WorldWideScience

Sample records for human islet survival

  1. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Science.gov (United States)

    Meier, Raphael P H; Seebach, Jörg D; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H; Muller, Yannick D

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  2. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  3. Anakinra and tocilizumab enhance survival and function of human islets during culture: implications for clinical islet transplantation.

    Science.gov (United States)

    Sahraoui, Afaf; Kloster-Jensen, Kristine; Ueland, Thor; Korsgren, Olle; Foss, Aksel; Scholz, Hanne

    2014-01-01

    Pretreatment culture before islet transplantation represents a window of opportunity to ameliorate the proinflammatory profile expressed by human β-cells in duress. Anakinra (IL-1 receptor antagonist) and tocilizumab (monoclonal IL-6 receptor antibody) are two known anti-inflammatory agents successfully used in the treatment of inflammatory states like rheumatoid arthritis. Both compounds have also been shown to reduce blood glucose and glycosylated hemoglobin in diabetic patients. We therefore sought to evaluate the impact of anakinra and tocilizumab on human β-cells. The islets were precultured with or without anakinra or tocilizumab and then transplanted in a marginal mass model using human islets in immunodeficient mice. Islet viability was evaluated in an in vitro model. The pretreatment culture led to a significantly improved engraftment in treated islets compared to the vehicle. Anakinra and tocilizumab are not toxic to human islets and significantly reduce markers of inflammation and cell death. These results strongly support a pretreatment culture with anakinra and tocilizumab prior to human islet transplantation.

  4. Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Kosicka, Iga

    2014-01-01

    Diabetes mellitus type II is a metabolic disease affecting millions of people worldwide. The disease is associated with occurence of insoluble, fibrillar, protein aggregates in islets of Langerhans in the pancreas - islet amyloid. The main constituent of these protein fibers is the human islet...... of diabetes type II, while revealing the structure(s) of islet amyloid fibrils is necessary for potential design of therapeutic agents....

  5. Human umbilical cord matrix-derived stem cells exert trophic effects on β-cell survival in diabetic rats and isolated islets

    Directory of Open Access Journals (Sweden)

    Yunting Zhou

    2015-12-01

    Full Text Available Human umbilical cord matrix-derived stem cells (uMSCs, owing to their cellular and procurement advantages compared with mesenchymal stem cells derived from other tissue sources, are in clinical trials to treat type 1 (T1D and type 2 diabetes (T2D. However, the therapeutic basis remains to be fully understood. The immunomodulatory property of uMSCs could explain the use in treating T1D; however, the mere immune modulation might not be sufficient to support the use in T2D. We thus tested whether uMSCs could exert direct trophic effects on β-cells. Infusion of uMSCs into chemically induced diabetic rats prevented hyperglycemic progression with a parallel preservation of islet size and cellularity, demonstrating the protective effect of uMSCs on β-cells. Mechanistic analyses revealed that uMSCs engrafted long-term in the injured pancreas and the engraftment markedly activated the pancreatic PI3K pathway and its downstream anti-apoptotic machinery. The pro-survival pathway activation was associated with the expression and secretion of β-cell growth factors by uMSCs, among which insulin-like growth factor 1 (IGF1 was highly abundant. To establish the causal relationship between the uMSC-secreted factors and β-cell survival, isolated rat islets were co-cultured with uMSCs in the transwell system. Co-culturing improved the islet viability and insulin secretion. Furthermore, reduction of uMSC-secreted IGF1 via siRNA knockdown diminished the protective effects on islets in the co-culture. Thus, our data support a model whereby uMSCs exert trophic effects on islets by secreting β-cell growth factors such as IGF1. The study reveals a novel therapeutic role of uMSCs and suggests that multiple mechanisms are employed by uMSCs to treat diabetes.

  6. Lixisenatide accelerates restoration of normoglycemia and improves human beta-cell function and survival in diabetic immunodeficient NOD–scid IL-2rgnull RIP-DTR mice engrafted with human islets

    Directory of Open Access Journals (Sweden)

    Yang C

    2015-08-01

    Full Text Available Chaoxing Yang,1 Matthias Loehn,2 Agata Jurczyk,1 Natalia Przewozniak,1 Linda Leehy,1 Pedro L Herrera,3 Leonard D Shultz,4 Dale L Greiner,1 David M Harlan,5 Rita Bortell1 1Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA; 2Sanofi-Aventis, Diabetes Division, Frankfurt, Germany; 3University of Geneva, Geneva, Switzerland; 4The Jackson Laboratory, Bar Harbor, ME, USA; 5Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA Objective: Glucagon-like peptide-1 induces glucose-dependent insulin secretion and, in rodents, increases proliferation and survival of pancreatic beta cells. To investigate the effects on human beta cells, we used immunodeficient mice transplanted with human islets. The goal was to determine whether lixisenatide, a glucagon-like peptide-1 receptor agonist, improves human islet function and survival in vivo. Methods: Five independent transplant studies were conducted with human islets from five individual donors. Diabetic human islet-engrafted immunodeficient mice were treated with lixisenatide (50, 150, and 500 µg/kg or vehicle. Islet function was determined by blood glucose, plasma human insulin/C-peptide, and glucose tolerance tests. Grafts were analyzed for total beta- and alpha-cell number, percent proliferation, and levels of apoptosis. Results: Diabetic mice transplanted with marginal human islet mass and treated with lixisenatide were restored to euglycemia more rapidly than vehicle-treated mice. Glucose tolerance tests, human plasma insulin, and glucose-stimulation indices of lixisenatide-treated mice were significantly improved compared to vehicle-treated mice. The percentages of proliferating or apoptotic beta cells at graft recovery were not different between lixisenatide-treated and vehicle-treated mice. Nevertheless, in one experiment we found a significant twofold to threefold

  7. Fibroblast populated collagen matrix promotes islet survival and reduces the number of islets required for diabetes reversal.

    Science.gov (United States)

    Jalili, Reza B; Moeen Rezakhanlou, Alireza; Hosseini-Tabatabaei, Azadeh; Ao, Ziliang; Warnock, Garth L; Ghahary, Aziz

    2011-07-01

    Islet transplantation represents a viable treatment for type 1 diabetes. However, due to loss of substantial mass of islets early after transplantation, islets from two or more donors are required to achieve insulin independence. Islet-extracellular matrix disengagement, which occurs during islet isolation process, leads to subsequent islet cell apoptosis and is an important contributing factor to early islet loss. In this study, we developed a fibroblast populated collagen matrix (FPCM) as a novel scaffold to improve islet cell viability and function post-transplantation. FPCM was developed by embedding fibroblasts within type-I collagen and used as scaffold for islet grafts. Viability and insulin secretory function of islets embedded within FPCM was evaluated in vitro and in a syngeneic murine islet transplantation model. Islets embedded within acellular matrix or naked islets were used as control. Islet cell survival and function was markedly improved particularly after embedding within FPCM. The composite scaffold significantly promoted islet isograft survival and reduced the critical islet mass required for diabetes reversal by half (from 200 to 100 islets per recipient). Fibroblast embedded within FPCM produced fibronectin and growth factors and induced islet cell proliferation. No evidence of fibroblast over-growth within composite grafts was noticed. These results confirm that FPCM significantly promotes islet viability and functionality, enhances engraftment of islet grafts and decreases the critical islet mass needed to reverse hyperglycemia. This promising finding offers a new approach to reducing the number of islet donors per recipient and improving islet transplant outcome.

  8. Effects of Acute Cytomegalovirus Infection on Rat Islet Allograft Survival

    NARCIS (Netherlands)

    Smelt, M. J.; Faas, M. M.; Melgert, B. N.; de Vos, P.; de Haan, Bart; de Haan, Aalzen

    2011-01-01

    Transplantation of pancreatic islets is a promising therapy for the treatment of type 1 diabetes mellitus. However, long-term islet graft survival rates are still unsatisfactory low. In this study we investigated the role of cytomegalovirus (CMV) in islet allograft failure. STZ-diabetic rats receive

  9. Extensive Loss of Islet Mass Beyond the First Day After Intraportal Human Islet Transplantation in a Mouse Model.

    Science.gov (United States)

    Liljebäck, Hanna; Grapensparr, Liza; Olerud, Johan; Carlsson, Per-Ola

    2016-01-01

    Clinical islet transplantation is characterized by a progressive deterioration of islet graft function, which renders many patients once again dependent on exogenous insulin administration within a couple of years. In this study, we aimed to investigate possible engraftment factors limiting the survival and viability of experimentally transplanted human islets beyond the first day after their transplantation to the liver. Human islets were transplanted into the liver of nude mice and characterized 1 or 30 days after transplantation by immunohistochemistry. The factors assessed were endocrine mass, cellular death, hypoxia, vascular density and amyloid formation in the transplanted islets. One day posttransplantation, necrotic cells, as well as apoptotic cells, were commonly observed. In contrast to necrotic death, apoptosis rates remained high 1 month posttransplantation, and the total islet mass was reduced by more than 50% between 1 and 30 days posttransplantation. Islet mass at 30 days posttransplantation correlated negatively to apoptotic death. Vascular density within the transplanted islets remained less than 30% of that in native human islets up to 30 days posttransplantation and was associated with prevailing hypoxia. Amyloid formation was rarely observed in the 1-day-old transplants, but was commonly observed in the 30-day-old islet transplants. We conclude that substantial islet cell death occurs beyond the immediate posttransplantation phase, particularly through apoptotic events. Concomitant low vascularization with prevailing hypoxia and progressive amyloid development was observed in the human islet grafts. Strategies to improve engraftment at the intraportal site or change of implantation site in the clinical setting are needed.

  10. Study of the immunoisolating effects of barium-alginate microencapsulation on rat islets allograft survival

    Institute of Scientific and Technical Information of China (English)

    Mei Zhang; Chao Liu; Cuiping Liu; Youwen Qin; Zhaosun Zhen

    2005-01-01

    Objective: To evaluate the immunoisolating effects of barium-alginate microencapsulation on islets allograft survival. Methods: The nonmicroencapsulated and microencapsulated islets were transplanted under the kidney capsule or intraperitoneally into Wistar rat with STZ-induced diabetes. The blood glucose and insulin secretion of grafts were observed. Graft function was tested by oral rats was associated with normal glucose and insulin profiles in response to OGTT. Conclusion: Microencapsulation with barium-alginate membrane can prolong islet survival and protect islets against allorejection.

  11. A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets.

    Directory of Open Access Journals (Sweden)

    Jakob D Wikstrom

    Full Text Available BACKGROUND: The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets. METHODOLOGY/PRINCIPAL FINDINGS: The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets. CONCLUSIONS/SIGNIFICANCE: The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells.

  12. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Nasser Abualhassan

    Full Text Available There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group. Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ, 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group. Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.

  13. Selection of polymers for application in scaffolds applicable for human pancreatic islet transplantation.

    Science.gov (United States)

    Smink, Alexandra M; de Haan, Bart J; Paredes-Juarez, Genaro A; Wolters, Anouk H G; Kuipers, Jeroen; Giepmans, Ben N G; Schwab, Leendert; Engelse, Marten A; van Apeldoorn, Aart A; de Koning, Eelco; Faas, Marijke M; de Vos, Paul

    2016-05-13

    The liver is currently the site for transplantation of islets in humans. This is not optimal for islets, but alternative sites in humans are not available. Polymeric scaffolds in surgically accessible areas are a solution. As human donors are rare, the polymers should not interfere with functional survival of human-islets. We applied a novel platform to test the adequacy of polymers for application in scaffolds for human-islet transplantation. Viability, functionality, and immune parameters were included to test poly(D,L-lactide-co-ε-caprolactone) (PDLLCL), poly(ethylene oxide terephthalate)/polybutylene terephthalate (PEOT/PBT) block copolymer, and polysulfone. The type of polymer influenced the functional survival of human islets. In islets cultured on PDLLCL the glucagon-producing α-cells and insulin-producing β-cells contained more hormone granules than in islets in contact with PEOT/PBT or polysulfone. This was studied with ultrastructural analysis by electron microscopy (nanotomy) during 7 d of culture. PDLLCL was also associated with statistically significant lower release of double-stranded DNA (dsDNA, a so called danger-associate molecular pattern (DAMP)) from islets on PDLLCL when compared to the other polymers. DAMPs support undesired immune responses. Hydrophilicity of the polymers did not influence dsDNA release. Islets on PDLLCL also showed less cellular outgrowth. These outgrowing cells were mainly fibroblast and some β-cells undergoing epithelial to mesenchymal cell transition. None of the polymers influenced the glucose-stimulated insulin secretion. As PDLLCL was associated with less release of DAMPs, it is a promising candidate for creating a scaffold for human islets. Our study demonstrates that for sensitive, rare cadaveric donor tissue such as pancreatic islets it might be necessary to first select materials that do not influence functionality before proposing the biomaterial for in vivo application. Our presented platform may facilitate

  14. Preservation of beta cell function in adult human pancreatic islets for several months in vitro

    DEFF Research Database (Denmark)

    Brunstedt, J; Andersson, A; Frimodt-Møller, C

    1979-01-01

    Islets of Langerhans were isolated from four human kidney donors, aged 16 to 21 years by the collagenase method described for isolation of rodent islets. So far the human islets have been kept in tissue culture, without attachment, in medium RPMI 1640 supplemented with 10% calf serum for more than...... 9 months, with preservation of the ability to release insulin in response to glucose stimulation. Replacement of calf serum with serum from normal human subjects did not affect B-cell survival, but resulted in elevated insulin values partly due to lower insulin degrading activity. Thus the described...

  15. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices.

    Science.gov (United States)

    Johansson, Ulrika; Ria, Massimiliano; Åvall, Karin; Dekki Shalaly, Nancy; Zaitsev, Sergei V; Berggren, Per-Olof; Hedhammar, My

    2015-01-01

    Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets

  16. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices.

    Directory of Open Access Journals (Sweden)

    Ulrika Johansson

    Full Text Available Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79% with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year, the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial

  17. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets

    NARCIS (Netherlands)

    Hilderink, Janneke; Spijker, Siebe; Carlotti, Françoise; Lange, Lydia; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2015-01-01

    Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell surv

  18. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Brotons

    2016-01-01

    Full Text Available In bioartificial pancreases (BP, the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2 in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ/cm2 and cultured in normal atmospheric pressure (160 mmHg as well as hypoxic conditions (15 mmHg for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance.

  19. Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD mice

    Directory of Open Access Journals (Sweden)

    Sytwu Huey-Kang

    2009-08-01

    Full Text Available Abstract Pancreatic islet transplantation is considered an appropriate treatment to achieve insulin independence in type I diabetic patients. However, islet isolation and transplantation-induced oxidative stress and autoimmune-mediated destruction are still the major obstacles to the long-term survival of graft islets in this potential therapy. To protect islet grafts from inflammatory damage and prolong their survival, we transduced islets with an antioxidative gene thioredoxin (TRX using a lentiviral vector before transplantation. We hypothesized that the overexpression of TRX in islets would prolong islet graft survival when transplanted into diabetic non-obese diabetic (NOD mice. Methods Islets were isolated from NOD mice and transduced with lentivirus carrying TRX (Lt-TRX or enhanced green fluorescence protein (Lt-eGFP, respectively. Transduced islets were transplanted under the left kidney capsule of female diabetic NOD mice, and blood glucose concentration was monitored daily after transplantation. The histology of the islet graft was assessed at the end of the study. The protective effect of TRX on islets was investigated. Results The lentiviral vector effectively transduced islets without altering the glucose-stimulating insulin-secretory function of islets. Overexpression of TRX in islets reduced hydrogen peroxide-induced cytotoxicity in vitro. After transplantation into diabetic NOD mice, euglycemia was maintained for significantly longer in Lt-TRX-transduced islets than in Lt-eGFP-transduced islets; the mean graft survival was 18 vs. 6.5 days (n = 9 and 10, respectively, p Conclusion We successfully transduced the TRX gene into islets and demonstrated that these genetically modified grafts are resistant to inflammatory insult and survived longer in diabetic recipients. Our results further support the concept that the reactive oxygen species (ROS scavenger and antiapoptotic functions of TRX are critical to islet survival after

  20. Collagen IV-modified scaffolds improve islet survival and function and reduce time to euglycemia.

    Science.gov (United States)

    Yap, Woon Teck; Salvay, David M; Silliman, Michael A; Zhang, Xiaomin; Bannon, Zachary G; Kaufman, Dixon B; Lowe, William L; Shea, Lonnie D

    2013-11-01

    Islet transplantation on extracellular matrix (ECM) protein-modified biodegradable microporous poly(lactide-co-glycolide) scaffolds is a potential curative treatment for type 1 diabetes mellitus (T1DM). Collagen IV-modified scaffolds, relative to control scaffolds, significantly decreased the time required to restore euglycemia from 17 to 3 days. We investigated the processes by which collagen IV-modified scaffolds enhanced islet function and mediated early restoration of euglycemia post-transplantation. We characterized the effect of collagen IV-modified scaffolds on islet survival, metabolism, and insulin secretion in vitro and early- and intermediate-term islet mass and vascular density post-transplantation and correlated these with early restoration of euglycemia in a syngeneic mouse model. Control scaffolds maintained native islet morphologies and architectures as well as collagen IV-modified scaffolds in vivo. The islet size and vascular density increased, while β-cell proliferation decreased from day 16 to 113 post-transplantation. Collagen IV-modified scaffolds promoted islet cell viability and decreased early-stage apoptosis in islet cells in vitro-phenomena that coincided with enhanced islet metabolic function and glucose-stimulated insulin secretion. These findings suggest that collagen IV-modified scaffolds promote the early restoration of euglycemia post-transplantation by enhancing islet metabolism and glucose-stimulated insulin secretion. These studies of ECM proteins, in particular collagen IV, and islet function provide key insights for the engineering of a microenvironment that would serve as a platform for enhancing islet transplantation as a viable clinical therapy for T1DM.

  1. Pathogen inactivation of human serum facilitates its clinical use for islet cell culture and subsequent transplantation.

    Science.gov (United States)

    Ståhle, Magnus U; Brandhorst, Daniel; Korsgren, Olle; Knutson, Folke

    2011-01-01

    Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.

  2. Hemo oxygenase-1 induction in vitro and in vivo can yield pancreas islet xenograft survival and improve islet function

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi; SU Chang; ZHANG Zheng-yun; ZHANG Ming-jun; GU Wei-qiong; LI Xiao-ying; LI Hong-wei; ZHOU Guang-wen

    2011-01-01

    Background The induced expression of heme oxygenase-1 (HO-1) in donor islets improves allograft survival.Cobalt protoporphyrin (CoPP) could significantly enhance the expression of HO-1 mRNA and protein in rat islet safely.Our work was to study how to protect pancreatic islet xenograft by CoPP-induction.Methods Islet xenografts treated with CoPP-induction and CoPP+ Zinc protoporphyrin (ZnPP) in vitro and in vivo were randomly transplanted into murine subrenal capsule; then the graft survival time was compared by blood glucose level and pathological examination and meanwhile the interferon γ (IFN-γ),tumor necrosis factor a (TNF-α),interleukin 10 (IL-10) and IL-1β level in serum and their mRNA and HO-1 mRNA and protein expression were examined.Results Islets with CoPP-induction under low- and high-glucose stimulation exhibited much higher insulin secretion compared with other three groups.CoPP-induction could increase higher expression of HO-1 (mRNA:3.33- and 76.09-fold in vitro and in vivo; protein:2.85- and 58.72-fold).The normoglycemia time in induction groups ((14.63±1.19) and (16.88+1.64) days) was significantly longer.The pathological examination showed less lymphocyte infiltration in induction groups.The IL-10 level and its mRNA in induction groups were significantly higher.Conclusions The HO-1 induced by CoPP would significantly improve function,prolong normoglycemia time and reduce lymphocyte infiltration.Meanwhile CoPP-induction in vivo had more beneficial effects than in vitro.Its mechanism could be related to immune-modulation of IL-10.

  3. Anti-inflammatory thalidomide improves islet grafts survival and functions in a xenogenic environment.

    Directory of Open Access Journals (Sweden)

    Chunguang Chen

    Full Text Available Thalidomide possesses both anti-inflammatory and anti-angiogenic properties. This study investigates its potential application in islet transplantation with a xenogenic transplantation model. Transplantation was performed using C57Bl/6 mice and NMRI nu/nu mice as recipients of porcine islets. Moreover, islet graft vasculature and inflammation were investigated to identify the mechanisms of thalidomide action. In the immunocompetent environment of C57Bl/6 mice, a fast graft rejection was observed. The group treated with thalidomide 200 mg/kg BW per day achieved and maintained euglycemia in the complete observation period for 42 days. The treated mice had more functional islet graft mass with less leukocyte infiltration. The pro-inflammatory TNF-alpha and VEGF content in islet grafted kidneys was significantly lowered by the treatment. By comparison, thalidomide was not effective in improving graft survival in immunocompromised nude mice. It strongly inhibited the VEGF and TNF-alpha-induced endothelial proliferation of isolated pig islets in a dose dependent manner. The magnitude of thalidomide's inhibitory effect was nearly identical to the effect of VEGF- receptor 2 inhibitor SU416 and anti-TNF-receptor 1 neutralizing antibody, and was reversed by sphingosine-1-phosphate. In conclusion, the anti-inflammatory effect of thalidomide improved islet graft survival and function in a transplantation model with a maximum immune barrier.

  4. Expression and regulation of nampt in human islets.

    Directory of Open Access Journals (Sweden)

    Karen Kover

    Full Text Available Nicotinamide phosphoribosyltransferase (Nampt is a rate-limiting enzyme in the mammalian NAD+ biosynthesis of a salvage pathway and exists in 2 known forms, intracellular Nampt (iNampt and a secreted form, extracellular Nampt (eNampt. eNampt can generate an intermediate product, nicotinamide mononucleotide (NMN, which has been reported to support insulin secretion in pancreatic islets. Nampt has been reported to be expressed in the pancreas but islet specific expression has not been adequately defined. The aim of this study was to characterize Nampt expression, secretion and regulation by glucose in human islets. Gene and protein expression of Nampt was assessed in human pancreatic tissue and isolated islets by qRT-PCR and immunofluorescence/confocal imaging respectively. Variable amounts of Nampt mRNA were detected in pancreatic tissue and isolated islets. Immunofluorescence staining for Nampt was found in the exocrine and endocrine tissue of fetal pancreas. However, in adulthood, Nampt expression was localized predominantly in beta cells. Isolated human islets secreted increasing amounts of eNampt in response to high glucose (20 mM in a static glucose-stimulated insulin secretion assay (GSIS. In addition to an increase in eNampt secretion, exposure to 20 mM glucose also increased Nampt mRNA levels but not protein content. The secretion of eNampt was attenuated by the addition of membrane depolarization inhibitors, diazoxide and nifedipine. Islet-secreted eNampt showed enzymatic activity in a reaction with increasing production of NAD+/NADH over time. In summary, we show that Nampt is expressed in both exocrine and endocrine tissue early in life but in adulthood expression is localized to endocrine tissue. Enzymatically active eNampt is secreted by human islets, is regulated by glucose and requires membrane depolarization.

  5. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2015-01-01

    Full Text Available Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1 or fibroblasts (FB, group 2 under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P<0.001 without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.

  6. Hair follicle dermal sheath derived cells improve islet allograft survival without systemic immunosuppression.

    Science.gov (United States)

    Wang, Xiaojie; Hao, Jianqiang; Leung, Gigi; Breitkopf, Trisia; Wang, Eddy; Kwong, Nicole; Akhoundsadegh, Noushin; Warnock, Garth L; Shapiro, Jerry; McElwee, Kevin J

    2015-01-01

    Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1) or fibroblasts (FB, group 2) under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P < 0.001) without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.

  7. Siglec-7 restores β-cell function and survival and reduces inflammation in pancreatic islets from patients with diabetes

    Science.gov (United States)

    Dharmadhikari, Gitanjali; Stolz, Katharina; Hauke, Michael; Morgan, Noel G.; Varki, Ajit; de Koning, Eelco; Kelm, Sørge; Maedler, Kathrin

    2017-01-01

    Chronic inflammation plays a key role in both type 1 and type 2 diabetes. Cytokine and chemokine production within the islets in a diabetic milieu results in β-cell failure and diabetes progression. Identification of targets, which both prevent macrophage activation and infiltration into islets and restore β-cell functionality is essential for effective diabetes therapy. We report that certain Sialic-acid-binding immunoglobulin-like-lectins (siglecs) are expressed in human pancreatic islets in a cell-type specific manner. Siglec-7 was expressed on β-cells and down-regulated in type 1 and type 2 diabetes and in infiltrating activated immune cells. Over-expression of Siglec-7 in diabetic islets reduced cytokines, prevented β-cell dysfunction and apoptosis and reduced recruiting of migrating monocytes. Our data suggest that restoration of human Siglec-7 expression may be a novel therapeutic strategy targeted to both inhibition of immune activation and preservation of β-cell function and survival. PMID:28378743

  8. Islet-1 is required for ventral neuron survival in Xenopus

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yu; Zhao, Shuhua; Li, Jiejing [CAS-Max Planck Junior Scientist Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Mao, Bingyu, E-mail: mao@mail.kiz.ac.cn [CAS-Max Planck Junior Scientist Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)

    2009-10-23

    Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosis in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.

  9. Supravital dithizone staining in the isolation of human and rat pancreatic islets

    DEFF Research Database (Denmark)

    Hansen, W A; Christie, M R; Kahn, R

    1989-01-01

    Dithizone, a zinc chelating agent, is known to selectively stain the islets of Langerhans in the pancreas. In the present study, we have used this stain to aid the identification of islets in material obtained by collagenase digestion of human pancreas. Islets were shown to rapidly and reversibly...... techniques for the large scale isolation of functionally intact human islets.......Dithizone, a zinc chelating agent, is known to selectively stain the islets of Langerhans in the pancreas. In the present study, we have used this stain to aid the identification of islets in material obtained by collagenase digestion of human pancreas. Islets were shown to rapidly and reversibly...... no effect on insulin release in tissue culture, on acute responses to stimulatory glucose concentrations or on the insulin content of cells. These results suggest that dithizone staining can assist in the identification of islets from the human pancreas and may prove to be a useful tool in developing...

  10. A 3D map of the islet routes throughout the healthy human pancreas

    Science.gov (United States)

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  11. Neurotransmitters act as paracrine signals to regulate insulin secretion from the human pancreatic islet.

    Science.gov (United States)

    Rodriguez-Diaz, Rayner; Menegaz, Danusa; Caicedo, Alejandro

    2014-08-15

    In this symposium review we discuss the role of neurotransmitters as paracrine signals that regulate pancreatic islet function. A large number of neurotransmitters and their receptors has been identified in the islet, but relatively little is known about their involvement in islet biology. Interestingly, neurotransmitters initially thought to be present in autonomic axons innervating the islet are also present in endocrine cells of the human islet. These neurotransmitters can thus be released as paracrine signals to help control hormone release. Here we propose that the role of neurotransmitters may extend beyond controlling endocrine cell function to work as signals modulating vascular flow and immune responses within the islet.

  12. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHui; JIANG Wei; SHI Yan; DENG HongKui

    2009-01-01

    Efficiently obtaining functional pancreaUc islet cells derived from human embryonic stem (hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology. In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro. Since then, many strategies (such as overexpression of key transcription factors,delivery of key proteins for pancreatic development, co-transplantation of differentiated hES cells along with fetal pancreas, stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells. Moreover, patient-specific induced pluripotent stem (iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection. In this review, we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  13. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Efficiently obtaining functional pancreatic islet cells derived from human embryonic stem(hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology.In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro.Since then,many strategies(such as overexpression of key transcription factors,delivery of key proteins for pancreatic development,co-transplantation of differentiated hES cells along with fetal pancreas,stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells.Moreover,patient-specific induced pluripotent stem(iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection.In this review,we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  14. A review of piscine islet xenotransplantation using wild-type tilapia donors and the production of transgenic tilapia expressing a "humanized" tilapia insulin.

    Science.gov (United States)

    Wright, James R; Yang, Hua; Hyrtsenko, Olga; Xu, Bao-You; Yu, Weiming; Pohajdak, Bill

    2014-01-01

    Most islet xenotransplantation laboratories have focused on porcine islets, which are both costly and difficult to isolate. Teleost (bony) fish, such as tilapia, possess macroscopically visible distinct islet organs called Brockmann bodies which can be inexpensively harvested. When transplanted into diabetic nude mice, tilapia islets maintain long-term normoglycemia and provide human-like glucose tolerance profiles. Like porcine islets, when transplanted into euthymic mice, they are rejected in a CD4 T-cell-dependent manner. However, unlike pigs, tilapia are so phylogenetically primitive that their cells do not express α(1,3)Gal and, because tilapia are highly evolved to live in warm stagnant waters nearly devoid of dissolved oxygen, their islet cells are exceedingly resistant to hypoxia, making them ideal for transplantation within encapsulation devices. Encapsulation, especially when combined with co-stimulatory blockade, markedly prolongs tilapia islet xenograft survival in small animal recipients, and a collaborator has shown function in diabetic cynomolgus monkeys. In anticipation of preclinical xenotransplantation studies, we have extensively characterized tilapia islets (morphology, embryologic development, cell biology, peptides, etc.) and their regulation of glucose homeostasis. Because tilapia insulin differs structurally from human insulin by 17 amino acids, we have produced transgenic tilapia whose islets stably express physiological levels of humanized insulin and have now bred these to homozygosity. These transgenic fish can serve as a platform for further development into a cell therapy product for diabetes.

  15. Enzymes for Pancreatic Islet Isolation Impact Chemokine-Production and Polarization of Insulin-Producing β-Cells with Reduced Functional Survival of Immunoisolated Rat Islet-Allografts as a Consequence.

    Science.gov (United States)

    de Vos, Paul; Smink, Alexandra M; Paredes, Genaro; Lakey, Jonathan R T; Kuipers, Jeroen; Giepmans, Ben N G; de Haan, Bart J; Faas, Marijke M

    2016-01-01

    The primary aim of this study was to determine whether normal variations in enzyme-activities of collagenases applied for rat-islet isolation impact longevity of encapsulated islet grafts. Also we studied the functional and immunological properties of rat islets isolated with different enzyme preparations to determine whether this impacts these parameters. Rat-islets were isolated from the pancreas with two different collagenases with commonly accepted collagenase, neutral protease, and clostripain activities. Islets had a similar and acceptable glucose-induced insulin-release profile but a profound statistical significant difference in production of the chemokines IP-10 and Gro-α. The islets were studied with nanotomy which is an EM-based technology for unbiased study of ultrastructural features of islets such as cell-cell contacts, endocrine-cell condition, ER stress, mitochondrial conditions, and cell polarization. The islet-batch with higher chemokine-production had a lower amount of polarized insulin-producing β-cells. All islets had more intercellular spaces and less interconnected areas with tight cell-cell junctions when compared to islets in the pancreas. Islet-graft function was studied by implanting encapsulated and free islet grafts in rat recipients. Alginate-based encapsulated grafts isolated with the enzyme-lot inducing higher chemokine production and lower polarization survived for a two-fold shorter period of time. The lower survival-time of the encapsulated grafts was correlated with a higher influx of inflammatory cells at 7 days after implantation. Islets from the same two batches transplanted as free unencapsulated-graft, did not show any difference in survival or function in vivo. Lack of insight in factors contributing to the current lab-to-lab variation in longevity of encapsulated islet-grafts is considered to be a threat for clinical application. Our data suggest that seemingly minor variations in activity of enzymes applied for islet

  16. Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo.

  17. Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro

    Indian Academy of Sciences (India)

    Maithili P Dalvi; Malati R Umrani; Mugdha V Joglekar; Anandwardhan A Hardikar

    2009-10-01

    Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in diabetes. The phenotypic plasticity exhibited by pancreatic progenitors during reversible epithelial-to-mesenchymal transition (EMT) and possible role of microRNAs in regulation of this process is also presented herein.

  18. A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions.

    Science.gov (United States)

    Ryan, S; Begley, M; Hill, C; Gahan, C G M

    2010-09-01

    The aim of this study was to examine the contribution of a five-gene islet (lmo0444 - lmo0448) to the growth of Listeria monocytogenes under suboptimal conditions. Bioinformatics and PCR analyses revealed that a five-gene islet is present in c. half of all L. monocytogenes strains examined (66 in total). A deletion mutant that lacks the entire c. 8·7-kb islet was created in L. monocytogenes strain LO28. This mutant was impaired in growth at low pH and at high salt concentrations and demonstrated a decreased ability to survive and grow in a model food system (frankfurters). Transcriptional analysis revealed that the islet is self-regulated in that the product of lmo0445 regulates the expression of the other four genes. A role of the alternative stress sigma factor SigB in regulating the islet was also uncovered. The five-gene islet (herein designated as SSI-1; stress survival islet 1) contributes to the growth of L. monocytogenes under suboptimal conditions. SSI-1 may contribute to the survival of certain strains of L. monocytogenes in food environments. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  19. Research-Focused Isolation of Human Islets From Donors With and Without Diabetes at the Alberta Diabetes Institute IsletCore.

    Science.gov (United States)

    Lyon, James; Manning Fox, Jocelyn E; Spigelman, Aliya F; Kim, Ryekjang; Smith, Nancy; O'Gorman, Doug; Kin, Tatsuya; Shapiro, A M James; Rajotte, Raymond V; MacDonald, Patrick E

    2016-02-01

    Recent years have seen an increased focus on human islet biology, and exciting findings in the stem cell and genomic arenas highlight the need to define the key features of mature human islets and β-cells. Donor and organ procurement parameters impact human islet yield, although for research purposes islet yield may be secondary in importance to islet function. We examined the feasibility of a research-only human islet isolation, distribution, and biobanking program and whether key criteria such as cold ischemia time (CIT) and metabolic status may be relaxed and still allow successful research-focused isolations, including from donors with type 1 diabetes and type 2 diabetes. Through 142 isolations over approximately 5 years, we confirm that CIT and glycated hemoglobin each have a weak negative impacts on isolation purity and yield, and extending CIT beyond the typical clinical isolation cutoff of 12 hours (to ≥ 18 h) had only a modest impact on islet function. Age and glycated hemoglobin/type 2 diabetes status negatively impacted secretory function; however, these and other biological (sex, body mass index) and procurement/isolation variables (CIT, time in culture) appear to make only a small contribution to the heterogeneity of human islet function. This work demonstrates the feasibility of extending acceptable CIT for research-focused human islet isolation and highlights the biological variation in function of human islets from donors with and without diabetes.

  20. IMPROVEMENT OF HUMAN ISLET FUNCTION BY ADENOVIRUS MEDIATED HO-1 GENE TRANSFER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate in vitro heme oxygenase-1 gene (HO-1) delivery to human pancreatic islets by adenovirus vectors. Methods Recombinant adenovirus containing HO-1 or enhanced green fluorescent protein gene(EGFP) was generated by using the AdEasy System. The purified human pancreatic islets were infected with recombinant adenovirus vectors at various multiplicity of infection (MOI). Transduction was confirmed by fluorescence photographs and Western blot. Glucose-stimulated insulin secretion was detected by using Human insulin radioimmunoassay kits and was used to assess the function of human islets infected by recombinant adenovirus.Results Viral titers of Ad-hHO-1 and Ad-EGFP were 1.96×109 and 1.99×109 pfu/mL, respectively. Human pancreatic islets were efficiently infected by recombinant adenovirus vectors in vitro. Transfection of human islets at an MOI of 20 did not inhibit islet function. Recombinant adenovirus mediated HO-1gene transfer significantly improved the islet function of insulin release when simulated by high level glucose. Conclusion Recombinant adenovirus is efficient to deliver exogenous gene into human pancreatic islets in vitro. HO-1 gene transfection can improve human islet function.

  1. Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia

    Directory of Open Access Journals (Sweden)

    I. K. Hals

    2013-01-01

    Full Text Available Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8±3.5% in encapsulated and 42.9±5.2% in nonencapsulated islets (P<0.2. Nonencapsulated islets released 37.7% (median more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P<0.001. Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0±6.1% versus 24.8±5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation.

  2. Noninvasive imaging of islet grafts using positron-emission tomography

    Science.gov (United States)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  3. Transplanted human pancreatic islets after long-term insulin independence

    DEFF Research Database (Denmark)

    Muller, Y D; Gupta, Shashank; Morel, P;

    2013-01-01

    independence. Islets were pooled from two donors with respectively one and five HLA mismatches. Insulin-positive islets were found throughout the right and left liver, and absent in the pancreas. Two- and three-dimensional analysis showed that islets lost their initial rounded and compact morphology, had...

  4. Human Islet Oxygen Consumption Rate and DNA Measurements Predict Diabetes Reversal in Nude Mice

    OpenAIRE

    Papas, K.K.; Colton, C. K.; Nelson, R. A.; Rozak, P.R.; Avgoustiniatos, E.S.; Scott, W. E.; Wildey, G. M.; Pisania, A.; Weir, G. C.; Hering, B. J.

    2007-01-01

    There is a need for simple, quantitative and prospective assays for islet quality assessment that are predictive of islet transplantation outcome. The current state-of-the-art athymic nude mouse bioassay is costly, technically challenging and retrospective. In this study, we report on the ability of 2 parameters characterizing human islet quality: (1) oxygen consumption rate (OCR), a measure of viable volume; and (2) OCR/DNA, a measure of fractional viability, to predict diabetes reversal in ...

  5. Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

    Science.gov (United States)

    Ansarullah; Free, Colette; Christopherson, Jenica; Chen, Quanhai; Gao, Jie; Liu, Chengyang; Naji, Ali; Rabinovitch, Alex; Guo, Zhiguang

    2016-01-01

    Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human islet graft function in the mice was evaluated by nonfasting glucose levels, oral glucose tolerance, and removal of the grafts. Immunostaining for insulin, glucagon, and BrdU or Ki67 was performed in islet grafts to evaluate α- and β-cell replication. Insulin and CK19 immunostaining was performed to evaluate β-cell neogenesis. Four weeks after human islet transplantation, 71% of PSN632408-treated mice achieved normoglycaemia compared with 24% of vehicle-treated mice. Also, oral glucose tolerance was significantly improved in the PSN632408-treated mice. PSN632408 treatment significantly increased both human α- and β-cell areas in islet grafts and stimulated α- and β-cell replication. In addition, β-cell neogenesis was induced from pancreatic duct cells in the islet grafts. Our results demonstrated that activation of GPR119 increases β-cell mass by stimulating human β-cell replication and neogenesis. Therefore, GPR119 activators may qualify as therapeutic agents to increase human β-cell mass in patients with diabetes. PMID:27413754

  6. Characterization of the Human Pancreatic Islet Proteome by Two-Dimensional LC/MS/MS

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Thomas O.; Jacobs, Jon M.; Gritsenko, Marina A.; Fontes, Ghislaine; Qian, Weijun; Camp, David G.; Poitout, Vincent J.; Smith, Richard D.

    2006-12-01

    Research to elucidate the pathogenesis of type 1 diabetes mellitus has traditionally focused on the genetic and immunological factors associated with the disease, and, until recently, has not considered the target cell. While there have been reports detailing proteomic analyses of established islet cell lines or isolated rodent islets, the information gained is not always easily extrapolated to humans. Therefore, extensive characterization of the human islet proteome could result in better understanding of islet biology and lead to more effective treatment strategies. We have applied a two-dimensional LC-MS/MS-based analysis to the characterization of the human islet proteome, resulting in the detection of 29,021 unique peptides corresponding to 4,925 proteins. As expected, major islet hormones (insulin, glucagon, somatostatin), beta-cell enriched secretory products (IAPP), ion channels (K-ATP channel), and transcription factors (PDX-1, Nkx 6.1, HNF-1 beta) were detected. In addition, significant proteome coverage of metabolic enzymes and cellular pathways was obtained, including the insulin signaling cascade and the MAP kinase, NF-κβ, and JAK/STAT pathways. This work represents the most extensive characterization of the human islet proteome to date and provides a peptide reference library that may be utilized in future studies of islet biology and type 1 diabetes.

  7. Single-Cell Sequencing of Human Pancreatic Islets-New Kids on the Block.

    Science.gov (United States)

    Prasad, Rashmi B; Groop, Leif

    2016-10-11

    RNA sequencing of human pancreatic islets has provided important insights into the islet transcriptome but little information on the specific cells. In this issue, Segerstolpe et al. (2016) and Xin et al. (2016b) report on the transcriptome of single pancreatic cells from non-diabetic and type 2 diabetic donors. Copyright © 2016. Published by Elsevier Inc.

  8. Human islets and dendritic cells generate post-translationally modified islet auto-antigens

    NARCIS (Netherlands)

    McLaughlin, Rene J; de Haan, Anne; Zaldumbide, Arnaud; de Koning, Eelco J; de Ru, Arnoud H; van Veelen, Peter A; van Lummel, Menno; Roep, Bart O

    2016-01-01

    Initiation of type 1 diabetes (T1D) requires a break in peripheral tolerance. New insights into neo-epitope formation indicate that post-translational modification of islet auto-antigens, for example via deamidation, may be an important component of disease initiation or exacerbation. Indeed, deamid

  9. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M

    2013-01-01

    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them t...

  10. Expression of innate immunity genes and damage of primary human pancreatic islets by epidemic strains of Echovirus: implication for post-virus islet autoimmunity.

    Directory of Open Access Journals (Sweden)

    Luis Sarmiento

    Full Text Available Three large-scale Echovirus (E epidemics (E4,E16,E30, each differently associated to the acute development of diabetes related autoantibodies, have been documented in Cuba. The prevalence of islet cell autoantibodies was moderate during the E4 epidemic but high in the E16 and E30 epidemic. The aim of this study was to evaluate the effect of epidemic strains of echovirus on beta-cell lysis, beta-cell function and innate immunity gene expression in primary human pancreatic islets. Human islets from non-diabetic donors (n = 7 were infected with the virus strains E4, E16 and E30, all isolated from patients with aseptic meningitis who seroconverted to islet cell antibody positivity. Viral replication, degree of cytolysis, insulin release in response to high glucose as well as mRNA expression of innate immunity genes (IFN-b, RANTES, RIG-I, MDA5, TLR3 and OAS were measured. The strains of E16 and E30 did replicate well in all islets examined, resulting in marked cytotoxic effects. E4 did not cause any effects on cell lysis, however it was able to replicate in 2 out of 7 islet donors. Beta-cell function was hampered in all infected islets (P<0.05; however the effect of E16 and E30 on insulin secretion appeared to be higher than the strain of E4. TLR3 and IFN-beta mRNA expression increased significantly following infection with E16 and E30 (P<0.033 and P<0.039 respectively. In contrast, the expression of none of the innate immunity genes studied was altered in E4-infected islets. These findings suggest that the extent of the epidemic-associated islet autoimmunity may depend on the ability of the viral strains to damage islet cells and induce pro-inflammatory innate immune responses within the infected islets.

  11. Human pancreatic islet preparations release HMGB1: (ir)relevance for graft engraftment.

    Science.gov (United States)

    Nano, Rita; Racanicchi, Leda; Melzi, Raffaella; Mercalli, Alessia; Maffi, Paola; Sordi, Valeria; Ling, Zhidong; Scavini, Marina; Korsgren, Olle; Celona, Barbara; Secchi, Antonio; Piemonti, Lorenzo

    2013-01-01

    High levels of donor-derived high-mobility group box 1 (HMGB1) protein have been associated with poor islet graft outcome in mouse models. The aim of our work was to determine whether HMGB1 released by human islets had independent proinflammatory effects that influence engraftment in humans. Human islet preparations contained and released HMGB1 in different amounts, as determined by Western blot and ELISA (median 17 pg/ml/IEQ/24 h; min-max 0-211, n = 74). HMGB1 release directly correlated with brain death, donor hyperamilasemia, and factors related to the pancreas digestion procedure (collagenase and digestion time). HMGB1 release was significantly positively associated with the release of other cytokines/chemokines, particularly with the highly released "proinflammatory" CXCL8/IL-8, CXCL1/GRO-α, and the IFN-γ-inducible chemokines CXCL10/IP-10 and CXCL9/MIG. HMGB1 release was not modulated by Toll-like receptor 2, 3, 4, 5, and 9 agonists or by exposure to IL-1β. When evaluated after islet transplantation, pretransplant HMGB1 release was weakly associated with the activation of the coagulation cascade (evaluated as serum cross-linked fibrin products), but not with the immediate posttransplant inflammatory response. Concordantly, HMGB1 did not affect short-term human islet function. Our data show that human islet HMGB1 release is a sign of "damaged" islets, although without any independent direct role in graft failure.

  12. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines.

    Directory of Open Access Journals (Sweden)

    Décio L Eizirik

    Full Text Available Type 1 diabetes (T1D is an autoimmune disease in which pancreatic beta cells are killed by infiltrating immune cells and by cytokines released by these cells. Signaling events occurring in the pancreatic beta cells are decisive for their survival or death in diabetes. We have used RNA sequencing (RNA-seq to identify transcripts, including splice variants, expressed in human islets of Langerhans under control conditions or following exposure to the pro-inflammatory cytokines interleukin-1β (IL-1β and interferon-γ (IFN-γ. Based on this unique dataset, we examined whether putative candidate genes for T1D, previously identified by GWAS, are expressed in human islets. A total of 29,776 transcripts were identified as expressed in human islets. Expression of around 20% of these transcripts was modified by pro-inflammatory cytokines, including apoptosis- and inflammation-related genes. Chemokines were among the transcripts most modified by cytokines, a finding confirmed at the protein level by ELISA. Interestingly, 35% of the genes expressed in human islets undergo alternative splicing as annotated in RefSeq, and cytokines caused substantial changes in spliced transcripts. Nova1, previously considered a brain-specific regulator of mRNA splicing, is expressed in islets and its knockdown modified splicing. 25/41 of the candidate genes for T1D are expressed in islets, and cytokines modified expression of several of these transcripts. The present study doubles the number of known genes expressed in human islets and shows that cytokines modify alternative splicing in human islet cells. Importantly, it indicates that more than half of the known T1D candidate genes are expressed in human islets. This, and the production of a large number of chemokines and cytokines by cytokine-exposed islets, reinforces the concept of a dialog between pancreatic islets and the immune system in T1D. This dialog is modulated by candidate genes for the disease at both the

  13. Zebularine induces long-term survival of pancreatic islet allotransplants in streptozotocin treated diabetic rats.

    Directory of Open Access Journals (Sweden)

    Henrietta Nittby

    Full Text Available BACKGROUND: Coping with the immune rejection of allotransplants or autologous cells in patients with an active sensitization towards their autoantigens and autoimmunity presently necessitates life-long immune suppressive therapy acting on the immune system as a whole, which makes the patients vulnerable to infections and increases their risk of developing cancer. New technologies to induce antigen selective long-lasting immunosuppression or immune tolerance are therefore much needed. METHODOLOGY/PRINCIPAL FINDINGS: The DNA demethylating agent Zebularine, previously demonstrated to induce expression of the genes for the immunosuppressive enzymes indolamine-2,3-deoxygenase-1 (IDO1 and kynureninase of the kynurenine pathway, is tested for capacity to suppress rejection of allotransplants. Allogeneic pancreatic islets from Lewis rats were transplanted under the kidney capsule of Fischer rats previously made diabetic by a streptozotocin injection (40 mg/kg. One group was treated with Zebularine (225 mg/kg daily for 14 days from day 6 or 8 after transplantation, and a control group received no further treatment. Survival of the transplants was monitored by blood sugar measurements. Rats, normoglycemic for 90 days after allografting, were subjected to transplant removal by nephrectomy to confirm whether normoglycemia was indeed due to a surviving insulin producing transplant, or alternatively was a result of recovery of pancreatic insulin production in some toxin-treated rats. Of 9 Zebularine treated rats, 4 were still normoglycemic after 90 days and became hyperglycemic after nephrectomy. The mean length of normoglycemia in the Zebularine group was 67±8 days as compared to 14±3 days in 9 controls. Seven rats (2 controls and 5 Zebularine treated were normoglycemic at 90 days due to pancreatic recovery as demonstrated by failure of nephrectomy to induce hyperglycemia. CONCLUSIONS/SIGNIFICANCE: Zebularine treatment in vivo induces a long

  14. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    . These effects were dose-dependent and reproducible when using three different Interleukin-1 preparations. Highly purified human Interleukin-2, Lymphotoxin, Leucocyte Migration Inhibitory Factor and Macrophage Migration Inhibitory Factor were ineffective. These findings suggest that Interleukin-1 may play......Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets...

  15. A TLR9 agonist promotes IL-22-dependent pancreatic islet allograft survival in type 1 diabetic mice

    Science.gov (United States)

    Tripathi, Deepak; Venkatasubramanian, Sambasivan; Cheekatla, Satyanarayana S.; Paidipally, Padmaja; Welch, Elwyn; Tvinnereim, Amy R.; Vankayalapati, Ramakrishna

    2016-01-01

    Pancreatic islet transplantation is a promising potential cure for type 1 diabetes (T1D). Islet allografts can survive long term in the liver parenchyma. Here we show that liver NK1.1+ cells induce allograft tolerance in a T1D mouse model. The tolerogenic effects of NK1.1+ cells are mediated through IL-22 production, which enhances allograft survival and increases insulin secretion. Increased expression of NKG2A by liver NK1.1+ cells in islet allograft-transplanted mice is involved in the production of IL-22 and in the reduced inflammatory response to allografts. Vaccination of T1D mice with a CpG oligonucleotide TLR9 agonist (ODN 1585) enhances expansion of IL-22-producing CD3-NK1.1+ cells in the liver and prolongs allograft survival. Our study identifies a role for liver NK1.1+ cells, IL-22 and CpG oligonucleotides in the induction of tolerance to islet allografts in the liver parenchyma. PMID:27982034

  16. Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS.

    Science.gov (United States)

    Metz, Thomas O; Jacobs, Jon M; Gritsenko, Marina A; Fontès, Ghislaine; Qian, Wei-Jun; Camp, David G; Poitout, Vincent; Smith, Richard D

    2006-12-01

    The pancreatic beta-cell plays a central role in the maintenance of glucose homeostasis and in the pathogenesis of both type 1 and type 2 diabetes mellitus. Elucidation of the insulin secretory defects observed in diabetes first requires a better understanding of the complex mechanisms regulating insulin secretion, which are only partly understood. While there have been reports detailing proteomic analyses of islet cell lines or isolated rodent islets, the information gained is not always applicable to humans. Therefore, definition of the human islet proteome could contribute to a better understanding of islet biology and lead to more effective treatment strategies. We have applied a two-dimensional LC-MS/MS-based analysis to the characterization of the human islet proteome, resulting in the confident identification of 29,021 different tryptic peptides covering 3365 proteins (> or =2 unique peptide identifications per protein). As expected, the three major islet hormones (insulin, glucagon, and somatostatin) were detected, as well as various beta-cell enriched secretory products, ion channels, and transcription factors. In addition, significant proteome coverage of metabolic enzymes and cellular pathways was observed, including the integrin signaling cascade and the MAP kinase, NF-kappa beta, and JAK/STAT pathways. The resulting peptide reference library provides a resource for future higher throughput and quantitative studies of islet biology.

  17. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Directory of Open Access Journals (Sweden)

    Alexandra E. Proshchina

    2014-04-01

    Full Text Available The ontogeny of the neuro-insular complexes (NIC and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE and S100 protein and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw 10 onwards. Later the density of S100 and NSE-positive fibers increased. In adults this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onwards. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained neuro-insular complexes and the number of these complexes was reduced in adults. The highest density of neuro-insular complexes is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  18. Small intestinal submucosa improves islet survival and function during in vitro culture

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui Tian; Wu-Jun Xue; Xiao-Ming Ding; Xin-Lu Pang; Yan Teng; Pu-Xun Tian; Xin-Shun Feng

    2005-01-01

    AIM: To evaluate the recovery and function of isolated rat pancreatic islets during in vitro culture with small intestinal submucosa (SIS).METHODS: Pancreatic islets were isolated from Wistar rats by standard surgical procurement followed by intraductal collagenase distension, mechanical dissociation and Euroficoll purification. Purified islets were cultured in plates coated with multilayer SIS (SIS-treated group) or without multilayer SIS (standard cultured group) for 7 and 14 d in standard islet culture media of RPMI 1640. After isolation and culture, islets from both experimental groups were stained with dithizone and counted. Recovery of islets was determined by the ratio of counts after the culture to the yield of islets immediately following islet isolation. Viability of islets after the culture was assessed by the glucose challenge test with low (2.7 mmol/L) and high glucose (16.7 mmol/L)solution supplemented with 50 mmol/L 3-isobutyl-1-methylxanthine (IBMX) solution. Apoptosis of islet cells after the culture was measured by relative quantification of histone-complexed DNA fragments using ELISA.RESULTS: After 7 or 14 d of in vitro tissue culture, the recovery of islets in SIS-treated group was significantly higher than that cultured in plates without SIS coating. The recovery of islets in SIS-treated group was about twice more than that of in the control group. In SIS-treated group, there was no significant difference in the recovery of islets between short- and long-term periods of culture (95.8±1.0% vs 90.8±1.5%, P>0.05). When incubated with high glucose (16.7 mmol/L) solution,insulin secretion in SIS-treated group showed a higher increase than that in control group after 14 d of culture (20.7±1.1 mU/L vs11.8±1.1 mU/L, P0.05).Much less apoptosis of islet cells occurred in SIS-treated group than in control group after the culture.CONCLUSION: Co-culture of isolated rat islets with native sheet-like SIS might build an extracellular matrix for islets and

  19. Amyloid Deposition in Transplanted Human Pancreatic Islets: A Conceivable Cause of Their Long-Term Failure

    Directory of Open Access Journals (Sweden)

    Arne Andersson

    2008-01-01

    Full Text Available Following the encouraging report of the Edmonton group, there was a rejuvenation of the islet transplantation field. After that, more pessimistic views spread when long-term results of the clinical outcome were published. A progressive loss of the β-cell function meant that almost all patients were back on insulin therapy after 5 years. More than 10 years ago, we demonstrated that amyloid deposits rapidly formed in human islets and in mouse islets transgenic for human IAPP when grafted into nude mice. It is, therefore, conceivable to consider amyloid formation as one potential candidate for the long-term failure. The present paper reviews attempts in our laboratories to elucidate the dynamics of and mechanisms behind the formation of amyloid in transplanted islets with special emphasis on the impact of long-term hyperglycemia.

  20. The Peri-islet Basement Membrane, a Barrier to Infiltrating Leukocytes in Type 1 Diabetes in Mouse and Human

    DEFF Research Database (Denmark)

    Korpos, Eva; Kadri, Nadir; Kappelhoff, Reinhild

    2013-01-01

    We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data...... activity at sites of leukocyte penetration of the peri-islet BM in association with a macrophage subpopulation in NOD mice and human type 1 diabetic samples and, hence, potentially a novel therapeutic target specifically acting at the islet penetration stage. Interestingly, the peri-islet BM and underlying...... IM are reconstituted once inflammation subsides, indicating that the peri-islet BM-producing cells are not lost due to the inflammation, which has important ramifications to islet transplantation studies....

  1. Volumetric properties of human islet amyloid polypeptide in liquid water.

    Science.gov (United States)

    Brovchenko, I; Andrews, M N; Oleinikova, A

    2010-04-28

    The volumetric properties of human islet amyloid polypeptide (hIAPP) in water were studied in a wide temperature range by computer simulations. The intrinsic density rho(p) and the intrinsic thermal expansion coefficient alpha(p) of hIAPP were evaluated by taking into account the difference between the volumetric properties of hydration and bulk water. The density of hydration water rho(h) was found to decrease almost linearly with temperature upon heating and its thermal expansion coefficient was found to be notably higher than that of bulk water. The peptide surface exposed to water is more hydrophobic and its rho(h) is smaller in conformation with a larger number of intrapeptide hydrogen bonds. The two hIAPP peptides studied (with and without disulfide bridge) show negative alpha(p), which is close to zero at 250 K and decreases to approximately -1.5 x 10(-3) K(-1) upon heating to 450 K. The analysis of various structural properties of peptides shows a correlation between the intrinsic peptide volumes and the number of intrapeptide hydrogen bonds. The obtained negative values of alpha(p) can be attributed to the shrinkage of the inner voids of the peptides upon heating.

  2. Aspects of structural landscape of human islet amyloid polypeptide

    Science.gov (United States)

    He, Jianfeng; Dai, Jin; Li, Jing; Peng, Xubiao; Niemi, Antti J.

    2015-01-01

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.

  3. Aspects of structural landscape of human islet amyloid polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianfeng, E-mail: hjf@bit.edu.cn; Dai, Jin, E-mail: daijing491@gmail.com [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Jing, E-mail: jinglichina@139.com [Institute of Biopharmaceutical Research, Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing 102206 (China); Peng, Xubiao, E-mail: xubiaopeng@gmail.com [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2015-01-28

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.

  4. Adaptive changes of human islets to an obesogenic environment in the mouse

    OpenAIRE

    Gargani, Sofia

    2013-01-01

    Introduction: Under normal healthy conditions, organisms maintain a dynamic endocrinecell mass throughout life. Pancreatic beta cell mass are able to maintain plasma glucose levels increasing insulin secretion in conditions as obesity. Beta cell inability to compensate in insulin demand provokes hyperglycemia and Type 2 Diabetes. Clinically, most obese individuals do not develop diabetes because islets compensate for insulin resistance. Direct evidence that human islet mass adapts longitudina...

  5. The human insulin gene is part of a large open chromatin domain specific for human islets

    OpenAIRE

    Mutskov, Vesco; Felsenfeld, Gary

    2009-01-01

    Knowledge of how insulin (INS) gene expression is regulated will lead to better understanding of normal and abnormal pancreatic β cell function. We have mapped histone modifications over the INS region, coupled with an expression profile, in freshly isolated islets from multiple human donors. Unlike many other human genes, in which active modifications tend to be concentrated within 1 kb around the transcription start site, these marks are distributed over the entire coding region of INS as w...

  6. Efficient gene delivery and silencing of mouse and human pancreatic islets

    Directory of Open Access Journals (Sweden)

    Moerman Ericka

    2010-03-01

    Full Text Available Abstract Background In view of the importance of beta cells in glucose homeostasis and the profound repercussions of beta cell pathology on human health, the acquisition of tools to study pancreatic islet function is essential for the design of alternative novel therapies for diabetes. One promising approach toward this goal involves the modification of gene expression profile of beta cells. Results This study describes a new method of gene and siRNA delivery into human pancreatic islets by microporation technology. We demonstrated that mild islet distention with accutase greatly enhanced the transfection efficiency without compromising in vitro function (secretion, apoptosis and viability. As an example, the recently identified gene involved in type 2 diabetes, ZnT8, can be over-expressed or silenced by RNA interference using this technology. Microporation can also be used on rodent islets. Conclusions Taken together, our results demonstrate that microporation technology can be used to modify gene expression in whole rodent and human islets without altering their in vitro function and will be key to the elucidation of the factors responsible for proper islet function.

  7. Cytotoxic T-lymphocyte-mediated killing of human pancreatic islet cells in vitro.

    Science.gov (United States)

    Campbell, Peter D; Estella, Eugene; Dudek, Nadine L; Jhala, Gaurang; Thomas, Helen E; Kay, Thomas W H; Mannering, Stuart I

    2008-09-01

    Cytotoxic T lymphocytes (CTL) are believed to play an essential role in beta-cell destruction leading to development of type 1 diabetes and allogeneic islet graft failure. We aimed to identify the mechanisms used by CTL to kill human beta cells. CTL clones that recognize epitopes from influenza virus and Epstein-Barr virus restricted by human leukocyte antigen (HLA)-A0201 and -B0801, respectively, were used to investigate the susceptibility of human beta cells to CTL. In a short-term (5-hour) assay, CTL killed human islet cells of the appropriate major histocompatibility complex (MHC) class I type that had been pulsed with viral peptides. Killing was increased by pretreating islets with interferon gamma that increases MHC class I on target cells. Killing was abolished by incubation of CTL with the perforin inhibitor concanamycin A. The Fas pathway did not contribute to killing because blocking with neutralizing anti-Fas ligand antibody did not significantly reduce beta-cell killing. In conclusion, we report a novel way of investigating the interaction between CTL and human islets. Human islets were rapidly killed in vitro by MHC class I-restricted CTL predominantly by the granule exocytosis pathway.

  8. Prolongation of islet allograft survival in mice by combined treatment with pravastatin and low-dose cyclosporine.

    Science.gov (United States)

    Arita, S; Kasraie, A; Une, S; Ohtsuka, S; Smith, C V; Mullen, Y

    2001-01-01

    Pravastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, is known to have suppressive effects on immune and inflammatory cells. We have previously shown in mice and dogs that this agent prevents primary nonfunction of islet iso- and autografts by reducing inflammation at the graft site. The present study was designed to further investigate whether pravastatin has a synergistic effect with cyclosporine (Cs) to prolong islet allograft survival in mice. Unpurified 3000 BALB/c newborn islets were transplanted under the renal capsule of a streptozotocin-diabetic C57BL/6 mouse. Pravastatin and Cs were administered for 10 days starting on the day of grafting (day 0). Five groups were set up based on the treatment protocol: group 1, treatment with 40 mg/kg pravastatin; group 2, 30 mg/kg Cs; group 3, 50 mg/kg Cs; group 4, 40 mg/kg pravastatin and 30 mg/kg Cs; group 5, vehicle alone. Graft survival was indicated by blood glucose levels sustained at 250 mg/dl for 2 consecutive days. Hyperglycemia persisted in six of the eight (75%) mice and grafts were rejected in 3.6 +/- 0.5 days (mean +/- SD) in group 5. In group 1, grafts were also rejected in 3.8 +/- 0.8 days, but blood glucose was transiently 60 days, the other rejected the graft on day 15, and the remaining four died with functioning grafts between 9 and 13 days due to Cs toxicity. A combination of a low dose of Cs and pravastatin (group 4) prolonged graft survival for >19 days in five of the eight mice, and for 7-13 days in the remaining three mice. Histological examination of the grafts in this group showed significantly reduced local inflammation. Results indicate a synergistic effect of pravastatin and Cs on prevention of islet allograft rejection.

  9. St. John's wort extract and hyperforin protect rat and human pancreatic islets against cytokine toxicity.

    Science.gov (United States)

    Novelli, Michela; Beffy, Pascale; Menegazzi, Marta; De Tata, Vincenzo; Martino, Luisa; Sgarbossa, Anna; Porozov, Svetlana; Pippa, Anna; Masini, Matilde; Marchetti, Piero; Masiello, Pellegrino

    2014-02-01

    The extract of Hypericum perforatum (St. John's wort, SJW) and its component hyperforin (HPF) were previously shown to inhibit cytokine-induced activation of signal transducer and activator of transcription-1 and nuclear factor κB and prevent apoptosis in a cultured β-cell line. Objective of this study was to assess the protection exerted by SJW and HPF on isolated rat and human islets exposed to cytokines in vitro. Functional, ultrastructural, biomolecular and cell death evaluation studies were performed. In both rat and human islets, SJW and HPF counteracted cytokine-induced functional impairment and down-regulated mRNA expression of pro-inflammatory target genes, such as iNOS, CXCL9, CXCL10, COX2. Cytokine-induced NO production from cultured islets, evaluated by nitrites measurement in the medium, was significantly reduced in the presence of the vegetal compounds. Noteworthy, the increase in apoptosis and necrosis following 48-h exposure to cytokines was fully prevented by SJW and partially by HPF. Ultrastructural morphometric analysis in human islets exposed to cytokines for 20 h showed that SJW or HPF avoided early β-cell damage (e.g., mitochondrial alterations and loss of insulin granules). In conclusion, SJW compounds protect rat and human islets against cytokine effects by counteracting key mechanisms of cytokine-mediated β-cell injury and represent promising pharmacological tools for prevention or limitation of β-cell dysfunction and loss in type 1 diabetes.

  10. Effects of mycophenolate mofetil vs cyclosporine administration on graft survival and function after islet allotransplantation in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Constantin Fotiadis; Paraskevi Xekouki; Apostolos E Papalois; Pantelis T Antonakis; Ioannis Sfiniadakis; Dimitrios Flogeras; Eleutheria Karampela; George Zografos

    2005-01-01

    AIM: To develop an experimental model of islet allotransplantation in diabetic rats and to determine the positive or adverse effects of MMF as a single agent. METHODS: Thirty-six male Wistar rats and 18 male Lewis rats were used as recipients and donors respectively. Diabetes was induced by the use of streptozotocin (60 mg/kg) intraperitoneally. Unpurified islets were isolated using the collagenase digestion technique and transplanted into the splenic parenchyma. The recipients were randomly assigned to one of the following three groups: group A (control group) had no immunosuppression; group B received cyclosporine (CsA) (5 mg/kg); group C receivedmycophenolate mofetil (MMF) (20 mg/kg). The animalswere killed on the 12th d. Blood and grafted tissues were obtained for laboratory and histological assessment. RESULTS: Median allograft survival was significantly higher in the two therapy groups than that in the controls (10 and 12 d for CsA and MMF respectively vs 0 d for the control group, P<0.01). No difference in allograft survival between the CsA and MMF groups was found. However,MMF had less renal and hepatic toxicity and allowed weight gain.CONCLUSION: Monotherapy with MMF for immunosu ppression was safe in an experimental model of islet allotransplantation and was equally effective with cyclosporine, with less toxicity.

  11. The human insulin gene is part of a large open chromatin domain specific for human islets.

    Science.gov (United States)

    Mutskov, Vesco; Felsenfeld, Gary

    2009-10-13

    Knowledge of how insulin (INS) gene expression is regulated will lead to better understanding of normal and abnormal pancreatic beta cell function. We have mapped histone modifications over the INS region, coupled with an expression profile, in freshly isolated islets from multiple human donors. Unlike many other human genes, in which active modifications tend to be concentrated within 1 kb around the transcription start site, these marks are distributed over the entire coding region of INS as well. Moreover, a region of approximately 80 kb around the INS gene, which contains the {tyrosine hydroxylase (TH)-(INS)-insulin-like growth factor 2 antisense (IGF2AS)-insulin-like growth factor 2 (IGF2)} gene cluster, unusually is marked by almost uniformly elevated levels of histone acetylation and H3K4 dimethylation, extending both downstream into IGF2 and upstream beyond the TH gene. This is accompanied by islet specific coordinate expression with INS of the neighboring TH and IGF2 genes. The presence of islet specific intergenic transcripts suggests their possible function in the maintenance of this unusual large open chromatin domain.

  12. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes

    DEFF Research Database (Denmark)

    Storling, Joachim; Brorsson, Caroline Anna

    2013-01-01

    In type 1 diabetes (T1D), the insulin-producing β cells are destroyed by an immune-mediated process leading to complete insulin deficiency. There is a strong genetic component in T1D. Genes located in the human leukocyte antigen (HLA) region are the most important genetic determinants of disease...... exposure to proinflammatory cytokines highlighting that these genes may be involved in the response of β cells to immune attack. In this review, the compiling evidence that many of the candidate genes are expressed in islets and β cells will be presented. Further, we perform the first systematic human...... islet expression analysis of all genes located in 50 T1D-associated GWAS loci using a published RNA sequencing dataset. We find that 336 out of 857 genes are expressed in human islets and that many of these interact in protein networks. Finally, the potential pathogenetic roles of some candidate genes...

  13. Differential expression of glutamic acid decarboxylase in rat and human islets

    DEFF Research Database (Denmark)

    Petersen, J S; Russel, S; Marshall, M O;

    1993-01-01

    The GABA synthesizing enzyme GAD is a prominent islet cell autoantigen in type I diabetes. The two forms of GAD (GAD64 and GAD67) are encoded by different genes in both rats and humans. By in situ hybridization analysis of rat and human pancreases, expression of both genes was detected in rat isl...

  14. Insulin resistance alters islet morphology in nondiabetic humans

    DEFF Research Database (Denmark)

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects...... pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared...... insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell-to-α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from...

  15. An Apparent Deficiency of Lymphatic Capillaries in the Islets of Langerhans in the Human Pancreas.

    Science.gov (United States)

    Korsgren, Erik; Korsgren, Olle

    2016-04-01

    The lymphatic system is crucial for efficient immune surveillance and for the maintenance of a physiological pressure in the interstitial space. Even so, almost no information is available concerning the lymph drainage of the islets of Langerhans in the human pancreas. Immunohistochemical staining allowed us to distinguish lymphatic capillaries from blood capillaries. Almost no lymphatic capillaries were found within the islets in pancreatic biopsy specimens from subjects without diabetes or from subjects with type 1 or type 2 diabetes. Lymphatic capillaries were, however, found at the islet-exocrine interface, frequently located along blood capillaries and other fibrotic structures within or close to the islet capsule. Lymphatic capillaries were regularly found in the exocrine pancreas, with small lymphatic vessels located close to and around acini. Larger collecting lymphatic vessels were located in fibrotic septa between the exocrine lobules and adjacent to the ductal system of the pancreas. In summary, we report a pronounced deficiency of lymphatic capillaries in human islets, a finding with implications for immune surveillance and the regulation of interstitial fluid transport in the endocrine pancreas as well as for the pathophysiology of both type 1 and type 2 diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Luisa Martino

    Full Text Available We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.

  17. Direct long-term effects of L-asparaginase on rat and human pancreatic islets

    DEFF Research Database (Denmark)

    Clausen, Niels; Nielsen, Jens Høiriis

    1989-01-01

    L-Asparaginase, an effective agent in the treatment of acute lymphoblastic leukemia, may induce a diabetic state. The pathogenesis of the diabetogenic effect was studied in cultured pancreatic islets. Mean serum concentrations in three children with acute lymphoblastic leukemia were 2.4 U/mL (range...... 1.4-4.5) before and 31.5 U/mL (range 18.6-51.8) immediately after an intravenous injection of 1000 U/kg L-asparaginase. Glucose-induced insulin release from pancreatic islets of rat and man was measured after 3 and 7 days of culture in media with or without clinically relevant concentrations...... of Escherichia coli L-asparaginase (0.01-100 U/mL). After culture, the remaining insulin, glucagon, and DNA in the islets were determined. After 7 days of culture of adult rat or human islets, both the accumulation of insulin in the medium and the content of insulin and glucagon in the islets were significantly...

  18. The effects of exendin-4 treatment on graft failure: an animal study using a novel re-vascularized minimal human islet transplant model.

    Directory of Open Access Journals (Sweden)

    Afaf Sahraoui

    Full Text Available Islet transplantation has become a viable clinical treatment, but is still compromised by long-term graft failure. Exendin-4, a glucagon-like peptide 1 receptor agonist, has in clinical studies been shown to improve insulin secretion in islet transplanted patients. However, little is known about the effect of exendin-4 on other metabolic parameters. We therefore aimed to determine what influence exendin-4 would have on revascularized minimal human islet grafts in a state of graft failure in terms of glucose metabolism, body weight, lipid levels and graft survival. Introducing the bilateral, subcapsular islet transplantation model, we first transplanted diabetic mice with a murine graft under the left kidney capsule sufficient to restore normoglycemia. After a convalescent period, we performed a second transplantation under the right kidney capsule with a minimal human islet graft and allowed for a second recovery. We then performed a left-sided nephrectomy, and immediately started treatment with exendin-4 with a low (20μg/kg/day or high (200μg/kg/day dose, or saline subcutaneously twice daily for 15 days. Blood was sampled, blood glucose and body weight monitored. The transplanted human islet grafts were collected at study end point and analyzed. We found that exendin-4 exerts its effect on failing human islet grafts in a bell-shaped dose-response curve. Both doses of exendin-4 equally and significantly reduced blood glucose. Glucagon-like peptide 1 (GLP-1, C-peptide and pro-insulin were conversely increased. In the course of the treatment, body weight and cholesterol levels were not affected. However, immunohistochemistry revealed an increase in beta cell nuclei count and reduced TUNEL staining only in the group treated with a low dose of exendin-4 compared to the high dose and control. Collectively, these results suggest that exendin-4 has a potential rescue effect on failing, revascularized human islets in terms of lowering blood glucose

  19. The effects of exendin-4 treatment on graft failure: an animal study using a novel re-vascularized minimal human islet transplant model.

    Science.gov (United States)

    Sahraoui, Afaf; Winzell, Maria Sörhede; Gorman, Tracy; Smith, Dave M; Skrtic, Stanko; Hoeyem, Merete; Abadpour, Shadab; Johansson, Lars; Korsgren, Olle; Foss, Aksel; Scholz, Hanne

    2015-01-01

    Islet transplantation has become a viable clinical treatment, but is still compromised by long-term graft failure. Exendin-4, a glucagon-like peptide 1 receptor agonist, has in clinical studies been shown to improve insulin secretion in islet transplanted patients. However, little is known about the effect of exendin-4 on other metabolic parameters. We therefore aimed to determine what influence exendin-4 would have on revascularized minimal human islet grafts in a state of graft failure in terms of glucose metabolism, body weight, lipid levels and graft survival. Introducing the bilateral, subcapsular islet transplantation model, we first transplanted diabetic mice with a murine graft under the left kidney capsule sufficient to restore normoglycemia. After a convalescent period, we performed a second transplantation under the right kidney capsule with a minimal human islet graft and allowed for a second recovery. We then performed a left-sided nephrectomy, and immediately started treatment with exendin-4 with a low (20μg/kg/day) or high (200μg/kg/day) dose, or saline subcutaneously twice daily for 15 days. Blood was sampled, blood glucose and body weight monitored. The transplanted human islet grafts were collected at study end point and analyzed. We found that exendin-4 exerts its effect on failing human islet grafts in a bell-shaped dose-response curve. Both doses of exendin-4 equally and significantly reduced blood glucose. Glucagon-like peptide 1 (GLP-1), C-peptide and pro-insulin were conversely increased. In the course of the treatment, body weight and cholesterol levels were not affected. However, immunohistochemistry revealed an increase in beta cell nuclei count and reduced TUNEL staining only in the group treated with a low dose of exendin-4 compared to the high dose and control. Collectively, these results suggest that exendin-4 has a potential rescue effect on failing, revascularized human islets in terms of lowering blood glucose, maintaining beta

  20. Comparison of Modified Celsior Solution and M-Kyoto Solution for Pancreas Preservation in Human Islet Isolation.

    Science.gov (United States)

    Noguchi, Hirofumi; Naziruddin, Bashoo; Onaca, Nicholas; Jackson, Andrew; Shimoda, Masayuki; Ikemoto, Tetsuya; Fujita, Yasutaka; Kobayashi, Naoya; Levy, Marlon F; Matsumoto, Shinichi

    2010-06-01

    Since the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas preservation systems. In this study, we evaluated two different types of organ preservation solutions for human islet isolation. Modified Celsior (Celsior solution with hydroxyethyl starch and nafamostat mesilate; HNC) solution and modified Kyoto (MK) solution were compared for pancreas preservation prior to islet isolation. Islet yield after purification was significantly higher in the MK group than in the HNC group (MK = 6186 ± 985 IE/g; HNC = 3091 ± 344 IE/g). The HNC group had a longer phase I period (digestion time), a higher volume of undigested tissue, and a higher percentage of embedded islets, suggesting that the solution may inhibit collagenase. However, there was no significant difference in ATP content in the pancreata or in the attainability of posttransplant normoglycemia in diabetic nude mice between the two groups, suggesting that the quality of islets was similar among the two groups. In conclusion, MK solution is better for pancreas preservation before islet isolation than HNC solution due to the higher percentage of islets that can be isolated from the donor pancreas. MK solution should be the solution of choice among the commercially available solutions for pancreatic islet isolation leading to transplantation.

  1. Comparison of modified Celsior solution and M-kyoto solution for pancreas preservation in human islet isolation.

    Science.gov (United States)

    Noguchi, Hirofumi; Naziruddin, Bashoo; Onaca, Nicholas; Jackson, Andrew; Shimoda, Masayuki; Ikemoto, Tetsuya; Fujita, Yasutaka; Kobayashi, Naoya; Levy, Marlon F; Matsumoto, Shinichi

    2010-01-01

    Since the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas preservation systems. In this study, we evaluated two different types of organ preservation solutions for human islet isolation. Modified Celsior (Celsior solution with hydroxyethyl starch and nafamostat mesilate; HNC) solution and modified Kyoto (MK) solution were compared for pancreas preservation prior to islet isolation. Islet yield after purification was significantly higher in the MK group than in the HNC group (MK = 6186 ± 985 IE/g; HNC = 3091 ± 344 IE/g). The HNC group had a longer phase I period (digestion time), a higher volume of undigested tissue, and a higher percentage of embedded islets, suggesting that the solution may inhibit collagenase. However, there was no significant difference in ATP content in the pancreata or in the attainability of posttransplant normoglycemia in diabetic nude mice between the two groups, suggesting that the quality of islets was similar among the two groups. In conclusion, MK solution is better for pancreas preservation before islet isolation than HNC solution due to the higher percentage of islets that can be isolated from the donor pancreas. MK solution should be the solution of choice among the commercially available solutions for pancreatic islet isolation leading to transplantation.

  2. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets

    NARCIS (Netherlands)

    DeVos, P; DeHaan, BJ; Wolters, GHJ; Strubbe, JH; VanSchilfgaarde, R; van Schilfgaarde, P.

    Graft failure of alginate-polylysine microencapsulated islets is often interpreted as the consequence of a non-specific foreign body reaction against the microcapsules, initiated by impurities present in crude alginate. The aim of the present study was to investigate if purification of the alginate

  3. Effects of fructosamine-3-kinase deficiency on function and survival of mouse pancreatic islets after prolonged culture in high glucose or ribose concentrations.

    Science.gov (United States)

    Pascal, S M A; Veiga-da-Cunha, M; Gilon, P; Van Schaftingen, E; Jonas, J C

    2010-03-01

    Due to their high glucose permeability, insulin-secreting pancreatic beta-cells likely undergo strong intracellular protein glycation at high glucose concentrations. They may, however, be partly protected from the glucotoxic alterations of their survival and function by fructosamine-3-kinase (FN3K), a ubiquitous enzyme that initiates deglycation of intracellular proteins. To test that hypothesis, we cultured pancreatic islets from Fn3k-knockout (Fn3k(-/-)) mice and their wild-type (WT) littermates for 1-3 wk in the presence of 10 or 30 mmol/l glucose (G10 or G30, respectively) and measured protein glycation, apoptosis, preproinsulin gene expression, and Ca(2+) and insulin secretory responses to acute glucose stimulation. The more potent glycating agent d-ribose (25 mmol/l) was used as positive control for protein glycation. In WT islets, a 1-wk culture in G30 significantly increased the amount of soluble intracellular protein-bound fructose-epsilon-lysines and the glucose sensitivity of beta-cells for changes in Ca(2+) and insulin secretion, whereas it decreased the islet insulin content. After 3 wk, culture in G30 also strongly decreased beta-cell glucose responsiveness and preproinsulin mRNA levels, whereas it increased islet cell apoptosis. Although protein-bound fructose-epsilon-lysines were more abundant in Fn3k(-/-) vs. WT islets, islet cell survival and function and their glucotoxic alterations were almost identical in both types of islets, except for a lower level of apoptosis in Fn3k(-/-) islets cultured for 3 wk in G30. In comparison, d-ribose (1 wk) similarly decreased preproinsulin expression and beta-cell glucose responsiveness in both types of islets, whereas it increased apoptosis to a larger extent in Fn3k(-/-) vs. WT islets. We conclude that, despite its ability to reduce the glycation of intracellular islet proteins, FN3K is neither required for the maintenance of beta-cell survival and function under control conditions nor involved in protection

  4. Leptin modulates β cell expression of IL-1 receptor antagonist and release of IL-1β in human islets

    Science.gov (United States)

    Maedler, Kathrin; Sergeev, Pavel; Ehses, Jan A.; Mathe, Zoltan; Bosco, Domenico; Berney, Thierry; Dayer, Jean-Michel; Reinecke, Manfred; Halban, Philippe A.; Donath, Marc Y.

    2004-01-01

    High concentrations of glucose induce β cell production of IL-1β, leading to impaired β cell function and apoptosis in human pancreatic islets. IL-1 receptor antagonist (IL-1Ra) is a naturally occurring antagonist of IL-1β and protects cultured human islets from glucotoxicity. Therefore, the balance of IL-1β and IL-1Ra may play a crucial role in the pathogenesis of diabetes. In the present study, we observed expression of IL-1Ra in human pancreatic β cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro, chronic exposure of human islets to leptin, a hormone secreted by adipocytes, decreased β cell production of IL-1Ra and induced IL-1β release from the islet preparation, leading to impaired β cell function, caspase-3 activation, and apoptosis. Exogenous addition of IL-1Ra protected cultured human islets from the deleterious effects of leptin. Antagonizing IL-1Ra by introduction of small interfering RNA to IL-1Ra into human islets led to caspase-3 activation, DNA fragmentation, and impaired β cell function. Moreover, siIL-1Ra enhanced glucose-induced β cell apoptosis. These findings demonstrate expression of IL-1Ra in the human β cell, providing localized protection against leptin- and glucose-induced islet IL-1β. PMID:15141093

  5. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    Science.gov (United States)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  6. Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis.

    Science.gov (United States)

    Volkov, Petr; Bacos, Karl; Ofori, Jones K; Esguerra, Jonathan Lou S; Eliasson, Lena; Rönn, Tina; Ling, Charlotte

    2017-04-01

    Current knowledge about the role of epigenetics in type 2 diabetes (T2D) remains limited. Only a few studies have investigated DNA methylation of selected candidate genes or a very small fraction of genomic CpG sites in human pancreatic islets, the tissue of primary pathogenic importance for diabetes. Our aim was to characterize the whole-genome DNA methylation landscape in human pancreatic islets, to identify differentially methylated regions (DMRs) in diabetic islets, and to investigate the function of DMRs in islet biology. Here, we performed whole-genome bisulfite sequencing, which is a comprehensive and unbiased method to study DNA methylation throughout the genome at a single nucleotide resolution, in pancreatic islets from donors with T2D and control subjects without diabetes. We identified 25,820 DMRs in islets from individuals with T2D. These DMRs cover loci with known islet function, e.g., PDX1, TCF7L2, and ADCY5 Importantly, binding sites previously identified by ChIP-seq for islet-specific transcription factors, enhancer regions, and different histone marks were enriched in the T2D-associated DMRs. We also identified 457 genes, including NR4A3, PARK2, PID1, SLC2A2, and SOCS2, that had both DMRs and significant expression changes in T2D islets. To mimic the situation in T2D islets, candidate genes were overexpressed or silenced in cultured β-cells. This resulted in impaired insulin secretion, thereby connecting differential methylation to islet dysfunction. We further explored the islet methylome and found a strong link between methylation levels and histone marks. Additionally, DNA methylation in different genomic regions and of different transcript types (i.e., protein coding, noncoding, and pseudogenes) was associated with islet expression levels. Our study provides a comprehensive picture of the islet DNA methylome in individuals with and without diabetes and highlights the importance of epigenetic dysregulation in pancreatic islets and T2D

  7. The role of islet neogenesis-associated protein (INGAP) in islet neogenesis.

    Science.gov (United States)

    Lipsett, Mark; Hanley, Stephen; Castellarin, Mauro; Austin, Emily; Suarez-Pinzon, Wilma L; Rabinovitch, Alex; Rosenberg, Lawrence

    2007-01-01

    Islet Neogenesis-Associated Protein (INGAP) is a member of the Reg family of proteins implicated in various settings of endogenous pancreatic regeneration. The expression of INGAP and other RegIII proteins has also been linked temporally and spatially with the induction of islet neogenesis in animal models of disease and regeneration. Furthermore, administration of a peptide fragment of INGAP (INGAP peptide) has been demonstrated to reverse chemically induced diabetes as well as improve glycemic control and survival in an animal model of type 1 diabetes. Cultured human pancreatic tissue has also been shown to be responsive to INGAP peptide, producing islet-like structures with function, architecture and gene expression matching that of freshly isolated islets. Likewise, studies in normoglycemic animals show evidence of islet neogenesis. Finally, recent clinical studies suggest an effect of INGAP peptide to improve insulin production in type 1 diabetes and glycemic control in type 2 diabetes.

  8. Long-Term Survival of Neonatal Porcine Islets Without Sertoli Cells in Rabbits

    Directory of Open Access Journals (Sweden)

    Rafael Vald and eacute;s-Gonz and aacute;lez

    2013-04-01

    Full Text Available Cell-based therapy is a promising treatment for metabolic disorders such as type-1 diabetes. Transplantation protocols have investigated several anatomical sites for cell implantation; however, some of these procedures, such as intraportal infusion, can cause organ failure or thrombosis secondarily. Bio-artificial organs could be the choice, although concerns still remain. Using a subcutaneous device, we are able to preserve neonatal porcine islets without sertoli cells in healthy New Zealand rabbits. Devices were implanted in the back of the animals underneath the skin, and after 3 months the islets were transplanted. Histology showed the presence of inflammatory cells, predominantly eosinophils; however, insulin- and glucagon-positive cell clusters were identified inside the device at different time points for at least 90 days, and porcine C-peptide was also detected during the follow-up, indicating graft functionality. We have found that our device induces the deposition of a fibrous matrix enriched in blood vessels, which forms a good place for cell grafting, and this model is probably able to induce an immunoprivileged site. Under these conditions, transplanted porcine islet cells have the capability of producing insulin and glucagon for at least three months. [Arch Clin Exp Surg 2013; 2(2.000: 101-108

  9. Diabetes mellitus is associated with an increased expression of resistin in human pancreatic islet cells.

    Science.gov (United States)

    Al-Salam, Suhail; Rashed, Hameed; Adeghate, Ernest

    2011-01-01

    The pattern of distribution of resistin in the pancreas of diabetic patients was investigated to determine whether diabetes mellitus influences the expression of resistin. Pancreatic tissue samples retrieved, during pancreatectomy for pancreatic cancer, from cancer patients with and without type 2 diabetes were processed for immunohistochemistry. The pancreatic tissue samples were retrieved from non-cancerous and clear margins. An immunofluorescence technique was used to examine the expression of resistin and its co-localization with insulin and glucagon in pancreatic islet cells. Resistin was observed in many cells located in the central region of pancreatic islet. The expression of resistin increased significantly (p diabetic patients compared to control. Resistin co-localized with insulin but not glucagon in pancreatic islet cells of both normal and diabetic patients. However, the degree of co-localization was higher in pancreata of diabetic patients compared to normal. The number of human pancreatic islet cells expressing resistin increased significantly after the onset of type 2 diabetes. In conclusion, resistin may play a role in the regulation of pancreatic β-cell function.

  10. Assessment of intracellular insulin content during all steps of human islet isolation procedure.

    Science.gov (United States)

    Brandhorst, H; Brandhorst, D; Brendel, M D; Hering, B J; Bretzel, R G

    1998-01-01

    This study investigated the recovery of pancreatic insulin content during human islet isolation prior to and after digestion-filtration, continuous Hanks-Ficoll gradient purification (n = 20), and 3-4 day culture at 22 degrees C (n = 6). The native insulin content varied in a wide range from 28.4 U to 360.8 U/pancreas. After digestion the initially measured average insulin content of 115.8 +/- 20.8 U/pancreas (mean +/- SEM) increased to 264.6 +/- 22.8% (p asymetrical distribution of insulin within the pancreas. Sampling of insulin within the pancreatic caput seemed not to be representative for the insulin content of the complete native organ, because the ratio of insulin per gram tissue within the pancreatic cauda compared to the caput (n = 5) was 2.4 +/- 0.4 (p < 0.05). After purification total insulin recovery was 55.3 +/- 4.8% (p < 0.001). Because recovery of islet equivalent number (IEQ) (83.7 +/- 4.4%) exceeded insulin recovery, insulin/IEQ ratio decreased from 656.8 +/- 70.6 microU/IEQ before purification to 436.4 +/- 58.1 microU/IEQ (p < 0.001) after purification. After 22 degrees C culture (n = 6) recovery of insulin and IEQ was 80.1 +/- 8.1% (p < 0.05) and 92.8 +/- 3.5% (p = NS), respectively. Insulin content per IEQ decreased to 85.8 +/- 6.5% (p < 0.05). This study clearly shows that most of islet insulin is lost during purification. This seems to be caused rather by an amplified insulin release than by the loss of islets itself. This release may facilitate the separation of endocrine and exocrine tissue by gradient centrifugation, but may also accelerate islet exhaustion detrimental for long-term insulin independence.

  11. Stress survival islet 1 (SSI-1) survey in Listeria monocytogenes reveals an insert common to listeria innocua in sequence type 121 L. monocytogenes strains.

    Science.gov (United States)

    Hein, Ingeborg; Klinger, Sonja; Dooms, Maxime; Flekna, Gabriele; Stessl, Beatrix; Leclercq, Alexandre; Hill, Colin; Allerberger, Franz; Wagner, Martin

    2011-03-01

    Listeria monocytogenes strains (n = 117) were screened for the presence of stress survival islet 1 (SSI-1). SSI-1(+) strains (32.5%) belonged mainly to serotypes 1/2c, 3b, and 3c. All sequence type 121 (ST-121) strains included (n = 7) possessed homologues to Listeria innocua genes lin0464 and lin0465 instead of SSI-1.

  12. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes

    DEFF Research Database (Denmark)

    Bacos, Karl; Gillberg, Linn; Volkov, Petr

    2016-01-01

    Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA...... methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes...... demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D....

  13. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh;

    2012-01-01

    Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified...... gene coexpression and protein-protein interaction networks that were strongly associated with islet insulin secretion and HbA(1c). We integrated our data to form a rank list of putative T2D genes, of which CHL1, LRFN2, RASGRP1, and PPM1K were validated in INS-1 cells to influence insulin secretion...... of genes potentially involved in T2D....

  14. Inhibition of nuclear factor-κB activation in pancreatic β-cells has a protective effect on allogeneic pancreatic islet graft survival.

    Directory of Open Access Journals (Sweden)

    Roy Eldor

    Full Text Available Pancreatic islet transplantation, a treatment for type 1 diabetes, has met significant challenges, as a substantial fraction of the islet mass fails to engraft, partly due to death by apoptosis in the peri- and post-transplantation periods. Previous evidence has suggested that NF-κB activation is involved in cytokine-mediated β-cell apoptosis and regulates the expression of pro-inflammatory and chemokine genes. We therefore sought to explore the effects of β-cell-specific inhibition of NF-κB activation as a means of cytoprotection in an allogeneic model of islet transplantation. To this end, we used islets isolated from the ToI-β transgenic mouse, where NF-κB signalling can specifically and conditionally be inhibited in β-cells by expressing an inducible and non-degradable form of IκBα regulated by the tet-on system. Our results show that β-cell-specific blockade of NF-κB led to a prolonged islet graft survival, with a relative higher preservation of the engrafted endocrine tissue and reduced inflammation. Importantly, a longer delay in allograft rejection was achieved when mice were systemically treated with the proteasome inhibitor, Bortezomib. Our findings emphasize the contribution of NF-κB activation in the allograft rejection process, and suggest an involvement of the CXCL10/IP-10 chemokine. Furthermore, we suggest a potential, readily available therapeutic agent that may temper this process.

  15. Inhibition of nuclear factor-κB activation in pancreatic β-cells has a protective effect on allogeneic pancreatic islet graft survival.

    Science.gov (United States)

    Eldor, Roy; Abel, Roy; Sever, Dror; Sadoun, Gad; Peled, Amnon; Sionov, Ronit; Melloul, Danielle

    2013-01-01

    Pancreatic islet transplantation, a treatment for type 1 diabetes, has met significant challenges, as a substantial fraction of the islet mass fails to engraft, partly due to death by apoptosis in the peri- and post-transplantation periods. Previous evidence has suggested that NF-κB activation is involved in cytokine-mediated β-cell apoptosis and regulates the expression of pro-inflammatory and chemokine genes. We therefore sought to explore the effects of β-cell-specific inhibition of NF-κB activation as a means of cytoprotection in an allogeneic model of islet transplantation. To this end, we used islets isolated from the ToI-β transgenic mouse, where NF-κB signalling can specifically and conditionally be inhibited in β-cells by expressing an inducible and non-degradable form of IκBα regulated by the tet-on system. Our results show that β-cell-specific blockade of NF-κB led to a prolonged islet graft survival, with a relative higher preservation of the engrafted endocrine tissue and reduced inflammation. Importantly, a longer delay in allograft rejection was achieved when mice were systemically treated with the proteasome inhibitor, Bortezomib. Our findings emphasize the contribution of NF-κB activation in the allograft rejection process, and suggest an involvement of the CXCL10/IP-10 chemokine. Furthermore, we suggest a potential, readily available therapeutic agent that may temper this process.

  16. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes.

    Science.gov (United States)

    Bacos, Karl; Gillberg, Linn; Volkov, Petr; Olsson, Anders H; Hansen, Torben; Pedersen, Oluf; Gjesing, Anette Prior; Eiberg, Hans; Tuomi, Tiinamaija; Almgren, Peter; Groop, Leif; Eliasson, Lena; Vaag, Allan; Dayeh, Tasnim; Ling, Charlotte

    2016-03-31

    Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D.

  17. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  18. Autoimmunity against INS-IGF2 protein expressed in human pancreatic islets.

    Science.gov (United States)

    Kanatsuna, Norio; Taneera, Jalal; Vaziri-Sani, Fariba; Wierup, Nils; Larsson, Helena Elding; Delli, Ahmed; Skärstrand, Hanna; Balhuizen, Alexander; Bennet, Hedvig; Steiner, Donald F; Törn, Carina; Fex, Malin; Lernmark, Åke

    2013-10-04

    Insulin is a major autoantigen in islet autoimmunity and progression to type 1 diabetes. It has been suggested that the insulin B-chain may be critical to insulin autoimmunity in type 1 diabetes. INS-IGF2 consists of the preproinsulin signal peptide, the insulin B-chain, and eight amino acids of the C-peptide in addition to 138 amino acids from the IGF2 gene. We aimed to determine the expression of INS-IGF2 in human pancreatic islets and autoantibodies in newly diagnosed children with type 1 diabetes and controls. INS-IGF2, expressed primarily in beta cells, showed higher levels of expression in islets from normal compared with donors with either type 2 diabetes (p = 0.006) or high HbA1c levels (p INS-IGF2 autoantibody levels were increased in newly diagnosed patients with type 1 diabetes (n = 304) compared with healthy controls (n = 355; p INS-IGF2 revealed that more patients than controls had doubly reactive insulin-INS-IGF2 autoantibodies. These data suggest that INS-IGF2, which contains the preproinsulin signal peptide, the B-chain, and eight amino acids of the C-peptide may be an autoantigen in type 1 diabetes. INS-IGF2 and insulin may share autoantibody-binding sites, thus complicating the notion that insulin is the primary autoantigen in type 1 diabetes.

  19. Treatment with Tacrolimus and Sirolimus Reveals No Additional Adverse Effects on Human Islets In Vitro Compared to Each Drug Alone but They Are Reduced by Adding Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Kristine Kloster-Jensen

    2016-01-01

    Full Text Available Tacrolimus and sirolimus are important immunosuppressive drugs used in human islet transplantation; however, they are linked to detrimental effects on islets and reduction of long-term graft function. Few studies investigate the direct effects of these drugs combined in parallel with single drug exposure. Human islets were treated with or without tacrolimus (30 μg/L, sirolimus (30 μg/L, or a combination thereof for 24 hrs. Islet function as well as apoptosis was assessed by glucose-stimulated insulin secretion (GSIS and Cell Death ELISA. Proinflammatory cytokines were analysed by qRT-PCR and Bio-Plex. Islets exposed to the combination of sirolimus and tacrolimus were treated with or without methylprednisolone (1000 μg/L and the expression of the proinflammatory cytokines was investigated. We found the following: (i No additive reduction in function and viability in islets existed when tacrolimus and sirolimus were combined compared to the single drug. (ii Increased expression of proinflammatory cytokines mRNA and protein levels in islets took place. (iii Methylprednisolone significantly decreased the proinflammatory response in islets induced by the drug combination. Although human islets are prone to direct toxic effect of tacrolimus and sirolimus, we found no additive effects of the drug combination. Short-term exposure of glucocorticoids could effectively reduce the proinflammatory response in human islets induced by the combination of tacrolimus and sirolimus.

  20. Involvement of gene methylation changes in the differentiation of human amniotic epithelial cells into islet-like cell clusters.

    Science.gov (United States)

    Peng, Lin; Wang, Jian; Lu, Guangxiu

    2014-09-01

    Insulin-dependent diabetes results from destruction of the insulin-producing β-cells of the pancreas. Islet cell transplantation is a promising cure for diabetes. Here, we induced human amniotic epithelial cells (hAECs) to differentiate into islet-like cell clusters by nicotinamide plus betacellulin in vitro, and further investigated the DNA methylation status by a Nimble MeDIP microarray before and after cell differentiation to shed light on the molecular mechanisms of this differentiation. In addition, 5-Aza-2'-deoxycytidine was used to investigate whether the differentiation of hAECs into islet-like cells occurred through demethylation. Purified hAECs (CK18(+)/E-cadherin(+)/CD29(+)/CD90(-)/CD34(-)/CD45(-)) were isolated from human amnia. After induction, hAECs were found to be insulin positive and sensitive to glucose, indicating successful induction to islet-like cells. The methylation status of cell cytoskeleton-related genes was down-regulated and that of negative regulation of cell adhesion-related genes was up-regulated. The methylation status of pancreas development-related genes such as HNF1α and DGAT1 was decreased in hAECs after induction. After brief demethylation, INS gene expression was up-regulated in islet-like cell clusters, suggesting that DNA methylation changes were associated with the differentiation of hAECs into islet-like cell clusters.

  1. Distinct differences in the responses of the human pancreatic β-cell line EndoC-βH1 and human islets to proinflammatory cytokines.

    Science.gov (United States)

    Oleson, Bryndon J; McGraw, Jennifer A; Broniowska, Katarzyna A; Annamalai, Mani; Chen, Jing; Bushkofsky, Justin R; Davis, Dawn B; Corbett, John A; Mathews, Clayton E

    2015-09-01

    While insulinoma cells have been developed and proven to be extremely useful in studies focused on mechanisms controlling β-cell function and viability, translating findings to human β-cells has proven difficult because of the limited access to human islets and the absence of suitable insulinoma cell lines of human origin. Recently, a human β-cell line, EndoC-βH1, has been derived from human fetal pancreatic buds. The purpose of this study was to determine whether human EndoC-βH1 cells respond to cytokines in a fashion comparable to human islets. Unlike most rodent-derived insulinoma cell lines that respond to cytokines in a manner consistent with rodent islets, EndoC-βH1 cells fail to respond to a combination of cytokines (IL-1, IFN-γ, and TNF) in a manner consistent with human islets. Nitric oxide, produced following inducible nitric oxide synthase (iNOS) expression, is a major mediator of cytokine-induced human islet cell damage. We show that EndoC-βH1 cells fail to express iNOS or produce nitric oxide in response to this combination of cytokines. Inhibitors of iNOS prevent cytokine-induced loss of human islet cell viability; however, they do not prevent cytokine-induced EndoC-βH1 cell death. Stressed human islets or human islets expressing heat shock protein 70 (HSP70) are resistant to cytokines, and, much like stressed human islets, EndoC-βH1 cells express HSP70 under basal conditions. Elevated basal expression of HSP70 in EndoC-βH1 cells is consistent with the lack of iNOS expression in response to cytokine treatment. While expressing HSP70, EndoC-βH1 cells fail to respond to endoplasmic reticulum stress activators, such as thapsigargin. These findings indicate that EndoC-βH1 cells do not faithfully recapitulate the response of human islets to cytokines. Therefore, caution should be exercised when making conclusions regarding the actions of cytokines on human islets when using this human-derived insulinoma cell line.

  2. Pancreatic hormones are expressed on the surfaces of human and rat islet cells through exocytotic sites

    DEFF Research Database (Denmark)

    Larsson, L I; Hutton, J C; Madsen, O D

    1989-01-01

    . Electron microscopy reveals the labeling to occur at sites of exocytotic granule release, involving the surfaces of extruded granule cores. The surfaces of islet cells were labeled both by polyclonal and monoclonal antibodies, excluding that receptor-interacting, anti-idiotypic hormone antibodies were...... responsible for the staining. Human insulin cells were surface-labeled by monoclonal antibodies recognizing the mature secretory products, insulin and C-peptide but not with monoclonal antibodies specific for proinsulin. Thus, routing of unprocessed preproinsulin to the cell surface may not account...... for these results. It is concluded that the staining reflects interactions between the appropriate antibodies and exocytotic sites of hormone release....

  3. TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro.

    Directory of Open Access Journals (Sweden)

    Ginat Toren-Haritan

    Full Text Available In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT. Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA against TGFβ Receptor 1 (TGFBR1, ALK5 transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion.

  4. Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-06-01

    Full Text Available Abstract Background We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells. Results Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro. Conclusions This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.

  5. Label-Free Detection of Insulin and Glucagon within Human Islets of Langerhans Using Raman Spectroscopy

    Science.gov (United States)

    Hilderink, Janneke; Otto, Cees; Slump, Cees; Lenferink, Aufried; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2013-01-01

    Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm-1 band assigned to disulfide bridges in insulin, and the 1552 cm-1 band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1) of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans. PMID:24167603

  6. MicroRNA expression in alpha and beta cells of human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Dagmar Klein

    Full Text Available microRNAs (miRNAs play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98% subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs and 134 were expressed more in β-cells (β-miRNAs. Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different

  7. Islet transplantation: immunological perspectives.

    Science.gov (United States)

    Inverardi, Luca; Kenyon, Norma S; Ricordi, Camillo

    2003-10-01

    Clinical trials of islet transplantation are showing remarkable success, but they require administration of chronic immunosuppression, and are underscoring the large gap that exists between the number of human donors available and the number of patients that could benefit from the procedure. Recent progress has been made in the definition of key immunological mechanisms that are involved in determining islet transplant outcome. Clinical and preclinical studies, and studies in small animal model systems, will all eventually contribute to the definition of efficient and safe protocols for islet transplantation. If the use of xenografts is successful, it might represent a solution to the shortage of human organs.

  8. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes

    Science.gov (United States)

    Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina

    2017-01-01

    Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352

  9. Human Islet Amyloid Polypeptide Transgenic Mice: In Vivo and Ex Vivo Models for the Role of hIAPP in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    J. W. M. Höppener

    2008-01-01

    Full Text Available Human islet amyloid polypeptide (hIAPP, a pancreatic islet protein of 37 amino acids, is the main component of islet amyloid, seen at autopsy in patients with type 2 diabetes mellitus (DM2. To investigate the roles of hIAPP and islet amyloid in DM2, we generated transgenic mice expressing hIAPP in their islet beta cells. In this study, we found that after a long-term, high-fat diet challenge islet amyloid was observed in only 4 of 19 hIAPP transgenic mice. hIAPP transgenic females exhibited severe glucose intolerance, which was associated with a downregulation of GLUT-2 mRNA expression. In isolated islets from hIAPP males cultured for 3 weeks on high-glucose medium, the percentage of amyloid containing islets increased from 5.5% to 70%. This ex vivo system will allow a more rapid, convenient, and specific study of factors influencing islet amyloidosis as well as of therapeutic strategies to interfere with this pathological process.

  10. Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure.

    Science.gov (United States)

    Sun, Bo; Roh, Kyung-Hwan; Lee, Sae-Rom; Lee, Yong-Soon; Kang, Kyung-Sun

    2007-03-23

    Success in islet-transplantation-based therapies for type I diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Embryonic stem cells (ESCs) have been successfully induced into insulin producing islet-like structure in several studies. However, the source of the ESCs has presented ethical and technical concerns. Here, we isolated a population of stem cells from human cord blood (UCB), which expressed embryo stage specific maker, SSEA-4, and the multi-potential stem cell marker, Oct4. Subsequently, we successfully induced them into insulin-producing islet-like structures, which co-express insulin and C-peptide. These findings might have a significant potential to advance human UCB derived stem-cell-based therapeutics for diabetes.

  11. Human fetal islet transplantation in type 1 diabetic patients: comparison of metabolic effects between single and multiple implantation regimens.

    Science.gov (United States)

    Djordjevic, P B; Lalic, N M; Jotic, A; Paunovic, I; Lalic, K; Raketic, N; Nikolic, D; Zamaklar, M; Rajkovic, N; Lukic, L; Dimitrijevic-Sreckovic, V; Dragasevic, M; Nikolic, D; Markovic, I

    2004-11-01

    Previous studies suggest that multiple transplantations might be equally efficient to a single regimen for human adult islets. The aim of this study was to compare metabolic parameters after each of the two regimens of human fetal islet (HFI) transplantation in type 1 diabetics. In group A (single transplant, n = 9), 180 +/- 20 x 1000 HFI equivalents (IEQs) were implanted by a single IM injection; in group B (multiple transplants, n = 8) islets were implanted as three consecutive injections (60 +/- 10 x 1000 IEQs) at 7-day intervals. We analyzed the metabolic parameters on days -1, 30, 60, 90, 120, 150, and 180 after the procedure. Among the metabolic parameters, we evaluated insulin secretion capacity-ISC (C peptide, RIA), metabolic control (HbA1c, chromatography), and insulin daily dose IDD. We found that C peptide levels increased, peaking on day 90 (A: 0.38 +/- 0.15; B: 0.34 +/- 0.19 nmol/L, P = NS) and then rapidly decreasing without differences, the HbA1c levels and IDD decreased in the same manner without differences between the groups. Our results demonstrate that multiple and single islet transplant regimens are equally efficient to temporarily restore a significant ISC with improvement of metabolic and clinical parameters. The results imply that the two regimens have an equal clinical value.

  12. Macro-or microencapsulation of pig islets to cure type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    Denis Dufrane; Pierre Gianello

    2012-01-01

    Although allogeneic islet transplantation can successfully cure type 1 diabetes,it has limited applicability.For example,organs are in short supply; several human pancreas donors are often needed to treat one diabetic recipient; the intrahepatic site may not be the most appropriate site for islet implantation; and immunosuppressive regimens,which are associated with side effects,are often required to prolong survival of the islet graft.An altemative source of insulinproducing cells would therefore be of major interest.Pigs represent a possible alternative source of beta cells.Grafting of pig islets may appear difficult because of the immunologic species barrier,but pig islets have been shown to function in primates for at least 6 mo with clinically incompatible immunosuppression.Therefore,a bioartificial pancreas made of encapsulated pig islets may resolve issues associated with islet allotransplantation.Although several groups have shown that encapsulated pig islets are functional in small-animal models,less is known about the use of bioartificial pancreases in large-animal models.In this review,we summarize current knowledge of encapsulated pig islets,to determine obstacles to implantation in humans and possible solutions to overcome these obstacles.

  13. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD–severe combined immunodeficiency (SCID) mice

    Science.gov (United States)

    Levitt, H. E.; Cyphert, T. J.; Pascoe, J. L.; Hollern, D. A.; Abraham, N.; Lundell, R. J.; Rosa, T.; Romano, L. C.; Zou, B.; O’Donnell, C. P.; Stewart, A. F.; Garcia-Ocaña, A.; Alonso, L. C.

    2011-01-01

    Aims/hypothesis We determined whether hyperglycaemia stimulates human beta cell replication in vivo in an islet transplant model Methods Human islets were transplanted into streptozotocin-induced diabetic NOD–severe combined immunodeficiency mice. Blood glucose was measured serially during a 2 week graft revascularisation period. Engrafted mice were then catheterised in the femoral artery and vein, and infused intravenously with BrdU for 4 days to label replicating beta cells. Mice with restored normoglycaemia were co-infused with either 0.9% (wt/vol.) saline or 50% (wt/vol.) glucose to generate glycaemic differences among grafts from the same donors. During infusions, blood glucose was measured daily. After infusion, human beta cell replication and apoptosis were measured in graft sections using immunofluorescence for insulin, and BrdU or TUNEL. Results Human islet grafts corrected diabetes in the majority of cases. Among grafts from the same donor, human beta cell proliferation doubled in those exposed to higher glucose relative to lower glucose. Across the entire cohort of grafts, higher blood glucose was strongly correlated with increased beta cell replication. Beta cell replication rates were unrelated to circulating human insulin levels or donor age, but tended to correlate with donor BMI. Beta cell TUNEL reactivity was not measurably increased in grafts exposed to elevated blood glucose. Conclusions/interpretation Glucose is a mitogenic stimulus for transplanted human beta cells in vivo. Investigating the underlying pathways may point to mechanisms capable of expanding human beta cell mass in vivo. PMID:20936253

  14. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1 in human type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Yoon Kun-Ho

    2002-04-01

    Full Text Available Abstract Background It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously observed in a rat model of type 2 diabetes. Moreover, in a gene expression screen, Ogg1 was over-expressed in islets from a human type 2 diabetic. Methods Immunofluorescent staining of Ogg1 was performed on pancreatic specimens from healthy controls and patients with diabetes for 2–23 years. The intensity and islet area stained for Ogg1 was evaluated by semi-quantitative scoring. Results Both the intensity and the area of islet Ogg1 staining were significantly increased in islets from the type 2 diabetic subjects compared to the healthy controls. A correlation between increased Ogg1 fluorescent staining intensity and duration of diabetes was also found. Most of the staining observed was cytoplasmic, suggesting that mitochondrial Ogg1 accounts primarily for the increased Ogg1 expression. Conclusion We conclude that oxidative stress related DNA damage may be a novel important factor in the pathogenesis of human type 2 diabetes. An increase of Ogg1 in islet cell mitochondria is consistent with a model in which hyperglycemia and consequent increased β-cell oxidative metabolism lead to DNA damage and the induction of Ogg1 expression.

  15. Differential sensitivity to beta-cell secretagogues in cultured rat pancreatic islets exposed to human interleukin-1 beta.

    Science.gov (United States)

    Eizirik, D L; Sandler, S; Hallberg, A; Bendtzen, K; Sener, A; Malaisse, W J

    1989-08-01

    The early stages of insulin-dependent diabetes mellitus are characterized by a selective inability to secrete insulin in response to glucose, coupled to a better response to nonnutrient secretagogues. The deficient glucose response may be a result of the autoimmune process directed toward the beta-cells. Interleukin-1 (IL-1) has been suggested to be one possible mediator of immunological damage of the beta-cells. In the present study we characterized the sensitivity of beta-cells to different secretagogues after human recombinant IL-1 beta (rIL-1 beta) exposure. Furthermore, experiments were performed to clarify the biochemical mechanisms behind the defective insulin response observed in these islets. Rat pancreatic islets were isolated and kept in tissue culture (medium RPMI-1640 plus 10% calf serum) for 5 days. The islets were subsequently exposed to 60 pM human recombinant IL-1 beta during 48 h in the same culture conditions as above and examined immediately after IL-1 exposure. The rIL-1 beta-treated islets showed a marked reduction of glucose-stimulated insulin release. Stimulation with arginine plus different glucose concentrations, and leucine plus glutamine partially counteracted the rIL-1 beta-induced reduction of insulin release. The activities of the glycolytic enzymes hexokinase, glucokinase, and glyceraldehyde 3-phosphate dehydrogenase, were similar in control and IL-1-exposed islets. Treatment with IL-1 also did not impair the activities of NADH+- and NADPH+-dependent glutamate dehydrogenase, glutamate-aspartate transaminase, glutamate-alanine transaminase, citrate synthase, and NAD+-linked isocitrate dehydrogenase. The oxidation of D-[6-14C]glucose and L-[U-14C]leucine were decreased by 50% in IL-1-treated islets. Furthermore, there was a significant decrease in the ratios of [2-14C]pyruvate oxidation/[1-14C]pyruvate decarboxylation and L-[U-14C]leucine oxidation/L-[1-14C]leucine decarboxylation, indicating that IL-1 decreases the proportion of

  16. Residue specific effects of human islet polypeptide amyloid on self-assembly and on cell toxicity.

    Science.gov (United States)

    Khemtemourian, Lucie; Guillemain, Ghislaine; Foufelle, Fabienne; Killian, J Antoinette

    2017-08-01

    Type 2 diabetes mellitus is characterized histopathologically by the presence of fibrillary amyloid deposits in the pancreatic islets of Langerhans. Human islet amyloid polypeptide (hIAPP), the 37-residue pancreatic hormone, is the major constituent of these amyloid deposits. The propensity of IAPP to form amyloid fibrils is strongly dependent on its primary sequence. An intriguing example is His at residue 18. Although H18 is located outside the amyloidogenic region, it has been suggested that this residue and its charge state play an important role in the kinetics of conformational changes and fibril formation as well as in mediating cell toxicity. To gain more insight into the importance of this residue, we have synthesized four analogues (H18R-IAPP, H18K-IAPP, H18A-IAPP and H18E-IAPP) and we performed a full biophysical study on the properties of these peptides. Kinetic experiments as monitored by thioflavin-T fluorescence, transmission electron microscopy, circular dichroism and cell toxicity assays revealed that all variants are less fibrillogenic and less toxic than native hIAPP both at neutral pH and at low pH. This demonstrates that the effect of H18 in native IAPP is not simply determined by its charge state, but rather that residue 18 is important for specific intra- and intermolecular interactions that occur during fibril formation and that may involve charge, size and hydrophobicity. Furthermore, our results indicate that H18R-IAPP has a strong inhibiting effect on native hIAPP fibril formation. Together these results highlight the large impact of modifying a single residue outside the amyloidogenic domain on fibril formation and cell toxicity induced by IAPP, opening up new avenues for design of inhibitors or modulators of IAPP aggregation. Copyright © 2017. Published by Elsevier B.V.

  17. Identification of the ectonucleotidases expressed in mouse, rat, and human Langerhans islets: potential role of NTPDase3 in insulin secretion.

    Science.gov (United States)

    Lavoie, Elise G; Fausther, Michel; Kauffenstein, Gilles; Kukulski, Filip; Künzli, Beat M; Friess, Helmut; Sévigny, Jean

    2010-10-01

    Extracellular nucleotides and adenosine regulate endocrine pancreatic functions such as insulin secretion by Langerhans islet β-cells via the activation of specific P2 and P1 receptors. Membrane-bound ectonucleotidases regulate the local concentration of these ligands and consequently control the activation of their receptors. The objective of this study was to identify and localize the major ectonucleotidases, namely NTPDases and ecto-5'-nucleotidase, present in the endocrine pancreas. In addition, the potential implication of ecto-ATPase activity on insulin secretion was investigated in the rat β-cell line INS-1 (832/13). The localization of ectonucleotidase activity and protein was carried out in situ by enzyme histochemistry and immunolocalization in mouse, rat, and human pancreas sections. NTPDase1 was localized in all blood vessels and acini, and NTPDase2 was localized in capillaries of Langerhans islets and in peripheral conjunctive tissue, whereas NTPDase3 was detected in all Langerhans islet cell types. Interestingly, among the mammalian species tested, ecto-5'-nucleotidase was present only in rat Langerhans islet cells, where it was coexpressed with NTPDase3. Notably, the inhibition of NTPDase3 activity by BG0136 and NF279 facilitated insulin release from INS-1 (832/13) cells under conditions of low glycemia, probably by affecting P2 receptor activation. NTPDase3 activity also regulated the inhibitory effect of exogenous ATP in the presence of a high glucose concentration most likely by controlling adenosine production. In conclusion, all pancreatic endocrine cells express NTPDase3 that was shown to modulate insulin secretion in rat INS-1 (832/13) β-cells. Ecto-5'-nucleotidase is expressed in rat Langerhans islet cells but absent in human and mouse endocrine cells.

  18. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro.

    Science.gov (United States)

    Al-Romaiyan, A; Liu, B; Asare-Anane, H; Maity, C R; Chatterjee, S K; Koley, N; Biswas, T; Chatterji, A K; Huang, G-C; Amiel, S A; Persaud, S J; Jones, P M

    2010-09-01

    Many plant-based products have been suggested as potential antidiabetic agents, but few have been shown to be effective in treating the symptoms of Type 2 diabetes mellitus (T2DM) in human studies, and little is known of their mechanisms of action. Extracts of Gymnema sylvestre (GS) have been used for the treatment of T2DM in India for centuries. The effects of a novel high molecular weight GS extract, Om Santal Adivasi, (OSA(R)) on plasma insulin, C-peptide and glucose in a small cohort of patients with T2DM are reported here. Oral administration of OSA(R) (1 g/day, 60 days) induced significant increases in circulating insulin and C-peptide, which were associated with significant reductions in fasting and post-prandial blood glucose. In vitro measurements using isolated human islets of Langerhans demonstrated direct stimulatory effects of OSA(R) on insulin secretion from human ß-cells, consistent with an in vivo mode of action through enhancing insulin secretion. These in vivo and in vitro observations suggest that OSA(R) may provide a potential alternative therapy for the hyperglycemia associated with T2DM.

  19. Regional differences in islet distribution in the human pancreas--preferential beta-cell loss in the head region in patients with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Xiaojun Wang

    Full Text Available While regional heterogeneity in islet distribution has been well studied in rodents, less is known about human pancreatic histology. To fill gaps in our understanding, regional differences in the adult human pancreas were quantitatively analyzed including the pathogenesis of type 2 diabetes (T2D. Cadaveric pancreas specimens were collected from the head, body and tail regions of each donor, including subjects with no history of diabetes or pancreatic diseases (n = 23 as well as patients with T2D (n = 12. The study further included individuals from whom islets were isolated (n = 7 to study islet yield and function in a clinical setting of islet transplantation. The whole pancreatic sections were examined using an innovative large-scale image capture and unbiased detailed quantitative analyses of the characteristics of islets from each individual (architecture, size, shape and distribution. Islet distribution/density is similar between the head and body regions, but is >2-fold higher in the tail region. In contrast to rodents, islet cellular composition and architecture were similar throughout the pancreas and there was no difference in glucose-stimulated insulin secretion in islets isolated from different regions of the pancreas. Further studies revealed preferential loss of large islets in the head region in patients with T2D. The present study has demonstrated distinct characteristics of the human pancreas, which should provide a baseline for the future studies integrating existing research in the field and helping to advance bi-directional research between humans and preclinical models.

  20. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  1. Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function.

    Science.gov (United States)

    Fueger, Patrick T; Schisler, Jonathan C; Lu, Danhong; Babu, Daniella A; Mirmira, Raghavendra G; Newgard, Christopher B; Hohmeier, Hans E

    2008-05-01

    Both major forms of diabetes involve a decline in beta-cell mass, mediated by autoimmune destruction of insulin-producing cells in type 1 diabetes and by increased rates of apoptosis secondary to metabolic stress in type 2 diabetes. Methods for controlled expansion of beta-cell mass are currently not available but would have great potential utility for treatment of these diseases. In the current study, we demonstrate that overexpression of trefoil factor 3 (TFF3) in rat pancreatic islets results in a 4- to 5-fold increase in [(3)H]thymidine incorporation, with full retention of glucose-stimulated insulin secretion. This increase was almost exclusively due to stimulation of beta-cell replication, as demonstrated by studies of bromodeoxyuridine incorporation and co-immunofluorescence analysis with anti-bromodeoxyuridine and antiinsulin or antiglucagon antibodies. The proliferative effect of TFF3 required the presence of serum or 0.5 ng/ml epidermal growth factor. The ability of TFF3 overexpression to stimulate proliferation of rat islets in serum was abolished by the addition of epidermal growth factor receptor antagonist AG1478. Furthermore, TFF3-induced increases in [3H]thymidine incorporation in rat islets cultured in serum was blocked by overexpression of a dominant-negative Akt protein or treatment with triciribine, an Akt inhibitor. Finally, overexpression of TFF3 also caused a doubling of [3H]thymidine incorporation in human islets. In summary, our findings reveal a novel TFF3-mediated pathway for stimulation of beta-cell replication that could ultimately be exploited for expansion or preservation of islet beta-cell mass.

  2. Pancreatic islet blood flow and its measurement.

    Science.gov (United States)

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-05-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.

  3. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong, E-mail: yongzhao@uic.edu [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Guo, Chengshan; Hwang, David; Lin, Brian; Dingeldein, Michael; Mihailescu, Dan; Sam, Susan; Sidhwani, Seema [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Zhang, Yongkang [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Jain, Sumit [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Skidgel, Randal A. [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Prabhakar, Bellur S. [Department of Immunology and Microbiology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Mazzone, Theodore [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Holterman, Mark J. [Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  4. ISLET FORMATION AND REGENERATION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To explore the mechanisms of differentiation and development of pancreatic endocrine cells as well as pancreatic regeneration. Methods Human embryonic pancreatic tissue at 7-14 weeks of gestation was collected. Diabetes mellitus rat model was induced with 65 mg/kg of streptozotocin. Insulin, glucagon, somatostatin, nestin, and cytokeratin 19 (CK19)of pancreatic tissues were observed by immunohistochemistry. Results At 9 weeks of gestation, pancreatic epithelial cells began to co-express insulin, glucagon, somatostatin, and CK19 before migration. Islet cells gradually congregated along with the increase of aging, and at 14 weeks of gestation histological examination showed islet formation. At 12 weeks of gestation, nestin-positive cells could be seen in the pancreatic mesenchyme. During early embryogenesis, islet cells of pancreatic ducts co-expressed insulin, glucagon, and somatostatin. During pancreatic regeneration after damage, nestin expression of islet cells increased. Conclusion In the early stage of embryogenesis, islet cells of primary pancreatic ducts can be differentiated to multipotential endocrine cells before migration. During tissue regeneration, pancreatic stem cells may differentiate and proliferate to form pancreatic islet.

  5. Islet neogenesis potential of human adult stem cells and its applications in cell replacement therapy for diabetes

    Directory of Open Access Journals (Sweden)

    Bhonde RR

    2008-11-01

    Full Text Available In recent years regenerative biology has reached to greater heights due to its therapeutic potential in treating degenerative diseases; as they are not curable by modern medicine. With the advent of research in stem cells and developmental biology the regenerative potential of adult resident stem cells is becoming clearer. The long term objective of regenerative medicine or cell therapy is to treat patients with their own stem cells. These stem cells could be derived from the diseased organs such as skin, liver, pancreas etc. or from reservoirs of multipotent stem cells such as bone marrow or cord blood.Manipulating the ability of tissue resident stem cells as well as from multipotent reservoirs such as bone marrow, umbilical cord and cord blood to give rise to endocrine cells may open new avenues in the treatment of diabetes. A better understanding of stem cell biology would almost certainly allow for the establishment of efficient and reliable cell transplantation experimental programs in the clinic. We show here that multipotent mesenchymal stem cells can be isolated from various sources such as the bone marrow, placenta, umbilical cord. Upon stimulation with specific growth factors they differentiate into islet like clusters (ILCs. When ILCs obtained from the above mentioned sources were transplanted in experimental diabetic mice, restoration of normoglycemia was observed within three weeks of transplantation with concomitant increase in the body weight. These euglycemic mice exhibited normal glucose tolerance test indicating normal utilization of glucose. Allthough the MSCs isolated from all the sources had the same characteristics; they showed significant differences in their islet differentiation potential. ILCs isolated for the human bone marrow did not show any pancreatic hormones in vitro, but upon transplantation they matured into insulin and somatostatin producing hormones. Placental MSCs as well as ILCs showed insulin trascripts

  6. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets

    Science.gov (United States)

    Maedler, Kathrin; Sergeev, Pavel; Ris, Frédéric; Oberholzer, José; Joller-Jemelka, Helen I.; Spinas, Giatgen A.; Kaiser, Nurit; Halban, Philippe A.; Donath, Marc Y.

    2002-01-01

    In type 2 diabetes, chronic hyperglycemia is suggested to be detrimental to pancreatic β cells, causing impaired insulin secretion. IL-1β is a proinflammatory cytokine acting during the autoimmune process of type 1 diabetes. IL-1β inhibits β cell function and promotes Fas-triggered apoptosis in part by activating the transcription factor NF-κB. Recently, we have shown that increased glucose concentrations also induce Fas expression and β cell apoptosis in human islets. The aim of the present study was to test the hypothesis that IL-1β may mediate the deleterious effects of high glucose on human β cells. In vitro exposure of islets from nondiabetic organ donors to high glucose levels resulted in increased production and release of IL-1β, followed by NF-κB activation, Fas upregulation, DNA fragmentation, and impaired β cell function. The IL-1 receptor antagonist protected cultured human islets from these deleterious effects. β cells themselves were identified as the islet cellular source of glucose-induced IL-1β. In vivo, IL-1β–producing β cells were observed in pancreatic sections of type 2 diabetic patients but not in nondiabetic control subjects. Similarly, IL-1β was induced in β cells of the gerbil Psammomys obesus during development of diabetes. Treatment of the animals with phlorizin normalized plasma glucose and prevented β cell expression of IL-1β. These findings implicate an inflammatory process in the pathogenesis of glucotoxicity in type 2 diabetes and identify the IL-1β/NF-κB pathway as a target to preserve β cell mass and function in this condition. PMID:12235117

  7. 输注胰岛抗原特异性Treg细胞延长同系NOD小鼠移植胰岛的存活时间%Prolonged islet isograft survival in NOD mice treated with islet antigen-specific regulatory T cells

    Institute of Scientific and Technical Information of China (English)

    李永海; 张淦; 水丽君; 房爱芳; 郭峰; 向莹; 张伟杰

    2013-01-01

    Objective To investigate the survival of islet isograft in NOD mice treated with islet antigen-specific regulatory T cells.Methods GAD-65 antigen pulsed immature dendritic cells (imDC) were used to induce naive T cells into islet antigen-specific regulatory T cells.NOD mice which had progressed to type 1 diabetes (T1DM),as the recipients,received islet isografts (500 IEQ) under renal capsule from NOD mice without T1DM.In NOD mice in control group without transplantation,the changes in blood glucose (BG) were observed.NOD mice in simple islet transplantation group were given islet isograft without Treg infusion.In experiment group,NOD mice were infused with 1 × 106 islet antigen-specific regulatory T cells on the 1st day before transplantation,subsequently underwent islet isotransplantation.The survival of the islet isograft was evaluated by BG levels and the pathological changes were observed.Results BG levels were sustained above 11.1 mmol/L in control group.In simple islet transplantation group,BG level was decreased to the normal level in 1 ~2 days after transplantation,and began to rebound in 7~ 17 days posttransplantation and maintained at the preoperative level.The mean survival of the islet isograft in the NOD mice was (12.2 ± 2.6) day;In experiment group,BG level was decreased to the normal level in 1 ~2 days after transplantation,rebounded above 11.1 mmol/L in some mice on the 27th day after transplantation,and rebounded above 11.1 rnmol/L on the 43th day in all mice.The mean survival of the islet isograft in the NOD mice was (35.2 ± 4.3) days,which was significantly prolonged compared to simple islet transplantation group (P< 0.01).In simple islet transplantation group,the islet isograft was infiltrated by many lymph cells and damaged severely,and only few residual islet cells secreted insulin without complete islet existing in insulin staining.The islet isograft in experiment group was intact on the 15th day,with little lymph cell infiltration

  8. Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells.

    Science.gov (United States)

    Nair, Gopika; Hebrok, Matthias

    2015-06-01

    The Islets of Langerhans are crucial 'micro-organs' embedded in the glandular exocrine pancreas that regulate nutrient metabolism. They not only synthesize, but also secrete endocrine hormones in a modulated fashion in response to physiologic metabolic demand. These highly sophisticated structures with intricate organization of multiple cell types, namely endocrine, vascular, neuronal and mesenchymal cells, have evolved to perform this task to perfection over time. Not surprisingly, islet architecture and function are dissimilar between humans and typically studied model organisms, such as rodents and zebrafish. Further, recent findings also suggest noteworthy differences in human islet development from that in mouse, including delayed appearance and gradual resolution of key differentiation markers, a single-phase of endocrine differentiation, and prenatal association of developing islets with neurovascular milieu. In light of these findings, it is imperative that a systematic study is undertaken to compare islet development between human and mouse. Illuminating inter-species differences in islet development will likely be critical in furthering our pursuit to generate an unlimited supply of truly functional and fully mature β-cells from human pluripotent stem cell (hPSC) sources for therapeutic purposes.

  9. B7-H4 as a protective shield for pancreatic islet beta cells

    Institute of Scientific and Technical Information of China (English)

    Annika; C; Sun; Dawei; Ou; Dan; S; Luciani; Garth; L; Warnock

    2014-01-01

    Auto- and alloreactive T cells are major culprits that damage β-cells in type 1 diabetes(T1D) and islet transplantation. Current immunosuppressive drugs can alleviate immune-mediated attacks on islets. T cell co-stimulation blockade has shown great promise in autoimmunity and transplantation as it solely targets activated T cells, and therefore avoids toxicity of current immunosuppressive drugs. An attractive approach is offered by the newly-identified negative T cell cosignaling molecule B7-H4 which is expressed in normal human islets, and its expression co-localizes with insulin. A concomitant decrease in B7-H4/insulin colocalization is observed in human type 1 diabetic islets. B7-H4 may play protective roles in the pancreatic islets, preserving their function and survival. In this review we outline the protective effect of B7-H4 in the contexts of T1 D, islet cell transplantation, and potentially type 2 diabetes. Current evidence offers encouraging data regarding the role of B7-H4 in reversal of autoimmune diabetes and donor-specific islet allograft tolerance. Additionally, unique expression of B7-H4 may serve as a potential biomarker for the development of T1 D. Futurestudies should continue to focus on the islet-specific effects of B7-H4 with emphasis on mechanistic pathways in order to promote B7-H4 as a potential therapy and cure for T1 D.

  10. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide

    Science.gov (United States)

    Xu, Zhi-Xue; Zhang, Qiang; Ma, Gong-Li; Chen, Cong-Heng; He, Yan-Ming; Xu, Li-Hui; Zhang, Yuan; Zhou, Guang-Rong; Li, Zhen-Hua

    2016-01-01

    The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (−)-epigallocatechin gallate (EGCG) is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III)/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III) and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III) and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III) could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III)/EGCG complex in molar ratio of 1 : 1 as Al(EGCG)(H2O)2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes. PMID:28074190

  11. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Zhi-Xue Xu

    2016-01-01

    Full Text Available The abnormal fibrillation of human islet amyloid polypeptide (hIAPP has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (−-epigallocatechin gallate (EGCG is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III/EGCG complex in molar ratio of 1 : 1 as Al(EGCG(H2O2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes.

  12. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Revital Sharivkin

    Full Text Available The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+, glucagon-producing alpha cells (CD9-/CD56+ and trypsin-producing acinar cells (CD9-/CD56-. This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples.

  13. Angiopoetin-2 Signals Do Not Mediate the Hypervascularization of Islets in Type 2 Diabetes

    Science.gov (United States)

    Shah, Payal; Lueschen, Navina; Ardestani, Amin; Oberholzer, Jose; Olerud, Johan; Carlsson, Per-Ola; Maedler, Kathrin

    2016-01-01

    Aims Changes in the islet vasculature have been implicated in the regulation of β-cell survival and function during the progression to type 2 diabetes (T2D). Failure of the β-cell to compensate for the increased insulin demand in obesity eventually leads to diabetes; as a result of the complex interplay of genetic and environmental factors (e.g. ongoing inflammation within the islets) and impaired vascular function. The Angiopoietin/Tie (Ang/Tie) angiogenic system maintains vasculature and is closely related to organ inflammation and angiogenesis. In this study we aimed to identify whether the vessel area within the islets changes in diabetes and whether such changes would be triggered by the Tie-antagonist Ang-2. Methods Immunohistochemical and qPCR analyses to follow islet vascularization and Ang/Tie levels were performed in human pancreatic autopsies and isolated human and mouse islets. The effect of Ang-2 was assessed in β-cell-specific Ang-2 overexpressing mice during high fat diet (HFD) feeding. Results Islet vessel area was increased in autopsy pancreases from patients with T2D. The vessel markers Tie-1, Tie-2 and CD31 were upregulated in mouse islets upon HFD feeding from 8 to 24 weeks. Ang-2 was transiently upregulated in mouse islets at 8 weeks of HFD and under glucolipotoxic conditions (22.2 mM glucose/ 0.5 mM palmitate) in vitro in human and mouse islets, in contrast to its downregulation by cytokines (IL-1β, IFN-ɣ and TNF-α). Ang-1 on the other hand was oppositely regulated, with a significant loss under glucolipotoxic condition, a trend to reduce in islets from patients with T2D and an upregulation by cytokines. Modulation of such changes in Ang-2 by its overexpression or the inhibition of its receptor Tie-2 impaired β-cell function at basal conditions but protected islets from cytokine induced apoptosis. In vivo, β-cell-specific Ang-2 overexpression in mice induced hypervascularization under normal diet but contrastingly led to

  14. Protection of Human Pancreatic Islets from Lipotoxicity by Modulation of the Translocon.

    Directory of Open Access Journals (Sweden)

    R Cassel

    Full Text Available Type 2 diabetes is characterized by peripheral insulin resistance and pancreatic beta cell dysfunction. Elevated free fatty acids (FFAs may impair beta cell function and mass (lipotoxicity. Altered calcium homeostasis may be involved in defective insulin release. The endoplasmic reticulum (ER is the major intracellular calcium store. Lipotoxicity induces ER stress and in parallel an ER calcium depletion through unknown ER calcium leak channels. The main purposes of this study is first to identify one of these channels and secondly, to check the opportunity to restore beta cells function (i.e., insulin secretion after pharmacological inhibition of ER calcium store depletion. We investigated the functionality of translocon, an ER calcium leak channel and its involvement on FFAs-induced alterations in MIN6B1 cells and in human pancreatic islets. We evidenced that translocon acts as a functional ER calcium leak channel in human beta cells using anisomycin and puromycin (antibiotics, respectively blocker and opener of this channel. Puromycin induced a significant ER calcium release, inhibited by anisomycin pretreatment. Palmitate treatment was used as FFA model to induce a mild lipotoxic effect: ER calcium content was reduced, ER stress but not apoptosis were induced and glucose induced insulin secretion was decreased in our beta cells. Interestingly, translocon inhibition by chronic anisomycin treatment prevented dysfunctions induced by palmitate, avoiding reticular calcium depletion, ER stress and restoring insulin secretion. Our results provide for the first time compelling evidence that translocon actively participates to the palmitate-induced ER calcium leak and insulin secretion decrease in beta cells. Its inhibition reduces these lipotoxic effects. Taken together, our data indicate that TLC may be a new potential target for the treatment of type 2 diabetes.

  15. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.

    Science.gov (United States)

    Jaikaran, E T; Higham, C E; Serpell, L C; Zurdo, J; Gross, M; Clark, A; Fraser, P E

    2001-05-04

    Human islet amyloid polypeptide (hIAPP) accumulates as pancreatic amyloid in type 2 diabetes and readily forms fibrils in vitro. Investigations into the mechanism of hIAPP fibril formation have focused largely on residues 20 to 29, which are considered to comprise a primary amyloidogenic domain. In rodents, proline substitutions within this region and the subsequent beta-sheet disruption, prevents fibril formation. An additional amyloidogenic fragment within the C-terminal sequence, residues 30 to 37, has been identified recently. We have extended these observations by examining a series of overlapping peptide fragments from the human and rodent sequences. Using protein spectroscopy (CD/FTIR), electron microscopy and X-ray diffraction, a previously unrecognised amyloidogenic domain was localised within residues 8 to 20. Synthetic peptides corresponding to this region exhibited a transition from random coil to beta-sheet conformation and assembled into fibrils having a typical amyloid-like morphology. The comparable rat 8-20 sequence, which contains a single His18Arg substitution, was also capable of assembling into amyloid-like fibrils. Examination of peptide fragments corresponding to residues 1 to 13 revealed that the immediate N-terminal region is likely to have only a modulating influence on fibril formation or conformational conversion. The contributions of charged residues as they relate to the amyloid-forming 8-20 sequence were also investigated using IAPP fragments and by assessing the effects of pH and counterions. The identification of these principal amyloidogenic sequences and the effects of associated factors provide details on the IAPP aggregation pathway and structure of the peptide in its fibrillar state. Copyright 2001 Academic Press.

  16. Downregulation of Type II Diabetes Mellitus and Maturity Onset Diabetes of Young Pathways in Human Pancreatic Islets from Hyperglycemic Donors

    Directory of Open Access Journals (Sweden)

    Jalal Taneera

    2014-01-01

    Full Text Available Although several molecular pathways have been linked to type 2 diabetes (T2D pathogenesis, it is uncertain which pathway has the most implication on the disease. Changes in the expression of an entire pathway might be more important for disease pathogenesis than changes in the expression of individual genes. To identify the molecular alterations in T2D, DNA microarrays of human pancreatic islets from donors with hyperglycemia n=20 and normoglycemia n=58 were subjected to Gene Set Enrichment Analysis (GSEA. About 178 KEGG pathways were investigated for gene expression changes between hyperglycemic donors compared to normoglycemic. Pathway enrichment analysis showed that type II diabetes mellitus (T2DM and maturity onset diabetes of the young (MODY pathways are downregulated in hyperglycemic donors, while proteasome and spliceosome pathways are upregulated. The mean centroid of gene expression of T2DM and MODY pathways was shown to be associated positively with insulin secretion and negatively with HbA1c level. To conclude, downregulation of T2DM and MODY pathways is involved in islet function and might be involved in T2D. Also, the study demonstrates that gene expression profiles from pancreatic islets can reveal some of the biological processes related to regulation of glucose hemostats and diabetes pathogenesis.

  17. Pancreatic islet transplantation

    Directory of Open Access Journals (Sweden)

    Corrêa-Giannella Maria

    2009-09-01

    Full Text Available Abstract Background No formulation of exogenous insulin available to date has yet been able to mimic the physiological nictemeral rhythms of this hormone, and despite all engineering advancements, the theoretical proposal of developing a mechanical replacement for pancreatic β cell still has not been reached. Thus, the replacement of β cells through pancreas and pancreatic islet transplantation are the only concrete alternatives for re-establishing the endogenous insulin secretion in type 1 diabetic patients. Since only 1 to 1.5% of the pancreatic mass corresponds to endocrine tissue, pancreatic islets transplantation arises as a natural alternative. Data from the International Islet Transplant Registry (ITR from 1983 to December 2000 document a total of 493 transplants performed around the world, with progressively worse rates of post-transplant insulin independence. In 2000, the "Edmonton Protocol" introduced several modifications to the transplantation procedure, such as the use of a steroid-free immunosuppression regimen and transplantation of a mean islet mass of 11,000 islet equivalents per kilogram, which significantly improved 1-year outcomes. Although the results of a 5-year follow-up in 65 patients demonstrated improvement in glycemic instability in a significant portion of them, only 7.5% of the patients have reached insulin independence, indicating the need of further advances in the preservation of the function of transplanted islet. In addition to the scarcity of organs available for transplantation, islets transplantation still faces major challenges, specially those related to cell loss during the process of islet isolation and the losses related to the graft site, apoptosis, allorejection, autoimmunity, and immunosuppression. The main strategies to optimize islet transplantation aim at improving all these aspects. Conclusion Human islet transplantation should be regarded as an intervention that can decrease the frequency of

  18. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kuo Ching Chao

    Full Text Available BACKGROUND: There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs, which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets. METHODOLOGY AND PRINCIPAL FINDINGS: HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic beta-cell-related genes (Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2 in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules. CONCLUSIONS AND SIGNIFICANCE: In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin

  19. Differential transcriptome analysis of diabetes-resistant and -sensitive mouse islets reveals significant overlap with human diabetes susceptibility genes.

    Science.gov (United States)

    Kluth, Oliver; Matzke, Daniela; Schulze, Gunnar; Schwenk, Robert W; Joost, Hans-Georg; Schürmann, Annette

    2014-12-01

    Type 2 diabetes in humans and in obese mice is polygenic. In recent genome-wide association studies, genetic markers explaining a small portion of the genetic contribution to the disease were discovered. However, functional evidence linking these genes with the pathogenesis of diabetes is scarce. We performed RNA sequencing-based transcriptomics of islets from two obese mouse strains, a diabetes-susceptible (NZO) and a diabetes-resistant (B6-ob/ob) mouse, after a short glucose challenge and compared these results with human data. Alignment of 2,328 differentially expressed genes to 106 human diabetes candidate genes revealed an overlap of 20 genes, including TCF7L2, IGFBP2, CDKN2A, CDKN2B, GRB10, and PRC1. The data provide a functional validation of human diabetes candidate genes, including those involved in regulating islet cell recovery and proliferation, and identify additional candidates that could be involved in human β-cell failure. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans

    DEFF Research Database (Denmark)

    Bendtzen, K; Mandrup-Poulsen, T; Nerup, J

    1986-01-01

    . This cytotoxic activity was eliminated from crude cytokine preparations by adsorption with immobilized, purified antibody to interleukin-1 (IL-1). The islet-inhibitory activity and the IL-1 activity (determined by its comitogenic effect on thymocytes) were recovered by acid wash. Purified natural IL-1...

  1. KU-32, a Novel Drug for Diabetic Neuropathy, Is Safe for Human Islets and Improves In Vitro Insulin Secretion and Viability

    Directory of Open Access Journals (Sweden)

    Kevin Farmer

    2012-01-01

    Full Text Available KU-32 is a novel, novobiocin-based Hsp90 inhibitor that protects against neuronal glucotoxicity and reverses multiple clinical indices of diabetic peripheral neuropathy in a rodent model. However, any drug with potential for treating diabetic complications must also have no adverse effects on the function of pancreatic islets. Thus, the goal of the current study was to assess the effect of KU-32 on the in vitro viability and function of human islets. Treating human islets with KU-32 for 24 hours showed no toxicity as assessed using the alamarBlue assay. Confocal microscopy confirmed that with a minimum of 2-day exposure, KU-32 improved cellular viability by blocking apoptosis. Functionally, isolated human islets released more glucose-stimulated insulin when preincubated in KU-32. However, diabetic BKS-db/db mice, a model for type 2 diabetes, administered KU-32 for 10 weeks did not show any significant changes in blood glucose and insulin levels, despite having greater insulin staining/beta cell in the pancreas compared to untreated BKS db/db mice. In summary, KU-32 did not harm isolated human islets and may even be protective. However, the effect does not appear significant enough to alter the in vivo metabolic parameters of diabetic mice.

  2. KU-32, a novel drug for diabetic neuropathy, is safe for human islets and improves in vitro insulin secretion and viability.

    Science.gov (United States)

    Farmer, Kevin; Williams, S Janette; Novikova, Lesya; Ramachandran, Karthik; Rawal, Sonia; Blagg, Brian S J; Dobrowsky, Rick; Stehno-Bittel, Lisa

    2012-01-01

    KU-32 is a novel, novobiocin-based Hsp90 inhibitor that protects against neuronal glucotoxicity and reverses multiple clinical indices of diabetic peripheral neuropathy in a rodent model. However, any drug with potential for treating diabetic complications must also have no adverse effects on the function of pancreatic islets. Thus, the goal of the current study was to assess the effect of KU-32 on the in vitro viability and function of human islets. Treating human islets with KU-32 for 24 hours showed no toxicity as assessed using the alamarBlue assay. Confocal microscopy confirmed that with a minimum of 2-day exposure, KU-32 improved cellular viability by blocking apoptosis. Functionally, isolated human islets released more glucose-stimulated insulin when preincubated in KU-32. However, diabetic BKS-db/db mice, a model for type 2 diabetes, administered KU-32 for 10 weeks did not show any significant changes in blood glucose and insulin levels, despite having greater insulin staining/beta cell in the pancreas compared to untreated BKS db/db mice. In summary, KU-32 did not harm isolated human islets and may even be protective. However, the effect does not appear significant enough to alter the in vivo metabolic parameters of diabetic mice.

  3. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    Science.gov (United States)

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  4. Islet Transplantation

    Science.gov (United States)

    ... transplanted islet cells failed. But in recent years, scientists have begun to make rapid advances in transplant technology, and some of the most exciting new research comes to us from researchers at the University of ... Canada. These scientists have used a new procedure called the Edmonton ...

  5. Quantitative Assessment of Islets of Langerhans Encapsulated in Alginate

    Science.gov (United States)

    Johnson, Amy S.; O'Sullivan, Esther; D'Aoust, Laura N.; Omer, Abdulkadir; Bonner-Weir, Susan; Fisher, Robert J.; Weir, Gordon C.

    2011-01-01

    Improved methods have recently been developed for assessing islet viability and quantity in human islet preparations for transplantation, and these measurements have proven useful for predicting transplantation outcome. The objectives of this study were to adapt these methods for use with microencapsulated islets, to verify that they provide meaningful quantitative measurements, and to test them with two model systems: (1) barium alginate and (2) barium alginate containing a 70% (w/v) perfluorocarbon (PFC) emulsion, which presents challenges to use of these assays and is of interest in its own right as a means for reducing oxygen supply limitations to encapsulated tissue. Mitochondrial function was assessed by oxygen consumption rate measurements, and the analysis of data was modified to account for the increased solubility of oxygen in the PFC-alginate capsules. Capsules were dissolved and tissue recovered for nuclei counting to measure the number of cells. Capsule volume was determined from alginate or PFC content and used to normalize measurements. After low oxygen culture for 2 days, islets in normal alginate lost substantial viable tissue and displayed necrotic cores, whereas most of the original oxygen consumption rate was recovered with PFC alginate, and little necrosis was observed. All nuclei were recovered with normal alginate, but some nuclei from nonrespiring cells were lost with PFC alginate. Biocompatibility tests revealed toxicity at the islet periphery associated with the lipid emulsion used to provide surfactants during the emulsification process. We conclude that these new assay methods can be applied to islets encapsulated in materials as complex as PFC-alginate. Measurements made with these materials revealed that enhancement of oxygen permeability of the encapsulating material with a concentrated PFC emulsion improves survival of encapsulated islets under hypoxic conditions, but reformulation of the PFC emulsion is needed to reduce toxicity

  6. Establishing a human pancreatic stem cell line and transplanting induced pancreatic islets to reverse experimental diabetes in rats

    Institute of Scientific and Technical Information of China (English)

    XIAO Mei; DOU ZhongYing; AN LiLong; YANG XueYi; GE Xin; QIAO Hai; ZHAO Ting; MA XiaoFei; FAN JingZhua; ZHU MengYang

    2008-01-01

    The major obstacle in using pancreatic islet transplantation to cure type Ⅰ and some type Ⅱ diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant trans-plantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type Ⅳ collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem ceils started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1×109 mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdxl, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with β-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet

  7. Establishing a human pancreatic stem cell line and transplanting induced pancreatic islets to reverse experimental diabetes in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The major obstacle in using pancreatic islet transplantation to cure type I and some type II diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant trans-plantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type IV collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem cells started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1×109 mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdx1, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with β-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet

  8. Human Islet Amyloid Polypeptide N-Terminus Fragment Self-Assembly: Effect of Conserved Disulfide Bond on Aggregation Propensity

    Science.gov (United States)

    Ilitchev, Alexandre I.; Giammona, Maxwell J.; Do, Thanh D.; Wong, Amy G.; Buratto, Steven K.; Shea, Joan-Emma; Raleigh, Daniel P.; Bowers, Michael T.

    2016-06-01

    Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding.

  9. The Pancreatic Islet Regulome Browser

    Science.gov (United States)

    Mularoni, Loris; Ramos-Rodríguez, Mireia; Pasquali, Lorenzo

    2017-01-01

    The pancreatic islet is a highly specialized tissue embedded in the exocrine pancreas whose primary function is that of controlling glucose homeostasis. Thus, understanding the transcriptional control of islet-cell may help to puzzle out the pathogenesis of glucose metabolism disorders. Integrative computational analyses of transcriptomic and epigenomic data allows predicting genomic coordinates of putative regulatory elements across the genome and, decipher tissue-specific functions of the non-coding genome. We herein present the Islet Regulome Browser, a tool that allows fast access and exploration of pancreatic islet epigenomic and transcriptomic data produced by different labs worldwide. The Islet Regulome Browser is now accessible on the internet or may be installed locally. It allows uploading custom tracks as well as providing interactive access to a wealth of information including Genome-Wide Association Studies (GWAS) variants, different classes of regulatory elements, together with enhancer clusters, stretch-enhancers and transcription factor binding sites in pancreatic progenitors and adult human pancreatic islets. Integration and visualization of such data may allow a deeper understanding of the regulatory networks driving tissue-specific transcription and guide the identification of regulatory variants. We believe that such tool will facilitate the access to pancreatic islet public genomic datasets providing a major boost to functional genomics studies in glucose metabolism related traits including diabetes. PMID:28261261

  10. Munc18b Increases Insulin Granule Fusion, Restoring Deficient Insulin Secretion in Type-2 Diabetes Human and Goto-Kakizaki Rat Islets with Improvement in Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Tairan Qin

    2017-02-01

    Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS.

  11. Adult Human Biliary Tree Stem Cells Differentiate to β-Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide.

    Directory of Open Access Journals (Sweden)

    Vincenzo Cardinale

    Full Text Available Generation of β-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs towards β-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1 has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the β-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage β-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional β-pancreatic cells.

  12. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process.

    Science.gov (United States)

    Ghosal, Abhisek; Sekar, Thillai V; Said, Hamid M

    2014-08-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na(+)-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na(+)-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS.

  13. Discovery of novel glucose-regulated proteins in isolated human pancreatic islets using LC-MS/MS-based proteomics.

    Science.gov (United States)

    Schrimpe-Rutledge, Alexandra C; Fontès, Ghislaine; Gritsenko, Marina A; Norbeck, Angela D; Anderson, David J; Waters, Katrina M; Adkins, Joshua N; Smith, Richard D; Poitout, Vincent; Metz, Thomas O

    2012-07-06

    The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (∼p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (pleiotropic regulator 1), processing (retinoblastoma binding protein 6), and function (nuclear RNA export factor 1), in addition to neuron navigator 1 and plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and synaptotagmin-17. Up-regulation of dicer 1 and SLC27A2 and down-regulation of phospholipase Cβ4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles.

  14. Small Islets Transplantation Superiority to Large Ones: Implications from Islet Microcirculation and Revascularization

    Directory of Open Access Journals (Sweden)

    Wenjuan Li

    2014-01-01

    Full Text Available Pancreatic islet transplantation is a promising therapy to regain glycemic control in diabetic patients. The selection of ideal grafts is the basis to guarantee short-term effectivity and longevity of the transplanted islets. Contradictory to the traditional notion, recent findings implied the superiority of small islets for better transplantation outcomes rather than the large and intact ones. However, the mechanisms remain to be elucidated. Recent evidences emphasized the major impact of microcirculation on islet β-cell mass and function. And potentials in islet graft revascularization are crucial for their survival and preserved function in the recipient. In this study, we verified the distinct histological phenotype and functionality of small islets versus large ones both in vitro and in vivo. With efforts to exploring the differences in microcirculation and revascularization of islet grafts, we further evaluated local expressions of angiotensin and vascular endothelial growth factor A (VEGF-A at different levels. Our findings reveal that, apart from the higher density of insulin-producing β-cells, small islets express less angiotensin and more angiotrophic VEGF-A. We therefore hypothesized a logical explanation of the small islet superiority for transplantation outcome from the aspects of facilitated microcirculation and revascularization intrinsically in small islets.

  15. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes

    NARCIS (Netherlands)

    Llacua Carrasco, Luis; de Haan, Bart J; Smink, Sandra A; de Vos, Paul

    2016-01-01

    In the pancreas, extracellular matrix (ECM) components play an import role in providing mechanical and physiological support, and also contribute to the function of islets. These ECM-connections are damaged during islet-isolation from the pancreas and are not fully recovered after encapsulation and

  16. Staphylococcus aureus survival in human blood.

    Science.gov (United States)

    Malachowa, Natalia; DeLeo, Frank R

    2011-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is abundant in hospitals and in the United States is a leading cause of mortality due to infectious agents. Community-associated MRSA (CA-MRSA) strains such as USA300, which typically cause disease outside of healthcare settings, are also prevalent in the United States. Although most CA-MRSA infections affect skin and soft tissue, the pathogen can enter the bloodstream and ultimately cause severe disease. In a recent paper, we used USA300-specific microarrays to generate a comprehensive view of the molecules that facilitate S. aureus immune evasion and survival in human blood. Notably, genes encoding proteins involved in iron-uptake and utilization and gamma-hemolysin (hlgABC) are highly up-regulated by USA300 during culture in human blood. Here we discuss the potential implication of these findings and the possible role of gamma-hemolysin in the success of S. aureus as a human pathogen.

  17. Discovery of novel glucose-regulated proteins in isolated human pancreatic islets using LC-MS/MS-based proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, Alexandra C.; Fontes, Ghislaine; Gritsenko, Marina A.; Norbeck, Angela D.; Anderson, David J.; Waters, Katrina M.; Adkins, Joshua N.; Smith, Richard D.; Poitout, Vincent; Metz, Thomas O.

    2012-07-06

    The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is due in part to insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent and physiologically important regulators of beta-cell function under physiological conditions, understanding the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins ({approx}p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (Pleiotropic regulator 1), processing (Retinoblastoma binding protein 6), and function (Nuclear RNA export factor 1), in addition to Neuron navigator 1 and Plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and Synaptotagmin-17. Many proteins found to be differentially abundant after high glucose stimulation were uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles.

  18. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    Science.gov (United States)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  19. Potential for clinical pancreatic islet xenotransplantation

    Directory of Open Access Journals (Sweden)

    Bottino R

    2014-09-01

    Full Text Available Rita Bottino,1 Santosh Nagaraju,2 Vikas Satyananda,2 Hidetaka Hara,2 Martin Wijkstrom,2 Massimo Trucco,1 David KC Cooper2 1Institute of Cellular Therapeutics, Allegheny Health Network, 2Thomas E Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Diabetes mellitus is increasing worldwide. Type 1 diabetes can be treated successfully by islet allotransplantation, the results of which are steadily improving. However, the number of islets that can be obtained from deceased human donors will never be sufficient to cure more than a very small percentage of patients who might benefit from transplantation. Although there are some differences in glucose metabolism between pigs and humans, the use of pigs could provide an unlimited supply of islets, and the insulin produced would undoubtedly control glucose levels. Transplantation of islets into the portal vein results in islets residing in the liver; however, an early inflammatory response and rejection remain problematic, even when the recipient is receiving immunosuppressive therapy. In the long term, immunosuppressive drugs may exhibit toxicities to patients and specifically harm the islet cells. In contrast, encapsulation techniques provide islets with a physical barrier that prevents antibodies binding to the islet graft while still allowing insulin to be released into the recipient's circulation; in theory, patients receiving encapsulated grafts might not require exogenous immunosuppressive therapy. Nonhuman primates with encapsulated pig islet transplants have remained insulin-independent for several weeks, but long-term efficacy remains uncertain. Furthermore, techniques are now available to knock out genes from the pig and/or insert human genes, thus rendering the antigenic structure of pigs closer to that of humans, and providing protection from the human immune response. Islet transplantation from genetically engineered pigs has been

  20. Apelin is a novel islet peptide

    DEFF Research Database (Denmark)

    Ringström, Camilla; Nitert, Marloes Dekker; Bennet, Hedvig;

    2010-01-01

    Apelin, a recently discovered peptide with wide tissue distribution, regulates feeding behavior, improves glucose utilization, and inhibits insulin secretion. We examined whether apelin is expressed in human islets, as well as in normal and type 2 diabetic (T2D) animal islets. Further, we studied...

  1. Secretion of neurotensin from a human pancreatic islet cell carcinoma cell line (QGP-1N).

    Science.gov (United States)

    Tateishi, K; Funakoshi, A; Kitayama, N; Matsuoka, Y

    1993-12-10

    Effects of various secretagogues on secretion of neurotensin from a pancreatic islet cell carcinoma cell line (QGP-1N) were examined. Carbachol stimulated secretion of neurotensin concentration-dependently in the range of 10(-6) - 10(-4) M. The neurotensin secretion stimulated with 10(-5) M carbachol was completely inhibited by atropine at 10(-5) M. Phorbol ester and calcium ionophore (A23187) stimulated secretion of neurotensin. The removal of extracellular Ca2+ suppressed the secretion through the stimulation with 10(-5) M carbachol. Fluoride, an activator of guanine nucleotide-binding (G) protein, stimulated secretion of neurotensin. Neurotensin released into culture medium through stimulation with carbachol coeluted with neurotensin 1-13 on a gel-chromatography. Our results suggest that secretion of neurotensin from QGP-1N cells is mainly regulated by acetylcholine through muscarinic receptors coupled to G protein and that an increase in intracellular Ca2+ and protein kinase C play an important role in stimulus-secretion coupling.

  2. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus.

    Science.gov (United States)

    Westermark, Per; Andersson, Arne; Westermark, Gunilla T

    2011-07-01

    Islet amyloid polypeptide (IAPP, or amylin) is one of the major secretory products of β-cells of the pancreatic islets of Langerhans. It is a regulatory peptide with putative function both locally in the islets, where it inhibits insulin and glucagon secretion, and at distant targets. It has binding sites in the brain, possibly contributing also to satiety regulation and inhibits gastric emptying. Effects on several other organs have also been described. IAPP was discovered through its ability to aggregate into pancreatic islet amyloid deposits, which are seen particularly in association with type 2 diabetes in humans and with diabetes in a few other mammalian species, especially monkeys and cats. Aggregated IAPP has cytotoxic properties and is believed to be of critical importance for the loss of β-cells in type 2 diabetes and also in pancreatic islets transplanted into individuals with type 1 diabetes. This review deals both with physiological aspects of IAPP and with the pathophysiological role of aggregated forms of IAPP, including mechanisms whereby human IAPP forms toxic aggregates and amyloid fibrils.

  3. Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells.

    Science.gov (United States)

    Tapia-Limonchi, Rafael; Díaz, Irene; Cahuana, Gladys M; Bautista, Mario; Martín, Franz; Soria, Bernat; Tejedo, Juan R; Bedoya, Francisco J

    2014-01-01

    Homeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition. These include stress response mitochondrial proteins (UQCRC2, VDAC1, ATP5C1, ATP5A1) in RINm5F cells and stress response endoplasmic reticulum proteins (HSPA5, PDIA6, VCP, GANAB) in HPI. In addition, metabolic and structural proteins, oxidoreductases and chaperones related with protein metabolism are also regulated by NO treatment. Network analysis of differentially expressed proteins shows their interaction in glucocorticoid receptor and NRF2-mediated oxidative stress response pathways and eNOS signaling. The results indicate that exposure to exogenous NO counteracts the impact of serum deprivation on pancreatic β cell proteome. Species differences in the proteins involved are apparent.

  4. Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells

    Science.gov (United States)

    Tapia-Limonchi, Rafael; Díaz, Irene; Cahuana, Gladys M; Bautista, Mario; Martín, Franz; Soria, Bernat; Tejedo, Juan R; Bedoya, Francisco J

    2014-01-01

    Homeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition. These include stress response mitochondrial proteins (UQCRC2, VDAC1, ATP5C1, ATP5A1) in RINm5F cells and stress response endoplasmic reticulum proteins (HSPA5, PDIA6, VCP, GANAB) in HPI. In addition, metabolic and structural proteins, oxidoreductases and chaperones related with protein metabolism are also regulated by NO treatment. Network analysis of differentially expressed proteins shows their interaction in glucocorticoid receptor and NRF2-mediated oxidative stress response pathways and eNOS signaling. The results indicate that exposure to exogenous NO counteracts the impact of serum deprivation on pancreatic β cell proteome. Species differences in the proteins involved are apparent. PMID:25658244

  5. Disturbed α-Cell Function in Mice with β-Cell Specific Overexpression of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2008-01-01

    Full Text Available Exogenous administration of islet amyloid polypeptide (IAPP has been shown to inhibit both insulin and glucagon secretion. This study examined α-cell function in mice with β-cell specific overexpression of human IAPP (hIAPP after an oral protein gavage (75 mg whey protein/mouse. Baseline glucagon levels were higher in transgenic mice (41±4.0 pg/mL, n=6 than in wildtype animals (19±5.1 pg/mL, n=5, P=.015. In contrast, the glucagon response to protein was impaired in transgenic animals (21±2.7 pg/mL in transgenic mice versus 38±5.7 pg/mL in wildtype mice at 15 minutes; P=.027. Baseline insulin levels did not differ between the groups, while the insulin response, as the glucagon response, was impaired after protein challenge (P=.018. Glucose levels were not different between the groups and did not change significantly after protein gavage. Acetaminophen was given through gavage to the animals (2 mg/mouse to estimate gastric emptying. The plasma acetaminophen profile was similar in the two groups of mice. We conclude that disturbances in glucagon secretion exist in mice with β-cell specific overexpression of human IAPP, which are not secondary to changes in gastric emptying. The reduced glucagon response to protein challenge may reflect a direct inhibitory influence of hIAPP on glucagon secretion.

  6. Characterisation of the insulinotropic activity of an aqueous extract of Gymnema sylvestre in mouse beta-cells and human islets of Langerhans.

    Science.gov (United States)

    Liu, Bo; Asare-Anane, Henry; Al-Romaiyan, Altaf; Huang, Guocai; Amiel, Stephanie A; Jones, Peter M; Persaud, Shanta J

    2009-01-01

    Leaves of the Gymnema sylvestre (GS) plant have been used to treat diabetes mellitus for millennia, but the previously documented insulin secretagogue effects of GS extracts in vitro may be non-physiological through damage to the beta-cells. We have now examined the effects of a novel GS extract (termed OSA) on insulin secretion from the MIN6 beta-cell line and isolated human islets of Langerhans. Insulin secretion from MIN6 cells was stimulated by OSA in a concentration-dependent manner, with low concentrations (0.06-0.25 mg/ml) having no deleterious effects on MIN6 cell viability, while higher concentrations (> or = 0.5 mg/ml) caused increased Trypan blue uptake. OSA increased beta-cell Ca2+ levels, an effect that was mediated by Ca2+ influx through voltage-operated calcium channels. OSA also reversibly stimulated insulin secretion from isolated human islets and its insulin secretagogue effects in MIN6 cells and human islets were partially dependent on the presence of extracellular Ca2+. These data indicate that low concentrations of the GS isolate OSA stimulate insulin secretion in vitro, at least in part as a consequence of Ca2+ influx, without compromising beta-cell viability. Identification of the component of the OSA extract that stimulates regulated insulin exocytosis, and further investigation of its mode(s) of action, may provide promising lead targets for Type 2 diabetes therapy.

  7. A somatostatin-secreting cell line established from a human pancreatic islet cell carcinoma (somatostatinoma): release experiment and immunohistochemical study.

    Science.gov (United States)

    Iguchi, H; Hayashi, I; Kono, A

    1990-06-15

    Production and secretion of somatostatin (SRIF) were studied using a carcinoembryonic antigen (CEA)-producing cell line (QGP-1) established from a human pancreatic islet cell carcinoma. High concentrations of SRIF (274 +/- 51 ng/mg of protein, mean +/- SD, n = 5) and CEA (3083 +/- 347 ng/mg of protein, mean +/- SD, n = 5) were present in QGP-1 cells, and the basal secretion rates of SRIF and CEA by the cells (n = 5) were 46.4 +/- 4.8 and 1690 +/- 78 pg/10(5) cells/h, respectively. Immunohistochemical studies revealed the presence of SRIF in xenografts of QGP-1 cells and colocalization of SRIF and CEA. Secretion of SRIF by QGP-1 cells was stimulated in the presence of high K+ (50 mmol) and theophylline (10 mmol), but arginine (10 mmol) and glucose (300 mg/dl) had no effect on the SRIF secretion. The QGP-1 cell line may be useful for studying the regulation mechanism of SRIF secretion.

  8. Mechanism of Inhibition of Human Islet Amyloid Polypeptide-Induced Membrane Damage by a Small Organic Fluorogen

    Science.gov (United States)

    Li, Xiaoxu; Wan, Mingwei; Gao, Lianghui; Fang, Weihai

    2016-02-01

    Human islet amyloid polypeptide (hIAPP) is believed to be responsible for the death of insulin-producing β-cells. However, the mechanism of membrane damage at the molecular level has not been fully elucidated. In this article, we employ coarse- grained dissipative particle dynamics simulations to study the interactions between a lipid bilayer membrane composed of 70% zwitterionic lipids and 30% anionic lipids and hIAPPs with α-helical structures. We demonstrated that the key factor controlling pore formation is the combination of peptide charge-induced electroporation and peptide hydrophobicity-induced lipid disordering and membrane thinning. According to these mechanisms, we suggest that a water-miscible tetraphenylethene BSPOTPE is a potent inhibitor to rescue hIAPP-induced cytotoxicity. Our simulations predict that BSPOTPE molecules can bind directly to the helical regions of hIAPP and form oligomers with separated hydrophobic cores and hydrophilic shells. The micelle-like hIAPP-BSPOTPE clusters tend to be retained in the water/membrane interface and aggregate therein rather than penetrate into the membrane. Electrostatic attraction between BSPOTPE and hIAPP also reduces the extent of hIAPP binding to the anionic lipid bilayer. These two modes work together and efficiently prevent membrane poration.

  9. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression

    DEFF Research Database (Denmark)

    Bergholdt, Regine; Brorsson, Caroline; Palleja, Albert;

    2012-01-01

    Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated...... with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize...... and substantiate these networks, we performed expressional profiling in human pancreatic islets exposed to proinflammatory cytokines. Three networks were significantly enriched for cytokine-regulated genes and, thus, likely to play an important role for type 1 diabetes in pancreatic islets. Eight of the regulated...

  10. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans

    DEFF Research Database (Denmark)

    Wolden-Kirk, Heidi; Rondas, D; Bugliani, M

    2014-01-01

    . The aim of this study was to clarify the molecular mechanisms by which 1,25(OH)2D3 contributes to β-cell protection against cytokine-induced β-cell dysfunction and death. Human and mouse islets were exposed to IL-1β and interferon-γ in the presence or absence of 1,25(OH)2D3. Effects on insulin secretion....../phenotype. In conclusion, these findings demonstrate a direct protective effect of 1,25(OH)2D3 against inflammation-induced β-cell dysfunction and death in human and murine islets, with, in particular, alterations in chemokine production by the islets. These effects may contribute to the beneficial effects of 1,25(OH)2D3......Protection against insulitis and diabetes by active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), in nonobese diabetic mice has until now mainly been attributed to its immunomodulatory effects, but also protective effects of this hormone on inflammation-induced β-cell death have been reported...

  11. Microwell scaffolds for the extrahepatic transplantation of islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Mijke Buitinga

    Full Text Available Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate-poly(butylene terephthalate (PEOT/PBT block copolymer (composition: 4000PEOT30PBT70 and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet's native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation.

  12. The heterogeneity of islet autoantibodies and the progression of islet failure in type 1 diabetic patients.

    Science.gov (United States)

    Liu, Jin; Bian, Lingling; Ji, Li; Chen, Yang; Chen, Heng; Gu, Yong; Ma, Bingqin; Gu, Wei; Xu, Xinyu; Shi, Yun; Wang, Jian; Zhu, Dalong; Sun, Zilin; Ma, Jianhua; Jin, Hui; Shi, Xing; Miao, Heng; Xin, Bing; Zhu, Yan; Zhang, Zhenwen; Bu, Ruifang; Xu, Lan; Shi, Guangde; Tang, Wei; Li, Wei; Zhou, Dongmei; Liang, Jun; Cheng, Xingbo; Shi, Bimin; Dong, Jixiang; Hu, Ji; Fang, Chen; Zhong, Shao; Yu, Weinan; Lu, Weiping; Wu, Chenguang; Qian, Li; Yu, Jiancheng; Gao, Jialin; Fei, Xiaoqiang; Zhang, Qingqing; Wang, Xueqin; Cui, Shiwei; Cheng, Jinluo; Xu, Ning; Wang, Guofeng; Han, Guoqing; Xu, Chunrong; Xie, Yun; An, Minmin; Zhang, Wei; Wang, Zhixiao; Cai, Yun; Fu, Qi; Fu, Yu; Zheng, Shuai; Yang, Fan; Hu, Qingfang; Dai, Hao; Jin, Yu; Zhang, Zheng; Xu, Kuanfeng; Li, Yifan; Shen, Jie; Zhou, Hongwen; He, Wei; Zheng, Xuqin; Han, Xiao; Yu, Liping; She, Jinxiong; Zhang, Mei; Yang, Tao

    2016-09-01

    Type 1 diabetes mellitus is heterogeneous in many facets. The patients suffered from type 1 diabetes present several levels of islet function as well as variable number and type of islet-specific autoantibodies. This study was to investigate prevalence and heterogeneity of the islet autoantibodies and clinical phenotypes of type 1 diabetes mellitus; and also discussed the process of islet failure and its risk factors in Chinese type 1 diabetic patients. A total of 1,291 type 1 diabetic patients were enrolled in this study. Demographic information was collected. Laboratory tests including mixed-meal tolerance test, human leukocyte antigen alleles, hemoglobinA1c, lipids, thyroid function and islet autoantibodies were conducted. The frequency of islet-specific autoantibody in newly diagnosed T1DM patients (duration shorter than half year) was 73% in East China. According to binary logistic regressions, autoantibody positivity, longer duration and lower Body Mass Index were the risk factors of islet failure. As the disease developed, autoantibodies against glutamic acid decarboxylase declined as well as the other two autoantibodies against zinc transporter 8 and islet antigen 2. The decrease of autoantibodies was positively correlated with aggressive beta cell destruction. Autoantibodies can facilitate the identification of classic T1DM from other subtypes and predict the progression of islet failure. As there were obvious heterogeneity in autoantibodies and clinical manifestation in different phenotypes of the disease, we should take more factors into consideration when identifying type 1 diabetes mellitus.

  13. Differential interleukin-1 receptor antagonism on pancreatic beta and alpha cells. Studies in rodent and human islets and in normal rats

    DEFF Research Database (Denmark)

    Zumsteg, U; Reimers, J I; Pociot, F;

    1993-01-01

    The monokines interleukin-1 alpha and -beta have been implicated as effector molecules in the immune-mediated pancreatic beta-cell destruction leading to insulin-dependent diabetes mellitus. Here we investigated the effects of interleukin-1 receptor antagonism on insulin and glucagon release of rat......, mouse and human islets exposed to recombinant human interleukin-1 beta, and on interleukin-1 beta induced changes in blood glucose, serum insulin and serum glucagon levels in Wistar Kyoto rats. The interleukin-1 receptor antagonist reduced the co-mitogenic effect of interleukin-1 beta on mouse and rat...

  14. Exploration of α1-antitrypsin treatment protocol for islet transplantation: dosing plan and route of administration.

    Science.gov (United States)

    Baranovski, Boris M; Ozeri, Eyal; Shahaf, Galit; Ochayon, David E; Schuster, Ronen; Bahar, Nofar; Kalay, Noa; Cal, Pablo; Mizrahi, Mark I; Nisim, Omer; Strauss, Pnina; Schenker, Eran; Lewis, Eli C

    2016-11-07

    Life-long weekly infusions of human α1-antitrypsin (hAAT) are currently administered as augmentation therapy for patients with genetic AAT deficiency (AATD). Several recent clinical trials attempt to extend hAAT therapy to conditions outside AATD, including type 1 diabetes. Since the endpoint for AATD is primarily the reduction of risk for pulmonary emphysema, the present study explores hAAT dose protocols and routes of administration in attempt to optimize hAAT therapy for islet-related injury. Islet-grafted mice were treated with hAAT (Glassia™; i.p. or s.c.) under an array of clinically relevant dosing plans. Serum hAAT and immunocyte cell membrane association were examined, as well as parameters of islet survival. Results indicate that dividing the commonly prescribed 60 mg/kg i.p. dose to three 20 mg/kg injections is superior in affording islet graft survival; in addition, a short dynamic descending dose protocol (240→120→60→60 mg/kg i.p.) is comparable in outcomes to indefinite 60 mg/kg injections. While hAAT pharmacokinetics after i.p. administration in mice resembles exogenous hAAT treatment in humans, s.c. administration better imitated the physiological progressive rise of hAAT during acute phase responses; nonetheless, only the 60 mg/kg dose depicted an advantage using the s.c. route. Taken together, this study provides a platform for extrapolating an islet-relevant clinical protocol from animal models that use hAAT to protect islets. In addition, the study places emphasis on outcome-oriented analyses of drug efficacy, particularly important when considering that hAAT is presently at an era of drug-repurposing towards an extended list of clinical indications outside genetic AATD.

  15. Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus.

    Science.gov (United States)

    Cheng, Biao; Liu, Xinran; Gong, Hao; Huang, Lianqi; Chen, Hong; Zhang, Xin; Li, Chuanzhou; Yang, Muyang; Ma, Bingjun; Jiao, Lihua; Zheng, Ling; Huang, Kun

    2011-12-28

    Global epidemic studies have suggested that coffee consumption is reversely correlated with the incidence of type 2 diabetes mellitus (T2DM), a metabolic disease. The misfolding of human islet amyloid polypeptide (hIAPP) is regarded as one of the causative factors of T2DM. Coffee extracts have three major active components: caffeine, caffeic acid (CA), and chlorogenic acid (CGA). In this study, the effects of these major coffee components, as well as dihydrocaffeic acid (DHCA) (a major metabolite of CGA and CA), on the amyloidogenicity of hIAPP were investigated by thioflavin-T based fluorescence emission, transmission electronic microscopy, circular dichroism, light-induced cross-linking, dynamic light scattering, and MTT-based cell viability assays. The results suggest that all components show varied inhibitory effects on the formation of toxic hIAPP amyloids, in which CA shows the highest potency in delaying the conformational transition of the hIAPP molecule with the most prolonged lag time, whereas caffeine shows the lowest potency. At a 5-fold excess molar ratio of compound to hIAPP, all coffee-derived compounds affect the secondary structures of incubated hIAPP as suggested by the circular dichroism spectra and CDPro deconvolution analysis. Further photoinduced cross-linking based oligomerization and dynamic light scattering studies suggested CA and CGA significantly suppressed the formation of hIAPP oligomers, whereas caffeine showed no significant effect on oligomerization. Cell protection effects were also observed for all three compounds, with the protection efficiency being greatest for CA and least for CGA. These findings suggest that the beneficial effects of coffee consumption on T2DM may be partly due to the ability of the major coffee components and metabolites to inhibit the toxic aggregation of hIAPP.

  16. New insights into side effect of solvents on the aggregation of human islet amyloid polypeptide 11-20.

    Science.gov (United States)

    Mao, Yexuan; Yu, Lanlan; Yang, Ran; Ma, Chuanguo; Qu, Ling-bo; Harrington, Peter de B

    2016-02-01

    The formation of highly ordered fibrils for the human islet amyloid polypeptide (hIAPP) is considered as one of the precipitating factors of type 2 diabetes mellitus. In this study, an emerging new approach microscale thermophoresis and conventional ThT fluorescence assay were utilized to investigate the aggregation behavior of hIAPP(11-20), giving a new insight of the solvent effect on the aggregation of hIAPP(11-20). hIAPP(11-20) displayed different aggregation behaviors in various buffers, revealing that hIAPP(11-20) not only self-aggregates but also binds to solvent components. hIAPP(11-20) had a higher binding affinity for Tris than other selected buffers because multiple hydrogen bonds form, resulting in weaker self-aggregation of hIAPP(11-20) at the early stage of aggregation and prolonging the fibril formation process. hIAPP(11-20) displayed similar self-aggregation in both HEPES and pure water. Negatively charged phosphate ions in the PBS solution 'neutralize' the charges carried by hIAPP(11-20) itself to some extent, causing rapid aggregation of hIAPP(11-20), and leading to a shorter fibrillation process of hIAPP(11-20). These results revealed that solvents contribute to the aggregation of hIAPP(11-20) and demonstrated the affect of solvents on the activity of biomolecules. Additionally, as a new technique, microscale thermophoresis offers a powerful and promising approach to study the early stages of aggregation of peptides or proteins.

  17. Adult Human Pancreatic Islet Beta-Cells Display Limited Turnover and Long Lifespan as Determined by In-Vivo Thymidine Analog Incorporation and Radiocarbon Dating

    Energy Technology Data Exchange (ETDEWEB)

    Perl, S; Kushner, J A; Buchholz, B A; Meeker, A K; Stein, G M; Hsieh, M; Kirby, M; Pechhold, S; Liu, E H; Harlan, D M; Tisdale, J F

    2010-03-15

    Diabetes mellitus results from an absolute or relative deficiency of insulin producing pancreatic beta-cells. The adult human beta-cell's turnover rate remains unknown. We employed novel techniques to examine adult human islet beta-cell turnover and longevity in vivo. Subjects enrolled in NIH clinical trials received thymidine analogues [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8-days to 4-years prior to death. Archival autopsy samples from ten patients (aged 17-74 years) were employed to assess beta-cell turnover by scoring nuclear analog labeling within insulin staining cells. Human adult beta-cell longevity was determined by estimating the cells genomic DNA integration of atmospheric carbon-14 ({sup 14}C). DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15 year old donor, and purified beta-cell DNA was obtained from two donors (age 48 and 80 years). {sup 14}C levels were then determined using accelerator mass spectrometry (AMS). Cellular 'birth date' was determined by comparing the subject's DNA {sup 14}C content relative to a well-established {sup 14}C atmospheric prevalence curve. In the two subjects less than age 20 years, 1-2% of the beta-cell nuclei co-stained for BrdU/IdU. No beta-cell nuclei co-stained in the eight patients more than 30 years old. Consistent with the BrdU/IdU turnover data, beta-cell DNA {sup 14}C content indicated the cells 'birth date' occurred within the subject's first 30 years of life. Under typical circumstances, adult human beta-cells and their cellular precursors are established by young adulthood.

  18. Pig islets xenotransplantation: recent progress and current perspectives

    Directory of Open Access Journals (Sweden)

    Haitao eZhu

    2014-03-01

    Full Text Available Islet xenotransplantation is a prospective treatment to bridge the gap between available human cells and needs of patients with diabetes. Pig is the ideal candidate to obtain such available islet cells. However, potential clinical application of pig islet transplantation still faces obstacles such as inadequate yield of high-quality functional islets and xenorejection of the transplants. Adequate amounts of available islets can be obtained based on selection of a suitable pathogen-free source herd and the development of isolation and purification methods. Several studies demonstrated feasibility of successful pre-clinical pig islet xenotransplantation and provided insights and possible mechanisms of xenogeneic immune recognition and rejection. Particularly promising is the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much more data on safety and efficacy to translate these findings into clinical practice

  19. Effects of mature Sertoli cells on allogeneic islets cocultured in vitro

    Institute of Scientific and Technical Information of China (English)

    Heli Xiang; Wujun Xue; Yan Teng; Xinshun Feng; Puxun Tian; Xiaoming Ding

    2006-01-01

    Objective: To set up a method for isolation and culture of mature Sertoli cells and to estimate their effects on allogeneic islets cocultured in vitro. Methods: Adult SD rat testicular Sertoli cells were prepared successfully by three-step enzyme digestion. Then they were cocultured respectively with allogeneic islets and activated Wistar rat splenocytes. 24-hour cumulative insulin release and glucose-stimulated insulin secretion test were performed to detect islet function between pure islets culture group and coculture group. Splenocyte proliferation activity was determined by MTT colorimetry assay to observe the inhibition effect of Sertoli cells in different densities. Result: Firstly, in pure islet culture group, the 24-hour cumulative insulin release was gradually decreased in 21-day culture time. Compared to day 3, this change was significant on day 7 (P < 0.05) and on day 10,14,21 (P < 0.01). In contrast, in coculture group, compared to day 3, the 24-hour cumulative insulin release was increased significantly on day 7 (P < 0.01 ), and then gradually decreased on day 10 and 14, but still higher than that of day 3. It was on day 21 that it began to decrease compared to day 3 (P < 0.05). During the culture time in vitro, the 24-hour cumulative insulin release of islet coculture group was significantly higher than that of pure islets culture group (P < 0.01). In the case of stimulation index(SI), there was a similar tendency as insulin release in the two groups. Secondly, mature Sertoli cells(1×106/mL)pretreated by 15 grays irradiation could decrease proliferation activity of activated splenocytes compared to that of control group (P < 0.01 ). This inhibition effect was dose-dependent. Conclusion: Mature Sertoli cells can improve the function and prolong the survival of islet cells cultured in vitro. They can also provide an immune protection to islet cells. The approach described above might be applicable to human islet transplantation as soon as

  20. Saffold Virus, a Human Cardiovirus, and Risk of Persistent Islet Autoantibodies in the Longitudinal Birth Cohort Study MIDIA.

    Directory of Open Access Journals (Sweden)

    German Tapia

    Full Text Available The aim of this study was to describe the frequency and distribution of Saffold virus in longitudinal stool samples from children, and test for association with development of persistent autoantibodies predictive of type 1 diabetes. A cohort of Norwegian children carrying the HLA genotype associated with highest risk of type 1 diabetes ("DR4-DQ8/DR3-DQ2" was followed with monthly stool samples from 3 to 35 months of age. Blood samples were tested for autoantibodies to insulin, glutamic acid decarboxylase65 and Islet Antigen-2. 2077 stool samples from 27 children with ≥ 2 repeatedly positive islet autoantibodies (cases, and 53 matched controls were analysed for Saffold virus genomic RNA by semi-quantitative real-time reverse transcriptase PCR. Saffold virus was found in 53 of 2077 (2.6% samples, with similar proportions between cases (2.5% and controls (2.6%. The probability of being infected by 3 years of age was 28% (95% CI 0.18-0.40. Viral quantities ranged from <1 to almost 105 copies/μl. Estimated odds ratio between islet autoimmunity and infection episodes prior to seroconversion was 1.98 (95% CI: 0.57-6.91, p = 0.29. Saffold virus had no statistically significant association with islet autoimmunity.

  1. Isolation, characterization, and chromosomal mapping of the human Nkx6.1 gene (NKX6A), a new pancreatic islet homeobox gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hiroshi; Permutt, M.A.; Veile, R. [Washington Univ. School of Medicine, St. Louis, MO (United States)] [and others

    1997-03-01

    Nkx6.1 (gene symbol NKX6A), a new member of the NK homeobox gene family, was recently identified in rodent pancreatic islet 13-cell lines. The pattern of expression suggested that this gene product might be important for control of islet development and/or regulation of insulin biosynthesis. We now report cloning of human NKX6A, characterization of its genomic structure, and its chromosomal localization. The predicted protein of human NKX6A contained 367 amino acids and had 97% identity to the hamster protein. The highly conserved NK decapeptide and homeodomain regions were identical between human and hamster, suggesting functional importance of these domains. The coding region spanned approximately 4.8 kb and was composed of three exons. The gene was localized to four CEPH {open_quotes}B{close_quotes} yeast artificial chromosome clones (914B4, 951G9, 981D6, and 847133), and a nearby polymorphic marker (D4S1538) on chromosome 4 was identified <1270 kb from the gene. Using fluorescence in situ hybridization, we also determined that NKX6A maps to 4q21.2-q22. 11 refs., 2 figs.

  2. The Choice of Enzyme for Human Pancreas Digestion Is a Critical Factor for Increasing the Success of Islet Isolation

    Science.gov (United States)

    Qi, Meirigeng; Valiente, Luis; McFadden, Brian; Omori, Keiko; Bilbao, Shiela; Juan, Jemily; Rawson, Jeffrey; Scott, Stephen; Ferreri, Kevin; Mullen, Yoko; El-Shahawy, Mohamed; Dafoe, Donald; Kandeel, Fouad; Al-Abdullah, Ismail H.

    2015-01-01

    Background We evaluated 3 commercially available enzymes for pancreatic digestion by comparing key parameters during the islet isolation process, as well as islet quality after isolation. Methods Retrospectively compared and analyzed islet isolations from pancreata using 3 different enzyme groups: liberase HI (n = 63), collagenase NB1/neutral protease (NP) (n = 43), and liberase mammalian tissue-free collagenase/thermolysin (MTF C/T) (n = 115). A standardized islet isolation and purification method was used. Islet quality assessment was carried out using islet count, viability, in vitro glucose-stimulated insulin secretion (GSIS), glucose-stimulated oxygen consumption rate, and in vivo transplantation model in mice. Results Donor characteristics were not significantly different among the 3 enzyme groups used in terms of age, sex, hospital stay duration, cause of death, body mass index, hemoglobin A1c, cold ischemia time, and pancreas weight. Digestion efficacy (percentage of digested tissue by weight) was significantly higher in the liberase MTF C/T group (73.5 ± 1.5 %) when compared to the liberase HI group (63.6 ± 2.3 %) (P < 0.001) and the collagenase NB1/NP group (61.7 ± 2.9%) (P < 0.001). The stimulation index for GSIS was significantly higher in the liberase MTF C/T group (5.3 ± 0.5) as compared to the liberase HI (2.9 ± 0.2) (P < 0.0001) and the collagenase NB1/NP (3.6 ± 2.9) (P = 0.012) groups. Furthermore, the liberase MTF C/T enzymes showed the highest success rate of transplantation in diabetic non-obese diabetic severe combined immunodeficiency mice (65%), which was significantly higher than the liberase HI (42%, P = 0.001) and the collagenase NB1/NP enzymes (41%, P < 0.001). Conclusions Liberase MTF C/T is superior to liberase HI and collagenase NB1/NP in terms of digestion efficacy and GSIS in vitro. Moreover, liberase MTF C/T had a significantly higher success rate of transplantation in diabetic NOD Scid mice compared to liberase HI and

  3. Saffold Virus, a Human Cardiovirus, and Risk of Persistent Islet Autoantibodies in the Longitudinal Birth Cohort Study MIDIA.

    Science.gov (United States)

    Tapia, German; Bøås, Håkon; de Muinck, Eric J; Cinek, Ondrej; Stene, Lars C; Torjesen, Peter A; Rasmussen, Trond; Rønningen, Kjersti S

    2015-01-01

    The aim of this study was to describe the frequency and distribution of Saffold virus in longitudinal stool samples from children, and test for association with development of persistent autoantibodies predictive of type 1 diabetes. A cohort of Norwegian children carrying the HLA genotype associated with highest risk of type 1 diabetes ("DR4-DQ8/DR3-DQ2") was followed with monthly stool samples from 3 to 35 months of age. Blood samples were tested for autoantibodies to insulin, glutamic acid decarboxylase65 and Islet Antigen-2. 2077 stool samples from 27 children with ≥ 2 repeatedly positive islet autoantibodies (cases), and 53 matched controls were analysed for Saffold virus genomic RNA by semi-quantitative real-time reverse transcriptase PCR. Saffold virus was found in 53 of 2077 (2.6%) samples, with similar proportions between cases (2.5%) and controls (2.6%). The probability of being infected by 3 years of age was 28% (95% CI 0.18-0.40). Viral quantities ranged from Saffold virus had no statistically significant association with islet autoimmunity.

  4. Optimal pig donor selection in islet xenotransplantation: current status and future perspectives.

    Science.gov (United States)

    Zhu, Hai-tao; Yu, Liang; Lyu, Yi; Wang, Bo

    2014-08-01

    Islet transplantation is an attractive treatment of type 1 diabetes mellitus. Xenotransplantation, using the pig as a donor, offers the possibility of an unlimited supply of islet grafts. Published studies demonstrated that pig islets could function in diabetic primates for a long time (>6 months). However, pig-islet xenotransplantation must overcome the selection of an optimal pig donor to obtain an adequate supply of islets with high-quality, to reduce xeno-antigenicity of islet and prolong xenograft survival, and to translate experimental findings into clinical application. This review discusses the suitable pig donor for islet xenotransplantation in terms of pig age, strain, structure/function of islet, and genetically modified pig.

  5. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell.

    Science.gov (United States)

    Niknamasl, Azadeh; Ostad, Seyed Nasser; Soleimani, Mansoureh; Azami, Mahmoud; Salmani, Maryam Kabir; Lotfibakhshaiesh, Nasrin; Ebrahimi-Barough, Somayeh; Karimi, Roya; Roozafzoon, Reza; Ai, Jafar

    2014-10-01

    Metabolic diabetes mellitus as the most serious and prevalent metabolic disease in the world has various complications. The most effective treatment of type I diabetes seems to be islet cell transplantation. Shortage of donors and difficult procedures and high rate of rejection have always restricted this approach. Tissue engineering is a novel effective solution to many medical problems such as diabetes. Endometrial mesenchymal stem cells as a lineage which have the potential to differentiate to mesodermal and endodermal tissues seem to be suitable for this purpose. Fibrin hydrogel with a high degree of biocompatibility and specific properties making it similar to normal pancreas seems to be an ideal scaffold. After successfully isolating stem cells (hEnSCs) from human endometrium, a three-step protocol was used to differentiate them into pancreatic beta cells. Fibrin was used as 3D scaffold. After 2 weeks, cells formed clusters like islets cells, and secretion of insulin was measured by chemiluminescence. PDX1, proinsulin, and c-peptide as special markers of β cells were detected by immunofluorescence. Expression of glucagon, PDX1, and insulin genes in mRNA level was detected by Real time PCR and gel electrophoresis. The former showed higher levels of gene expression in 3D cultures. SEM analysis showed good integrity between cells and scaffold. No toxicity was detected with fibrin scaffold by MTT assay.

  6. Tat-biliverdin reductase A protects INS-1 cells from human islet amyloid polypeptide-induced cytotoxicity by alleviating oxidative stress and ER stress.

    Science.gov (United States)

    Lee, Su Jin; Kang, Hyung Kyung; Eum, Won Sik; Park, Jinseu; Choi, Soo Young; Kwon, Hyeok Yil

    2017-02-15

    Human islet amyloid polypeptide (hIAPP), a major constituent of islet amyloid deposits, induces pancreatic β-cell apoptosis and eventually contributes to β-cell deficit in patients with type 2 diabetes mellitus (T2DM). In this study, Tat-mediated transduction of biliverdin reductase A (BLVRA) was investigated in INS-1 cells to examine whether exogenous supplementation of BLVRA prevented hIAPP-induced apoptosis and dysfunction in insulin secretion in β-cells. Tat-BLVRA fusion protein was efficiently delivered into INS-1 cells in a time- and dose-dependent manner. Exposure of cells to hIAPP induced apoptotic cell death, which was dose-dependently inhibited by pre-treatment with Tat-BLVRA for 1 h. Transduced Tat-BLVRA reduced hIAPP-evoked generation of reactive oxygen species, a crucial mediator of β-cell destruction. Immunoblot analysis showed that Tat-BLVRA suppressed hIAPP-induced increase in the levels of proteins involved in endoplasmic reticulum (ER) stress and apoptosis signaling. Transduced Tat-BLVRA also recovered hIAPP-induced dysfunction in basal and glucose-stimulated insulin secretions. These results suggested that transduced Tat-BLVRA enhanced the tolerance of β-cells against IAPP-induced cytotoxicity by alleviating oxidative stress and ER stress. Therefore, Tat-mediated transduction of BLVRA may provide a potential tool to ameliorate β-cell deficit in pancreas with T2DM.

  7. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C;

    1992-01-01

    Synthetic peptides representing unique sequences in rat proinsulin C-peptide I and II were used to generate highly specific antisera, which, when applied on sections of normal rat pancreas, confirm a homogeneous coexpression of the two C-peptides in all islet beta-cells. Insulin gene expression...... is induced in the transformed heterogeneous rat islet cell clone, NHI-6F, by transient in vivo passage. During this process a transfected human insulin gene is coactivated with the endogenous nonallelic rat insulin I and II genes. Newly established cultures from NHI-6F insulinomas having a high frequency...

  8. Differential interleukin-1 receptor antagonism on pancreatic beta and alpha cells. Studies in rodent and human islets and in normal rats

    DEFF Research Database (Denmark)

    Zumsteg, U; Reimers, J I; Pociot, F

    1993-01-01

    The monokines interleukin-1 alpha and -beta have been implicated as effector molecules in the immune-mediated pancreatic beta-cell destruction leading to insulin-dependent diabetes mellitus. Here we investigated the effects of interleukin-1 receptor antagonism on insulin and glucagon release of rat......, mouse and human islets exposed to recombinant human interleukin-1 beta, and on interleukin-1 beta induced changes in blood glucose, serum insulin and serum glucagon levels in Wistar Kyoto rats. The interleukin-1 receptor antagonist reduced the co-mitogenic effect of interleukin-1 beta on mouse and rat...... thymocytes with a 50% inhibitory concentration of 10- and 100-fold molar excess, respectively. Complete inhibition was obtained with a 100-1,000-fold molar excess. However, at a 100-fold molar excess the interleukin-1 receptor antagonist did not antagonise the potentiating effect of interleukin-1 beta on rat...

  9. Anemia and survival in human immunodeficiency virus

    DEFF Research Database (Denmark)

    Lundgren, Jens Dilling; Mocroft, Amanda

    2003-01-01

    The prospective, multicenter cohort study EuroSIDA has previously reported on predictors and outcomes of anemia in patients infected with human immunodeficiency virus. In a Cox proportional-hazards model with serial measures of CD4+ cell count, plasma viral load, and degrees of anemia fitted...... marker and whether correction of anemia itself results in a better prognosis remain to be determined....

  10. Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations

    Science.gov (United States)

    Mee, Lisa; Nabokina, Svetlana M.; Sekar, V. Thillai; Subramanian, Veedamali S.; Maedler, Kathrin; Said, Hamid M.

    2009-01-01

    Thiamin is essential for the normal function of the endocrine pancreas, but very little is known about uptake mechanism(s) and regulation by beta cells. We addressed these issues using mouse-derived pancreatic beta-TC-6 cells, and freshly isolated primary mouse and human pancreatic islets. Results showed that thiamin uptake by beta-TC-6 cells involves a pH (but not Na+)-dependent carrier-mediated process that is saturable at both the nanomolar (apparent Km = 37.17 ± 9.9 nM) and micromolar (apparent Km = 3.26 ± 0.86 μM) ranges, cis-inhibited by thiamin structural analogs, and trans-stimulated by unlabeled thiamin. Involvement of carrier-mediated process was also confirmed in primary mouse and human pancreatic islets. Both THTR-1 and THTR-2 were found to be expressed in these mouse and human pancreatic preparations. Maintaining beta-TC-6 cells in the presence of a high level of thiamin led to a significant (P < 0.01) decrease in thiamin uptake, which was associated with a significant downregulation in level of expression of THTR-1 and THTR-2 at the protein and mRNA levels and a decrease in transcriptional (promoter) activity. Modulators of intracellular Ca2+/calmodulin- and protein-tyrosine kinase-mediated pathways also altered thiamin uptake. Finally, confocal imaging of live beta-TC-6 cells showed that clinical mutants of THTR-1 have mixed expression phenotypes and all led to impairment in thiamin uptake. These studies demonstrate for the first time that thiamin uptake by the endocrine pancreas is carrier mediated and is adaptively regulated by the prevailing vitamin level via transcriptional mechanisms. Furthermore, clinical mutants of THTR-1 impair thiamin uptake via different mechanisms. PMID:19423748

  11. Anemia and survival in human immunodeficiency virus

    DEFF Research Database (Denmark)

    Lundgren, Jens Dilling; Mocroft, Amanda

    2003-01-01

    The prospective, multicenter cohort study EuroSIDA has previously reported on predictors and outcomes of anemia in patients infected with human immunodeficiency virus. In a Cox proportional-hazards model with serial measures of CD4+ cell count, plasma viral load, and degrees of anemia fitted...... as time-dependent variables, the relative hazard of death increased markedly for patients with anemia versus no anemia. A clinical scoring system was developed and validated for patients receiving highly active antiretroviral therapy using the most recent laboratory measures. Mild and severe anemia were...... independently (Panemia. The mechanisms underlying why hemoglobin is such a strong prognostic...

  12. Anemia and survival in human immunodeficiency virus

    DEFF Research Database (Denmark)

    Lundgren, Jens Dilling; Mocroft, Amanda

    2003-01-01

    The prospective, multicenter cohort study EuroSIDA has previously reported on predictors and outcomes of anemia in patients infected with human immunodeficiency virus. In a Cox proportional-hazards model with serial measures of CD4+ cell count, plasma viral load, and degrees of anemia fitted...... as time-dependent variables, the relative hazard of death increased markedly for patients with anemia versus no anemia. A clinical scoring system was developed and validated for patients receiving highly active antiretroviral therapy using the most recent laboratory measures. Mild and severe anemia were...... independently (Panemia. The mechanisms underlying why hemoglobin is such a strong prognostic...

  13. Human survival: evolution, religion and the irrational

    Directory of Open Access Journals (Sweden)

    Milton H. Saier, jr

    2010-06-01

    Full Text Available Is there a possible biological explanation for religion? That is, is there a genetic basis for believing in mystical, supernatural beings when there is no scientifi c evidence for their existence? Can we explain why some people prefer to accept myth over science? Why do so many people still accept creation and refuse to embrace evolution? Is there an evolutionary basis for religious beliefs? It is certainly true that religions have been part of human civilization throughout most of its recent history, at least for the last 5,000 years, and probably for much longer. Even great nonmystical philosophers such as Confucius, Buddha, and Lao Tzu have had their teachings evolve into mystical religions with spiritual ancestors, gods and reincarnation. On the other hand, religion is largely absent in modern Chinese culture, and of diminishing importance in Japanese and European cultures. In all cultures, the degrees of education gained by individuals correlate inversely with attachments to mystical deities. Atheists abound although they may be reluctant to come out of the closet and affi rm their rational convictions. In this article, we seek explanations for human irrationality.

  14. Automated digital image analysis of islet cell mass using Nikon's inverted eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

    Science.gov (United States)

    Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie

    2015-01-01

    Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p < 0.001). Comparisons of individual methods showed good correlations between mean values of IEQ number (r(2) = 0.91) and total islet number (r(2) = 0.88) and thus increased to r(2) = 0.93 when islet surface area was estimated comparatively with IEQ number. The ADIA method showed very high intraobserver reproducibility compared to the standard manual method (p < 0.001). However, islet purity was routinely estimated as significantly higher with the manual method versus the ADIA method (p < 0.001). The ADIA method also detected small islets between 10 and 50 µm in size. Automated digital image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this

  15. Towards engineering a novel transplantation site for pancreatic islets

    NARCIS (Netherlands)

    Smink, Alexandra Maria

    2016-01-01

    Intraportal pancreatic islet transplantation is a promising therapy for type 1 diabetes, but the liver is not an optimal site as it is associated with massive cell-death in the graft. Several alternative sites were investigated, but the human body does not contain an adequate islet transplantation s

  16. Transcriptional profiling of type 1 diabetes genes on chromosome 21 in a rat beta-cell line and human pancreatic islets

    DEFF Research Database (Denmark)

    Bergholdt, R.; Karlsen, A.E.; Hagedorn, Peter;

    2007-01-01

    We recently finemapped a type 1 diabetes (T1D)-linked region on chromosome 21, indicating that one or more T1D-linked genes exist in this region with 33 annotated genes. In the current study, we have taken a novel approach using transcriptional profiling in predicting and prioritizing the most...... likely candidate genes influencing beta-cell function in this region. Two array-based approaches were used, a rat insulinoma cell line (INS-1alphabeta) overexpressing pancreatic duodenum homeobox 1 (pdx-1) and treated with interleukin 1beta (IL-1beta) as well as human pancreatic islets stimulated...... with a mixture of cytokines. Several candidate genes with likely functional significance in T1D were identified. Genes showing differential expression in the two approaches were highly similar, supporting the role of these specific gene products in cytokine-induced beta-cell damage. These were genes involved...

  17. PDZ-domain containing-2 (PDZD2) drives the maturity of human fetal pancreatic progenitor-derived islet-like cell clusters with functional responsiveness against membrane depolarization.

    Science.gov (United States)

    Leung, Kwan Keung; Suen, Po Man; Lau, Tse Kin; Ko, Wing Hung; Yao, Kwok Ming; Leung, Po Sing

    2009-09-01

    We recently reported the isolation and characterization of a population of pancreatic progenitor cells (PPCs) from early trimester human fetal pancreata. The PPCs, being the forerunners of adult pancreatic cell lineages, were amenable to growth and differentiation into insulin-secreting islet-like cell clusters (ICCs) upon stimulation by adequate morphogens. Of note, a novel morphogenic factor, PDZ-domain containing-2 (PDZD2) and its secreted form (sPDZD2) were ubiquitously expressed in the PPCs. Our goals for this study were to evaluate the potential role of sPDZD2 in stimulating PPC differentiation and to establish the optimal concentration for such stimulation. We found that 10(-9)M sPDZD2 promoted PPC differentiation, as evidenced by the upregulation of the pancreatic endocrine markers (PDX-1, NGN3, NEURO-D, ISL-1, NKX 2.2, NKX 6.1) and INSULIN mRNA. Inhibited endogenous production of sPDZD2 suppressed expression of these factors. Secreted PDZD2 treatment significantly elevated the C-peptide content of the ICCs and increased the basal rate of insulin secretion. However, they remained unresponsive to glucose stimulation, reflected by a minimal increase in GLUT-2 and GLUCOKINASE mRNA expression. Interestingly, sPDZD2 treatment induced increased expression of the L-type voltage-gated calcium channel (Ca(v)1.2) in the ICCs, triggering calcium ion influx under KCl stimulation and conferring an ability to secrete insulin in response to KCl. Pancreatic progenitor cells from 10- and 13-week fetal pancreata showed peak expression of endogenous sPDZD2, implying that sPDZD2 has a specific role in islet development during the first trimester. In conclusion, our data suggest that sPDZD2 promotes functional maturation of human fetal PPC-derived ICCs, thus enhancing its transplanting potentials.

  18. The morphology of islets within the porcine donor pancreas determines the isolation result: successful isolation of pancreatic islets can now be achieved from young market pigs.

    Science.gov (United States)

    Krickhahn, Mareike; Bühler, Christoph; Meyer, Thomas; Thiede, Arnulf; Ulrichs, Karin

    2002-01-01

    Clinical islet allotransplantation has become an increasingly efficient "routine" therapy in recent years. Shortage of human donor organs leads to porcine pancreatic islets as a potential source for islet xenotransplantation. Yet it is still very difficult to isolate sufficient numbers of intact porcine islets, particularly from young market pigs. In the following study islets were successfully isolated from retired breeders [4806 +/- 720 islet equivalents per gram organ (IEQ/g); n = 25; 2-3 years old; RB] and also from young hybrid pigs [2868 +/- 260 IEQ/g; n = 65; 4-6 months old; HY] using LiberasePI and a modified version of Ricordi's digestion-filtration technique. As expected, isolations from RB showed significantly better results (p organs from RB (80%) contained mainly large islets (diameter > 200 microm), in contrast to only 35% of all pancreases from HY. Remarkably, the islet size in situ, regardless whether detected in RB or HY, strongly determined the isolation result. A donor organ with predominantly large islets resulted in significantly higher numbers of IEQs compared with a donor organ with predominantly small islets [RB(Large Islets): 5680 +/- 3,318 IEQ/g (n= 20); RB(Small Islets): 1353 +/- 427 IEQ/g (n = 5); p organ prior to the isolation process. Under these conditions highly successful isolations can reliably be performed even from young market pigs.

  19. Exocrine contamination impairs implantation of pancreatic islets transplanted beneath the kidney capsule.

    Science.gov (United States)

    Gray, D W; Sutton, R; McShane, P; Peters, M; Morris, P J

    1988-11-01

    The effect of exocrine contamination on islets implanted under the kidney capsule has been studied by histological examination of pure or exocrine-contamination human, monkey, or rat islets transplanted to the kidney capsule of the nude rat, monkey, or rat, respectively. Exocrine contamination resulted in an appearance suggestive of impaired islet implantation, due to tissue necrosis and subsequent fibrosis. The effect of exocrine contamination was examined quantitatively in a rat islet isograft model in which handpicked DA rat islets were transplanted under the kidney capsule of normal DA rats. The islets were either pure or deliberately recontaminated with exocrine tissue (50 or 90% contamination). Four hundred pure islets were placed under one kidney capsule and 400 islets (of similar size and from the same islet preparation) were contaminated and then placed under the contralateral kidney capsule. After 2 weeks the kidneys were removed and extracted for insulin content. The insulin content of kidneys bearing islets contaminated by either 50 or 90% exocrine tissue was significantly reduced when compared to the contralateral kidney bearing pure islets. These findings support the view that exocrine contamination of islets resulted in impaired islet implantation when transplanted to a confined site such as the kidney subcapsule.

  20. Common raven juvenile survival in a human-augmented landscape

    Science.gov (United States)

    Webb, William C.; Boarman, William I.; Rotenberry, John T.

    2004-01-01

    Anthropogenic resource subsidies have contributed to the dramatic increase in the abundance of Common Ravens (Corvus corax) in the western Mojave Desert, California, during the past 30 years. To better understand the effects of these subsidies on raven demography, we examined whether survival to juvenile departure from the natal territory could be predicted by a set of environmental and morphological variables, such as nest proximity to anthropogenic resources and juvenile condition. We captured 240 juvenile ravens over 2 years and marked them prior to fledging. Nest proximity to anthropogenic resources and earlier fledging dates significantly predicted raven juvenile survival to departure from the natal territory. The best-fitting mark-recapture models predicted postdeparture survival as a function of time since fledging, nest proximity to anthropogenic resources, and year hatched. The positive effect of nest proximity to anthropogenic resources influenced postdeparture survival for at least 9 months after fledging, as revealed by the mark-recapture analysis. Annual survival was 47% for first-year, 81% for second-year, and 83% for third-year birds. Our results support the hypothesis that anthropogenic resources contribute to increasing raven numbers via increased juvenile survival to departure as well as increased postdeparture survival. We expect raven numbers to grow in concert with the growing human presence in the Mojave Desert unless raven access to anthropogenic resources is diminished.

  1. Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Shikotra Aarti

    2010-04-01

    Full Text Available Abstract Background We have previously demonstrated that tumour islet infiltration by macrophages is associated with extended survival (ES in NSCLC. We therefore hypothesised that patients with improved survival would have high tumour islet expression of chemokine receptors known to be associated with favourable prognosis in cancer. This study investigated chemokine receptor expression in the tumour islets and stroma in NSCLC. Methods We used immunohistochemistry to identify cells expressing CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CCR1 in the tumour islets and stroma in 20 patients with surgically resected NSCLC. Correlations were made with macrophage and mast cell expression. Results There was increased expression of CXCR2, CXCR3, and CCR1 in the tumour islets of ES compared with poor survival (PS patients (p = 0.007, 0.01, and 0.002, respectively. There was an association between 5 year survival and tumour islet CXCR2, CXCR3 and CCR1 density (p = 0.02, 0.003 and s = 0.520, p = 0.02 and between mast cell density and CXCR3 expression (rs = 0.499, p = 0.03 in the tumour islets. Conclusion Above median expression of CXCR2, CXCR3 and CCR1 in the tumour islets is associated with increased survival in NSCLC, and expression of CXCR3 correlates with increased macrophage and mast cell infiltration in the tumour islets.

  2. Immune tolerance in pancreatic islet xenotransplantation

    Institute of Scientific and Technical Information of China (English)

    Tian-Hua Tang; Chun-Lin Li; Xin Li; Feng-Qin Jiang; Yu-Kun Zhang; Hai-Quan Ren; Shan-Shan Su; Guo-Sheng Jiang

    2004-01-01

    AIM: To observe the effect of tail vein injection with donor hepatocytes and/or splenocytes on the islet xenotransplantation rejection.METHODS: New-bom male pigs and BALB/C mice were selected as donors and recipients respectively. Islet xenotransplantation was performed in recipients just after the third time of tail vein injection with donor hepatocytes and/or splenocytes.Macrophage phagocytosis, NK(natural killing cell) killing activity, T lymphocyte transforming function of spleen cells,antibody forming function of B lymphocytes, and T lymphocyte subsets were taken to monitor transplantation rejection. The effects of this kind of transplantation were indicated as variation of blood glucose and survival days of recipients.RESULTS: The results showed that streptozotocin (STZ) could induce diabetes mellitus models of mice. The preinjection of donor hepatocytes, splenocytes or their mixture by tail vein injection was effective in preventing donor islet transplantation from rejection, which was demonstrated by the above-mentioned immunological marks. Each group of transplantation could decrease blood glucose in recipients and increase survival days. Pre-injection of mixture of donor hepatocytes and splenocytes was more effective in preventing rejection as compared with that of donor hepatocyte or splenocyte pre-injection respectively.CONCLUSION: Pre-injection of donor hepatocytes, splenocytes or their mixture before donor islet transplantation is a good way in preventing rejection.

  3. Management of nonfunctioning islet cell tumors

    Institute of Scientific and Technical Information of China (English)

    Han Liang; Pu Wang; Xiao-Na Wang; Jia-Cang Wang; Xi-Shan Hao

    2004-01-01

    AIM: To more clearly define the clinical and pathological characteristics and appropriate diagnosis and treatment of nonfunctioning (NFICTs) islet cell tumors, and to review our institutional experience over the last 30 years.METHODS: The records of 43 patients confirmed to have nonfunctioning islet cell tumors of pancreas were retrospectively reviewed. Survival was estimated by the Kaplan-Meier methods and potential risk factors for survival were compared with the log-rank tests.RESULTS: The mean age was 31.63 years (range, 8 to 67 years). There were 7 men and 36 women. Twentyeight patients had a confirmed diagnosis of nonfunctioning islet cell carcinoma (NFICC) and benign islet cell tumors were found in 15 patients. The most common symptoms in patients with NFICTs were abdominal pain (55.8%),nausea and/or vomiting (32.6%), fatigue (25.6%) and abdominal mass (23.3%). Preoperative ultrasonic and computed tomography localized the tumors in all patients.Forty-three NFICTs were distributed throughout the pancreas, with 21 located to the right of the superior mesenteric vessels, 10 in the body of the pancreas, 6 in the tail of the pancreas, and multiple tumors were found in one patient. Thirty-nine of 43 patients (91%) underwent surgical resection. Surgical treatment was curative in 30patients (70%) and palliative in 9(21%). The resectability and curative resection rate in patients with NFICC of pancreas were 89% and 61%, respectively. The overall cumulative 5- and 10-year survival rates for patients with NFICC were 58.05% and 29.03%, respectively. Radical operation and diameter of cancer small than :10 cm were positive prognostic factors in females younger than 30years old. Multivariate Cox regression analysis indicated that radical operation was the only independent prognostic factor, P=0.007.CONCLUSION: Nonfunctioning islet cell tumors of pancreas are found mainly in young women. The long-term results for patients undergone surgery, especially curative resection are

  4. The Mass Media of Entertainment and Human Survival.

    Science.gov (United States)

    Gorney, Roderic; Steele, Gary

    Urgently needed for human survival is a means of influencing large numbers of people to put into rapid action measures which could neutralize such menances as pollution, overpopulation, and violence. Though the cumulative effect of the mass media is not fully established, media entertainment may be the most influential institution in our society.…

  5. The Mass Media of Entertainment and Human Survival.

    Science.gov (United States)

    Gorney, Roderic; Steele, Gary

    Urgently needed for human survival is a means of influencing large numbers of people to put into rapid action measures which could neutralize such menances as pollution, overpopulation, and violence. Though the cumulative effect of the mass media is not fully established, media entertainment may be the most influential institution in our society.…

  6. Ultrastructural studies of time-course and cellular specificity of interleukin-1 mediated islet cytotoxicity

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Egeberg, J; Nerup, J

    1987-01-01

    Previous electron-microscopic studies of isolated islets of Langerhans exposed to the monokine interleukin-1 for 7 days have indicated that interleukin-1 is cytotoxic to all islet cells. To study the time-course and possible cellular specificity of interleukin-1 cytotoxicity to islets exposed...... to interleukin-1 for short time periods, isolated rat or human islets were incubated with or without 25 U/ml highly purified human interleukin-1 for 24 h. Samples of rat islets were taken after 5 min, 30 min, 1, 2, 4, 6, 8, 10, 12, 16, 20 and 24 h and samples of human islets after 5 min, 30 min and 24 h...... of incubation and examined by electron microscopy in a blinded fashion. Already after 30 min, accumulation of opaque intracytoplasmic bodies without apparent surrounding membranes, and autophagic vacuoles were seen in about 20% of the beta cells examined in rat islets exposed to interleukin-1. After 16 h...

  7. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria.

    Science.gov (United States)

    Pound, Lynley D; Patrick, Christopher; Eberhard, Chandra E; Mottawea, Walid; Wang, Gen-Sheng; Abujamel, Turki; Vandenbeek, Roxanne; Stintzi, Alain; Scott, Fraser W

    2015-12-01

    Cathelicidin antimicrobial peptide (CAMP) is a naturally occurring secreted peptide that is expressed in several organs with pleiotropic roles in immunomodulation, wound healing, and cell growth. We previously demonstrated that gut Camp expression is upregulated when type 1 diabetes-prone rats are protected from diabetes development. Unexpectedly, we have also identified novel CAMP expression in the pancreatic β-cells of rats, mice, and humans. CAMP was present even in sterile rat embryo islets, germ-free adult rat islets, and neogenic tubular complexes. Camp gene expression was downregulated in young BBdp rat islets before the onset of insulitis compared with control BBc rats. CAMP treatment of dispersed islets resulted in a significant increase in intracellular calcium mobilization, an effect that was both delayed and blunted in the absence of extracellular calcium. Additionally, CAMP treatment promoted insulin and glucagon secretion from isolated rat islets. Thus, CAMP is a promoter of islet paracrine signaling that enhances islet function and glucoregulation. Finally, daily treatment with the CAMP/LL-37 peptide in vivo in BBdp rats resulted in enhanced β-cell neogenesis and upregulation of potentially beneficial gut microbes. In particular, CAMP/LL-37 treatment shifted the abundance of specific bacterial populations, mitigating the gut dysbiosis observed in the BBdp rat. Taken together, these findings indicate a novel functional role for CAMP/LL-37 in islet biology and modification of gut microbiota. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation.

    Directory of Open Access Journals (Sweden)

    Volkert A L Huurman

    -tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular islet autoreactivity may be required. Monitoring cellular immune reactivity can be useful to identify factors influencing graft survival and to assess efficacy of immunosuppression. TRIAL REGISTRATION: Clinicaltrials.gov NCT00623610.

  9. Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells.

    Science.gov (United States)

    Borg, Danielle J; Welzel, Petra B; Grimmer, Milauscha; Friedrichs, Jens; Weigelt, Marc; Wilhelm, Carmen; Prewitz, Marina; Stißel, Aline; Hommel, Angela; Kurth, Thomas; Freudenberg, Uwe; Bonifacio, Ezio; Werner, Carsten

    2016-10-15

    Intrahepatic transplantation of allogeneic pancreatic islets offers a promising therapy for type 1 diabetes. However, long-term insulin independency is often not achieved due to severe islet loss shortly after transplantation. To improve islet survival and function, extrahepatic biomaterial-assisted transplantation of pancreatic islets to alternative sites has been suggested. Herein, we present macroporous, star-shaped poly(ethylene glycol) (starPEG)-heparin cryogel scaffolds, covalently modified with adhesion peptides, for the housing of pancreatic islets in three-dimensional (3D) co-culture with adherent mesenchymal stromal cells (MSC) as accessory cells. The implantable biohybrid scaffolds provide efficient transport properties, mechanical protection, and a supportive extracellular environment as a desirable niche for the islets. MSC colonized the cryogel scaffolds and produced extracellular matrix proteins that are important components of the natural islet microenvironment known to facilitate matrix-cell interactions and to prevent cellular stress. Islets survived the seeding procedure into the cryogel scaffolds and secreted insulin after glucose stimulation in vitro. In a rodent model, intact islets and MSC could be visualized within the scaffolds seven days after subcutaneous transplantation. Overall, this demonstrates the potential of customized macroporous starPEG-heparin cryogel scaffolds in combination with MSC to serve as a multifunctional islet supportive carrier for transplantation applications. Diabetes results in the insufficient production of insulin by the pancreatic β-cells in the islets of Langerhans. Transplantation of pancreatic islets offers valuable options for treating the disease; however, many transplanted islets often do not survive the transplantation or die shortly thereafter. Co-transplanted, supporting cells and biomaterials can be instrumental for improving islet survival, function and protection from the immune system. In the

  10. Pancreas procurement from multiorgan donors for islet trasplantation.

    Science.gov (United States)

    Ricordi, C; Mazzeferro, V; Casavilla, A; Scotti, C; Pinna, A; Tzakis, A; Starzl, T E

    1992-01-01

    The outcome of human islet isolation procedures can be significantly effected by the technique used for pancreas procurement. In fact, the final step of islet purification using discontinuous density gradients requires a significant difference between the density of the islets and the density of the non-endocrine component of the gland. Therefore, any procedure during multi-organ procurement that will result in edema or degranulation of the acinar tissue will result in failure of the islet purification step. In this report a technique for combined harvesting of liver and pancreas is presented. The use of this procedure can be of assistance to avoid damage to the pancreas that could result in a compromised islet purification for improper handling of the gland even before it arrives to the isolation facility.

  11. Islet transplantation and antioxidant management A comprehensive review

    Institute of Scientific and Technical Information of China (English)

    Seyed Sajad Mohseni Salehi Monfared; Bagher Larijani; Mohammad Abdollahi

    2009-01-01

    Islet transplantation as a promising treatment for type 1 diabetes has received widespread attention.Oxidative stress plays an essential role in cell injury during islet isolation and transplantation procedures.Antioxidants have been used in various studies to improve islet transplantation procedures. The present study reviews the role of oxidative stress and the benefits of antioxidants in islet transplantation procedures. The bibliographical databases Pubmed and Scopus were searched up to November 2008.All relevant human and animal in-vivo and in-vitro studies, which investigated antioxidants on islets,were included. Almost all the tested antioxidants used in the in-vitro studies enhanced islet viability and insulin secretion. Better control of blood glucose after transplantation was the major outcome of antioxidant therapy in all in-vivo studies. The data also indicated that antioxidants improved islet transplantation procedures. Although there is still insufficient evidence to draw definitive conclusions about the efficacy of individual supplements, the benefits of antioxidants in islet isolation procedures cannot be ignored.

  12. Mild exposure of RIN-5F β-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: An hormetic stimulus

    Directory of Open Access Journals (Sweden)

    Elisabetta Borchi

    2014-01-01

    Full Text Available The presence of amyloid aggregates of human islet amyloid polypeptide (hIAPP, a hallmark of type 2 diabetes, contributes to pancreatic β-cell impairment, where oxidative stress plays a key role. A contribution of NADPH oxidase to reactive oxygen species (ROS generation after cell exposure to micromolar concentrations of hIAPP aggregates has been suggested. However, little is known about β-cells exposure to lower amounts of hIAPP aggregates, similar to those found in human pancreas. Thus, we aimed to investigate the events resulting from RIN-5F cells exposure to nanomolar concentrations of toxic hIAPP aggregates. We found an early and transient rise of NADPH oxidase activity resulting from increased Nox1 expression following the engagement of receptor for advanced glycation end-products (RAGE by hIAPP aggregates. Unexpectedly, NADPH oxidase activation was not accompanied by a significant ROS increase and the lipoperoxidation level was significantly reduced. Indeed, cell exposure to hIAPP aggregates affected the antioxidant defences, inducing a significant increase of the expression and activity of catalase and glutathione peroxidase. We conclude that exposure of pancreatic β-cells to nanomolar concentrations of hIAPP aggregates for a short time induces an hormetic response via the RAGE-Nox1 axis; the latter stimulates the enzymatic antioxidant defences that preserve the cells against oxidative stress damage.

  13. [Survival of the fattest: the key to human brain evolution].

    Science.gov (United States)

    Cunnane, Stephen C

    2006-01-01

    The circumstances of human brain evolution are of central importance to accounting for human origins, yet are still poorly understood. Human evolution is usually portrayed as having occurred in a hot, dry climate in East Africa where the earliest human ancestors became bipedal and evolved tool-making skills and language while struggling to survive in a wooded or savannah environment. At least three points need to be recognised when constructing concepts of human brain evolution : (1) The human brain cannot develop normally without a reliable supply of several nutrients, notably docosahexaenoic acid, iodine and iron. (2) At term, the human fetus has about 13 % of body weight as fat, a key form of energy insurance supporting brain development that is not found in other primates. (3) The genome of humans and chimpanzees is human brain become so much larger, and how was its present-day nutritional vulnerability circumvented during 5-6 million years of hominid evolution ? The abundant presence of fish bones and shellfish remains in many African hominid fossil sites dating to 2 million years ago implies human ancestors commonly inhabited the shores, but this point is usually overlooked in conceptualizing how the human brain evolved. Shellfish, fish and shore-based animals and plants are the richest dietary sources of the key nutrients needed by the brain. Whether on the shores of lakes, marshes, rivers or the sea, the consumption of most shore-based foods requires no specialized skills or tools. The presence of key brain nutrients and a rich energy supply in shore-based foods would have provided the essential metabolic and nutritional support needed to gradually expand the hominid brain. Abundant availability of these foods also provided the time needed to develop and refine proto-human attributes that subsequently formed the basis of language, culture, tool making and hunting. The presence of body fat in human babies appears to be the product of a long period of

  14. Intraportal islet transplantation: the impact of the liver microenvironment.

    Science.gov (United States)

    Delaune, Vaihere; Berney, Thierry; Lacotte, Stéphanie; Toso, Christian

    2017-03-01

    The portal vein remains the preferred site for pancreatic islet transplantation due to its easy access and low morbidity. However, despite great progress in isolation and transplantation protocols over the past few years, it is still associated with the early loss of some 50-70% of transplanted islets. The complex liver microenvironment itself presumably plays an important role in this loss. The present review focuses on the specifics of the liver microenvironment, notably the localized hepatic ischemia/reperfusion injury following transplantation, the low oxygenation of the portal vein, the instant blood-mediated inflammatory reaction, the endogenous liver immune system, and the gut-liver axis, and how they can each have an impact on the transplanted islets. It identifies the potential, or already applied, clinical interventions for improving intraportal islet survival, and pinpoints those promising areas still lacking preclinical research. Future interventions on clinical intraportal islet transplantation need to take into account the global context of the liver microenvironment, with multi-point interventions being most likely to improve early islet survival and engraftment. © 2017 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT.

  15. Islet cell xenotransplantation: a serious look toward the clinic.

    Science.gov (United States)

    Samy, Kannan P; Martin, Benjamin M; Turgeon, Nicole A; Kirk, Allan D

    2014-01-01

    Type I diabetes remains a significant clinical problem in need of a reliable, generally applicable solution. Both whole organ pancreas and islet allotransplantation have been shown to grant patients insulin independence, but organ availability has restricted these procedures to an exceptionally small subset of the diabetic population. Porcine islet xenotransplantation has been pursued as a potential means of overcoming the limits of allotransplantation, and several preclinical studies have achieved near-physiologic function and year-long survival in clinically relevant pig-to-primate model systems. These proof-of-concept studies have suggested that xenogeneic islets may be poised for use in clinical trials. In this review, we examine recent progress in islet xenotransplantation, with a critical eye toward the gaps between the current state of the art and the state required for appropriate clinical investigation.

  16. Remodelling sympathetic innervation in rat pancreatic islets ontogeny

    Directory of Open Access Journals (Sweden)

    Hiriart Marcia

    2009-06-01

    Full Text Available Abstract Background Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas. We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19, early postnatal (P1, weaning period (P20 and adults. We temporarily correlated these events to NGF secretion by islet cells. Results Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF–immunoreactive only at early stages (foetal and P0. Conclusion The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life.

  17. Mitochondria in the Center of Human Eosinophil Apoptosis and Survival

    Directory of Open Access Journals (Sweden)

    Pinja Ilmarinen

    2014-03-01

    Full Text Available Eosinophils are abundantly present in most phenotypes of asthma and they contribute to the maintenance and exacerbations of the disease. Regulators of eosinophil longevity play critical roles in determining whether eosinophils accumulate into the airways of asthmatics. Several cytokines enhance eosinophil survival promoting eosinophilic airway inflammation while for example glucocorticoids, the most important anti-inflammatory drugs used to treat asthma, promote the intrinsic pathway of eosinophil apoptosis and by this mechanism contribute to the resolution of eosinophilic airway inflammation. Mitochondria seem to play central roles in both intrinsic mitochondrion-centered and extrinsic receptor-mediated pathways of apoptosis in eosinophils. Mitochondria may also be important for survival signalling. In addition to glucocorticoids, another important agent that regulates human eosinophil longevity via mitochondrial route is nitric oxide, which is present in increased amounts in the airways of asthmatics. Nitric oxide seems to be able to trigger both survival and apoptosis in eosinophils. This review discusses the current evidence of the mechanisms of induced eosinophil apoptosis and survival focusing on the role of mitochondria and clinically relevant stimulants, such as glucocorticoids and nitric oxide.

  18. Distribution and survival of Borrelia miyamotoi in human blood components.

    Science.gov (United States)

    Thorp, Aaron M; Tonnetti, Laura

    2016-03-01

    Borrelia miyamotoi, the agent of relapsing fever, is a tick-borne spirochete first isolated in Japan in 1994. Since then, the spirochete has been detected in ticks globally, generally in the same vectors as the Lyme disease agent. Human infection has been reported in Russia, Europe, Japan, and the United States, as influenza-like febrile illness. In addition, two cases of meningoencephalitis caused by B. miyamotoi have also been reported in immunocompromised patients. Here we evaluate the ability of the spirochete to survive in human blood components stored under standard blood bank conditions. Freshly collected human whole blood was spiked with in vitro cultured B. miyamotoi or B. miyamotoi-infected mouse plasma and separated into red blood cells (RBCs), plasma, and platelets. Components were either injected into immunocompromised (SCID) or wild-type immunocompetent mice or cultured in vitro, right after separation and after storage at the appropriate conditions. Infection was monitored by microscopic observation, blood smears, and polymerase chain reaction. In vivo, all the SCID mice challenged with the components before storage and the RBCs stored for up to 42 days developed the infection. Wild-type mice also developed the infection when injected with prestorage samples from all components, while a lower number of mice were infected by RBCs stored for 42 days. In vitro, spirochetes grew in all samples but frozen plasma. This study demonstrated that B. miyamotoi can survive standard storage conditions of most human blood components, suggesting the possibility of transmission by blood transfusion. © 2015 AABB.

  19. Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes.

    Science.gov (United States)

    Gong, Hao; Zhang, Xin; Cheng, Biao; Sun, Yue; Li, Chuanzhou; Li, Ting; Zheng, Ling; Huang, Kun

    2013-01-01

    Bisphenol A (BPA) is a chemical compound widely used in manufacturing plastic products. Recent epidemiological studies suggest BPA exposure is positively associated with the incidence of type 2 diabetes mellitus (T2DM), however the mechanisms underlying this link remain unclear. Human islet amyloid polypeptide (hIAPP) is a hormone synthesized and secreted by the pancreatic β-cells. Misfolding of hIAPP into toxic oligomers and mature fibrils can disrupt cell membrane and lead to β-cell death, which is regarded as one of the causative factors of T2DM. To test whether there are any connections between BPA exposure and hIAPP misfolding, we investigated the effects of BPA on hIAPP aggregation using thioflavin-T based fluorescence, transmission electronic microscopy, circular dichroism, dynamic light scattering, size-exclusion chromatography, fluorescence-dye leakage assay in an artificial micelle system and the generation of reactive oxygen species in INS-1 cells. We demonstrated that BPA not only dose-dependently promotes the aggregation of hIAPP and enhances the membrane disruption effects of hIAPP, but also promotes the extent of hIAPP aggregation related oxidative stress. Taken together, our results suggest that BPA exposure increased T2DM risk may involve the exacerbated toxic aggregation of hIAPP.

  20. Targeted Mass Spectrometry Approach Enabled Discovery of O-Glycosylated Insulin and Related Signaling Peptides in Mouse and Human Pancreatic Islets.

    Science.gov (United States)

    Yu, Qing; Canales, Alejandra; Glover, Matthew S; Das, Rahul; Shi, Xudong; Liu, Yang; Keller, Mark P; Attie, Alan D; Li, Lingjun

    2017-08-07

    O-Linked glycosylation often involves the covalent attachment of sugar moieties to the hydroxyl group of serine or threonine on proteins/peptides. Despite growing interest in glycoproteins, little attention has been directed to glycosylated signaling peptides, largely due to lack of enabling analytical tools. Here we explore the occurrence of naturally O-linked glycosylation on the signaling peptides extracted from mouse and human pancreatic islets using mass spectrometry (MS). A novel targeted MS-based method is developed to increase the likelihood of capturing these modified signaling peptides and to provide improved sequence coverage and accurate glycosite localization, enabling the first large-scale discovery of O-glycosylation on signaling peptides. Several glycosylated signaling peptides with multiple glycoforms are identified, including the first report of glycosylated insulin-B chain and insulin-C peptide and BigLEN. This discovery may reveal potential novel functions as glycosylation could influence their conformation and biostability. Given the importance of insulin and its related peptide hormones and previous studies of glycosylated insulin analogues, this natural glycosylation may provide important insights into diabetes research and therapeutic treatments.

  1. Effects of cholesterol on pore formation in lipid bilayers induced by human islet amyloid polypeptide fragments: A coarse-grained molecular dynamics study

    Science.gov (United States)

    Xu, Weixin; Wei, Guanghong; Su, Haibin; Nordenskiöld, Lars; Mu, Yuguang

    2011-11-01

    Disruption of the cellular membrane by the amyloidogenic peptide, islet amyloid polypeptide (IAPP), has been considered as one of the mechanisms of β-cell death during type 2 diabetes. The N-terminal region (residues 1-19) of the human version of IAPP is suggested to be primarily responsible for the membrane-disrupting effect of the full-length hIAPP peptide. However, the detailed assembly mode of hIAPP1-19 with membrane remains unclear. To gain insight into the interactions of hIAPP1-19 oligomer with the model membrane, we have employed coarse-grained molecular dynamics self-assembly simulations to study the aggregation of hIAPP1-19 fragments in the binary lipid made of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and anionic dipalmitoylphosphatidylserine (DPPS) in the presence and absence of different levels of cholesterol content. The membrane-destabilizing effect of hIAPP1-19 is found to be modulated by the presence of cholesterol. In the absence of cholesterol, hIAPP1-19 aggregates prefer to locate inside the bilayer, forming pore-like assemblies. While in the presence of cholesterol molecules, the lipid bilayer becomes more ordered and stiff, and the hIAPP1-19 aggregates are dominantly positioned at the bilayer-water interface. The action of cholesterol may suggest a possible way to maintain the membrane integrity by small molecule interference.

  2. Microencapsulation of pancreatic islets for use in a bioartificial pancreas.

    Science.gov (United States)

    Opara, Emmanuel C; McQuilling, John P; Farney, Alan C

    2013-01-01

    Islet transplantation is the most exciting treatment option for individuals afflicted with Type 1 diabetes. However, the severe shortage of human pancreas and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles for the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets with biopolymers for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this chapter, we provide a detailed description of the microencapsulation process.

  3. Leptin- or troglitazone-induced lipopenia protects islets from interleukin 1beta cytotoxicity.

    Science.gov (United States)

    Shimabukuro, M; Koyama, K; Lee, Y; Unger, R H

    1997-01-01

    Interleukin 1beta (IL-1beta)-induced beta cell cytotoxicity has been implicated in the autoimmune cytotoxicity of insulin-dependent diabetes mellitus. These cytotoxic effects may be mediated by nitric oxide (NO). Since long-chain fatty acids (FFA), like IL-1beta, upregulate inducible nitric oxide synthase and enhance NO generation in islets, it seemed possible that islets might be protected from IL-1beta-induced damage by lowering their lipid content. We found that IL-1beta-induced NO production varied directly and islet cell viability inversely with islet triglyceride (TG) content. Fat-laden islets of obese rats were most vulnerable to IL-1beta, while moderately fat-depleted islets of food-restricted normal rats were less vulnerable than those of free-feeding normal rats. Severely lipopenic islets of rats made chronically hyperleptinemic by adenoviral leptin gene transfer resisted IL-1beta cytotoxicity even at 300 pg/ml, the maximal concentration. Troglitazone lowered islet TG in cultured islets from both normal rats and obese, leptin-resistant rats and reduced NO production and enhanced cell survival. We conclude that measures that lower islet TG content protect against IL-1beta-induced NO production and cytotoxicity. Leptin or troglitazone could provide in vivo protection against insulin-dependent diabetes mellitus. PMID:9312173

  4. Pig islets for islet xenotransplantation: current status and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Hu Qinghua; Liu Zhongwei; Zhu Haitao

    2014-01-01

    Objective To review the current status and progress on pig islet xenotransplantation.Data sources Data used in this review were mainly from English literature of Pubmed database.The search terms were "pig islet" and "xenotransplantation".Study selection The original articles and critical reviews selected were relevant to this review's theme.Results Pigs are suggested to be an ideal candidate for obtaining available islet cells for transplantation.However,the potential clinical application of pig islet is still facing challenges including inadequate yield of high-quality functional islets and xenorejection of the transplants.The former can be overcome mainly by selection of a suitable pathogen-free source herd and the development of isolation and purification technology.While the feasibility of successful preclinical pig islet xenotranplantation provides insights in the possible mechanisms of xenogeneic immune recognition and rejection to overwhelm the latter.In addition,the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies is promising.Conclusions Pig islet xenotransplantation is one of the prospective treatments to bridge the gap between the needs of transplantation in patients with diabetes and available islet cells.Nonetheless,further studies and efforts are needed to translate obtained findings into tangible applications.

  5. Is Human Papillomavirus Associated with Prostate Cancer Survival?

    Directory of Open Access Journals (Sweden)

    Mariarosa Pascale

    2013-01-01

    Full Text Available The role of human papillomavirus (HPV in prostate carcinogenesis is highly controversial: some studies suggest a positive association between HPV infection and an increased risk of prostate cancer (PCa, whereas others do not reveal any correlation. In this study, we investigated the prognostic impact of HPV infection on survival in 150 primary PCa patients. One hundred twelve (74.67% patients had positive expression of HPV E7 protein, which was evaluated in tumour tissue by immunohistochemistry. DNA analysis on a subset of cases confirmed HPV infection and revealed the presence of genotype 16. In Kaplan-Meier analysis, HPV-positive cancer patients showed worse overall survival (OS (median 4.59 years compared to HPV-negative (median 8.24 years, P=0.0381. In multivariate analysis age (P<0.001, Gleason score (P<0.001, nuclear grading (P=0.002, and HPV status (P=0.034 were independent prognostic factors for OS. In our cohort, we observed high prevalence of HPV nuclear E7 oncoprotein and an association between HPV infection and PCa survival. In the debate about the oncogenic activity of HPV in PCa, our results further confirm the need for additional studies to clarify the possible role of HPV in prostate carcinogenesis.

  6. Effect of micro- and macroencapsulation on oxygen consumption by pancreatic islets.

    Science.gov (United States)

    Cornolti, Roberta; Figliuzzi, Marina; Remuzzi, Andrea

    2009-01-01

    Immunoisolation of pancreatic islets is extensively investigated for glycemic control in diabetic experimental animals. We previously reported that subcutaneous xenotransplantation of bovine islets protected by a selective polysulfone membrane successfully controlled glycemia in diabetic rats for up to 20 days. We then wondered whether immunoisolated islets have adequate oxygen supply in this device, where only diffusive transport allows cell function and survival. Here we set up an experimental technique to measure oxygen consumption rate (OCR) using a Clark's electrode inserted in a glass thermostated chamber connected to a data recorder and acquisition system. Bovine islets were isolated from 6-month-old calves, encapsulated in sodium alginate microcapsules or inserted in polysulfone hollow fibers. After 1 and 2 days in culture a series of measurements was performed using free islets (at normal or high-glucose concentration), islets encapsulated in microcapsules, or in hollow fibers. In free islets OCR averaged from 2.0 +/- 0.8 pmol/IEQ/min at low-glucose concentration and from 2.5 +/- 1.0 pmol/IEQ/min at high-glucose concentration (p hollow fibers was comparable, and not significantly different from that measured in free islets. Two days after isolation OCR averaged 2.3 +/- 0.6 in free islets, 2.3 +/- 0.9 in alginate microcapsules, and 2.2 +/- 0.7 pmol/IEQ/min in hollow fibers. These results show that OCR by bovine islets is comparable to that previously reported for other species. OCR increases in islets stimulated with high glucose and may be considered as a functional index. Moreover, islet encapsulation in alginate microcapsule, as well as in hollow fiber membranes, did not significantly affect in vitro OCR, suggesting adequate islet oxygenation in these conditions.

  7. Effect of nicotinamide on early graft failure following intraportal islet transplantation

    Science.gov (United States)

    Jung, Da-Yeon; Park, Jae Berm; Joo, Sung-Yeon; Joh, Jae-Won; Kwon, Choon-Hyuck; Kwon, Ghee-Young

    2009-01-01

    Intraportal islet transplantation (IPIT) may potentially cure Type 1 diabetes mellitus; however, graft failure in the early post-transplantation period presents a major obstacle. In this study, we tested the ability of nicotinamide to prevent early islet destruction in a syngeneic mouse model. Mice (C57BL/6) with chemically-induced diabetes received intraportal transplants of syngeneic islet tissue in various doses. Islets were cultured for 24 h in medium with or without 10 mM nicotinamide supplementation. Following IPIT, islet function was confirmed by an intraperitoneal glucose tolerance test (IPGTT) and hepatectomy. The effects of nicotinamide were evaluated by blood glucose concentration, serum monocyte chemoattractant protein-1 (MCP-1) concentration, and immunohistology at 3 h and 24 h after IPIT. Among the various islet doses, an infusion of 300 syngeneic islets treated with nicotinamide exhibited the greatest differences in glucose tolerance between recipients of treated and untreated (i.e., control) islets. One day after 300 islet equivalent (IEQ) transplantation, islets treated with nicotinamide were better granulated than the untreated islets (P = 0.01), and the recipients displayed a slight decrease in serum MCP-1 concentration, as compared to controls. After 15 days, recipients of nicotinamide-pretreated islets showed higher levels of graft function (as measured by IPGTT) than controls. The pretreatment also prolonged graft survival (> 100 days) and function; these were confirmed by partial hepatectomy, which led to the recurrence of diabetes. Pretreatment of islet grafts with nicotinamide may prevent their deterioration on the early period following IPIT in a syngeneic mouse model. PMID:19641379

  8. Survival

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data provide information on the survival of California red-legged frogs in a unique ecosystem to better conserve this threatened species while restoring...

  9. Islet transplantation in rodents: do encapsulated islets really work?

    Directory of Open Access Journals (Sweden)

    Yngrid Ellyn Dias Maciel de Souza

    2011-06-01

    Full Text Available CONTEXT: Diabetes mellitus type I affects around 240 million people in the world and only in the USA 7.8% of the population. It has been estimated that the costs of its complications account for 5% to 10% of the total healthcare spending around the world. According to World Health Organization, 300 million people are expected to develop diabetes mellitus by the year 2025. The pancreatic islet transplantation is expected to be less invasive than a pancreas transplant, which is currently the most commonly used approach. OBJECTIVES: To compare the encapsulated and free islet transplantation in rodents looking at sites of islet implantation, number of injected islets, viability and immunosuppression. METHODS: A literature search was conducted using MEDLINE/PUBMED and SCIELO with terms about islet transplantation in the rodent from 2000 to 2010. We found 2,636 articles but only 56 articles from 2000 to 2010 were selected. RESULTS: In these 56 articles used, 34% were encapsulated and 66% were nonencapsulated islets. Analyzing both types of islets transplantation, the majority of the encapsulated islets were implanted into the peritoneal cavity and the nonencapsulated islets into the liver, through the portal vein. In addition, the great advantage of the peritoneal cavity as the site of islet transplantation is its blood supply. Both vascular endothelial cells and vascular endothelial growth factor were used to stimulate angiogenesis of the islet grafts, increasing the vascularization rapidly after implantation. It also has been proven that there is influence of the capsules, since the larger the capsule more chances there are of central necrosis. In some articles, the use of immunosuppression demonstrated to increase the life expectancy of the graft. CONCLUSION: While significant progress has been made in the islets transplantation field, many obstacles remain to be overcome. Microencapsulation provides a means to transplant islets without

  10. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion.

    Science.gov (United States)

    Locke, J M; da Silva Xavier, G; Dawe, H R; Rutter, G A; Harries, L W

    2014-01-01

    Type 2 diabetes is characterised by progressive beta cell dysfunction, with changes in gene expression playing a crucial role in its development. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and therefore alterations in miRNA levels may be involved in the deterioration of beta cell function. Global TaqMan arrays and individual TaqMan assays were used to measure islet miRNA expression in discovery (n = 20) and replication (n = 20) cohorts from individuals with and without type 2 diabetes. The role of specific dysregulated miRNAs in regulating insulin secretion, content and apoptosis was subsequently investigated in primary rat islets and INS-1 cells. Identification of miRNA targets was assessed using luciferase assays and by measuring mRNA levels. In the discovery and replication cohorts miR-187 expression was found to be significantly increased in islets from individuals with type 2 diabetes compared with matched controls. An inverse correlation between miR-187 levels and glucose-stimulated insulin secretion (GSIS) was observed in islets from normoglycaemic donors. This correlation paralleled findings in primary rat islets and INS-1 cells where overexpression of miR-187 markedly decreased GSIS without affecting insulin content or apoptotic index. Finally, the gene encoding homeodomain-interacting protein kinase-3 (HIPK3), a known regulator of insulin secretion, was identified as a direct target of miR-187 and displayed reduced expression in islets from individuals with type 2 diabetes. Our findings suggest a role for miR-187 in the blunting of insulin secretion, potentially involving regulation of HIPK3, which occurs during the pathogenesis of type 2 diabetes.

  11. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  12. Human neural progenitor cells promote photoreceptor survival in retinal explants.

    Science.gov (United States)

    Englund-Johansson, Ulrica; Mohlin, Camilla; Liljekvist-Soltic, Ingela; Ekström, Per; Johansson, Kjell

    2010-02-01

    Different types of progenitor and stem cells have been shown to provide neuroprotection in animal models of photoreceptor degeneration. The present study was conducted to investigate whether human neural progenitor cells (HNPCs) have neuroprotective properties on retinal explants models with calpain- and caspase-3-dependent photoreceptor cell death. In the first experiments, HNPCs in a feeder layer were co-cultured for 6 days either with postnatal rd1 mouse or normal rat retinas. Retinal histological sections were used to determine outer nuclear layer (ONL) thickness, and to detect the number of photoreceptors with labeling for calpain activity, cleaved caspase-3 and TUNEL. The ONL thickness of co-cultured rat and rd1 retinas was found to be almost 10% and 40% thicker, respectively, compared to controls. Cell counts of calpain activity, cleaved caspase-3 and TUNEL labeled photoreceptors in both models revealed a 30-50% decrease when co-cultured with HNPCs. The results represent significant increases of photoreceptor survival in the co-cultured retinas. In the second experiments, for an identification of putative survival factors, or a combination of them, a growth factor profile was performed on conditioned medium. The relative levels of various growth factors were analyzed by densitometric measurements of growth factor array membranes. Following growth factors were identified as most potential survival factors; granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GMCSF), insulin-like growth factor II (IGF-II), neurotrophic factor 3 (NT-3), placental growth factor (PIGF), transforming growth factors (TGF-beta1 and TGF-beta2) and vascular endothelial growth factor (VEGF-D). HNPCs protect both against calpain- and caspase-3-dependent photoreceptor cell death in the rd1 mouse and against caspase-3-dependent photoreceptor cell death in normal rat retinas in vitro. The protective effect is possibly achieved by a variety of

  13. Transplantation of human embryonic stem cells derived pancreatic progenitors and islets corrects diabetes in NOD/SCID mice%人胚胎干细胞体外定向诱导分化胰腺前体细胞及胰岛细胞移植治疗NOD/SCID糖尿病小鼠

    Institute of Scientific and Technical Information of China (English)

    华秀峰; 孙强; 李华峰; 孟晓梅; 王延伟; 于胜强; 丛晋; 刘芙君; 靳少华

    2014-01-01

    Objective To investigate whether pancreatic progenitors and islets differentiated from human embryonic stem cells(hESCs) could correct hyperglycemia in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice.Methods We obtained pancreatic progenitors and islets derived from hES cells line YT1 according to the optimized four-stage differentiation protocol.Stage 1:definitive endoderm formation; Stage 2:pan creatic specialization; Stage 3:amplification of pancreatic progenitors,Stage 4:maturation of pancreatic islets.To observe the morphological changes of each stage and immunofluorescent expression of pancreatic and duodenal homeobox gene(PDX-1),glucagon,insulin,C-peptide,glucose transporter-2(Glut-2).The differentiated cells from stage 3 and stage 4 were then transplanted into one of the epididymal fat pads(EFP) of NOD/SCID mice.The survival and function of the graft were measured by immunohistochemistry and blood glucose monitor.Results The stage 4-differentiated pancreatic islets expressed mature β cell-specific markers such as glucagon,insulin and Glut 2,and even PDX-1 and C-peptide-double-positive.The stage 4-pancreatic islets had nearly 17.1% insulin-positive cells as assayed by flow cytometry analysis.Differentiated pancreatic islets released insulin/C-peptide in response to glucose stimulation.After implantation into EFP of NOD/SCID mice,hES cell-derived human pancreatic progenitors and islets corrected hyperglycemia for at least 12 weeks.Conclusions Pancreatic progenitors and islets differentiated from hESCs can correct hyperglycemia in NOD/SCID mice.%目的 探讨人胚胎干细胞(human embryonic stem cells,hESCs)体外定向诱导分化胰腺前体细胞及胰岛细胞移植治疗非肥胖糖尿病/严重联合免疫缺陷(non-obese diabetic/severe combined immunodeficient,NOD/SCID)小鼠的可行性.方法 体外分4阶段诱导hESCs定向分化为胰岛细胞:①诱导分化形成定型内胚层;②诱导胰腺细胞定向分化;③扩增

  14. The Pattern of Neural Elements in the Islets of Normal and Diseased Pancreas and in Isolated Islets

    Directory of Open Access Journals (Sweden)

    Parviz M Pour

    2011-07-01

    Full Text Available Context The association between islet cells and neural elements, the so-called “neuro-insular complex”, has been known for centuries. Objective We examined the expression of beta-III tubulin, in normal pancreases from organ donors, surgical specimens of chronic pancreatitis, surgical specimens of ductal type carcinoma, isolated and purified islets of a 57-year-old male and the pancreases of adult Syrian golden hamsters by immunohistochemistry using a monoclonal antibody to beta-tubulin. Results In the normal pancreas of humans and hamsters, beta-III tubulin was expressed in alpha- and beta-cells, but not in PP cells, neural fibers and gangliae. Occasionally, intra-and peri-insular neural elements were also found. In chronic pancreatitis and pancreatic cancer samples, the number of beta-cells and the immunoreactivity of the beta-III tubulin antibody in islet cells were decreased in most cases. In cultured human islets, devoid of neural elements, no correlation was found between the expression of beta-III tubulin and islet cell hormones. Conclusion Beta-III tubulin is only expressed in the islets derived from the dorsal pancreas and in neural elements. In chronic pancreatitis and pancreatic cancer swelling of intra- and peri-insular nerves occurs, possibly in response to the loss of beta-cells. The secretion of insulin and the expression of beta-tubulin seem to be regulated by nerves.

  15. Ultrastructural studies of time-course and cellular specificity of interleukin-1 mediated islet cytotoxicity

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Egeberg, J; Nerup, J

    1987-01-01

    of incubation and examined by electron microscopy in a blinded fashion. Already after 30 min, accumulation of opaque intracytoplasmic bodies without apparent surrounding membranes, and autophagic vacuoles were seen in about 20% of the beta cells examined in rat islets exposed to interleukin-1. After 16 h......Previous electron-microscopic studies of isolated islets of Langerhans exposed to the monokine interleukin-1 for 7 days have indicated that interleukin-1 is cytotoxic to all islet cells. To study the time-course and possible cellular specificity of interleukin-1 cytotoxicity to islets exposed...... of incubation with interleukin-1, more than 80% of rat beta cells showed signs of degeneration. Beta cell specific changes similar to those observed in rat islets exposed to IL-1 for 30 min were seen in human islets exposed to IL-1 for 24 h. The described changes were not observed in alpha cells in interleukin...

  16. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes

    OpenAIRE

    Yoon Kun-Ho; Wang-Rodriguez Jessica; Dib Sergio A.; Anachkov Kamen A; Tyrberg Björn; Levine Fred

    2002-01-01

    Abstract Background It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously o...

  17. Survival of human-associated bacteria in SLS

    Science.gov (United States)

    Fu, Yuming; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..; Khizhnyak, Sergey; Kovalev, Vladimir

    2016-07-01

    Management of microbial communities to minimize the potential for risk to the crew and to the plants to be used for supporting the crew is an essential component of successful bioregenerative life support systems (BLSS). Previously it was shown that soil-like substrate (SLS), obtained as a result of bioconversion of non-edible plant biomass in the higher plants based BLSS, demonstrates strong anti-fungal activity against soil-borne plant pathogens (Nesterenko et al., 2009). The present study is devoted to the estimation of anti-bacterial activity of SLS against gram-negative (presented with Escherichia coli) and gram-positive (presented with Staphylococcus aureus) human-associated bacteria, both of which belong to the group of opportunistic pathogen. In vitro effects of different types of SLS on E. coli and S. aureus and in situ survival curves of the bacteria with corresponding math models are presented. Additionally we have examined the influence of community richness (the indigenous community of SLS) on the ability of introduced human-associated bacteria to persist within SLS. The work was carried out within the frames of the state task on the subject No 56.1.4 of the Basic Research Program (Section VI) of Russian State Academies for 2013-2020.

  18. Mechanisms of pancreatic islet cell destruction. Dose-dependent cytotoxic effect of soluble blood mononuclear cell mediators on isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    contents of insulin and glucagon in a dose-dependent manner. A maximal effect on islet function was obtained with supernatant concentrations down to 5%. Supernatants of mononuclear cells stimulated with tuberculin were more potent than supernatants produced by lectin stimulation. Culture medium......Supernatants of peripheral blood mononuclear cells from healthy human donors stimulated with recall antigen (purified protein derivative of tuberculin) or lectin (phytohaemagglutinin) markedly inhibited the insulin release from isolated human and rat islets of Langerhans, and decreased rat islet...... reconstituted with tuberculin or phytohaemagglutinin did not impair islet function. Electron microscopy demonstrated that supernatants were cytotoxic to islet cells. The cytotoxic mononuclear cell mediator(s) was non-dialysable, sensitive to heating to 56 degrees C, labile even when stored at -70 degrees C...

  19. Effect of interleukin-1 on the biosynthesis of proinsulin and insulin in isolated rat pancreatic islets

    DEFF Research Database (Denmark)

    Hansen, Birgit Sehested; Linde, S; Spinas, G A

    1988-01-01

    Insulin dependent diabetes mellitus (IDDM) is often preceded or associated with lymphocytic infiltration in the islets of Langerhans (insulitis). We recently demonstrated that interleukin-1 (IL-1) produced by activated macrophages exerts a bimodal effect on insulin release and biosynthesis...... in isolated rat islets. In the present study we have further analysed the effect of recombinant human interleukin-1 beta (rIL-1) on the biosynthesis and conversion of proinsulin 1 and 2 in rat islets. By RP-HPLC-analysis of islets labelled with [3H]leucine we found that exposure to 6 ng/ml of IL-1 for 24 h...

  20. Inhibition of rejection in murine islet xenografts by CTLA4Ig and CD40LIg gene transfer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; LI Hua; JIANG Nan; WANG Guo-ying; FU Bin-sheng; WANG Gen-shu; YANG Yang; CHEN Gui-hua

    2010-01-01

    Background Costimulatory signals play a vital role in T cell activation. Blockade of costimulatory pathway by CTLA4Ig or CD40LIg have enhanced graft survival in experimental transplantation models yet mechanisms remain undetermined.We investigated the effects of CTLA4Ig and CD40LIg gene transfer on islet xenografts rejection in rats.Methods Human islets were infected with recombinant adenoviruses containing CTLA4Ig and CD40LIg genes and implanted beneath the kidney capsule of diabetic rats. Levels of blood sugar, morphological changes, and survival of grafts were recorded. Expressions of CTLA4Ig, CD40LIg and insulin were detected by immunohistochemical staining and cytokines levels were quantified by enzyme-linked immunosorbent assay (ELISA).Results Blood glucose levels in transplant rats decreased to normal level on the 2nd day post transplantation. The mean blood glucose in the control group, CTLA4Ig transfected group, CD40LIg transfected group and CTLA4Ig +CD40LIg cotransfected group increased on days 8, 24, 21, 68, post transplantation respectively. The grafts in control group, CTLA4Ig transfected group, CD40LIg transfected group and CTLA4Ig + CD40LIg cotransfected group survived for (8±1), (29±4), (27±3), and (74±10) days, respectively. Survival in CTLA4Ig + CD40LIg cotransfected group was significantly longer. Survivals of CTLA4Ig transfected group and CD40LIg transfected group were significantly longer than control group. In controJ animals, serum interleukin-2 and tumor necrosis factor a concentration significantly increased within seven days post transplantation. Haematoxylin eosin staining of grafts showed live islets in situ of transplant rats without inflammatory cell infiltration. Immunohistochemical staining confirmed the expression of insulin at islets in all experimental groups.Conclusions Transfer of CTLA4Ig and CD40Llg genes, especially the cotransfer of both, inhibits rejection of murine islet xenografts. Downregulated expressions of Th1

  1. Adaptation of pancreatic islet cyto-architecture during development

    Science.gov (United States)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.

  2. Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation

    Science.gov (United States)

    Schultz, Sebastian Wolfgang; Nilsson, K. Peter R.; Westermark, Gunilla Torstensdotter

    2011-01-01

    Background Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology. PMID:21695120

  3. Islet cell development.

    Science.gov (United States)

    Rojas, Anabel; Khoo, Adrian; Tejedo, Juan R; Bedoya, Francisco J; Soria, Bernat; Martín, Franz

    2010-01-01

    Over the last years, there has been great success in driving stem cells toward insulin-expressing cells. However, the protocols developed to date have some limitations, such as low reliability and low insulin production. The most successful protocols used for generation of insulin-producing cells from stem cells mimic in vitro pancreatic organogenesis by directing the stem cells through stages that resemble several pancreatic developmental stages. Islet cell fate is coordinated by a complex network of inductive signals and regulatory transcription factors that, in a combinatorial way, determine pancreatic organ specification, differentiation, growth, and lineage. Together, these signals and factors direct the progression from multipotent progenitor cells to mature pancreatic cells. Later in development and adult life, several of these factors also contribute to maintain the differentiated phenotype of islet cells. A detailed understanding of the processes that operate in the pancreas during embryogenesis will help us to develop a suitable source of cells for diabetes therapy. In this chapter, we will discuss the main transcription factors involved in pancreas specification and beta-cell formation.

  4. Protection of rat islet viability following heme oxygenase-1 gene transfection via adenoviral vector in vitro

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Chen; Yongxiang Li; Weiping Dong; Yang Jiao; Jianming Tan

    2007-01-01

    Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombinant adenovirus vector containing human HO-1 gene(Ad-HO-1 ) or enhanced green fluorescent protein gene(Ad-EGFP) was generated by using AdEasy system respectively.The rat islets were transfected with Ad-HO-1, Ad-EGFP or blank vector and then cultured for 7 days. Transfection was confirmed by expression of EGFP and human HO-1 protein detected by fluorescence photographs and western blot, respectively. The insulin release upon different concentration of glucose stimulation was detected using insulin radioimmunoassay kit, and stimulation index (SI) was calculated. Glucose-stimulated insulin release was usedto assess islet viability. Results:Adenovirus vector successfully transferred HO-1 gene to rat islet cells in vitro, and the insulin release upon high level of glucose stimulation and stimulation index(SI) of Ad-HO-1-infected islets were significantly higher than those of Ad-EGFP-infected islets and control islets(P < 0.05).Conclusion: Adenovirus-mediated HO-1 gene transfection is a feasible strategy to confer cytoprotection and therefore protect the viability of cultured rat islets.

  5. Auditor human capital and audit firm survival - The Dutch audit industry in 1930-1992

    NARCIS (Netherlands)

    Brocheler, [No Value; Maijoor, S; van Witteloostuijn, A; Bröcheler, V.

    2004-01-01

    This paper studies the relationship between auditor human capital and audit firm survival. Specifically, the effects are investigated of the human capital of auditors on the survival chances of newly established audit firms. Human capital is analyzed both at the time of entry of a new audit firm and

  6. Improved function and proliferation of adult human beta cells engrafted in diabetic immunodeficient NOD-scid IL2rγnull mice treated with alogliptin

    Directory of Open Access Journals (Sweden)

    Jurczyk A

    2013-12-01

    treated with alogliptin show improved human insulin secretion and beta cell proliferation compared to control mice engrafted with the same donor islets. Immunodeficient mice transplanted with human islets provide a useful model to interrogate potential therapies to improve human islet function and survival in vivo. Keywords: human islet transplant, DPP-4 inhibitor, glucose tolerance, plasma insulin

  7. New Insight in Copper-Ion Binding to Human Islet Amyloid: The Contribution of Metal-Complex Speciation To Reveal the Polypeptide Toxicity.

    Science.gov (United States)

    Magrì, Antonio; La Mendola, Diego; Nicoletti, Vincenzo Giuseppe; Pappalardo, Giuseppe; Rizzarelli, Enrico

    2016-09-05

    Type-2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace-element serum level is significantly influenced during the development of diabetes. In particular, the dys-homeostasis of Cu(2+) ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu(2+) ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal-ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17-29 and 14-22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17-29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu(2+) ions with Ac-PEG-hIAPP(17-29)-NH2 , Ac-rIAPP(17-29)R18H-NH2 , and Ac-PEG-hIAPP(14-22)-NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu(2+) ions starting from the His18 imidazole nitrogen atom toward the N-terminus domain. The stability constants of copper(II) complexes with Ac-PEG-hIAPP(14-22)-NH2 were used to simulate the different

  8. Islet Xenotransplantation and Xeno-antigenicity: studies in a preclinical model

    NARCIS (Netherlands)

    P.P.M. Rood (Pleunie)

    2008-01-01

    textabstractShortage of human donor organs is the major limiting factor for clinical islet allotransplantation. Xenotransplantation, using the pig as the source of islets is considered a potential solution to this problem. Since the development of pigs homozygous for α1,3-galactosyltransfer

  9. The role of the disulfide bond in the interaction of islet amyloid polypeptide with membranes

    NARCIS (Netherlands)

    Khemtemourian, L.P.; Engel, M.F.M.; Kruijtzer, J.A.W.; Hoppener, J.W.M.; Liskamp, R.M.J.; Killian, J.A.

    2010-01-01

    Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus. It has been suggested that the N-terminal part, which contains a conserved intramolecular disulfide bond between residues 2 and 7, interacts with membranes, ultimately

  10. An imidazoline compound completely counteracts interleukin-1[beta] toxic effects to rat pancreatic islet [beta] cells

    DEFF Research Database (Denmark)

    Papaccio, Gianpaolo; Nicoletti, Ferdinando; Pisanti, Francesco A

    2002-01-01

    In vitro studies have demonstrated that interleukin (IL)-1beta decreases insulin and DNA contents in pancreatic islet beta cells, causing structural damage, that it is toxic to cultured human islet beta cells and that it is able to induce apoptosis in these cells....

  11. Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in β-cell death in type II diabetes mellitus

    NARCIS (Netherlands)

    Khemtémourian, L.P.|info:eu-repo/dai/nl/304824372; Killian, J.A.|info:eu-repo/dai/nl/071792317; Höppener, J.W.M.; Engel, M.F.M.|info:eu-repo/dai/nl/263614190

    2008-01-01

    The presence of fibrillar protein deposits (amyloid) of human islet amyloid polypeptide (hIAPP) in the pancreatic islets of Langerhans is thought to be related to death of the insulin-producing islet β-cells in type 2 diabetes mellitus (DM2). The mechanism of hIAPP-induced β-cell death is not

  12. Immunosuppression for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Noguchi,Hirofumi

    2006-04-01

    Full Text Available The development by the Edmonton group of a sirolimus-based, steroid-free, low-tacrolimus regimen is a significant breakthrough that allows the rate of insulin independence after islet transplantation to increase from 13% to 80% at 1 year ; however, the rate is reduced to 50% at 3 years, attributed to prolonged tacrolimus exposure. Recently, immunosuppression agents such as cyclosporine, mycophenolate mofetil, and the novel agent FTY 720 have been used instead of tacrolimus. Lymphocytedepleting antibodies such as anti-thymocyte globulin, alemtuzumab, and hOKT3gamma 1 (ala, ala have been launched, and a costimulatory blockade of anti-CD40 monoclonal antibodies and CTLA4-Ig will be attempted in the near future. Moreover, the potential of a novel immunosuppressing peptide could now be realized using new technology called the protein transduction system. In this review, we show some of the most recent contributions to the advancement of knowledge in this field.

  13. Rhodococcus equi human clinical isolates enter and survive within human alveolar epithelial cells.

    Science.gov (United States)

    Ramos-Vivas, J; Pilares-Ortega, L; Remuzgo-Martínez, S; Padilla, D; Gutiérrez-Díaz, J L; Navas-Méndez, J

    2011-05-01

    Rhodococcus equi is an emerging opportunistic human pathogen associated with immunosuppressed people, especially those infected with the human immunodeficiency virus (HIV). This pathogen resides primarily within lung macrophages of infected patients, which may explain in part its ability to escape normal pulmonary defense mechanisms. Despite numerous studies as a pulmonary pathogen in foals, where a plasmid seems to play an important role in virulence, information on the pathogenesis of this pathogen in humans is still scarce. In this study, fluorescence microscopy and vancomycin protection assays were used to investigate the ability of R. equi human isolates to adhere to and to invade the human alveolar epithelial cell line A549. Our findings indicate that some R. equi clinical strains are capable of adhering, entering and surviving within the alveolar cell line, which may contribute to the pathogen persistence in lung tissues. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  14. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  15. That which does not kill us makes us stronger--does Nietzsche's quote apply to islets? A re-evaluation of the passenger leukocyte theory, free radicals, and glucose toxicity in islet cell transplantation.

    Science.gov (United States)

    Wright, J R; Xu, B-Y

    2014-07-01

    engraftment; reinterpretation of 30 years old "passenger leukocyte" data and preliminary new data support this. Other data suggests that pre-exposure of recipients to hyperoxia could up-regulate antioxidant enzymes in the hepatic endothelium. The combination of both effects could markedly enhance early intraportal islet graft survival and engraftment. Finally, if our model is correct, current in vitro and in vivo tests used to test batches of harvested islets for viability and function prior to transplantation are poorly conceived (n.b., it is already well-known that results using these tests often do not predict clinical islet transplantation success) and a different testing paradigm is suggested.

  16. [Islet transplantation as a clinical tool: present state and future perspectives].

    Science.gov (United States)

    Eliaschewitz, Freddy Goldberg; Franco, Denise Reis; Mares-Guia, Thiago Rennó; Noronha, Irene L; Labriola, Leticia; Sogayar, Mari Cleide

    2009-02-01

    Islet transplant is an innovative treatment for type 1 diabetic patients, which still lies between experimental and approved transplant therapy. Islet cells are seeded in a non-physiological territory where an uncertain fraction will be able to adapt and survive. Thus, the challenge lies in improving the whole procedure, employing the tools of cell biology, immunology and laboratory techniques, in order to reach the results obtained with whole organ transplant. This review describes the procedure, its progress to the present methodology and clinical results obtained. Future perspectives of islet transplantation in the light of recent biotechnological advances are also focused.

  17. Unraveling pancreatic islet biology by quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianying; Dann, Geoffrey P.; Liew, Chong W.; Smith, Richard D.; Kulkarni, Rohit N.; Qian, Weijun

    2011-08-01

    The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.

  18. Angiopoetin-2 Signals Do Not Mediate the Hypervascularization of Islets in Type 2 Diabetes

    OpenAIRE

    Shah, Payal; Lueschen, Navina; Ardestani, Amin; Oberholzer, Jose; Olerud, Johan; Carlsson, Per-Ola; Maedler, Kathrin

    2016-01-01

    Aims Changes in the islet vasculature have been implicated in the regulation of beta-cell survival and function during the progression to type 2 diabetes (T2D). Failure of the beta-cell to compensate for the increased insulin demand in obesity eventually leads to diabetes; as a result of the complex interplay of genetic and environmental factors (e.g. ongoing inflammation within the islets) and impaired vascular function. The Angiopoietin/Tie (Ang/Tie) angiogenic system maintains vasculature ...

  19. Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture.

    Science.gov (United States)

    Malenczyk, Katarzyna; Keimpema, Erik; Piscitelli, Fabiana; Calvigioni, Daniela; Björklund, Peyman; Mackie, Kenneth; Di Marzo, Vincenzo; Hökfelt, Tomas G M; Dobrzyn, Agnieszka; Harkany, Tibor

    2015-11-10

    Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.

  20. Application of Rotating Wall Vessel (RWV) Cell Culture for Pancreas Islet Cell Transplantation

    Science.gov (United States)

    Rutzky, Lynne P.

    1998-01-01

    Type I insulin-dependent diabetes mellitus (IDDM) remains a major cause of morbidity and mortality in both pediatric and adult populations, despite significant advances in medical management. While insulin therapy treats symptoms of acute diabetes, it fails to prevent chronic complications such as microvascular disease, blindness, neuropathy, and chronic renal failure. Strict control of blood glucose concentrations delays but does not prevent the onset and progression of secondary complications. Although, whole pancreas transplantation restores physiological blood glucose levels, a continuous process of allograft rejection causes vascular and exocrine-related complications. Recent advances in methods for isolation and purification of pancreatic islets make transplantation of islet allografts an attractive alternative to whole pancreas transplantation. However, immunosuppressive drugs are necessary to prevent rejection of islet allografts and many of these drugs are known to be toxic to the islets. Since auto-transplants of isolated islets following total pancreatectomy survive and function in vivo, it is apparent that a major obstacle to successful clinical islet transplantation is the immunogenicity of the islet allografts.

  1. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    Science.gov (United States)

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  2. Experimental studies on islet isolation and islet graft function

    NARCIS (Netherlands)

    Suijlichem, Paul Tjepke Robert van

    1994-01-01

    In the first part of the introduction (Chapter 1) of this thesis an overview of the numerous techniques used in islet isolation procedures is presented. The differing lines of approach for the dissociation of the pancreas which have been applied, and are still being further developed, indicate that

  3. A Conceptual Framework for Representing Human Behavior Characteristics in a System of Systems Agent-Based Survivability Simulation

    Science.gov (United States)

    2010-11-22

    distribution is unlimited. A CONCEPTUAL FRAMEWORK FOR REPRESENTING HUMAN BEHAVIOR CHARACTERISTICS IN A SYSTEM OF SYSTEMS AGENT-BASED SURVIVABILITY...27411 -0001 ABSTRACT A CONCEPTUAL FRAMEWORK FOR REPRESENTING HUMAN BEHAVIOR CHARACTERISTICS IN A SYSTEM OF SYSTEMS AGENT-BASED SURVIVABILITY SIMULATION...TITLE AND SUBTITLE A CONCEPTUAL FRAMEWORK FOR REPRESENTING HUMAN BEHAVIOR CHARACTERISTICS IN A SYSTEM OF SYSTEMS AGENT-BASED SURVIVABILITY

  4. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell

    Directory of Open Access Journals (Sweden)

    Feng-Fei Li

    2016-01-01

    Full Text Available We previously isolated islet stellate cells (ISCs from healthy Wistar rat islets. In the present study, we isolated “already primed by diabetic environment” ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN. We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2′-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI- positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis.

  5. The Humanities in English Primary Schools: Struggling to Survive

    Science.gov (United States)

    Barnes, Jonathan; Scoffham, Stephen

    2017-01-01

    This article surveys the state of the humanities in English primary schools drawing on evidence from serving head teachers, current literature and policy documents. The findings suggest that whilst the humanities are highly valued in schools, there are serious challenges which threaten the "broad and balanced" curriculum. It is suggested…

  6. Classification of microscopy images of Langerhans islets

    Science.gov (United States)

    Å vihlík, Jan; Kybic, Jan; Habart, David; Berková, Zuzana; Girman, Peter; Kříž, Jan; Zacharovová, Klára

    2014-03-01

    Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully comparable with medical experts.

  7. 人胚胎干细胞体外定向诱导分化胰岛细胞移植治疗非肥胖联合免疫缺陷糖尿病小鼠%Pancreatic islets differentiated from human embryonic stem cells correct hyperglycemia in non-obese diabetic /severe combined immunodeficient mice

    Institute of Scientific and Technical Information of China (English)

    华秀峰; 孙强; 王延伟; 丛晋; 刘芙君; 孟晓梅; 李华峰; 靳少华; 王海燕; 李建远

    2013-01-01

    formation. In the second stage, the differentiated endoderm cells were treated with all-trans retinoic acid(RA), NOGGIN and basic fibroblast growth factor(bFGF) to induce pancreatic specialization. In the third stage,pancreatic progenitors were induced by epidermal growth factor(EGF)-regulated expansion. Finally,in the fourth stage, a cocktail of factors was utilized to induce mature insulin-producing cells. The differentiated human pancreatic islet cells of (3-5) × 106 were then transplanted into one of the epididymal fat pads(EFP) of NOD/SCID mice. Graft survival and function were measured by blood glucose levels. Results The differentiated hES cells obtained by the four-stage approach comprised nearly 17. 1% insulin-positive cells and 3. 8% C-peptide positive as assayed by flow cytometry analysis, which released insulin/C-peptide in response to glucose stimuli in a manner comparable to that of adult human islets. Most of these insulin-producing cells co-expressed mature β cell-specific markers such as PDX1 , insulin , C-peptide and glucagon. After implantation into EFP of NOD/SCID mice, hES cell-derived pancreatic islets corrected hyperglycemia for an least eight weeks. Conclusion Human terminal differentiation pancreatic islet cells can correct hyperglycemia in NOD/SCID mice.

  8. Interleukin 1 dose-dependently affects the biosynthesis of (pro)insulin in isolated rat islets of Langerhans

    DEFF Research Database (Denmark)

    Spinas, G A; Hansen, B S; Linde, S

    1987-01-01

    Human crude and recombinant interleukin 1 (IL-1) was found to dose- and time-dependently affect the biosynthesis of (pro)insulin in isolated rat islets of Langerhans. Incubation of rat islets with either 0.5 U/ml or 5 U/ml of crude IL-1 for 1 h had no detectable effect on (pro)insulin biosynthesis...

  9. Hybrid Polycaprolactone/Alginate Scaffolds Functionalized with VEGF to Promote de Novo Vessel Formation for the Transplantation of Islets of Langerhans

    NARCIS (Netherlands)

    Marchioli, Giulia; Luca, Andrea Di; de Koning, Eelco; Engelse, Marten; Van Blitterswijk, Clemens A; Karperien, Marcel; Van Apeldoorn, Aart A; Moroni, Lorenzo

    2016-01-01

    Although regarded as a promising treatment for type 1 diabetes, clinical islet transplantation in the portal vein is still hindered by a low transplantation outcome. Alternative transplantation sites have been proposed, but the survival of extra-hepatically transplanted islets of Langerhans critical

  10. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Deborah A Striegel

    2015-08-01

    Full Text Available Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.

  11. Islet cryopreservation: improved recovery following taurine pretreatment.

    Science.gov (United States)

    Hardikar, A A; Risbud, M V; Remacle, C; Reusens, B; Hoet, J J; Bhonde, R R

    2001-01-01

    Simple and efficient freezing methods with maximal postthawing recovery form the basis of ideal cryopreservation. Taurine (2-amino ethanesulfonic acid), an end-product of sulphur amino acid metabolism, is one of the most abundant free amino acids in the body. The membrane stabilizing, free radical scavenging, and osmoregulatory roles of taurine have been well documented. We studied the effect of physiological and supra-physiological concentrations (0.3 and 3.0 mM) of taurine on islet cryopreservation. Islet viability on cryopreservation was significantly improved in both the taurine-treated groups (91.9 +/- 2.3% in 0.3 mM and 94.6 +/- 1.58% in 3.0 mM group, p taurine group, as examined under phase contrast and quantified by islet morphometric analysis (p Taurine-treated islets showed significant reduction in lipid peroxidation (0.905 and 0.848 nM MDA/microg protein for 0.3 and 3.0 mM taurine, respectively, p 200 mg/dl) following removal of the graft. Suboptimal islet transplantation using 250 IE suggests that the grafted islet mass was inadequate for diabetes reversal. In addition, no significant differences were observed in the islet insulin content between the three groups following cryopreservation of the islets at -196 degrees C. Our studies indicate that taurine pretreatment and its continued presence during islet cryopreservation improves the postthawing viable recovery of islets.

  12. Progress in Clinical Encapsulated Islet Xenotransplantation.

    Science.gov (United States)

    Cooper, David K C; Matsumoto, Shinichi; Abalovich, Adrian; Itoh, Takeshi; Mourad, Nizar I; Gianello, Pierre R; Wolf, Eckhard; Cozzi, Emanuele

    2016-11-01

    At the 2015 combined congress of the Cell Transplant Society, International Pancreas and Islet Transplant Association, and International Xenotransplantation Association, a symposium was held to discuss recent progress in pig islet xenotransplantation. The presentations focused on 5 major topics - (1) the results of 2 recent clinical trials of encapsulated pig islet transplantation, (2) the inflammatory response to encapsulated pig islets, (3) methods to improve the secretion of insulin by pig islets, (4) genetic modifications to the islet-source pigs aimed to protect the islets from the primate immune and/or inflammatory responses, and (5) regulatory aspects of clinical pig islet xenotransplantation. Trials of microencapsulated porcine islet transplantation to treat unstable type 1 diabetic patients have been associated with encouraging preliminary results. Further advances to improve efficacy may include (1) transplantation into a site other than the peritoneal cavity, which might result in better access to blood, oxygen, and nutrients; (2) the development of a more biocompatible capsule and/or the minimization of a foreign body reaction; (3) pig genetic modification to induce a greater secretion of insulin by the islets, and/or to reduce the immune response to islets released from damaged capsules; and (4) reduction of the inflammatory response to the capsules/islets by improvements in the structure of the capsules and/or in genetic engineering of the pigs and/or in some form of drug therapy. Ethical and regulatory frameworks for islet xenotransplantation are already available in several countries, and there is now a wider international perception of the importance of developing an internationally harmonized ethical and regulatory framework.

  13. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion

    OpenAIRE

    Francisco Noé eArroyo López; Stephanie eBlanquet-Diot; Sylvain eDenis; Jonathan eThevenot; Sandrine eChalancon; Monique eAlric; Francisco Rodriguez Gomez; Verónica eRomero-Gil; Rufino eJimenez Diaz; Antonio eGarrido Fernández

    2014-01-01

    The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933) and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, Lactobacillus pentosus TOMC-LAB2 and Lactobacillus pentosus TOMC-LAB4) during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was ve...

  14. Photoacoustic imaging of angiogenesis in a subcutaneous islet transplant site in a murine model

    Science.gov (United States)

    Shi, Wei; Pawlick, Rena; Bruni, Antonio; Rafiei, Yasmin; Pepper, Andrew R.; Gala-Lopez, Boris; Choi, Min; Malcolm, Andrew; Zemp, Roger J.; Shapiro, A. M. James

    2016-06-01

    Islet transplantation (IT) is an established clinical therapy for select patients with type-1 diabetes. Clinically, the hepatic portal vein serves as the site for IT. Despite numerous advances in clinical IT, limitations remain, including early islet cell loss posttransplant, procedural complications, and the inability to effectively monitor islet grafts. Hence, alternative sites for IT are currently being explored, with the subcutaneous space as one potential option. When left unmodified, the subcutaneous space routinely fails to promote successful islet engraftment. However, when employing the previously developed subcutaneous "deviceless" technique, a favorable microenvironment for islet survival and function is established. In this technique, an angiocatheter was temporarily implanted subcutaneously, which facilitated angiogenesis to promote subsequent islet engraftment. This technique has been employed in preclinical animal models, providing a sufficient means to develop techniques to monitor functional aspects of the graft such as angiogenesis. Here, we utilize photoacoustic imaging to track angiogenesis during the priming of the subcutaneous site by the implanted catheter at 1 to 4 weeks postcatheter. Quantitative analysis on vessel densities shows gradual growth of vasculature in the implant position. These results demonstrate the ability to track angiogenesis, thus facilitating a means to optimize and assess the pretransplant microenvironment.

  15. The influence of intraperitoneal transplantation of free and encapsulated Langerhans islets on the second set phenomenon.

    Science.gov (United States)

    Orłowski, Tadeusz; Godlewska, Ewa; Mościcka, Maria; Sitarek, Elzbieta

    2003-12-01

    To protect the allografts or xenografts against transplant rejection special semipermeable membranes are applied. So far, there are only a few studies on the influence of an immunoisolated graft on the recipient immune system. Therefore, the possibility that an intraperitoneally grafted alginate/poly L-lysine/alginate (APA) coated pancreatic islets graft can effectively sensitize the recipient and provoke second set phenomenon was studied. C3H male mice and male WAG rats were used as donors of full-thickness skin and of free or encapsulated islet intraperitoneal grafts. Male BALB/c mice served as recipients. Skin grafts were performed following the method of Billingham and Medawar. The length of the second skin graft survival time served as the criterion for the sensitizing capacity of the primary graft. APA encapsulation of islets delayed but has not prevented the development of the second set phenomenon. However, the second skin graft rejection time was significantly longer after grafting of encapsulated islets than after free islets transplantation. APA microencapsulation of intraperitoneally transplanted islets delayed but did not prevent the development of the second set phenomenon. Encapsulation does not ensure complete immunoisolation, but only creates "an artificially immunoprivileged site of transplantation."

  16. Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome.

    Science.gov (United States)

    Shapiro, A M James

    2012-01-01

    Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp.

  17. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes

    Science.gov (United States)

    Varshney, Arushi; Scott, Laura J.; Welch, Ryan P.; Erdos, Michael R.; Chines, Peter S.; Narisu, Narisu; Albanus, Ricardo D’O.; Orchard, Peter; Wolford, Brooke N.; Kursawe, Romy; Vadlamudi, Swarooparani; Cannon, Maren E.; Didion, John P.; Hensley, John; Kirilusha, Anthony; Bonnycastle, Lori L.; Taylor, D. Leland; Watanabe, Richard; Mohlke, Karen L.; Boehnke, Michael; Collins, Francis S.; Parker, Stephen C. J.; Stitzel, Michael L.

    2017-01-01

    Genome-wide association studies (GWAS) have identified >100 independent SNPs that modulate the risk of type 2 diabetes (T2D) and related traits. However, the pathogenic mechanisms of most of these SNPs remain elusive. Here, we examined genomic, epigenomic, and transcriptomic profiles in human pancreatic islets to understand the links between genetic variation, chromatin landscape, and gene expression in the context of T2D. We first integrated genome and transcriptome variation across 112 islet samples to produce dense cis-expression quantitative trait loci (cis-eQTL) maps. Additional integration with chromatin-state maps for islets and other diverse tissue types revealed that cis-eQTLs for islet-specific genes are specifically and significantly enriched in islet stretch enhancers. High-resolution chromatin accessibility profiling using assay for transposase-accessible chromatin sequencing (ATAC-seq) in two islet samples enabled us to identify specific transcription factor (TF) footprints embedded in active regulatory elements, which are highly enriched for islet cis-eQTL. Aggregate allelic bias signatures in TF footprints enabled us de novo to reconstruct TF binding affinities genetically, which support the high-quality nature of the TF footprint predictions. Interestingly, we found that T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprints. Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly disrupt the RFX motifs at high-information content positions. Together, these results suggest that common regulatory variations have shaped islet TF footprints and the transcriptome and that a confluent RFX regulatory grammar plays a significant role in the genetic component of T2D predisposition. PMID:28193859

  18. Chymase activities and survival in endotoxin-induced human chymase transgenic mice.

    Science.gov (United States)

    Rafiq, Kazi; Fan, Yu-Yan; Sherajee, Shamshad J; Takahashi, Yoshimasa; Matsuura, Junji; Hase, Naoki; Mori, Hirohito; Nakano, Daisuke; Kobara, Hideki; Hitomi, Hirofumi; Masaki, Tsutomu; Urata, Hidenori; Nishiyama, Akira

    2014-01-01

    We examined the effects of overexpressed human chymase on survival and activity in lipopolysaccharide (LPS)-treated mice. Human chymase transgenic (Tg) and wild-type C57BL/6 (WT) mice were treated with LPS (0.03, 0.1 and 0.3 mg/day; intraperitoneal) for 2 weeks. Treatment with 0.03 mg LPS did not affect survival in either WT or Tg mice. WT mice were not affected by 0.1 mg/day of LPS, whereas 25% of Tg mice died. Survival of mice treated with 0.3 mg/day of LPS was 87.5% and 0% in WT and Tg, respectively. LPS-induced increases in chymase activity in the heart and skin were significantly greater in Tg than WT mice. These data suggest a possible contribution of human chymase activation to LPS-induced mortality.

  19. Improving Islet Engraftment by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2011-01-01

    Full Text Available Islet cell transplantation is currently the only feasible long-term treatment option for patients with type 1 diabetes. However, the majority of transplanted islets experience damage and apoptosis during the isolation process, a blood-mediated inflammatory microenvironment in the portal vein upon islet infusion, hypoxia induced by the low oxygenated milieu, and poor-revascularization-mediated lack of nutrients, and impaired hormone modulation in the local transplanted site. Strategies using genetic modification methods through overexpression or silencing of those proteins involved in promoting new formation of blood vessels or inhibition of apoptosis may overcome these hurdles and improve islet engraftment outcomes.

  20. Quantification of β-Cell Mass in Intramuscular Islet Grafts Using Radiolabeled Exendin-4

    Science.gov (United States)

    Espes, Daniel; Selvaraju, Ramkumar; Velikyan, Irina; Krajcovic, Martin; Carlsson, Per-Ola; Eriksson, Olof

    2016-01-01

    Background There is an increasing interest in alternative implantation sites to the liver for islet transplantation. Intramuscular implantation has even been tested clinically. Possibilities to monitor β-cell mass would be of huge importance not only for the understanding of islet engraftment but also for the decision of changing the immunosuppressive regime. We have therefore evaluated the feasibility of quantifying intramuscular β-cell mass using the radiolabeled glucagon like peptide-1 receptor agonist DO3A-VS-Cys40-Exendin-4. Methods One hundred to 400 islets were transplanted to the abdominal muscle of nondiabetic mice. After 3 to 4 weeks, 0.2 to 0.5 MBq [177Lu]DO3A-VS-Cys40-Exendin-4 was administered intravenously. Sixty minutes postinjection abdominal organs and graft bearing muscle were retrieved, and the radioactive uptake measured in a well counter within 10 minutes. The specific uptake in native and transplanted islets was assessed by autoradiography. The total insulin-positive area of the islet grafts was determined by immunohistochemistry. Results Intramuscular islet grafts could easily be visualized by this tracer, and the background uptake was very low. There was a linear correlation between the radioactivity uptake and the number of transplanted islets, both for standardized uptake values and the total radiotracer uptake in each graft (percentage of injected dose). The quantified total insulin area of surviving β cells showed an even stronger correlation to both standardized uptake values (R = 0.96, P = 0.0002) and percentage of injected dose (R = 0.88, P = 0.0095). There was no correlation to estimated α cell mass. Conclusions [177Lu]DO3A-VS-Cys40-Exendin-4 could be used to quantify β-cell mass after experimental intramuscular islet transplantation. This technique may well be transferred to the clinical setting by exchanging Lutetium-177 radionuclide to a positron emitting Gallium-68.

  1. SIRT1 and c-Myc Promote Liver Tumor Cell Survival and Predict Poor Survival of Human Hepatocellular Carcinomas

    Science.gov (United States)

    Jang, Kyu Yun; Noh, Sang Jae; Lehwald, Nadja; Tao, Guo-Zhong; Bellovin, David I.; Park, Ho Sung; Moon, Woo Sung; Felsher, Dean W.; Sylvester, Karl G.

    2012-01-01

    The increased expression of SIRT1 has recently been identified in numerous human tumors and a possible correlation with c-Myc oncogene has been proposed. However, it remains unclear whether SIRT1 functions as an oncogene or tumor suppressor. We sought to elucidate the role of SIRT1 in liver cancer under the influence of c-Myc and to determine the prognostic significance of SIRT1 and c-Myc expression in human hepatocellular carcinoma. The effect of either over-expression or knock down of SIRT1 on cell proliferation and survival was evaluated in both mouse and human liver cancer cells. Nicotinamide, an inhibitor of SIRT1, was also evaluated for its effects on liver tumorigenesis. The prognostic significance of the immunohistochemical detection of SIRT1 and c-Myc was evaluated in 154 hepatocellular carcinoma patients. SIRT1 and c-Myc regulate each other via a positive feedback loop and act synergistically to promote hepatocellular proliferation in both mice and human liver tumor cells. Tumor growth was significantly inhibited by nicotinamide in vivo and in vitro. In human hepatocellular carcinoma, SIRT1 expression positively correlated with c-Myc, Ki67 and p53 expression, as well as high á-fetoprotein level. Moreover, the expression of SIRT1, c-Myc and p53 were independent prognostic indicators of hepatocellular carcinoma. In conclusion, this study demonstrates that SIRT1 expression supports liver tumorigenesis and is closely correlated with oncogenic c-MYC expression. In addition, both SIRT1 and c-Myc may be useful prognostic indicators of hepatocellular carcinoma and SIRT1 targeted therapy may be beneficial in the treatment of hepatocellular carcinoma. PMID:23024800

  2. Thirst for Power: Energy, Water and Human Survival

    Science.gov (United States)

    Webber, M.

    2015-12-01

    Energy and water are precious resources, and they are interconnected. The energy sector uses a lot of water -- the thermoelectric power sector alone is the largest user of water in the U.S., withdrawing 200 billion gallons daily for powerplant cooling. Conversely, the water sector is responsible for over twelve percent of national energy consumption for moving, pumping, treating, and heating water. This interdependence means that droughts can cause energy shortages, and power outages can bring the water system to a halt. It also means that water efficiency is a pathway to energy efficiency and vice versa. This talk will give a big-picture overview of global energy and water trends to describe how they interact, what conflicts are looming, and how they can work together. This talk will include the vulnerabilities and cross-cutting solutions such as efficient markets and smart technologies that embed more information about resource management. It will include discussion of how population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind along with cultural shifts, advanced technologies, and better design can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, this talk will identify a hopeful path toward wise, long-range water-energy decisions and a more reliable and abundant future for humanity.

  3. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  4. Calpain-10 expression is elevated in pancreatic islets from patients with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Charlotte Ling

    Full Text Available BACKGROUND: Calpain-10 was the first gene to be identified influencing the risk of type 2 diabetes (T2D by positioning cloning. Studies in beta-cell lines and rodent islets suggest that calpain-10 may act as a regulator of insulin secretion. However, its role in human pancreatic islets remains unclear. The aim of this study was to examine if calpain-10 expression is altered in islets from patients with T2D and if the transcript level correlates with insulin release. We also tested if polymorphisms in the CAPN10 gene are associated with gene expression and insulin secretion in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Calpain-10 mRNA expression was analysed in human pancreatic islets from 34 non-diabetic and 10 T2D multi-organ donors. CAPN10 SNP-43 and SNP-44 were genotyped and related to gene expression and insulin release in response to glucose, arginine and glibenclamide. The mRNA level of calpain-10 was elevated by 64% in pancreatic islets from patients with T2D compared with non-diabetic donors (P = 0.01. Moreover, the calpain-10 expression correlated positively with arginine-stimulated insulin release in islets from non-diabetic donors (r = 0.45, P = 0.015. However, this correlation was lost in islets from patients with T2D (r = 0.09; P = 0.8. The G/G variant of SNP-43 was associated with reduced insulin release in response to glucose (Phuman islets, this correlation is lost in T2D suggesting that a stimulatory effect of calpain-10 could be lost in patients with T2D.

  5. Always follow your nose: the functional significance of social chemosignals in human reproduction and survival.

    Science.gov (United States)

    Lübke, Katrin T; Pause, Bettina M

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction" Across phyla, chemosensory communication is crucial for mediating a variety of social behaviors, which form the basis for ontogenetic and phylogenetic survival. In the present paper, evidence on chemosensory communication in humans, with special reference to reproduction and survival, will be presented. First, the impact of chemosignals on human reproduction will be reviewed. Work will be presented, showing how chemosensory signals are involved in mate choice and partnership formation by communicating attractiveness and facilitating a partner selection, which is of evolutionary advantage, and furthermore providing information about the level of sexual hormones. In addition to direct effects on phylogenetic survival, chemosignals indirectly aid reproductive success by fostering harm protection. Results will be presented, showing that chemosensory communication aids the emotional bond between mother and child, which in turn motivates parental caretaking and protection, leading to infant survival. Moreover, the likelihood of group survival can be increased through the use of stress-related chemosignals. Stress-related chemosignals induce a stress-related physiology in the perceiver, thereby priming a fight-flight-response, which is necessary for an optimum adaption to environmental harm. Finally, effects of sexual orientation on chemosensory communication will be discussed in terms of their putative role in stabilizing social groups, which might indirectly provide harm protection and foster survival. An integrative model of the presented data will be introduced. In conclusion, an outlook, focusing on the involvement of chemosensory communication in human social behavior and illustrating a novel approach to the significance of chemosensory signals in human survival, will be given.

  6. Activation of Melatonin Signaling Promotes β-Cell Survival and Function.

    Science.gov (United States)

    Costes, Safia; Boss, Marti; Thomas, Anthony P; Matveyenko, Aleksey V

    2015-05-01

    Type 2 diabetes mellitus (T2DM) is characterized by pancreatic islet failure due to loss of β-cell secretory function and mass. Studies have identified a link between a variance in the gene encoding melatonin (MT) receptor 2, T2DM, and impaired insulin secretion. This genetic linkage raises the question whether MT signaling plays a role in regulation of β-cell function and survival in T2DM. To address this postulate, we used INS 832/13 cells to test whether activation of MT signaling attenuates proteotoxicity-induced β-cell apoptosis and through which molecular mechanism. We also used nondiabetic and T2DM human islets to test the potential of MT signaling to attenuate deleterious effects of glucotoxicity and T2DM on β-cell function. MT signaling in β-cells (with duration designed to mimic typical nightly exposure) significantly enhanced activation of the cAMP-dependent signal transduction pathway and attenuated proteotoxicity-induced β-cell apoptosis evidenced by reduced caspase-3 cleavage (∼40%), decreased activation of stress-activated protein kinase/Jun-amino-terminal kinase (∼50%) and diminished oxidative stress response. Activation of MT signaling in human islets was shown to restore glucose-stimulated insulin secretion in islets exposed to chronic hyperglycemia as well as in T2DM islets. Our data suggest that β-cell MT signaling is important for the regulation of β-cell survival and function and implies a preventative and therapeutic potential for preservation of β-cell mass and function in T2DM.

  7. Thirst for Power: Energy, Water and Human Survival

    Science.gov (United States)

    Webber, M.

    2016-12-01

    Energy, food and water are precious resources, and they are interconnected. The energy sector uses a lot of water, the food sector uses a lot of energy and water, the water sector uses a lot of energy, and as a nation we are contemplating a biofuels policy that uses food for energy. The thermoelectric power sector alone is the largest user of water in the U.S., withdrawing 200 billion gallons daily for powerplant cooling. Conversely, the water sector is responsible for over twelve percent of national energy consumption for moving, pumping, treating, and heating water. The food system uses over ten percent of national energy consumption. This interdependence means that droughts can cause energy shortages, and power outages can bring the water system to a halt, while energy and water challenges pose constraints to our food system. It also means that water efficiency is a pathway to energy efficiency and vice versa. This talk will give a big-picture overview of global food, energy and water trends to describe how they interact, what conflicts are looming, and how they can work together. This talk will include the vulnerabilities and cross-cutting solutions such as efficient markets and smart technologies that embed more information about resource management. It will include discussion of how population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind along with cultural shifts, advanced technologies, and better design can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, this talk will identify a hopeful path toward wise, long-range water-energy decisions and a more reliable and abundant future for humanity.

  8. Mold-casted non-degradable, islet macro-encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice.

    Science.gov (United States)

    Rios, Peter Daniel; Zhang, Xiaomin; Luo, Xunrong; Shea, Lonnie D

    2016-11-01

    Islet transplantation is a potential cure for diabetic patients, however this procedure is not widely adopted due to the high rate of graft failure. Islet encapsulation within hydrogels is employed to provide a three-dimensional microenvironment conducive to survival of transplanted islets to extend graft function. Herein, we present a novel macroencapsulation device, composed of PEG hydrogel, that combines encapsulation with lithography techniques to generate polydimethylsiloxane (PDMS) molds. PEG solutions are mixed with islets, which are then cast into PDMS molds for subsequent crosslinking. The molds can also be employed to provide complex architectures, such as microchannels that may allow vascular ingrowth through pre-defined regions of the hydrogel. PDMS molds allowed for the formation of stable gels with encapsulation of islets, and in complex architectures. Hydrogel devices with a thickness of 600 μm containing 500 islets promoted normoglycemia within 12 days following transplantation into the epididymal fat pad, which was sustained over the two-month period of study until removal of the device. The inclusion of microchannels, which had a similar minimum distance between islets and the hydrogel surface, similarly promoted normoglycemia. A glucose challenge test indicated hydrogel devices achieved normoglycemia 90 min post-dextrose injections, similar to control mice with native pancreata. Histochemical staining revealed that transplanted islets, identified as insulin positive, were viable and isolated from host tissue at 8 weeks post-transplantation, yet devices with microchannels had tissue and vascular ingrowth within the channels. Taken together, these results demonstrate a system for creating non-degradable hydrogels with complex geometries for encapsulating islets capable of restoring normoglycemia, which may expand islet transplantation as a treatment option for diabetic patients. Biotechnol. Bioeng. 2016;113: 2485-2495. © 2016 Wiley

  9. Application of anti-CD103 immunotoxin for saving islet allograft in context of transplantation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; Gregg A. Hadley

    2010-01-01

    Background Previous studies using knockout mice document a key role for the integrin CD103 in promoting organ allograft rejection and graft-versus-host disease. However, a determination of whether blockade of the CD103 pathway represents a viable therapeutic strategy for intervention in these processes has proven problematic due to the lack of reagents that efficiently deplete CD103+ cells from wild type hosts. To circumvent this problem, in the present study, we invented an anti-CD103 immunotoxin (M290-SAP). We investigated whether M290-SAP has capacity to eliminate CD103-expressing cells in vivo and protect transplanted islets from destroying by host immune cells.Methods Flow cytometry was used to analyze the efficacy of M290-SAP in depleting CD103-expressing cells in vivo.Then using allogenic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, the therapeutic efficacy of CD103-expressing cell depletion was addressed.Results M290-SAP dramatically reduces the frequency and absolute numbers of CD103-expressing leukocytes in peripheral lymphatic tissues of treated mice. Balb/c islets transplanted into streptozotocin-induced diabetic C57BL/6 mice under single M290-SAP treatment showed an indefinite survival time compared with untreated mice, M290-treated mice and IgG-SAP treated mice (mean survival time, >100 days vs. <20 days). C57BL/6 islets transplanted into hyperglycemic NOD mice under single M290-SAP treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time 12-13 days vs. <7 days). Immunological analysis of mice with long-term islet allograft survival revealed an obvious atrophy thymus and severe downregulation of alloimmunity of CD8 subpopulation response to allogenic stimulation.Conclusion Regardless of the underlying mechanisms, these data document that depletion of CD103-expressing cells represents a viable strategy for therapeutic intervention in islet allograft

  10. Islet Brain 1 Protects Insulin Producing Cells against Lipotoxicity.

    Science.gov (United States)

    Brajkovic, Saška; Ferdaoussi, Mourad; Pawlowski, Valérie; Ezanno, Hélène; Plaisance, Valérie; Zmuda, Erik; Hai, Tsonwin; Annicotte, Jean-Sébastien; Waeber, Gérard; Abderrahmani, Amar

    2016-01-01

    Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.

  11. A health-economic analysis of porcine islet xenotransplantation.

    Science.gov (United States)

    Beckwith, Jessica; Nyman, John A; Flanagan, Brian; Schrover, Rudolf; Schuurman, Henk-Jan

    2010-01-01

    Islet cell transplantation is a promising treatment for type 1 diabetes. To overcome the shortage of deceased human pancreas donors, porcine islet cell xenotransplantation is being developed as an alternative to allotransplantation. The objective of this study was to perform a cost-effectiveness analysis of porcine islet transplantation in comparison with standard insulin therapy. The patient population for this study was young adults, ages 20 to 40, for whom standard medical care is inadequate in controlling blood glucose levels (hypoglycemia unawareness). Since trial data were lacking, estimates used extrapolations from data found in the literature and ongoing trials in clinical allotransplantation. Cost estimates were based on the data available in the USA. Markov modeling and Monte Carlo simulations using software specifically developed for health-economic evaluations were used. Outcomes data for ongoing clinical islet allotransplantation from the University of Minnesota were used, along with probabilities of complications from the Diabetes Control and Complications Trial. Quality-adjusted life years (QALYs) were the effectiveness measure. The upper limit of being cost-effective is $100,000 per QALY. Cost data from the literature were used and adjusted to 2007 US dollars using the medical care portion of the Consumer Price Index. In both Markov modeling and Monte Carlo simulations, porcine islet xenotransplantation was both more effective and less costly over the course of the 20-yr model. For standard insulin therapy, cumulative cost per patient was $661,000, while cumulative effectiveness was 9.4 QALYs, for a cost of $71,100 per QALY. Transplantation had a cumulative cost of $659 000 per patient, a cumulative effectiveness of 10.9 QALYs, and a cost per QALY of $60,700. Islet transplantation became cost-effective at 4 yr after transplantation, and was more cost-effective than standard insulin treatment at 14 yr. These findings are related to relative high

  12. DDX3X Biomarker Correlates with Poor Survival in Human Gliomas

    Directory of Open Access Journals (Sweden)

    Dueng-Yuan Hueng

    2015-07-01

    Full Text Available Primary high-grade gliomas possess invasive growth and lead to unfavorable survival outcome. The investigation of biomarkers for prediction of survival outcome in patients with gliomas is important for clinical assessment. The DEAD (Asp-Glu-Ala-Asp box helicase 3, X-linked (DDX3X controls tumor migration, proliferation, and progression. However, the role of DDX3X in defining the pathological grading and survival outcome in patients with human gliomas is not yet clarified. We analyzed the DDX3X gene expression, WHO pathological grading, and overall survival from de-linked data. Further validation was done using quantitative RT-PCR of cDNA from normal brain and glioma, and immunohistochemical (IHC staining of tissue microarray. Statistical analysis of GEO datasets showed that DDX3X mRNA expression demonstrated statistically higher in WHO grade IV (n = 81 than in non-tumor controls (n = 23, p = 1.13 × 10−10. Moreover, DDX3X level was also higher in WHO grade III (n = 19 than in non-tumor controls (p = 2.43 × 10−5. Kaplan–Meier survival analysis showed poor survival in patients with high DDX3X mRNA levels (n = 24 than in those with low DDX3X expression (n = 53 (median survival, 115 vs. 58 weeks, p = 0.0009, by log-rank test, hazard ratio: 0.3507, 95% CI: 0.1893–0.6496. Furthermore, DDX3X mRNA expression and protein production significantly increased in glioma cells compared with normal brain tissue examined by quantitative RT-PCR, and Western blot. IHC staining showed highly staining of high-grade glioma in comparison with normal brain tissue. Taken together, DDX3X expression level positively correlates with WHO pathologic grading and poor survival outcome, indicating that DDX3X is a valuable biomarker in human gliomas.

  13. Control of islet intercellular adhesion molecule-1 expression by interferon-alpha and hypoxia.

    Science.gov (United States)

    Chakrabarti, D; Huang, X; Beck, J; Henrich, J; McFarland, N; James, R F; Stewart, T A

    1996-10-01

    The ability of interferon-alpha (IFN-alpha) to induce the adhesion molecules that characterize the islets of patients with type I diabetes has been investigated. We have found that all tested recombinant IFN-as will induce major histocompatibility complex (MHC) class I on arterial endothelial cells. Some but not all IFN-as will induce intercellular adhesion molecule-1 (ICAM-1). However, there is only a transient and modest increase in VCAM on arterial endothelial cells. IFN-alpha has very little effect on endothelial MHC class II expression but will induce these proteins on monocytes. Thus, there is a close concordance between the biological actions of IFN-alpha and the appearance of those adhesion molecules induced in the islets of patients with type I diabetes. IFN-alpha is also produced in normal human islets during short-term cultures, probably as a result of the ischemia present at the center of the islet. This induction of IFN-alpha by hypoxia may explain the previously reported spontaneous induction of ICAM-1 in human islets and may also be a contributing factor to the failure of islet grafts.

  14. The Mitochondrial Peptidase Pitrilysin Degrades Islet Amyloid Polypeptide in Beta-Cells.

    Directory of Open Access Journals (Sweden)

    Hanjun Guan

    Full Text Available Amyloid formation and mitochondrial dysfunction are characteristics of type 2 diabetes. The major peptide constituent of the amyloid deposits in type 2 diabetes is islet amyloid polypeptide (IAPP. In this study, we found that pitrilysin, a zinc metallopeptidase of the inverzincin family, degrades monomeric, but not oligomeric, islet amyloid polypeptide in vitro. In insulinoma cells when pitrilysin expression was decreased to 5% of normal levels, there was a 60% increase in islet amyloid polypeptide-induced apoptosis. In contrast, overexpression of pitrilysin protects insulinoma cells from human islet amyloid polypeptide-induced apoptosis. Since pitrilysin is a mitochondrial protein, we used immunofluorescence staining of pancreases from human IAPP transgenic mice and Western blot analysis of IAPP in isolated mitochondria from insulinoma cells to provide evidence for a putative intramitochondrial pool of IAPP. These results suggest that pitrilysin regulates islet amyloid polypeptide in beta cells and suggest the presence of an intramitochondrial pool of islet amyloid polypeptide involved in beta-cell apoptosis.

  15. A stereological study of effects of aqueous extract of Tamarindus indica seeds on pancreatic islets in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Hamidreza, Hamidreza; Heidari, Zahra; Shahraki, Mohammadreza; Moudi, Bita

    2010-10-01

    Tamarindus indica Linn was used as a traditional medicine for the management of diabetes mellitus in human and experimental animals. This study investigated effects of aqueous extract of Tamarindus indica seeds (AETIS) against STZ-induced damages in pancreatic islands by means of stereological methods. sixty matured normoglycemic male Wistar rats, weighing 200-250 gr, were selected and randomly divided into 6 groups (n=10). Control, STZ-induced diabetic; by intraperitoneal injection of 55 mg/Kg streptozotocin, Treated control group (TC); received AETIS at a dose of 200mg/kg/day, and AETIS treated diabetic groups (TD1-3); received respectively AETIS at the dose of 50, 100,and 200 mg/kg/day by gavage from one week after induction of diabetes by STZ. After 8 weeks of experiment, stereological estimation of volume density and total volume of islets and beta cells, volume weighted mean islets volume, mass of beta cells, islets, and pancreas and total number of islets were done. Volume density and total volume of islets, volume weighted mean islets volume, volume density islets/pancreas, volume density beta cells/islet, mass of islets and pancreas of treated diabetic groups (TD1-3) were significantly higher than untreated diabetic group (P0.05). Total number of islets, pancreas wet weight and volume did not show any significant changes between control and experimental groups (P>0.05). Results suggested that AETIS partially restores pancreatic beta cells and repairs STZ-induced damages in rats.

  16. The survival of mankind and human speciation in a complex astrobiological context

    Directory of Open Access Journals (Sweden)

    I. Valentin Petrescu-Mag

    2009-12-01

    Full Text Available The migration of Homo sapiens in the outer space brings one of the most significanenvironmental transformations in the history of a species. The astronomic isolation barrier is certainlystronger than the known geographic isolation. The future human colonies will split into new races,subspecies and finally new species. The survival of human civilization depends in a large extent onspread of these colonies outside our solar system and outside Milky Way.

  17. Rac1 regulates pancreatic islet morphogenesis.

    OpenAIRE

    2009-01-01

    Abstract Background Pancreatic islets of Langerhans originate from endocrine progenitors within the pancreatic ductal epithelium. Concomitant with differentiation of these progenitors into hormone-producing cells such cells delaminate, aggregate and migrate away from the ductal epithelium. The cellular and molecular mechanisms regulating islet cell delamination and cell migration are poorly understood. Extensive biochemical and cell biological studies using cultured cells demonstrated that Ra...

  18. Canine islets in an ultrafiltered environment.

    Science.gov (United States)

    Merrell, R C; Basadonna, G

    1985-11-01

    Molecular sieve membranes can protect pancreatic islets against immune recognition in diabetic patients treated by endocrine tissue replacement. These biocompatible membranes permit the passage of small peptides such as insulin, and preclude the diffusion of immunoglobulins and immunogenic molecules. However, the tissue must function indefinitely in an ultrafiltered environment determined by the sequestering membranes. The chronic perifusion of canine islet tissue was compared in ultrafiltered and microfiltered chambers. The biphasic pattern of insulin release by similar numbers of islets from the same pancrease preparation was not significantly different when tissue was cultured in a micro- or an ultrafiltered environment. The cumulative insulin output of the two systems was quite similar over 3 days of culture. Canine islet tissue can be sustained in an ultrafiltered environment with maintenance of insulin release to glucose stimulation, which is quantitatively similar to islet tissue maintained in chronic perifusion without ultrafiltration.

  19. Analyzing age-specific genetic effects on human extreme age survival in cohort-based longitudinal studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Jacobsen, Rune; Sørensen, Mette

    2013-01-01

    The analysis of age-specific genetic effects on human survival over extreme ages is confronted with a deceleration pattern in mortality that deviates from traditional survival models and sparse genetic data available. As human late life is a distinct phase of life history, exploring the genetic...... effects on extreme age survival can be of special interest to evolutionary biology and health science. We introduce a non-parametric survival analysis approach that combines population survival information with individual genotype data in assessing the genetic effects in cohort-based longitudinal studies...

  20. Rac1 regulates pancreatic islet morphogenesis

    Directory of Open Access Journals (Sweden)

    Ståhlberg Anders

    2009-01-01

    Full Text Available Abstract Background Pancreatic islets of Langerhans originate from endocrine progenitors within the pancreatic ductal epithelium. Concomitant with differentiation of these progenitors into hormone-producing cells such cells delaminate, aggregate and migrate away from the ductal epithelium. The cellular and molecular mechanisms regulating islet cell delamination and cell migration are poorly understood. Extensive biochemical and cell biological studies using cultured cells demonstrated that Rac1, a member of the Rho family of small GTPases, acts as a key regulator of cell migration. Results To address the functional role of Rac1 in islet morphogenesis, we generated transgenic mice expressing dominant negative Rac1 under regulation of the Rat Insulin Promoter. Blocking Rac1 function in beta cells inhibited their migration away from the ductal epithelium in vivo. Consistently, transgenic islet cell spreading was compromised in vitro. We also show that the EGF-receptor ligand betacellulin induced actin remodelling and cell spreading in wild-type islets, but not in transgenic islets. Finally, we demonstrate that cell-cell contact E-cadherin increased as a consequence of blocking Rac1 activity. Conclusion Our data support a model where Rac1 signalling controls islet cell migration by modulating E-cadherin-mediated cell-cell adhesion. Furthermore, in vitro experiments show that betacellulin stimulated islet cell spreading and actin remodelling is compromised in transgenic islets, suggesting that betacellulin may act as a regulator of Rac1 activity and islet migration in vivo. Our results further emphasize Rac1 as a key regulator of cell migration and cell adhesion during tissue and organ morphogenesis.

  1. Islet neogenesis: a possible pathway for beta-cell replenishment.

    Science.gov (United States)

    Bonner-Weir, Susan; Guo, Lili; Li, Wan-Chun; Ouziel-Yahalom, Limor; Lysy, Philippe A; Weir, Gordon C; Sharma, Arun

    2012-01-01

    Diabetes, particularly type 1 diabetes, results from the lack of pancreatic β-cells. β-cell replenishment can functionally reverse diabetes, but two critical challenges face the field: 1. protection of the new β-cells from autoimmunity and allorejection, and 2. development of β-cells that are readily available and reliably functional. This chapter will examine the potential of endogenous replenishment of pancreatic β-cells as a possible therapeutic tool if autoimmunity could be blunted. Two pathways for endogenous replenishment exist in the pancreas: replication and neogenesis, defined as the formation of new islet cells from pancreatic progenitor/stem cells. These pathways of β-cell expansion are not mutually exclusive and both occur in embryonic development, in postnatal growth, and in response to some injuries. Since the β-cell population is dramatically reduced in the pancreas of type 1 diabetes patients, with only a small fraction of the β-cells surviving years after onset, replication of preexisting β-cells would not be a reasonable start for replenishment. However, induction of neogenesis could provide a starting population that could be further expanded by replication. It is widely accepted that neogenesis occurs in the initial embryonic formation of the endocrine pancreas, but its occurrence anytime after birth has become controversial because of discordant data from lineage tracing experiments. However, the concept was built upon many observations from different models and species over many years. Herein, we discuss the role of neogenesis in normal growth and regeneration, as learned from rodent models, followed by an analysis of what has been found in humans.

  2. Survival of Human Neurofibroma in Immunodeficient Mice and Initial Results of Therapy With Pirfenidone

    Directory of Open Access Journals (Sweden)

    Babovic-Vuksanovic Dusica

    2004-01-01

    Full Text Available Neurofibromatosis type I is a common tumor predisposing disease in humans. Surgical therapy can be applied only in selected patients with resectable masses. Hence, development of new therapies for this disease is urgent. We used human neurofibroma implants in mice with severe combined immunodeficiency (SCID as a model to test the toxicity and potential efficacy of pirfenidone, a new therapeutic agent. Two hundred twelve human neurofibromas were transplanted into various locations in 59 experimental animals, and 30 mice with implants received oral pirfenidone for up to six weeks. Survival of neurofibromas in animals treated with pirfenidone was lower than in the control group ( P=.02 . Tumors did not change histologic appearance or vascularization in response to pirfenidone. Treatment with pirfenidone, a new antifibrotic agent, inhibits survival of some tumors without causing toxicity in animals.

  3. Recombinant human erythropoietin increases survival and reduces neuronal apoptosis in a murine model of cerebral malaria

    DEFF Research Database (Denmark)

    Wiese, Lothar; Hempel, Casper; Penkowa, Milena;

    2008-01-01

    with recombinant human Epo (rhEpo; 50-5000 U/kg/OD, i.p.) at different time points. The effect on survival was measured. Brain pathology was investigated by TUNEL (Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labelling), as a marker of apoptosis. Gene...... expression in brain tissue was measured by real time PCR. RESULTS: Treatment with rhEpo increased survival in mice with CM in a dose- and time-dependent manner and reduced apoptotic cell death of neurons as well as the expression of pro-inflammatory cytokines in the brain. This neuroprotective effect...

  4. Pancreatic islet renin angiotensin system: its novel roles in islet function and in diabetes mellitus.

    Science.gov (United States)

    Leung, Po Sing; Carlsson, Per-Ola

    2005-05-01

    Several regulatory systems are implicated in the regulation of islet function and beta cell mass. Of great interest in this context are some endocrine, paracrine/autocrine, and intracrine regulators. These include, to name but a few, the gut peptides, growth factors, prostaglandins, and some vasoactive mediators such as nitric oxide, bradykinins, endothelins, and angiotensins. Apart from its potent vasoconstrictor actions, the renin-angiotensin system (RAS) that generates angiotensin II has several novel functions-stimulation and inhibition of cell proliferation; induction of apoptosis; generation of reactive oxygen species; regulation of hormone secretion; and proinflammatory and profibrogenic actions. In the pancreas, recent evidence supports the presence of an islet RAS, which is subject to activation by islet transplantation and diabetes. Such a local islet RAS, if activated, may drive islet fibrosis and reduce islet blood flow, oxygen tension, and insulin biosynthesis. Moreover, activation of an islet RAS may drive the synthesis of reactive oxygen species, cause oxidative stress-induced beta cell dysfunction and apoptosis, and thus contribute to the islet dysfunction seen in type 2 diabetes and after islet transplantation. Blockade of the RAS could contribute to the development of novel therapeutic strategies in the prevention and treatment of patients with diabetes and in islet transplantation.

  5. Identification of Donor Origin and Condition of Transplanted Islets In Situ in the Liver of a Type 1 Diabetic Recipient.

    Science.gov (United States)

    van der Torren, Cornelis R; Suwandi, Jessica S; Lee, DaHae; Van't Wout, Ernst-Jan T; Duinkerken, Gaby; Swings, Godelieve; Mulder, Arend; Claas, Frans H J; Ling, Zhidong; Gillard, Pieter; Keymeulen, Bart; In't Veld, Peter; Roep, Bart O

    2017-01-24

    Transplantation of islet allografts into type 1 diabetic recipients usually requires multiple pancreas donors to achieve insulin independence. This adds to the challenges of immunological monitoring of islet transplantation currently relying on surrogate immune markers in peripheral blood. We investigated donor origin and infiltration of islets transplanted in the liver of a T1D patient who died of hemorrhagic stroke 4 months after successful transplantation with two intraportal islet grafts combining six donors. Immunohistological staining for donor HLA using a unique panel of human monoclonal HLA-specific alloantibodies was performed on liver cryosections after validation on cryopreserved kidney, liver, and pancreas and compared with auto- and alloreactive T-cell immunity in peripheral blood. HLA-specific staining intensity and signal-to-noise ratio varied between tissues from very strong on kidney glomeruli, less in liver, kidney tubuli, and endocrine pancreas to least in exocrine pancreas, complicating the staining of inflamed islets in an HLA-disparate liver. Nonetheless, five islets from different liver lobes could be attributed to donors 1, 2, and 5 by staining patterns with multiple HLA types. All islets showed infiltration with CD8+ cytotoxic T cells that was mirrored by progressive alloreactive responses in peripheral blood mononuclear cells (PBMCs) to donors 1, 2, and 5 after transplantation. Stably low rates of peripheral islet autoreactive T-cell responses after islet infusion fit with a complete HLA mismatch between grafts and recipient and exclude the possibility that the islet-infiltrating CD8 T cells were autoreactive. HLA-specific immunohistochemistry can identify donor origin in situ and differentiate graft dysfunction and immunological destruction.

  6. Time-course regulation of quercetin on cell survival/proliferation pathways in human hepatoma cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Angeles Martín, María; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2008-04-01

    Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. This study was aimed at investigating the time-course regulation effect of quercetin on survival/proliferation pathways in a human hepatoma cell line (HepG2). Quercetin induced a significant time-dependent inactivation of the major survival signaling proteins, i. e., phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (AKT), extracellular regulated kinase (ERK), protein kinase C-alpha (PKC-alpha), in concert with a time-dependent activation of key death-related signals: c-jun amino-terminal kinase (JNK) and PKC-delta. These data suggest that quercetin exerts a tight regulation of survival/proliferation pathways that requires the integration of different signals and persists over time, being the balance of these regulatory signals what determines the fate of HepG2 cells.

  7. VEGF-conjugated alginate hydrogel prompt angiogenesis and improve pancreatic islet engraftment and function in type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Nina; Han, Yongming [Department of Anatomy, Basic Medical College, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Xu, Hanlin [Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Gao, Yisen; Yi, Tao [Acupuncture and Moxibustion College, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Yao, Jiale; Dong, Li; Cheng, Dejun [Basic Medical College, Hubei University of Chinese Medicine, Wuhan, Hubei (China); Chen, Zebin, E-mail: chenzebin-hbtcm@outlook.com [Acupuncture and Moxibustion College, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, Hubei (China)

    2016-02-01

    Type 1 diabetes was a life-long disease that affected numerous people around the world. Insulin therapy has its limitations that may involve hyperglycemia and heavy burden of patient by repeated dose. Islet transplantation emerged as a promising approach to reach periodical reverse of diabetes, however, transplanted islets suffer from foreign body reaction and lack of nutrition and oxygen supply, especially in the blood-vessel-shortage subcutaneous site which was preferred by patient and surgeon. In this study, we designed and synthesized a vascular endothelial growth factor (VEGF) conjugated alginate material to encapsulate the transplanted islets via 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction, and successful conjugation was confirmed by Nuclear Magnetic Resonance H1 spectrum. The best VEGF concentration (100 ng/ml) was determined by the combined studies of the mechanical property and endothelial cell growth assay. In vivo study, conjugated VEGF on alginate exhibited sustained promoting angiogenesis property after subcutaneous transplantation by histology study and islets encapsulated in this material achieved long term therapeutic effect (up to 50 days) in the diabetic mice model. In conclusion, this study establishes a simple biomaterial strategy for islet transplantation to enhance islet survival and function, which could be a feasible therapeutic alternative for type 1 diabetes. - Highlights: • We synthesized VEGF-conjugated alginate material to encapsulate the transplanted islets. • The biomaterials improve islet engraftment and function due to angiogenesis. • The biomaterials could be a strong support for cell therapy with islet transplantation in type 1 diabetes.

  8. Clinical use of fructosamine in islet transplantation.

    Science.gov (United States)

    Tharavanij, Thipaporn; Froud, Tatiana; Leitao, Cristiane B; Baidal, David A; Paz-Pabon, Charlotte N; Shari, Messinger; Cure, Pablo; Bernetti, Karina; Ricordi, Camillo; Alejandro, Rodolfo

    2009-01-01

    Many islet transplant recipients have medical conditions that could interfere with the accuracy of HbA1c measurements (e.g., anemia/dapsone use). Fructosamine is less prone to have clinical interferences and reflects glucose control in a shorter period of time than HbA1c. This study aimed to validate fructosamine use in islet transplant subjects and to evaluate its effectiveness as a predictor for islet graft dysfunction. Thirty-three islet transplant recipients who had concomitant fructosamine and HbA1c data available were retrospectively analyzed. HbA1c, fructosamine, mean capillary blood glucose, and islet graft function (fasting C-peptide/glucose ratio) were assessed. There was a significant and positive association between fructosamine and HbA1c (p 6% was predictive of this outcome 1 month in advance (OR 2.95, p = 0.003). However, although significantly associated with graft dysfunction, use of this cutoff as a predictor of dysfunction has poor sensitivity (50%) and specificity (77.6%). Fructosamine above the normal range (>270 mumol/L Quest Diagnostics) was also predictive of ensuing dysfunction (OR 2.47, p = 0.03); however, it had similarly poor sensitivity (62%) and specificity (64%). Fructosamine can be used as an alternative to HbA1c for glycemic assessment in islet transplant recipients in situations with HbA1c assay interference. Neither HbA1c nor fructosamine are good predictors of islet graft dysfunction.

  9. Can we colonize the solar system? Human biology and survival in the extreme space environment.

    Science.gov (United States)

    Launius, Roger D

    2010-09-01

    Throughout the history of the space age the dominant vision for the future has been great spaceships plying the solar system, and perhaps beyond, moving living beings from one planet to another. Spacesuited astronauts would carry out exploration, colonization, and settlement as part of a relentlessly forward looking movement of humanity beyond Earth. As time has progressed this image has not changed appreciably even as the full magnitude of the challenges it represents have become more and more apparent. This essay explores the issues associated with the human movement beyond Earth and raises questions about whether humanity will ever be able to survive in the extreme environment of space and the other bodies of the solar system. This paper deals with important historical episodes as well as wider conceptual issues about life in space. Two models of expansion beyond Earth are discussed: (1) the movement of microbes and other types of life on Earth that can survive the space environment and (2) the modification of humans into cyborgs for greater capability to survive in the extreme environments encountered beyond this planet.

  10. Genome-wide identification of genes essential for the survival of Streptococcus pneumoniae in human saliva.

    Directory of Open Access Journals (Sweden)

    Lilly M Verhagen

    Full Text Available Since Streptococcus pneumoniae transmits through droplet spread, this respiratory tract pathogen may be able to survive in saliva. Here, we show that saliva supports survival of clinically relevant S. pneumoniae strains for more than 24 h in a capsule-independent manner. Moreover, saliva induced growth of S. pneumoniae in growth-permissive conditions, suggesting that S. pneumoniae is well adapted for uptake of nutrients from this bodily fluid. By using Tn-seq, a method for genome-wide negative selection screening, we identified 147 genes potentially required for growth and survival of S. pneumoniae in saliva, among which genes predicted to be involved in cell envelope biosynthesis, cell transport, amino acid metabolism, and stress response predominated. The Tn-seq findings were validated by testing a panel of directed gene deletion mutants for their ability to survive in saliva under two testing conditions: at room temperature without CO2, representing transmission, and at 37 °C with CO2, representing in-host carriage. These validation experiments confirmed that the plsX gene and the amiACDEF and aroDEBC operons, involved in respectively fatty acid metabolism, oligopeptide transport, and biosynthesis of aromatic amino acids play an important role in the growth and survival of S. pneumoniae in saliva at 37 °C. In conclusion, this study shows that S. pneumoniae is well-adapted for growth and survival in human saliva and provides a genome-wide list of genes potentially involved in adaptation. This notion supports earlier evidence that S. pneumoniae can use human saliva as a vector for transmission.

  11. Genome-Wide Identification of Genes Essential for the Survival of Streptococcus pneumoniae in Human Saliva

    Science.gov (United States)

    Verhagen, Lilly M.; de Jonge, Marien I.; Burghout, Peter; Schraa, Kiki; Spagnuolo, Lorenza; Mennens, Svenja; Eleveld, Marc J.; van der Gaast-de Jongh, Christa E.; Zomer, Aldert; Hermans, Peter W. M.; Bootsma, Hester J.

    2014-01-01

    Since Streptococcus pneumoniae transmits through droplet spread, this respiratory tract pathogen may be able to survive in saliva. Here, we show that saliva supports survival of clinically relevant S. pneumoniae strains for more than 24 h in a capsule-independent manner. Moreover, saliva induced growth of S. pneumoniae in growth-permissive conditions, suggesting that S. pneumoniae is well adapted for uptake of nutrients from this bodily fluid. By using Tn-seq, a method for genome-wide negative selection screening, we identified 147 genes potentially required for growth and survival of S. pneumoniae in saliva, among which genes predicted to be involved in cell envelope biosynthesis, cell transport, amino acid metabolism, and stress response predominated. The Tn-seq findings were validated by testing a panel of directed gene deletion mutants for their ability to survive in saliva under two testing conditions: at room temperature without CO2, representing transmission, and at 37°C with CO2, representing in-host carriage. These validation experiments confirmed that the plsX gene and the amiACDEF and aroDEBC operons, involved in respectively fatty acid metabolism, oligopeptide transport, and biosynthesis of aromatic amino acids play an important role in the growth and survival of S. pneumoniae in saliva at 37°C. In conclusion, this study shows that S. pneumoniae is well-adapted for growth and survival in human saliva and provides a genome-wide list of genes potentially involved in adaptation. This notion supports earlier evidence that S. pneumoniae can use human saliva as a vector for transmission. PMID:24586856

  12. Dysregulation of Dicer1 in Beta Cells Impairs Islet Architecture and Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Amitai D. Mandelbaum

    2012-01-01

    Full Text Available microRNAs (miRNAs play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal development, Dicer1-null cells are depleted. Furthermore, wild-type beta cells are repopulating the islets in complex compensatory dynamics. Because loss of Dicer1 is also associated with changes in the distribution of membranous E-cadherin, we hypothesized that E-cadherin activity may play a role in beta cell survival or islet architecture. However, genetic loss of E-cadherin function does not impair islet architecture, suggesting that miRNAs likely function through other or redundant effectors in the endocrine pancreas.

  13. Human and Autologous Adipose-derived Stromal Cells Increase Flap Survival in Rats Independently of Host Immune Response

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Jensen, Charlotte Harken; Andersen, Ditte Caroline

    2017-01-01

    evaluated after 7 days. RESULTS: The mean survival rates for SVF treatment regardless of human or autologous origin were significantly increased as compared with the control group. Adipose stem/stromal cell and SVF lysate injection did not increase flap survival. Vessel density was increased for human...... and rat SVF and human ASC but not for SVF lysate. Human cells were not detected in the flaps after 7 days. CONCLUSIONS: Flap survival increased with SVF treatment regardless of human or autologous origin, suggesting that increased flap survival is independent of the host immune response. All cell...... injections lead to increased vessel density, but it did not necessarily lead to increased flap survival. Further research should elaborate which molecular events make SVF treatment more efficacious than ASC....

  14. Postharvest Survival of Porcine Sapovirus, a Human Norovirus Surrogate, on Phytopathogen-Infected Leafy Greens.

    Science.gov (United States)

    Esseili, Malak A; Chin, Ashlina; Saif, Linda; Miller, Sally A; Qu, Feng; Lewis Ivey, Melanie L; Wang, Qiuhong

    2015-08-01

    Leafy greens are increasingly being recognized as an important vehicle for human noroviruses (HuNoV), which cause recurring gastroenteritis outbreaks. Leafy greens often become infected by phytopathogens in the field, which may cause symptoms on the edible parts. Whether plant pathogen infections enhance the survival of HuNoV on leafy greens is unknown. Lettuce and spinach plants were infected with a bacterium, Xanthomonas campestris pv. vitians strain 701a, and with Cucumber mosaic virus strain Fny, respectively. The survival rate of porcine sapovirus (SaV), a HuNoV surrogate, on infected and noninfected postharvest leaves was then assessed. In addition, acibenzolar-S-methyl, a commercial chemical elicitor of plant systemic defense, was used to assess whether stimulating the plant host defense affects the postharvest survival of SaV. Leaves harvested from control and treated plants were inoculated with SaV and incubated for 7 days at 4°C. The infectivity (tissue culture infectious dose affecting 50% of the culture [TCID50]/ml) and RNA (genomic equivalent/ml) titers of SaV were assayed using immunohistochemistry staining and SaV-specific TaqMan real-time reverse transcription PCR. Our results showed that cucumber mosaic virus Fny induced mild, nonnecrotic symptoms on spinach leaves and had no effect on SaV survival. In contrast, X. campestris pv. vitians 701a induced small localized necrotic lesions and significantly enhanced SaV survival on lettuce leaves. Treatment with acibenzolar-S-methyl was effective in reducing X. campestris pv. vitians 701a-induced lesions on infected lettuce plants but had no direct effect on SaV survival when used on healthy lettuce plants. These findings indicate that phytopathogen-induced necrotic lesions may enhance the postharvest survival of HuNoV on lettuce leaves. Therefore, preventive measures aiming to maintain healthy plants and minimize preharvest biological damage are expected to improve the safety of leafy greens.

  15. Nitric oxide mediates the survival action of IGF-1 and insulin in pancreatic beta cells.

    Science.gov (United States)

    Cahuana, Gladys M; Tejedo, Juan R; Hmadcha, Abdelkrim; Ramírez, Remedios; Cuesta, Antonio L; Soria, Bernat; Martin, Franz; Bedoya, Francisco J

    2008-02-01

    Generation of low levels of nitric oxide (NO) contributes to beta cell survival in vitro. The purpose of this study was to explore the link between NO and the survival pathway triggered by insulin-like growth factor-1 (IGF-1) and insulin in insulin producing RINm5F cells and in pancreatic islets. Results show that exposure of cells to IGF-1/insulin protects against serum deprivation-induced apoptosis. This action is prevented with inhibitors of NO generation, PI3K and Akt. Moreover, transfection with the negative dominant form of the tyrosine kinase c-Src abrogates the effect of IGF-1 and insulin on DNA fragmentation. An increase in the expression level of NOS3 protein and in the enzyme activity is observed following exposure of serum-deprived RINm5F cells to IGF-1 and insulin. Phosphorylation of IRS-1, IRS-2 and to less extent IRS-3 takes place when serum-deprived RINm5F cells and rat pancreatic islets are exposed to either IGF-1, insulin, or diethylenetriamine nitric oxide adduct (DETA/NO). In human islets, IRS-1 and IRS-2 proteins are present and tyrosine phosphorylated upon exposure to IGF-1, insulin and DETA/NO. Both rat and human pancreatic islets undergo DNA fragmentation when cultured in serum-free medium and IGF-1, insulin and DETA/NO protect efficiently from this damage. We then conclude that generation of NO participates in the activation of survival pathways by IGF-1 and insulin in beta cells.

  16. Do human activities influence survival and orientation abilities of larval fishes in the ocean?

    Science.gov (United States)

    Siebeck, Ulrike E; O'Connor, Jack; Braun, Christoph; Leis, Jeffrey M

    2015-01-01

    The larval stages of most marine fishes spend days to weeks in the pelagic environment, where they must find food and avoid predators in order to survive. Some fish only spend part of their life history in the pelagic environment before returning to their adult habitat, for example, a coral reef. The sensory systems of larval fish develop rapidly during the first few days of their lives, and here we concentrate on the various sensory cues the fish have available to them for survival in the pelagic environment. We focus on the larvae of reef fishes because most is known about them. We also review the major threats caused by human activities that have been identified to have worldwide impact and evaluate how these threats may impact larval-fish survival and orientation abilities. Many human activities negatively affect larval-fish sensory systems or the cues the fish need to detect. Ultimately, this could lead to decreased numbers of larvae surviving to settlement, and, therefore, to decreased abundance of adult fishes. Although we focus on species wherein the larvae and adults occupy different habitats (pelagic and demersal, respectively), it is important to acknowledge that the potential anthropogenic effects we identify may also apply to larvae of species like tuna and herring, where both larvae and adults are pelagic. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  17. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Li, Xiao-Ling; Xu, Gang; Chen, Tianfeng; Wong, Yum-Shing; Zhao, Hai-Lu; Fan, Rong-Rong; Gu, Xue-Mei; Tong, Peter C Y; Chan, Juliana C N

    2009-07-01

    It is widely accepted that human islet amyloid polypeptide (hIAPP) aggregation plays an important role in the loss of insulin-producing pancreatic beta cells. hIAPP-induced cytotoxicity is mediated by generation of reactive oxygen species (ROS). Phycocyanin (PC) is a natural compound from blue-green algae that is widely used as food supplement. Currently, little is known about the effects of PC on beta cells with the presence of hIAPP. The aim of this study was to investigate the in vitro protective effects of PC on INS-1E rat insulinoma beta cells against hIAPP-induced cell death, as well as the underlying mechanisms. Our results showed that hIAPP-induced cell death with apoptotic characteristics including growth inhibition, chromatin condensation and DNA fragmentation. However, cytotoxicity of hIAPP was significantly attenuated by co-incubation of the cells with PC. The results of Western blotting showed that activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP) in hIAPP-treated cells was blocked by PC. Moreover, PC significantly prevented the hIAPP-induced overproduction of intracellular ROS and malondialdehyde (MDA), as well as changes in activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes. Furthermore, hIAPP triggered the activation of mitogen-activated protein kinases (MAPKs), and these effects were effectively suppressed by PC. Taken together, our results suggest that PC protects INS-1E pancreatic beta cells against hIAPP-induced apoptotic cell death through attenuating oxidative stress and modulating c-Jun N-terminal kinase (JNK) and p38 pathways.

  18. Selenium-enriched Spirulina protects INS-1E pancreatic beta cells from human islet amyloid polypeptide-induced apoptosis through suppression of ROS-mediated mitochondrial dysfunction and PI3/AKT pathway.

    Science.gov (United States)

    Li, Xiao-Ling; Wong, Yum-Shing; Xu, Gang; Chan, Juliana C N

    2015-06-01

    Human islet amyloid polypeptide (hIAPP) aggregation is linked to loss of pancreatic beta cells in type 2 diabetes, in part due to oxidative stress. Currently, little is known about the effects of selenium-enriched Spirulina on beta cells with the presence of hIAPP. In this study, INS-1E rat insulinoma cells were used as a model to evaluate in vitro protective effects of Se-enriched Spirulina extract (Se-SE) against hIAPP-induced cell death, as well as the underlying mechanisms. Flow cytometric analysis was used to evaluate cell apoptosis, mitochondrial membrane potential (ΔΨm) and ROS generation. Caspase activity was measured using a fluorometric method. Western blotting was applied to detect protein expression. Our results showed that exposure of INS-1E cells to hIAPP resulted in cell viability loss, LDH release and appearance of sub-G peak. However, cytotoxicity of hIAPP was significantly attenuated by co-treatment with Se-SE. Se-SE also inhibited hIAPP-induced activation of caspase-3, -8 and -9. Additionally, hIAPP-induced accumulation of ROS and superoxide was suppressed by co-treatment with Se-SE. Moreover, Se-SE was able to prevent hIAPP-induced depletion of ΔΨm and intracellular ATP, reduction in mitochondrial mass, changes in the expression of Bcl-2 family members, release of mitochondrial apoptogenic factors. Furthermore, hIAPP-mediated AKT inhibition was restored by co-treatment with Se-SE. Our results showed that Se-SE protects INS-1E cells from hIAPP-induced cell death through preventing ROS overproduction, mitochondrial dysfunction and modulating PI3K/AKT pathway.

  19. Suppression of islet homeostasis protein thwarts diabetes mellitus progression.

    Science.gov (United States)

    Oh, Seh-Hoon; Jorgensen, Marda L; Wasserfall, Clive H; Gjymishka, Altin; Petersen, Bryon E

    2017-05-01

    During progression to type 1 diabetes, insulin-producing β-cells are lost through an autoimmune attack resulting in unrestrained glucagon expression and secretion, activation of glycogenolysis, and escalating hyperglycemia. We recently identified a protein, designated islet homeostasis protein (IHoP), which specifically co-localizes within glucagon-positive α-cells and is overexpressed in the islets of both post-onset non-obese diabetic (NOD) mice and type 1 diabetes patients. Here we report that in the αTC1.9 mouse α-cell line, IHoP was released in response to high-glucose challenge and was found to regulate secretion of glucagon. We also show that in NOD mice with diabetes, major histocompatibility complex class II was upregulated in islets. In addition hyperglycemia was modulated in NOD mice via suppression of IHoP utilizing small interfering RNA (IHoP-siRNA) constructs/approaches. Suppression of IHoP in the pre-diabetes setting maintained normoglycemia, glyconeolysis, and fostered β-cell restoration in NOD mice 35 weeks post treatment. Furthermore, we performed adoptive transfer experiments using splenocytes from IHoP-siRNA-treated NOD/ShiLtJ mice, which thwarted the development of hyperglycemia and the extent of insulitis seen in recipient mice. Last, IHoP can be detected in the serum of human type 1 diabetes patients and could potentially serve as an early novel biomarker for type 1 diabetes in patients.

  20. Novel stable isotope analyses demonstrate significant rates of glucose cycling in mouse pancreatic islets.

    Science.gov (United States)

    Wall, Martha L; Pound, Lynley D; Trenary, Irina; O'Brien, Richard M; Young, Jamey D

    2015-06-01

    A polymorphism located in the G6PC2 gene, which encodes an islet-specific glucose-6-phosphatase catalytic subunit, is the most important common determinant of variations in fasting blood glucose (FBG) levels in humans. Studies of G6pc2 knockout (KO) mice suggest that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion (GSIS) that acts by hydrolyzing glucose-6-phosphate (G6P), thereby reducing glycolytic flux. However, this conclusion conflicts with the very low estimates for the rate of glucose cycling in pancreatic islets, as assessed using radioisotopes. We have reassessed the rate of glucose cycling in pancreatic islets using a novel stable isotope method. The data show much higher levels of glucose cycling than previously reported. In 5 mmol/L glucose, islets from C57BL/6J chow-fed mice cycled ∼16% of net glucose uptake. The cycling rate was further increased at 11 mmol/L glucose. Similar cycling rates were observed using islets from high fat-fed mice. Importantly, glucose cycling was abolished in G6pc2 KO mouse islets, confirming that G6pc2 opposes the action of the glucose sensor glucokinase by hydrolyzing G6P. The demonstration of high rates of glucose cycling in pancreatic islets explains why G6pc2 deletion enhances GSIS and why variants in G6PC2 affect FBG in humans. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells.

    Science.gov (United States)

    Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T

    2006-01-01

    Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.

  2. Insulin release from islets of Langerhans entrapped in a poly(N-isopropylacrylamide-co-acrylic acid) polymer gel.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    1999-01-01

    A copolymer of N-isopropylacrylamide (98 mol% in feed) and acrylic acid, poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-AAc)), was prepared by free radical polymerization for development of a thermally reversible polymer to entrap islets of Langerhans for a refillable biohybrid artificial pancreas. A 5 wt% solution of the polymer in Hanks' balanced salt solution forms a gel at 37 degrees C that exhibits no syneresis. Diffusion of fluorescein isothiocyanate (FITC) dextrans having molecular weights of 4400 and 70000 were used to evaluate mass transport in the gel at 37 degrees C. Insulin secretion from islets in the polymer gel was also investigated in both static and dynamic systems. The polymer gel exhibited excellent diffusion of FITC dextran 4400 and FITC dextran 70000 with diffusion ratios, D/D0 (ratio of diffusion in the gel to diffusion in water), of 0.20+/-0.04 and 0.35+/-0.17, respectively. Human islets entrapped in the polymer gel showed prolonged insulin secretion in response to basal (5.5 mM) glucose concentration compared to free human islets. Rat islets showed prolonged insulin secretion in response to high (16.5 mM) glucose concentrations compared to free rat islets. Rat islets in the polymer gel maintained insulin secretion in response to the higher glucose concentration for over 26 days. Rat islets entrapped by the polymer also released higher quantities of insulin more rapidly in response to changes in concentrations of glucose and other stimulants than rat islets entrapped in an alginate control. These results suggest that this material would provide adequate diffusion for rapid insulin release in an application as a synthetic extracellular matrix for a biohybrid artificial pancreas.

  3. IDDM: an islet or an immune disease?

    Science.gov (United States)

    Boitard, C; Larger, E; Timsit, J; Sempe, P; Bach, J F

    1994-09-01

    Insulin-dependent diabetes develops as a consequence of the selective destruction of insulin-producing cells by an autoimmune reaction. However, the precise series of events which trigger anti-islet autoreactive T cells is still being investigated. Major issues will need to be raised before a comprehensive view of the anti-islet autoimmune reaction can be delineated. These include defining the primary site of activation of autoreactive lymphocytes and exploring hypotheses to explain the chronicity of the diabetes process. These issues all relate with the more general dilemma of the actual role of the islets of Langerhans in breaking self tolerance to beta-cell antigens. By studying non-obese diabetic mice deprived of beta cells following a single injection of a high dose of alloxan at 3 weeks of age, we recently obtained evidence that the activation of autoreactive T cells requires the presence of target islet cells in order to develop.

  4. A presumptive case of Human rabies: a rare survived case in rural Ghana

    Directory of Open Access Journals (Sweden)

    Paschal Awingura Apanga

    2016-11-01

    Full Text Available Rabies remains endemic in Ghana and continues to pose a major public health threat to humans and animals with nearly hundred percent (100% case fatality rate in humans. We report of a presumptive case of human rabies whose survival was a rare occurrence in rural Ghana. Lessons from this case study provides a critically needed focus in helping improve rabies surveillance and case management in Ghana. We report of the survival of a 36 year old man who developed clinical rabies three weeks after he was bitten by his dog while restraining the dog with a chain. Prior to this he did not observe any abnormal or rabid behaviour in the dog. Following the bite, he did not immediately resort to hospital treatment, but rather to traditional application of herbs to the laceration he sustained after the bite. Reason given for not seeking immediate hospital treatment was that the dog was not rabid and lack of funds to seek hospital care. However, he began to show symptoms consistent with rabies virus infection after 10 days and was subsequently rushed to the hospital by relatives. At the hospital, he was administered human immune tetanus immunoglobulin, diazepam, ceftriaxone, paracetamol and intravenous fluids. No rabies vaccine was administered. Six days after commencing treatment patient became well, showed no signs of confused state of mind, hydrophobia nor photophobia. He was discharged home after 13 days of commencing treatment. This study provides insight on a presumptive case of Human rabies case that survived despite non-administration of rabies vaccine during esposure. It also exposes the weaknesses in the health and veterinary systems in rural Ghana regarding rabies surveillance and case management.

  5. Percutaneous transhepatic portal catheterization guided by ultrasound technology for islet transplantation in rhesus monkey

    Institute of Scientific and Technical Information of China (English)

    FengGao; Shao-DongAi; ShengLiu; Wen-BinZeng; WeiWang

    2012-01-01

    BACKGROUND: Pig islet xenotransplantation has the potential to overcome the shortage of donated human islets for islet cell transplantation in type 1 diabetes. Testing in non-human primate models is necessary before clinical application in humans. Intraportal islet transplantation in monkeys is usually performed by surgical infusion during laparotomy or laparoscopy. In this paper, we describe a new method of percutaneous transhepatic portal catheterization (PTPC) as an alternative to current methods of islet transplantation in rhesus monkeys. METHODS: We performed ultrasound-guided PTPC in five adult rhesus monkeys weighing 7-8 kg, with portal vein catheterization confirmed by digital subtraction angiography. We monitored for complications in the thoracic and abdominal cavity. To evaluate the safety of ultrasound-guided PTPC, we recorded the changes in portal pressure throughout the microbead transplantation procedure. RESULTS:  Ultrasound-guided PTPC and infusion of 16 000 microbeads/kg body weight into the portal vein was successful in all five monkeys. Differences in the hepatobiliary anatomy of rhesus monkeys compared to humans led to a higher initial complication rate. The first monkey died of abdominal hemorrhage 10 hours post-transplantation. The second suffered from a mild pneumothorax but recovered fully after taking only conservative measures. After gaining experience with the first two monkeys, we decreased both the hepatic puncture time and the number of puncture attempts required, with the remaining three monkeys experiencing no complications. Portal pressures initially increased proportional to the number of transplanted microbeads but returned to pre-infusion levels at 30 minutes post-transplantation. The changes in portal pressures occurring during the procedure were not significantly different. CONCLUSIONS: Ultrasound-guided PTPC is an effective, convenient, and minimally invasive method suitable for use in non-human primate models of

  6. AKT/GSK3β signaling pathway is critically involved in human pluripotent stem cell survival

    Science.gov (United States)

    Romorini, Leonardo; Garate, Ximena; Neiman, Gabriel; Luzzani, Carlos; Furmento, Verónica Alejandra; Guberman, Alejandra Sonia; Sevlever, Gustavo Emilio; Scassa, María Elida; Miriuka, Santiago Gabriel

    2016-01-01

    Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (PSC) that can differentiate into a wide range of specialized cells. Basic fibroblast growth factor is essential for PSC survival, stemness and self-renewal. PI3K/AKT pathway regulates cell viability and apoptosis in many cell types. Although it has been demonstrated that PI3K/AKT activation by bFGF is relevant for PSC stemness maintenance its role on PSC survival remains elusive. In this study we explored the molecular mechanisms involved in the regulation of PSC survival by AKT. We found that inhibition of AKT with three non-structurally related inhibitors (GSK690693, AKT inhibitor VIII and AKT inhibitor IV) decreased cell viability and induced apoptosis. We observed a rapid increase in phosphatidylserine translocation and in the extent of DNA fragmentation after inhibitors addition. Moreover, abrogation of AKT activity led to Caspase-9, Caspase-3, and PARP cleavage. Importantly, we demonstrated by pharmacological inhibition and siRNA knockdown that GSK3β signaling is responsible, at least in part, of the apoptosis triggered by AKT inhibition. Moreover, GSK3β inhibition decreases basal apoptosis rate and promotes PSC proliferation. In conclusion, we demonstrated that AKT activation prevents apoptosis, partly through inhibition of GSK3β, and thus results relevant for PSC survival. PMID:27762303

  7. Survival of human embryonic stem cells implanted in the guinea pig auditory epithelium

    Science.gov (United States)

    Young Lee, Min; Hackelberg, Sandra; Green, Kari L.; Lunghamer, Kelly G.; Kurioka, Takaomi; Loomis, Benjamin R.; Swiderski, Donald L.; Duncan, R. Keith; Raphael, Yehoash

    2017-01-01

    Hair cells in the mature cochlea cannot spontaneously regenerate. One potential approach for restoring hair cells is stem cell therapy. However, when cells are transplanted into scala media (SM) of the cochlea, they promptly die due to the high potassium concentration. We previously described a method for conditioning the SM to make it more hospitable to implanted cells and showed that HeLa cells could survive for up to a week using this method. Here, we evaluated the survival of human embryonic stem cells (hESC) constitutively expressing GFP (H9 Cre-LoxP) in deaf guinea pig cochleae that were pre-conditioned to reduce potassium levels. GFP-positive cells could be detected in the cochlea for at least 7 days after the injection. The cells appeared spherical or irregularly shaped, and some were aggregated. Flushing SM with sodium caprate prior to transplantation resulted in a lower proportion of stem cells expressing the pluripotency marker Oct3/4 and increased cell survival. The data demonstrate that conditioning procedures aimed at transiently reducing the concentration of potassium in the SM facilitate survival of hESCs for at least one week. During this time window, additional procedures can be applied to initiate the differentiation of the implanted hESCs into new hair cells. PMID:28387239

  8. Justifying clinical trials for porcine islet xenotransplantation.

    Science.gov (United States)

    Ellis, Cara E; Korbutt, Gregory S

    2015-01-01

    The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.

  9. Cytokines cause functional and structural damage to isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Bendixen, G

    1985-01-01

    -dependent diabetes mellitus, isolated human or rat islets of Langerhans were incubated for 7 days with cytokine-rich, cell-free supernatants of blood mononuclear cells from healthy human donors stimulated with or without purified protein derivative of tuberculin or phytohaemagglutinin. Glucose stimulated insulin......Cytokines are soluble, antigen non-specific, non-immunoglobulin mediators produced and secreted by blood mononuclear cells interacting in the cellular immune-response. To test the possibility that cytokines participate in the autoimmune destruction of the pancreatic beta-cells leading to insulin......-release, and contents of insulin and glucagon in islets incubated with cytokine-rich supernatants were markedly reduced. This impairment of islet function was due to a cytotoxic effect of cytokine-rich supernatants as judged by disintegration of normal light-microscopic morphology....

  10. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion

    Directory of Open Access Journals (Sweden)

    Francisco Noé eArroyo López

    2014-10-01

    Full Text Available The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933 and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, Lactobacillus pentosus TOMC-LAB2 and Lactobacillus pentosus TOMC-LAB4 during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens.

  11. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion.

    Science.gov (United States)

    Arroyo-López, Francisco N; Blanquet-Diot, Stéphanie; Denis, Sylvain; Thévenot, Jonathan; Chalancon, Sandrine; Alric, Monique; Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Jiménez-Díaz, Rufino; Garrido-Fernández, Antonio

    2014-01-01

    The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933) and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, L. pentosus TOMC-LAB2, and L. pentosus TOMC-LAB4) during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum) resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens.

  12. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival.

    Science.gov (United States)

    Fillmore, Natasha; Huqi, Alda; Jaswal, Jagdip S; Mori, Jun; Paulin, Roxane; Haromy, Alois; Onay-Besikci, Arzu; Ionescu, Lavinia; Thébaud, Bernard; Michelakis, Evangelos; Lopaschuk, Gary D

    2015-01-01

    Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.

  13. Obestatin enhances in vitro generation of pancreatic islets through regulation of developmental pathways.

    Directory of Open Access Journals (Sweden)

    Alessandra Baragli

    Full Text Available Availability of large amounts of in vitro generated β-cells may support replacement therapy in diabetes. However, methods to obtain β-cells from stem/progenitor cells are limited by inefficient endocrine differentiation. We have recently shown that the ghrelin gene product obestatin displays beneficial effects on pancreatic β-cell survival and function. Obestatin prevents β-cell apoptosis, preserves β-cell mass and stimulates insulin secretion in vitro and in vivo, in both normal and diabetic conditions. In the present study, we investigated whether obestatin may promote in vitro β-cell generation from mouse pancreatic islet-derived precursor cells. Treatment of cultured islets of Langerhans with obestatin (i enriched cells expressing the mesenchymal/neuronal marker nestin, which is associated with pancreatic precursors; (ii increased cell survival and reduced apoptosis during precursor selection; (iii promoted the generation of islet-like cell clusters (ICCs with increased insulin gene expression and C-peptide secretion. Furthermore, obestatin modulated the expression of fibroblast growth factor receptors (FGFRs, Notch receptors and neurogenin 3 (Ngn3 during islet-derived precursor cell selection and endocrine differentiation. These results indicate that obestatin improves the generation of functional β-cells/ICCs in vitro, suggesting implications for cell-based replacement therapy in diabetes. Moreover, obestatin may play a role in regulating pathways involved in pancreas development and regeneration.

  14. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    ChunSONG; Xiu-QingDUAN; XiLI; Li-OuHAN; PingXU; Chun-FangSONG:; Lian-HongJIN

    2004-01-01

    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3,7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured underthe microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group (P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  15. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    Chun SONG; Xiu-Qing DUAN; Xi LI; Li-Ou HAN; Ping XU; Chun-Fang SONG; Lian-Hong JIN

    2004-01-01

    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3, 7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured under the microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group(P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  16. Anti-Inflammatory Heat Shock Protein 70 Genes are Positively Associated with Human Survival

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvraa, Steen; Bross, Peter Gerd;

    2010-01-01

    with longevity. The involvement of heat shock protein 70 (Hsp70) in cellular maintenance and repair mechanisms, including its role as an anti-inflammatory protein, makes it a suitable candidate for studying such associations. We have studied the association of three single nucleotide polymorphisms, HSPA1A (-110A...... the opportunity to perform survival analysis on these subjects. Haplotype relative risk, and genotype relative risk were calculated to measure the effects of haplotypes and genotypes on human survival in a sex-specific manner. A significant association of HSPA1A-AA (RR=3.864; p=0.016) and HSPA1B-AA (RR=2.764; p=0...... observations from heat shock response (HSR) study where we had shown that after heat stimulation, mononuclear cells from the carriers of genotype HSPA1L-TT had better HSR than cells with the HSPA1L-CC genotype....

  17. Histomorphology of the bottlenose dolphin (Tursiops truncatus) pancreas and association of increasing islet β-cell size with chronic hypercholesterolemia.

    Science.gov (United States)

    Colegrove, Kathleen M; Venn-Watson, Stephanie

    2015-04-01

    Bottlenose dolphins (Tursiops truncatus) can develop metabolic states mimicking prediabetes, including hyperinsulinemia, hyperlipidemia, elevated glucose, and fatty liver disease. Little is known, however, about dolphin pancreatic histomorphology. Distribution and area of islets, α, β, and δ cells were evaluated in pancreatic tissue from 22 dolphins (mean age 25.7years, range 0-51). Associations of these measurements were evaluated by sex, age, percent high glucose and lipids during the last year of life, and presence or absence of fatty liver disease and islet cell vacuolation. The most common pancreatic lesions identified were exocrine pancreas fibrosis (63.6%) and mild islet cell vacuolation (47.4%); there was no evidence of insulitis or amyloid deposition, changes commonly associated with type 2 diabetes. Dolphin islet architecture appears to be most similar to the pig, where α and β cells are localized to the central or periphery of the islet, respectively, or are well dispersed throughout the islet. Unlike pigs, large islets (greater than 10,000μm(2)) were common in dolphins, similar to that found in humans. A positive linear association was identified between dolphin age and islet area average, supporting a compensatory response similar to other species. The strongest finding in this study was a positive linear association between islet size, specifically β-cells, and percent blood samples with high cholesterol (greater than 280mg/dl, R(2)=0.57). This study is the most comprehensive assessment of the dolphin pancreas to date and may help direct future studies, including associations between chronic hypercholesterolemia and β-cell size.

  18. In vivo islet protection by a nuclear import inhibitor in a mouse model of type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Daniel J Moore

    Full Text Available BACKGROUND: Insulin-dependent Type 1 diabetes (T1D is a devastating autoimmune disease that destroys beta cells within the pancreatic islets and afflicts over 10 million people worldwide. These patients face life-long risks for blindness, cardiovascular and renal diseases, and complications of insulin treatment. New therapies that protect islets from autoimmune destruction and allow continuing insulin production are needed. Increasing evidence regarding the pathomechanism of T1D indicates that islets are destroyed by the relentless attack by autoreactive immune cells evolving from an aberrant action of the innate, in addition to adaptive, immune system that produces islet-toxic cytokines, chemokines, and other effectors of islet inflammation. We tested the hypothesis that targeting nuclear import of stress-responsive transcription factors evoked by agonist-stimulated innate and adaptive immunity receptors would protect islets from autoimmune destruction. PRINCIPAL FINDINGS: Here we show that a first-in-class inhibitor of nuclear import, cSN50 peptide, affords in vivo islet protection following a 2-day course of intense treatment in NOD mice, which resulted in a diabetes-free state for one year without apparent toxicity. This nuclear import inhibitor precipitously reduces the accumulation of islet-destructive autoreactive lymphocytes while enhancing activation-induced cell death of T and B lymphocytes derived from autoimmune diabetes-prone, non-obese diabetic (NOD mice that develop T1D. Moreover, in this widely used model of human T1D we noted attenuation of pro-inflammatory cytokine and chemokine production in immune cells. CONCLUSIONS: These results indicate that a novel form of immunotherapy that targets nuclear import can arrest inflammation-driven destruction of insulin-producing beta cells at the site of autoimmune attack within pancreatic islets during the progression of T1D.

  19. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract.

    Science.gov (United States)

    Berthold-Pluta, Anna; Pluta, Antoni; Garbowska, Monika

    2015-05-01

    Bacillus cereus is a Gram-positive bacterium widely distributed in soil and vegetation. This bacterial species can also contaminate raw or processed foods. Pathogenic B. cereus strains can cause a range of infections in humans, as well as food poisoning of an emetic (intoxication) or diarrheal type (toxico-infection). Toxico-infections are due to the action of the Hbl toxin, Nhe toxin, and cytotoxin K produced by the microorganism in the gastrointestinal tract. This occurs once the spores or vegetative B. cereus cells survive the pH barrier of the stomach and reach the small intestine where they produce toxins in sufficient amounts. This article discusses the effect of various factors on the survival of B. cereus in the gastrointestinal tract, including low pH and the presence of digestive enzymes in the stomach, bile salts in the small intestine, and indigenous microflora in the lower parts of the gastrointestinal tract. Additional aspects also reported to affect B. cereus survival and virulence in the gastrointestinal tract include the interaction of the spores and vegetative cells with enterocytes. In vitro studies revealed that both vegetative B. cereus and spores can survive in the gastrointestinal tract suggesting that the biological form of the microorganism may have less influence on the occurrence of the symptoms of infection than was once believed. It is most likely the interaction between the pathogen and enterocytes that is necessary for the diarrheal form of B. cereus food poisoning to develop. The adhesion of B. cereus to the intestinal epithelium allows the bacterium to grow and produce enterotoxins in the proximity of the epithelium. Recent studies suggest that the human intestinal microbiota inhibits the growth of vegetative B. cereus cells considerably.

  20. Activin B regulates islet composition and islet mass but not whole body glucose homeostasis or insulin sensitivity

    Science.gov (United States)

    Bonomi, Lara; Brown, Melissa; Ungerleider, Nathan; Muse, Meghan; Matzuk, Martin M.

    2012-01-01

    Based on the phenotype of the activin-like kinase-7 (ALK7)-null mouse, activins A and B have been proposed to play distinct roles in regulating pancreatic islet function and glucose homeostasis, with activin A acting to enhance islet function and insulin release while activin B antagonizes these actions. We therefore hypothesized that islets from activin B-null (BBKO) mice would have enhanced glucose-stimulated insulin secretion. In addition, we hypothesized that this enhanced islet function would translate into increased whole body glucose tolerance. We tested these hypotheses by analyzing glucose homeostasis, insulin secretion, and islet function in BBKO mice. No differences were observed in fasting glucose or insulin levels, glucose tolerance, or insulin sensitivity compared with weight-matched young or older males. Similarly, there were no significant differences in insulin secretion comparing islets from WT or BBKO males at either age. However, BBKO islets were more sensitive to activin A, myostatin (MSTN), and follistatin (FST) treatments, so that activin A and FST inhibited and MSTN enhanced glucose stimulated insulin secretion. While mean islet area and the distribution of islet areas were not different between the genotypes, islet mass, islet number, and the proportion of α-cells/islet were significantly reduced in BBKO islets. These results indicate that activin B does not antagonize activin A to influence whole body glucose homeostasis or β-cell function but does influence islet mass and proportion of α-cells/islet. Therefore, loss of activin B signaling alone does not account for the ALK7-null phenotype, but activin B may have important roles in modulating islet mass, islet number, and the cellular composition of islets. PMID:22739106

  1. Impact of alogliptin and pioglitazone on lipid metabolism in islets of prediabetic and diabetic Zucker Diabetic Fatty rats.

    Science.gov (United States)

    Cai, Ying; Lydic, Todd A; Turkette, Thomas; Reid, Gavin E; Olson, L Karl

    2015-05-01

    Prolonged exposure of pancreatic beta (β) cells to elevated glucose and free fatty acids (FFA) as occurs in type 2 diabetes results in loss of β cell function and survival. In Zucker Diabetic Fatty (ZDF) rats, β cell failure is associated with increased triacylglyceride (TAG) synthesis and disruption of the glycerolipid/FFA (GL/FFA) cycle, a critical arm of glucose-stimulated insulin secretion (GSIS). The aim of this study was to determine the impact of activation of PPARγ and increased incretin action via dipeptidyl-peptidase inhibition using pioglitazone and/or alogliptin, respectively, on islet lipid metabolism in prediabetic and diabetic ZDF rats. Transition of control prediabetic ZDF rats to diabetes was associated with reduced plasma insulin levels, reduced islet insulin content and GSIS, reduced stearoyl-CoA desaturase 2 (SCD 2) expression, and increased islet TAG, diacylglyceride (DAG) and ceramides species containing saturated FA. Treatment of prediabetic ZDF rats with a combination of pioglitazone and alogliptin, but not individually, prevented the transition to diabetes and was associated with marked lowering of islet TAG and DAG levels. Pioglitazone and alogliptin, however, did not restore SCD2 expression, the degree of FA saturation in TAG, DAG or ceramides, islet insulin content, or lower ceramide levels. These findings are consistent with activation of PPARγ and increased incretin action working in concert to restore GL/FFA cycle in β cells of ZDF rats. Restoration of the GL/FFA cycle without correcting islet FA desaturation, production of islet ceramides, and/or insulin sensitivity, however, may place these islets at risk for β cell failure.

  2. In vivo selection of biocompatible alginates for islet encapsulation and subcutaneous transplantation.

    Science.gov (United States)

    Vériter, Sophie; Mergen, Julien; Goebbels, Rose-Marie; Aouassar, Najima; Grégoire, Charles; Jordan, Bénédicte; Levêque, Philippe; Gallez, Bernard; Gianello, Pierre; Dufrane, Denis

    2010-05-01

    Islet encapsulation requires several properties including (1) biocompatibility, (2) immunoprotection, and (3) oxygen diffusion for islet survival and diabetes correction. New chemical alginates were tested in vivo and compared with traditional high-mannuronate and -guluronate alginates. New alginates with coupled peptide sequence (sterile lyophilized high mannuronate [SLM]-RGD3% and sterile lyophilized high guluronate [SLG]-RGD3%), to improve encapsulated cell adherence in the matrix, and alginates with a very low viscosity (VLDM7% and VLDG7%), to reduce implant size by loading a higher number of islets per volume of polymer, were implanted subcutaneously in 70 Wistar rats for comparison with alginates of high viscosity and high content of mannuronic (SLM3%) or guluronic acids (SLG3%). Permeability of alginates to 36-, 75-, and 150-kDa lectins coupled to fluorescein isothiocynate was quantified before implantation and at 2, 4, and 12 weeks after implantation. Biocompatibility (fibrosis, graft stability, immunologic infiltration by CD3/CD68 cells, and neovascularization) was assessed at each explantation time. Permeability to small molecules was found for all alginates. Impermeability to 150-kDa molecules, such as IgG, was observed only for SLM3% before implantation and was maintained up to 12 weeks after implantation. SLM3% and SLG3% demonstrated better graft stability with lower CD3/CD68 recruitment and fibrosis than the other alginates. SLM3% induced a significantly higher angiogenesis and maintained oxygen pressure at approximately 40 mm Hg for up to 4 weeks after implantation as measured by in vivo electronic paramagnetic resonance oximetry. SLM-encapsulated pig islets implanted subcutaneously in rats demonstrated no inflammatory/immunologic reactions and islets functioned for up to 60 days without immunosuppression. A traditional alginate made of high mannuronic content (SLM3%) is an adapted material to immunoprotect islets in subcutaneous tissue. No

  3. Islet Oxygen Consumption Rate (OCR Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    Directory of Open Access Journals (Sweden)

    Klearchos K Papas

    Full Text Available Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR in predicting clinical islet autotransplant (IAT insulin independence (II. IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity.Membrane integrity staining (FDA/PI, OCR normalized to DNA (OCR/DNA, islet equivalent (IE and OCR (viable IE normalized to recipient body weight (IE dose and OCR dose, and OCR/DNA normalized to islet size index (ISI were used to characterize autoislet preparations (n = 35. Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis.Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001. These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC = 0.94 for IE dose and 0.96 for OCR dose. FDA/PI (AUC = 0.49 and OCR/DNA (AUC = 0.58 did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72.Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  4. Recovery optimization and survival of human norovirus surrogates, feline calicivirus and murine norovirus on carpet.

    Science.gov (United States)

    Buckley, David; Fraser, Angela; Huang, Guohui; Jiang, Xiuping

    2017-09-01

    Carpet been attributed to prolonged and reoccurring outbreaks of human noroviruses (HuNoV), the leading cause of acute gastroenteritis worldwide. Viral recovery from environmental surfaces, such as carpet, remains undeveloped. Our aim was to determine survival of HuNoV surrogates on an understudied environmental surface, carpet. First, we measured the zeta potential and absorption capacity of wool and nylon carpet fibers, then developed a mini-spin column elution method (MSC), and lastly characterized the survival of HuNoV surrogates, feline calicivirus (FCV) and murine norovirus (MNV), over 60 days under 30 and 70% relative humidity (RH) on two types of carpet and one glass surface. Carpet surface charge was negative between relevant pH values (7 - 9). Additionally, wool could absorb ca. 2X more liquid than nylon. Percent recovery efficiency with the MSC ranged from 4.34 to 20.89% and 30.71 to 54.14% for FCV and MNV on carpet fibers, respectively, after desiccation. Overall, elution buffer type did not significantly affect recovery. Infectious FCV or MNV survived between <1 and 15 or 3 and 15 days, respectively. However, MNV survived longer under some conditions and at significantly (P <0.05) higher titers compared to FCV. Albeit, surrogates followed similar survival trends, i.e. both survived longest on wool then nylon and glass while 30% RH provided a more hospitable environment compared to 70% RH. RT-qPCR signals for both surrogates were detectable for the entire study but FCV genomic copies experienced significantly higher reductions (<3.80 log10 copies) on all surfaces compared to MNV (<1.10 log10 copies).IMPORTANCE Human noroviruses (HuNoV) are the leading cause of acute gastroenteritis worldwide. Classical symptoms of illness include vomiting and diarrhea which could lead to severe dehydration and death. HuNoV are transmitted by the fecal-oral or vomitus-oral route via person-to-person, food, water, and/or environmental surfaces. Published laboratory

  5. The β-hemolysin and intracellular survival of Streptococcus agalactiae in human macrophages.

    Directory of Open Access Journals (Sweden)

    Anubha Sagar

    Full Text Available S. agalactiae (group B streptococci, GBS is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.

  6. Pancreas After Islet Transplantation: A First Report of the International Pancreas Transplant Registry.

    Science.gov (United States)

    Gruessner, R W G; Gruessner, A C

    2016-02-01

    Pancreas after islet (PAI) transplantation is a treatment option for patients seeking insulin independence through a whole-organ transplant after a failed cellular transplant. This report from the International Pancreas Transplant Registry (IPTR) and the United Network for Organ Sharing (UNOS) studied PAI transplant outcomes over a 10-year time period. Forty recipients of a failed alloislet transplant subsequently underwent pancreas transplant alone (50%), pancreas after previous kidney transplant (22.5%), or simultaneous pancreas and kidney (SPK) transplant (27.5%). Graft and patient survival rates were not statistically significantly different compared with matched primary pancreas transplants. Regardless of the recipient category, overall 1- and 5-year PAI patient survival rates for all 40 cases were 97% and 83%, respectively; graft survival rates were 84% and 65%, respectively. A failed previous islet transplant had no negative impact on kidney graft survival in the SPK category: It was the same as for primary SPK transplants. According to this IPTR/UNOS analysis, a PAI transplant is a safe procedure with low recipient mortality, high graft-function rates in both the short and long term and excellent kidney graft outcomes. Patients with a failed islet transplant should know about this alternative in their quest for insulin independence through transplantation.

  7. Assessment of Toxicological Perturbations and Variants of Pancreatic Islet Development in the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Karilyn E. Sant

    2016-09-01

    Full Text Available The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio. Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf, raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf, Mono-2-ethylhexyl phthalate (MEHP (3–48 hpf, and Perfluorooctanesulfonic acid (PFOS (3–48 hpf. Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf. Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease.

  8. Protein phosphatase 1 (PP-1)-dependent inhibition of insulin secretion by leptin in INS-1 pancreatic β-cells and human pancreatic islets.

    Science.gov (United States)

    Kuehnen, Peter; Laubner, Katharina; Raile, Klemens; Schöfl, Christof; Jakob, Franz; Pilz, Ingo; Päth, Günter; Seufert, Jochen

    2011-05-01

    Leptin inhibits insulin secretion from pancreatic β-cells, and in turn, insulin stimulates leptin biosynthesis and secretion from adipose tissue. Dysfunction of this adipoinsular feedback loop has been proposed to be involved in the development of hyperinsulinemia and type 2 diabetes mellitus. At the molecular level, leptin acts through various pathways, which in combination confer inhibitory effects on insulin biosynthesis and secretion. The aim of this study was to identify molecular mechanisms of leptin action on insulin secretion in pancreatic β-cells. To identify novel leptin-regulated genes, we performed subtraction PCR in INS-1 β-cells. Regulated expression of identified genes was confirmed by RT-PCR and Northern and Western blotting. Furthermore, functional impact on β-cell function was characterized by insulin-secretion assays, intracellular Ca²(+) concentration measurements, and enzyme activity assays. PP-1α, the catalytic subunit of protein phosphatase 1 (PP-1), was identified as a novel gene down-regulated by leptin in INS-1 pancreatic β-cells. Expression of PP-1α was verified in human pancreatic sections. PP-1α mRNA and protein expression is down-regulated by leptin, which culminates in reduction of PP-1 enzyme activity in β-cells. In addition, glucose-induced insulin secretion was inhibited by nuclear inhibitor of PP-1 and calyculin A, which was in part mediated by a reduction of PP-1-dependent calcium influx into INS-1 β-cells. These results identify a novel molecular pathway by which leptin confers inhibitory action on insulin secretion, and impaired PP-1 inhibition by leptin may be involved in dysfunction of the adipoinsular axis during the development of hyperinsulinemia and type 2 diabetes mellitus.

  9. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast.

    Science.gov (United States)

    Eid, Rawan; Sheibani, Sara; Gharib, Nada; Lapointe, Jason F; Horowitz, Avital; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2014-05-01

    The identification of a human ribosomal protein L9 (hRPL9) cDNA as a sequence capable of suppressing the lethal effects of heterologously expressed murine Bax in yeast led us to investigate its antiapoptotic potential. Using growth and viability assays, we show that yeast cells heterologously expressing hRPL9 are resistant to the growth inhibitory and lethal effects of exogenously supplied copper, indicating that it has pro-survival properties. To explore potential mechanisms, we used yeast mutants defective in all three types of programmed cell death (apoptosis, necrosis, and autophagy). The ability to retain pro-survival function in all the mutants suggests that hRPL9 may regulate a common pro-death process. In contrast, the yeast RPL9 orthologues, RPL9A and RPL9B, have opposite effects when overexpressed in yeast. In effect, instead of showing resistance to stress, RPL9A and RPL9B overexpressing cells show reduced cell growth. Further analysis indicates that the effects of overexpressed RPL9A and RPL9B are not in themselves lethal, instead, they serve to increase cell doubling time. Thus, yeast RPL9s are more representative of RPs whose extra-ribosomal function is similar to that of tumor suppressors. Taken together, our results demonstrate that RPL9 represents a species- and sequence-specific regulator of cell growth and survival.

  10. Improvement in The Function of Isolated Rat Pancreatic Islets through Reduction of Oxidative Stress Using Traditional Iranian Medicine

    Directory of Open Access Journals (Sweden)

    Mahban Rahimifard

    2014-06-01

    Full Text Available Objective: Pancreatic islets have fewer antioxidant enzymes than other tissues and thus are vulnerable to oxidative stress. In the present study, the effects of nine specifically selected Iranian medical plants on the mitochondria function and survival of isolated rat islets were examined. Materials and Methods: In this experimental study, following laparotomy, pancreases of rats were removed and the islets isolated and incubated in vitro for 24 hours. Logarithmic doses of plant materials were added to the islets and incubated for an additional 24 hours after which the viability of the cells and production of reactive oxygen species (ROS were measured. Levels of insulin production in relation to static and stimulated glucose concentrations were also determined. Results: The tested compounds markedly increased survival of the islet cells, their mitochondrial activity, and insulin levels at the same time as reducing production of ROS. Greatest effects were observed in the following order: Peganum harmala, Glycyrrhiza glabra, Satureja hortensis, Rosmarinus officinalis, Teucrium scordium, Aloe vera, Zingiber officinale, Silybum marianum, and Hypericum perforatum at doses of 10, 103, 104, 10, 102, 102, 10-1, 10 and 103 μgmL-1, respectively. Conclusion: Based on these results, we suggest that pretreatment with these selected Iranian medical plants can improve the outcomes of pancreas transplants and grafts through the control of oxidative stress damage.

  11. Thermal survival characteristics of cell subpopulations isolated from a heterogeneous human colon tumor.

    Science.gov (United States)

    Leith, J T; Heyman, P; DeWyngaert, J K; Dexter, D L; Calabresi, P; Glicksman, A S

    1983-07-01

    Responses of a heterogeneous human colon adenocarcinoma model tumor system to in vitro hyperthermic treatment at various temperatures have been studied. This model tumor system consists of an original tumor line (DLD-1) obtained from surgical biopsy, and two derivative subpopulations termed clones A and D. These 3 tumor cell populations differ in many properties, including karyotype and DNA content, production of specific antigens, and sensitivities to other cytotoxic agents such as chemotherapeutic drugs and X-irradiation. In these experiments, exponentially growing tumor cells were exposed to hyperthermia (42.2, 42.5, 43.0, 44.0, or 45.0 degrees) for graded time periods. A single-hit, multitarget equation was used to express the dependence of survival on time at a given temperature, and values for extrapolation numbers, quasi-threshold time (min), and T0 (mean lethal time; min) were obtained for the initial regions of survival. At the lower temperatures of 42.2 and 42.5 degrees, biphasic survival curves were obtained for all three tumor lines and, as a consequence, a second mean lethal time (T0,f) was also determined for the final thermal-resistant portion of the survival curves. Using the T0 values as an index of relative resistance, values at 42.2 and 42.5 degrees indicated that, in this temperature region, the parent (DLD-1) line was the most sensitive, the clone A line showed intermediate sensitivity, and the clone D line was the most resistant. In the thermally resistant portion of the survival curve, T0 values indicated that the clone A subpopulation was the most sensitive, the DLD-1 line showed intermediate sensitivity, and the clone D tumor subpopulation remained the most resistant. At the higher temperatures of 43, 44, and 45 degrees, in which thermotolerance is not observed during heat treatment, values for T0 indicated the parent (DLD-1) tumor line was still the most sensitive tumor line, and the clone A and clone D lines showed approximately equal

  12. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  13. Human Hematopoietic Stem Cells Can Survive In Vitro for Several Months

    Directory of Open Access Journals (Sweden)

    Taro Ishigaki

    2009-01-01

    Full Text Available We previously reported that long-lasting in vitro hematopoiesis could be achieved using the cells differentiated from primate embryonic stem (ES cells. Thus, we speculated that hematopoietic stem cells differentiated from ES cells could sustain long-lasting in vitro hematopoiesis. To test this hypothesis, we investigated whether human hematopoietic stem cells could similarly sustain long-lasting in vitro hematopoiesis in the same culture system. Although the results varied between experiments, presumably due to differences in the quality of each hematopoietic stem cell sample, long-lasting in vitro hematopoiesis was observed to last up to nine months. Furthermore, an in vivo analysis in which cultured cells were transplanted into immunodeficient mice indicated that even after several months of culture, hematopoietic stem cells were still present in the cultured cells. To the best of our knowledge, this is the first report to show that human hematopoietic stem cells can survive in vitro for several months.

  14. ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma

    DEFF Research Database (Denmark)

    Porter, Sarah; Span, Paul N; Sweep, Fred C G J;

    2006-01-01

    We recently undertook expression profiling of all 19 human ADAMTS metalloproteinases (a disintegrin and metalloproteinase with thrombospondin motifs) in malignant and non-neoplastic breast tissue and showed that 11 of the ADAMTS genes are dysregulated in breast carcinoma. We identified a subgroup......% C.I. = 2.16-13.5, p prediction of poor prognosis by ADAMTS8 and ADAMTS15 expression was found to be independent of other classical clinicopathological factors. Results observed in FVB-PyMT mice, a robust transgenic model of highly metastatic...... breast carcinoma, fitted the expectation that relatively high expression levels of ADAMTS8 together with low expression levels of ADAMTS15 seen in human breast carcinoma are associated with a poor clinical outcome. In summary, ADAMTS8 and ADAMTS15 have emerged as novel predictors of survival in patients...

  15. Severely atrophic human muscle fibers with nuclear misplacement survive many years of permanent denervation

    Directory of Open Access Journals (Sweden)

    Ugo Carraro

    2016-06-01

    Full Text Available Likewise in rodents, after complete spinal cord injury (SCI the lower motor neuron (LMN denervated human muscle fibers lose completely the myofibrillar apparatus and the coil distribution of myonuclei that are relocated in groups (nuclear clumps in the center of severely atrophic muscle fibers. Up to two years of LMN denervation the muscle fibers with nuclear clumps are very seldom, but in this cohort of patients the severely atrophic muscle fibers are frequent in muscle biopsies harvested three to six years after SCI. Indeed, the percentage increased to 27 ± 9% (p< 0.001, and then abruptly decreased from the 6th year onward, when fibrosis takes over to neurogenic muscle atrophy. Immunohistochemical analyses shown that nuclear misplacements occurred in both fast and slow muscle fibers. In conclusion, human muscle fibers survive permanent denervation much longer than generally accepted and relocation of nuclei is a general behavior in long term denervated muscle fibers.

  16. Intracellular trehalose improves the survival of human red blood cells by freeze-drying

    Institute of Scientific and Technical Information of China (English)

    HE Hui; LIU Baolin; HUA Zezhao; LI Chuan; WU Zhengzheng

    2007-01-01

    Freeze-drying of human red blood cells has a potential important application for blood transfusion.The aim of this study was to investigate the effects ofintracellular trehalose on the survival of red blood cells after freeze-drying and rehydration.Fresh red blood cells were incubated in trehalose solutions of various concentrations at 37℃ for 7 h following freeze-drying.Polyvinylpyrrolidone,Trehalose,sodium citrate,and human serum albumin were used as extracellular protective agents for the freeze-drying of red blood cells.The results indicated that the intracellular trehalose concentration was increased with increasing concentration of extracellular trehalose solution,and the maximum concen tration of intracellular trehalose reached 35 mmol/L.The viability of freeze-dried red blood cells increased with the increment of intracellular trehalose concentration.

  17. Mesenchymal stem cells as feeder cells for pancreatic islet transplants.

    OpenAIRE

    2010-01-01

    Allogeneic islet transplantation serves as a source of insulin-secreting beta-cells for the maintenance of normal glucose levels and treatment of diabetes. However, limited availability of islets, high rates of islet graft failure, and the need for life-long non-specific immunosuppressive therapy are major obstacles to the widespread application of this therapeutic approach. To overcome these problems, pancreatic islet transplantation was recently suggested as a potential target of the "thera...

  18. Recombinant human erythropoietin increases survival and reduces neuronal apoptosis in a murine model of cerebral malaria

    Directory of Open Access Journals (Sweden)

    Hempel Casper

    2008-01-01

    Full Text Available Abstract Background Cerebral malaria (CM is an acute encephalopathy with increased pro-inflammatory cytokines, sequestration of parasitized erythrocytes and localized ischaemia. In children CM induces cognitive impairment in about 10% of the survivors. Erythropoietin (Epo has – besides of its well known haematopoietic properties – significant anti-inflammatory, antioxidant and anti-apoptotic effects in various brain disorders. The neurobiological responses to exogenously injected Epo during murine CM were examined. Methods Female C57BL/6j mice (4–6 weeks, infected with Plasmodium berghei ANKA, were treated with recombinant human Epo (rhEpo; 50–5000 U/kg/OD, i.p. at different time points. The effect on survival was measured. Brain pathology was investigated by TUNEL (Terminal deoxynucleotidyl transferase (TdT-mediated deoxyuridine triphosphate (dUTP-digoxigenin nick end labelling, as a marker of apoptosis. Gene expression in brain tissue was measured by real time PCR. Results Treatment with rhEpo increased survival in mice with CM in a dose- and time-dependent manner and reduced apoptotic cell death of neurons as well as the expression of pro-inflammatory cytokines in the brain. This neuroprotective effect appeared to be independent of the haematopoietic effect. Conclusion These results and its excellent safety profile in humans makes rhEpo a potential candidate for adjunct treatment of CM.

  19. Effects of Thapsigargin on the Proliferation and Survival of Human Rheumatoid Arthritis Synovial Cells

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2014-01-01

    Full Text Available A series of experiments have been carried out to investigate the effects of different concentrations of thapsigargin (0, 0.001, 0.1, and 1 μM on the proliferation and survival of human rheumatoid arthritis synovial cells (MH7A. The results showed that thapsigargin can block the cell proliferation in human rheumatoid arthritis synovial cells in a time- and dose-dependent manner. Results of Hoechst staining suggested that thapsigargin may induce cell apoptosis in MH7A cells in a time- and dose-dependent manner, and the percentages of cell death reached 44.6% at thapsigargin concentration of 1 μM treated for 4 days compared to the control. The protein and mRNA levels of cyclin D1 decreased gradually with the increasing of thapsigargin concentration and treatment times. Moreover, the protein levels of mTORC1 downstream indicators pS6K and p4EBP-1 were reduced by thapsigargin treatment at different concentrations and times, which should be responsible for the reduced cyclin D1 expressions. Our results revealed that thapsigargin may effectively impair the cell proliferation and survival of MH7A cells. The present findings will help to understand the molecular mechanism of fibroblast-like synoviocytes proliferations and suggest that thapsigargin is of potential for the clinical treatment of rheumatoid arthritis.

  20. Renal adenocarcinoma, hepatocellular carcinoma, and pancreatic islet cell carcinoma in a binturong (Arctictis binturong).

    Science.gov (United States)

    Klaphake, Eric; Shoieb, Ahmed; Ramsay, Ed; Schumacher, Juergen; Craig, Linden

    2005-03-01

    A 19-yr-old binturong (Arctictis binturong) with acute upper respiratory disease was euthanized. Postmortem findings included hepatocellular carcinoma, pancreatic islet cell carcinoma, and renal adenocarcinoma with metastasis to the spleen, pleura, and pericardium. A link between primary hepatic and renal neoplasms has been noted in older humans.

  1. Microwell scaffolds for the extrahepatic transplantation of islets of langerhans

    NARCIS (Netherlands)

    Buitinga, M.; Truckenmuller, R.; Engelse, M.A.; Moroni, L.; Ten Hoopen, H.W.; van Blitterswijk, C.A.; de Koning, E.J.; van Apeldoorn, A.A.; Karperien, M.

    2013-01-01

    Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. Thi

  2. Entrance and Survival of Brucella pinnipedialis Hooded Seal Strain in Human Macrophages and Epithelial Cells

    Science.gov (United States)

    Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  3. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anett K Larsen

    Full Text Available Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis and cetaceans (B. ceti from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17 by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1, two murine macrophage cell lines (RAW264.7 and J774A.1, and a human malignant epithelial cell line (HeLa S3 were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72-96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3, suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.

  4. Cold ischemia time and blood compatibility associated with activity of transplanted islet cells%冷缺血时间及血液相容性与移植胰岛细胞活性的关系

    Institute of Scientific and Technical Information of China (English)

    高宏君; 梁泰生; 杨欢; 罗向东; 吴佩钟; 谭臻; 梁芳芳

    2007-01-01

    .4) minutes, correlation of islet cells and histocompatibility with survival of islet cells was analyzed.MAIN OUTCOME MEASURES: Survival rate of islet cells; counts of platelet, heterophil granulocyte and monocyte.RESULTS: The cutting of kidney, pancreases and liver were successful. If the cold ischemia time was controlled within 5 hours, activity of islets was above 80%. Pancreatic gland used for islet transplantation and cutting of other organs could not affect activity of islet cells. When human islets were exposed to human blood, it would induce a rapid consumption of platelets, neutrophils, monocytes and lymphocytes in the blood. Consumption of blood cells was more in the HLA typing groups than that in the control group. After adding heparin, there was significant difference in cell account among the three groups (P < 0.05) and the reaction was relieved obviously. After 24-hour cultivation, there were significant difference in active islets quantity between HLA typing compatibility group and HLA typing incompatibility group (P < 0.05).CONCLUSION: Pancreatic gland obtained under the cold ischemia time < 5 hours can be used in clinical transplantation of islet cells; a good histocompatibility can raise successful rate of transplantation of islet cells.

  5. Effects of growth hormone, prolactin, and placental lactogen on insulin content and release, and deoxyribonucleic acid synthesis in cultured pancreatic islets

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1982-01-01

    The direct effects of human GH (hGH), ovine pituitary PRL (oPRL), and human chorionic somatomammotropin [placental lactogen (hPL)] on the endocrine pancreas were studied in isolated pancreatic islets maintained in tissue culture. Islets of Langerhans were isolated by collagenase treatment of panc...... and related hormones have a direct stimulatory effect on both the insulin production and DNA synthesis in isolated islets of Langerhans. Whether the effect is directly on the beta-cell or mediated via locally produced growth factors remains to be determined....

  6. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats

    Directory of Open Access Journals (Sweden)

    CRISTIANA S.B. SALVATIERRA

    2015-06-01

    Full Text Available The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate β cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%. Pregnant and non-pregnant rats in the experimental groups were fed a low-protein diet (6% for 15 days. Low protein diet during pregnancy increased serum prolactin level, reduced serum corticosterone concentration and the expression of both protein kinase B/AKT1 (AKT1 and p70 ribosomal protein S6 kinase (p70S6K, as well as the islets area, but did not alter the insulin content of pancreatic islets. Pregnancy increased the expression of the Src homology/collagen (SHC protein and the extracellular signal-regulated kinases 1/2 (ERK1/2 independent of diet. ERK1/2 phosphorylation (pERK1/2 was similar in islets from pregnant and non-pregnant rats fed a low-protein diet, and was higher in islets from pregnant rats than in islets from non-pregnant rats fed a normal-protein diet. Thus, a short-term, low-protein diet during pregnancy was sufficient to reduce the levels of proteins in the phosphatidylinositol 3-kinase pathway and affect islet morphometry.

  7. The Study of Non-Viral Nanoscale Delivery Systems for Islet Transplantation

    Science.gov (United States)

    Gutierrez, Diana

    Due to safety concerns associated with using viral systems clinically to expand islet cells and make them available to many more patients, significant emphasis has been placed on producing a safe and effective non-viral delivery system for biological research and gene therapy. To obtain this goal, we propose the use of an innovative technology that utilizes gold nanoparticles (AuNPs) as a non-viral method of delivery. Our laboratory was one of the first to describe the use of AuNPs in human islets and observe AuNPs can penetrate into the core of islets to deliver a gene to the vast majority of the cells, without damaging the cell. Gold nanoparticles proved to be a biocompatible delivery system both in vitro and in vivo. Thus far, gene therapy and molecular biology have focused primarily on delivering DNA of a specific gene into cells. The risk of this approach is that the DNA can be permanently incorporated into the genome and lead to damages in the cell that could result in overexpression of cancerous tumor cells. This risk does not exist with the use of mRNA. Many researchers believe mRNA is too unstable to be used as a molecular tool to overexpress specific proteins. With advances in nanotechnology, and better understanding of the translation process, methods have been developed that allow for expression of specific proteins by intracellular delivery of protein-encoding mRNA. We used AuNPs conjugated to mCherry mRNA to establish a proof of concept of the feasibility of using AuNP-mRNA to achieve increased expression of a specific protein within cells. To do this, we conjugated mCherry mRNA to AuNPs and tested the feasibility for increasing delivery efficacy and preserve functionality of human pancreatic islets. We believe that with this novel technology we can create AuNPs that allow specific mRNA to enter islets and lead to the production of a specific protein within the cell, with the aim to induce beta cell proliferation. In a previous experiment with single

  8. Xenotransplantation of piscine islets into hyperglycemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.; Weil, R. III; McIntosh, R.; Hogle, H.; Warden, G.; Reemtsma, K.

    1975-02-01

    Xenotransplantation of piscine islets into hyperglycemic rats usually lowers the blood sugar level of the recipient. The duration of this effect is prolonged by irradiation of the host or by enclosing donor tissue in synthetic envelopes. This prolongation appears to be related to interference with the host's ability to reject the graft; the duration of the prolongation may be limited by the host tissue reaction surrounding the envelope. The availability of anatomically separate piscine islet tissue makes it potentially useful for xenotransplantation into mammals.

  9. Human and Autologous Adipose-derived Stromal Cells Increase Flap Survival in Rats Independently of Host Immune Response.

    Science.gov (United States)

    Toyserkani, Navid Mohamadpour; Jensen, Charlotte Harken; Andersen, Ditte Caroline; Sheikh, Søren Paludan; Sørensen, Jens Ahm

    2017-07-22

    There is a rising interest in adipose-derived stromal cells for clinical use; however, it is unknown whether freshly isolated stromal cells (SVF) or culture-expanded cells (ASCs) are more efficacious. We therefore aimed to compare the 2 cellular therapies in an in vivo model of angiogenesis, the ischemic flap in rats, which induces acute ischemia. We also aimed to determine the importance of cell presence and the host immune response. A total of 96 rats (n = 12 in each group) were used, and in each rat, a caudally based random flap measuring 2 × 7 cm was made. The study was conducted in 3 phases. First, each rat was treated with human SVF cells, human ASCs, or vehicle. Second, each rat was treated with human SVF, human SVF lysate, or vehicle. Finally, each rat was treated with rat (autologous) SVF cells or vehicle. Flap survival, vessel density, and stromal cell retention were evaluated after 7 days. The mean survival rates for SVF treatment regardless of human or autologous origin were significantly increased as compared with the control group. Adipose stem/stromal cell and SVF lysate injection did not increase flap survival. Vessel density was increased for human and rat SVF and human ASC but not for SVF lysate. Human cells were not detected in the flaps after 7 days. Flap survival increased with SVF treatment regardless of human or autologous origin, suggesting that increased flap survival is independent of the host immune response. All cell injections lead to increased vessel density, but it did not necessarily lead to increased flap survival. Further research should elaborate which molecular events make SVF treatment more efficacious than ASC.

  10. The Ecology of Human Fear: Survival Optimization and the Nervous System

    Directory of Open Access Journals (Sweden)

    Dean eMobbs

    2015-03-01

    Full Text Available We propose a Survival Optimization System (SOS to account for the strategies that humans and other animals use to defend against recurring and novel threats. The SOS attempts to merge ecological models that define a repertoire of contextually relevant threat induced survival behaviors with contemporary approaches to human affective science. We first propose that the goal of the nervous system is to reduce surprise and optimize actions by (i predicting the sensory landscape, through simulation of possible encounters with threat, selecting appropriate action by pre-encounter avoidance and (ii prevention strategies in which the organism manufactures safe environments. When a potential threat is encountered the (iii threat orienting system is engaged to determine whether the organism ignores the stimulus or switches into a process of (iv assessment, where the organism monitors the stimulus, weighs the threat value, predicts the actions of the threat, searches for safety, and guides behavioral actions crucial to directed escape. When under imminent attack, (v defensive systems evoke fast reflexive indirect escape behaviors (i.e. fight or flight. This cascade of responses to threat of increasing magnitude are underwritten by an interconnected neural architecture that extends from cortical and hippocampal circuits, to attention, action and threat systems including the amygdala, striatum, and hard-wired defensive systems in the midbrain. The SOS also includes a modulatory feature consisting of cognitive appraisal systems that flexibly guide perception, risk and action. Moreover, personal and vicarious threat encounters fine-tune avoidance behaviors via model-based learning, with higher organisms bridging data to reduce face-to-face encounters with predators. Our theory unifies the divergent field of human affective science, proposing the highly integrated, interconnected nervous systems are optimized to avoid ecological dangers.

  11. Long-term survival outcomes in patients with surgically treated oropharyngeal cancer and defined human papilloma virus status.

    Science.gov (United States)

    Dale, O T; Sood, S; Shah, K A; Han, C; Rapozo, D; Mehanna, H; Winter, S C

    2016-11-01

    This study investigated long-term survival outcomes in surgically treated oropharyngeal cancer patients with known human papilloma virus status. A case note review was performed of all patients undergoing primary surgery for oropharyngeal cancer in a single centre over a 10-year period. Human papilloma virus status was determined via dual modality testing. Associations between clinicopathological variables and survival were identified using a log-rank test. Of the 107 cases in the study, 40 per cent (n = 41) were human papilloma virus positive. The positive and negative predictive values of p16 immunohistochemistry for human papilloma virus status were 57 per cent and 100 per cent, respectively. At a mean follow up of 59.5 months, 5-year overall and disease-specific survival estimates were 78 per cent and 69 per cent, respectively. Human papilloma virus status (p = 0.014), smoking status (p = 0.021) and tumour stage (p = 0.03) were significant prognostic indicators. The long-term survival rates in surgically treated oropharyngeal cancer patients were comparable to other studies. Variables including human papilloma virus status and tumour stage were associated with survival in patients treated with primary surgery; however, nodal stage and presence of extracapsular spread were non-prognostic.

  12. B7-H4 Pathway in Islet Transplantation and β-Cell Replacement Therapies

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2011-01-01

    Full Text Available Type 1 diabetes (T1D is a chronic autoimmune disease and characterized by absolute insulin deficiency. β-cell replacement by islet cell transplantation has been established as a feasible treatment option for T1D. The two main obstacles after islet transplantation are alloreactive T-cell-mediated graft rejection and recurrence of autoimmune diabetes mellitus in recipients. T cells play a central role in determining the outcome of both autoimmune responses and allograft survival. B7-H4, a newly identified B7 homolog, plays a key role in maintaining T-cell homeostasis by reducing T-cell proliferation and cytokine production. The relationship between B7-H4 and allograft survival/autoimmunity has been investigated recently in both islet transplantation and the nonobese diabetic (NOD mouse models. B7-H4 protects allograft survival and generates donor-specific tolerance. It also prevents the development of autoimmune diabetes. More importantly, B7-H4 plays an indispensable role in alloimmunity in the absence of the classic CD28/CTLA-4 : B7 pathway, suggesting a synergistic/additive effect with other agents such as CTLA-4 on inhibition of unwanted immune responses.

  13. Inhibition of Insulin-Degrading Enzyme Does Not Increase Islet Amyloid Deposition in Vitro.

    Science.gov (United States)

    Hogan, Meghan F; Meier, Daniel T; Zraika, Sakeneh; Templin, Andrew T; Mellati, Mahnaz; Hull, Rebecca L; Leissring, Malcolm A; Kahn, Steven E

    2016-09-01

    Islet amyloid deposition in human type 2 diabetes results in β-cell loss. These amyloid deposits contain the unique amyloidogenic peptide human islet amyloid polypeptide (hIAPP), which is also a known substrate of the protease insulin-degrading enzyme (IDE). Whereas IDE inhibition has recently been demonstrated to improve glucose metabolism in mice, inhibiting it has also been shown to increase cell death when synthetic hIAPP is applied exogenously to a β-cell line. Thus, we wanted to determine whether a similar deleterious effect is observed when hIAPP is endogenously produced and secreted from islets. To address this issue, we cultured hIAPP transgenic mouse islets that have the propensity to form amyloid for 48 and 144 hours in 16.7 mM glucose in the presence and absence of the IDE inhibitor 1. At neither time interval did IDE inhibition increase amyloid formation or β-cell loss. Thus, the inhibition of IDE may represent an approach to improve glucose metabolism in human type 2 diabetes, without inducing amyloid deposition and its deleterious effects.

  14. Islet-intrinsic effects of CFTR mutation.

    Science.gov (United States)

    Koivula, Fiona N Manderson; McClenaghan, Neville H; Harper, Alan G S; Kelly, Catriona

    2016-07-01

    Cystic fibrosis-related diabetes (CFRD) is the most significant extra-pulmonary comorbidity in cystic fibrosis (CF) patients, and accelerates lung decline. In addition to the traditional view that CFRD is a consequence of fibrotic destruction of the pancreas as a whole, emerging evidence may implicate a role for cystic fibrosis transmembrane-conductance regulator (CFTR) in the regulation of insulin secretion from the pancreatic islet. Impaired first-phase insulin responses and glucose homeostasis have also been reported in CF patients. CFTR expression in both human and mouse beta cells has been confirmed, and recent studies have shown differences in endocrine pancreatic morphology from birth in CF. Recent experimental evidence suggests that functional CFTR channels are required for insulin exocytosis and the regulation of membrane potential in the pancreatic beta cell, which may account for the impairments in insulin secretion observed in many CF patients. These novel insights suggest that the pathogenesis of CFRD is more complicated than originally thought, with implications for diabetes treatment and screening in the CF population. This review summarises recent emerging evidence in support of a primary role for endocrine pancreatic dysfunction in the development of CFRD. Summary • CF is an autosomal recessive disorder caused by mutations in the CFTR gene • The vast majority of morbidity and mortality in CF results from lung disease. However CFRD is the largest extra-pulmonary co-morbidity and rapidly accelerates lung decline • Recent experimental evidence shows that functional CFTR channels are required for normal patterns of first phase insulin secretion from the pancreatic beta cell • Current clinical recommendations suggest that insulin is more effective than oral glucose-lowering drugs for the treatment of CFRD. However, the emergence of CFTR corrector and potentiator drugs may offer a personalised approach to treating diabetes in the CF population.

  15. Human hepatocyte growth factor (hHGF-modified hepatic oval cells improve liver transplant survival.

    Directory of Open Access Journals (Sweden)

    Zhu Li

    Full Text Available Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF in modifying hepatic oval cells (HOCs administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05. Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2, tumor necrosis factor-α (TNF-α and interferon-γ (IFN-γ levels while increasing the production of IL-10 and TGF-β1 (P<0.05. HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only. Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver

  16. Isolation and culture of adult Sertoli cells and their effects on the function of co-cultured allogeneic islets in vitro

    Institute of Scientific and Technical Information of China (English)

    TENG Yan; XUE Wu-jun; DING Xiao-ming; FENG Xin-shun; XIANG He-li; JIANG Ya-zhuo; TIAN Pu-xun

    2005-01-01

    Background Globally, 180 million people suffer from diabetes mellitus. Islet transplantation is believed to be an almost ideal therapy for insulin-dependent patients. How to maintain the viability and the function of isolated human islets is a challenge in clinical practice. Sertoli cells are considered ‘nurse cells'in the seminiferous tubules and have been used in cell graft protocols for neurodegenerative diseases and diabetes in many studies. Many researchers have used immature murine testes as the primarily source of Sertoli cells in islet transplantation because they are easily purified. Mature human Sertoli cells have been seldom investigated. In the present study, we developed a method for the isolation and culture of Sertoli cells derived from adult human testes, and investigated their effects on the function of allogeneic islets when they were cultured together in vitro. Methods Adult Sertoli cells were prepared successfully by two-step enzyme digestion with trypsin, collagenase and hyaluronidase. They were identified by morphological characteristics and their activity was determined by MTT colorimetry over a 28-day culture time in vitro. A glucose-stimulated insulin secretion test was performed to detect the effects of Sertoli cells on allogeneic islets' function when they were co-cultured for 21 days in vitro. Results In cultured cells, mature human Sertoli cells accounted for more than 90% of total cells. The activity of Sertoli cells reached 95% and they remained highly cytoactive for a long time in vitro (P>0.05). Compared with the islets cultured alone, the co-cultured islets with allogeneic Sertoli cells maintained higher sensitivity to glucose stimulation for the duration of the experiment (P<0.01). Conclusions A method of isolation and culture of Sertoli cells from adult testes has been established. Sertoli cells could enhance allogeneic islets' function when they were co-cultured in vitro. They could be a helper cell in islet transplantation.

  17. Overexpression of human SOD1 improves survival of mice susceptible to endotoxic shock

    Directory of Open Access Journals (Sweden)

    Charchaflieh J

    2012-07-01

    Full Text Available Jean Charchaflieh,1,2 Georges I Labaze,1 Pulsar Li,1 Holly Van Remmen,3 Haekyung Lee,1 Helen Stutz,1 Arlan Richardson,3 Asher Emanuel,1 Ming Zhang1,41Department of Anesthesiology, State University of New York (SUNY Downstate Medical Center, New York, NY, USA; 2Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA; 3Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 4Department of Cell Biology, State University of New York (SUNY Downstate Medical Center, New York, NY, USABackground: Protective effects of the antioxidant enzyme Cu-Zn superoxide dismutase (SOD1 against endotoxic shock have not been demonstrated in animal models. We used a murine model to investigate whether overexpression of SOD1 protects against endotoxic shock, and whether the genetic background of SOD1 affects its effective protective effects and susceptibility to endotoxic shock.Methods: Transgenic (tg mice overexpressing human SOD1 and control mice were divided into four groups based on their genetic background: (1 tg mice with mixed genetic background (tg-JAX; (2 wild-type (WT littermates of tg-JAX strain (WT-JAX; (3 tg mice with C57BL/6J background (tg-TX; (4 WT littermates of tg-TX strain (WT-TX. Activity of SOD1 in the intestine, heart, and liver of tg and control mice was confirmed using a polyacrylamide activity gel. Endotoxic shock was induced by intraperitoneal injection of lipopolysaccharide. Survival rates over 120 hours (mean, 95% confidence interval were analyzed using Kaplan–Meier survival curves.Results: Human SOD1 enzymatic activities were significantly higher in the intestine, heart, and liver of both tg strains (tg-JAX and tg-TX compared with their WT littermates (WT-JAX and WT-TX, respectively. Interestingly, the endogenous SOD1 activities in tg-JAX mice were decreased compared with their WT littermates (WT-JAX, but such aberrant changes were not

  18. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs. HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1, insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of

  19. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  20. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages.

    Science.gov (United States)

    Château, Alice; Seifert, H Steven

    2016-04-01

    The human-adapted organism Neisseria gonorrhoeae is the causative agent of gonorrhoea, a sexually transmitted infection. It readily colonizes the genital, rectal and nasalpharyngeal mucosa during infection. While it is well established that N. gonorrhoeae recruits and modulates the functions of polymorphonuclear leukocytes during infection, how N. gonorrhoeae interacts with macrophages present in infected tissue is not fully defined. We studied the interactions of N. gonorrhoeae with two human monocytic cell lines, THP-1 and U937, and primary monocytes, all differentiated into macrophages. Most engulfed bacteria were killed in the phagolysosome, but a subset of bacteria was able to survive and replicate inside the macrophages suggesting that those cells may be an unexplored cellular reservoir for N. gonorrhoeae during infection. N. gonorrhoeae was able to modulate macrophage apoptosis: N. gonorrhoeae induced apoptosis in THP-1 cells whereas it inhibited induced apoptosis in U937 cells and primary human macrophages. Furthermore, N. gonorrhoeae induced expression of inflammatory cytokines in macrophages, suggesting a role for macrophages in recruiting polymorphonuclear leukocytes to the site of infection. These results indicate macrophages may serve as a significant replicative niche for N. gonorrhoeae and play an important role in gonorrheal pathogenesis.

  1. Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

    Directory of Open Access Journals (Sweden)

    Michal Babič

    2014-10-01

    Full Text Available Surface-modified maghemite (γ-Fe2O3 nanoparticles were obtained by using a conventional precipitation method and coated with D-mannose and poly(N,N-dimethylacrylamide. Both the initial and the modified particles were characterized by transmission electron microscopy and dynamic light scattering with regard to morphology, particle size and polydispersity. In vitro survival of human stem cells was then investigated by using the methyl thiazolyl tetrazolium (MTT assay, which showed that D-mannose- and poly(N,N-dimethylacrylamide-coated γ-Fe2O3 particles exhibit much lower level of cytotoxicity than the non-coated γ-Fe2O3.

  2. Megafaunal meiolaniid horned turtles survived until early human settlement in Vanuatu, Southwest Pacific.

    Science.gov (United States)

    White, Arthur W; Worthy, Trevor H; Hawkins, Stuart; Bedford, Stuart; Spriggs, Matthew

    2010-08-31

    Meiolaniid or horned turtles are members of the extinct Pleistocene megafauna of Australia and the southwest Pacific. The timing and causes of their extinction have remained elusive. Here we report the remains of meiolaniid turtles from cemetery and midden layers dating 3,100/3,000 calibrated years before present to approximately 2,900/2,800 calibrated years before present in the Teouma Lapita archaeological site on Efate in Vanuatu. The remains are mainly leg bones; shell fragments are scant and there are no cranial or caudal elements, attesting to off-site butchering of the turtles. The new taxon differs markedly from other named insular terrestrial horned turtles. It is the only member of the family demonstrated to have survived into the Holocene and the first known to have become extinct after encountering humans.

  3. Separation of empty microcapsules after microencapsulation of porcine neonatal islets.

    Science.gov (United States)

    Shin, Soojeong; Yoo, Young Je

    2013-12-01

    Pancreatic islet transplantation is used to treat diabetes mellitus that has minimal complications and avoids hypoglycemic shock. Conformal microencapsulation of pancreatic islets improves their function by blocking immunogenic molecules while protecting fragile islets. However, production of empty alginate capsules during microencapsulation causes enlargement of the transplantation volume of the encapsulated islets and interferes with efficient transfer of nutrients and insulin. In this study, empty alginate capsules were separated after microencapsulation of neonatal porcine islet-like cell clusters (NPCC) using density-gradient centrifugation. Densities of NPCC and alginate capsules were determined using Percoll. Encapsulation products following alginate removal were 97 % of products, with less than 10 % of the capsules remaining empty. The viability of this process compared with manually-selected encapsulated islets indicates the separation process does not harm islets.

  4. Is islet transplantation ready for widespread use in diabetes?

    Institute of Scientific and Technical Information of China (English)

    WANG Jin; WANG Qing-hua; XIA Tian; TAN Jian-ming

    2011-01-01

    Up till 2000 when Edmonton group introduced islet transplant procedure in conjunction with a novel glucocorticoid-free immunosuppressive regimen rendering 100% (n=7) of patients with type 1 diabetes insulin-independent for at least 1 year, islet transplant was taken into the clinic. Although significant progress in clinical islet transplant has occurred during recent years, challenges remain, including shortage of available donor organs, technical aspects of islet preparation and transplantation, immunological rejection post-transplant, unclear long-term outcomes of islet transplantation. Special attention is given to current limitation in islet transplantation together with new possible strategies that raise expectations for the widespread use of islet transplantation in the future.

  5. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression.

    Directory of Open Access Journals (Sweden)

    Subrata Chowdhury

    Full Text Available We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1, which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents to active cortisol (corticosterone in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.

  6. The influence of porcine pancreas digestion parameters and islet histomorphology on islet isolation outcome.

    Science.gov (United States)

    Kinasiewicz, J; Sabat, M; Antosiak-Iwańska, M; Godlewska, E; Sitarek, E; Orłowski, T

    2011-01-01

    Transplantation of the pig islets of Langerhans is considered as the future treatment for patients suffering from type I diabetes mellitus. Despite the adaptation of modified Ricordi method and highly purified collagenase, the results of pancreas digestions are precarious. Selection of proper donor and optimal digestion procedure are fundamental. The aim of this study was to assess the impact of pancreas procuring parameters on pig islets yield. The pancreata were harvested from 69 market sows weighting over 150 kg. After intraductal injection of cold collagenase solution pancreata were transported in UW solution or under conditions of two layer method (TLM). In laboratory pancreata were digested at 37 degrees C according to Ricordi isolation method or stationary in the bottle. The particular parameters of isolation procedure were considered as substantial. Pig weight, volume of infused collagenase solution, TLM application and pancreas dividing before digestion positively affected islet yield. Additionally, the influence of pancreatic islet tissue histomorphology on isolation outcome was studied. Proper donor selection as well as adequate digestion parameters could improve pig islet recovery during islet isolation.

  7. Sustained Administration of β-cell Mitogens to Intact Mouse Islets Ex Vivo Using Biodegradable Poly(lactic-co-glycolic acid) Microspheres.

    Science.gov (United States)

    Pasek, Raymond C; Kavanaugh, Taylor E; Duvall, Craig L; Gannon, Maureen A

    2016-11-05

    The development of biomaterials has significantly increased the potential for targeted drug delivery to a variety of cell and tissue types, including the pancreatic β-cells. In addition, biomaterial particles, hydrogels, and scaffolds also provide a unique opportunity to administer sustained, controllable drug delivery to β-cells in culture and in transplanted tissue models. These technologies allow the study of candidate β-cell proliferation factors using intact islets and a translationally relevant system. Moreover, determining the effectiveness and feasibility of candidate factors for stimulating β-cell proliferation in a culture system is critical before moving forward to in vivo models. Herein, we describe a method to co-culture intact mouse islets with biodegradable compound of interest (COI)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres for the purpose of assessing the effects of sustained in situ release of mitogenic factors on β-cell proliferation. This technique describes in detail how to generate PLGA microspheres containing a desired cargo using commercially available reagents. While the described technique uses recombinant human Connective tissue growth factor (rhCTGF) as an example, a wide variety of COI could readily be used. Additionally, this method utilizes 96-well plates to minimize the amount of reagents necessary to assess β-cell proliferation. This protocol can be readily adapted to use alternative biomaterials and other endocrine cell characteristics such as cell survival and differentiation status.

  8. Mitis group streptococci express variable pilus islet 2 pili.

    Directory of Open Access Journals (Sweden)

    Dorothea Zähner

    Full Text Available BACKGROUND: Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2-encoded pili to facilitate adhesion to eukaryotic cells. METHODOLOGY/PRINCIPAL FINDINGS: PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. CONCLUSIONS/SIGNIFICANCE: This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to

  9. Triptolide increases transcript and protein levels of survival motor neurons in human SMA fibroblasts and improves survival in SMA-like mice.

    Science.gov (United States)

    Hsu, Ya-Yun; Jong, Yuh-Jyh; Tsai, Hsin-Hung; Tseng, Yu-Ting; An, Li-Mei; Lo, Yi-Ching

    2012-06-01

    Spinal muscular atrophy (SMA) is a progressive neuromuscular disease. Since disease severity is related to the amount of survival motor neuron (SMN) protein, up-regulated functional SMN protein levels from the SMN2 gene are considered a major SMA drug-discovery strategy. In this study, we investigated the possible effects of triptolide, a diterpene triepoxide purified from Tripterygium wilfordii Hook. F., as a new compound for increasing SMN protein. The effects and mechanisms of triptolide on the production of SMA protein were determined by cell-based assays using the motor neuronal cell line NSC34 and skin fibroblasts from SMA patients. Wild-type (Smn(+/+) SMN2(-/-) , C57BL/6) and SMA-like (Smn(-/-) SMN2) mice were injected with triptolide (0.01 or 0.1 mg·kg(-1) ·day(-1) , i.p.) and their survival rate and level of change in SMN protein in neurons and muscle tissue measured. In NSC34 cells and human SMA fibroblasts, pM concentrations of triptolide significantly increased SMN protein expression and the levels of SMN complex component (Gemin2 and Gemin3). In human SMA fibroblasts, triptolide increased SMN-containing nuclear gems and the ratio of full-length transcripts (FL-SMN2) to SMN2 transcripts lacking exon 7 (SMN2Δ7). Furthermore, in SMA-like mice, triptolide significantly increased SMN protein levels in the brain, spinal cord and gastrocnemius muscle. Furthermore, triptolide treatment increased survival and reduced weight loss in SMA-like mice. Triptolide enhanced SMN protein production by promoting SMN2 activation, exon 7 inclusion and increasing nuclear gems, and increased survival in SMA mice, which suggests triptolide might be a potential candidate for SMA therapy. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  10. Islet transplantation in type 1 diabetes

    NARCIS (Netherlands)

    de Kort, H.; de Koning, E.; Rabelink, T.; Bruijn, J.A.; Bajema, I.

    2011-01-01

    Hanneke de Kort, research fellow1, Eelco J de Koning, associate professor, head of clinical islet transplantation programme234, Ton J Rabelink, professor of medicine, chair of department of nephrology2, Jan A Bruijn, professor immunopathology1, Ingeborg M Bajema, renal and transplantation pathologis

  11. Glucagon-like peptide-1 and cholecystokinin production and signaling in the pancreatic islet as an adaptive response to obesity.

    Science.gov (United States)

    Linnemann, Amelia K; Davis, Dawn Belt

    2016-04-01

    Precise control of blood glucose is dependent on adequate β-cell mass and function. Thus, reductions in β-cell mass and function lead to insufficient insulin production to meet demand, and result in diabetes. Recent evidence suggests that paracrine signaling in the islet might be important in obesity, and disruption of this signaling could play a role in the pathogenesis of diabetes. For example, we recently discovered a novel islet incretin axis where glucagon-like peptide-1 regulates β-cell production of another classic gut hormone, cholecystokinin. This axis is stimulated by obesity, and plays a role in enhancing β-cell survival. In the present review, we place our observations in the wider context of the literature on incretin regulation in the islet, and discuss the potential for therapeutic targeting of these pathways.

  12. Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival.

    Directory of Open Access Journals (Sweden)

    Elena Riccitelli

    Full Text Available Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs, a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ, and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source

  13. Limitations in the Use of Fluorescein Diacetate/Propidium Iodide (FDA/PI) and Cell Permeable Nucleic Acid Stains for Viability Measurements of Isolated Islets of Langerhans.

    Science.gov (United States)

    Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K

    2008-03-01

    BACKGROUND: A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO(R)13, SYTO(R)24 and SYBR(R)14 as possible alternatives to FDA. RESULTS: We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO(R)13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. CONCLUSIONS: From a review of the literature and from our observations on

  14. Lagoon islets as indicators of recent environmental changes in the South Pacific - The New Caledonian example

    Science.gov (United States)

    Garcin, Manuel; Vendé-Leclerc, Myriam; Maurizot, Pierre; Le Cozannet, Gonéri; Robineau, Bernard; Nicolae-Lerma, Alexandre

    2016-07-01

    The question of the impacts of climate change and sea level rise on small islands is currently much discussed. The many thousands of Pacific islands in their different contexts (geodynamic, climatic, etc.) and the insufficient data available explain why it is difficult to clearly discern the specific role of climate change in the recent evolution of these islands. To address this question, we investigated the recent changes affecting 21 islets in New Caledonia's lagoon. These islets are either located on small patch-reefs inside the New Caledonia Island lagoon or lie directly on the barrier reef. Based on the studies we conducted (field surveys, reconstruction of changes in the islets over the last decades, shoreline changes) we were able to define a typology of the islets that includes 6 stages and a life expectancy index. Using the life expectancy index, we found that of the 21 islets studied, 19% are in a highly critical situation, meaning they are very likely to be endangered in the short term (within the next few years), 9.5% are in a critical situation, i.e., likely to disappear in the near future and very likely to disappear in the medium term (next few decades), 19% are evolving rapidly, which could lead to their disappearance in the medium term but not in the short term, 9.5% are not endangered in the short and medium term and 43% are not endangered at all (stable or accreting, large area, relatively higher altitude). In this context, the rise in sea level induced by climate change is an adverse factor which is likely to lower the resilience of the islets to erosion processes. Other factors like the degradation of the reef ecosystem due to variations in ocean salinity, temperature and acidity, lower sediment stocks on the beaches and foreshores, human visitors, coastal development and so on are other adverse factors that could modify the capacity for resilience of these islets. Due to their variety and sensitivity, New Caledonia's islets could thus serve

  15. Endogenous GLP-1 as a key self-defense molecule against lipotoxicity in pancreatic islets.

    Science.gov (United States)

    Huang, Chenghu; Yuan, Li; Cao, Shuyi

    2015-07-01

    The number of pro-α cells is known to increase in response to β cell injury and these cells then generate glucagon-like peptide-1 (GLP-1), thus attenuating the development of diabetes. The aim of the present study was to further examine the role and the mechanisms responsible for intra-islet GLP-1 production as a self-protective response against lipotoxicity. The levels of the key enzyme, prohormone convertase 1/3 (PC1/3), as well as the synthesis and release of GLP-1 in models of lipotoxicity were measured. Furthermore, islet viability, apoptosis, oxidative stress and inflammation, as well as islet structure were assessed after altering GLP-1 receptor signaling. Both prolonged exposure to palmitate and a high-fat diet facilitated PC1/3 expression, as well as the synthesis and release of GLP-1 induced by β cell injury and the generation of pro-α cells. Prolonged exposure to palmitate increased reactive oxygen species (ROS) production, and the antioxidant, N-acetylcysteine (NAC), partially prevented the detrimental effects induced by palmitate on β cells, resulting in decreased GLP-1 levels. Furthermore, the inhibition of GLP-1 receptor (GLP-1R) signaling by treatment with exendin‑(9-39) further decreased cell viability, increased cell apoptosis and caused a stronger inhibition of the β cell-specific transcription factor, pancreatic duodenal homeobox 1 (PDX1). Moreover, treatment with the GLP-1R agonist, liraglutide, normalized islet structure and function, resulting in a decrease in cell death and in the amelioration of β cell marker expression. Importantly, liraglutide maintained the oxidative balance and decreased inflammatory factor and p65 expression. Overall, our data demonstrate that an increase in the number of pro-α cells and the activation of the intra-islet GLP-1 system comprise a self-defense mechanism for enhancing β cell survival to combat lipid overload, which is in part mediated by oxidative stress and inflammation.

  16. The Langerhans islet cells of female rabbits are differentially affected by hypothyroidism depending on the islet size.

    Science.gov (United States)

    Rodríguez-Castelán, J; Nicolás, L; Morimoto, S; Cuevas, E

    2015-04-01

    Effects of hypothyroidism on the glucose and insulin levels are controversial, and its impact on the Langerhans islet morphology of adult subjects has been poorly addressed. In spite of hypothyroidism and diabetes mellitus are more frequent in females than in males, most studies using animal models have been done in males. The effect of hypothyroidism on the immunolabeling of thyroid hormone receptors (TRs) and thyrotropin receptor (TSHR) of islet cells is unknown. The aim of this study was to determine the effect of hypothyroidism on the glucose and insulin concentrations, morphometry of islets, and immunostaining of TRs α1-2 and β1 and TSHR of islet cells in female rabbits. Control and hypothyroid (0.02% of methimazole for 30 days) animals were used to quantify blood levels of glucose and insulin, density of islets, cross-sectional area (CSA) of islets, number of cells per islet, cell proliferation, and the immunolabeling of TRs α1-2, TRβ1, and TSHR. Student's t or Mann-Whitney-U tests, two-way ANOVAs, and Fischer's tests were applied. Concentrations of glucose and insulin, as well as the insulin resistance were similar between groups. Hypothyroidism did not affect the density or the CSA of islets. The analysis of islets by size showed that hypothyroidism reduced the cell number in large and medium islets, but not in small ones. In small islets, cell proliferation was increased. The immunoreactivity of TRα1-2, TRβ1, and TSHR was increased by hypothyroidism in all islet sizes. Our results show that hypothyroidism affects differentially the islet cells depending on the size of islets.

  17. Human primary brain tumor cell growth inhibition in serum-free medium optimized for neuron survival.

    Science.gov (United States)

    Brewer, Gregory J; LeRoux, Peter D

    2007-07-09

    Glioblastoma is the most common primary brain tumor in adults from which about 15,000 patients die each year in the United States. Despite aggressive surgery, radiotherapy and chemotherapy, median survival remains only 1 year. Here we evaluate growth of primary human brain tumor cells in a defined nutrient culture medium (Neuregen) that was optimized for neuron regeneration. We hypothesized that Neuregen would inhibit tumor cell growth because of its ability to inhibit gliosis in rat brain. Tumor tissue was collected from 18 patients including 10 males and 8 females (mean age 60+/-12 years) who underwent craniotomy for newly diagnosed, histologically confirmed brain tumors. The tissue was shipped overnight in Hibernate transport medium. Tumor cells were isolated and plated in Neurobasal/serum or Neuregen on culture plastic. After 1 week, growth in Neuregen was significantly less in 9/10 glioblastoma multiforme cases, 5/5 meningioma cases and 3/3 cases of brain metastasis. Analysis of deficient formulations of Neuregen and formulations to which selected components were added back implicate no single active component. However, individual cases were sensitive to corticosterone, selenium, ethanolamine, fatty acids and/or antioxidants. Therefore, a defined culture medium that promotes neuron regeneration inhibits the growth of human primary glioblastoma, meningioma and metastatic tumor cells in culture. The possible in vivo efficacy of Neuregen for treatment of brain tumor resections remains to be determined.

  18. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library...... in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 si......), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide...

  19. Hydrostatic pressure does not cause detectable changes in survival of human retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew Osborne

    Full Text Available PURPOSE: Elevated intraocular pressure (IOP is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP. The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC survival in the human retina was investigated. METHODS: A chamber was designed to expose cells to increased HP (constant and fluctuating. Accurate pressure control (10-100 mmHg was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs from donor eyes (<24 h post mortem were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD. Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1 and RGC number by immunohistochemistry (NeuN. Activated p38 and JNK were detected by Western blot. RESULTS: Exposure of HORCs to constant (60 mmHg or fluctuating (10-100 mmHg; 1 cycle/min pressure for 24 or 48 h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1 or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24 h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100 mmHg; 1 cycle/min for 15, 30, 60 and 90 min durations, whereas OGD (3 h increased activation of p38 and JNK, remaining elevated for 90 min post-OGD. CONCLUSIONS: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina.

  20. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae.

    Directory of Open Access Journals (Sweden)

    Tanja Buchacher

    Full Text Available Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection

  1. Exenatide Pretreatment Improved Graft Function in Nonhuman Primate Islet Recipients Compared to Treatment after Transplant Only

    Directory of Open Access Journals (Sweden)

    Jill L. Buss

    2012-01-01

    Full Text Available The GLP-1 receptor agonist, exenatide, has previously been shown to improve insulin secretion, protect beta cells from apoptosis, and promote beta cell regeneration. We propose that pretreatment with exenatide will promote islet graft survival and improve graft function. Pancreatectomized cynomolgus monkeys underwent islet allotransplantation and were treated with exenatide beginning on day 0 or day −2. A third group of animals was treated with an immunosuppressive regimen while a fourth group remained untreated. Fasting blood glucose (FBG was used to evaluate graft function along with intravenous glucose tolerance tests (IVGTTs performed at study endpoint (day 10 for untreated and posttransplant exenatide or day 90 for pretreatment exenatide and immunosuppression. The average FBG for pre-treated animals day 5 following transplant was 52.7±14.8 mg/dl, compared to 154.3±105.5 mg/dl for animals treated only following transplant, 59.4 mg/dl ±12.1 for animals treated with immunosuppression, and 265.5±172.3 mg/dl for untreated animals. IVGTTs performed at study endpoint showed normal glucose and insulin curves in the pre-treated exenatide and immunosuppression groups only, with beta cell function actually improving after transplant in the pre-treated group. We conclude, therefore, that exenatide pre-treatment can successfully maintain islet graft survival in nonhuman primates.

  2. The pro-adhesive and pro-survival effects of glucocorticoid in human ovarian cancer cells.

    Science.gov (United States)

    Yin, Lijuan; Fang, Fang; Song, Xinglei; Wang, Yan; Huang, Gaoxiang; Su, Jie; Hui, Ning; Lu, Jian

    2016-07-01

    Cell adhesion to extracellular matrix (ECM) is controlled by multiple signaling molecules and intracellular pathways, and is pivotal for survival and growth of cells from most solid tumors. Our previous works demonstrated that dexamethasone (DEX) significantly enhances cell adhesion and cell resistance to chemotherapeutics by increasing the levels of integrin β1, α4, and α5 in human ovarian cancer cells. However, it is unclear whether the components of ECM or other membrane molecules are also involved in the pro-adhesive effect of DEX in ovarian cancer cells. In this study, we demonstrated that the treatment of cells with DEX did not change the expression of collagens (I, III, and IV), laminin, CD44, and its principal ligand hyaluronan (HA), but significantly increased the levels of intracellular and secreted fibronectin (FN). Inhibiting the expression of FN with FN1 siRNA or blocking CD44, another FN receptor, with CD44 blocking antibody significantly attenuated the pro-adhesion of DEX, indicating that upregulation of FN mediates the pro-adhesive effect of DEX by its interaction with CD44 besides integrin β1. Moreover, DEX significantly enhanced cell resistance to the chemotherapeutic agent paclitaxel (PTX) by activating PI-3K-Akt pathway. Finally, we found that DEX also significantly upregulated the expression of MUC1, a transmembrane glycoprotein. Inhibiting the expression of MUC1 with MUC1 siRNA significantly attenuated the DEX-induced effects of pro-adhesion, Akt-activation, and pro-survival. In conclusion, these results provide new data that upregulation of FN and MUC1 by DEX contributes to DEX-induced pro-adhesion and protects ovarian cancer cells from chemotherapy.

  3. IMMUNE MODULATORY EFFECTS of HUMAN CHORIONIC GONADOTROPIN on DENDRITIC CELLS SUPPORTING FETAL SURVIVAL in MURINE PREGNANCY

    Directory of Open Access Journals (Sweden)

    Dominique Dauven

    2016-11-01

    Full Text Available Dendritic cells (DCs are critically involved in the determination of immunity versus tolerance. Hence, DCs are key regulators of immune responses either favoring or disfavoring fetal survival. Several factors were proposed to modulate DC phenotype and function during preg-nancy. Here, we studied whether the pregnancy hormone human Chorionic Gonadotropin (hCG is involved in DC regulation.In vitro, bone-marrow-derived DCs (BMDCs were stimulated in the presence or absence of urine-purified (uhCG or recombinant hCG (rhCG preparations. Subsequently, BMDC matu-ration was assessed. Cytokine secretion of activated BMDCs and their capability to enforce TH1, TH2, TH17 or Treg cell differentiation was determined after rhCG treatment. Moreover, the in vivo potential of hCG-modulated BMDCs to influence pregnancy outcome, Treg cell number and local cytokine expression was evaluated after adoptive transfer in a murine abor-tion-prone model before and after conception. Both hCG preparations impaired the maturation process of BMDCs. rhCG treatment did nei-ther alter cytokine secretion by BMDCs nor their ability to drive TH1, TH2 or TH17 differen-tiation. rhCG-treated BMDCs augmented the number of Treg cells within the T cell popula-tion. Adoptive transfer of rhCG-treated BMDCs after conception did not influence pregnancy outcome. However, transfer of hCG-treated BMDCs prior to mating had a protective effect on pregnancy. This positive effect was accompanied by increased Treg cell numbers and decidual IL-10 and TGF-β expression. Our results unveil the importance of hCG in retaining DCs in a tolerogenic state, thereby promoting Treg cell increment and supporting fetal survival.

  4. Immune Modulatory Effects of Human Chorionic Gonadotropin on Dendritic Cells Supporting Fetal Survival in Murine Pregnancy

    Science.gov (United States)

    Dauven, Dominique; Ehrentraut, Stefanie; Langwisch, Stefanie; Zenclussen, Ana Claudia; Schumacher, Anne

    2016-01-01

    Dendritic cells (DCs) are critically involved in the determination of immunity vs. tolerance. Hence, DCs are key regulators of immune responses either favoring or disfavoring fetal survival. Several factors were proposed to modulate DC phenotype and function during pregnancy. Here, we studied whether the pregnancy hormone human chorionic gonadotropin (hCG) is involved in DC regulation. In vitro, bone marrow-derived DCs (BMDCs) were stimulated in the presence or absence of urine-purified or recombinant hCG (rhCG) preparations. Subsequently, BMDC maturation was assessed. Cytokine secretion of activated BMDCs and their capability to enforce TH1, TH2, TH17, or Treg cell differentiation was determined after rhCG treatment. Moreover, the in vivo potential of hCG-modulated BMDCs to influence pregnancy outcome, Treg cell number, and local cytokine expression was evaluated after adoptive transfer in a murine abortion-prone model before and after conception. Both hCG preparations impaired the maturation process of BMDCs. rhCG treatment did neither alter cytokine secretion by BMDCs nor their ability to drive TH1, TH2, or TH17 differentiation. rhCG-treated BMDCs augmented the number of Treg cells within the T cell population. Adoptive transfer of rhCG-treated BMDCs after conception did not influence pregnancy outcome. However, transfer of hCG-treated BMDCs prior to mating had a protective effect on pregnancy. This positive effect was accompanied by increased Treg cell numbers and decidual IL-10 and TGF-β expression. Our results unveil the importance of hCG in retaining DCs in a tolerogenic state, thereby promoting Treg cell increment and supporting fetal survival. PMID:27895621

  5. Cross feeding of glucose metabolism byproducts of Escherichia coli human gut isolates and probiotic strains affect survival of Vibrio cholerae.

    Science.gov (United States)

    Sengupta, Chirantana; Ekka, Manjula; Arora, Saurabh; Dhaware, Prashant D; Chowdhury, Rukhsana; Raychaudhuri, Saumya

    2017-01-01

    Vibrio cholerae converts glucose into either acid or the neutral end product acetoin and its survival in carbohydrate enriched media is linked to the nature of the byproducts produced. It has been demonstrated in this study that Escherichia coli strain isolated from the gut of healthy human volunteers and the commonly used probiotic E. coli Nissle strain that metabolize glucose to acidic byproducts drastically reduce the survival of V. cholerae strains irrespective of their glucose sensitivity and acetoin production status. Accordingly, E. coli glucose transport mutants that produce lower amounts of acidic metabolites had little effect on the survival of V. cholerae in cocultures. Thus, cross feeding of byproducts of glucose metabolism by heterologous bacteria modulates the survival of V. cholerae in glucose rich medium suggesting that composition of the gut microbiota could influence the outcome of V. cholerae infection especially when glucose based ORS is administered.

  6. Anti-apoptotic BFL-1 is the major effector in activation-induced human mast cell survival.

    Directory of Open Access Journals (Sweden)

    Maria Ekoff

    Full Text Available Mast cells are best known for their role in allergic reactions, where aggregation of FcεRI leads to the release of mast cell mediators causing allergic symptoms. The activation also induces a survival program in the cells, i.e., activation-induced mast cell survival. The aim of the present study was to investigate how the activation-induced survival is mediated. Cord blood-derived mast cells and the mast cell line LAD-2 were activated through FcεRI crosslinking, with or without addition of chemicals that inhibit the activity or expression of selected Bcl-2 family members (ABT-737; roscovitine. Cell viability was assessed using staining and flow cytometry. The expression and function of Bcl-2 family members BFL-1 and MCL-1 were investigated using real-time quantitative PCR and siRNA treatment. The mast cell expression of Bfl-1 was investigated in skin biopsies. FcεRI crosslinking promotes activation-induced survival of human mast cells and this is associated with an upregulation of the anti-apoptotic Bcl-2 family member Bfl-1. ABT-737 alone or in combination with roscovitine decreases viability of human mast cells although activation-induced survival is sustained, indicating a minor role for Bcl-X(L, Bcl-2, Bcl-w and Mcl-1. Reducing BFL-1 but not MCL-1 levels by siRNA inhibited activation-induced mast cell survival. We also demonstrate that mast cell expression of Bfl-1 is elevated in birch-pollen-provocated skin and in lesions of atopic dermatitis and psoriasis patients. Taken together, our results highlight Bfl-1 as a major effector in activation-induced human mast cell survival.

  7. Characterization of a novel functional protein in the pancreatic islet: islet homeostasis protein regulation of glucagon synthesis in α cells.

    Science.gov (United States)

    Oh, Seh-Hoon; Darwiche, Houda; Cho, Jae-Hyoung; Shupe, Thomas; Petersen, Bryon E

    2012-01-01

    We have identified a novel protein in bone marrow-derived insulin-producing cells. Here we characterize this protein, hereby named islet homeostasis protein (IHoP), in the pancreatic islet. Detection of IHoP mRNA and protein was performed using reverse transcriptase-polymerase chain reaction, immunocytochemistry, and in situ hybridization. Islet homeostasis protein functions were utilizing proliferation, insulin secretion by in vitro assays, and following small interfering RNA protocols for suppression of IHoP. We found that IHoP did not homolog with known pancreatic hormones. Islet homeostasis protein expression was seen in both bone marrow-derived insulin-producing cells and isolated pancreatic islets. Immunohistochemistry on pancreatic islet revealed that IHoP localized to the glucagon-synthesizing α cells. Inhibition of IHoP by small interfering RNA resulted in the loss of glucagon expression, which induced low blood glucose levels (63-85 mg/dL). Subsequently, cellular apoptosis was observed throughout the islet, including the insulin-producing β cells. Islets of preonset diabetic patients showed normal expression of IHoP and glucagon; however, IHoP was lost upon onset of the disease. These data suggest that IHoP could be a new functional protein in the islet and may play a role in islet homeostasis.

  8. Islet β-cell ghrelin signaling for inhibition of insulin secretion.

    Science.gov (United States)

    Dezaki, Katsuya; Yada, Toshihiko

    2012-01-01

    Ghrelin, an acylated 28-amino acid peptide, was isolated from the stomach, where circulating ghrelin is produced predominantly. In addition to its unique role in regulating growth-hormone release, mealtime hunger, lipid metabolism, and the cardiovascular system, ghrelin is involved in the regulation of glucose metabolism. Ghrelin is expressed in pancreatic islets and released into pancreatic microcirculations. Ghrelin inhibits insulin release in mice, rats, and humans. Pharmacological and genetic blockades of islet-derived ghrelin markedly augment glucose-induced insulin release. The signal transduction mechanisms of ghrelin in islet β-cells are very unique, being distinct from those utilized for growth-hormone release. Ghrelin attenuates the glucose-induced cAMP production and PKA activation, which drives activation of Kv channels and suppression of the glucose-induced [Ca(2+)](i) increase and insulin release in β-cells. Insulinostatic function of the ghrelin-GHS-R system in islets is a potential therapeutic target for type 2 diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Reversal of Early Diabetic Nephropathy by Islet Transplantation under the Kidney Capsule in a Rat Model

    Directory of Open Access Journals (Sweden)

    Yunqiang He

    2016-01-01

    Full Text Available Objective. Diabetic nephropathy (DN is a common microvascular complication of diabetes mellitus, and insulin therapy has many side effects in the treatment of DN. Islet transplantation has emerged as a promising therapy for diabetic patients. This study was established to investigate its advantageous effects in a rat model of early DN. Methods. Streptozotocin was administered to the rats to induce diabetes. Twelve weeks later, the diabetic rats were divided into 3 groups: the islet-transplanted group (IT group, the insulin-treated group (IN group, and the untreated group (DN group. Renal injury and kidney structure were assessed by urinalysis and transmission electron microscopy (TEM detection. Immunohistochemical staining and western blotting were performed to assess renal fibrosis levels. Results. The early DN features were reversed and the glomerular filtration barrier and basement membrane structures were improved at 4 weeks after islet transplantation. The urine microalbumin-to-creatinine ratio (ACR, protein-to-creatinine ratio, and mean thickness of the glomerular basement membrane (GBM were significantly decreased in the IT group. The expression of renal fibrotic factors was also significantly decreased. Conclusions. These data suggest that early DN can be reversed after islet transplantation, and they may facilitate the development of a clinical therapeutic strategy for human diabetes mellitus.

  10. Collagen V Is a Potential Substrate for Clostridial Collagenase G in Pancreatic Islet Isolation

    Directory of Open Access Journals (Sweden)

    Hiroki Shima

    2016-01-01

    Full Text Available The clostridial collagenases, H and G, play key roles in pancreatic islet isolation. Collagenases digest the peptide bond between Yaa and the subsequent Gly in Gly-Xaa-Yaa repeats. To fully understand the pancreatic islet isolation process, identification of the collagenase substrates in the tissue is very important. Although collagen types I and III were reported as possible substrates for collagenase H, the substrate for collagenase G remains unknown. In this study, collagen type V was focused upon as the target for collagenases. In vitro digestion experiments for collagen type V were performed and analyzed by SDS-PAGE and mass spectrometry. Porcine pancreatic tissues were digested in vitro under three conditions and observed during digestion. The results revealed that collagen type V was only digested by collagenase G and that the digestion was initiated from the N-terminal part. Tissue degradation during porcine islet isolation was only observed in the presence of both collagenases H and G. These findings suggest that collagen type V is one of the substrates for collagenase G. The enzymatic activity of collagenase G appears to be more important for pancreatic islet isolation in large mammals such as pigs and humans.

  11. Dexamethasone counteracts the effect of prolactin on islet function: implications for islet regulation in late pregnancy.

    Science.gov (United States)

    Weinhaus, A J; Bhagroo, N V; Brelje, T C; Sorenson, R L

    2000-04-01

    Islets undergo a number of up-regulatory changes to meet the increased demand for insulin during pregnancy, including increased insulin secretion and beta-cell proliferation. It has been shown that elevated lactogenic hormone is directly responsible for these changes, which occur in a phasic pattern, peaking on day 15 of pregnancy and returning to control levels by day 20 (term). As placental lactogen levels remain elevated through late gestation, it was of interest to determine whether glucocorticoids (which increase during late gestation) could counteract the effects of lactogens on insulin secretion, beta-cell proliferation, and apoptosis. We found that insulin secretion measured over 24 h in culture and acute secretion measured over 1 h in response to high glucose were increased at least 2-fold by PRL treatment after 6 days in culture. Dexamethasone (DEX) treatment had a significant inhibitory effect on secretion in a dose-dependent manner at concentrations greater than 1 nM. At 100 nM, a concentration equivalent to the plasma corticosteroid level during late pregnancy, DEX inhibited secretion to below control levels. The addition of DEX (>1 nM) inhibited secretion from PRL-treated islets to levels similar to those produced by DEX treatment alone. Bromodeoxyuridine (10 microM) staining for the final 24 h of a 6-day culture showed that PRL treatment increased cell proliferation 6-fold over the control level. DEX treatment alone (1-1000 nM) did not reduce cell division below the control level, but significantly inhibited the rate of division in PRL-treated islets. YoYo-1, an ultrasensitive fluorescent nucleic acid stain, was added (1 microM; 8 h) to the medium after 1-3 days of culture to examine cell death. Islets examined under confocal microscopy showed that DEX treatment (100 nM) increased the number of cells with apoptotic nuclear morphologies. This was quantified by counting the number of YoYo-labeled nuclei per islet under conventional epifluorescence

  12. Microencapsulated hepatocytes and islets as in vivo bioartificial liver support system

    Institute of Scientific and Technical Information of China (English)

    Yue Gao; Jun Xu; Bei Sun; Hong-Chi Jiang

    2004-01-01

    AIM: To confirm the xenotransplantation of microencapsulated hepatocytes and islets as a temporary bioartificial liver support system for mice with acute liver failure (ALF).METHODS: Mice were rendered ALF by a single intraperitoneal injection of D-galactosamine (D-gal) and their tail blood was sampled to examine differences in blood ALT,albumin (ALB), total bilirubin (TB) and glucose (GLU) between 4 experimental groups. Rat hepatocytes and islets were collected and microencapsulated referring to both Sun's and Fritschy's methods. Mice were grouped into control group (CG), free hepatocyte group (FHG), microencapsulated hepatocyte group (MHG) and microencapsulated hepatocyte plus islet group (HIG). Tissue samples were subjected to microscopic and electron microscopic (EM) examinations.RESULTS: The highest survival was observed in HIG,surprisingly at 100%(16/16), while the lowest was in CG at 12.5%(2/16), with inter-group statistical difference P<0.05.ALT levels revealed no statistical difference between groups but the ALB level of HIG descended by the slightest margin {q=(0.54, 0.24, 1.33), P<0.05} at the time when it reached the lowest point in all groups. TB of HIG returned to normal reference range (NRR) statistically sooner than that of others after a fierce elevation. No statistical inter-group difference was observed in GLU levels. Fusion between hepatocytes and beta cells was demonstrated giving rise to theoretical assumptions.CONCLUSION: Hepatocytes to be microencapsulated together with islets should be a preferred in vivo hepatic functional supporting system, which can dramatically prolong survival and improve living status.

  13. Differentiation of fetal pancreatic stem cells into neuron-like and islet-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Hua; Yanwei Wang; Peiwen Lian; Shouxin Zhang; Jianyuan Li; Haiyan Wang; Shulin Chen; Wei Gao

    2012-01-01

    Pancreatic stem cells were isolated and cultured from aborted human fetal pancreases of gestational age 14-20 weeks.They were seeded at a density of 1 × 104 in serum-free media for differentiation into neuron-like cells, expressing β-tubulin III and glial fibrillary acidic protein.These neuron-like cells displayed a synapse-like morphology and appeared to form a neuronal network.Pancreatic stem cells were also seeded at a density of 1 × 105 for differentiation into islet-like cells, expressing insulin and glucagon, with an islet-like morphology.These cells had glucose-stimulated secretion of human insulin and C-peptide.Results suggest that pancreatic stem cells can be differentiated into neuron-like and islet-like cells.

  14. Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-alpha

    NARCIS (Netherlands)

    Distelmaier, F.; Valsecchi, F.; Liemburg-Apers, D.; Lebiedzinska, M.; Rodenburg, R.; Heil, S.; Keijer, J.; Fransen, J.; Imamura, H.; Danhauser, K.; Seibt, A.; Viollet, B.; Gellerich, F.; Smeitink, J.; Wieckowski, M.; Willems, P.; Koopman, W.J.H.

    2015-01-01

    Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined ho

  15. Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-alpha

    NARCIS (Netherlands)

    Distelmaier, F.; Valsecchi, F.; Liemburg-Apers, D.; Lebiedzinska, M.; Rodenburg, R.; Heil, S.; Keijer, J.; Fransen, J.; Imamura, H.; Danhauser, K.; Seibt, A.; Viollet, B.; Gellerich, F.; Smeitink, J.; Wieckowski, M.; Willems, P.; Koopman, W.J.H.

    2015-01-01

    Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined

  16. Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-alpha

    NARCIS (Netherlands)

    Distelmaier, F.; Valsecchi, F.; Liemburg-Apers, D.C.; Lebiedzinska, M.; Rodenburg, R.J.T.; Heil, S.; Keijer, J.; Fransen, J.A.; Imamura, H.; Danhauser, K.; Seibt, A.; Viollet, B.; Gellerich, F.N.; Smeitink, J.; Wieckowski, M.R.; Willems, P.H.G.M.; Koopman, W.J.H.

    2015-01-01

    Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined ho

  17. Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-α

    NARCIS (Netherlands)

    F. Distelmaier (Felix); F. Valsecchi (Federica); D.C. Liemburg-Apers (Dania C.); M. Lebiedzinska (Magdalena); R.J.T. Rodenburg (Richard); S.G. Heil (Sandra); J. Keijer (Jaap); J.A.M. Fransen (Jack); H. Imamura (Hiromi); K. Danhauser (Katharina); A. Seibt (Annette); B. Viollet (Benoit); F.N. Gellerich (Frank); J.A.M. Smeitink (Jan); M.R. Wieckowski (Mariusz R.); P.H.G.M. Willems (Peter H.G.M.); W.J.H. Koopman (W. J H)

    2015-01-01

    textabstractDysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively

  18. Possible modulatory effect of endogenous islet catecholamines on insulin secretion

    Directory of Open Access Journals (Sweden)

    Gagliardino Juan J

    2001-10-01

    Full Text Available Abstract Background The possible participation of endogenous islet catecholamines (CAs in the control of insulin secretion was tested. Methods Glucose-induced insulin secretion was measured in the presence of 3-Iodo-L-Tyrosine (MIT, a specific inhibitor of tyrosine-hydroxylase activity, in fresh and precultured islets isolated from normal rats. Incubated islets were also used to measure CAs release in the presence of low and high glucose, and the effect of α2-(yohimbine [Y] and idazoxan [I] and α1-adrenergic antagonists (prazosin [P] and terazosin [T] upon insulin secretion elicited by high glucose. Results Fresh islets incubated with 16.7 mM glucose released significantly more insulin in the presence of 1 μM MIT (6.66 ± 0.39 vs 5.01 ± 0.43 ng/islet/h, p Conclusion Our results suggest that islet-originated CAs directly modulate insulin release in a paracrine manner.

  19. File list: Pol.Pan.50.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.AllAg.Pancreatic_islets hg19 RNA polymerase Pancreas Pancreatic islets h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.50.AllAg.Pancreatic_islets.bed ...

  20. File list: Pol.Pan.10.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.AllAg.Pancreatic_islets hg19 RNA polymerase Pancreas Pancreatic islets h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.10.AllAg.Pancreatic_islets.bed ...

  1. File list: Pol.Pan.20.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.20.AllAg.Pancreatic_islets hg19 RNA polymerase Pancreas Pancreatic islets h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.20.AllAg.Pancreatic_islets.bed ...

  2. File list: Pol.Pan.05.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.05.AllAg.Pancreatic_islets hg19 RNA polymerase Pancreas Pancreatic islets h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.05.AllAg.Pancreatic_islets.bed ...

  3. Modeling the effects of human activity on Katmai brown bears (Ursus arctos) through the use of survival analysis

    Science.gov (United States)

    Smith, T.S.; Johnson, B.A.

    2004-01-01

    Brown bear-human interactions were observed in 1993, 1995, and 1997 at Kulik River in Katmai National Park and Preserve, Alaska. We analyzed these interactions using survival analysis, creating survival curves for the time that bears remained on the river in the presence, and absence, of human activity. Bear-only survival curves did not vary significantly between years (p = 0.067). Ninety-seven percent of bears left the river within 70 minutes of arrival in all years. Temporal patterns of bear activity were unaffected by the presence of humans as long as the bears did not share river zones with humans (p = 0.062 to p = 0.360). When people and bears did not share river zones, 38.6% (1993), 36.0% (1995), and 37.0% (1997) of bears remained on the river for at least 10 minutes after arrival. In contrast, when people and bears shared river zones, fewer bears remained on the river after the first 10 minutes, with 28.6% (1993), 25.0% (1995), and 32.6% (1997) observed in each year. We conclude that human activity displaced 26.0% (1993), 30.5% (1995), and 12.0% (1997) of the bears using the river, which otherwise would likely have remained longer. Over the three years of study, habituation to human activity may account for observed changes in bears' use of the river.

  4. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.

    Science.gov (United States)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H T; Nylandsted, Jesper; Jäättelä, Marja

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.

  5. Survival of human periodontal ligament cells in media proposed for transport of avulsed teeth.

    Science.gov (United States)

    Sigalas, Emmanouil; Regan, John D; Kramer, Phillip R; Witherspoon, David E; Opperman, Lynne A

    2004-02-01

    Many solutions have been examined as possible storage media for avulsed teeth. In this report, human periodontal ligament (PDL) cells were exposed for 1 h to culture medium, milk, Hanks Balanced Salt Solution (HBSS), Soft Wear, Opti Free, and Solo Care contact lens solutions, Gatorade, and tap water, at room temperature and on ice. The number of viable cells was counted using the trypan blue exclusion technique, immediately after exposure (0 h) and at 24 and 48 h, to test the proliferative capacity of the cells after treatment. The results indicated that a significantly higher number of cells survived and proliferated when the exposures were performed at 0 degrees C. Water had a detrimental effect on the cells, whereas culture medium and HBSS preserved significantly more viable cells than the other experimental solutions. Within the parameters of this study, it appears that HBSS is the optimal storage medium for avulsed teeth. Low-fat milk could serve as an alternative if ice is available. Contact lens solutions or Gatorade on ice could serve as short-term (1 h) storage media if the other solutions are not readily available.

  6. Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold

    Directory of Open Access Journals (Sweden)

    Sajad Sahab Negah

    2016-12-01

    Full Text Available Objective(s: In order to grow cells in a three-dimensional (3D microenvironment, self-assembling peptides, such as PuraMatrix, have emerged with potential to mimic the extracellular matrix. The aim of the present study was to investigate the influence of the self-assembling peptide on the morphology, survival, proliferation rate, migration potential, and differentiation of human meningioma stem-like cells (hMgSCs. Materials and Methods: The efficacy of a novel method for placing hMgSCs in PuraMatrix (the injection approach was compared to the encapsulation and surface plating methods. In addition, we designed a new method for measurement of migration distance in 3D cultivation of hMgSCs in PuraMatrix. Results: Our results revealed that hMgSCs have the ability to form spheres in stem cell culture condition. These meningioma cells expressed GFAP, CD133, vimentin, and nestin. Using the injection method, a higher proliferation rate of the hMgSCs was observed after seven days of culture. Furthermore, the novel migration assay was able to measure the migration of a single cell alone in 3D environment. Conclusion: The results indicate the injection method as an efficient technique for culturing hMgSCs in PuraMatrix. Furthermore, the novel migration assay enables us to evaluate the migration of hMgSCs.

  7. Cytokines inducing bone marrow SCA+ cells migration into pancreatic islet and conversion into insulin-positive cells in vivo.

    Directory of Open Access Journals (Sweden)

    LuGuang Luo

    Full Text Available We hypothesize that specific bone marrow lineages and cytokine treatment may facilitate bone marrow migration into islets, leading to a conversion into insulin producing cells in vivo. In this study we focused on identifying which bone marrow subpopulations and cytokine treatments play a role in bone marrow supporting islet function in vivo by evaluating whether bone marrow is capable of migrating into islets as well as converting into insulin positive cells. We approached this aim by utilizing several bone marrow lineages and cytokine-treated bone marrow from green fluorescent protein (GFP positive bone marrow donors. Sorted lineages of Mac-1(+, Mac-1(-, Sca(+, Sca(-, Sca(-/Mac-1(+ and Sca(+/Mac-1(- from GFP positive mice were transplanted to irradiated C57BL6 GFP negative mice. Bone marrow from transgenic human ubiquitin C promoter GFP (uGFP, with strong signal C57BL6 mice was transplanted into GFP negative C57BL6 recipients. After eight weeks, migration of GFP positive donor' bone marrow to the recipient's pancreatic islets was evaluated as the percentage of positive GFP islets/total islets. The results show that the most effective migration comes from the Sca(+/Mac(- lineage and these cells, treated with cytokines for 48 hours, were found to have converted into insulin positive cells in pancreatic islets in vivo. This study suggests that bone marrow lineage positive cells and cytokine treatments are critical factors in determining whether bone marrow is able to migrate and form insulin producing cells in vivo. The mechanisms causing this facilitation as well as bone marrow converting to pancreatic beta cells still need to be investigated.

  8. Tacrolimus inhibits the revascularization of isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Ryuichi Nishimura

    Full Text Available AIMS: Immunosuppressive drugs could be crucial factors for a poor outcome after islet allotransplantation. Unlike rapamycin, the effects of tacrolimus, the current standard immunosuppressant used in islet transplantation, on graft revascularization remain unclear. We examined the effects of tacrolimus on islet revascularization using a highly sensitive imaging system, and analyzed the gene expression in transplanted islets by introducing laser microdissection techniques. METHODS: Islets isolated from C57BL/6-Tg (CAG-EGFP mice were transplanted into the nonmetallic dorsal skinfold chamber on the recipients. Balb/c athymic mice were used as recipients and were divided into two groups: including a control group (n = 9 and tacrolimus-treated group (n = 7. The changes in the newly-formed vessels surrounding the islet grafts were imaged and semi-quantified using multi-photon laser-scanning microscopy and a Volocity system. Gene expression in transplanted islets was analyzed by the BioMark dynamic system. RESULTS: The revascularization process was completed within 14 days after pancreatic islet transplantation at subcutaneous sites. The newly-formed vascular volume surrounding the transplanted islets in the tacrolimus-treated group was significantly less than that in the control group (p<0.05. Although the expression of Vegfa (p<0.05 and Ccnd1 (p<0.05 was significantly upregulated in the tacrolimus-treated group compared with that of the control group, no differences were observed between the groups in terms of other types of gene expression. CONCLUSIONS: The present study demonstrates that tacrolimus inhibits the revascularization of isolated pancreatic islets without affecting the characteristics of the transplanted grafts. Further refinements of this immunosuppressive regimen, especially regarding the revascularization of islet grafts, could improve the outcome of islet allotransplantation.

  9. Lack of evidence for a role of islet autoimmunity in the aetiology of canine diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Kerstin M Ahlgren

    Full Text Available AIMS/HYPOTHESIS: Diabetes mellitus is one of the most common endocrine disorders in dogs and is commonly proposed to be of autoimmune origin. Although the clinical presentation of human type 1 diabetes (T1D and canine diabetes are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported. METHODS: Sera from 121 diabetic dogs representing 40 different breeds were tested for islet cell antibodies (ICA and GAD65 autoantibodies (GADA and compared with sera from 133 healthy dogs. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT of human and canine GAD65, followed by immune precipitation. Sections of pancreata from five diabetic dogs and two control dogs were examined histopathologically including immunostaining for insulin, glucagon, somatostatin and pancreas polypeptide. RESULTS: None of the canine sera analysed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay. Histopathology showed marked degenerative changes in endocrine islets, including vacuolisation and variable loss of immune-staining for insulin. No sign of inflammation was noted. CONCLUSIONS/INTERPRETATIONS: Contrary to previous observations, based on results from tests for humoral autoreactivity towards islet proteins using four different assays, and histopathological examinations, we do not find any support for an islet autoimmune aetiology in canine diabetes mellitus.

  10. CT features of nonfunctioning islet cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Eelkema, E.A.; Stephens, D.H.; Ward, E.M.; Sheedy, P.F. II

    1984-11-01

    To determine the computed tomographic (CT) characteristics of nonfunctioning islet cell carcinoma of the pancreas, the CT scans of 27 patients with that disease were reviewed. The pancreatic tumor was identified as a mass in 26 patients (96%) Of the 25 tumors evaluated with contrast enhancement, 20 became partially diffusely hyperdense relative to nearby normal pancreatic tissue. Hepatic metastases were identified in 15 patients (56%), regional lymphadenopathy in 10 (37%), atrophy of the gland proximal to the tumor in six (22%), dilatation of the biliary ducts in five (19%), and dilatation of the pancreatic duct in four (15%). The CT appearances of the nonfunctioning islet cell tumors were compared with those of 100 ordinary (ductal) pancreatic adenocarcinomas. Although the two types of tumors were sometimes indistinguishable, features found to be more characteristic of islet cell carcinoma included a pancreatic mass of unusually large size, calcification within the tumor, and contrast enhancement of either the primary tumor or hepatic metastases. Involvement of the celiac axis or proximal superior mesenteric artery was limited to ductal carcinoma.

  11. Pro-inflammatory and pro-oxidant status of pancreatic islet in vitro is controlled by TLR-4 and HO-1 pathways.

    Directory of Open Access Journals (Sweden)

    Kevin Vivot

    Full Text Available Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1 and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2 expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species production (Dihydroethidine staining, DHE and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095 and HO-1 activation (cobalt protoporphyrin,CoPP was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS. Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation.

  12. Altered islet morphology but normal islet secretory function in vitro in a mouse model with microvascular alterations in the pancreas.

    Directory of Open Access Journals (Sweden)

    Elena Kostromina

    Full Text Available BACKGROUND: Our previous studies have shown that signal transducer and activator of transcription 3 (STAT3 signaling is important for the development of pancreatic microvasculature via its regulation of vascular endothelial growth factor-A (VEGF-A. Pancreas-specific STAT3-KO mice exhibit glucose intolerance and impaired insulin secretion in vivo, along with microvascular alterations in the pancreas. However, the specific role of STAT3 signaling in the regulation of pancreatic islet development and function is not entirely understood. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of STAT3 signaling in the formation and maintenance of pancreatic islets, we studied pancreas-specific STAT3-KO mice. Histological analysis showed that STAT3 deficiency affected pancreatic islet morphology. We found an increased proportion of small-sized islets and a reduced fraction of medium-sized islets, indicating abnormal islet development in STAT3-KO mice. Interestingly, the islet area relative to the whole pancreas area in transgenic and control mice was not significantly different. Immunohistochemical analysis on pancreatic cryosections revealed abnormalities in islet architecture in STAT3-KO mice: the pattern of peripheral distribution of glucagon-positive α-cells was altered. At the same time, islets belonging to different size categories isolated from STAT3-KO mice exhibited normal glucose-stimulated insulin secretion in perifusion experiments in vitro when compared to control mice. CONCLUSIONS: Our data demonstrate that STAT3 signaling in the pancreas is required for normal islet formation and/or maintenance. Altered islet size distribution in the KO mice does not result in an impaired islet secretory function in vitro. Therefore, our current study supports that the glucose intolerance and in vivo insulin secretion defect in pancreas-specific STAT3-KO mice is due to altered microvasculature in the pancreas, and not intrinsic beta-cell function.

  13. Effect of polyethylene glycol grafted onto islet capsules on prevention of splenocyte and cytokine attacks.

    Science.gov (United States)

    Lee, Dong Yun; Nam, Jong Hee; Byun, Youngro

    2004-01-01

    In the graft rejection of transplanted islets, the host's immune cells recognize the islets as antigens, which then stimulate the immune cells to begin the cytokine secretion and also the proliferation of immune cells. To prevent the recognition of islets by the immune cells, we grafted biocompatible polyethylene glycol (PEG) onto the collagen capsule of islets without incurring any changes in the morphology and function of islets. To evaluate the efficiency of PEG grafting, PEG-grafted islets were cultured with splenocytes consisting mainly of lymphocytes and macrophages. A splenocyte proliferation assessment using a BrdU incorporation assay showed that the PEG-grafted islets did not stimulate the splenocytes. In addition, the viability and microorganisms in islet cells of co-cultured PEG-grafted islets were not altered. However, in the co-culture of free islets (control) splenocytes were stimulated; they mainly secreted TNF-alpha and strongly affected the viability and structure of free islets. Furthermore, when islets were treated with the rat recombinant TNF-alpha for 7 days, the viabilities of PEG-grafted and free islets were significantly damaged, although the viability of PEG-grafted islets was higher than that of free islets by nearly three times. These results demonstrate that PEG grafted on the surface of islets could prevent the recognition of islets by splenocytes, but could not completely protect islets from cytokines.

  14. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions.

    Science.gov (United States)

    Seneviratne, Ayesh K; Bell, Gillian I; Sherman, Stephen E; Cooper, Tyler T; Putman, David M; Hess, David A

    2016-04-01

    Human umbilical cord blood (UCB) hematopoietic progenitor cells (HPC) purified for high aldehyde dehydrogenase activity (ALDH(hi) ) stimulate islet regeneration after transplantation into mice with streptozotocin-induced β cell deletion. However, ALDH(hi) cells represent a rare progenitor subset and widespread use of UCB ALDH(hi) cells to stimulate islet regeneration will require progenitor cell expansion without loss of islet regenerative functions. Here we demonstrate that prospectively purified UCB ALDH(hi) cells expand efficiently under serum-free, xeno-free conditions with minimal growth factor supplementation. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, kinetic analyses over 9 days revealed the frequency of ALDH(hi) cells diminished as culture time progressed such that total ALDH(hi) cell number was maximal (increased 3-fold) at day 6. Subsequently, day 6 expanded cells (bulk cells) were sorted after culture to reselect differentiated progeny with low ALDH-activity (ALDH(lo) subset) from less differentiated progeny with high ALDH-activity (ALDH(hi) subset). The ALDH(hi) subset retained primitive cell surface marker coexpression (32.0% ± 7.0% CD34(+) /CD38(-) cells, 37.0% ± 6.9% CD34(+) /CD133(+) cells), and demonstrated increased hematopoietic colony forming cell function compared with the ALDH(lo) subset. Notably, bulk cells or ALDH(lo) cells did not possess the functional capacity to lower hyperglycemia after transplantation into streptozotocin-treated NOD/SCID mice. However, transplantation of the repurified ALDH(hi) subset significantly reduced hyperglycemia, improved glucose tolerance, and increased islet-associated cell proliferation and capillary formation. Thus, expansion and delivery of reselected UCB cells that retain high ALDH-activity after short-term culture represents an improved strategy for the development of cellular therapies to enhance islet regeneration in situ.

  15. Correction of diabetic pattern of insulin release from islets of the spiny mouse (Acomys cahirinus) by glucose priming in vitro.

    Science.gov (United States)

    Nesher, R; Abramovitch, E; Cerasi, E

    1985-04-01

    Insulin release kinetics were studied in perifused islets of Langerhans, isolated from mildly hyperglycaemic and from normoglycaemic spiny mice (Acomys cahirinus), a rodent predisposed to develop spontaneously non-ketotic diabetes. In both groups, insulin response to glucose (16.7 mmol/l) was delayed in comparison with that of rat islets, the release kinetics being analogous to that of human Type 2 (non-insulin-dependent) diabetes. Thirty min priming of the isolated Acomys islets with glucose (16.7 mmol/l) resulted in potentiation of the insulin release to a second stimulation. The degree of potentiation decreased exponentially with the time interval between stimulations, showing a t1/2 of 18 min. Induction of potentiation by glucose was time-dependent, giving a maximal effect after 20 min of priming. In addition to overall amplification of the insulin response, priming with glucose accelerated markedly the initial release rates, correcting the dynamics of the response. We conclude that: (1) decreased and delayed insulin secretion is found in Acomys cahirinus before the development of hyperglycaemia; (2) induction of time-dependent potentiation in the islet by priming with glucose corrects the diabetic-type dynamics of insulin release; (3) therefore the deficient insulin release of Acomys is of a functional nature, the mechanism of potentiation bypassing the defect; (4) since insulin release in Acomys resembles that in prediabetic and diabetic man, similar conclusions might apply to the islet dysfunction in Type 2 diabetes.

  16. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Yanxi [Department of Biology, Lakehead University, Thunder Bay (Canada); College of Life Science, Shanxi University, Taiyuan (China); Wu, Bo [Department of Biology, Lakehead University, Thunder Bay (Canada); Department of Pathophysiology, Harbin Medical University, Harbin (China); Cao, Qiuhui [Department of Biology, Lakehead University, Thunder Bay (Canada); Wu, Lingyun [Department of Pathophysiology, Harbin Medical University, Harbin (China); Department of Pharmacology, University of Saskatchewan, Saskatoon (Canada); Yang, Guangdong, E-mail: gyang@lakeheadu.ca [The School of Kinesiology, Lakehead University, Thunder Bay (Canada)

    2011-12-15

    Hydrogen sulfide (H{sub 2}S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H{sub 2}S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H{sub 2}S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H{sub 2}S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H{sub 2}S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H{sub 2}S-producing enzyme in prostate. CSE overexpression enhanced H{sub 2}S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H{sub 2}S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H{sub 2}S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H{sub 2}S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Highlights: Black-Right-Pointing-Pointer A large amount of H{sub 2}S is released from sulforaphane. Black-Right-Pointing-Pointer H{sub 2}S mediates the anti-survival effect of

  17. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qing [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Che, Yongzhe [School of Medicine, Nankai University, Tianjin 300071 (China); Li, Qiang; Zhang, Shangrong [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Gao, Ying-Tang [Key Laboratory of Artificial Cell, Third Central Clinical College of Tianjin Medical University, Tianjin 300170 (China); Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Li, Shu Jie, E-mail: shujieli@nankai.edu.cn [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China)

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca{sup 2+} homeostasis.

  18. Regeneration of pancreatic islets in vivo by ultrasound-targeted gene therapy.

    Science.gov (United States)

    Chen, S; Shimoda, M; Wang, M-Y; Ding, J; Noguchi, H; Matsumoto, S; Grayburn, P A

    2010-11-01

    This study uses a novel approach to gene therapy in which plasmid DNA is targeted to the pancreas in vivo using ultrasound-targeted microbubble destruction (UTMD) to achieve islet regeneration. Intravenous microbubbles carrying plasmids are destroyed within the pancreatic microcirculation by ultrasound, achieving local gene expression that is further targeted to β-cells by a modified rat insulin promoter (RIP3.1). A series of genes implicated in endocrine development were delivered to rats 2 days after streptozotocin-induced diabetes. The genes, PAX4, Nkx2.2, Nkx6.1, Ngn3 and Mafa, produced α-cell hyperplasia, but no significant improvement in β-cell mass or blood glucose level 30 days after UTMD. In contrast, RIP3.1-NeuroD1 promoted islet regeneration from surviving β-cells, with normalization of glucose, insulin and C-peptide levels at 30 days. In a longer-term experiment, four of six rats had a return of diabetes at 90 days, accompanied by β-cell apoptosis on Tunel staining. Pretreatment with the JNK inhibitor SP600125 successfully blocked β-cell apoptosis and resulted in restoration of β-cell mass and normalization of blood glucose level for up to 90 days. This technique allows in vivo islet regeneration, restoration of β-cell mass and normalization of blood sugar, insulin and C-peptide in rats without viruses.

  19. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  20. Exploration of α1-Antitrypsin Treatment Protocol for Islet Transplantation: Dosing Plan and Route of Administration

    OpenAIRE

    Baranovski, Boris M.; Ozeri, Eyal; Shahaf, Galit; Ochayon, David E.; Schuster, Ronen; Bahar, Nofar; Kalay, Noa; Cal, Pablo; Mizrahi, Mark I.; Nisim, Omer; Strauss, Pnina; Schenker, Eran; Eli C Lewis

    2016-01-01

    Lifelong weekly infusions of human α1-antitrypsin (hAAT) are currently administered as augmentation therapy for patients with genetic AAT deficiency (AATD). Several recent clinical trials attempt to extend hAAT therapy to conditions outside AATD, including type 1 diabetes. Because the endpoint for AATD is primarily the reduction of risk for pulmonary emphysema, the present study explores hAAT dose protocols and routes of administration in attempt to optimize hAAT therapy for islet-related inj...

  1. Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons

    Science.gov (United States)

    Guardado-Mendoza, Rodolfo; Davalli, Alberto M.; Chavez, Alberto O.; Hubbard, Gene B.; Dick, Edward J.; Majluf-Cruz, Abraham; Tene-Perez, Carlos E.; Goldschmidt, Lukasz; Hart, John; Perego, Carla; Comuzzie, Anthony G.; Tejero, Maria Elizabeth; Finzi, Giovanna; Placidi, Claudia; La Rosa, Stefano; Capella, Carlo; Halff, Glenn; Gastaldelli, Amalia; DeFronzo, Ralph A.; Folli, Franco

    2009-01-01

    β-Cell dysfunction is an important factor in the development of hyperglycemia of type-2 diabetes mellitus, and pancreatic islet amyloidosis (IA) has been postulated to be one of the main contributors to impaired insulin secretion. The aim of this study was to evaluate the correlation of IA with metabolic parameters and its effect on islets of Langerhans remodeling and relative endocrine-cell volume in baboons. We sequenced the amylin peptide, determined the fibrillogenic propensities, and evaluated pancreatic histology, clinical and biochemical characteristics, and endocrine cell proliferation and apoptosis in 150 baboons with different metabolic status. Amylin sequence in the baboon was 92% similar to humans and showed superimposable fibrillogenic propensities. IA severity correlated with fasting plasma glucose (FPG) (r = 0.662, P < 0.001) and HbA1c (r = 0.726, P < 0.001), as well as with free fatty acid, glucagon values, decreased homeostasis model assessment (HOMA) insulin resistance, and HOMA-B. IA severity was associated with a decreased relative β-cell volume, and increased relative α-cell volume and hyperglucagonemia. These results strongly support the concept that IA and β-cell apoptosis in concert with α-cell proliferation and hypertrophy are key determinants of islets of Langerhans “dysfunctional remodeling” and hyperglycemia in the baboon, a nonhuman primate model of type-2 diabetes mellitus. The most important determinants of IA were age and FPG (R2 = 0.519, P < 0.0001), and different FPG levels were sensitive and specific to predict IA severity. Finally, a predictive model for islet amyloid severity was generated with age and FPG as required variables. PMID:19666551

  2. Islet cytotoxicity of interleukin 1. Influence of culture conditions and islet donor characteristics

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Spinas, G A; Prowse, S J

    1987-01-01

    We recently demonstrated that the macrophage product interleukin 1 (IL-1) is cytotoxic to isolated pancreatic islets and hypothesized that IL-1 is responsible for beta-cell destruction in insulin-dependent diabetes mellitus (IDDM). We studied whether the variation in IDDM preponderance with age...

  3. Survival of enteric bacteria in source-separated human urine used ...

    African Journals Online (AJOL)

    MAKAYA

    the quarter-diluted urine at 25°C. Survival times of the tested bacteria were more shortened in ammonia ... the urine treatment by storage may preserve the useful nutrients ... MATERIALS AND METHODS .... Microsoft Excel package was used.

  4. Differential bacterial survival, replication, and apoptosis-inducing ability of Salmonella serovars within human and murine macrophages.

    Science.gov (United States)

    Schwan, W R; Huang, X Z; Hu, L; Kopecko, D J

    2000-03-01

    Salmonella serovars are associated with human diseases that range from mild gastroenteritis to host-disseminated enteric fever. Human infections by Salmonella enterica serovar Typhi can lead to typhoid fever, but this serovar does not typically cause disease in mice or other animals. In contrast, S. enterica serovar Typhimurium and S. enterica serovar Enteritidis, which are usually linked to localized gastroenteritis in humans and some animal species, elicit a systemic infection in mice. To better understand these observations, multiple strains of each of several chosen serovars of Salmonella were tested for the ability in the nonopsonized state to enter, survive, and replicate within human macrophage cells (U937 and elutriated primary cells) compared with murine macrophage cells (J774A.1 and primary peritoneal cells); in addition, death of the infected macrophages was monitored. The serovar Typhimurium strains all demonstrated enhanced survival within J774A.1 cells and murine peritoneal macrophages, compared with the significant, almost 100-fold declines in viable counts noted for serovar Typhi strains. Viable counts for serovar Enteritidis either matched the level of serovar Typhi (J774A. 1 macrophages) or were comparable to counts for serovar Typhimurium (murine peritoneal macrophages). Apoptosis was significantly higher in J774A.1 cells infected with serovar Typhimurium strain LT2 compared to serovar Typhi strain Ty2. On the other hand, serovar Typhi survived at a level up to 100-fold higher in elutriated human macrophages and 2- to 3-fold higher in U937 cells compared to the serovar Typhimurium and Enteritidis strains tested. Despite the differential multiplication of serovar Typhi during infection of U937 cells, serovar Typhi caused significantly less apoptosis than infections with serovar Typhimurium. These observations indicate variability in intramacrophage survival and host cytotoxicity among the various serovars and are the first to show differences in

  5. Teucrium polium complex with molybdate enhance cultured islets secretory function.

    Science.gov (United States)

    Mohseni Salehi Monfared, Seyed Sajad; Pournourmohammadi, Shirin

    2010-02-01

    Islet transplantation has become a promising treatment in the therapy of type 1 diabetes. Its function improvement, after isolation and before transplantation, is crucial because of their loss both in number and function of islets after isolation procedures. Trace elements sodium orthovanadate (SOV) and sodium molybdate (SM), as well as medicinal plant Teucrium polium L. (TP), showed and possessed high beneficial antioxidative potential and even hypoglycemic properties via their effect on islets. We evaluated the effect of these components in combination on cultured islet function in order to improve pancreatic islet transplantation. Rat pancreatic islets were cultured for 24 h then incubated with different concentrations of TP (0.01 and 0.1 mg/mL) alone and in combination with SOV (1 mM) or SM (1 mM). Insulin concentration in buffer media was measured as islet secretory function. Administration of TP (0.01 mg/mL), SM, and SOV alone or in combination with each other significantly increased insulin secretion at high glucose concentration (16.7 mM); insulin secretion was significantly greater in the group containing both TP and SM than other treated groups (p molybdate with TP could improve islet cells function before transplantation.

  6. Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice

    DEFF Research Database (Denmark)

    Niemeyer, P; Vohrer, J; Schmal, H

    2008-01-01

    of the current paper was to evaluate the survival of undifferentiated and osteogenically induced human MSC from different origins after transplantation in immunocompetent mice. METHODS: Human MSC were isolated from bone marrow (BMSC) and adipose tissue (ASC). After cultivation on mineralized collagen, MSC were...... was performed as a measure of immunologic rejection. Unloaded scaffolds served as controls (group C). Specimens were harvested at 4 and 8 weeks. RESULTS: Undifferentiated BMSC and ASC were detected in the majority of cases after xenogenic transplantation (group A, a total of 22 out of 24 cases), while......INTRODUCTION: Mesenchymal stromal cells (MSC) represent an attractive cell population for tissue engineering purposes. As MSC are described as immunoprivileged, non-autologous applications seem possible. A basic requirement is the survival of MSC after transplantation in the host. The purpose...

  7. Intramacrophage survival of uropathogenic Escherichia coli: Differences between diverse clinical isolates and between mouse and human macrophages

    DEFF Research Database (Denmark)

    Bokil, Nilesh J.; Totsika, Makrina; Carey, Alison J.;

    2011-01-01

    Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular...... or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1+ vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data......, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival...

  8. Oxygenation of the portal vein by intraperitoneal administration of oxygenated perfluorochemical improves the engraftment and function of intraportally transplanted islets.

    Science.gov (United States)

    Sakai, Tetsuya; Li, Shiri; Kuroda, Yoshikazu; Tanioka, Yasuki; Fujino, Yasuhiro; Suzuki, Yasuyuki

    2011-04-01

    One of the major obstacles for successful intraportal islet transplantation (IPIT) is early graft loss due to hypoxia. We therefore examined the effect of intraperitoneal oxygenated perfluorochemical (PFC) on oxygenation of the portal vein with respect to islet engraftment and function after IPIT in a rat model. First, we measured the oxygen tension and saturation in the portal vein of Lewis rats before and after intraperitoneal injection of oxygenated PFC. Second, blood glucose levels, glucose tolerance, and the number of surviving islets were measured after IPIT with oxygenated PFC (group 1), with PFC saturated by nitrogen (group 2), and without any PFC (control). Both oxygen tension and saturation in the portal vein significantly increased after injection of oxygenated PFC. In IPIT, the functional success rate in group 1 was 83.3%, compared with 16.7% in group 2 and 16.7% in the control. On the 28th posttransplantation day, the number of engrafted islets in the liver in group 1 (12.8 [SD, 3.3]) was significantly higher than that in group 2 (4.7 [SD, 3.0]) and in the control group (6.5 [SD, 3.3]). We clearly demonstrated the effect of intraperitoneal oxygenated PFC on oxygenation of the portal vein, resulting in better IPIT outcomes.

  9. Genetically Engineered Islets and Alternative Sources of Insulin-Producing Cells for Treating Autoimmune Diabetes: Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Feng-Cheng Chou

    2012-01-01

    Full Text Available Islet transplantation is a promising therapy for patients with type 1 diabetes that can provide moment-to-moment metabolic control of glucose and allow them to achieve insulin independence. However, two major problems need to be overcome: (1 detrimental immune responses, including inflammation induced by the islet isolation/transplantation procedure, recurrence autoimmunity, and allorejection, can cause graft loss and (2 inadequate numbers of organ donors. Several gene therapy approaches and pharmaceutical treatments have been demonstrated to prolong the survival of pancreatic islet grafts in animal models; however, the clinical applications need to be investigated further. In addition, for an alternative source of pancreatic β-cell replacement therapy, the ex vivo generation of insulin-secreting cells from diverse origins of stem/progenitor cells has become an attractive option in regenerative medicine. This paper focuses on the genetic manipulation of islets during transplantation therapy and summarizes current strategies to obtain functional insulin-secreting cells from stem/progenitor cells.

  10. Effects of resolvin D1 on cell survival and cytokine expression of human gingival fibroblasts.

    Science.gov (United States)

    Khaled, Mohamed; Shibani, Nouf-Al; Labban, Nawaf; Batarseh, Ghada; Song, Fengyu; Ruby, John; Windsor, L Jack

    2013-12-01

    Tissue breakdown in periodontitis is initiated by bacteria, such as Porphyromonas gingivalis, and is caused largely by host responses. Resolvins protect the host against acute inflammation by blocking the migration of polymorphonuclear neutrophils to initiate resolution. The effects of resolvins on human gingival fibroblasts (HGFs) are unknown. This study examines the effects of resolvin D1 on HGF survival and cytokine expression when treated with or without P. gingivalis supernatant. Cytotoxicity of resolvin D1 on HGFs with or without a toxic level of P. gingivalis supernatant was measured with lactate dehydrogenase assays. Cytokine arrays were performed on HGF-conditioned media treated with or without resolvin D1 and with or without P. gingivalis supernatant.