each patient’s needs, and the inflammatory characteristics of the disease.

  14. THE EUROPEAN COUNCIL AND ITS ROLE IN PROMOTING AND DEFENDING HUMAN RIGHTS IN THE EUROPEAN AREA

    Directory of Open Access Journals (Sweden)

    Ion, POPESCU

    2014-11-01

    Full Text Available The Council of Europe advocates freedom of expression and of the media, freedom of assembly, equality, and the protection of minorities. It has launched campaigns on issues such as child protection, online hate speech, and the rights of the Roma, Europe's largest minority. The Council of Europe helps member states fight corruption and terrorism and undertake necessary judicial reforms. Its group of constitutional experts, known as the Venice Commission, offers legal advice to countries throughout the world. The Council of Europe promotes human rights through international conventions, such as the Convention on Preventing and Combating Violence against Women and Domestic Violence and the Convention on Cybercrime. It monitors member states' progress in these areas and makes recommendations through independent expert monitoring bodies. All Council of Europe member states have abolished the death penalty.

  15. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Douglas, Lois M; Konopka, James B

    2016-03-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.

  16. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans

    Science.gov (United States)

    Douglas, Lois M.; Konopka, James. B.

    2017-01-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878

  17. Characterization of human erythroid burst-promoting activity derived from bone marrow conditioned media

    International Nuclear Information System (INIS)

    Porter, P.N.; Ogawa, M.

    1982-01-01

    Bone marrow conditioned media (BMCM) increases burst number and the incorporation of 59 Fe into heme by bursts when peripheral blood or bone marrow cells are cultured at limiting serum concentrations. Burst-promoting activity (BPA) has now been purified approximately 300-fold from this source by ion-exchange chromatography on DEAE-Sephadex and absorption chromatography on hydroxyapatite agarose gel. Marrow BPA increased burst number and hemoglobin (Hb) synthesis in a dose-dependent manner. A larger increase in Hb synthesis than in burst number was consistently observed, which was probably a consequence of the increase in the number of cells per burst that occurs in the presence of BPA. The role of BPA in culture could be distinguished from erythropoietin (Ep), since no bursts grew in the absence of Ep, whether or not BPA was present, and since it had no effect on the growth of erythroid colonies scored at day 5 of culture. Our purified fraction did not support the growth of CFU-C in culture. Activity was stable at temperatures of 70 degrees C or lower for 10 min; exposure to 80 degrees C resulted in approximately 50% loss of activity. BPA was completely inactivated by treatment at 100 degrees C for 10 min. Thus, human bone marrow cells produce a heat-sensitive factor that specifically promotes the growth of early erythroid progenitors in culture

  18. 2-Formyl-komarovicine promotes adiponectin production in human mesenchymal stem cells through PPARγ partial agonism.

    Science.gov (United States)

    Ahn, Sungjin; Lee, Moonyoung; An, Seungchan; Hyun, Sooyeol; Hwang, Jiho; Lee, Jongkook; Noh, Minsoo

    2018-03-01

    Adiponectin is a major adipocytokine secreted from mammalian adipocytes. Relatively low expression of adiponectin is associated with various human metabolic diseases and some cancers. Adiponectin-secreting compounds have therapeutic potential for these diseases. Adipogenesis of human bone marrow-mesenchymal stem cells (hBM-MSCs) has been used as a phenotypic assay to find adiponectin secreting compounds. In a phytochemical library screen, 2-formyl-komarovicine, 1-(quinolin-8-yl)-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indole-2-carbaldehyde, isolated from Nitraria komarovii was identified as a potential adiponectin-secreting compound. To validate the results of the impure phytochemical, we synthesized 2-formyl-komarovicine. The synthetic 2-formyl-komarovicine significantly promoted adiponectin production during adipogenesis in hBM-MSCs. In a target identification experiment, 2-formyl-komarovicine bound to peroxisome proliferator-activated receptor γ (PPARγ) in a concentration-dependent manner. Notably, 2-formyl-komarovicine competitively inhibited the adiponectin-promoting activity of a full PPARγ agonist, troglitazone, in hBM-MSCs, which is a pharmacological feature of a partial agonist. The ligand-docking model showed that 2-formyl-komarovicine interacted with the hydrophobic pocket of the PPARγ ligand-binding domain, but lacked an interaction to stabilize helix H12, which is one of the major binding themes of PPARγ partial agonists. We concluded that 2-formyl-komarovicine provides a novel pharmacophore for PPARγ partial agonists to increase adiponectin production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong-Xiu-Zi [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Huang, Da-Yong [Department of Oncology, The Second Clinical Hospital, Harbin Medical University, Harbin (China); Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Zheng, Jin-Hua, E-mail: jhzhenghrbmu@yahoo.cn [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China)

    2010-09-10

    Research highlights: {yields} It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. {yields} The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. {yields} Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly

  20. Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer.

    Directory of Open Access Journals (Sweden)

    Mingquan Chen

    Full Text Available FBP1, fructose-1,6-bisphosphatase-1, a gluconeogenesis regulatory enzyme, catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate. The mechanism that it functions to antagonize glycolysis and was epigenetically inactivated through NF-kappaB pathway in gastric cancer has been reported. However, its role in the liver carcinogenesis still remains unknown. Here, we investigated the expression and DNA methylation of FBP1 in primary HCC and colon tumor. FBP1 was lowly expressed in 80% (8/10 human hepatocellular carcinoma, 66.7% (6/9 liver cancer cell lines and 100% (6/6 colon cancer cell lines, but was higher in paired adjacent non-tumor tissues and immortalized normal cell lines, which was well correlated with its promoter methylation status. Methylation was further detected in primary HCCs, gastric and colon tumor tissues, but none or occasionally in paired adjacent non-tumor tissues. Detailed methylation analysis of 29 CpG sites at a 327-bp promoter region by bisulfite genomic sequencing confirmed its methylation. FBP1 silencing could be reversed by chemical demethylation treatment with 5-aza-2'-deoxycytidine (Aza, indicating direct epigenetic silencing. Restoring FBP1 expression in low expressed cells significantly inhibited cell growth and colony formation ability through the induction of G2-M phase cell cycle arrest. Moreover, the observed effects coincided with an increase in reactive oxygen species (ROS generation. In summary, epigenetic inactivation of FBP1 is also common in human liver and colon cancer. FBP1 appears to be a functional tumor suppressor involved in the liver and colon carcinogenesis.

  1. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Gao, Zhong-Xiu-Zi; Huang, Da-Yong; Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong; Zheng, Jin-Hua

    2010-01-01

    Research highlights: → It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. → The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. → Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and m

  2. Human Umbilical Cord MSCs as New Cell Sources for Promoting Periodontal Regeneration in Inflammatory Periodontal Defect.

    Science.gov (United States)

    Shang, Fengqing; Liu, Shiyu; Ming, Leiguo; Tian, Rong; Jin, Fang; Ding, Yin; Zhang, Yongjie; Zhang, Hongmei; Deng, Zhihong; Jin, Yan

    2017-01-01

    Human periodontal ligament stem cells (hPDLSCs) transplantation represents a promising approach for periodontal regeneration; however, the cell source is limited due to the invasive procedure required for cell isolation. As human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested inexpensively and inexhaustibly, here we evaluated the regenerative potentials of hUCMSCs as compared with hPDLSCs to determine whether hUCMSCs could be used as new cell sources for periodontal regeneration. Methods The characteristics of hUCMSCs, including multi-differentiation ability and anti-inflammatory capability, were determined by comparison with hPDLSCs. We constructed cell aggregates (CA) using hUCMSCs and hPDLSCs respectively. Then hPDLSCs-CA and hUCMSCs-CA were combined with β-tricalcium phosphate bioceramic (β-TCP) respectively and their regenerative potentials were determined in a rat inflammatory periodontal defect model. Results hPDLSCs showed higher osteogenic differentiation potentials than hUCMSCs. Meanwhile, hUCMSCs showed higher extracellular matrix secretion and anti-inflammatory abilities than hPDLSCs. Similar to hPDLSCs, hUCMSCs were able to contribute to regeneration of both soft and hard periodontal tissues under inflammatory periodontitis condition. There were more newly formed bone and periodontal ligaments in hPDLSCs and hUCMSCs groups than in non-cell treated group. Moreover, no significant differences of regenerative promoting effects between hPDLSCs and hUCMSCs were found. Conclusion : hUCMSCs generated similar promoting effects on periodontal regeneration compared with hPDLSCs, and can be used as new cell sources for periodontal regeneration.

  3. Mutational analysis of BRAF and KRAS in ovarian serous borderline (atypical proliferative) tumours and associated peritoneal implants

    DEFF Research Database (Denmark)

    Ardighieri, Laura; Zeppernick, Felix; Hannibal, Charlotte G

    2014-01-01

    There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced......), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST-implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST-implant pairs. Wild-type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11...... SBT/APST-implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST-implant (non-invasive and invasive) pairs (p identical KRAS or BRAF...

  4. KRAS biomarker testing disparities in colorectal cancer patients in New Mexico

    Directory of Open Access Journals (Sweden)

    Alissa Greenbaum

    2017-11-01

    Full Text Available Introduction: American Society of Clinical Oncology (ASCO guidelines recommend that all patients with metastatic colorectal cancer (mCRC receive KRAS testing to guide anti-EGFR monoclonal antibody treatment. The aim of this study was to assess for disparities in KRAS testing and mutational status. Methods: The New Mexico Tumor Registry (NMTR, a population-based cancer registry participating in the National Cancer Institute’s Surveillance, Epidemiology and End Results program, was queried to identify all incident cases of CRC diagnosed among New Mexico residents from 2010 to 2013. Results: Six hundred thirty-seven patients were diagnosed with mCRC from 2010–2013. As expected, KRAS testing in Stage 4 patients presented the highest frequency (38.4%, though testing in stage 3 (8.5%, stage 2 (3.4% and stage 1 (1.2% was also observed. In those with metastatic disease, younger patients (≤ 64 years were more likely to have had testing than patients 65 years and older (p < 0.0001. Patients residing in urban areas received KRAS testing more often than patients living in rural areas (p = 0.019. No significant racial/ethnic disparities were observed (p = 0.66. No significant differences were seen by year of testing. Conclusion: Age and geographic disparities exist in the rates of KRAS testing, while sex, race/ethnicity and the year tested were not significantly associated with testing. Further study is required to assess the reasons for these disparities and continued suboptimal adherence to current ASCO KRAS testing guidelines. Keywords: Oncology, Health sciences, Clinical genetics

  5. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses

    Energy Technology Data Exchange (ETDEWEB)

    Palsamy, Periyasamy [Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE (United States); Ayaki, Masahiko [Shizuoka National Hospital, Saitama (Japan); Elanchezhian, Rajan [Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE (United States); Shinohara, Toshimichi, E-mail: tshinohara@unmc.edu [Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE (United States)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer We found significant Keap1 promoter demethylation in diabetic cataractous lenses. Black-Right-Pointing-Pointer Demethylation of Keap1 gene upregulated the expression of Keap1 mRNA and protein. Black-Right-Pointing-Pointer Elevated levels of Keap1 are known to decrease the levels of Nrf2. Black-Right-Pointing-Pointer Thereby, the levels of antioxidant enzymes are suppressed by decreased Nrf2 level. -- Abstract: Age-related cataracts (ARCs) are the major cause of visual impairments worldwide, and diabetic adults tend to have an earlier onset of ARCs. Although age is the strongest risk factor for cataracts, little is known how age plays a role in the development of ARCs. It is known that oxidative stress in the lens increases with age and more so in the lenses of diabetics. One of the central adaptive responses against the oxidative stresses is the activation of the nuclear transcriptional factor, NF-E2-related factor 2 (Nrf2), which then activates more than 20 different antioxidative enzymes. Kelch-like ECH associated protein 1 (Keap1) targets and binds to Nrf2 for proteosomal degradation. We hypothesized that hyperglycemia will lead to a dysfunction of the Nrf2-dependent antioxidative protection in the lens of diabetics. We studied the methylation status of the CpG islands in 15 clear and 21 diabetic cataractous lenses. Our results showed significant levels of demethylated DNA in the Keap1 promoter in the cataractous lenses from diabetic patients. In contrast, highly methylated DNA was found in the clear lens and tumorized human lens epithelial cell (HLEC) lines (SRA01/04). HLECs treated with a demethylation agent, 5-aza-2 Prime deoxycytidine (5-Aza), had a 10-fold higher levels of Keap1 mRNA, 3-fold increased levels of Keap1 protein, produced higher levels of ROS, and increased cell death. Our results indicated that demethylation of the CpG islands in the Keap1 promoter will activate the expression of Keap1 protein, which

  6. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses

    International Nuclear Information System (INIS)

    Palsamy, Periyasamy; Ayaki, Masahiko; Elanchezhian, Rajan; Shinohara, Toshimichi

    2012-01-01

    Highlights: ► We found significant Keap1 promoter demethylation in diabetic cataractous lenses. ► Demethylation of Keap1 gene upregulated the expression of Keap1 mRNA and protein. ► Elevated levels of Keap1 are known to decrease the levels of Nrf2. ► Thereby, the levels of antioxidant enzymes are suppressed by decreased Nrf2 level. -- Abstract: Age-related cataracts (ARCs) are the major cause of visual impairments worldwide, and diabetic adults tend to have an earlier onset of ARCs. Although age is the strongest risk factor for cataracts, little is known how age plays a role in the development of ARCs. It is known that oxidative stress in the lens increases with age and more so in the lenses of diabetics. One of the central adaptive responses against the oxidative stresses is the activation of the nuclear transcriptional factor, NF-E2-related factor 2 (Nrf2), which then activates more than 20 different antioxidative enzymes. Kelch-like ECH associated protein 1 (Keap1) targets and binds to Nrf2 for proteosomal degradation. We hypothesized that hyperglycemia will lead to a dysfunction of the Nrf2-dependent antioxidative protection in the lens of diabetics. We studied the methylation status of the CpG islands in 15 clear and 21 diabetic cataractous lenses. Our results showed significant levels of demethylated DNA in the Keap1 promoter in the cataractous lenses from diabetic patients. In contrast, highly methylated DNA was found in the clear lens and tumorized human lens epithelial cell (HLEC) lines (SRA01/04). HLECs treated with a demethylation agent, 5-aza-2′deoxycytidine (5-Aza), had a 10-fold higher levels of Keap1 mRNA, 3-fold increased levels of Keap1 protein, produced higher levels of ROS, and increased cell death. Our results indicated that demethylation of the CpG islands in the Keap1 promoter will activate the expression of Keap1 protein, which then increases the targeting of Nrf2 for proteosomal degradation. Decreased Nrf2 activity represses the

  7. Autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter suppresses human ovarian carcinoma growth in vitro and in mice.

    Science.gov (United States)

    Song, Yue; Xia, Zhijun; Shen, Keng; Zhai, Xingyue

    2013-05-01

    To construct recombinant adenoviruses AdHT-rev-casp3 and Ad-rev-casp3, which express autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter and cytomegalovirus promoter, respectively; and to investigate their antitumor effects on ovarian cancer in vitro and in vivo. Cell viabilities were determined using the cell counting kit 8 and flow cytometry. Reverse transcriptase polymerase chain reaction and immunoblotting assays were used to detect cellular apoptotic activities after treatments. Tumor growth and survival of mice bearing AO cells were studied. AdHT-rev-casp3 significantly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 60.45% ± 7.8% at an multiplicity of infection (MOI) of 70 and 42.18 ± 5.3% at an MOI of 100, which was somewhat lower than that of the AO cells treated with Ad-rev-casp3 (32.28% ± 5.3% and 21.84% ± 3.4%, respectively). In contrast, AdHT-rev-casp3 induced little human umbilical vein epithelial cell (HUVEC) death with a viability rate of 98.52% ± 6.9% at an MOI of 70, whereas Ad-rev-casp3 induced significant cell death in HUVEC with a viability rate of 27.14% ± 5.4%. Additionally, AdHT-rev-casp3 (MOI = 70) caused significant apoptosis in AO cells with an apoptotic rate of 25.97%, whereas it caused undetectable apoptosis in HUVECs with the rate of only 1.75%. Ad-rev-casp3 (MOI = 70) caused strong apoptosis in both AO and HUVECs, with the rate of 35.82% and 38.12%, respectively. AdHT-rev-casp3 caused markedly higher levels of active caspase-3, causing no detectable active caspase-3 expression in HUVECs. The tumor growth suppression rate of AdHT-rev-casp3 was 54.94%, significantly higher than that of phosphate-buffered saline at the end point of the study. AdHT-rev-casp3 significantly improved the survival of mice receiving intraperitoneal inoculation of AO cells with little liver damage, with the mean survival of 177 ± 12 days. AdHT-rev-casp3 causes effective apoptosis

  8. Mutant KRAS Circulating Tumor DNA Is an Accurate Tool for Pancreatic Cancer Monitoring.

    Science.gov (United States)

    Perets, Ruth; Greenberg, Orli; Shentzer, Talia; Semenisty, Valeria; Epelbaum, Ron; Bick, Tova; Sarji, Shada; Ben-Izhak, Ofer; Sabo, Edmond; Hershkovitz, Dov

    2018-05-01

    Many new pancreatic cancer treatment combinations have been discovered in recent years, yet the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains grim. The advent of new treatments highlights the need for better monitoring tools for treatment response, to allow a timely switch between different therapeutic regimens. Circulating tumor DNA (ctDNA) is a tool for cancer detection and characterization with growing clinical use. However, currently, ctDNA is not used for monitoring treatment response. The high prevalence of KRAS hotspot mutations in PDAC suggests that mutant KRAS can be an efficient ctDNA marker for PDAC monitoring. Seventeen metastatic PDAC patients were recruited and serial plasma samples were collected. CtDNA was extracted from the plasma, and KRAS mutation analysis was performed using next-generation sequencing and correlated with serum CA19-9 levels, imaging, and survival. Plasma KRAS mutations were detected in 5/17 (29.4%) patients. KRAS ctDNA detection was associated with shorter survival (8 vs. 37.5 months). Our results show that, in ctDNA positive patients, ctDNA is at least comparable to CA19-9 as a marker for monitoring treatment response. Furthermore, the rate of ctDNA change was inversely correlated with survival. Our results confirm that mutant KRAS ctDNA detection in metastatic PDAC patients is a poor prognostic marker. Additionally, we were able to show that mutant KRAS ctDNA analysis can be used to monitor treatment response in PDAC patients and that ctDNA dynamics is associated with survival. We suggest that ctDNA analysis in metastatic PDAC patients is a readily available tool for disease monitoring. Avoiding futile chemotherapy in metastatic pancreatic ductal adenocarcinoma (PDAC) patients by monitoring response to treatment is of utmost importance. A novel biomarker for monitoring treatment response in PDAC, using mutant KRAS circulating tumor DNA (ctDNA), is proposed. Results, although limited by small sample numbers

  9. Nove interpretacije fluvialnih sedimentov na krasu = New interpretations of fluvial sediments from the Kras

    Directory of Open Access Journals (Sweden)

    Andrej Mihevc

    2007-01-01

    Full Text Available Important unroofed caves with fluvial sediments from Divaški kras, Matarsko podoljePodgorski kras are presented. Extend of the phenomena and relation to the existingand karst surface and geomorphological meaning of them are described. Sedimentsthem were analysed and dated with different methods. The largest age of the sedimentfound in the unroofed cave excavated in Črnotiče quarry. In the cave wall fossil remainsstygobiont Marifugia cavatica were covered by 3.2-4.1 Ma old fluvial sediments.

  10. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers.

    Science.gov (United States)

    Chapman, Aaron M; Sun, Kathie Y; Ruestow, Peter; Cowan, Dallas M; Madl, Amy K

    2016-12-01

    Lung cancer is the leading cause of cancer-related mortality. While the majority of lung cancers are associated with tobacco smoke, approximately 10-15% of U.S. lung cancers occur in never smokers. Evidence suggests that lung cancer in never smokers appears to be a distinct disease caused by driver mutations which are different than the genetic pathways observed with lung cancer in smokers. A meta-analysis of human epidemiologic data was conducted to evaluate the profile of common or therapy-targetable mutations in lung cancers of never and ever smokers. Epidemiologic studies (N=167) representing over 63,000 lung cancer cases were identified and used to calculate summary odds ratios for lung cancer in never and ever smokers containing gene mutations: EGFR, chromosomal rearrangements and fusion of EML4 and ALK, and KRAS. This analysis also considered the effect of histopathology, smoking status, sex, and ethnicity. There were significantly increased odds of presenting the EGFR and ALK-EML4 mutations in 1) adenocarcinomas compared to non-small cell lung cancer and 2) never smokers compared to ever smokers. The prevalence of EGFR mutations was higher in Asian women as compared to women of Caucasian/Mixed ethnicity. As the smoking history increased, there was a decreased odds for exhibiting the EGFR mutation, particularly for cases >30 pack-years. Compared to ever smokers, never smokers had a decreased odds of KRAS mutations among those of Caucasian/Mixed ethnicity (OR=0.22, 95% CI: 0.17-0.29) and those of Asian ethnicity (OR=0.39, 95% CI: 0.30-0.50). Our findings show that key driver mutations and several patient features are highly prevalent in lung cancers of never smokers. These associations may be helpful as patient demographic models are developed to predict successful outcomes of targeted therapeutic interventions NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Specific repression of mutant K-RAS by 10-23 DNAzyme: Sensitizing cancer cell to anti-cancer therapies

    International Nuclear Information System (INIS)

    Yu, S.-H.; Wang, T.-H.; Au, L.-C.

    2009-01-01

    Point mutations of the Ras family are frequently found in human cancers at a prevalence rate of 30%. The most common mutation K-Ras(G12V), required for tumor proliferation, survival, and metastasis due to its constitutively active GTPase activity, has provided an ideal target for cancer therapy. 10-23 DNAzyme, an oligodeoxyribonucleotide-based ribonuclease consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, has been shown to effectively cleave the target mRNA at purine-pyrimidine dinucleotide. Taking advantage of this specific property, 10-23 DNAzyme was designed to cleave mRNA of K-Ras(G12V)(GGU → GUU) at the GU dinucleotide while left the wild-type (WT) K-Ras mRNA intact. The K-Ras(G12V)-specific 10-23 DNAzyme was able to reduce K-Ras(G12V) at both mRNA and protein levels in SW480 cell carrying homozygous K-Ras(G12V). No effect was observed on the WT K-Ras in HEK cells. Although K-Ras(G12V)-specific DNAzymes alone did not inhibit proliferation of SW480 or HEK cells, pre-treatment of this DNAzyme sensitized the K-Ras(G12V) mutant cells to anti-cancer agents such as doxorubicin and radiation. These results offer a potential of using allele-specific 10-23 DNAzyme in combination with other cancer therapies to achieve better effectiveness on cancer treatment.

  12. Genome-scale portrait and evolutionary significance of human-specific core promoter tri- and tetranucleotide short tandem repeats.

    Science.gov (United States)

    Nazaripanah, N; Adelirad, F; Delbari, A; Sahaf, R; Abbasi-Asl, T; Ohadi, M

    2018-04-05

    While there is an ongoing trend to identify single nucleotide substitutions (SNSs) that are linked to inter/intra-species differences and disease phenotypes, short tandem repeats (STRs)/microsatellites may be of equal (if not more) importance in the above processes. Genes that contain STRs in their promoters have higher expression divergence compared to genes with fixed or no STRs in the gene promoters. In line with the above, recent reports indicate a role of repetitive sequences in the rise of young transcription start sites (TSSs) in human evolution. Following a comparative genomics study of all human protein-coding genes annotated in the GeneCards database, here we provide a genome-scale portrait of human-specific short- and medium-size (≥ 3-repeats) tri- and tetranucleotide STRs and STR motifs in the critical core promoter region between - 120 and + 1 to the TSS and evidence of skewing of this compartment in reference to the STRs that are not human-specific (Levene's test p human-specific transcripts was detected in the tri and tetra human-specific compartments (mid-p genome-scale skewing of STRs at a specific region of the human genome and a link between a number of these STRs and TSS selection/transcript specificity. The STRs and genes listed here may have a role in the evolution and development of characteristics and phenotypes that are unique to the human species.

  13. Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells.

    Science.gov (United States)

    Zhou, Junjie; Yu, Guangrong; Cao, Chengfu; Pang, Jinhui; Chen, Xianqi

    2011-06-01

    Bone morphogenetic proteins (BMPs) play important roles at multiple stages of chondrogenesis. This study was undertaken to investigate the potential role of bone morphogenetic protein-7 (BMP-7) in the differentiation of chondrocytes using tissue engineering techniques. The impact of BMP-7 on human amniotic epithelial cells (hAECs) was tested. The hAECs were treated either with recombinant human BMP-7 cDNA or with transforming growth factor beta 1 (TGF-β1) as a positive control for three weeks in vitro. Cartilaginous differentiation and proliferation were assayed by quantitative RT-PCR, histology, and in situ hybridization. Our results were such that hAECs treated with either BMP-7 or TGF-β1 expressed cartilage markers (aggrecan, Sox9, CEP-68, and type II and X collagens) within three weeks. Compared with a control vector, BMP-7 induced a decrease in type I collagen expression, while the transcription of the cartilage-specific type II collagen remained stable. In induction experiments, BMP-7 transgenic hAECs exhibited the largest amount of matrix synthesis. In conclusion, these data indicate that BMP-7 plays an important role in inducing the production of cartilage by hAECs in vitro. Cartilage differentiation and matrix maturation can be promoted by BMPs in a cartilage engineering paradigm. These properties make BMPs promising tools in the engineering of cartilaginous joint bio-prostheses and as candidate biological agents or genes for cartilage stabilisation.

  14. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  15. Hypoxia promotes Mycobacterium tuberculosis-specific up-regulation of granulysin in human T cells.

    Science.gov (United States)

    Zenk, Sebastian F; Vollmer, Michael; Schercher, Esra; Kallert, Stephanie; Kubis, Jan; Stenger, Steffen

    2016-06-01

    Oxygen tension affects local immune responses in inflammation and infection. In tuberculosis mycobacteria avoid hypoxic areas and preferentially persist and reactivate in the oxygen-rich apex of the lung. Oxygen restriction activates antimicrobial effector mechanisms in macrophages and restricts growth of intracellular Mycobacterium tuberculosis (M.Tb). The effect of oxygen restriction on T cell-mediated antimicrobial effector mechanisms is unknown. Therefore we determined the influence of hypoxia on the expression of granulysin, an antimicrobial peptide of lymphocytes. Hypoxia increased the antigen-specific up-regulation of granulysin mRNA and protein in human CD4(+) and CD8(+) T lymphocytes. This observation was functionally relevant, because oxygen restriction supported the growth-limiting effect of antigen-specific T cells against virulent M.Tb residing in primary human macrophages. Our results provide evidence that oxygen restriction promotes the expression of granulysin and suggest that this effect-in conjunction with additional T cell-mediated immune responses-supports protection against mycobacteria. The therapeutic modulation of oxygen availability may offer a new strategy for the host-directed therapy of infectious diseases with intracellular pathogens.

  16. Negative regulation of human parathyroid hormone gene promoter by vitamin D3 through nuclear factor Y

    International Nuclear Information System (INIS)

    Jaeaeskelaeinen, T.; Huhtakangas, J.; Maeenpaeae, P.H.

    2005-01-01

    The negative regulation of the human parathyroid hormone (PTH) gene by biologically active vitamin D 3 (1,25-dihydroxyvitamin D 3 ; 1,25(OH) 2 D 3 ) was studied in rat pituitary GH4C1 cells, which express factors needed for the negative regulation. We report here that NF-Y binds to sequences downstream of the site previously reported to bind the vitamin D receptor (VDR). Additional binding sites for NF-Y reside in the near vicinity and were shown to be important for full activity of the PTH gene promoter. VDR and NF-Y were shown to exhibit mutually exclusive binding to the VDRE region. According to our results, sequestration of binding partners for NF-Y by VDR also affects transcription through a NF-Y consensus binding element in GH4C1 but not in ROS17/2.8 cells. These results indicate that 1,25(OH) 2 D 3 may affect transcription of the human PTH gene both by competitive binding of VDR and NF-Y, and by modulating transcriptional activity of NF-Y

  17. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    Science.gov (United States)

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.

  18. Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction.

    Directory of Open Access Journals (Sweden)

    Jorge S Burns

    Full Text Available BACKGROUND: Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC strain (hMSC-TERT20 immortalized by retroviral vector mediated human telomerase (hTERT gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+ and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. CONCLUSIONS: Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1

  19. Analysis of clustered point mutations in the human ribosomal RNA gene promoter by transient expression in vivo

    International Nuclear Information System (INIS)

    Jones, M.H.; Learned, R.M.; Tjian, R.

    1988-01-01

    The authors have mapped the cis regulatory elements required in vivo for initiation at the human rRNA promoter by RNA polymerase I. Transient expression in COS-7 cells was used to evaluate the transcription phenotype of clustered base substitution mutations in the human rRNA promoter. The promoter consists of two major elements: a large upstream region, composed of several domains, that lies between nucleotides -234 and -107 relative to the transcription initiation site and affects transcription up to 100-fold and a core element that lies between nucleotides -45 and +20 and affects transcription up to 1000-fold. The upstream regions is able to retain partial function when positioned within 100-160 nucleotides of the transcription initiation site, but it cannot stimulate transcription from distances of ≥ 600 nucleotides. In addition, they demonstrate, using mouse-human hybrid rRNA promoters, that the sequences responsible for human species-specific transcription in vivo appear to reside in both the core and upstream elements, and sequences from the mouse rRNA promoter cannot be substituted for them

  20. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2017-08-01

    Full Text Available Background/Aims: Mesenchymal stem/stromal cells (MSCs are known to home to sites of tumor microenvironments where they participate in the formation of the tumor microenvironment and to interplay with tumor cells. However, the potential functional effects of MSCs on tumor cell growth are controversial. Here, we, from the view of bone marrow MSC-derived exosomes, study the molecular mechanism of MSCs on the growth of human osteosarcoma and human gastric cancer cells. Methods: MSCs derived from human bone marrow (hBMSCs were isolated and cultured in complete DMEM/F12 supplemented with 10% exosome-depleted fetal bovine serum and 1% penicillin-streptomycin, cell culture supernatants containing exosomes were harvested and exosome purification was performed by ultracentrifugation. Osteosarcoma (MG63 and gastric cancer (SGC7901 cells, respectively, were treated with hBMSC-derived exosomes in the presence or absence of a small molecule inhibitor of Hedgehog pathway. Cell viability was measured by transwell invasion assay, scratch migration assay and CCK-8 test. The expression of the signaling molecules Smoothened, Patched-1, Gli1 and the ligand Shh were tested by western blot and RT-PCR. Results: In this study, we found that hBMSC-derived exosomes promoted MG63 and SGC7901 cell growth through the activation of Hedgehog signaling pathway. Inhibition of Hedgehog signaling pathway significantly suppressed the process of hBMSC-derived exosomes on tumor growth. Conclusion: Our findings demonstrated the new roles of hedgehog signaling pathway in the hBMSCs-derived exosomes induced tumor progression.

  1. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures.

    Science.gov (United States)

    Matsui, Mikiko; Kobayashi, Tomoko; Tsutsui, Takeo W

    2018-04-01

    CD146 and STRO-1 are endothelial biomarkers that are co-expressed on the cellular membranes of blood vessels within human dental pulp tissue. This study characterized the percentage of dentin-like structures produced by CD146-positive (CD146 + ) human dental pulp stem cells (DPSCs), compared with their CD146-negative (CD146 - ) counterparts. DPSC populations were enriched using magnetic-activated cell sorting (MACS), yielding CD146 + and CD146 - cells, as well as mixtures composed of 25% CD146 + cells and 75% CD146 - cells (CD146 +/- ). Cell growth assays indicated that CD146 + cells exhibit an approximate 3-4 h difference in doubling time, compared with CD146 - cells. Cell cycle distributions were determined by flow cytometry analysis. The low percentage of CD146 + cells' DNA content in G 0 /G 1 phase were compared with CD146 - and non-separated cells. In contrast to CD146 - and non-separated cells, prompt mineralization was observed in CD146 + cells. Subsequently, qRT-PCR revealed high mRNA expression of CD146 and Alkaline phosphatase in mineralization-induced CD146 + cells. CD146 + cells were also observed high adipogenic ability by Oil red O staining. Histological examinations revealed an increased area of dentin/pulp-like structures in transplanted CD146 + cells, compared with CD146 - and CD146 +/- cells. Immunohistochemical studies detected dentin matrix protein-1 (DMP1) and dentin sialophosphoprotein (DSPP), as well as human mitochondria, in transplanted DPSCs. Co-expression of CD146 and GFP indicated that CD146 was expressed in transplanted CD146 + cells. CD146 + cells may promote mineralization and generate dentin/pulp-like structures, suggesting a role in self-renewal of stem cells and dental pulp regenerative therapy.

  2. Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene

    International Nuclear Information System (INIS)

    Mavrothalassitis, G.J.; Watson, D.K.; Papas, T.S.

    1990-01-01

    The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical TATA and CAAT elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1,400 base pairs (bp) upstream from the first major transcription initiation site. A G+C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with TATA-less promoters

  3. Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR

    International Nuclear Information System (INIS)

    Shah, Jinesh N; Shao, Genze; Hei, Tom K; Zhao, Yongliang

    2008-01-01

    Hypermethylation of the TGFBI promoter has been shown to correlate with decreased expression of this gene in human tumor cell lines. In this study, we optimized a methylation-specific polymerase chain reaction (MSP) method and investigated the methylation status of the TGFBI promoter in human lung and prostate cancer specimens. Methylation-specific primers were designed based on the methylation profiles of the TGFBI promoter in human tumor cell lines, and MSP conditions were optimized for accurate and efficient amplification. Genomic DNA was isolated from lung tumors and prostatectomy tissues of prostate cancer patients, bisulfite-converted, and analyzed by MSP. Among 50 lung cancer samples, 44.0% (22/50) harbored methylated CpG sites in the TGFBI promoter. An analysis correlating gene methylation status with clinicopathological cancer features revealed that dense methylation of the TGFBI promoter was associated with a metastatic phenotype, with 42.9% (6/14) of metastatic lung cancer samples demonstrating dense methylation vs. only 5.6% (2/36) of primary lung cancer samples (p < 0.05). Similar to these lung cancer results, 82.0% (41/50) of prostate cancer samples harbored methylated CpG sites in the TGFBI promoter, and dense methylation of the promoter was present in 38.9% (7/18) of prostate cancer samples with the feature of locoregional invasiveness vs. only 19.4% (6/31) of prostate cancer samples without locoregional invasiveness (p < 0.05). Furthermore, promoter hypermethylation correlated with highly reduced expression of the TGFBI gene in human lung and prostate tumor cell lines. We successfully optimized a MSP method for the precise and efficient screening of TGFBI promoter methylation status. Dense methylation of the TGFBI promoter correlated with the extent of TGFBI gene silencing in tumor cell lines and was related to invasiveness of prostate tumors and metastatic status of lung cancer tumors. Thus, TGFBI promoter methylation can be used as a potential

  4. Transforming the culture of surgical education: promoting teacher identity through human factors training.

    Science.gov (United States)

    Cahan, Mitchell A; Starr, Susan; Larkin, Anne C; Litwin, Demetrius E M; Sullivan, Kate M; Quirk, Mark E

    2011-07-01

    Promoting a culture of teaching may encourage students to choose a surgical career. Teaching in a human factors (HF) curriculum, the nontechnical skills of surgery, is associated with surgeons' stronger identity as teachers and with clinical students' improved perception of surgery and satisfaction with the clerkship experience. To describe the effects of an HF curriculum on teaching culture in surgery. Surgeons and educators developed an HF curriculum including communication, teamwork, and work-life balance. Teacher identity, student interest in a surgical career, student perception of the HF curriculum, and teaching awards. Ninety-two of 123 faculty and residents in a single program (75% of total) completed a survey on teacher identity. Fifteen of the participants were teachers of HF. Teachers of HF scored higher than control participants on the total score for teacher identity (P < .001) and for subcategories of global teacher identity (P = .001), intrinsic satisfaction (P = .001), skills and knowledge (P = .006), belonging to a group of teachers (P < .001), feeling a responsibility to teach (P = .008), receiving rewards (P =.01), and HF (P = .02). Third-year clerks indicated that they were more likely to select surgery as their career after the clerkship and rated the curriculum higher when it was taught by surgeons than when taught by educators. Of the teaching awards presented to surgeons during HF years, 100% of those awarded to attending physicians and 80% of those awarded to residents went to teachers of HF. Curricular focus on HF can strengthen teacher identity, improve teacher evaluations, and promote surgery as a career choice.

  5. CENPA overexpression promotes genome instability in pRb-depleted human cells

    Directory of Open Access Journals (Sweden)

    Lentini Laura

    2009-12-01

    Full Text Available Abstract Background Aneuploidy is a hallmark of most human cancers that arises as a consequence of chromosomal instability and it is frequently associated with centrosome amplification. Functional inactivation of the Retinoblastoma protein (pRb has been indicated as a cause promoting chromosomal instability as well centrosome amplification. However, the underlying molecular mechanism still remains to be clarified. Results Here we show that pRb depletion both in wild type and p53 knockout HCT116 cells was associated with the presence of multipolar spindles, anaphase bridges, lagging chromosomes and micronuclei harbouring whole chromosomes. In addition aneuploidy caused by pRb acute loss was not affected by p53 loss. Quantitative real-time RT-PCR showed that pRB depletion altered expression of genes involved in centrosome duplication, kinetochore assembly and in the Spindle Assembly Checkpoint (SAC. However, despite MAD2 up-regulation pRb-depleted cells seemed to have a functional SAC since they arrested in mitosis after treatments with mitotic poisons. Moreover pRb-depleted HCT116 cells showed BRCA1 overexpression that seemed responsible for MAD2 up-regulation. Post-transcriptional silencing of CENPA by RNA interference, resulting in CENP-A protein levels similar to those present in control cells greatly reduced aneuploid cell numbers in pRb-depleted cells. Conclusion Altogether our findings indicate a novel aspect of pRb acute loss that promotes aneuploidy mainly by inducing CENPA overexpression that in turn might induce micronuclei by affecting the correct attachment of spindle microtubules to kinetochores.

  6. p53, erbB-2 and K-ras gene alterations are rare in spontaneous and plutonium-239-induced canine lung neoplasia

    International Nuclear Information System (INIS)

    Tierney, L.A.; Hahn, F.F.; Lechner, J.F.

    1996-01-01

    Inhalation of high-linear energy transfer radiation in the form of radon progeny is a suspected cause of human lung cancer. To gain insight into the types of genetic derangements caused by this type of radiation, lung tumors from beagle dogs exposed to 239 PuO 2 and those arising in animals with no known carcinogen exposure were examined for evidence of aberrations in genes known to be altered in lung tumors. Altered expression of the p53 tumor suppressor gene and proto-oncogene erbB-2 proteins (p185 erbB2 ) was evaluated by immunohistochemical analysis of 117 tumors representing different histological types in exposed (n = 80) and unexposed (n = 37) animals. Twenty-eight tumors were analyzed for K-ras proto-oncogene mutations by polymerase chain reaction amplification and direct sequencing. Fourteen percent (16/116) of all lung neoplasms showed elevated nuclear accumulation of p53 protein. Regardless of exposure history, adenosquamous and squamous cell cancers comprised 94% of all tumors with p53 abnormalities. Eighteen percent (21/117) of all tumors had evidence of erbB-2 protein overexpression. K-ras mutations were not detected in codons 12, 13 or 61 of tumors from unexposed (n = 9) or plutonium-exposed dogs (n = 19). These data indicate that p53 and K-ras gene abnormalities as a result of missense mutation are infrequent events in spontaneous and 239 PuO 2 -induced lung neoplasia in this colony of beagle dogs. Alternative mechanisms of gene alteration may be involved in canine pulmonary carcinogenesis. 45 refs., 3 figs., 2 tabs

  7. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation

    Directory of Open Access Journals (Sweden)

    Yiannis Drosos

    2016-03-01

    Full Text Available The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.

  8. Evaluation of K-ras and p53 expression in pancreatic adenocarcinoma using the cancer genome atlas.

    Directory of Open Access Journals (Sweden)

    Liming Lu

    Full Text Available Genetic alterations in K-ras and p53 are thought to be critical in pancreatic cancer development and progression. However, K-ras and p53 expression in pancreatic adenocarcinoma have not been systematically examined in The Cancer Genome Atlas (TCGA Data Portal. Information regarding K-ras and p53 alterations, mRNA expression data, and protein/protein phosphorylation abundance was retrieved from The Cancer Genome Atlas (TCGA databases, and analyses were performed by the cBioPortal for Cancer Genomics. The mutual exclusivity analysis showed that events in K-ras and p53 were likely to co-occur in pancreatic adenocarcinoma (Log odds ratio = 1.599, P = 0.006. The graphical summary of the mutations showed that there were hotspots for protein activation. In the network analysis, no solid association between K-ras and p53 was observed in pancreatic adenocarcinoma. In the survival analysis, neither K-ras nor p53 were associated with both survival events. As in the data mining study in the TCGA databases, our study provides a new perspective to understand the genetic features of K-ras and p53 in pancreatic adenocarcinoma.

  9. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    Science.gov (United States)

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single

  10. No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer

    NARCIS (Netherlands)

    A. Hollestelle (Antoinette); F.H. Van Der Baan (Frederieke H.); A. Berchuck (Andrew); S.E. Johnatty (Sharon); K.K.H. Aben (Katja); B.A. Agnarsson (Bjarni); K. Aittomäki (Kristiina); E. Alducci (Elisa); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); N.N. Antonenkova (Natalia); A.C. Antoniou (Antonis C.); C. Apicella (Carmel); V. Arndt (Volker); N. Arnold (Norbert); B.K. Arun (Banu); B. Arver (Brita Wasteson); A. Ashworth (Alan); L. Baglietto (Laura); R. Balleine (Rosemary); E.V. Bandera (Elisa); D. Barrowdale (Daniel); Y.T. Bean (Yukie); L. Beckmann (Lars); M.W. Beckmann (Matthias); J. Benítez (Javier); A. Berger (Andreas); R. Berger (Raanan); B. Beuselinck (B.); M. Bisogna (Maria); L. Bjorge (Line); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); A. Bojesen (Anders); S.E. Bojesen (Stig); M.K. Bolla (Manjeet); B. Bonnani (Bernardo); J.S. Brand (Judith S.); H. Brauch (Hiltrud); H. Brenner (Hermann); L.A. Brinton (Louise); A. Brooks-Wilson (Angela); F. Bruinsma (Fiona); J. Brunet (Joan); T. Brüning (Thomas); A. Budzilowska (Agnieszka); C.H. Bunker (Clareann H.); B. Burwinkel (Barbara); R. Butzow (Ralf); S.S. Buys (Saundra S.); M.A. Caligo (Maria); I. Campbell (Ian); J. Carter (Jonathan); J. Chang-Claude (Jenny); S.J. Chanock (Stephen J.); K.B.M. Claes (Kathleen B.M.); J.M. Collée (Margriet); L.S. Cook (Linda S.); F.J. Couch (Fergus); A. Cox (Angela); D.W. Cramer (Daniel); S.S. Cross (Simon); J.M. Cunningham (Julie); C. Cybulski (Cezary); K. Czene (Kamila); F. Damiola (Francesca); A. Dansonka-Mieszkowska (Agnieszka); H. Darabi (Hatef); M. de La Hoya (Miguel); A. DeFazio (Anna); J. Dennis (Joe); P. Devilee (Peter); E. Dicks (Ed); O. Díez (Orland); J.A. Doherty (Jennifer A.); S.M. Domchek (Susan); C.M. Dorfling (Cecilia); T. Dörk (Thilo); I. dos Santos Silva (Isabel); A. Du Bois (Andreas); M. Dumont (Martine); A.M. Dunning (Alison); M. Duran (Mercedes); D.F. Easton (Douglas F.); D. Eccles (Diana); R. Edwards (Robert); H. Ehrencrona (Hans); B. Ejlertsen (Bent); A.B. Ekici (Arif); S.D. Ellis (Steve); C. Engel (Christoph); M. Eriksson (Mikael); P.A. Fasching (Peter); L. Feliubadaló (L.); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); O. Fletcher (Olivia); A. Fontaine (Annette); S. Fortuzzi (S.); F. Fostira (Florentia); B.L. Fridley (Brooke); M.O.W. Friebel (Mark ); E. Friedman (Eitan); G. Friel (Grace); D. Frost (Debra); J. Garber (Judy); M. García-Closas (Montserrat); S.A. Gayther (Simon); A. Gentry-Maharaj (Aleksandra); A-M. Gerdes (Anne-Marie); G.G. Giles (Graham); R. Glasspool (Rosalind); G. Glendon (Gord); A.K. Godwin (Andrew K.); M.T. Goodman (Marc T.); M. Gore (Martin); M.H. Greene (Mark H.); M. Grip (Mervi); J. Gronwald (Jacek); D. Gschwantler-Kaulich (Daphne); P. Guénel (Pascal); S.R. Guzman (Starr R.); L. Haeberle (Lothar); C.A. Haiman (Christopher A.); P. Hall (Per); S.L. Halverson (Sandra L.); U. Hamann (Ute); T.V.O. Hansen (Thomas); P. Harter (Philipp); J.M. Hartikainen (J.); S. Healey (Sue); R. Hein (Rebecca); P.U. Heitz; B.E. Henderson (Brian); J. Herzog (Josef); M.A. T Hildebrandt (Michelle A.); C.K. Høgdall (Claus); E. Høgdall (Estrid); F.B.L. Hogervorst (Frans); J.L. Hopper (John); K. Humphreys (Keith); T. Huzarski (Tomasz); E.N. Imyanitov (Evgeny N.); C. Isaacs (Claudine); A. Jakubowska (Anna); R. Janavicius (Ramunas); K. Jaworska (Katarzyna); A. Jensen (Allan); U.B. Jensen; N. Johnson (Nichola); A. Jukkola-Vuorinen (Arja); M. Kabisch (Maria); B.Y. Karlan (Beth Y.); V. Kataja (Vesa); N. Kauff (Noah); L.E. Kelemen (Linda); M. Kerin (Michael); L.A.L.M. Kiemeney (Bart); M. Kjaer (Michael); J.A. Knight (Julia); J.P. Knol-Bout (Jacoba P.); I. Konstantopoulou (I.); V-M. Kosma (Veli-Matti); C. Krakstad (Camilla); V. Kristensen (Vessela); K.B. Kuchenbaecker (Karoline); J. Kupryjanczyk (Jolanta); Y. Laitman (Yael); D. Lambrechts (Diether); S. Lambrechts (Sandrina); M.C. Larson (Melissa); A. Lasa (Adriana); P. Laurent-Puig (Pierre); C. Lazaro (Conxi); N. Le (Nhu); L. Le Marchand (Loic); A. Leminen (Arto); K.J. Lester (Kathryn); D.A. Levine (Douglas); J. Li (Jingmei); D. Liang (Dong); A. Lindblom (Annika); N.M. Lindor (Noralane); J. Lissowska (Jolanta); J. Long (Jirong); K.H. Lu (Karen); J. Lubinski (Jan); L. Lundvall (Lene); G. Lurie (Galina); P.L. Mai (Phuong); A. Mannermaa (Arto); S. Margolin (Sara); F. Mariette (F.); F. Marme (Federick); J.W.M. Martens (John); L.F. Massuger (Leon); C. Maugard; S. Mazoyer (Sylvie); L. McGuffog (Lesley); W.P. McGuire; C.A. McLean (Catriona Ann); I. McNeish (Iain); A. Meindl (Alfons); F. Menegaux (Florence); P. Menéndez (Primitiva); J. Menkiszak (Janusz); U. Menon (Usha); A.R. Mensenkamp (Arjen); N. Miller (Nicola); R.L. Milne (Roger); F. Modugno (Francesmary); M. Montagna (Marco); K.B. Moysich (Kirsten B.); H. Mul̈ler (Heiko); A.-M. Mulligan (Anna-Marie); T.A. Muranen (Taru); S.A. Narod (Steven A.); K.L. Nathanson (Katherine); R.B. Ness (Roberta B.); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); P. Neven (Patrick); F. Nielsen (Finn); S.F. Nielsen (Sune); B.G. Nordestgaard (Børge); R. Nussbaum (Robert); K. Odunsi (Kunle); K. Offit (Kenneth); E. Olah; O.I. Olopade (Olufunmilayo I.); J.E. Olson (Janet); S.H. Olson (Sara); J.C. Oosterwijk (Jan); I. Orlow (Irene); N. Orr (Nick); S. Orsulic (Sandra); A. Osorio (Ana); L. Ottini (Laura); J. Paul (James); C.L. Pearce (Celeste); I.S. Pedersen (Inge Sokilde); B. Peissel (Bernard); T. Pejovic (Tanja); L.M. Pelttari (Liisa); J. Perkins (Jo); J. Permuth-Wey (Jenny); P. Peterlongo (Paolo); J. Peto (Julian); C. Phelan (Catherine); K.-A. Phillips (Kelly-Anne); M. Piedmonte (Marion); M.C. Pike (Malcolm C.); R. Platte (Radka); J. Plisiecka-Halasa (Joanna); E.M. Poole (Elizabeth); B. Poppe (Bruce); K. Pykäs (Katri); P. Radice (Paolo); S.J. Ramus (Susan); R. Rebbeck (Timothy); M.W.R. Reed (Malcolm W.R.); G. Rennert (Gad); H. Risch (Harvey); M. Robson (Mark); G. Rodriguez (Gustavo); A. Romero (Atocha); M.A. Rossing (Mary Anne); J.H. Rothstein (Joseph H.); A. Rudolph (Anja); I.B. Runnebaum (Ingo); R. Salani (Ritu); H.B. Salvesen (Helga); E.J. Sawyer (Elinor); J.M. Schildkraut (Joellen); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); A. Schneeweiss (Andreas); M. Schoemaker (Minouk); A. Schrauder (André); F.R. Schumacher (Fredrick); I. Schwaab (Ira); G. Scuvera (Giulietta); T.A. Sellers (Thomas A.); G. Severi (Gianluca); C.M. Seynaeve (Caroline); M. Shah (Mitul); M. Shrubsole (Martha); N. Siddiqui (Nadeem); W. Sieh (Weiva); J. Simard (Jacques); C.F. Singer (Christian); O. Sinilnikova (Olga); D. Smeets (Dominiek); C. Sohn (Christof); M. Soller (Maria); H. Song (Honglin); P. Soucy (Penny); M.C. Southey (Melissa); C. Stegmaier (Christa); D. Stoppa-Lyonnet (Dominique); L. Sucheston (Lara); A.J. Swerdlow (Anthony ); I.L. Tangen (Ingvild L.); M.-K. Tea; P.J. Teixeira; K.L. Terry (Kathryn); M.B. Terry (Mary Beth); M. Thomassen (Mads); P.J. Thompson (Pamela J.); L. Tihomirova (Laima); M. Tischkowitz (Marc); A.E. Toland (Amanda); R.A.E.M. Tollenaar (Rob); I. Tomlinson (Ian); D. Torres (Diana); T. Truong (Thérèse); H. Tsimiklis (Helen); N. Tung (Nadine); S. Tworoger (Shelley); J.P. Tyrer (Jonathan); C. Vachon (Celine); L.J. van 't Veer (Laura); A.M. van Altena (Anne); C.J. van Asperen (Christi); D. Van Den Berg (David); A.M.W. van den Ouweland (Ans); H.C. van Doorn (Helena); E. Van Nieuwenhuysen (Els); E.J. van Rensburg (Elizabeth); I. Vergote (Ignace); S. Verhoef; R.A. Vierkant (Robert); J. Vijai (Joseph); A.F. Vitonis (Allison); A. von Wachenfeldt (Anna); C.S. Walsh (Christine); Q. Wang (Qing); S. Wang-Gohrke (Shan); B. Wapenschmidt (Barbara); M. Weischer (Maren); J.N. Weitzel (Jeffrey); C. Weltens (Caroline); N. Wentzensen (N.); A.S. Whittemore (Alice S.); L.R. Wilkens (Lynne R.); R. Winqvist (Robert); A.H. Wu (Anna); X. Wu (Xifeng); H.P. Yang (Hannah P.); D. Zaffaroni (Daniela); M.P. Zamora (Pilar); W. Zheng (Wei); A. Ziogas (Argyrios); G. Chenevix-Trench (Georgia); P.D.P. Pharoah (Paul); M.A. Rookus (Matti); M.J. Hooning (Maartje); E.L. Goode (Ellen L.); Breast Cancer Family Register; EMBRACE; GENICA Network; HEBON; SWE-BRCA

    2016-01-01

    textabstractObjective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies,

  11. Detection of TET2 , KRAS and CBL variants by Next Generation ...

    African Journals Online (AJOL)

    Aim: In this study, we aimed to find possible genetic markers for molecular analysis in childhood AML by screening hot-spot exons of TET2, KRAS, and CBL using Next Generation Sequencing (NGS) analysis. In addition, association between found variants and mutations of Januse Kinase-2 (JAK2) and Fms Related ...

  12. Fat and K-ras mutations in sporadic colorectal cancer in The Netherlands Cohort Study

    NARCIS (Netherlands)

    Brink, M.; Weijenberg, M.P.; Goeij, A.F.P.M. de; Schouten, L.J.; Koedijk, F.D.H.; Roemen, G.M.J.M.; Lentjes, M.H.F.M.; Bruïne, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den

    2004-01-01

    Associations between dietary intake of various fats and specific K-ras mutations in colorectal cancer (CRC) were investigated within the framework of The Netherlands Cohort Study on diet and cancer (NLCS). After 7.3 years of follow-up and with exclusion of the first 2.3 years, 448 colon and 160

  13. Animal products and K-ras codon 12 and 13 mutations in colon carcinomas

    NARCIS (Netherlands)

    Kampman, E.; Voskuil, D.W.; Kraats, A.A. van; Balder, H.F.; Muijen, G.N.P. van; Goldbohm, R.A.; Veer, P. van 't

    2000-01-01

    K-ras gene mutations (codons 12 and 13) were determined by PCR-based mutant allele-specific amplification (MASA) in tumour tissue of 185 colon cancer patients: 36% harboured mutations, of which 82% were located in codon 12. High intakes of animal protein, calcium and poultry were differently

  14. The role of KRAS rs61764370 in invasive epithelial ovarian cancer: implications for clinical testing

    DEFF Research Database (Denmark)

    Pharoah, Paul D P; Palmieri, Rachel T; Ramus, Susan J

    2011-01-01

    PURPOSE: An assay for the single nucleotide polymorphism (SNP) rs61764370 has recently been commercially marketed as a clinical test to aid ovarian cancer risk evaluation in women with family histories of the disease. rs67164370 is in a 3'UTR miRNA binding site of the KRAS oncogene, and is a cand...

  15. Human ergology that promotes participatory approach to improving safety, health and working conditions at grassroots workplaces: achievements and actions.

    Science.gov (United States)

    Kawakami, Tsuyoshi

    2011-12-01

    Participatory approaches are increasingly applied to improve safety, health and working conditions of grassroots workplaces in Asia. The core concepts and methods in human ergology research such as promoting real work life studies, relying on positive efforts of local people (daily life-technology), promoting active participation of local people to identify practical solutions, and learning from local human networks to reach grassroots workplaces, have provided useful viewpoints to devise such participatory training programmes. This study was aimed to study and analyze how human ergology approaches were applied in the actual development and application of three typical participatory training programmes: WISH (Work Improvement for Safe Home) with home workers in Cambodia, WISCON (Work Improvement in Small Construction Sites) with construction workers in Thailand, and WARM (Work Adjustment for Recycling and Managing Waste) with waste collectors in Fiji. The results revealed that all the three programmes, in the course of their developments, commonly applied direct observation methods of the work of target workers before devising the training programmes, learned from existing local good examples and efforts, and emphasized local human networks for cooperation. These methods and approaches were repeatedly applied in grassroots workplaces by taking advantage of their the sustainability and impacts. It was concluded that human ergology approaches largely contributed to the developments and expansion of participatory training programmes and could continue to support the self-help initiatives of local people for promoting human-centred work.

  16. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    International Nuclear Information System (INIS)

    Lin, Chunlong; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-01-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  17. miR-16 promotes the apoptosis of human cancer cells by targeting FEAT

    International Nuclear Information System (INIS)

    Liang, Hongwei; Fu, Zheng; Jiang, Xueyuan; Wang, Nan; Wang, Feng; Wang, Xueliang; Zhang, Suyang; Wang, Yanbo; Yan, Xin; Guan, Wen-xian; Zhang, Chen-Yu; Zen, Ke; Zhang, Yujing; Chen, Xi; Zhou, Guangxin

    2015-01-01

    Although human cancers have heterogeneous combinations of altered oncogenes, some crucial genes are universally dysregulated in most cancers. One such gene, FEAT (faint expression in normal tissues, aberrant overexpression in tumors), is uniformly overexpressed in a variety of human cancers and plays an important role in tumorigenesis by suppressing apoptosis. However, the precise molecular mechanism through which FEAT is upregulated during tumorigenesis remains largely unknown. In this study, we used bioinformatic analyses to search for miRNAs that potentially target FEAT. We examined the expression of FEAT protein level by western blotting and miR-16 level by qRT-PCR assay. Cancer cell lines (A549, MCF-7 and Huh-7) with miR-16 upregulation and FEAT silencing were established and the effects on apoptosis of cancer cells in vitro were assessed. Luciferase reporter assay was also performed to investigate the interaction between miR-16 and FEAT. We identified a specific target site for miR-16 in the 3′-untranslated region (3′-UTR) of FEAT. Consistent with the bioinformatic analyses, we identified an inverse correlation between the miR-16 and FEAT protein levels in lung cancer, breast cancer, and hepatocellular cancer tissues. We then experimentally validated miR-16 as a direct regulator of FEAT using cell transfection and luciferase assays. Finally, we demonstrated that the repression of FEAT by miR-16 promoted the apoptosis of cancer cells. Our findings provide the first clues regarding the role of miR-16 as a tumor suppressor in cancer cells through the inhibition of FEAT translation. The online version of this article (doi:10.1186/s12885-015-1458-8) contains supplementary material, which is available to authorized users

  18. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    International Nuclear Information System (INIS)

    Chen, Junyi; Jiao, Li; Xu, Chuanliang; Yu, Yongwei; Zhang, Zhensheng; Chang, Zheng; Deng, Zhen; Sun, Yinghao

    2012-01-01

    Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer

  19. G Protein-Coupled Receptor 87 (GPR87 Promotes Cell Proliferation in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2015-10-01

    Full Text Available G protein-coupled receptor 87 (GPR87 is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87 and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3, but not in the mutant p53 cells (HT1376 and J82. As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.

  20. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chunlong, E-mail: lclmd@sina.com; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-02-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  1. Detection and Analysis of EGFR and KRAS Mutations 
in the Patients with Lung Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2015-10-01

    Full Text Available Background and objective Activating mutations in epidermal growth factor receptor (EGFR and KRAS are important markers in non-small cell lung cancer. However, EGFR and KRAS gene mutations in lung squamous cell carcinoma are rarely reported. The aim of this study was to analyze EGFR and KRAS gene mutation rate and their relationship with clinical features in patients with lung squamous cell carcinomas. Methods A total of 139 patients undergoing treatment for naïve lung squamous cell carcinomas with tumor tissue samples available for testing were recruited. EGFR and KRAS mutation statuses of the tumor samples were detected using a mutant enriched liquid chip. Results Of the 139 cases of lung squamous cell carcinoma, EGFR mutations were detected in 25 cases (18%, KRAS mutations were detected in 7 cases (5%, and the presence of both EGFR and KRAS mutations was detected in 1 case (0.7%. EGFR mutations occurred more often in females than in males (33.3% vs 16.5% and in patients that never smoked than in those who smoke (29.6% vs 16.1%. However, the difference did not reach statistical significance (P>0.05. No significant differences were observed in age, stage, and different biopsy type. KRAS mutations occurred more often in males than in females (5.5% vs 0%, but the difference did not reach statistical significance (P>0.05. No significant differences were observed in age, stage, different biopsy type, and smoking status (P>0.05. Conclusion EGFR and KRAS mutations were low in lung squamous cell carcinomas, and had no significant correlation with clinical features. Before using tyrosine kinase inhibitor targeted therapy, EGFR and KRAS mutations should be detected in patients with lung squamous cell carcinomas.

  2. Impact of KRAS, BRAF and PI3KCA mutations in rectal carcinomas treated with neoadjuvant radiochemotherapy and surgery

    International Nuclear Information System (INIS)

    Derbel, Olfa; La Fouchardière, Christelle de; Wang, Qing; Desseigne, Françoise; Rivoire, Michel; Meeus, Pierre; Peyrat, Patrice; Stella, Mattia; Martel-Lafay, Isabelle; Lemaistre, Anne-Isabelle

    2013-01-01

    Conventional treatment for locally advanced rectal cancer usually combines neoadjuvant radiochemotherapy and surgery. Until recently, there have been limited predictive factors (clinical or biological) for rectal tumor response to conventional treatment. KRAS, BRAF and PIK3CA mutations are commonly found in colon cancers. In this study, we aimed to determine the mutation frequencies of KRAS, BRAF and PIK3CA and to establish whether such mutations may be used as prognostic and/or predictive factors in rectal cancer patients. We retrospectively reviewed the clinical and biological data of 98 consecutive operated patients between May 2006 and September 2009. We focused in patients who received surgery in our center after radiochemotherapy and in which tumor samples were available. In the 98 patients with a rectal cancer, the median follow-up time was 28.3 months (4–74). Eight out of ninety-eight patients experienced a local recurrence (8%) and 17/98 developed distant metastasis (17%). KRAS, BRAF and PIK3CA were identified respectively in 23 (23.5%), 2 (2%) and 4 (4%) patients. As described in previous studies, mutations in KRAS and BRAF were mutually exclusive. No patient with local recurrence exhibited KRAS or PIK3CA mutation and one harbored BRAF mutation (12.5%). Of the seventeen patients with distant metastasis (17%), 5 were presenting KRAS mutation (29%), one BRAF (5%) and one PIK3CA mutation (5%). No relationship was seen between PIK3CA, KRAS or BRAF mutation and local or distant recurrences. The frequencies of KRAS, BRAF and PIK3CA mutations in our study were lower than the average frequencies reported in colorectal cancers and no significant correlation was found between local/distant recurrences and KRAS, BRAF or PIK3CA mutations. Future studies with greater number of patients, longer follow-up time and greater power to predict associations are necessary to fully understand this relationship

  3. Epidermal Growth Factor Receptor and K-RAS status in two cohorts of squamous cell carcinomas

    International Nuclear Information System (INIS)

    Van Damme, Nancy; Pauwels, Patrick; Peeters, Marc; Deron, Philippe; Van Roy, Nadine; Demetter, Pieter; Bols, Alain; Dorpe, Jo Van; Baert, Filip; Van Laethem, Jean-Luc; Speleman, Franki

    2010-01-01

    With the availability of effective anti-EGFR therapies for various solid malignancies, such as non-cell small lung cancer, colorectal cancer and squamous cell carcinoma of the head and neck, the knowledge of EGFR and K-RAS status becomes clinically important. The aim of this study was to analyse EGFR expression, EGFR gene copy number and EGFR and K-RAS mutations in two cohorts of squamous cell carcinomas, specifically anal canal and tonsil carcinomas. Formalin fixed, paraffin-embedded tissues from anal and tonsil carcinoma were used. EGFR protein expression and EGFR gene copy number were analysed by means of immunohistochemistry and fluorescence in situ hybridisation. The somatic status of the EGFR gene was investigated by PCR using primers specific for exons 18 through 21. For the K-RAS gene, PCR was performed using exon 2 specific primers. EGFR immunoreactivity was present in 36/43 (83.7%) of anal canal and in 20/24 (83.3%) of tonsil squamous cell carcinomas. EGFR amplification was absent in anal canal tumours (0/23), but could be identified in 4 of 24 tonsil tumours. From 38 anal canal specimens, 26 specimens were successfully analysed for exon 18, 30 for exon 19, 34 for exon 20 and 30 for exon 21. No EGFR mutations were found in the investigated samples. Thirty samples were sequenced for K-RAS exon 2 and no mutation was identified. From 24 tonsil specimens, 22 were successfully analysed for exon 18 and all 24 specimens for exon 19, 20 and 21. No EGFR mutations were found. Twenty-two samples were sequenced for K-RAS exon 2 and one mutation c.53C > A was identified. EGFR mutations were absent from squamous cell carcinoma of the anus and tonsils, but EGFR protein expression was detected in the majority of the cases. EGFR amplification was seen in tonsil but not in anal canal carcinomas. In our investigated panel, only one mutation in the K-RAS gene of a tonsil squamous cell carcinoma was identified. This indicates that EGFR and K-RAS mutation analysis is not

  4. Epidermal Growth Factor Receptor and K-RAS status in two cohorts of squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Van Laethem Jean-Luc

    2010-05-01

    Full Text Available Abstract Background With the availability of effective anti-EGFR therapies for various solid malignancies, such as non-cell small lung cancer, colorectal cancer and squamous cell carcinoma of the head and neck, the knowledge of EGFR and K-RAS status becomes clinically important. The aim of this study was to analyse EGFR expression, EGFR gene copy number and EGFR and K-RAS mutations in two cohorts of squamous cell carcinomas, specifically anal canal and tonsil carcinomas. Methods Formalin fixed, paraffin-embedded tissues from anal and tonsil carcinoma were used. EGFR protein expression and EGFR gene copy number were analysed by means of immunohistochemistry and fluorescence in situ hybridisation. The somatic status of the EGFR gene was investigated by PCR using primers specific for exons 18 through 21. For the K-RAS gene, PCR was performed using exon 2 specific primers. Results EGFR immunoreactivity was present in 36/43 (83.7% of anal canal and in 20/24 (83.3% of tonsil squamous cell carcinomas. EGFR amplification was absent in anal canal tumours (0/23, but could be identified in 4 of 24 tonsil tumours. From 38 anal canal specimens, 26 specimens were successfully analysed for exon 18, 30 for exon 19, 34 for exon 20 and 30 for exon 21. No EGFR mutations were found in the investigated samples. Thirty samples were sequenced for K-RAS exon 2 and no mutation was identified. From 24 tonsil specimens, 22 were successfully analysed for exon 18 and all 24 specimens for exon 19, 20 and 21. No EGFR mutations were found. Twenty-two samples were sequenced for K-RAS exon 2 and one mutation c.53C > A was identified. Conclusion EGFR mutations were absent from squamous cell carcinoma of the anus and tonsils, but EGFR protein expression was detected in the majority of the cases. EGFR amplification was seen in tonsil but not in anal canal carcinomas. In our investigated panel, only one mutation in the K-RAS gene of a tonsil squamous cell carcinoma was identified

  5. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2004-02-01

    Full Text Available Abstract Background Gene expression is regulated mainly by transcription factors (TFs that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS using position weight matrices (PWMs that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. Results We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster, we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. Conclusion Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1 those that show TFBS clustered in promoters associated with CGI, and (2 those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in

  6. The 21st Century Digital Student: Google Books as a Tool in Promoting Undergraduate Research in the Humanities

    Science.gov (United States)

    Karpenko, Lara; Dietz, Lauri

    2013-01-01

    In this article, we contend that publically available, mass digitization projects, such as Google Books, present faculty, regardless of their specific institutional context, with an exciting opportunity to promote meaningful undergraduate research in the humanities. By providing a classroom case study and by proposing an institutional model, we…

  7. Comment on: withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health

    DEFF Research Database (Denmark)

    Hammerum, Anette Marie; Heuer, Ole Eske; Lester, Camilla H.

    2007-01-01

    In response to a review titled 'Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health', published in this Journal by Ian Phillips, we hereby comment on the review. Phillips makes use of data from the Danish Integrated Antimicrobial Resistance Monitoring...

  8. Can human rights standards help protect children and youth from the detrimental impact of alcohol beverage marketing and promotional activities?

    Science.gov (United States)

    Chapman, Audrey R

    2017-01-01

    The alcohol industry in the Latin American and Caribbean (LAC) region promotes demand for alcohol products actively through a number of channels, including advertising and sponsorship of sports and other events. This paper evaluates whether human rights instruments that Latin American countries have ratified can be used to limit children's exposure to alcohol advertising and promotion. A review was conducted of the text of, and interpretative documents related to, a series of international and regional human rights instruments ratified by most countries in the LAC region that enumerate the right to health. The Convention on the Rights of the Child has the most relevant provisions to protect children and youth from alcohol promotion and advertising. Related interpretive documents by the United Nations Committee on the Rights of the Child affirm that corporations hold duties to respect and protect children's right to health. Human rights norms and law can be used to regulate or eliminate alcohol beverage marketing and promotional activities in the Latin American region. The paper recommends developing a human rights based Framework Convention on Alcohol Control to provide guidance. © 2016 Society for the Study of Addiction.

  9. Effect of tumour promoter iodoacetate on γ-radiation induced chromosomal aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    Anjaria, K.B.; Shirsath, K.B.; Bhat, N.N.; Sreedevi, B.

    2010-01-01

    It has been reported that tumour-promoting agents potentiate a number of genetic events induced by initiating agents in vitro Iodoacetate (IA) is reported to be a tumour promoter of moderate potency and although to the best of our knowledge, tumour promoting ability of IA in animals has not been reported, a large number of studies have reported various types of effects of IA, which may result in tumour promotion. In this paper, the modifying effects of tumour promoter IA on radiation induced dicentrics in peripheral blood lymphocytes have been reported

  10. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  11. Non-canonical TAF complexes regulate active promoters in human embryonic stem cells.

    Science.gov (United States)

    Maston, Glenn A; Zhu, Lihua Julie; Chamberlain, Lynn; Lin, Ling; Fang, Minggang; Green, Michael R

    2012-11-13

    The general transcription factor TFIID comprises the TATA-box-binding protein (TBP) and approximately 14 TBP-associated factors (TAFs). Here we find, unexpectedly, that undifferentiated human embryonic stem cells (hESCs) contain only six TAFs (TAFs 2, 3, 5, 6, 7 and 11), whereas following differentiation all TAFs are expressed. Directed and global chromatin immunoprecipitation analyses reveal an unprecedented promoter occupancy pattern: most active genes are bound by only TAFs 3 and 5 along with TBP, whereas the remaining active genes are bound by TBP and all six hESC TAFs. Consistent with these results, hESCs contain a previously undescribed complex comprising TAFs 2, 6, 7, 11 and TBP. Altering the composition of hESC TAFs, either by depleting TAFs that are present or ectopically expressing TAFs that are absent, results in misregulated expression of pluripotency genes and induction of differentiation. Thus, the selective expression and use of TAFs underlies the ability of hESCs to self-renew.DOI:http://dx.doi.org/10.7554/eLife.00068.001.

  12. Cuscuta chinensis extract promotes osteoblast differentiation and mineralization in human osteoblast-like MG-63 cells.

    Science.gov (United States)

    Yang, Hyun Mo; Shin, Hyun-Kyung; Kang, Young-Hee; Kim, Jin-Kyung

    2009-02-01

    The aim of the present study was to investigate whether the aqueous extract of To-Sa-Za (TSZ-AE), the seed of Cuscuta chinensis Lam., which is a traditional medicinal herb commonly used in Korea and other oriental countries, could induce osteogenic activity in human osteoblast-like MG-63 cells. TSZ-AE treatment mildly promoted the proliferation of MG-63 cells at doses of 500 and 1,000 microg/mL in the 24-hour culture period. Dose-dependent increases in alkaline phosphatase (ALP) activity and collagen synthesis were shown at 48 and 72 hours of incubation. The release of bone morphogenetic protein (BMP)-2 but not osteocalcin in the MG-63 cells was induced by TSZ-AE at 72 hours (100-1,000 microg/mL). In addition, TSZ-AE markedly increased mRNA expression of ALP, collagen, and BMP-2 in the MG-63 cells in a dose-dependent manner. Mineralization in the culture of MG-63 cells was significantly induced at 500 and 1,000 microg/mL TSZ-AE treatment. In conclusion, this study shows that TSZ-AE enhanced ALP activity, collagen synthesis, BMP-2 expression, and mineralization in MG-63 cells. These results strongly suggest that C. chinensis can play an important role in osteoblastic bone formation and may possibly lead to the development of bone-forming drugs.

  13. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    International Nuclear Information System (INIS)

    Wang, Ding; Chen, Ke; Du, Wei Ting; Han, Zhi-Bo; Ren, He; Chi, Ying

    2010-01-01

    Here, the effect of CD14 + monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-γ (IFN-γ) secretion capacities of CD4 + and CD8 + T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E 2 (PGE 2 ) as an important soluble mediator. CD14 + monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1β, either exogenously added or produced by CD14 + monocytes in culture, could trigger expression of high levels of PGE 2 by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE 2 expression, but also reversed the promotional effect of CD14 + monocytes and partially restored CD4 + and CD8 + T cell proliferation and IFN-γ secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  14. Advertisements promoting human papillomavirus vaccine for adolescent boys: does source matter?

    Science.gov (United States)

    Pepper, Jessica K; Reiter, Paul L; McRee, Annie-Laurie; Brewer, Noel T

    2012-06-01

    Many parents recall hearing of human papillomavirus (HPV) vaccine through drug company advertisements. This study sought to examine whether parents accurately recall the source (ie, sponsor) of advertisements promoting HPV vaccine and the impact of drug company advertisements. A U.S. national sample of 544 parents of adolescent boys aged 11-17 participated in an online between-subjects experiment. Parents viewed an advertisement encouraging HPV vaccination for boys with a logo from a randomly assigned source. Parents rated trust, likability and motivation for vaccination while viewing the advertisement and later indicated who they believed sponsored it. Nearly half (43%) of parents who viewed a hypothetical advertisement containing a logo incorrectly identified the advertisement source. More parents correctly identified the source of drug company advertisements than advertisement from other sources (62% vs. 25%, OR 4.93, 95% CI 3.26 to 7.46). The majority of parents who saw a logo-free advertisement believed a drug company created it (60%). Among parents who correctly identified the advertisement source, drug company advertisements decreased motivation to vaccinate their sons, an association mediated by reduced liking of and trust in the advertisements. Parents were more accurate in identifying drug company advertisements, primarily because they tended to assume any advertisement was from a drug company. Public health organisations may need to take special measures to ensure their messages are not perceived as sponsored by drug companies.

  15. The human nuclear poly(a-binding protein promotes RNA hyperadenylation and decay.

    Directory of Open Access Journals (Sweden)

    Stefan M Bresson

    Full Text Available Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A-binding protein (PABPN1, the poly(A polymerases (PAPs, PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression.

  16. Promoting women's human rights: A qualitative analysis of midwives' perceptions about virginity control and hymen 'reconstruction'.

    Science.gov (United States)

    Christianson, Monica; Eriksson, Carola

    2015-06-01

    To explore midwives' perceptions regarding virginity control and hymen 'reconstructions', and how these practices can be debated from a gender perspective. An international group of 266 midwives answered an open-ended question in a Web survey. The great majority came from the Western world, among them, the majority were from Europe. Data were analysed using qualitative content analysis. Three themes emerged: misogynistic practices that cement the gender order, which revealed how the respondents viewed virginity control and hymen 'reconstructions'; raising public awareness and combatting practices that demean women, which were suggested as strategies by which to combat these practices; and promoting agency in women and providing culturally sensitive care, which were considered to improve health care encounters. Virginity control and hymen 'reconstructions' are elements of patriarchy, whereby violence and control are employed to subordinate women. To counter these practices, macro and micro-level activities are needed to expand women's human rights in the private and the public spheres. Political activism, international debates, collaboration between sectors such as health care and law-makers may lead to increased gender equality. A women-centred approach whereby women are empowered with agency will make women more capable of combatting virginity control and hymen 'reconstruction'.

  17. Cryptomphalus aspersa Mollusc Egg Extract Promotes Regenerative Effects in Human Dermal Papilla Stem Cells

    Directory of Open Access Journals (Sweden)

    María Teresa Alameda

    2017-02-01

    Full Text Available The aim of this study was to test, by an in vitro approach, whether a natural extract derived from eggs of the mollusc Cryptomphalus aspersa (e-CAF that seems to present regenerative properties, can enhance the mobilization of human hair dermal papilla cells (HHDPCs and play a role on tissue repair and regeneration. We have tested HHDPCs proliferation by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium-bromide (MTT assay; cell migration by using a wound healing assay, as well as the modulation of the expression of cytoskeletal (F-actin and vimentin and cell adhesion to the extracellular matrix (ECM (vinculin and P-FAK proteins. We also explored whether e-CAF could lead HHDPCs to keratinocytes and/or fibroblasts by evaluating the expression of specific markers. We have compared these e-CAF effects with those induced by TGFβ1, implicated in regulation of cell proliferation and migration. e-CAF promotes proliferation and migration of HDDPCs cells in a time- and dose-dependent manner; it also increases the migratory behavior and the expression of adhesion molecules. These results support the fact that e-CAF could play a role on skin regeneration and be used for the prevention or repair of damaged tissue, either due to external causes or as a result of cutaneous aging.

  18. Data in support of FSH induction of IRS-2 in human granulosa cells: Mapping the transcription factor binding sites in human IRS-2 promoter

    Directory of Open Access Journals (Sweden)

    Surleen Kaur

    2016-03-01

    Full Text Available Insulin receptor substrate-2 (IRS-2 plays critical role in the regulation of various metabolic processes by insulin and IGF-1. The defects in its expression and/or function are linked to diseases like polycystic ovary syndrome (PCOS, insulin resistance and cancer. To predict the transcription factors (TFs responsible for the regulation of human IRS-2 gene expression, the transcription factor binding sites (TFBS and the corresponding TFs were investigated by analysis of IRS-2 promoter sequence using MatInspector Genomatix software (Cartharius et al., 2005 [1]. The ibid data is part of author׳s publication (Anjali et al., 2015 [2] that explains Follicle stimulating hormone (FSH mediated IRS-2 promoter activation in human granulosa cells and its importance in the pathophysiology of PCOS. Further analysis was carried out for binary interactions of TF regulatory genes in IRS-2 network using Cytoscape software tool and R-code. In this manuscript, we describe the methodology used for the identification of TFBSs in human IRS-2 promoter region and provide details on experimental procedures, analysis method, validation of data and also the raw files. The purpose of this article is to provide the data on all TFBSs in the promoter region of human IRS-2 gene as it has the potential for prediction of the regulation of IRS-2 gene in normal or diseased cells from patients with metabolic disorders and cancer. Keywords: IRS-2, TFBS, FSH, SP1, ChIP

  19. Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers

    Directory of Open Access Journals (Sweden)

    Doğan A

    2012-09-01

    Full Text Available Aysegül Doğan,1 Mehmet E Yalvaç,1,2 Fikrettin Şahin,1 Alexander V Kabanov,3–5 András Palotás,6 Albert A Rizvanov71Department of Genetics and BioEngineering, College of Engineering and Architecture, Yeditepe University, Istanbul, Turkey; 2Center for Gene Therapy, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA; 3Center for Drug Delivery and Nanomedicine, 4Department of Pharmaceutical Sciences, College of Pharmacy, Durham Research Center, University of Nebraska Medical Center, Omaha, NE, USA; 5Laboratory of Chemical Design of Bio-nano-materials, Department of Chemistry, Mikhail V Lomonosov Moscow State University, Moscow, Russia; 6Asklepios-Med, Szeged, Hungary; 7Institute of Fundamental Medicine and Biology, Kazan (Volga Region Federal University, Kazan, RussiaAbstract: Stem cell usage provides novel avenues of tissue regeneration and therapeutics across disciplines. Apart from ethical considerations, the selection and amplification of donor stem cells remain a challenge. Various biopolymers with a wide range of properties have been used extensively to deliver biomolecules such as drugs, growth factors and nucleic acids, as well as to provide biomimetic surface for cellular adhesion. Using human tooth germ stem cells with high proliferation and transformation capacity, we have investigated a range of biopolymers to assess their potential for tissue engineering. Tolerability, toxicity, and their ability to direct differentiation were evaluated. The majority of pluronics, consisting of both hydrophilic and hydrophobic poly(ethylene oxide chains, either exerted cytotoxicity or had no significant effect on human tooth germ stem cells; whereas F68 increased the multi-potency of stem cells, and efficiently transformed them into osteogenic, chondrogenic, and adipogenic tissues. The data suggest that differentiation and maturation of stem cells can be promoted by selecting the appropriate mechanical and chemical

  20. Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer

    International Nuclear Information System (INIS)

    Noetzel, Erik; Veeck, Jürgen; Niederacher, Dieter; Galm, Oliver; Horn, Felicitas; Hartmann, Arndt; Knüchel, Ruth; Dahl, Edgar

    2008-01-01

    Inhibitor of DNA binding/Inhibitor of differentiation 4 (ID4) is a critical factor for cell proliferation and differentiation in normal vertebrate development. ID4 has regulative functions for differentiation and growth of the developing brain. The role of ID1, ID2 and ID3 are expected to be oncogenic due to their overexpression in pancreatic cancer and colorectal adenocarcinomas, respectively. Aside from these findings, loss of ID3 expression was demonstrated in ovarian cancer. The aim of the present study was to reveal the factual role of ID4 in carcinogenesis in more detail, since its role for the pathogenesis of human breast cancer has been discussed controversially, assigning both oncogenic and tumour suppressive functions. ID4 promoter methylation, ID4 mRNA expression and ID4 protein expression were analysed in primary human breast cancer specimens using methylation-specific PCR (MSP) (n=170), semiquantitative realtime RT-PCR (n=46) and immunhistochemistry (n=3), respectively. In order to demonstrate a functional association of ID4 promoter methylation with its gene silencing, we performed DNA demethylation analysis with four human breast cell lines using MSP and semiquantitative realtime RT-PCR. In addition, we performed correlations of ID4 promoter methylation with ID4 mRNA and ID4 protein expression in matched samples of breast tumour and corresponding normal tissue. We carried out statistical analyses in order to find correlations between ID4 promoter methylation and clinicopathological parameters. Frequent ID4 promoter methylation was observed in primary breast cancer samples (69%, 117/170). We found a tight correlation (P<0.0001) between ID4 promoter methylation and loss of ID4 expression in primary breast cancer 3 specimens. Demethylating treatment with breast cancer cell lines was associated with clear ID4 mRNA re-expression. Tumours with ID4 promoter methylation showed distinct loss of ID4 expression on both transcription and protein level

  1. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  2. Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Directory of Open Access Journals (Sweden)

    Walseth Timothy F

    2008-03-01

    Full Text Available Abstract Background CD38 is expressed in human airway smooth muscle (HASM cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α. CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene. Methods We cloned a putative 3 kb promoter fragment of the human cd38 gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative cd38 promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies. Results TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to

  3. KRAS Genotype Correlates with Proteasome Inhibitor Ixazomib Activity in Preclinical In Vivo Models of Colon and Non-Small Cell Lung Cancer: Potential Role of Tumor Metabolism.

    Directory of Open Access Journals (Sweden)

    Nibedita Chattopadhyay

    Full Text Available In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition.

  4. KRAS Genotype Correlates with Proteasome Inhibitor Ixazomib Activity in Preclinical In Vivo Models of Colon and Non-Small Cell Lung Cancer: Potential Role of Tumor Metabolism.

    Science.gov (United States)

    Chattopadhyay, Nibedita; Berger, Allison J; Koenig, Erik; Bannerman, Bret; Garnsey, James; Bernard, Hugues; Hales, Paul; Maldonado Lopez, Angel; Yang, Yu; Donelan, Jill; Jordan, Kristen; Tirrell, Stephen; Stringer, Bradley; Xia, Cindy; Hather, Greg; Galvin, Katherine; Manfredi, Mark; Rhodes, Nelson; Amidon, Ben

    2015-01-01

    In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC) and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT) KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition.

  5. Statins Activate Human PPAR Promoter and Increase PPAR mRNA Expression and Activation in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Makoto Seo

    2008-01-01

    Full Text Available Statins increase peroxisome proliferator-activated receptor (PPAR mRNA expression, but the mechanism of this increased PPAR production remains elusive. To examine the regulation of PPAR production, we examined the effect of 7 statins (atorvastatin, cerivastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin on human PPAR promoter activity, mRNA expression, nuclear protein levels, and transcriptional activity. The main results are as follows. (1 Majority of statins enhanced PPAR promoter activity in a dose-dependent manner in HepG2 cells transfected with the human PPAR promoter. This enhancement may be mediated by statin-induced HNF-4. (2 PPAR mRNA expression was increased by statin treatment. (3 The PPAR levels in nuclear fractions were increased by statin treatment. (4 Simvastatin, pravastatin, and cerivastatin markedly enhanced transcriptional activity in 293T cells cotransfected with acyl-coenzyme A oxidase promoter and PPAR/RXR expression vectors. In summary, these data demonstrate that PPAR production and activation are upregulated through the PPAR promoter activity by statin treatment.

  6. The human luteinizing hormone receptor gene promoter: activation by Sp1 and Sp3 and inhibitory regulation.

    Science.gov (United States)

    Geng, Y; Tsai-Morris, C H; Zhang, Y; Dufau, M L

    1999-09-24

    To understand the transcriptional mechanism(s) of human LH receptor (LHR) gene expression, we have identified the dominant functional cis-elements that regulate the activity of the promoter domain (-1 to -176 bp from ATG). Mutagenesis demonstrated that the promoter activity was dependent on two Sp1 domains (-79 bp, -120 bp) in a transformed normal placental cell (PLC) and the choriocarcinoma JAR cell. Both elements interacted with endogenous Sp1 and Sp3 factors but not with Sp2 or Sp4. In Drosophila SL2 cells, the promoter was activated by either Sp1 or Sp3. An ERE half-site (EREhs) at -174 bp was inhibitory (by 100%), but was unresponsive to estradiol and did not bind the estrogen receptor or orphan receptors ERR1 and SF-1. The 5' upstream sequence (-177 to -2056 bp) inhibited promoter activity in PLC by 60%, but only minimally in JAR cells. Activation of the human LHR promoter through Sp1/3 factors is negatively regulated through EREhs and upstream sequences to exert control of gene expression. Copyright 1999 Academic Press.

  7. [The efficacy of autocatalytic casapse-3 driven by human telomerase reverse transcriptase promoter on human ovarian carcinoma].

    Science.gov (United States)

    Song, Yue; Shen, Keng; Yu, Jing-rong

    2007-11-06

    To construct recombinant adenoviral vector expressing autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter (hTERTp), and investigate its antitumor effect on ovarian cancer in vitro and in vivo. Recombinant adenovirus expressing autocatalytic caspase-3 (rev-csapase-3) driven by hTERTp, AdHT-rev-casp3, was constructed. Ad-rev-casp3 expressing rev-caspase-3 driven by cytomegalovirus promoter (CMVp) was used as a positive control. hTERT positive human ovarian cancer cells of the line AO and hTERT-negative human umbilical venous endothelial cells (HUVECs) were cultured and transfected with AdHT-rev-casp3, Ad-rev-casp3, or Ad-EGFG expressing enhanced green fluorescent protein as control group. Western blotting, Cell Counting Kit (CCK-8), flow cytometry, and TUNEL were used to detect the expression of p17, active subunit of caspase-3, and p85, a poly ADP-ribose polymerase (PARP) cleavage fragment, and they were also used to measure the cell survival rate and apoptotic rate. Western blotting was used to detect the expression of active caspase-3 and its substrate PARP in the AO cells and HUVECs. Twenty nude BALB/c mice were inoculated subcutaneously with AO cells to establish subcutaneous tumor models, when the tumor grew to the volume of 150 mm3 the rats were divided into 4 equal groups to undergo intra-tumor injection of AdHT-rev-casp3, Ad-rev-casp3, Ad-EGFG, and phosphate-buffered saline (PBS) respectively, the survival rate tumor inhibition rate was observed, 72 days later the mice were killed with their livers and tumors taken out, and Western blotting was used to detect the expression of active caspase-3. Another 40 mice underwent intraperitoneal injection of AO cells to establish intraperitoneal transplanted tumor models, 21 days later the rats were divided into 4 equal groups to be injected intraperitoneally with AdHT-rev-casp3, Ad-rev-casp3, Ad-EGFG, or PBS, the survival rate was observed, and the blood levels of alanine transaminase

  8. Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

    International Nuclear Information System (INIS)

    Dávalos-Salas, Mercedes; Furlan-Magaril, Mayra; González-Buendía, Edgar; Valdes-Quezada, Christian; Ayala-Ortega, Erandi; Recillas-Targa, Félix

    2011-01-01

    Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb) gene promoter in different tumoral cell lines. To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays. We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation. This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing

  9. Matrix metalloproteinase-2 of human carotid atherosclerotic plaques promotes platelet activation. Correlation with ischaemic events.

    Science.gov (United States)

    Lenti, Massimo; Falcinelli, Emanuela; Pompili, Marcella; de Rango, Paola; Conti, Valentina; Guglielmini, Giuseppe; Momi, Stefania; Corazzi, Teresa; Giordano, Giuseppe; Gresele, Paolo

    2014-06-01

    Purified active matrix metalloproteinase-2 (MMP-2) is able to promote platelet aggregation. We aimed to assess the role of MMP-2 expressed in atherosclerotic plaques in the platelet-activating potential of human carotid plaques and its correlation with ischaemic events. Carotid plaques from 81 patients undergoing endarterectomy were tested for pro-MMP-2 and TIMP-2 content by zymography and ELISA. Plaque extracts were incubated with gel-filtered platelets from healthy volunteers for 2 minutes before the addition of a subthreshold concentration of thrombin receptor activating peptide-6 (TRAP-6) and aggregation was assessed. Moreover, platelet deposition on plaque extracts immobilised on plastic coverslips under high shear-rate flow conditions was measured. Forty-three plaque extracts (53%) potentiated platelet aggregation (+233 ± 26.8%), an effect prevented by three different specific MMP-2 inhibitors (inhibitor II, TIMP-2, moAb anti-MMP-2). The pro-MMP-2/TIMP-2 ratio of plaques potentiating platelet aggregation was significantly higher than that of plaques not potentiating it (3.67 ± 1.21 vs 1.01 ± 0.43, p<0.05). Moreover, the platelet aggregation-potentiating effect, the active-MMP-2 content and the active MMP-2/pro-MMP-2 ratio of plaque extracts were significantly higher in plaques from patients who developed a subsequent major cardiovascular event. In conclusion, atherosclerotic plaques exert a prothrombotic effect by potentiating platelet activation due to their content of MMP-2; an elevated MMP-2 activity in plaques is associated with a higher rate of subsequent ischaemic cerebrovascular events.

  10. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    International Nuclear Information System (INIS)

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-α-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 μM) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-α and 5 μM sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction

  11. [CCL21 promotes the metastasis of human pancreatic cancer Panc-1 cells via epithelial- mesenchymal transition].

    Science.gov (United States)

    Liu, Qing; Chen, Fangfang; Duan, Tanghai; Zhu, Haitao; Xie, Xiaodong; Wu, Yingying; Zhang, Zhijian; Wang, Dongqing

    2015-01-01

    To investigate the mechanism underlying that chemokine (C-C motif) ligand 21 (CCL21) promotes the metastasis ability of human pancreatic cancer Panc-1 cells. Transwell(TM) was used to access the chemotaxis effect of CCL21 on Panc-1 cells. Real-time quantitative PCR was performed to detect the expression of C-C chemokine receptor type 7 (CCR7) mRNA in the upper and lower chambers. Immunofluorescence staining and Western blotting were employed to examine the expressions of the epithelial-mesenchymal transition (EMT)-related proteins and CD133 of Panc-1 cells in the lower chamber, which were compared with those of the upper chamber as the control. The numbers of the Panc-1 cells induced by 0, 50, 100, 200 ng/mL CCL21 were 13.00 ± 3.00, 78.00 ± 9.00, 161.00 ± 11.00, 281.00 ± 17.00, respectively; with the increase of the concentration of CCL21, there were more cells migrating from the upper to the lower chamber; and the cells in the lower chamber expressed higher level of CCR7 mRNA than the ones staying in the upper chamber. The relative protein expressions of MMP-9, vimentin, E-cadherin and CD133 in the lower chamber were 0.42 ± 0.04, 0.36 ± 0.03, 0.12 ± 0.02, 0.46 ± 0.03, respectively, which were statistically significantly different from those in the upper chamber (0.15 ± 0.02, 0.25 ± 0.02, 0.25 ± 0.03, 0.13 ± 0.02, respectively). CCL21/CCR7 axis maybe play an important role in the metastasis of pancreatic cancer stem cells by EMT and up-regulation of MMP-9.

  12. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Science.gov (United States)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  13. CD14{sup +} monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ding, E-mail: qqhewd@gmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Chen, Ke, E-mail: chenke_59@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Du, Wei Ting, E-mail: duwtpumc@yahoo.com.cn [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); Han, Zhi-Bo, E-mail: zhibohan@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Ren, He, E-mail: knifesharp2000@hotmail.com [National Engineering Research Center of Cell Products, AmCellGene Co. Ltd, TEDA, Tianjin (China); Chi, Ying, E-mail: caizhuying@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); and others

    2010-09-10

    Here, the effect of CD14{sup +} monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-{gamma} (IFN-{gamma}) secretion capacities of CD4{sup +} and CD8{sup +} T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E{sub 2} (PGE{sub 2}) as an important soluble mediator. CD14{sup +} monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1{beta}, either exogenously added or produced by CD14{sup +} monocytes in culture, could trigger expression of high levels of PGE{sub 2} by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE{sub 2} expression, but also reversed the promotional effect of CD14{sup +} monocytes and partially restored CD4{sup +} and CD8{sup +} T cell proliferation and IFN-{gamma} secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  14. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Rie Ibusuki

    Full Text Available Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1.Transgenic (TG mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro.After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro.HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.

  15. The legacy of altruism in health care: the promotion of empathy, prosociality and humanism.

    Science.gov (United States)

    Burks, Derek J; Kobus, Amy M

    2012-03-01

    This study aimed to examine concepts of altruism and empathy among medical students and professionals in conjunction with health care initiatives designed to support the maintenance of these qualities. We searched for the terms 'altruism', 'altruistic', 'helping', 'prosocial behaviour' and 'empathy' in the English-language literature published from 1980 to the present within the Ovid MEDLINE, PsycInfo and PubMed databases. We used conceptual analysis to examine the relationships among altruism, empathy and related prosocial concepts in health care in order to understand how such factors may relate to emotional and career burnout, cynicism, decreased helping and decreased patient-centredness in care. Altruistic ideals and qualities of empathy appear to decrease among some medical students as they progress through their education. During this process, students face increasingly heavy workloads, deal with strenuous demands and become more acquainted with non-humanistic informal practices inherent in the culture of medicine. In combination, these factors increase the likelihood that emotional suppression, detachment from patients, burnout and other negative consequences may result, perhaps as a means of self-preservation. Alternatively, by making a mindful and intentional choice to endeavour for self-care and a healthy work-life balance, medical students can uphold humanistic and prosocial attitudes and behaviours. Promoting altruism in the context of a compensated health care career is contradictory and misguided. Instead, an approach to clinical care that is prosocial and empathic is recommended. Training in mindfulness, self-reflection and emotion skills may help medical students and professionals to recognise, regulate and behaviourally demonstrate empathy within clinical and professional encounters. However, health care initiatives to increase empathy and other humanistic qualities will be limited unless more practical and feasible emotion skills training is

  16. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Directory of Open Access Journals (Sweden)

    Lingying Liu

    Full Text Available BACKGROUND: Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs could on wound healing in a rat model of severe burn and its potential mechanism. METHODS: Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI, and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. RESULTS: We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. CONCLUSION: The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  17. p16INK4A, p53, EGFR expression and KRAS mutation status in squamous cell cancers of the anus: Correlation with outcomes following chemo-radiotherapy

    International Nuclear Information System (INIS)

    Gilbert, Duncan C; Williams, Anthony; Allan, Kimberley; Stokoe, Joanna; Jackson, Tim; Linsdall, Suzanne; Bailey, Charles MH; Summers, Jeff

    2013-01-01

    Background and Purpose: Squamous cell carcinomas of the anal canal are associated with infection with Human Papilloma Viruses (HPVs). Chemo-radiotherapy (CRT) gives 70% 3-year relapse-free survival. Improved predictive markers and therapeutic options are required. Methods: Tumours from 153 patients treated with radical chemo-radiotherapy (50.4 Gy in 28 with concurrent Mitomycin and 5-Fluorouracil between 2004 and 2009) were retrieved and immunohistochemistry performed for p16 INK4A , p53 and EGFR and correlated with outcome. Primary and relapsed samples were analysed for mutations in KRAS. Results: 137/153 (89.5%) stained moderately or strongly for p16 INK4A . p16 INK4A correlated strongly with outcome. 37/137 patients demonstrating moderate/strong p16 INK4A expression relapsed (27.0%), as opposed to 10/16 (62.5%) with absent/weak staining (log rank test p INK4A negative tumours were more frequent in men. p16 INK4A negative patients had significantly worse overall survival (p INK4A is strongly associated with relapse in SCC of the anus and identifies patients with very poor rates of relapse-free and overall survival. Primary and recurrent anal cancer expresses wild type KRAS, unaffected by treatment, supporting trials targeting EGFR in poor risk/recurrent anal cancer

  18. EGFR and KRAS quality assurance schemes in pathology : generating normative data for molecular predictive marker analysis in targeted therapy

    NARCIS (Netherlands)

    Thunnissen, Erik; Bovée, Judith V M G; Bruinsma, Hans; van den Brule, Adriaan J C; Dinjens, Winand; Heideman, Daniëlle A M; Meulemans, Els; Nederlof, Petra; van Noesel, Carel; Prinsen, Clemens F M; Scheidel, Karen; van de Ven, Peter M; de Weger, Roel; Schuuring, Ed; Ligtenberg, Marjolijn

    2011-01-01

    Introduction The aim of this study was to compare the reproducibility of epidermal growth factor receptor (EGFR) immunohistochemistry (IHC), EGFR gene amplification analysis, and EGFR and KRAS mutation analysis among different laboratories performing routine diagnostic analyses in pathology in The

  19. Sp1 and Sp3 Are the Transcription Activators of Human ek1 Promoter in TSA-Treated Human Colon Carcinoma Cells.

    Science.gov (United States)

    Kuan, Chee Sian; See Too, Wei Cun; Few, Ling Ling

    2016-01-01

    Ethanolamine kinase (EK) catalyzes the phosphorylation of ethanolamine, the first step in the CDP-ethanolamine pathway for the biosynthesis of phosphatidylethanolamine (PE). Human EK exists as EK1, EK2α and EK2β isoforms, encoded by two separate genes, named ek1 and ek2. EK activity is stimulated by carcinogens and oncogenes, suggesting the involvement of EK in carcinogenesis. Currently, little is known about EK transcriptional regulation by endogenous or exogenous signals, and the ek gene promoter has never been studied. In this report, we mapped the important regulatory regions in the human ek1 promoter. 5' deletion analysis and site-directed mutagenesis identified a Sp site at position (-40/-31) that was essential for the basal transcription of this gene. Treatment of HCT116 cells with trichostatin A (TSA), a histone deacetylase inhibitor, significantly upregulated the ek1 promoter activity through the Sp(-40/-31) site and increased the endogenous expression of ek1. Chromatin immunoprecipitation assay revealed that TSA increased the binding of Sp1, Sp3 and RNA polymerase II to the ek1 promoter in HCT116 cells. The effect of TSA on ek1 promoter activity was cell-line specific as TSA treatment did not affect ek1 promoter activity in HepG2 cells. In conclusion, we showed that Sp1 and Sp3 are not only essential for the basal transcription of the ek1 gene, their accessibility to the target site on the ek1 promoter is regulated by histone protein modification in a cell line dependent manner.

  20. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  1. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Charles N de Leeuw

    2014-01-01

    Full Text Available Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy.

  2. Unlike PPARγ, PPARα or PPARβ/δ activation does not promote human monocyte differentiation toward alternative macrophages

    International Nuclear Information System (INIS)

    Bouhlel, Mohamed Amine; Brozek, John; Derudas, Bruno; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2009-01-01

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPARγ promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPARβ/δ in this process has been reported only in mice and no data are available for PPARα. Here, we show that in contrast to PPARγ, expression of PPARα and PPARβ/δ overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPARγ, PPARα or PPARβ/δ activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPARα and PPARβ/δ do not appear to modulate the alternative differentiation of human macrophages.

  3. Safety and efficacy of the addition of simvastatin to panitumumab in previously treated KRAS mutant metastatic colorectal cancer patients.

    Science.gov (United States)

    Baas, Jara M; Krens, Lisanne L; Bos, Monique M; Portielje, Johanneke E A; Batman, Erdogan; van Wezel, Tom; Morreau, Hans; Guchelaar, Henk-Jan; Gelderblom, Hans

    2015-09-01

    Panitumumab has proven efficacy in patients with metastatic or locally advanced colorectal cancer patients, provided that they have no activating KRAS mutation in their tumour. Simvastatin blocks the mevalonate pathway and thereby interferes with the post-translational modification of KRAS. We hypothesize that the activity of the RAS-induced pathway in patients with a KRAS mutation might be inhibited by simvastatin. This would theoretically result in increased sensitivity to panitumumab, potentially comparable with tumours with wild-type KRAS. A Simon two-stage design single-arm, phase II study was designed to test the safety and efficacy of the addition of simvastatin to panitumumab in colorectal cancer patients with a KRAS mutation after failing fluoropyrimidine-based, oxaliplatin-based and irinotecan-based therapy. The primary endpoint of this study was the proportion of patients alive and free from progression 11 weeks after the first administration of panitumumab, aiming for at least 40%, which is comparable with, although slightly lower than, that in KRAS wild-type patients in this setting. If this 40% was reached, then the study would continue into the second step up to 46 patients. Explorative correlative analysis for mutations in the KRAS and related pathways was carried out. One of 14 patients was free from progression at the primary endpoint time. The median progression-free survival was 8.4 weeks and the median overall survival status was 19.6 weeks. We conclude that the concept of mutant KRAS phenotype expression modulation with simvastatin was not applicable in the clinic.

  4. Phase II marker-driven trial of panitumumab and chemotherapy in KRAS wild-type biliary tract cancer

    DEFF Research Database (Denmark)

    Jensen, L H; Lindebjerg, J; Ploen, J

    2012-01-01

    BACKGROUND: Combination chemotherapy has proven beneficial in biliary tract cancer and further improvements may be achieved by individualizing treatment based on biomarkers and by adding biological agents. We report the effect of chemotherapy with panitumumab as first-line therapy for KRAS wild....... Combination chemotherapy with panitumumab in patients with KRAS wild-type tumors met the efficacy criteria for future testing in a randomized trial....

  5. KRAS early testing: consensus initiative and cost-effectiveness evaluation for metastatic colorectal patients in an Italian setting.

    Directory of Open Access Journals (Sweden)

    Carlo Barone

    Full Text Available KRAS testing is relevant for the choice of the most appropriate first-line therapy of metastatic colorectal cancer (CRC. Strategies for preventing unequal access to the test should be implemented, but their relevance in the practice is related to economic sustainability. The study adopted the Delphi technique to reach a consensus on several topics. Issues related to execution of KRAS testing were identified by an expert's board and proposed to 108 Italian oncologists and pathologists through two subsequent questionnaires. The emerging proposal was evaluated by decision analyses models employed by technology assessment agencies in order to assess cost-effectiveness. Alternative therapeutic strategies included most commonly used chemotherapy regimens alone or in combination with cetuximab or bevacizumab. The survey indicated that time interval for obtaining KRAS test should not exceed 15 days, 10 days being an optimal interval. To assure the access to proper treatment, a useful strategy should be to anticipate the test after radical resection in patients at high risk of relapse. Early KRAS testing in high risk CRC patients generates incremental cost-effectiveness ratios between 6,000 and 13,000 Euro per quality adjusted life year (QALY gained. In extensive sensitivity analyses ICER's were always below 15,000 Euro per QALY gained, far within the threshold of 60,000 Euro/QALY gained accepted by regulatory institutions in Italy. In metastatic CRC a time interval higher than 15 days for result of KRAS testing limits access to therapeutic choices. Anticipating KRAS testing before the onset of metastatic disease in patients at high risk does not affect the sustainability and cost-effectiveness profile of cetuximab in first-line mCRC. Early KRAS testing may prevent this inequality in high-risk patients, whether they develop metastases, and is a cost-effective strategy. Based on these results, present joined recommendations of Italian societies of

  6. Context-dependent interpretation of the prognostic value of BRAF and KRAS mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Popovici, Vlad; Budinska, Eva; Bosman, Fred T; Tejpar, Sabine; Roth, Arnaud D; Delorenzi, Mauro

    2013-01-01

    The mutation status of the BRAF and KRAS genes has been proposed as prognostic biomarker in colorectal cancer. Of them, only the BRAF V600E mutation has been validated independently as prognostic for overall survival and survival after relapse, while the prognostic value of KRAS mutation is still unclear. We investigated the prognostic value of BRAF and KRAS mutations in various contexts defined by stratifications of the patient population. We retrospectively analyzed a cohort of patients with stage II and III colorectal cancer from the PETACC-3 clinical trial (N = 1,423), by assessing the prognostic value of the BRAF and KRAS mutations in subpopulations defined by all possible combinations of the following clinico-pathological variables: T stage, N stage, tumor site, tumor grade and microsatellite instability status. In each such subpopulation, the prognostic value was assessed by log rank test for three endpoints: overall survival, relapse-free survival, and survival after relapse. The significance level was set to 0.01 for Bonferroni-adjusted p-values, and a second threshold for a trend towards statistical significance was set at 0.05 for unadjusted p-values. The significance of the interactions was tested by Wald test, with significance level of 0.05. In stage II-III colorectal cancer, BRAF mutation was confirmed a marker of poor survival only in subpopulations involving microsatellite stable and left-sided tumors, with higher effects than in the whole population. There was no evidence for prognostic value in microsatellite instable or right-sided tumor groups. We found that BRAF was also prognostic for relapse-free survival in some subpopulations. We found no evidence that KRAS mutations had prognostic value, although a trend was observed in some stratifications. We also show evidence of heterogeneity in survival of patients with BRAF V600E mutation. The BRAF mutation represents an additional risk factor only in some subpopulations of colorectal cancers, in

  7. Tumour gene expression predicts response to cetuximab in patients with KRAS wild-type metastatic colorectal cancer.

    Science.gov (United States)

    Baker, J B; Dutta, D; Watson, D; Maddala, T; Munneke, B M; Shak, S; Rowinsky, E K; Xu, L-A; Harbison, C T; Clark, E A; Mauro, D J; Khambata-Ford, S

    2011-02-01

    Although it is accepted that metastatic colorectal cancers (mCRCs) that carry activating mutations in KRAS are unresponsive to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, a significant fraction of KRAS wild-type (wt) mCRCs are also unresponsive to anti-EGFR therapy. Genes encoding EGFR ligands amphiregulin (AREG) and epiregulin (EREG) are promising gene expression-based markers but have not been incorporated into a test to dichotomise KRAS wt mCRC patients with respect to sensitivity to anti-EGFR treatment. We used RT-PCR to test 110 candidate gene expression markers in primary tumours from 144 KRAS wt mCRC patients who received monotherapy with the anti-EGFR antibody cetuximab. Results were correlated with multiple clinical endpoints: disease control, objective response, and progression-free survival (PFS). Expression of many of the tested candidate genes, including EREG and AREG, strongly associate with all clinical endpoints. Using multivariate analysis with two-layer five-fold cross-validation, we constructed a four-gene predictive classifier. Strikingly, patients below the classifier cutpoint had PFS and disease control rates similar to those of patients with KRAS mutant mCRC. Gene expression appears to identify KRAS wt mCRC patients who receive little benefit from cetuximab. It will be important to test this model in an independent validation study.

  8. Patient and tumor characteristics and BRAF and KRAS mutations in colon cancer, NCCTG/Alliance N0147.

    Science.gov (United States)

    Gonsalves, Wilson I; Mahoney, Michelle R; Sargent, Daniel J; Nelson, Garth D; Alberts, Steven R; Sinicrope, Frank A; Goldberg, Richard M; Limburg, Paul J; Thibodeau, Stephen N; Grothey, Axel; Hubbard, Joleen M; Chan, Emily; Nair, Suresh; Berenberg, Jeffrey L; McWilliams, Robert R

    2014-07-01

    KRAS and BRAF (V600E) mutations are important predictive and prognostic markers, respectively, in colon cancer, but little is known about patient and clinical factors associated with them. Two thousand three hundred twenty-six of 3397 patients in the N0147 phase III adjuvant trial for stage III colon cancer completed a patient questionnaire. Primary tumors were assessed for KRAS and BRAF (V600E) mutations and defective mismatch repair (dMMR) status. Logistic regression models and categorical data analysis were used to identify associations of patient and tumor characteristics with mutation status. All statistical tests were two-sided. KRAS (35%) and BRAF (V600E) (14%) mutations were nearly mutually exclusive. KRAS mutations were more likely to be present in patients without a family history of colon cancer and never smokers. Tumors with KRAS mutations were less likely to have dMMR (odds ratio [OR] = 0.21; 95% confidence interval [CI] = 0.15 to 0.31; P characteristics are associated with KRAS and BRAF (V600E) mutations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis

    Science.gov (United States)

    Bradley, Elizabeth W.; Carpio, Lomeli R.; McGee-Lawrence, Meghan E.; Becerra, Clara Castillejo; Amanatullah, Derek F.; Ta, Lauren E.; Otero, Miguel; Goldring, Mary B.; Kakar, Sanjeev; Westendorf, Jennifer J.

    2016-01-01

    OBJECTIVE Osteoarthritis (OA) is the most common form of arthritis and a leading cause of disability. OA is characterized by articular chondrocyte deterioration, subchondral bone changes and debilitating pain. One strategy to promote cartilage regeneration and repair is to accelerate proliferation and matrix production of articular chondrocytes. We previously reported that the protein phosphatase Phlpp1 controls chondrocyte differentiation by regulating the activities of anabolic kinases. Here we examined the role of Phlpp1 in osteoarthritis progression in a murine model. We also assessed PHLPP1 expression and promoter methylation. DESIGN Knee joints of WT and Phlpp1−/− mice were surgically destabilized by transection of the medial meniscal ligament (DMM). Mice were assessed for signs of OA progression via radiographic and histological analyses, and pain assessment for mechanical hypersensitivity using the von Frey assay. Methylation of the PHLPP1 promoter and PHLPP1 expression was evaluated in human articular cartilage and chondrocyte cell lines. RESULTS Following DMM surgeries, Phlpp1 deficient mice showed fewer signs of OA and cartilage degeneration. Mechanical allodynia associated with DMM surgeries was also attenuated in Phlpp1−/− mice. PHLPP1 was highly expressed in human articular cartilage from OA patients, but was undetectable in cartilage specimens from femoral neck fractures. Higher PHLPP1 levels correlated with less PHLPP1 promoter CpG methylation in cartilage from OA patients. Blocking cytosine methylation or treatment with inflammatory mediators enhanced PHLPP1 expression in human chondrocyte cell lines. CONCLUSION Phlpp1 deficiency protects against OA progression while CpG demethylation and inflammatory responses promote PHLPP1 expression. PMID:26746148

  10. Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice.

    Science.gov (United States)

    Eren, M; Painter, C A; Gleaves, L A; Schoenhard, J A; Atkinson, J B; Brown, N J; Vaughan, D E

    2003-11-01

    Numerous studies have described regulatory factors and sequences that control transcriptional responses in vitro. However, there is a paucity of information on the qualitative and quantitative regulation of heterologous promoters using transgenic strategies. In order to investigate the physiological regulation of human plasminogen activator inhibitor type-1 (hPAI-1) expression in vivo compared to murine PAI-1 (mPAI-1) and to test the physiological relevance of regulatory mechanisms described in vitro, we generated transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the proximal -2.9 kb of the hPAI-1 promoter. Transgenic animals were treated with Ang II, TGF-beta1 and lipopolysaccharide (LPS) to compare the relative activation of the human and murine PAI-1 promoters. Ang II increased EGFP expression most effectively in brain, kidney and spleen, while mPAI-1 expression was quantitatively enhanced most prominently in heart and spleen. TGF-beta1 failed to induce activation of the hPAI-1 promoter but potently stimulated mPAI-1 in kidney and spleen. LPS administration triggered robust expression of mPAI-1 in liver, kidney, pancreas, spleen and lung, while EGFP was induced only modestly in heart and kidney. These results indicate that the transcriptional response of the endogenous mPAI-1 promoter varies widely in terms of location and magnitude of response to specific stimuli. Moreover, the physiological regulation of PAI-1 expression likely involves a complex interaction of transcription factors and DNA sequences that are not adequately replicated by in vitro functional studies focused on the proximal -2.9 kb promoter.

  11. Localization of active, dually phosphorylated extracellular signal-regulated kinase 1 and 2 in colorectal cancer with or without activating BRAF and KRAS mutations

    DEFF Research Database (Denmark)

    Holck, Susanne; Bonde, Jesper; Pedersen, Helle

    2016-01-01

    Colorectal cancers (CRC) often show activating mutations of the KRAS or BRAF genes, which stimulate the extracellular signal-regulated kinase (ERK) pathway, thus increasing cell proliferation and inhibiting apoptosis. However, immunohistochemical results on ERK activation in such tumors differ...... detectable increases in phosphorylation of ERK (pERK), we stained biopsies from 36 CRC patients with activating mutations in the BRAF gene (BRAFV600E: BRAF(m)), the KRAS gene (KRAS(m)) or in neither (BRAF/KRAS(n)) with this optimized method. Staining was scored in blind-coded specimens by two observers....... Staining of stromal cells was used as a positive control. BRAF(m) or KRAS(m) tumors did not show higher staining scores than BRAF/KRAS(n) tumors. Although BRAFV600E staining occurred in over 90% of cancer cells in all 9 BRAF(m) tumors, 3 only showed staining for pERK in less than 10% of cancer cell nuclei...

  12. CLDN6 promotes chemoresistance through GSTP1 in human breast cancer

    Directory of Open Access Journals (Sweden)

    Minlan Yang

    2017-11-01

    Full Text Available Abstract Background Claudin-6 (CLDN6, a member of CLDN family and a key component of tight junction, has been reported to function as a tumor suppressor in breast cancer. However, whether CLDN6 plays any role in breast cancer chemoresistance remains unclear. In this study, we investigated the role of CLDN6 in the acquisition of chemoresistance in breast cancer cells. Methods We manipulated the expression of CLDN6 in MCF-7 and MCF-7/MDR cells with lv-CLDN6 and CLDN6-shRNA and investigated whether CLDN6 manipulation lead to different susceptibilities to several chemotherapeutic agents in these cells. The cytotoxicity of adriamycin (ADM, 5-fluorouracil (5-FU, and cisplatin (DDP was tested by cck-8 assay. Cell death was determined by DAPI nuclear staining. The enzyme activity of glutanthione S-transferase-p1 (GSTP1 was detected by a GST activity kit. Then lv-GSTP1 and GSTP1-shRNA plasmids were constructed to investigate the potential of GSTP1 in regulating chemoresistance of breast cancer. The TP53-shRNA was adopted to explore the regulation mechanism of GSTP1. Finally, immunohistochemistry was used to explore the relationship between CLDN6 and GSTP1 expression in breast cancer tissues. Results Silencing CLDN6 increased the cytotoxicity of ADM, 5-FU, and DDP in MCF-7/MDR cells. Whereas overexpression of CLDN6 in MCF-7, the parental cell line of MCF-7/MDR expressing low level of CLDN6, increased the resistance to the above drugs. GSTP1 was upregulated in CLDN6-overexpressed MCF-7 cells. RNAi –mediated silencing of CLDN6 downregulated both GSTP1 expression and GST enzyme activity in MCF-7/MDR cells. Overexpresssion of GSTP1 in CLDN6 silenced MCF-7/MDR cells restored chemoresistance, whereas silencing GSTP1 reduced the chemoresistance due to ectopic overexpressed of CLDN6 in MCF-7 cells. These observations were also repeated in TNBC cells Hs578t. We further confirmed that CLDN6 interacted with p53 and promoted translocation of p53 from nucleus to

  13. The frequent evolutionary birth and death of functional promoters in mouse and human

    DEFF Research Database (Denmark)

    Young, Robert S.; Hayashizaki, Yosihide; Andersson, Robin

    2015-01-01

    Promoters are central to the regulation of gene expression. Changes in gene regulation are thought to underlie much of the adaptive diversification between species and phenotypic variation within populations. In contrast to earlier work emphasizing the importance of enhancer evolution and subtle...... diverged. Tissue-restricted promoters are the most evolutionarily volatile where retrotransposition is an important, but not the sole source of innovation. There is considerable heterogeneity of turnover rates between promoters in different tissues, but the consistency of these in both lineages suggests...... decaying with weak transcriptional output and relaxed selective constraint. Our results suggest that promoter gain and loss is an important process in the evolutionary rewiring of gene regulation and may be a significant source of phenotypic diversification....

  14. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Huaying; Li, Guiyuan; Zhang, Liming; Niu, Zhaoxia; Zhou, Ming; Peng, Cong; Li, Xiayu; Deng, Tan; Shi, Lei; Tan, Yixin

    2008-01-01

    Nasopharyngeal carcinoma (NPC) is a head and neck malignancy with high occurrence in South-East Asia and Southern China. Recent findings suggest that epigenetic inactivation of multiple tumor suppressor genes plays an important role in the tumourigenesis of NPC. BRD7 is a NPC-associated bromodomain gene that exhibits a much higher-level of mRNA expression in normal than in NPC biopsies and cell lines. In this study, we explored the role of DNA methylation in regulation of BRD7 transcription. The presence of CpG islands within BRD7 promoter was predicted by EMBOSS CpGplot and Softberry CpGFinder, respectively. Nested methylation-specific PCR and RT-PCR were employed to detect the methylation status of BRD7 promoter and the mRNA expression of BRD7 gene in tumor cell lines as well as clinical samples. Electrophoretic mobility shift assays (EMSA) and luciferase assay were used to detect the effects of cytosine methylation on the nuclear protein binding to BRD7 promoter. We found that DNA methylation suppresses BRD7 expression in NPC cells. In vitro DNA methylation in NPC cells silenced BRD7 promoter activity and inhibited the binding of the nuclear protein (possibly Sp1) to Sp1 binding sites in the BRD7 promoter. In contrast, inhibition of DNA methylation augments induction of endogenous BRD7 mRNA in NPC cells. We also found that methylation frequency of BRD7 promoter is much higher in the tumor and matched blood samples from NPC patients than in the blood samples from normal individuals. BRD7 promoter demethylation is a prerequisite for high level induction of BRD7 gene expression. DNA methylation of BRD7 promoter might serve as a diagnostic marker in NPC

  15. First-Line Cetuximab Monotherapy in KRAS/NRAS/BRAF Mutation-Negative Colorectal Cancer Patients.

    Science.gov (United States)

    Moiseyenko, Vladimir M; Moiseyenko, Fedor V; Yanus, Grigoriy A; Kuligina, Ekatherina Sh; Sokolenko, Anna P; Bizin, Ilya V; Kudriavtsev, Alexey A; Aleksakhina, Svetlana N; Volkov, Nikita M; Chubenko, Vyacheslav A; Kozyreva, Kseniya S; Kramchaninov, Mikhail M; Zhuravlev, Alexandr S; Shelekhova, Kseniya V; Pashkov, Denis V; Ivantsov, Alexandr O; Venina, Aigul R; Sokolova, Tatyana N; Preobrazhenskaya, Elena V; Mitiushkina, Natalia V; Togo, Alexandr V; Iyevleva, Aglaya G; Imyanitov, Evgeny N

    2018-06-01

    Colorectal carcinomas (CRCs) are sensitive to treatment by anti-epidermal growth factor receptor (EGFR) antibodies only if they do not carry activating mutations in down-stream EGFR targets (KRAS/NRAS/BRAF). Most clinical trials for chemo-naive CRC patients involved combination of targeted agents and chemotherapy, while single-agent cetuximab or panitumumab studies included either heavily pretreated patients or subjects who were not selected on the basis of molecular tests. We hypothesized that anti-EGFR therapy would have significant efficacy in chemo-naive patients with KRAS/NRAS/BRAF mutation-negative CRC. Nineteen patients were prospectively included in the study. Two (11%) patients experienced partial response (PR) and 11 (58%) subjects showed stable disease (SD). Median time to progression approached 6.1 months (range 1.6-15.0 months). Cetuximab efficacy did not correlate with RNA expression of EGFR and insulin-like growth factor 2 (IGF2). Only one tumor carried PIK3CA mutation, and this CRC responded to cetuximab. Exome analysis of patients with progressive disease (PD) revealed 1 CRC with high-level microsatellite instability and 1 instance of HER2 oncogene amplification; 3 of 4 remaining patients with PD had allergic reactions to cetuximab, while none of the subjects with PR or SD had this complication. Comparison with 19 retrospective KRAS/NRAS/BRAF mutation-negative patients receiving first-line fluoropyrimidines revealed no advantages or disadvantages of cetuximab therapy. Cetuximab demonstrates only modest efficacy when given as a first-line monotherapy to KRAS/NRAS/BRAF mutation-negative CRC patients. It is of question, why meticulous patient selection, which was undertaken in the current study, did not result in the improvement of outcomes of single-agent cetuximab treatment.

  16. Clinical implementation of KRAS testing in metastatic colorectal carcinoma: the pathologist's perspective.

    Science.gov (United States)

    Ross, Jeffrey S

    2012-10-01

    Mutation status of the KRAS gene identifies a distinct disease subtype of metastatic colorectal carcinoma that does not respond to antibody therapeutics targeting the epidermal growth factor receptor. This is currently the only validated marker in metastatic colorectal carcinoma with a clear implication in treatment selection. KRAS testing is widely accepted in clinical practice to guide metastatic colorectal carcinoma therapeutic decisions, and there are many commercially available platforms to perform the test. To evaluate the critical role of pathologists in the full implementation of KRAS testing by optimizing tumor tissue collection and fixation procedures and by choosing testing technologies and reliable Clinical Laboratory Improvement Amendments of 1988-certified laboratories to perform the tests. Prospective clinical trials, retrospective studies, and quality assessment and survey reports were identified in the following databases: PubMed, American Society of Clinical Oncology Proceedings (American Society of Clinical Oncology Annual Meeting and Gastrointestinal Cancer Symposium) and European Society for Medical Oncology Proceedings (Annals of Oncology European Society for Medical Oncology Congress and Annals of Oncology World Congress on Gastrointestinal Cancers). More bona fide standards are needed to address the variety of available test methods, which have different performance characteristics including speed, sensitivity to detect rare mutations, and technical requirements. Refined standards addressing timing of KRAS testing, laboratory performance and accuracy, quality assurance and control, proper tissue collection, and appropriate result reporting would also be greatly beneficial. Pathologists should be aware that the amount of information they need to manage will increase, because future trends and technological advances will enhance the predictive power of diagnostic tests or the scope of the biomarker panels tested routinely across tumor types.

  17. Human umbilical cord derived mesenchymal stem cells promote interleukin-17 production from human peripheral blood mononuclear cells of healthy donors and systemic lupus erythematosus patients.

    Science.gov (United States)

    Ren, S; Hu, J; Chen, Y; Yuan, T; Hu, H; Li, S

    2016-03-01

    Inflammation instigated by interleukin (IL)-17-producing cells is central to the development and pathogenesis of several human autoimmune diseases and animal models of autoimmunity. The expansion of IL-17-producing cells from healthy donors is reportedly promoted by mesenchymal stem cells derived from fetal bone marrow. In the present study, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were examined for their effects on lymphocytes from healthy donors and from patients with systemic lupus erythematosus (SLE). Significantly higher levels of IL-17 were produced when CD4(+) T cells from healthy donors were co-cultured with hUC-MSCs than those that were cultured alone. Blocking experiments identified that this effect might be mediated partially through prostaglandin E2 (PGE2 ) and IL-1β, without IL-23 involvement. We then co-cultured hUC-MSCs with human CD4(+) T cells from systemic lupus erythematosus patients. Ex-vivo inductions of IL-17 by hUC-MSCs in stimulated lymphocytes were significantly higher in SLE patients than in healthy donors. This effect was not observed for IL-23. Taken together, our results represent that hUC-MSCs can promote the IL-17 production from CD4(+) T cells in both healthy donor and SLE patients. PGE2 and IL-1β might also be partially involved in the promotive effect of hUC-MSCs. © 2015 British Society for Immunology.

  18. Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Ghazvini

    Full Text Available Constitutive activation of the Wnt pathway leads to adenoma formation, an obligatory step towards intestinal cancer. In view of the established role of Wnt in regulating stemness, we attempted the isolation of cancer stem cells (CSCs from Apc- and Apc/KRAS-mutant intestinal tumours. Whereas CSCs are present in Apc/KRAS tumours, they appear to be very rare (<10(-6 in the Apc-mutant adenomas. In contrast, the Lin(-CD24(hiCD29(+ subpopulation of adenocarcinoma cells appear to be enriched in CSCs with increased levels of active β-catenin. Expression profiling analysis of the CSC-enriched subpopulation confirmed their enhanced Wnt activity and revealed additional differential expression of other signalling pathways, growth factor binding proteins, and extracellular matrix components. As expected, genes characteristic of the Paneth cell lineage (e.g. defensins are co-expressed together with stem cell genes (e.g. Lgr5 within the CSC-enriched subpopulation. This is of interest as it may indicate a cancer stem cell niche role for tumor-derived Paneth-like cells, similar to their role in supporting Lgr5(+ stem cells in the normal intestinal crypt. Overall, our results indicate that oncogenic KRAS activation in Apc-driven tumours results in the expansion of the CSCs compartment by increasing ®-catenin intracellular stabilization.

  19. Endometrial cancer and somatic G>T KRAS transversion in patients with constitutional MUTYH biallelic mutations.

    Science.gov (United States)

    Tricarico, Rossella; Bet, Paola; Ciambotti, Benedetta; Di Gregorio, Carmela; Gatteschi, Beatrice; Gismondi, Viviana; Toschi, Benedetta; Tonelli, Francesco; Varesco, Liliana; Genuardi, Maurizio

    2009-02-18

    MUTYH-associated polyposis (MAP) is an autosomal recessive condition predisposing to colorectal cancer, caused by constitutional biallelic mutations in the base excision repair (BER) gene MUTYH. Colorectal tumours from MAP patients display an excess of somatic G>T mutations in the APC and KRAS genes due to defective BER function. To date, few extracolonic manifestations have been observed in MAP patients, and the clinical spectrum of this condition is not yet fully established. Recently, one patient with a diagnosis of endometrial cancer and biallelic MUTYH mutations has been described. We here report on two additional unrelated MAP patients with biallelic MUTYH germline mutations who developed endometrioid endometrial carcinoma. The endometrial tumours were evaluated for PTEN, PIK3CA, KRAS, BRAF and CTNNB1 mutations. A G>T transversion at codon 12 of the KRAS gene was observed in one tumour. A single 1bp frameshift deletion of PTEN was observed in the same sample. Overall, these findings suggest that endometrial carcinoma is a phenotypic manifestations of MAP and that inefficient repair of oxidative damage can be involved in its pathogenesis.

  20. KRAS oncogene in lung cancer: focus on molecularly driven clinical trials

    Directory of Open Access Journals (Sweden)

    Emmanuelle Kempf

    2016-03-01

    Full Text Available KRAS mutations are the most frequent molecular abnormalities found in one out of four nonsmall cell lung cancers (NSCLC. Their incidence increases in cases of adenocarcinoma, smokers and Caucasian patients. Their negative value in terms of prognosis and responsiveness to both standard chemotherapy and targeted therapies remains under debate. Many drugs have been developed specifically for KRAS-mutated NSCLC patients. Direct inhibition of RAS activation failed to show any clinical efficacy. Inhibition of downstream targets of the mitogen-activated protein kinase (MEK pathway is a promising strategy: phase II combinations of MEK 1/2 kinase inhibitors with chemotherapy doubled patients’ clinical outcomes. One phase III trial in such a setting is ongoing. Double inhibition of MEK and epidermal growth factor receptor proteins is currently being assessed in early-phase trials. The association with mammalian target of rapamycin pathway inhibition leads to non-manageable toxicity. Other strategies, such as inhibition of molecular heat-shock proteins 90 or focal adhesion kinase are currently assessed. Abemaciclib, a cyclin-dependent kinase 4/6 inhibitor, showed promising results in a phase I trial, with a 54% disease control rate. Results of an ongoing phase III trial are warranted. Immunotherapy might be the next relevant step in KRAS-mutated NSCLC management due to the high burden of associated mutations and neo-antigens.

  1. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  2. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells.

    Science.gov (United States)

    Yang, Wei-Hung; Chang, An-Chen; Wang, Shih-Wei; Wang, Shoou-Jyi; Chang, Yung-Sen; Chang, Tzu-Ming; Hsu, Shao-Keh; Fong, Yi-Chin; Tang, Chih-Hsin

    2016-06-27

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the chief lymphangiogenic mediator, and makes crucial contributions to tumor lymphangiogenesis. Leptin is an adipocytokine and has been indicated to facilitate tumorigenesis, angiogenesis and metastasis. However, the effect of leptin on VEGF-C regulation and lymphangiogenesis in human chondrosarcoma has hugely remained a mystery. Our results showed a clinical correlation between leptin and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that leptin promoted VEGF-C production and secretion in human chondrosarcoma cells. The conditioned medium from leptin-treated chondrosarcoma cells induced lymphangiogenesis of human lymphatic endothelial cells. We also found that leptin-induced VEGF-C is mediated by the FAK, PI3K and Akt signaling pathway. Furthermore, the expression of microRNA-27b was negatively regulated by leptin via the FAK, PI3K and Akt cascade. Our study is the first to describe the mechanism of leptin-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, leptin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.

  3. Lithium modulation of the human inositol monophosphatase 2 (IMPA2) promoter

    International Nuclear Information System (INIS)

    Seelan, Ratnam S.; Parthasarathy, Latha K.; Parthasarathy, Ranga N.

    2004-01-01

    The inositol-signaling pathway is a therapeutic target for lithium in the treatment of bipolar disorder. Inositol monophosphatases (IMPases) play a key role in inositol signaling. Lithium's ability to inhibit IMPase 1 is well known, but its effect on IMPase 2 or on the transcriptional regulation of these genes has not been studied. Here, we report the identification and characterization of the minimal promoter of IMPA2 (encoding IMPase 2) in HeLa (epithelial) and SK-N-AS (neuronal) cells. IMPA2 promoter activity appears to be contributed by different elements in the 5' flanking region, suggesting that the gene is differentially regulated in neuronal and non-neuronal cells. Furthermore, IMPA2 promoter activity in both cell lines is downregulated, in a dose-dependent manner, by lithium after treatment for only 24 h. This effect is also observed in vivo. Our results suggest a possible role for IMPA2 in bipolar disorder

  4. Prognostic significance of anti-p53 and anti-KRas circulating antibodies in esophageal cancer patients treated with chemoradiotherapy

    International Nuclear Information System (INIS)

    Blanchard, Pierre; Quero, Laurent; Pacault, Vincent; Schlageter, Marie-Helene; Baruch-Hennequin, Valerie; Hennequin, Christophe

    2012-01-01

    P53 mutations are an adverse prognostic factor in esophageal cancer. P53 and KRas mutations are involved in chemo-radioresistance. Circulating anti-p53 or anti-KRas antibodies are associated with gene mutations. We studied whether anti-p53 or anti-KRas auto-antibodies were prognostic factors for response to chemoradiotherapy (CRT) or survival in esophageal carcinoma. Serum p53 and KRas antibodies (abs) were measured using an ELISA method in 97 consecutive patients treated at Saint Louis University Hospital between 1999 and 2002 with CRT for esophageal carcinoma (squamous cell carcinoma (SCCE) 57 patients, adenocarcinoma (ACE) 27 patients). Patient and tumor characteristics, response to treatment and the follow-up status of 84 patients were retrospectively collected. The association between antibodies and patient characteristics was studied. Univariate and multivariate survival analyses were conducted. Twenty-four patients (28%) had anti-p53 abs. Abs were found predominantly in SCCE (p = 0.003). Anti-p53 abs were associated with a shorter overall survival in the univariate analysis (HR 1.8 [1.03-2.9], p = 0.04). In the multivariate analysis, independent prognostic factors for overall and progression-free survival were an objective response to CRT, the CRT strategy (alone or combined with surgery [preoperative]) and anti-p53 abs. None of the long-term survivors had p53 abs. KRas abs were found in 19 patients (23%, no difference according to the histological type). There was no significant association between anti-KRas abs and survival neither in the univariate nor in the multivariate analysis. Neither anti-p53 nor anti-KRas abs were associated with response to CRT. Anti-p53 abs are an independent prognostic factor for esophageal cancer patients treated with CRT. Individualized therapeutic approaches should be evaluated in this population

  5. Prognostic significance of anti-p53 and anti-KRas circulating antibodies in esophageal cancer patients treated with chemoradiotherapy.

    Science.gov (United States)

    Blanchard, Pierre; Quero, Laurent; Pacault, Vincent; Schlageter, Marie-Helene; Baruch-Hennequin, Valerie; Hennequin, Christophe

    2012-03-26

    P53 mutations are an adverse prognostic factor in esophageal cancer. P53 and KRas mutations are involved in chemo-radioresistance. Circulating anti-p53 or anti-KRas antibodies are associated with gene mutations. We studied whether anti-p53 or anti-KRas auto-antibodies were prognostic factors for response to chemoradiotherapy (CRT) or survival in esophageal carcinoma. Serum p53 and KRas antibodies (abs) were measured using an ELISA method in 97 consecutive patients treated at Saint Louis University Hospital between 1999 and 2002 with CRT for esophageal carcinoma (squamous cell carcinoma (SCCE) 57 patients, adenocarcinoma (ACE) 27 patients). Patient and tumor characteristics, response to treatment and the follow-up status of 84 patients were retrospectively collected. The association between antibodies and patient characteristics was studied. Univariate and multivariate survival analyses were conducted. Twenty-four patients (28%) had anti-p53 abs. Abs were found predominantly in SCCE (p = 0.003). Anti-p53 abs were associated with a shorter overall survival in the univariate analysis (HR 1.8 [1.03-2.9], p = 0.04). In the multivariate analysis, independent prognostic factors for overall and progression-free survival were an objective response to CRT, the CRT strategy (alone or combined with surgery [preoperative]) and anti-p53 abs. None of the long-term survivors had p53 abs. KRas abs were found in 19 patients (23%, no difference according to the histological type). There was no significant association between anti-KRas abs and survival neither in the univariate nor in the multivariate analysis. Neither anti-p53 nor anti-KRas abs were associated with response to CRT. Anti-p53 abs are an independent prognostic factor for esophageal cancer patients treated with CRT. Individualized therapeutic approaches should be evaluated in this population.

  6. Prognostic significance of anti-p53 and anti-KRas circulating antibodies in esophageal cancer patients treated with chemoradiotherapy

    Directory of Open Access Journals (Sweden)

    Blanchard Pierre

    2012-03-01

    Full Text Available Abstract Background P53 mutations are an adverse prognostic factor in esophageal cancer. P53 and KRas mutations are involved in chemo-radioresistance. Circulating anti-p53 or anti-KRas antibodies are associated with gene mutations. We studied whether anti-p53 or anti-KRas auto-antibodies were prognostic factors for response to chemoradiotherapy (CRT or survival in esophageal carcinoma. Methods Serum p53 and KRas antibodies (abs were measured using an ELISA method in 97 consecutive patients treated at Saint Louis University Hospital between 1999 and 2002 with CRT for esophageal carcinoma (squamous cell carcinoma (SCCE 57 patients, adenocarcinoma (ACE 27 patients. Patient and tumor characteristics, response to treatment and the follow-up status of 84 patients were retrospectively collected. The association between antibodies and patient characteristics was studied. Univariate and multivariate survival analyses were conducted. Results Twenty-four patients (28% had anti-p53 abs. Abs were found predominantly in SCCE (p = 0.003. Anti-p53 abs were associated with a shorter overall survival in the univariate analysis (HR 1.8 [1.03-2.9], p = 0.04. In the multivariate analysis, independent prognostic factors for overall and progression-free survival were an objective response to CRT, the CRT strategy (alone or combined with surgery [preoperative] and anti-p53 abs. None of the long-term survivors had p53 abs. KRas abs were found in 19 patients (23%, no difference according to the histological type. There was no significant association between anti-KRas abs and survival neither in the univariate nor in the multivariate analysis. Neither anti-p53 nor anti-KRas abs were associated with response to CRT. Conclusions Anti-p53 abs are an independent prognostic factor for esophageal cancer patients treated with CRT. Individualized therapeutic approaches should be evaluated in this population.

  7. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.

    Science.gov (United States)

    Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M

    2014-03-01

    This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

  8. Evaluation of EGFR, KRAS and BRAF gene mutations in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Omer Bayrak

    2014-08-01

    Full Text Available A subset of renal cell carcinoma (RCC patients has been shown to respond to anti-EGFR therapy. As KRAS and BRAF mutations are associated with poor response to anti-EGFR therapy in some cancers, it has been suggested that screening for KRAS and BRAF mutations in RCC may be a promising strategy to identify patients who might respond to EGFR-targeted therapy. The aim of this study was to investigate the mutation status of EGFR, KRAS and BRAF in RCC patients. Renal tumors and normal renal samples from forty-eight patients who underwent radical or partial nephrectomy for kidney cancer were used in this study. Histological classification of the tumors was performed according to International Union against Cancer (UICC / American Joint Committee on Cancer (AJCC classification. Seventeen patients (48% had clear-cell RCC, 7 (20% had chromophobe RCC, and 11 patients (32% had papillary RCC. DNA isolated from the samples was subjected to melting curve mutation analysis for EGFR, BRAF and KRAS using ABI-3130 DNA sequencer. DNA sequencing analysis of RCC samples, when compared with morphologically normal matched regions, did not show any exon mutations. Our results do not support the notion that EGFR, KRAS and BRAF might be mutated in RCC. Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:TR; mso-fareast-language:EN-US;}

  9. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  10. Issues around radiological protection of the environment and its integration with protection of humans: promoting debate on the way forward

    International Nuclear Information System (INIS)

    Brownless, G P

    2007-01-01

    This paper explores issues to consider around integrating direct, explicit protection of the environment into the current system of radiological protection, which is focused on the protection of humans. Many issues around environmental radiological protection have been discussed, and ready-to-use toolboxes have been constructed for assessing harm to non-human biota, but it is not clear how (or even if) these should be fitted into the current system of protection. Starting from the position that the current approach to protecting the environment (namely that it follows from adequately protecting humans) is generally effective, this paper considers how explicit radiological protection of the environment can be integrated with the current system, through developing a 'worked example' of how this could be done and highlighting issues peculiar to protection of the environment. The aim of the paper is to promote debate on this topic, with the ultimate aim of ensuring that any changes to the system are consensual and robust

  11. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Science.gov (United States)

    Salamon, Achim; van Vlierberghe, Sandra; van Nieuwenhove, Ine; Baudisch, Frank; Graulus, Geert-Jan; Benecke, Verena; Alberti, Kristin; Neumann, Hans-Georg; Rychly, Joachim; Martins, José C.; Dubruel, Peter; Peters, Kirsten

    2014-01-01

    Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies. PMID:28788517

  12. Oral administration of synthetic human urogastrone promotes healing of chronic duodenal ulcers in rats

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    The effect of oral administration of synthetic human epidermal growth factor/urogastrone (EGF/URO) on healing of chronic duodenal ulcers induced by cysteamine in rats was investigated and compared with that of cimetidine, a H2-receptor antagonist. After 25 and 50 days of treatment, synthetic human...... EGF/URO significantly increased healing of chronic duodenal ulcers to the same extent as cimetidine. Combined treatment with synthetic human EGF/URO and cimetidine for 25 days was more effective than synthetic human EGF/URO given alone, whereas combined treatment for 50 days was significantly more...... human EGF/URO is a potent inhibitor of gastric acid secretion when administered intravenously, but had no effect on acid secretion when given intraduodenally, which suggests that the effect of synthetic human EGF/URO is a direct action on the duodenal mucosa. In conclusion, this study showed that oral...

  13. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    Science.gov (United States)

    Di Grazia, Antonio; Cappiello, Floriana; Imanishi, Akiko; Mastrofrancesco, Arianna; Picardo, Mauro; Paus, Ralf; Mangoni, Maria Luisa

    2015-01-01

    One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025-4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.

  14. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?

    Directory of Open Access Journals (Sweden)

    Antonio Di Grazia

    Full Text Available One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells over a wide range of peptide concentrations (0.025-4 μM, and this notably more efficiently than human cathelicidin (LL-37. This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.

  15. Promotion of minTBP-1-PRGDN on the attachment, proliferation and collagen I synthesis of human keratocyte on titanium

    Directory of Open Access Journals (Sweden)

    Xin-Yu Li

    2014-02-01

    Full Text Available AIM:To investigate the influence of minTBP-1-PRGDN on the attachment, proliferation and collagen I synthesis of human keratocyte on titanium (Ti surface.METHODS:The chimeric peptide RKLPDAPRGDN (minTBP-1-PRGDN was synthesized by connecting RKLPDA (minTBP-1 to the N-terminal of PRGDN , the influence of minTBP-1-PRGDN on the attachment, proliferation and collagen I synthesis of human keratocyte on Ti surface were tested using PRGDN and minTBP-1as controls. The keratocytes attached to the surface of Ti were either stained with FITC-labeled phalloidin and viewed with fluorescence microscope or quantified with alamar Blue method. The proliferation of keratocytes on Ti were quantified with 3-(4,5-dim- ethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide up-taking methods. The secretion of type I collagen were determined using an ELISA kit.RESULTS:The results showed that minTBP-1-PRGDN at a concentration of 100ng/mL was the most potent peptide to enhance the attachment of human keratocytes to the surface of Ti (1.40±0.03 folds, P=0.003, to promote the proliferation (1.26±0.05 folds, P=0.014 and the synthesis of type I collagen (1.530±0.128, P=0.008. MinTBP-1 at the same concentration could only promote the attachment (1.13±0.04 folds, P=0.020 and proliferation(1.15±0.06 folds, P=0.021, while PRGDN had no significant influence (P>0.05.CONCLUSION:Our data shows that the novel chimeric peptide minTBP-1-PRGDN could promote the attachment, proliferation and type I collagen synthesis of human keratocytes on the surface of Ti.

  16. ABERRANT METHYLATION OF THE PROMOTER OF APC, CDH13 AND MGMT GENES IN COLORECTAL CANCER PATIENTS

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Aberrant methylation of gene promoter regions is the main epigenetic change characterizing colorectal cancer. Methylation levels of 42 CpG-sites of promoter regions of the MGMT, APC and CDH13 genes in colorectal cancer were studied in comparison with methylation levels of the adjacent normal tissue in 25 patients. Pyrosequencing showed an increase in methylation levels of promoter regions of the MGMT, APC and CDH13 genes in tumor samples by 3 to 5 times. These tumor samples were screened for activating SNP-mutations in the KRAS (40 %, NRAS (0 % and BRAF (0 % oncogenes. SNP-mutations in the KRAS gene were accompanied by hypermethylation of one or more promoters of the studied genes. Association of this epigenetic index with tumor metastasis was proved. The data on an increase in methylation of the promoter regions of oncosupressor genes can be used as sensitive prognostic markers of progression and metastasis of colorectal cancer.

  17. Recombinant human interleukin 2 acts as a B cell growth and differentiation promoting factor

    OpenAIRE

    Emmrich, F.; Moll, Heidrun; Simon, Markus M.

    2009-01-01

    Human B cells appropriately activated by a B cell mitogen are rendered susceptible to human Interleukin 2 (IL-2) as demonstrated with recombinant human IL-2 (rec. h IL-2). They show increased proliferation and drastically enhanced immunoglobulin secretion. Susceptibility to IL-2 is accompanied with the expression of the IL-2 receptor (Tac antigen) on B cells. The data suggest that IL-2 is one of the lymphokines directly involved in the activation of B lymphocytes.

  18. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    International Nuclear Information System (INIS)

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling

  19. Kojyl cinnamate ester derivatives promote adiponectin production during adipogenesis in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Rho, Ho Sik; Hong, Soo Hyun; Park, Jongho; Jung, Hyo-Il; Park, Young-Ho; Lee, John Hwan; Shin, Song Seok; Noh, Minsoo

    2014-05-01

    The subcutaneous fat tissue mass gradually decreases with age, and its regulation is a strategy to develop anti-aging compounds to ameliorate the photo-aging of human skin. The adipogenesis of human adipose tissue-mesenchymal stem cells (hAT-MSCs) can be used as a model to discover novel anti-aging compounds. Cinnamomum cassia methanol extracts were identified as adipogenesis-promoting agents by natural product library screening. Cinnamates, the major chemical components of Cinnamomum cassia extracts, promoted adipogenesis in hAT-MSCs. We synthesized kojyl cinnamate ester derivatives to improve the pharmacological activity of cinnamates. Structure-activity studies of kojyl cinnamate derivatives showed that both the α,β-unsaturated carbonyl ester group and the kojic acid moiety play core roles in promoting adiponectin production during adipogenesis in hAT-MSCs. We conclude that kojyl cinnamate ester derivatives provide novel pharmacophores that can regulate adipogenesis in hAT-MSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Promoter Hypermethylation of the EMP3 Gene in a Series of 229 Human Gliomas

    Directory of Open Access Journals (Sweden)

    Marta Mellai

    2013-01-01

    Full Text Available The epithelial membrane protein 3 (EMP3 is a candidate tumor suppressor gene in the critical region 19q13.3 for several solid tumors, including tumors of the nervous systems. The aim of this study was to investigate the EMP3 promoter hypermethylation status in a series of 229 astrocytic and oligodendroglial tumors and in 16 GBM cell lines. The analysis was performed by methylation-specific PCR and capillary electrophoresis. Furthermore, the EMP3 expression at protein level was evaluated by immunohistochemistry and Western blotting analysis. Associations of EMP3 hypermethylation with total 1p/19q codeletion, MGMT promoter hypermethylation, IDH1/IDH2 and TP53 mutations, and EGFR amplification were studied, as well as its prognostic significance. The EMP3 promoter hypermethylation has been found in 39.5% of gliomas. It prevailed in low-grade tumors, especially in gliomas with an oligodendroglial component, and in sGBMs upon pGBMs. In oligodendroglial tumors, it was strongly associated with both IDH1/IDH2 mutations and total 1p/19q codeletion and inversely with EGFR gene amplification. No association was found with MGMT hypermethylation and TP53 mutations. In the whole series, the EMP3 hypermethylation status correlated with 19q13.3 loss and lack of EMP3 expression at protein level. A favorable prognostic significance on overall survival of the EMP3 promoter hypermethylation was found in patients with oligodendroglial tumors.

  1. An integrated expression atlas of miRNAs and their promoters in human and mouse

    DEFF Research Database (Denmark)

    de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir

    2017-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libr...

  2. Ursodeoxycholic acid reduces protein levels and nucleation-promoting activity in human gallbladder bile

    NARCIS (Netherlands)

    van Erpecum, K. J.; Portincasa, P.; Eckhardt, E.; Go, P. M.; vanBerge-Henegouwen, G. P.; Groen, A. K.

    1996-01-01

    Background & Aims: Ursodeoxycholic acid prevents gallstone formation in selected patients. The aim of this study was to examine whether decreased concentration and nucleation-promoting activity of various proteins contribute to this beneficial effect. Methods: Gallbladder bile of 13 patients with

  3. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  4. Punitive preferences, monetary incentives and tacit coordination in the punishment of defectors promote cooperation in humans

    NARCIS (Netherlands)

    Diekmann, Andreas; Przepiorka, Wojtek

    2015-01-01

    Peer-punishment is effective in promoting cooperation, but the costs associated with punishing defectors often exceed the benefits for the group. It has been argued that centralized punishment institutions can overcome the detrimental effects of peer-punishment. However, this argument presupposes

  5. Multiple promoters drive tissue-specific expression of the human M2 muscarinic acetylcholine receptor gene

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Alena; Bruce, A. W.; Doležal, Vladimír; Tuček, Stanislav; Buckley, N. J.

    2004-01-01

    Roč. 91, č. 1 (2004), s. 88-98 ISSN 0022-3042 R&D Projects: GA AV ČR IAA5011306 Institutional research plan: CEZ:AV0Z5011922 Keywords : M2 muscarinic receptor * neuron-restrictive silence factor * promoter Subject RIV: ED - Physiology Impact factor: 4.824, year: 2004

  6. KRAS Testing for Anti-EGFR Therapy in Advanced Colorectal Cancer: An Evidence-Based and Economic Analysis.

    Science.gov (United States)

    2010-01-01

    In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenomics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.THE FOLLOWING REPORTS CAN BE PUBLICLY ACCESSED AT THE MAS WEBSITE AT: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlGENE EXPRESSION PROFILING FOR GUIDING ADJUVANT CHEMOTHERAPY DECISIONS IN WOMEN WITH EARLY BREAST CANCER: An Evidence-Based and Economic AnalysisEpidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based and Economic AnalysisK-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based and Economic Analysis. The objective of this systematic review is to determine the predictive value of KRAS testing in the treatment of metastatic colorectal cancer (mCRC) with two anti-EGFR agents, cetuximab and panitumumab. Economic analyses are also being conducted to evaluate the cost-effectiveness of KRAS testing. CONDITION AND TARGET POPULATION Metastatic colorectal cancer (mCRC) is usually defined as stage IV disease according to the American Joint Committee on Cancer tumour node metastasis (TNM) system or stage D in

  7. Human Capital, Education and the Promotion of Social Cooperation: A Philosophical Critique

    Science.gov (United States)

    Gilead, Tal

    2009-01-01

    Although since the 1960s human capital theory has played a major role in guiding educational policy, philosophical issues that stem from this development have rarely been discussed. In this article, I critically examine how the idea that human capital should serve as a guide to educational policy making stands in relation to the role assigned to…

  8. Do type 1 fimbriae promote inflammation in the human urinary tract?

    DEFF Research Database (Denmark)

    Bergsten, G.; Wullt, B.; Schembri, Mark

    2007-01-01

    Type 1 fimbriae have been implicated as virulence factors in animal models of urinary tract infection (UTI), but the function in human disease remains unclear. This study used a human challenge model to examine if type 1 fimbriae trigger inflammation in the urinary tract. The asymptomatic...

  9. Thymosin β10 expression driven by the human TERT promoter induces ovarian cancer-specific apoptosis through ROS production.

    Directory of Open Access Journals (Sweden)

    Young-Chae Kim

    Full Text Available Thymosin β(10 (Tβ(10 regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that Tβ(10 diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.Tβ(10, that can overexpress the Tβ(10 gene in cancer cells. This was accomplished by replacing the native Tβ(10 gene promoter with the human TERT promoter in Ad.TERT.Tβ(10. We investigated the cancer suppression activity of Tβ(10 and found that Ad.TERT.Tβ(10 strikingly induced cancer-specific expression of Tβ(10 as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.Tβ(10 decreased mitochondrial membrane potential and increased reactive oxygen species (ROS production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by Tβ(10 overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of Tβ(10 by Ad.TERT.Tβ(10 could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells.

  10. Growth and Development Symposium: promoting healthier humans through healthier livestock: animal agriculture enters the metagenomics era.

    Science.gov (United States)

    Frank, D N

    2011-03-01

    The priorities of public health and agricultural sciences intersect through a shared objective to foster better human health. Enhancements in food quality and reductions in the environmental effects of modern agriculture represent 2 distinct paths through which animal sciences can contribute to the cause of public health. Recent developments in the study of human-associated microbial communities (microbiotas), notably in association with disease, indicate that better understanding of the microbial ecology of livestock can contribute to achieving the goals of better foods and a cleaner environment. Culture-independent microbiological technologies now permit comprehensive study of complex microbial communities in their natural environments. Microbiotas associated with both humans and animals provide myriad beneficial services to their hosts that, if lost or diminished, could compromise host health. Dysfunctional microbial communities have been noted in several human conditions, including inflammatory bowel disease, obesity, and antibiotic-associated diarrhea. Examination of the mechanisms by which the human microbiota influences health and disease susceptibility can inform similar studies of host-microbe function in the animal sciences. Insights gained from human studies indicate strategies to raise not only healthier livestock, through selective manipulation of microbial communities, but also healthier humans.

  11. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    International Nuclear Information System (INIS)

    Zeng, Guo-fang; Cai, Shao-xi; Wu, Guang-Jer

    2011-01-01

    Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis), and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis

  12. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cai Shao-xi

    2011-03-01

    Full Text Available Abstract Background Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Methods Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. Results In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis, and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. Conclusion These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.

  13. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation

    DEFF Research Database (Denmark)

    Barres, Romain; Kirchner, Henriette; Rasmussen, Morten

    2013-01-01

    observed in the normal-weight, healthy subjects. Using bisulfite sequencing, we show that promoter methylation of PGC-1a and PDK4 is altered with obesity and restored to nonobese levels after RYGB-induced weight loss. A genome-wide DNA methylation analysis of skeletal muscle revealed that obesity...... of genes enriched in metabolic process and mitochondrial function. After weight loss, the expression of the majority of the identified genes was normalized to levels observed in normal-weight, healthy controls. Among the 14 metabolic genes analyzed, promoter methylation of 11 genes was normalized to levels...... is associated with hypermethylation at CpG shores and exonic regions close to transcription start sites. Our results provide evidence that obesity and RYGB-induced weight loss have a dynamic effect on the epigenome....

  14. How Research on Charitable Giving Can Inform Strategies to Promote Human Milk Donations to Milk Banks.

    Science.gov (United States)

    Stevens, Jack; Keim, Sarah A

    2015-08-01

    Many hospitalized preterm infants do not exclusively receive mother's own milk, so milk from another mother may be sought. Previous research indicated that just 1% of US women who express breast milk actually donate it for another family. Therefore, strategies to boost donation rates should be identified. We draw upon the experimental literature on charitable giving of monetary donations to offer 6 strategies to promote breast milk donations to milk banks in North America. These strategies include (1) highlighting a potential identifiable recipient of donated breast milk as opposed to highlighting groups of potential recipients; (2) emphasizing similarities between the potential donor and potential beneficiaries; (3) emphasizing similarities between the potential donor and previous donors; (4) using negative arousal to promote donations; (5) emphasizing the self-interest of those asking for breast milk donations; and (6) highlighting the specific effect of breast milk donations. Potential limitations of these strategies are discussed. © The Author(s) 2015.

  15. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells

    OpenAIRE

    Castelnuovo Manuele; Massone Sara; Tasso Roberta; Fiorino Gloria; Gatti Monica; Robello Mauro; Gatta Elena; Berger Audrey; Strub Katharina; Florio Tullio; Dieci Giorgio; Cancedda Ranieri; Pagano Aldo

    2010-01-01

    Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted suscept...

  16. The Frequency and Type of K-RAS Mutations in Mexican Patients With Colorectal Cancer: A National Study.

    Science.gov (United States)

    Cárdenas-Ramos, Susana G; Alcázar-González, Gregorio; Reyes-Cortés, Luisa M; Torres-Grimaldo, Abdiel A; Calderón-Garcidueñas, Ana L; Morales-Casas, José; Flores-Sánchez, Patricia; De León-Escobedo, Raúl; Gómez-Díaz, Antonio; Moreno-Bringas, Carmen; Sánchez-Guillén, Jorge; Ramos-Salazar, Pedro; González-de León, César; Barrera-Saldaña, Hugo A

    2017-06-01

    Current metastatic colorectal cancer (mCRC) therapy uses monoclonal antibodies against the epidermal growth factor receptor. This treatment is only useful in the absence of K-RAS gene mutations; therefore the study of such mutations is part of a personalized treatment. The aim of this work is to determine the frequency and type of the most common K-RAS mutations in Mexican patients with metastatic disease by nucleotide sequencing. We studied 888 patients with mCRC from different regions of Mexico. The presence of mutations in exon 2, codons 12 and 13, of the K-RAS gene was determined by nucleotide sequencing. Patients exhibited K-RAS gene mutations in 35% (310/888) of cases. Mutation frequency of codons 12 and 13 was 71% (221/310) and 29% (89/310), respectively. The most common mutation (45.7%) in codon 12 was c.35G>A (p.G12D), whereas the one in codon 13 was c.38G>A (p.G13D) (78.7%). Given the frequency of K-RAS mutations in Mexicans, making a genetic study before deciding to treat mCRC patients with monoclonal antibodies is indispensable.

  17. Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shenyuan; Long, Brian N.; Boris, Gabriel H.; Chen, Anqi; Ni, Shuisong; Kennedy, Michael A.

    2017-11-10

    K-Ras, a molecular switch that regulates cell growth, apoptosis and metabolism, is activated when it undergoes a conformation change upon binding GTP and is deactivated following the hydrolysis of GTP to GDP. Hydrolysis of GTP in water is accelerated by coordination to K-Ras, where GTP adopts a high-energy conformation approaching the transition state. The G12A mutation reduces intrinsic K-Ras GTP hydrolysis by an unexplained mechanism. Here, crystal structures of G12A K-Ras in complex with GDP, GTP, GTPγS and GppNHp, and of Q61A K-Ras in complex with GDP, are reported. In the G12A K-Ras–GTP complex, the switch I region undergoes a significant reorganization such that the Tyr32 side chain points towards the GTP-binding pocket and forms a hydrogen bond to the GTP γ-phosphate, effectively stabilizing GTP in its precatalytic state, increasing the activation energy required to reach the transition state and contributing to the reduced intrinsic GTPase activity of G12A K-Ras mutants.