WorldWideScience

Sample records for human islet autoantigen

  1. Human islets and dendritic cells generate post-translationally modified islet auto-antigens

    NARCIS (Netherlands)

    McLaughlin, Rene J; de Haan, Anne; Zaldumbide, Arnaud; de Koning, Eelco J; de Ru, Arnoud H; van Veelen, Peter A; van Lummel, Menno; Roep, Bart O

    2016-01-01

    Initiation of type 1 diabetes (T1D) requires a break in peripheral tolerance. New insights into neo-epitope formation indicate that post-translational modification of islet auto-antigens, for example via deamidation, may be an important component of disease initiation or exacerbation. Indeed, deamid

  2. Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Kosicka, Iga

    2014-01-01

    Diabetes mellitus type II is a metabolic disease affecting millions of people worldwide. The disease is associated with occurence of insoluble, fibrillar, protein aggregates in islets of Langerhans in the pancreas - islet amyloid. The main constituent of these protein fibers is the human islet...... of diabetes type II, while revealing the structure(s) of islet amyloid fibrils is necessary for potential design of therapeutic agents....

  3. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes.

    Science.gov (United States)

    van Lummel, Menno; Duinkerken, Gaby; van Veelen, Peter A; de Ru, Arnoud; Cordfunke, Robert; Zaldumbide, Arnaud; Gomez-Touriño, Iria; Arif, Sefina; Peakman, Mark; Drijfhout, Jan W; Roep, Bart O

    2014-01-01

    Posttranslational modification (PTM) of islet autoantigens can cause lack of central tolerance in type 1 diabetes (T1D). Tissue transglutaminase (tTG), involved in PTM of gluten antigens in celiac disease, creates negatively charged peptides favored by T1D-predisposing HLA-DQ molecules, offering an attractive candidate modifying islet autoantigens in T1D. The highly predisposing HLA-DQ8cis/trans molecules share preferences for negatively charged peptides, as well as distinct peptide-binding characteristics that distinguish their peptide-binding repertoire. We screened islet autoantigens with the tTG substrate motif for candidate-modified epitopes binding to HLA-DQ8cis/trans and identified 31 candidate islet epitopes. Deamidation was confirmed for 28 peptides (90%). Two of these epitopes preferentially bound to HLA-DQ8cis and six to HLA-DQ8trans upon deamidation, whereas all other peptides bound equally to HLA-DQ8cis/trans. HLA-DQ8cis-restricted T cells from a new-onset T1D patient could only be generated against a deamidated proinsulin peptide, but cross-reacted with native proinsulin peptide upon restimulation. The rate of T-cell autoreactivity in recent-onset T1D patients extended from 42% to native insulin to 68% adding responses to modified proinsulin, versus 20% and 37% respectively, in healthy donors. Most patients responded by interferon-γ, whereas most healthy donors produced interleukin-10 only. Thus, T-cell autoreactivity exists to modified islet epitopes that differs in quality and quantity between patients and healthy donors.

  4. CRALBP is a Highly Prevalent Autoantigen for Human Autoimmune Uveitis

    Directory of Open Access Journals (Sweden)

    Cornelia A. Deeg

    2007-01-01

    uveitis patient's sera was first evaluated in two-dimensional (2D Western blot analysis. Subsequent identification of the immunoreactive proteins by mass spectrometry resulted in the identification of CRALBP as a putative autoantigen. Additionally, sera from human uveitis and control patients were by Western blot using purified human recombinant CRALBP. Anti-CRALBP autoantibodies occur more frequently (P<.01 in human uveitis patients than in normal controls. Thirty out of 56 tested uveitis patient's sera contained autoantibodies reactive against CRALBP, compared to only four out of 23 normal control subjects. The presence of CRALBP autoantibodies in 54% of tested uveitis patients supports CRALBP as a possible autoantigen in human autoimmune uveitis.

  5. Differential expression of glutamic acid decarboxylase in rat and human islets

    DEFF Research Database (Denmark)

    Petersen, J S; Russel, S; Marshall, M O;

    1993-01-01

    The GABA synthesizing enzyme GAD is a prominent islet cell autoantigen in type I diabetes. The two forms of GAD (GAD64 and GAD67) are encoded by different genes in both rats and humans. By in situ hybridization analysis of rat and human pancreases, expression of both genes was detected in rat isl...

  6. Expression of pemphigus-autoantigen desmoglein 1 in human thymus.

    Science.gov (United States)

    Mouquet, H; Berrih-Aknin, S; Bismuth, J; Joly, P; Gilbert, D; Tron, F

    2008-05-01

    Desmoglein (Dsg) 1 is a transmembrane glycoprotein of the desmosome allowing cell-cell adhesion between keratinocytes, whose expression is restricted to stratified squamous epithelia-like epidermis. Dsg1 is the target autoantigen of pathogenic autoantibodies produced by pemphigus foliaceus and 50% of pemphigus vulgaris patients in a Dsg1-specific T-cell-dependent pathway. Herewith, we show that mRNA of the DSG1 gene is present in normal human thymus and show by quantitative real-time polymerase chain reaction analysis that the expression of DSG1 transcript increases with age. Although immunoblot analysis on human thymus extracts using different anti-Dsg1 antibodies did not allow to detect the protein, we show by double-immunofluorescence assay that Dsg1 is expressed at protein level by CD19+ CD63+ cells located in the medulla. These data provide another illustration of the thymic expression of a tissue-specific autoantigen involved in an organ-specific autoimmune disease, which may participate in the tolerance acquisition and/or regulation of Dsg1-specific T cells.

  7. Autoimmunity against INS-IGF2 protein expressed in human pancreatic islets.

    Science.gov (United States)

    Kanatsuna, Norio; Taneera, Jalal; Vaziri-Sani, Fariba; Wierup, Nils; Larsson, Helena Elding; Delli, Ahmed; Skärstrand, Hanna; Balhuizen, Alexander; Bennet, Hedvig; Steiner, Donald F; Törn, Carina; Fex, Malin; Lernmark, Åke

    2013-10-04

    Insulin is a major autoantigen in islet autoimmunity and progression to type 1 diabetes. It has been suggested that the insulin B-chain may be critical to insulin autoimmunity in type 1 diabetes. INS-IGF2 consists of the preproinsulin signal peptide, the insulin B-chain, and eight amino acids of the C-peptide in addition to 138 amino acids from the IGF2 gene. We aimed to determine the expression of INS-IGF2 in human pancreatic islets and autoantibodies in newly diagnosed children with type 1 diabetes and controls. INS-IGF2, expressed primarily in beta cells, showed higher levels of expression in islets from normal compared with donors with either type 2 diabetes (p = 0.006) or high HbA1c levels (p INS-IGF2 autoantibody levels were increased in newly diagnosed patients with type 1 diabetes (n = 304) compared with healthy controls (n = 355; p INS-IGF2 revealed that more patients than controls had doubly reactive insulin-INS-IGF2 autoantibodies. These data suggest that INS-IGF2, which contains the preproinsulin signal peptide, the B-chain, and eight amino acids of the C-peptide may be an autoantigen in type 1 diabetes. INS-IGF2 and insulin may share autoantibody-binding sites, thus complicating the notion that insulin is the primary autoantigen in type 1 diabetes.

  8. CD8+ T cells specific for the islet autoantigen IGRP are restricted in their T cell receptor chain usage

    Science.gov (United States)

    Fuchs, Yannick F.; Eugster, Anne; Dietz, Sevina; Sebelefsky, Christian; Kühn, Denise; Wilhelm, Carmen; Lindner, Annett; Gavrisan, Anita; Knoop, Jan; Dahl, Andreas; Ziegler, Anette-G.; Bonifacio, Ezio

    2017-01-01

    CD8+ T cells directed against beta cell autoantigens are considered relevant for the pathogenesis of type 1 diabetes. Using single cell T cell receptor sequencing of CD8+ T cells specific for the IGRP265-273 epitope, we examined whether there was expansion of clonotypes and sharing of T cell receptor chains in autoreactive CD8+ T cell repertoires. HLA-A*0201 positive type 1 diabetes patients (n = 19) and controls (n = 18) were analysed. TCR α- and β-chain sequences of 418 patient-derived IGRP265-273-multimer+ CD8+ T cells representing 48 clonotypes were obtained. Expanded populations of IGRP265-273-specific CD8+ T cells with dominant clonotypes that had TCR α-chains shared across patients were observed. The SGGSNYKLTF motif corresponding to TRAJ53 was contained in 384 (91.9%) cells, and in 20 (41.7%) patient-derived clonotypes. TRAJ53 together with TRAV29/DV5 was found in 15 (31.3%) clonotypes. Using next generation TCR α-chain sequencing, we found enrichment of one of these TCR α-chains in the memory CD8+ T cells of patients as compared to healthy controls. CD8+ T cell clones bearing the enriched motifs mediated antigen-specific target cell lysis. We provide the first evidence for restriction of T cell receptor motifs in the alpha chain of human CD8+ T cells with specificity to a beta cell antigen. PMID:28300170

  9. A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets.

    Directory of Open Access Journals (Sweden)

    Jakob D Wikstrom

    Full Text Available BACKGROUND: The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets. METHODOLOGY/PRINCIPAL FINDINGS: The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets. CONCLUSIONS/SIGNIFICANCE: The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells.

  10. Extensive Loss of Islet Mass Beyond the First Day After Intraportal Human Islet Transplantation in a Mouse Model.

    Science.gov (United States)

    Liljebäck, Hanna; Grapensparr, Liza; Olerud, Johan; Carlsson, Per-Ola

    2016-01-01

    Clinical islet transplantation is characterized by a progressive deterioration of islet graft function, which renders many patients once again dependent on exogenous insulin administration within a couple of years. In this study, we aimed to investigate possible engraftment factors limiting the survival and viability of experimentally transplanted human islets beyond the first day after their transplantation to the liver. Human islets were transplanted into the liver of nude mice and characterized 1 or 30 days after transplantation by immunohistochemistry. The factors assessed were endocrine mass, cellular death, hypoxia, vascular density and amyloid formation in the transplanted islets. One day posttransplantation, necrotic cells, as well as apoptotic cells, were commonly observed. In contrast to necrotic death, apoptosis rates remained high 1 month posttransplantation, and the total islet mass was reduced by more than 50% between 1 and 30 days posttransplantation. Islet mass at 30 days posttransplantation correlated negatively to apoptotic death. Vascular density within the transplanted islets remained less than 30% of that in native human islets up to 30 days posttransplantation and was associated with prevailing hypoxia. Amyloid formation was rarely observed in the 1-day-old transplants, but was commonly observed in the 30-day-old islet transplants. We conclude that substantial islet cell death occurs beyond the immediate posttransplantation phase, particularly through apoptotic events. Concomitant low vascularization with prevailing hypoxia and progressive amyloid development was observed in the human islet grafts. Strategies to improve engraftment at the intraportal site or change of implantation site in the clinical setting are needed.

  11. Shuttling of the autoantigen La between nucleus and cell surface after uv irradiation of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, M.; Chang, S.; Slor, H.; Kukulies, J.; Mueller, W.E. (Universitaet, Mainz (Germany, F.R.))

    1990-12-01

    During the past years we have established that the nuclear autoantigen La shuttles between the nucleus and the cytoplasm in tumor cells after inhibition of transcription or virus infection. We reinvestigated this shuttling using primary human keratinocytes from both healthy donors and patients with xeroderma pigmentosum. Ultraviolet irradiation resulted in both an inhibition of transcription and a translocation of La protein from the nucleus to the cytoplasm. After a prolonged inhibition of transcription La protein relocated into the nucleus and assembled with nuclear storage regions. The uv-induced shuttling included a translocation to the cell surface, where La protein colocalized with epidermal growth factor receptors.

  12. A sensitive method for detecting proliferation of rare autoantigen-specific human T cells.

    Science.gov (United States)

    Mannering, Stuart I; Morris, Jessica S; Jensen, Kent P; Purcell, Anthony W; Honeyman, Margo C; van Endert, Peter M; Harrison, Leonard C

    2003-12-01

    The ability to measure proliferation of rare antigen-specific T cells among many bystanders is critical for the evaluation of cellular immune function in health and disease. T-cell proliferation in response to antigen has been measured almost exclusively by 3H-thymidine incorporation. This method does not directly identify the phenotype of the proliferating cells and is frequently not sufficiently sensitive to detect rare autoantigen-specific T cells. To overcome these problems, we developed a novel assay for antigen-specific human T-cell proliferation. Peripheral blood mononuclear cells (PBMC) were labelled with the fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) and cells that proliferated in response to antigen, with resultant reduction in CFSE intensity, were measured directly by flow cytometry. This assay was more sensitive than 3H-thymidine incorporation and detected the proliferation of rare antigen-specific CD4(+) T cells at 10-fold lower antigen concentrations. It also allowed the phenotype of the proliferating cells to be directly determined. Using the CFSE assay we were able to measure directly the proliferation of human CD4(+) T cells from healthy donors in response to the type 1 diabetes autoantigens glutamic acid decarboxylase (GAD) and proinsulin (PI).

  13. Expression and regulation of nampt in human islets.

    Directory of Open Access Journals (Sweden)

    Karen Kover

    Full Text Available Nicotinamide phosphoribosyltransferase (Nampt is a rate-limiting enzyme in the mammalian NAD+ biosynthesis of a salvage pathway and exists in 2 known forms, intracellular Nampt (iNampt and a secreted form, extracellular Nampt (eNampt. eNampt can generate an intermediate product, nicotinamide mononucleotide (NMN, which has been reported to support insulin secretion in pancreatic islets. Nampt has been reported to be expressed in the pancreas but islet specific expression has not been adequately defined. The aim of this study was to characterize Nampt expression, secretion and regulation by glucose in human islets. Gene and protein expression of Nampt was assessed in human pancreatic tissue and isolated islets by qRT-PCR and immunofluorescence/confocal imaging respectively. Variable amounts of Nampt mRNA were detected in pancreatic tissue and isolated islets. Immunofluorescence staining for Nampt was found in the exocrine and endocrine tissue of fetal pancreas. However, in adulthood, Nampt expression was localized predominantly in beta cells. Isolated human islets secreted increasing amounts of eNampt in response to high glucose (20 mM in a static glucose-stimulated insulin secretion assay (GSIS. In addition to an increase in eNampt secretion, exposure to 20 mM glucose also increased Nampt mRNA levels but not protein content. The secretion of eNampt was attenuated by the addition of membrane depolarization inhibitors, diazoxide and nifedipine. Islet-secreted eNampt showed enzymatic activity in a reaction with increasing production of NAD+/NADH over time. In summary, we show that Nampt is expressed in both exocrine and endocrine tissue early in life but in adulthood expression is localized to endocrine tissue. Enzymatically active eNampt is secreted by human islets, is regulated by glucose and requires membrane depolarization.

  14. Anakinra and tocilizumab enhance survival and function of human islets during culture: implications for clinical islet transplantation.

    Science.gov (United States)

    Sahraoui, Afaf; Kloster-Jensen, Kristine; Ueland, Thor; Korsgren, Olle; Foss, Aksel; Scholz, Hanne

    2014-01-01

    Pretreatment culture before islet transplantation represents a window of opportunity to ameliorate the proinflammatory profile expressed by human β-cells in duress. Anakinra (IL-1 receptor antagonist) and tocilizumab (monoclonal IL-6 receptor antibody) are two known anti-inflammatory agents successfully used in the treatment of inflammatory states like rheumatoid arthritis. Both compounds have also been shown to reduce blood glucose and glycosylated hemoglobin in diabetic patients. We therefore sought to evaluate the impact of anakinra and tocilizumab on human β-cells. The islets were precultured with or without anakinra or tocilizumab and then transplanted in a marginal mass model using human islets in immunodeficient mice. Islet viability was evaluated in an in vitro model. The pretreatment culture led to a significantly improved engraftment in treated islets compared to the vehicle. Anakinra and tocilizumab are not toxic to human islets and significantly reduce markers of inflammation and cell death. These results strongly support a pretreatment culture with anakinra and tocilizumab prior to human islet transplantation.

  15. Supravital dithizone staining in the isolation of human and rat pancreatic islets

    DEFF Research Database (Denmark)

    Hansen, W A; Christie, M R; Kahn, R

    1989-01-01

    Dithizone, a zinc chelating agent, is known to selectively stain the islets of Langerhans in the pancreas. In the present study, we have used this stain to aid the identification of islets in material obtained by collagenase digestion of human pancreas. Islets were shown to rapidly and reversibly...... techniques for the large scale isolation of functionally intact human islets.......Dithizone, a zinc chelating agent, is known to selectively stain the islets of Langerhans in the pancreas. In the present study, we have used this stain to aid the identification of islets in material obtained by collagenase digestion of human pancreas. Islets were shown to rapidly and reversibly...... no effect on insulin release in tissue culture, on acute responses to stimulatory glucose concentrations or on the insulin content of cells. These results suggest that dithizone staining can assist in the identification of islets from the human pancreas and may prove to be a useful tool in developing...

  16. A 3D map of the islet routes throughout the healthy human pancreas

    Science.gov (United States)

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  17. Neurotransmitters act as paracrine signals to regulate insulin secretion from the human pancreatic islet.

    Science.gov (United States)

    Rodriguez-Diaz, Rayner; Menegaz, Danusa; Caicedo, Alejandro

    2014-08-15

    In this symposium review we discuss the role of neurotransmitters as paracrine signals that regulate pancreatic islet function. A large number of neurotransmitters and their receptors has been identified in the islet, but relatively little is known about their involvement in islet biology. Interestingly, neurotransmitters initially thought to be present in autonomic axons innervating the islet are also present in endocrine cells of the human islet. These neurotransmitters can thus be released as paracrine signals to help control hormone release. Here we propose that the role of neurotransmitters may extend beyond controlling endocrine cell function to work as signals modulating vascular flow and immune responses within the islet.

  18. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHui; JIANG Wei; SHI Yan; DENG HongKui

    2009-01-01

    Efficiently obtaining functional pancreaUc islet cells derived from human embryonic stem (hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology. In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro. Since then, many strategies (such as overexpression of key transcription factors,delivery of key proteins for pancreatic development, co-transplantation of differentiated hES cells along with fetal pancreas, stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells. Moreover, patient-specific induced pluripotent stem (iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection. In this review, we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  19. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Efficiently obtaining functional pancreatic islet cells derived from human embryonic stem(hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology.In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro.Since then,many strategies(such as overexpression of key transcription factors,delivery of key proteins for pancreatic development,co-transplantation of differentiated hES cells along with fetal pancreas,stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells.Moreover,patient-specific induced pluripotent stem(iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection.In this review,we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  20. Changes in the expression of human cell division autoantigen-1 influence Toxoplasma gondii growth and development.

    Directory of Open Access Journals (Sweden)

    Jay R Radke

    2006-10-01

    Full Text Available Toxoplasma is a significant opportunistic pathogen in AIDS, and bradyzoite differentiation is the critical step in the pathogenesis of chronic infection. Bradyzoite development has an apparent tropism for cells and tissues of the central nervous system, suggesting the need for a specific molecular environment in the host cell, but it is unknown whether this environment is parasite directed or the result of molecular features specific to the host cell itself. We have determined that a trisubstituted pyrrole acts directly on human and murine host cells to slow tachyzoite replication and induce bradyzoite-specific gene expression in type II and III strain parasites but not type I strains. New mRNA synthesis in the host cell was required and indicates that novel host transcripts encode signals that were able to induce parasite development. We have applied multivariate microarray analyses to identify and correlate host gene expression with specific parasite phenotypes. Human cell division autoantigen-1 (CDA1 was identified in this analysis, and small interfering RNA knockdown of this gene demonstrated that CDA1 expression causes the inhibition of parasite replication that leads subsequently to the induction of bradyzoite differentiation. Overexpression of CDA1 alone was able to slow parasite growth and induce the expression of bradyzoite-specific proteins, and thus these results demonstrate that changes in host cell transcription can directly influence the molecular environment to enable bradyzoite development. Investigation of host biochemical pathways with respect to variation in strain type response will help provide an understanding of the link(s between the molecular environment in the host cell and parasite development.

  1. Cloning and Sequencing of cDNA Encoding Islet Cell Autoantigen 69kD Protein from Chinese%国人 ICA69 基因 cDNA 的克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: It is reported that cDNA encoding human islet cell autoantigen 69kD protein (hiICA69) has been cloned, so to confirm the nucleotide sequences from the insulinoma cells of Chinese. Methods: cDNA encoding hiICA69 has been amplificated by PCR, from the cDNA library of Chinese insulinoma cells. The PCR product was inserted into the pSPORT 1 vector, and was subcloned into the pUC18 plasmid. After the positive colony was screened by the blue/white colony and the restriction analysis, the nucleotide sequences of the full - length cDNA were analysed by means of the dideoxy chain termination method. Resalts: The results showed that the amplified fragment contained 1449bp, encoded 483 - amino acids. For the sequencing analysis of ICA69 gene from the insulinoma in Mongolian race, the nucleotide sequence of the recombinant was coincident with that reported by Miyazaki and that from EMBL data's bank in addition to one difference of only base on the codon. The change located in the 416th base (A→T), which led to the change of one amino acid (Gln→Leu) . Conclusion: The gene obtained by the method of gene engineering and identified by means of sequence analysis would be able to lay a foundation for follow - up research.%目的:克隆国人胰岛细胞自身抗原 69kD 蛋白基因 ( hiICA69 ) 并经序列分析予以确证。方法:采用聚合酶链式反应技术,从中国人胰岛细胞瘤 cDNA 文库中扩增出 hiICA69 编码序列cDNA,将基因片段插入 pSPORT 1 质粒,进一步亚克隆到 pUCl8 载体中,经蓝白斑和限制性酶谱分析得以初步筛选后,双脱氧末端终止法对其全部核苷酸序列予以确定。结果:证实了 hiICA69 基因全长为 1449bp、编码 483 个氨基酸。与 pietropaolo 等报道的序列比较,仅在编码第 139 位氨基酸的密码子由 CAA→CTA,即由谷氨酰胺→亮氨酸,其余均与文献报道和 EMBL 核酸数据库提供的序列相同。结论:这一基因的获得和

  2. Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro

    Indian Academy of Sciences (India)

    Maithili P Dalvi; Malati R Umrani; Mugdha V Joglekar; Anandwardhan A Hardikar

    2009-10-01

    Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in diabetes. The phenotypic plasticity exhibited by pancreatic progenitors during reversible epithelial-to-mesenchymal transition (EMT) and possible role of microRNAs in regulation of this process is also presented herein.

  3. Research-Focused Isolation of Human Islets From Donors With and Without Diabetes at the Alberta Diabetes Institute IsletCore.

    Science.gov (United States)

    Lyon, James; Manning Fox, Jocelyn E; Spigelman, Aliya F; Kim, Ryekjang; Smith, Nancy; O'Gorman, Doug; Kin, Tatsuya; Shapiro, A M James; Rajotte, Raymond V; MacDonald, Patrick E

    2016-02-01

    Recent years have seen an increased focus on human islet biology, and exciting findings in the stem cell and genomic arenas highlight the need to define the key features of mature human islets and β-cells. Donor and organ procurement parameters impact human islet yield, although for research purposes islet yield may be secondary in importance to islet function. We examined the feasibility of a research-only human islet isolation, distribution, and biobanking program and whether key criteria such as cold ischemia time (CIT) and metabolic status may be relaxed and still allow successful research-focused isolations, including from donors with type 1 diabetes and type 2 diabetes. Through 142 isolations over approximately 5 years, we confirm that CIT and glycated hemoglobin each have a weak negative impacts on isolation purity and yield, and extending CIT beyond the typical clinical isolation cutoff of 12 hours (to ≥ 18 h) had only a modest impact on islet function. Age and glycated hemoglobin/type 2 diabetes status negatively impacted secretory function; however, these and other biological (sex, body mass index) and procurement/isolation variables (CIT, time in culture) appear to make only a small contribution to the heterogeneity of human islet function. This work demonstrates the feasibility of extending acceptable CIT for research-focused human islet isolation and highlights the biological variation in function of human islets from donors with and without diabetes.

  4. IMPROVEMENT OF HUMAN ISLET FUNCTION BY ADENOVIRUS MEDIATED HO-1 GENE TRANSFER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate in vitro heme oxygenase-1 gene (HO-1) delivery to human pancreatic islets by adenovirus vectors. Methods Recombinant adenovirus containing HO-1 or enhanced green fluorescent protein gene(EGFP) was generated by using the AdEasy System. The purified human pancreatic islets were infected with recombinant adenovirus vectors at various multiplicity of infection (MOI). Transduction was confirmed by fluorescence photographs and Western blot. Glucose-stimulated insulin secretion was detected by using Human insulin radioimmunoassay kits and was used to assess the function of human islets infected by recombinant adenovirus.Results Viral titers of Ad-hHO-1 and Ad-EGFP were 1.96×109 and 1.99×109 pfu/mL, respectively. Human pancreatic islets were efficiently infected by recombinant adenovirus vectors in vitro. Transfection of human islets at an MOI of 20 did not inhibit islet function. Recombinant adenovirus mediated HO-1gene transfer significantly improved the islet function of insulin release when simulated by high level glucose. Conclusion Recombinant adenovirus is efficient to deliver exogenous gene into human pancreatic islets in vitro. HO-1 gene transfection can improve human islet function.

  5. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Nasser Abualhassan

    Full Text Available There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group. Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ, 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group. Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.

  6. A Highly Expressed Human Protein, Apolipoprotein B-100, Serves as an Autoantigen in a Subgroup of Patients With Lyme Disease.

    Science.gov (United States)

    Crowley, Jameson T; Drouin, Elise E; Pianta, Annalisa; Strle, Klemen; Wang, Qi; Costello, Catherine E; Steere, Allen C

    2015-12-01

    To discover novel autoantigens associated with Lyme arthritis (LA), we identified T-cell epitopes presented in vivo by human leukocyte antigen (HLA)-DR molecules in patients' inflamed synovial tissue or joint fluid and tested each epitope for autoreactivity. Using this approach, we identified the highly expressed human protein, apolipoprotein B-100 (apoB-100), as a target of T- and B-cell responses in a subgroup of LA patients. Additionally, the joint fluid of these patients had markedly elevated levels of apoB-100 protein, which may contribute to its autoantigenicity. In patients with antibiotic-refractory LA, the magnitude of apoB-100 antibody responses correlated with increased numbers of plasma cells in synovial tissue, greater numbers and activation of endothelial cells, and more synovial fibroblast proliferation. Thus, a subset of LA patients have high levels of apoB-100 in their joints and autoreactive T- and B-cell responses to the protein, which likely contributes to pathogenic autoimmunity in patients with antibiotic-refractory LA.

  7. Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia

    Directory of Open Access Journals (Sweden)

    I. K. Hals

    2013-01-01

    Full Text Available Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8±3.5% in encapsulated and 42.9±5.2% in nonencapsulated islets (P<0.2. Nonencapsulated islets released 37.7% (median more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P<0.001. Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0±6.1% versus 24.8±5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation.

  8. Transplanted human pancreatic islets after long-term insulin independence

    DEFF Research Database (Denmark)

    Muller, Y D; Gupta, Shashank; Morel, P;

    2013-01-01

    independence. Islets were pooled from two donors with respectively one and five HLA mismatches. Insulin-positive islets were found throughout the right and left liver, and absent in the pancreas. Two- and three-dimensional analysis showed that islets lost their initial rounded and compact morphology, had...

  9. Human Islet Oxygen Consumption Rate and DNA Measurements Predict Diabetes Reversal in Nude Mice

    OpenAIRE

    Papas, K.K.; Colton, C. K.; Nelson, R. A.; Rozak, P.R.; Avgoustiniatos, E.S.; Scott, W. E.; Wildey, G. M.; Pisania, A.; Weir, G. C.; Hering, B. J.

    2007-01-01

    There is a need for simple, quantitative and prospective assays for islet quality assessment that are predictive of islet transplantation outcome. The current state-of-the-art athymic nude mouse bioassay is costly, technically challenging and retrospective. In this study, we report on the ability of 2 parameters characterizing human islet quality: (1) oxygen consumption rate (OCR), a measure of viable volume; and (2) OCR/DNA, a measure of fractional viability, to predict diabetes reversal in ...

  10. Selection of polymers for application in scaffolds applicable for human pancreatic islet transplantation.

    Science.gov (United States)

    Smink, Alexandra M; de Haan, Bart J; Paredes-Juarez, Genaro A; Wolters, Anouk H G; Kuipers, Jeroen; Giepmans, Ben N G; Schwab, Leendert; Engelse, Marten A; van Apeldoorn, Aart A; de Koning, Eelco; Faas, Marijke M; de Vos, Paul

    2016-05-13

    The liver is currently the site for transplantation of islets in humans. This is not optimal for islets, but alternative sites in humans are not available. Polymeric scaffolds in surgically accessible areas are a solution. As human donors are rare, the polymers should not interfere with functional survival of human-islets. We applied a novel platform to test the adequacy of polymers for application in scaffolds for human-islet transplantation. Viability, functionality, and immune parameters were included to test poly(D,L-lactide-co-ε-caprolactone) (PDLLCL), poly(ethylene oxide terephthalate)/polybutylene terephthalate (PEOT/PBT) block copolymer, and polysulfone. The type of polymer influenced the functional survival of human islets. In islets cultured on PDLLCL the glucagon-producing α-cells and insulin-producing β-cells contained more hormone granules than in islets in contact with PEOT/PBT or polysulfone. This was studied with ultrastructural analysis by electron microscopy (nanotomy) during 7 d of culture. PDLLCL was also associated with statistically significant lower release of double-stranded DNA (dsDNA, a so called danger-associate molecular pattern (DAMP)) from islets on PDLLCL when compared to the other polymers. DAMPs support undesired immune responses. Hydrophilicity of the polymers did not influence dsDNA release. Islets on PDLLCL also showed less cellular outgrowth. These outgrowing cells were mainly fibroblast and some β-cells undergoing epithelial to mesenchymal cell transition. None of the polymers influenced the glucose-stimulated insulin secretion. As PDLLCL was associated with less release of DAMPs, it is a promising candidate for creating a scaffold for human islets. Our study demonstrates that for sensitive, rare cadaveric donor tissue such as pancreatic islets it might be necessary to first select materials that do not influence functionality before proposing the biomaterial for in vivo application. Our presented platform may facilitate

  11. Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

    Science.gov (United States)

    Ansarullah; Free, Colette; Christopherson, Jenica; Chen, Quanhai; Gao, Jie; Liu, Chengyang; Naji, Ali; Rabinovitch, Alex; Guo, Zhiguang

    2016-01-01

    Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human islet graft function in the mice was evaluated by nonfasting glucose levels, oral glucose tolerance, and removal of the grafts. Immunostaining for insulin, glucagon, and BrdU or Ki67 was performed in islet grafts to evaluate α- and β-cell replication. Insulin and CK19 immunostaining was performed to evaluate β-cell neogenesis. Four weeks after human islet transplantation, 71% of PSN632408-treated mice achieved normoglycaemia compared with 24% of vehicle-treated mice. Also, oral glucose tolerance was significantly improved in the PSN632408-treated mice. PSN632408 treatment significantly increased both human α- and β-cell areas in islet grafts and stimulated α- and β-cell replication. In addition, β-cell neogenesis was induced from pancreatic duct cells in the islet grafts. Our results demonstrated that activation of GPR119 increases β-cell mass by stimulating human β-cell replication and neogenesis. Therefore, GPR119 activators may qualify as therapeutic agents to increase human β-cell mass in patients with diabetes. PMID:27413754

  12. Characterization of the Human Pancreatic Islet Proteome by Two-Dimensional LC/MS/MS

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Thomas O.; Jacobs, Jon M.; Gritsenko, Marina A.; Fontes, Ghislaine; Qian, Weijun; Camp, David G.; Poitout, Vincent J.; Smith, Richard D.

    2006-12-01

    Research to elucidate the pathogenesis of type 1 diabetes mellitus has traditionally focused on the genetic and immunological factors associated with the disease, and, until recently, has not considered the target cell. While there have been reports detailing proteomic analyses of established islet cell lines or isolated rodent islets, the information gained is not always easily extrapolated to humans. Therefore, extensive characterization of the human islet proteome could result in better understanding of islet biology and lead to more effective treatment strategies. We have applied a two-dimensional LC-MS/MS-based analysis to the characterization of the human islet proteome, resulting in the detection of 29,021 unique peptides corresponding to 4,925 proteins. As expected, major islet hormones (insulin, glucagon, somatostatin), beta-cell enriched secretory products (IAPP), ion channels (K-ATP channel), and transcription factors (PDX-1, Nkx 6.1, HNF-1 beta) were detected. In addition, significant proteome coverage of metabolic enzymes and cellular pathways was obtained, including the insulin signaling cascade and the MAP kinase, NF-κβ, and JAK/STAT pathways. This work represents the most extensive characterization of the human islet proteome to date and provides a peptide reference library that may be utilized in future studies of islet biology and type 1 diabetes.

  13. Single-Cell Sequencing of Human Pancreatic Islets-New Kids on the Block.

    Science.gov (United States)

    Prasad, Rashmi B; Groop, Leif

    2016-10-11

    RNA sequencing of human pancreatic islets has provided important insights into the islet transcriptome but little information on the specific cells. In this issue, Segerstolpe et al. (2016) and Xin et al. (2016b) report on the transcriptome of single pancreatic cells from non-diabetic and type 2 diabetic donors. Copyright © 2016. Published by Elsevier Inc.

  14. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Science.gov (United States)

    Meier, Raphael P H; Seebach, Jörg D; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H; Muller, Yannick D

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  15. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  16. Construction and expression of a humanized M2 autoantigen trimer and its application in the diagnosis of primary biliary cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hua Jiang; Ren-Qian Zhong; Sheng-Qian Yu; Yin Hu; Weng-Weng Li; Xian-Tao Kong

    2003-01-01

    AIM: To construct and express a humanized M2 autoantigen trimer designated as BPO and to apply it in the diagnosis of primary biliary cirrhosis (PBC). METHODS: cDNA fragments encoding M2-reactive epitopes of pyruvate dehydrogenase complex Ez (PDCE2), branched chain 2-oxo-acid dehydrogenase complex E2 (BCOADC-E2) and 2-oxo-glutarate dehydrogenase complex E2 (OGDC-E2) were amplified with PCR using total RNA extracted from human peripheral mononuclear blood cells. The fragments were cloned into the plasmid vector pQE-30 and then transferred into E. coliM15 (pREP4) for expression, which was induced by isopropylthio-β-Dgalactoside. The expressed recombinant BPO protein was demonstrated by SDS-PAGE, Western-blotting and Immunoabsorption test, its antigenic reactivity and specificity were identified with seven M2-positive sera confirmed at Euroimmun Research Center (Germany).Using the purified BPO, M2 antibodies in sera from patients with PBC and other liver related diseases were detected with ELISA. RESULTS: The expressed BPO was observed with both antigenic reactivity and specificity of M2 autoantigens. The determination of M2 antibodies by BPO with ELISA was more sensitive than using the Euroimmun's kit with the coefficients of variation less than 10 % in both interassay and intraassay.With the newly established method, M2 antibodies were found in 100 % (20/20) of patients with PBC. Six cases of liver disease with unknown etiology and 1 patient with drug induced liver injury had detectable levels of serum M2antibodies. There were also 2 patients with autoimmune cholangitis and 1 with autoimmune hepatitis showing M2-antibody positive. CONCLUSION: Compared with the routine immunofluorescenoe assay and commercially available assay kit using porcine heart mitochondrial protein as the antigen, the detection system established in the present study shows higher sensitivity and specificity and may be used as a powerful tool for the diagnosis of PBC.

  17. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M

    2013-01-01

    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them t...

  18. Expression of innate immunity genes and damage of primary human pancreatic islets by epidemic strains of Echovirus: implication for post-virus islet autoimmunity.

    Directory of Open Access Journals (Sweden)

    Luis Sarmiento

    Full Text Available Three large-scale Echovirus (E epidemics (E4,E16,E30, each differently associated to the acute development of diabetes related autoantibodies, have been documented in Cuba. The prevalence of islet cell autoantibodies was moderate during the E4 epidemic but high in the E16 and E30 epidemic. The aim of this study was to evaluate the effect of epidemic strains of echovirus on beta-cell lysis, beta-cell function and innate immunity gene expression in primary human pancreatic islets. Human islets from non-diabetic donors (n = 7 were infected with the virus strains E4, E16 and E30, all isolated from patients with aseptic meningitis who seroconverted to islet cell antibody positivity. Viral replication, degree of cytolysis, insulin release in response to high glucose as well as mRNA expression of innate immunity genes (IFN-b, RANTES, RIG-I, MDA5, TLR3 and OAS were measured. The strains of E16 and E30 did replicate well in all islets examined, resulting in marked cytotoxic effects. E4 did not cause any effects on cell lysis, however it was able to replicate in 2 out of 7 islet donors. Beta-cell function was hampered in all infected islets (P<0.05; however the effect of E16 and E30 on insulin secretion appeared to be higher than the strain of E4. TLR3 and IFN-beta mRNA expression increased significantly following infection with E16 and E30 (P<0.033 and P<0.039 respectively. In contrast, the expression of none of the innate immunity genes studied was altered in E4-infected islets. These findings suggest that the extent of the epidemic-associated islet autoimmunity may depend on the ability of the viral strains to damage islet cells and induce pro-inflammatory innate immune responses within the infected islets.

  19. Preservation of beta cell function in adult human pancreatic islets for several months in vitro

    DEFF Research Database (Denmark)

    Brunstedt, J; Andersson, A; Frimodt-Møller, C

    1979-01-01

    Islets of Langerhans were isolated from four human kidney donors, aged 16 to 21 years by the collagenase method described for isolation of rodent islets. So far the human islets have been kept in tissue culture, without attachment, in medium RPMI 1640 supplemented with 10% calf serum for more than...... 9 months, with preservation of the ability to release insulin in response to glucose stimulation. Replacement of calf serum with serum from normal human subjects did not affect B-cell survival, but resulted in elevated insulin values partly due to lower insulin degrading activity. Thus the described...

  20. Human pancreatic islet preparations release HMGB1: (ir)relevance for graft engraftment.

    Science.gov (United States)

    Nano, Rita; Racanicchi, Leda; Melzi, Raffaella; Mercalli, Alessia; Maffi, Paola; Sordi, Valeria; Ling, Zhidong; Scavini, Marina; Korsgren, Olle; Celona, Barbara; Secchi, Antonio; Piemonti, Lorenzo

    2013-01-01

    High levels of donor-derived high-mobility group box 1 (HMGB1) protein have been associated with poor islet graft outcome in mouse models. The aim of our work was to determine whether HMGB1 released by human islets had independent proinflammatory effects that influence engraftment in humans. Human islet preparations contained and released HMGB1 in different amounts, as determined by Western blot and ELISA (median 17 pg/ml/IEQ/24 h; min-max 0-211, n = 74). HMGB1 release directly correlated with brain death, donor hyperamilasemia, and factors related to the pancreas digestion procedure (collagenase and digestion time). HMGB1 release was significantly positively associated with the release of other cytokines/chemokines, particularly with the highly released "proinflammatory" CXCL8/IL-8, CXCL1/GRO-α, and the IFN-γ-inducible chemokines CXCL10/IP-10 and CXCL9/MIG. HMGB1 release was not modulated by Toll-like receptor 2, 3, 4, 5, and 9 agonists or by exposure to IL-1β. When evaluated after islet transplantation, pretransplant HMGB1 release was weakly associated with the activation of the coagulation cascade (evaluated as serum cross-linked fibrin products), but not with the immediate posttransplant inflammatory response. Concordantly, HMGB1 did not affect short-term human islet function. Our data show that human islet HMGB1 release is a sign of "damaged" islets, although without any independent direct role in graft failure.

  1. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    . These effects were dose-dependent and reproducible when using three different Interleukin-1 preparations. Highly purified human Interleukin-2, Lymphotoxin, Leucocyte Migration Inhibitory Factor and Macrophage Migration Inhibitory Factor were ineffective. These findings suggest that Interleukin-1 may play......Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets...

  2. Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS.

    Science.gov (United States)

    Metz, Thomas O; Jacobs, Jon M; Gritsenko, Marina A; Fontès, Ghislaine; Qian, Wei-Jun; Camp, David G; Poitout, Vincent; Smith, Richard D

    2006-12-01

    The pancreatic beta-cell plays a central role in the maintenance of glucose homeostasis and in the pathogenesis of both type 1 and type 2 diabetes mellitus. Elucidation of the insulin secretory defects observed in diabetes first requires a better understanding of the complex mechanisms regulating insulin secretion, which are only partly understood. While there have been reports detailing proteomic analyses of islet cell lines or isolated rodent islets, the information gained is not always applicable to humans. Therefore, definition of the human islet proteome could contribute to a better understanding of islet biology and lead to more effective treatment strategies. We have applied a two-dimensional LC-MS/MS-based analysis to the characterization of the human islet proteome, resulting in the confident identification of 29,021 different tryptic peptides covering 3365 proteins (> or =2 unique peptide identifications per protein). As expected, the three major islet hormones (insulin, glucagon, and somatostatin) were detected, as well as various beta-cell enriched secretory products, ion channels, and transcription factors. In addition, significant proteome coverage of metabolic enzymes and cellular pathways was observed, including the integrin signaling cascade and the MAP kinase, NF-kappa beta, and JAK/STAT pathways. The resulting peptide reference library provides a resource for future higher throughput and quantitative studies of islet biology.

  3. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Directory of Open Access Journals (Sweden)

    Alexandra E. Proshchina

    2014-04-01

    Full Text Available The ontogeny of the neuro-insular complexes (NIC and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE and S100 protein and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw 10 onwards. Later the density of S100 and NSE-positive fibers increased. In adults this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onwards. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained neuro-insular complexes and the number of these complexes was reduced in adults. The highest density of neuro-insular complexes is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  4. Characterization of human gene encoding SLA/LP autoantigen and its conserved homologs in mouse,fish,fly,and worm

    Institute of Scientific and Technical Information of China (English)

    Chun-Xia Wang; Andreas Teufel; Uta Cheruti; Joachim Gr(o)tzinger; Peter R Galle; Ansgar W Lohse; Johannes Herkel

    2006-01-01

    AIM: To approach the elusive function of the SLA/LP molecule, we have characterized genomic organization and conservation of the major antigenic and functional properties of the SLA/LP molecule in various species.METHODS: By means of computational biology, we have characterized the complete SLA/LP gene, mRNA and deduced protein sequences in man, mouse,zebrafish, fly, and worm.RESULTS: The human SLA/LP gene sequence of approximately 39 kb, which maps to chromosome 4p15.2, is organized in 11 exons, of which 10 or 11 are translated, depending on the splice variant. Homologous molecules were identified in several biological model organisms. The various homologous protein sequences showed a high degree of similarity or homology, notably at those residues that are of functional importance. The only domain of the human protein sequence that lacks significant homology with homologous sequences is the major antigenic epitope recognized by autoantibodies from autoimmune hepatitis (AIH) patients.CONCLUSION: The SLA/LP molecule and its functionally relevant residues have been highly conserved throughout the evoluti n, suggesting an indispensable function of the molecule. The finding that the only non-conserved domain is the dominant antigenic epitope of the human SLA/LP sequence, suggests that SLA/LP autoimmunity is autoantigen-driven rather than being driven by molecular mimicry.

  5. Amyloid Deposition in Transplanted Human Pancreatic Islets: A Conceivable Cause of Their Long-Term Failure

    Directory of Open Access Journals (Sweden)

    Arne Andersson

    2008-01-01

    Full Text Available Following the encouraging report of the Edmonton group, there was a rejuvenation of the islet transplantation field. After that, more pessimistic views spread when long-term results of the clinical outcome were published. A progressive loss of the β-cell function meant that almost all patients were back on insulin therapy after 5 years. More than 10 years ago, we demonstrated that amyloid deposits rapidly formed in human islets and in mouse islets transgenic for human IAPP when grafted into nude mice. It is, therefore, conceivable to consider amyloid formation as one potential candidate for the long-term failure. The present paper reviews attempts in our laboratories to elucidate the dynamics of and mechanisms behind the formation of amyloid in transplanted islets with special emphasis on the impact of long-term hyperglycemia.

  6. The Peri-islet Basement Membrane, a Barrier to Infiltrating Leukocytes in Type 1 Diabetes in Mouse and Human

    DEFF Research Database (Denmark)

    Korpos, Eva; Kadri, Nadir; Kappelhoff, Reinhild

    2013-01-01

    We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data...... activity at sites of leukocyte penetration of the peri-islet BM in association with a macrophage subpopulation in NOD mice and human type 1 diabetic samples and, hence, potentially a novel therapeutic target specifically acting at the islet penetration stage. Interestingly, the peri-islet BM and underlying...... IM are reconstituted once inflammation subsides, indicating that the peri-islet BM-producing cells are not lost due to the inflammation, which has important ramifications to islet transplantation studies....

  7. Volumetric properties of human islet amyloid polypeptide in liquid water.

    Science.gov (United States)

    Brovchenko, I; Andrews, M N; Oleinikova, A

    2010-04-28

    The volumetric properties of human islet amyloid polypeptide (hIAPP) in water were studied in a wide temperature range by computer simulations. The intrinsic density rho(p) and the intrinsic thermal expansion coefficient alpha(p) of hIAPP were evaluated by taking into account the difference between the volumetric properties of hydration and bulk water. The density of hydration water rho(h) was found to decrease almost linearly with temperature upon heating and its thermal expansion coefficient was found to be notably higher than that of bulk water. The peptide surface exposed to water is more hydrophobic and its rho(h) is smaller in conformation with a larger number of intrapeptide hydrogen bonds. The two hIAPP peptides studied (with and without disulfide bridge) show negative alpha(p), which is close to zero at 250 K and decreases to approximately -1.5 x 10(-3) K(-1) upon heating to 450 K. The analysis of various structural properties of peptides shows a correlation between the intrinsic peptide volumes and the number of intrapeptide hydrogen bonds. The obtained negative values of alpha(p) can be attributed to the shrinkage of the inner voids of the peptides upon heating.

  8. Aspects of structural landscape of human islet amyloid polypeptide

    Science.gov (United States)

    He, Jianfeng; Dai, Jin; Li, Jing; Peng, Xubiao; Niemi, Antti J.

    2015-01-01

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.

  9. Aspects of structural landscape of human islet amyloid polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianfeng, E-mail: hjf@bit.edu.cn; Dai, Jin, E-mail: daijing491@gmail.com [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Jing, E-mail: jinglichina@139.com [Institute of Biopharmaceutical Research, Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing 102206 (China); Peng, Xubiao, E-mail: xubiaopeng@gmail.com [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2015-01-28

    The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.

  10. Adaptive changes of human islets to an obesogenic environment in the mouse

    OpenAIRE

    Gargani, Sofia

    2013-01-01

    Introduction: Under normal healthy conditions, organisms maintain a dynamic endocrinecell mass throughout life. Pancreatic beta cell mass are able to maintain plasma glucose levels increasing insulin secretion in conditions as obesity. Beta cell inability to compensate in insulin demand provokes hyperglycemia and Type 2 Diabetes. Clinically, most obese individuals do not develop diabetes because islets compensate for insulin resistance. Direct evidence that human islet mass adapts longitudina...

  11. The human insulin gene is part of a large open chromatin domain specific for human islets

    OpenAIRE

    Mutskov, Vesco; Felsenfeld, Gary

    2009-01-01

    Knowledge of how insulin (INS) gene expression is regulated will lead to better understanding of normal and abnormal pancreatic β cell function. We have mapped histone modifications over the INS region, coupled with an expression profile, in freshly isolated islets from multiple human donors. Unlike many other human genes, in which active modifications tend to be concentrated within 1 kb around the transcription start site, these marks are distributed over the entire coding region of INS as w...

  12. Pathogen inactivation of human serum facilitates its clinical use for islet cell culture and subsequent transplantation.

    Science.gov (United States)

    Ståhle, Magnus U; Brandhorst, Daniel; Korsgren, Olle; Knutson, Folke

    2011-01-01

    Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.

  13. Efficient gene delivery and silencing of mouse and human pancreatic islets

    Directory of Open Access Journals (Sweden)

    Moerman Ericka

    2010-03-01

    Full Text Available Abstract Background In view of the importance of beta cells in glucose homeostasis and the profound repercussions of beta cell pathology on human health, the acquisition of tools to study pancreatic islet function is essential for the design of alternative novel therapies for diabetes. One promising approach toward this goal involves the modification of gene expression profile of beta cells. Results This study describes a new method of gene and siRNA delivery into human pancreatic islets by microporation technology. We demonstrated that mild islet distention with accutase greatly enhanced the transfection efficiency without compromising in vitro function (secretion, apoptosis and viability. As an example, the recently identified gene involved in type 2 diabetes, ZnT8, can be over-expressed or silenced by RNA interference using this technology. Microporation can also be used on rodent islets. Conclusions Taken together, our results demonstrate that microporation technology can be used to modify gene expression in whole rodent and human islets without altering their in vitro function and will be key to the elucidation of the factors responsible for proper islet function.

  14. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets

    NARCIS (Netherlands)

    Hilderink, Janneke; Spijker, Siebe; Carlotti, Françoise; Lange, Lydia; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2015-01-01

    Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell surv

  15. Cytotoxic T-lymphocyte-mediated killing of human pancreatic islet cells in vitro.

    Science.gov (United States)

    Campbell, Peter D; Estella, Eugene; Dudek, Nadine L; Jhala, Gaurang; Thomas, Helen E; Kay, Thomas W H; Mannering, Stuart I

    2008-09-01

    Cytotoxic T lymphocytes (CTL) are believed to play an essential role in beta-cell destruction leading to development of type 1 diabetes and allogeneic islet graft failure. We aimed to identify the mechanisms used by CTL to kill human beta cells. CTL clones that recognize epitopes from influenza virus and Epstein-Barr virus restricted by human leukocyte antigen (HLA)-A0201 and -B0801, respectively, were used to investigate the susceptibility of human beta cells to CTL. In a short-term (5-hour) assay, CTL killed human islet cells of the appropriate major histocompatibility complex (MHC) class I type that had been pulsed with viral peptides. Killing was increased by pretreating islets with interferon gamma that increases MHC class I on target cells. Killing was abolished by incubation of CTL with the perforin inhibitor concanamycin A. The Fas pathway did not contribute to killing because blocking with neutralizing anti-Fas ligand antibody did not significantly reduce beta-cell killing. In conclusion, we report a novel way of investigating the interaction between CTL and human islets. Human islets were rapidly killed in vitro by MHC class I-restricted CTL predominantly by the granule exocytosis pathway.

  16. Transfection, overexpression and clinical application of human 60 kDa Ro/SSA autoantigens in HEp-2 cells

    Institute of Scientific and Technical Information of China (English)

    吕良敬; 陈顺乐; 顾越英; 沈南; 鲍春德; 王元; 薛峰; 叶萍; 俞翀曌

    2003-01-01

    Objective To develop an improved substrate for indirect immunofluorescence test (IIF) for detecting anti-Ro60/Sjogren's syndrome A (Ro/SSA) autoantibodies.Methods 60-kDa Ro/SSA autoantigens (Ro60) cDNAs were obtained from human placental cDNA library using polymerase chain reaction (PCR) and were cloned into the mammalian expression vector-pEGFP-C1. Then, the recombinant plasmids were transfected into HEp-2 cells. We confirmed the overexpression, localization and antigenicity of fusion proteins in transfected cells by means of immunoblotting, confocal fluorescence microscopy and IIF. HEp-2 and HEp-Ro60 were analyzed by IIF using a panel of 10 precipitin-positive anti-Ro human sera simultaneously.Results Stable expression of Ro60-green fluorescent protein (Ro60-GFP) fusion proteins were maintained ten more generations. Ro60-GFP kept the antigenicity of Ro while demonstrating its own characteristic immunofluorescent pattern in HEp-Ro60 cells. The transfectants dramatically increased the sensitivity of IIF testing (a mean increase of 6.7-fold in endpoint titer). Eight overten (8/10) positive anti-Ro sera showed characteristic immunofluorescent patterns for HEp-Ro60, including two sera that were anti-nuclear antibodies (ANA) negative for untransfected HEp-2. IIF-ANA in all healthy sera was negative for HEp-Ro60. Conclusions As a new substrate for IIF, the Ro60 transfectants can be used to detect anti-Ro antibodies. In addition, transfected HEp-2 cells keep the immunofluorescent properties of HEp-2 cells in IIF-ANA tests and can be employed as a substrate for routine IIF-ANA detection.

  17. The IL-8 release from cultured human keratinocytes, mediated by antibodies to bullous pemphigoid autoantigen 180, is inhibited by dapsone

    Science.gov (United States)

    Schmidt, E; Reimer, S; Kruse, N; Bröcker, E-B; Zillikens, D

    2001-01-01

    Bullous pemphigoid (BP) is a subepidermal blistering disease associated with autoantibodies to the hemidesmosomal 180 kD BP autoantigen (BP180). However, the binding of autoantibodies to BP180 alone is not sufficient for blister formation in this disease and the infiltration of neutrophils into the skin is required. Dapsone and nicotinamide inhibit neutrophil chemotaxis and are used effectively in treating BP. IL-8 is a known chemoattractant for neutrophils and has been implicated in the inflammatory process of both human and experimental murine BP. We have recently shown that antibodies to BP180 mediate a dose and time-dependent release of IL-6 and IL-8 from cultured normal human epidermal keratinocytes (NHEK). In the present study, we addressed the question whether dapsone or nicotinamide influence this cytokine release. We demonstrate that dapsone, but not nicotinamide, in its pharmacological range, inhibits the IL-8, but not the IL-6 release from NHEK, induced by anti-BP180 IgG, in a dose-dependent fashion as detected by ELISA. IL-8 mRNA levels, as determined by RT-PCR, were the same in cells treated with BP IgG alone compared to cells treated with BP IgG plus dapsone. This observation suggests that dapsone inhibits the BP IgG-induced IL-8 release from cultured NHEK by mechanisms at the post-transcriptional level. Our findings contribute to the understanding how dapsone leads to a reduced influx of neutrophils into BP lesions and, finally, to the cessation of blister formation in this disease. PMID:11359455

  18. St. John's wort extract and hyperforin protect rat and human pancreatic islets against cytokine toxicity.

    Science.gov (United States)

    Novelli, Michela; Beffy, Pascale; Menegazzi, Marta; De Tata, Vincenzo; Martino, Luisa; Sgarbossa, Anna; Porozov, Svetlana; Pippa, Anna; Masini, Matilde; Marchetti, Piero; Masiello, Pellegrino

    2014-02-01

    The extract of Hypericum perforatum (St. John's wort, SJW) and its component hyperforin (HPF) were previously shown to inhibit cytokine-induced activation of signal transducer and activator of transcription-1 and nuclear factor κB and prevent apoptosis in a cultured β-cell line. Objective of this study was to assess the protection exerted by SJW and HPF on isolated rat and human islets exposed to cytokines in vitro. Functional, ultrastructural, biomolecular and cell death evaluation studies were performed. In both rat and human islets, SJW and HPF counteracted cytokine-induced functional impairment and down-regulated mRNA expression of pro-inflammatory target genes, such as iNOS, CXCL9, CXCL10, COX2. Cytokine-induced NO production from cultured islets, evaluated by nitrites measurement in the medium, was significantly reduced in the presence of the vegetal compounds. Noteworthy, the increase in apoptosis and necrosis following 48-h exposure to cytokines was fully prevented by SJW and partially by HPF. Ultrastructural morphometric analysis in human islets exposed to cytokines for 20 h showed that SJW or HPF avoided early β-cell damage (e.g., mitochondrial alterations and loss of insulin granules). In conclusion, SJW compounds protect rat and human islets against cytokine effects by counteracting key mechanisms of cytokine-mediated β-cell injury and represent promising pharmacological tools for prevention or limitation of β-cell dysfunction and loss in type 1 diabetes.

  19. The human insulin gene is part of a large open chromatin domain specific for human islets.

    Science.gov (United States)

    Mutskov, Vesco; Felsenfeld, Gary

    2009-10-13

    Knowledge of how insulin (INS) gene expression is regulated will lead to better understanding of normal and abnormal pancreatic beta cell function. We have mapped histone modifications over the INS region, coupled with an expression profile, in freshly isolated islets from multiple human donors. Unlike many other human genes, in which active modifications tend to be concentrated within 1 kb around the transcription start site, these marks are distributed over the entire coding region of INS as well. Moreover, a region of approximately 80 kb around the INS gene, which contains the {tyrosine hydroxylase (TH)-(INS)-insulin-like growth factor 2 antisense (IGF2AS)-insulin-like growth factor 2 (IGF2)} gene cluster, unusually is marked by almost uniformly elevated levels of histone acetylation and H3K4 dimethylation, extending both downstream into IGF2 and upstream beyond the TH gene. This is accompanied by islet specific coordinate expression with INS of the neighboring TH and IGF2 genes. The presence of islet specific intergenic transcripts suggests their possible function in the maintenance of this unusual large open chromatin domain.

  20. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes

    DEFF Research Database (Denmark)

    Storling, Joachim; Brorsson, Caroline Anna

    2013-01-01

    In type 1 diabetes (T1D), the insulin-producing β cells are destroyed by an immune-mediated process leading to complete insulin deficiency. There is a strong genetic component in T1D. Genes located in the human leukocyte antigen (HLA) region are the most important genetic determinants of disease...... exposure to proinflammatory cytokines highlighting that these genes may be involved in the response of β cells to immune attack. In this review, the compiling evidence that many of the candidate genes are expressed in islets and β cells will be presented. Further, we perform the first systematic human...... islet expression analysis of all genes located in 50 T1D-associated GWAS loci using a published RNA sequencing dataset. We find that 336 out of 857 genes are expressed in human islets and that many of these interact in protein networks. Finally, the potential pathogenetic roles of some candidate genes...

  1. Insulin resistance alters islet morphology in nondiabetic humans

    DEFF Research Database (Denmark)

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects...... pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared...... insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell-to-α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from...

  2. An Apparent Deficiency of Lymphatic Capillaries in the Islets of Langerhans in the Human Pancreas.

    Science.gov (United States)

    Korsgren, Erik; Korsgren, Olle

    2016-04-01

    The lymphatic system is crucial for efficient immune surveillance and for the maintenance of a physiological pressure in the interstitial space. Even so, almost no information is available concerning the lymph drainage of the islets of Langerhans in the human pancreas. Immunohistochemical staining allowed us to distinguish lymphatic capillaries from blood capillaries. Almost no lymphatic capillaries were found within the islets in pancreatic biopsy specimens from subjects without diabetes or from subjects with type 1 or type 2 diabetes. Lymphatic capillaries were, however, found at the islet-exocrine interface, frequently located along blood capillaries and other fibrotic structures within or close to the islet capsule. Lymphatic capillaries were regularly found in the exocrine pancreas, with small lymphatic vessels located close to and around acini. Larger collecting lymphatic vessels were located in fibrotic septa between the exocrine lobules and adjacent to the ductal system of the pancreas. In summary, we report a pronounced deficiency of lymphatic capillaries in human islets, a finding with implications for immune surveillance and the regulation of interstitial fluid transport in the endocrine pancreas as well as for the pathophysiology of both type 1 and type 2 diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Aberrant accumulation of the diabetes autoantigen GAD65 in Golgi membranes in conditions of ER stress and autoimmunity

    DEFF Research Database (Denmark)

    Phelps, Edward A; Cianciaruso, Chiara; Michael, Iacovos P

    2016-01-01

    Pancreatic islet beta cells are particularly susceptible to endoplasmic reticulum (ER) stress, which is implicated in beta cell dysfunction and loss during the pathogenesis of type 1 diabetes (T1D). The peripheral membrane protein GAD65 is an autoantigen in human T1D. GAD65 synthesizes GABA......, an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary beta cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes....... The palmitoylated form has heightened immunogenicity, exhibiting increased uptake by antigen presenting cells and T cell stimulation compared to the non-palmitoylated form. Similar accumulation of GAD65 in Golgi membranes is observed in human beta cells in pancreatic sections from GAD65 autoantibody positive...

  4. Design of Chemical Conjugate for Targeted Therapy of Multiple Sclerosis Based of Constant Fragment of Human Antibody Heavy Chain and Peptoid Analog of Autoantigen MOG35-55.

    Science.gov (United States)

    Lomakin, Y A; Stepanov, A V; Balabashin, D S; Ponomarenko, N A; Smirnov, I V; Belogurov, A A

    2017-04-01

    Elimination of B cells producing autoantibodies to neuroantigens is considered as beneficial in the treatment of multiple sclerosis. Myelin oligodendrocyte glycoprotein (MOG) is a significant autoantigen in multiple sclerosis. It was shown that MOG-like peptoid AMogP3 can bind autoantibodies produced by pathological lymphocytes. We propose a structure of an innovative drug for targeted elimination of the pool of autoreactive B cells responsible for multiple sclerosis pathogenesis; this compound is a complex of peptoid AMogP3 with Fc fragment of human immunoglobulin. The obtained Fc-PEG-AMogP3 conjugate effectively interact with autoreactive antibodies, which attests to their high therapeutic potential.

  5. Molecular cloning of a cDNA encoding the human Sm-D autoantigen

    Energy Technology Data Exchange (ETDEWEB)

    Rokeach, L.A.; Haselby, J.A.; Hoch, S.O. (Agouron Institute, La Jolla, CA (USA))

    1988-07-01

    Antibodies to the Sm-D polypeptide antigen are closely associated with the rheumatic disease systemic lupus erythematosus. Sm-D exists in the cell as one of the core proteins of the small nuclear ribonucleoprotein complexes implicated in RNA processing. The authors have isolated a cDNA clone, D45-2, coding for the Sm-D human nuclear antigen by screening a human B-lymphocyte cDNA library with synthetic oligonucleotide probes. The 1633-base-pair clone contains an open reading frame (ORF) 357 nucleotides long, capable of encoding a 13,282-dalton polypeptide. The Sm-D coding region is initiated at an AUG codon downstream from a sequence with excellent match to the consensus for the eukaryotic ribosome-binding site. The Sm-D ORF is preceded by a 150-nucleotide-long untranslated leader and followed by a 1126-nucleotide-long untranslated region containing four putative poly(A) signals. The predicted amino acid sequence reveals a (Gly-Arg){sub 9} repeated motif at the C terminus, which may constitute one of the Sm-D immunoreactive determinants. Moreover, this C terminus shows interesting features: (i) a good homology to protamines as expected for a nucleic acid binding protein and (ii) a striking similarity to a region in the Epstein-Barr nuclear antigen.

  6. Direct long-term effects of L-asparaginase on rat and human pancreatic islets

    DEFF Research Database (Denmark)

    Clausen, Niels; Nielsen, Jens Høiriis

    1989-01-01

    L-Asparaginase, an effective agent in the treatment of acute lymphoblastic leukemia, may induce a diabetic state. The pathogenesis of the diabetogenic effect was studied in cultured pancreatic islets. Mean serum concentrations in three children with acute lymphoblastic leukemia were 2.4 U/mL (range...... 1.4-4.5) before and 31.5 U/mL (range 18.6-51.8) immediately after an intravenous injection of 1000 U/kg L-asparaginase. Glucose-induced insulin release from pancreatic islets of rat and man was measured after 3 and 7 days of culture in media with or without clinically relevant concentrations...... of Escherichia coli L-asparaginase (0.01-100 U/mL). After culture, the remaining insulin, glucagon, and DNA in the islets were determined. After 7 days of culture of adult rat or human islets, both the accumulation of insulin in the medium and the content of insulin and glucagon in the islets were significantly...

  7. Comparison of Modified Celsior Solution and M-Kyoto Solution for Pancreas Preservation in Human Islet Isolation.

    Science.gov (United States)

    Noguchi, Hirofumi; Naziruddin, Bashoo; Onaca, Nicholas; Jackson, Andrew; Shimoda, Masayuki; Ikemoto, Tetsuya; Fujita, Yasutaka; Kobayashi, Naoya; Levy, Marlon F; Matsumoto, Shinichi

    2010-06-01

    Since the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas preservation systems. In this study, we evaluated two different types of organ preservation solutions for human islet isolation. Modified Celsior (Celsior solution with hydroxyethyl starch and nafamostat mesilate; HNC) solution and modified Kyoto (MK) solution were compared for pancreas preservation prior to islet isolation. Islet yield after purification was significantly higher in the MK group than in the HNC group (MK = 6186 ± 985 IE/g; HNC = 3091 ± 344 IE/g). The HNC group had a longer phase I period (digestion time), a higher volume of undigested tissue, and a higher percentage of embedded islets, suggesting that the solution may inhibit collagenase. However, there was no significant difference in ATP content in the pancreata or in the attainability of posttransplant normoglycemia in diabetic nude mice between the two groups, suggesting that the quality of islets was similar among the two groups. In conclusion, MK solution is better for pancreas preservation before islet isolation than HNC solution due to the higher percentage of islets that can be isolated from the donor pancreas. MK solution should be the solution of choice among the commercially available solutions for pancreatic islet isolation leading to transplantation.

  8. Comparison of modified Celsior solution and M-kyoto solution for pancreas preservation in human islet isolation.

    Science.gov (United States)

    Noguchi, Hirofumi; Naziruddin, Bashoo; Onaca, Nicholas; Jackson, Andrew; Shimoda, Masayuki; Ikemoto, Tetsuya; Fujita, Yasutaka; Kobayashi, Naoya; Levy, Marlon F; Matsumoto, Shinichi

    2010-01-01

    Since the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas preservation systems. In this study, we evaluated two different types of organ preservation solutions for human islet isolation. Modified Celsior (Celsior solution with hydroxyethyl starch and nafamostat mesilate; HNC) solution and modified Kyoto (MK) solution were compared for pancreas preservation prior to islet isolation. Islet yield after purification was significantly higher in the MK group than in the HNC group (MK = 6186 ± 985 IE/g; HNC = 3091 ± 344 IE/g). The HNC group had a longer phase I period (digestion time), a higher volume of undigested tissue, and a higher percentage of embedded islets, suggesting that the solution may inhibit collagenase. However, there was no significant difference in ATP content in the pancreata or in the attainability of posttransplant normoglycemia in diabetic nude mice between the two groups, suggesting that the quality of islets was similar among the two groups. In conclusion, MK solution is better for pancreas preservation before islet isolation than HNC solution due to the higher percentage of islets that can be isolated from the donor pancreas. MK solution should be the solution of choice among the commercially available solutions for pancreatic islet isolation leading to transplantation.

  9. Leptin modulates β cell expression of IL-1 receptor antagonist and release of IL-1β in human islets

    Science.gov (United States)

    Maedler, Kathrin; Sergeev, Pavel; Ehses, Jan A.; Mathe, Zoltan; Bosco, Domenico; Berney, Thierry; Dayer, Jean-Michel; Reinecke, Manfred; Halban, Philippe A.; Donath, Marc Y.

    2004-01-01

    High concentrations of glucose induce β cell production of IL-1β, leading to impaired β cell function and apoptosis in human pancreatic islets. IL-1 receptor antagonist (IL-1Ra) is a naturally occurring antagonist of IL-1β and protects cultured human islets from glucotoxicity. Therefore, the balance of IL-1β and IL-1Ra may play a crucial role in the pathogenesis of diabetes. In the present study, we observed expression of IL-1Ra in human pancreatic β cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro, chronic exposure of human islets to leptin, a hormone secreted by adipocytes, decreased β cell production of IL-1Ra and induced IL-1β release from the islet preparation, leading to impaired β cell function, caspase-3 activation, and apoptosis. Exogenous addition of IL-1Ra protected cultured human islets from the deleterious effects of leptin. Antagonizing IL-1Ra by introduction of small interfering RNA to IL-1Ra into human islets led to caspase-3 activation, DNA fragmentation, and impaired β cell function. Moreover, siIL-1Ra enhanced glucose-induced β cell apoptosis. These findings demonstrate expression of IL-1Ra in the human β cell, providing localized protection against leptin- and glucose-induced islet IL-1β. PMID:15141093

  10. Combination Therapy Using IL-2/IL-2 Monoclonal Antibody Complexes, Rapamycin, and Islet Autoantigen Peptides Increases Regulatory T Cell Frequency and Protects against Spontaneous and Induced Type 1 Diabetes in Nonobese Diabetic Mice.

    Science.gov (United States)

    Manirarora, Jean N; Wei, Cheng-Hong

    2015-12-01

    Regulatory T cells (Treg) play a crucial role in the maintenance of self-tolerance. In this study, we sought to expand Ag-specific Tregs in vivo and investigate whether the expanded Tregs can prevent or delay the development of type 1 diabetes (T1D) in the NOD mouse model. NOD mice were treated with a combination of IL-2/anti-IL-2 Ab complex, islet Ag peptide, and rapamycin. After the combined treatment, CD4(+)CD25(+)Foxp3(+) Tregs were significantly expanded in vivo, they expressed classical Treg markers, exerted enhanced suppressive functions in vitro, and protected against spontaneous development of T1D in NOD mice. Moreover, treated mice were almost completely protected from the adoptively transferred, aggressive form of T1D caused by in vitro-activated cytotoxic islet Ag-specific CD8 T cells. Protection from T1D was transferrable by Tregs and could be attributed to reduced islet infiltration of immune cells as well as the skewing of the immune response toward a Th2 cytokine profile. This new method of peripheral immune regulation could potentially contribute to development of novel immunotherapeutic strategies to prevent the development of T1D or to promote tolerance to islet transplants without using immunosuppressive drugs for long terms.

  11. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    Science.gov (United States)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  12. Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis.

    Science.gov (United States)

    Volkov, Petr; Bacos, Karl; Ofori, Jones K; Esguerra, Jonathan Lou S; Eliasson, Lena; Rönn, Tina; Ling, Charlotte

    2017-04-01

    Current knowledge about the role of epigenetics in type 2 diabetes (T2D) remains limited. Only a few studies have investigated DNA methylation of selected candidate genes or a very small fraction of genomic CpG sites in human pancreatic islets, the tissue of primary pathogenic importance for diabetes. Our aim was to characterize the whole-genome DNA methylation landscape in human pancreatic islets, to identify differentially methylated regions (DMRs) in diabetic islets, and to investigate the function of DMRs in islet biology. Here, we performed whole-genome bisulfite sequencing, which is a comprehensive and unbiased method to study DNA methylation throughout the genome at a single nucleotide resolution, in pancreatic islets from donors with T2D and control subjects without diabetes. We identified 25,820 DMRs in islets from individuals with T2D. These DMRs cover loci with known islet function, e.g., PDX1, TCF7L2, and ADCY5 Importantly, binding sites previously identified by ChIP-seq for islet-specific transcription factors, enhancer regions, and different histone marks were enriched in the T2D-associated DMRs. We also identified 457 genes, including NR4A3, PARK2, PID1, SLC2A2, and SOCS2, that had both DMRs and significant expression changes in T2D islets. To mimic the situation in T2D islets, candidate genes were overexpressed or silenced in cultured β-cells. This resulted in impaired insulin secretion, thereby connecting differential methylation to islet dysfunction. We further explored the islet methylome and found a strong link between methylation levels and histone marks. Additionally, DNA methylation in different genomic regions and of different transcript types (i.e., protein coding, noncoding, and pseudogenes) was associated with islet expression levels. Our study provides a comprehensive picture of the islet DNA methylome in individuals with and without diabetes and highlights the importance of epigenetic dysregulation in pancreatic islets and T2D

  13. Diabetes mellitus is associated with an increased expression of resistin in human pancreatic islet cells.

    Science.gov (United States)

    Al-Salam, Suhail; Rashed, Hameed; Adeghate, Ernest

    2011-01-01

    The pattern of distribution of resistin in the pancreas of diabetic patients was investigated to determine whether diabetes mellitus influences the expression of resistin. Pancreatic tissue samples retrieved, during pancreatectomy for pancreatic cancer, from cancer patients with and without type 2 diabetes were processed for immunohistochemistry. The pancreatic tissue samples were retrieved from non-cancerous and clear margins. An immunofluorescence technique was used to examine the expression of resistin and its co-localization with insulin and glucagon in pancreatic islet cells. Resistin was observed in many cells located in the central region of pancreatic islet. The expression of resistin increased significantly (p diabetic patients compared to control. Resistin co-localized with insulin but not glucagon in pancreatic islet cells of both normal and diabetic patients. However, the degree of co-localization was higher in pancreata of diabetic patients compared to normal. The number of human pancreatic islet cells expressing resistin increased significantly after the onset of type 2 diabetes. In conclusion, resistin may play a role in the regulation of pancreatic β-cell function.

  14. Assessment of intracellular insulin content during all steps of human islet isolation procedure.

    Science.gov (United States)

    Brandhorst, H; Brandhorst, D; Brendel, M D; Hering, B J; Bretzel, R G

    1998-01-01

    This study investigated the recovery of pancreatic insulin content during human islet isolation prior to and after digestion-filtration, continuous Hanks-Ficoll gradient purification (n = 20), and 3-4 day culture at 22 degrees C (n = 6). The native insulin content varied in a wide range from 28.4 U to 360.8 U/pancreas. After digestion the initially measured average insulin content of 115.8 +/- 20.8 U/pancreas (mean +/- SEM) increased to 264.6 +/- 22.8% (p asymetrical distribution of insulin within the pancreas. Sampling of insulin within the pancreatic caput seemed not to be representative for the insulin content of the complete native organ, because the ratio of insulin per gram tissue within the pancreatic cauda compared to the caput (n = 5) was 2.4 +/- 0.4 (p < 0.05). After purification total insulin recovery was 55.3 +/- 4.8% (p < 0.001). Because recovery of islet equivalent number (IEQ) (83.7 +/- 4.4%) exceeded insulin recovery, insulin/IEQ ratio decreased from 656.8 +/- 70.6 microU/IEQ before purification to 436.4 +/- 58.1 microU/IEQ (p < 0.001) after purification. After 22 degrees C culture (n = 6) recovery of insulin and IEQ was 80.1 +/- 8.1% (p < 0.05) and 92.8 +/- 3.5% (p = NS), respectively. Insulin content per IEQ decreased to 85.8 +/- 6.5% (p < 0.05). This study clearly shows that most of islet insulin is lost during purification. This seems to be caused rather by an amplified insulin release than by the loss of islets itself. This release may facilitate the separation of endocrine and exocrine tissue by gradient centrifugation, but may also accelerate islet exhaustion detrimental for long-term insulin independence.

  15. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes

    DEFF Research Database (Denmark)

    Bacos, Karl; Gillberg, Linn; Volkov, Petr

    2016-01-01

    Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA...... methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes...... demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D....

  16. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh;

    2012-01-01

    Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified...... gene coexpression and protein-protein interaction networks that were strongly associated with islet insulin secretion and HbA(1c). We integrated our data to form a rank list of putative T2D genes, of which CHL1, LRFN2, RASGRP1, and PPM1K were validated in INS-1 cells to influence insulin secretion...... of genes potentially involved in T2D....

  17. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes.

    Science.gov (United States)

    Bacos, Karl; Gillberg, Linn; Volkov, Petr; Olsson, Anders H; Hansen, Torben; Pedersen, Oluf; Gjesing, Anette Prior; Eiberg, Hans; Tuomi, Tiinamaija; Almgren, Peter; Groop, Leif; Eliasson, Lena; Vaag, Allan; Dayeh, Tasnim; Ling, Charlotte

    2016-03-31

    Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D.

  18. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  19. Treatment with Tacrolimus and Sirolimus Reveals No Additional Adverse Effects on Human Islets In Vitro Compared to Each Drug Alone but They Are Reduced by Adding Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Kristine Kloster-Jensen

    2016-01-01

    Full Text Available Tacrolimus and sirolimus are important immunosuppressive drugs used in human islet transplantation; however, they are linked to detrimental effects on islets and reduction of long-term graft function. Few studies investigate the direct effects of these drugs combined in parallel with single drug exposure. Human islets were treated with or without tacrolimus (30 μg/L, sirolimus (30 μg/L, or a combination thereof for 24 hrs. Islet function as well as apoptosis was assessed by glucose-stimulated insulin secretion (GSIS and Cell Death ELISA. Proinflammatory cytokines were analysed by qRT-PCR and Bio-Plex. Islets exposed to the combination of sirolimus and tacrolimus were treated with or without methylprednisolone (1000 μg/L and the expression of the proinflammatory cytokines was investigated. We found the following: (i No additive reduction in function and viability in islets existed when tacrolimus and sirolimus were combined compared to the single drug. (ii Increased expression of proinflammatory cytokines mRNA and protein levels in islets took place. (iii Methylprednisolone significantly decreased the proinflammatory response in islets induced by the drug combination. Although human islets are prone to direct toxic effect of tacrolimus and sirolimus, we found no additive effects of the drug combination. Short-term exposure of glucocorticoids could effectively reduce the proinflammatory response in human islets induced by the combination of tacrolimus and sirolimus.

  20. Involvement of gene methylation changes in the differentiation of human amniotic epithelial cells into islet-like cell clusters.

    Science.gov (United States)

    Peng, Lin; Wang, Jian; Lu, Guangxiu

    2014-09-01

    Insulin-dependent diabetes results from destruction of the insulin-producing β-cells of the pancreas. Islet cell transplantation is a promising cure for diabetes. Here, we induced human amniotic epithelial cells (hAECs) to differentiate into islet-like cell clusters by nicotinamide plus betacellulin in vitro, and further investigated the DNA methylation status by a Nimble MeDIP microarray before and after cell differentiation to shed light on the molecular mechanisms of this differentiation. In addition, 5-Aza-2'-deoxycytidine was used to investigate whether the differentiation of hAECs into islet-like cells occurred through demethylation. Purified hAECs (CK18(+)/E-cadherin(+)/CD29(+)/CD90(-)/CD34(-)/CD45(-)) were isolated from human amnia. After induction, hAECs were found to be insulin positive and sensitive to glucose, indicating successful induction to islet-like cells. The methylation status of cell cytoskeleton-related genes was down-regulated and that of negative regulation of cell adhesion-related genes was up-regulated. The methylation status of pancreas development-related genes such as HNF1α and DGAT1 was decreased in hAECs after induction. After brief demethylation, INS gene expression was up-regulated in islet-like cell clusters, suggesting that DNA methylation changes were associated with the differentiation of hAECs into islet-like cell clusters.

  1. Distinct differences in the responses of the human pancreatic β-cell line EndoC-βH1 and human islets to proinflammatory cytokines.

    Science.gov (United States)

    Oleson, Bryndon J; McGraw, Jennifer A; Broniowska, Katarzyna A; Annamalai, Mani; Chen, Jing; Bushkofsky, Justin R; Davis, Dawn B; Corbett, John A; Mathews, Clayton E

    2015-09-01

    While insulinoma cells have been developed and proven to be extremely useful in studies focused on mechanisms controlling β-cell function and viability, translating findings to human β-cells has proven difficult because of the limited access to human islets and the absence of suitable insulinoma cell lines of human origin. Recently, a human β-cell line, EndoC-βH1, has been derived from human fetal pancreatic buds. The purpose of this study was to determine whether human EndoC-βH1 cells respond to cytokines in a fashion comparable to human islets. Unlike most rodent-derived insulinoma cell lines that respond to cytokines in a manner consistent with rodent islets, EndoC-βH1 cells fail to respond to a combination of cytokines (IL-1, IFN-γ, and TNF) in a manner consistent with human islets. Nitric oxide, produced following inducible nitric oxide synthase (iNOS) expression, is a major mediator of cytokine-induced human islet cell damage. We show that EndoC-βH1 cells fail to express iNOS or produce nitric oxide in response to this combination of cytokines. Inhibitors of iNOS prevent cytokine-induced loss of human islet cell viability; however, they do not prevent cytokine-induced EndoC-βH1 cell death. Stressed human islets or human islets expressing heat shock protein 70 (HSP70) are resistant to cytokines, and, much like stressed human islets, EndoC-βH1 cells express HSP70 under basal conditions. Elevated basal expression of HSP70 in EndoC-βH1 cells is consistent with the lack of iNOS expression in response to cytokine treatment. While expressing HSP70, EndoC-βH1 cells fail to respond to endoplasmic reticulum stress activators, such as thapsigargin. These findings indicate that EndoC-βH1 cells do not faithfully recapitulate the response of human islets to cytokines. Therefore, caution should be exercised when making conclusions regarding the actions of cytokines on human islets when using this human-derived insulinoma cell line.

  2. Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo.

  3. Aberrant Accumulation of the Diabetes Autoantigen GAD65 in Golgi Membranes in Conditions of ER Stress and Autoimmunity.

    Science.gov (United States)

    Phelps, Edward A; Cianciaruso, Chiara; Michael, Iacovos P; Pasquier, Miriella; Kanaani, Jamil; Nano, Rita; Lavallard, Vanessa; Billestrup, Nils; Hubbell, Jeffrey A; Baekkeskov, Steinunn

    2016-09-01

    Pancreatic islet β-cells are particularly susceptible to endoplasmic reticulum (ER) stress, which is implicated in β-cell dysfunction and loss during the pathogenesis of type 1 diabetes (T1D). The peripheral membrane protein GAD65 is an autoantigen in human T1D. GAD65 synthesizes γ-aminobutyric acid, an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary β-cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes. The palmitoylated form has heightened immunogenicity, exhibiting increased uptake by antigen-presenting cells and T-cell stimulation compared with the nonpalmitoylated form. Similar accumulation of GAD65 in Golgi membranes is observed in human β-cells in pancreatic sections from GAD65 autoantibody-positive individuals who have not yet progressed to clinical onset of T1D and from patients with T1D with residual β-cell mass and ongoing T-cell infiltration of islets. We propose that aberrant accumulation of immunogenic GAD65 in Golgi membranes facilitates inappropriate presentation to the immune system after release from stressed and/or damaged β-cells, triggering autoimmunity.

  4. Pancreatic hormones are expressed on the surfaces of human and rat islet cells through exocytotic sites

    DEFF Research Database (Denmark)

    Larsson, L I; Hutton, J C; Madsen, O D

    1989-01-01

    . Electron microscopy reveals the labeling to occur at sites of exocytotic granule release, involving the surfaces of extruded granule cores. The surfaces of islet cells were labeled both by polyclonal and monoclonal antibodies, excluding that receptor-interacting, anti-idiotypic hormone antibodies were...... responsible for the staining. Human insulin cells were surface-labeled by monoclonal antibodies recognizing the mature secretory products, insulin and C-peptide but not with monoclonal antibodies specific for proinsulin. Thus, routing of unprocessed preproinsulin to the cell surface may not account...... for these results. It is concluded that the staining reflects interactions between the appropriate antibodies and exocytotic sites of hormone release....

  5. TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro.

    Directory of Open Access Journals (Sweden)

    Ginat Toren-Haritan

    Full Text Available In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT. Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA against TGFβ Receptor 1 (TGFBR1, ALK5 transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion.

  6. High diversity in the TCR repertoire of GAD65 autoantigen-specific human CD4+ T cells.

    Science.gov (United States)

    Eugster, Anne; Lindner, Annett; Catani, Mara; Heninger, Anne-Kristin; Dahl, Andreas; Klemroth, Sylvia; Kühn, Denise; Dietz, Sevina; Bickle, Marc; Ziegler, Anette-Gabrielle; Bonifacio, Ezio

    2015-03-15

    Autoreactive CD4(+) T cells are an essential feature of type 1 diabetes mellitus. We applied single-cell TCR α- and β-chain sequencing to peripheral blood GAD65-specific CD4(+) T cells, and TCR α-chain next-generation sequencing to bulk memory CD4(+) T cells to provide insight into TCR diversity in autoimmune diabetes mellitus. TCRs obtained for 1650 GAD65-specific CD4(+) T cells isolated from GAD65 proliferation assays and/or GAD65 557I tetramer staining in 6 patients and 10 islet autoantibody-positive children showed large diversity with 1003 different TCRs identified. TRAV and TRBV gene usage was broad, and the TRBV5.1 gene was most prominent within the GAD65 557I tetramer(+) cells. Limited overlap (<5%) was observed between TCRs of GAD65-proliferating and GAD65 557I tetramer(+) CD4(+) T cells. Few TCRs were repeatedly found in GAD65-specific cells at different time points from individual patients, and none was seen in more than one subject. However, single chains were often shared between patients and used in combination with different second chains. Next-generation sequencing revealed a wide frequency range (<0.00001-1.62%) of TCR α-chains corresponding to GAD65-specific T cells. The findings support minor selection of genes and TCRs for GAD65-specific T cells, but fail to provide strong support for TCR-targeted therapies. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. A review of piscine islet xenotransplantation using wild-type tilapia donors and the production of transgenic tilapia expressing a "humanized" tilapia insulin.

    Science.gov (United States)

    Wright, James R; Yang, Hua; Hyrtsenko, Olga; Xu, Bao-You; Yu, Weiming; Pohajdak, Bill

    2014-01-01

    Most islet xenotransplantation laboratories have focused on porcine islets, which are both costly and difficult to isolate. Teleost (bony) fish, such as tilapia, possess macroscopically visible distinct islet organs called Brockmann bodies which can be inexpensively harvested. When transplanted into diabetic nude mice, tilapia islets maintain long-term normoglycemia and provide human-like glucose tolerance profiles. Like porcine islets, when transplanted into euthymic mice, they are rejected in a CD4 T-cell-dependent manner. However, unlike pigs, tilapia are so phylogenetically primitive that their cells do not express α(1,3)Gal and, because tilapia are highly evolved to live in warm stagnant waters nearly devoid of dissolved oxygen, their islet cells are exceedingly resistant to hypoxia, making them ideal for transplantation within encapsulation devices. Encapsulation, especially when combined with co-stimulatory blockade, markedly prolongs tilapia islet xenograft survival in small animal recipients, and a collaborator has shown function in diabetic cynomolgus monkeys. In anticipation of preclinical xenotransplantation studies, we have extensively characterized tilapia islets (morphology, embryologic development, cell biology, peptides, etc.) and their regulation of glucose homeostasis. Because tilapia insulin differs structurally from human insulin by 17 amino acids, we have produced transgenic tilapia whose islets stably express physiological levels of humanized insulin and have now bred these to homozygosity. These transgenic fish can serve as a platform for further development into a cell therapy product for diabetes.

  8. Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-06-01

    Full Text Available Abstract Background We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells. Results Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro. Conclusions This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.

  9. Label-Free Detection of Insulin and Glucagon within Human Islets of Langerhans Using Raman Spectroscopy

    Science.gov (United States)

    Hilderink, Janneke; Otto, Cees; Slump, Cees; Lenferink, Aufried; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2013-01-01

    Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm-1 band assigned to disulfide bridges in insulin, and the 1552 cm-1 band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1) of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans. PMID:24167603

  10. MicroRNA expression in alpha and beta cells of human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Dagmar Klein

    Full Text Available microRNAs (miRNAs play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98% subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs and 134 were expressed more in β-cells (β-miRNAs. Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different

  11. Islet transplantation: immunological perspectives.

    Science.gov (United States)

    Inverardi, Luca; Kenyon, Norma S; Ricordi, Camillo

    2003-10-01

    Clinical trials of islet transplantation are showing remarkable success, but they require administration of chronic immunosuppression, and are underscoring the large gap that exists between the number of human donors available and the number of patients that could benefit from the procedure. Recent progress has been made in the definition of key immunological mechanisms that are involved in determining islet transplant outcome. Clinical and preclinical studies, and studies in small animal model systems, will all eventually contribute to the definition of efficient and safe protocols for islet transplantation. If the use of xenografts is successful, it might represent a solution to the shortage of human organs.

  12. Autoantigenic targets of B-cell receptors derived from chronic lymphocytic leukemias bind to and induce proliferation of leukemic cells.

    Science.gov (United States)

    Zwick, Carsten; Fadle, Natalie; Regitz, Evi; Kemele, Maria; Stilgenbauer, Stephan; Bühler, Andreas; Pfreundschuh, Michael; Preuss, Klaus-Dieter

    2013-06-06

    Antigenic targets of the B-cell receptor (BCR) derived from malignant cells in chronic lymphocytic leukemia (CLL) might play a role in the pathogenesis of this neoplasm. We screened human tissue-derived protein macroarrays with antigen-binding fragments derived from 47 consecutive cases of CLL. An autoantigenic target was identified for 12/47 (25.5%) of the cases, with 3 autoantigens being the target of the BCRs from 2 patients each. Recombinantly expressed autoantigens bound specifically to the CLL cells from which the BCR used for the identification of the respective autoantigen was derived. Moreover, binding of the autoantigen to the respective leukemic cells induced a specific activation and proliferation of these cells. In conclusion, autoantigens are frequent targets of CLL-BCRs. Their specific binding to and induction of proliferation in the respective leukemic cells provide the most convincing evidence to date for the long-time hypothesized role of autoantigens in the pathogenesis of CLL.

  13. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes

    Science.gov (United States)

    Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina

    2017-01-01

    Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352

  14. Human Islet Amyloid Polypeptide Transgenic Mice: In Vivo and Ex Vivo Models for the Role of hIAPP in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    J. W. M. Höppener

    2008-01-01

    Full Text Available Human islet amyloid polypeptide (hIAPP, a pancreatic islet protein of 37 amino acids, is the main component of islet amyloid, seen at autopsy in patients with type 2 diabetes mellitus (DM2. To investigate the roles of hIAPP and islet amyloid in DM2, we generated transgenic mice expressing hIAPP in their islet beta cells. In this study, we found that after a long-term, high-fat diet challenge islet amyloid was observed in only 4 of 19 hIAPP transgenic mice. hIAPP transgenic females exhibited severe glucose intolerance, which was associated with a downregulation of GLUT-2 mRNA expression. In isolated islets from hIAPP males cultured for 3 weeks on high-glucose medium, the percentage of amyloid containing islets increased from 5.5% to 70%. This ex vivo system will allow a more rapid, convenient, and specific study of factors influencing islet amyloidosis as well as of therapeutic strategies to interfere with this pathological process.

  15. Immunogenicity of autoantigens

    Directory of Open Access Journals (Sweden)

    Keller Andreas

    2011-07-01

    Full Text Available Abstract Background Autoantibodies against self-antigens have been associated not only with autoimmune diseases, but also with cancer and are even found in healthy individuals. The mechanism causing the autoantibody response remains elusive for the majority of the immunogenic antigens. To deepen the understanding of autoantibody responses, we ask whether natural-occurring, autoimmunity-associated and tumor-associated antigens have structural or biological features related to the immune response. To this end, we have carried out the most comprehensive in-silicio study of different groups of autoantigens including large antigen sets identified by our groups combined with publicly available antigen sets. Results We found evidence for an enrichment of genes with a larger exon length increasing the probability of the occurrence of potential immunogenic features such as mutations, SNPs, immunogenic sequence patterns and structural epitopes, or alternative splicing events. While SNPs seem to play a more central role in autoimmunity, somatic mutations seem to be stronger enriched in tumor-associated antigens. In addition, antigens of autoimmune diseases are different from other antigen sets in that they appear preferentially secreted, have frequently an extracellular location, and they are enriched in pathways associated with the immune system. Furthermore, for autoantibodies in general, we found enrichment of sequence-based properties including coiled-coils motifs, ELR motifs, and Zinc finger DNA-binding motifs. Moreover, we found enrichment of proteins binding to proteins or nucleic acids including RNA and enrichment of proteins that are part of ribosome or spliceosome. Both, homologies to proteins of other species and an enrichment of ancient protein domains indicate that immunogenic proteins are evolutionary conserved and that mimicry might play a central role. Conclusions Our results provide evidence that proteins which i are evolutionary conserved

  16. Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure.

    Science.gov (United States)

    Sun, Bo; Roh, Kyung-Hwan; Lee, Sae-Rom; Lee, Yong-Soon; Kang, Kyung-Sun

    2007-03-23

    Success in islet-transplantation-based therapies for type I diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Embryonic stem cells (ESCs) have been successfully induced into insulin producing islet-like structure in several studies. However, the source of the ESCs has presented ethical and technical concerns. Here, we isolated a population of stem cells from human cord blood (UCB), which expressed embryo stage specific maker, SSEA-4, and the multi-potential stem cell marker, Oct4. Subsequently, we successfully induced them into insulin-producing islet-like structures, which co-express insulin and C-peptide. These findings might have a significant potential to advance human UCB derived stem-cell-based therapeutics for diabetes.

  17. Human fetal islet transplantation in type 1 diabetic patients: comparison of metabolic effects between single and multiple implantation regimens.

    Science.gov (United States)

    Djordjevic, P B; Lalic, N M; Jotic, A; Paunovic, I; Lalic, K; Raketic, N; Nikolic, D; Zamaklar, M; Rajkovic, N; Lukic, L; Dimitrijevic-Sreckovic, V; Dragasevic, M; Nikolic, D; Markovic, I

    2004-11-01

    Previous studies suggest that multiple transplantations might be equally efficient to a single regimen for human adult islets. The aim of this study was to compare metabolic parameters after each of the two regimens of human fetal islet (HFI) transplantation in type 1 diabetics. In group A (single transplant, n = 9), 180 +/- 20 x 1000 HFI equivalents (IEQs) were implanted by a single IM injection; in group B (multiple transplants, n = 8) islets were implanted as three consecutive injections (60 +/- 10 x 1000 IEQs) at 7-day intervals. We analyzed the metabolic parameters on days -1, 30, 60, 90, 120, 150, and 180 after the procedure. Among the metabolic parameters, we evaluated insulin secretion capacity-ISC (C peptide, RIA), metabolic control (HbA1c, chromatography), and insulin daily dose IDD. We found that C peptide levels increased, peaking on day 90 (A: 0.38 +/- 0.15; B: 0.34 +/- 0.19 nmol/L, P = NS) and then rapidly decreasing without differences, the HbA1c levels and IDD decreased in the same manner without differences between the groups. Our results demonstrate that multiple and single islet transplant regimens are equally efficient to temporarily restore a significant ISC with improvement of metabolic and clinical parameters. The results imply that the two regimens have an equal clinical value.

  18. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD–severe combined immunodeficiency (SCID) mice

    Science.gov (United States)

    Levitt, H. E.; Cyphert, T. J.; Pascoe, J. L.; Hollern, D. A.; Abraham, N.; Lundell, R. J.; Rosa, T.; Romano, L. C.; Zou, B.; O’Donnell, C. P.; Stewart, A. F.; Garcia-Ocaña, A.; Alonso, L. C.

    2011-01-01

    Aims/hypothesis We determined whether hyperglycaemia stimulates human beta cell replication in vivo in an islet transplant model Methods Human islets were transplanted into streptozotocin-induced diabetic NOD–severe combined immunodeficiency mice. Blood glucose was measured serially during a 2 week graft revascularisation period. Engrafted mice were then catheterised in the femoral artery and vein, and infused intravenously with BrdU for 4 days to label replicating beta cells. Mice with restored normoglycaemia were co-infused with either 0.9% (wt/vol.) saline or 50% (wt/vol.) glucose to generate glycaemic differences among grafts from the same donors. During infusions, blood glucose was measured daily. After infusion, human beta cell replication and apoptosis were measured in graft sections using immunofluorescence for insulin, and BrdU or TUNEL. Results Human islet grafts corrected diabetes in the majority of cases. Among grafts from the same donor, human beta cell proliferation doubled in those exposed to higher glucose relative to lower glucose. Across the entire cohort of grafts, higher blood glucose was strongly correlated with increased beta cell replication. Beta cell replication rates were unrelated to circulating human insulin levels or donor age, but tended to correlate with donor BMI. Beta cell TUNEL reactivity was not measurably increased in grafts exposed to elevated blood glucose. Conclusions/interpretation Glucose is a mitogenic stimulus for transplanted human beta cells in vivo. Investigating the underlying pathways may point to mechanisms capable of expanding human beta cell mass in vivo. PMID:20936253

  19. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1 in human type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Yoon Kun-Ho

    2002-04-01

    Full Text Available Abstract Background It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously observed in a rat model of type 2 diabetes. Moreover, in a gene expression screen, Ogg1 was over-expressed in islets from a human type 2 diabetic. Methods Immunofluorescent staining of Ogg1 was performed on pancreatic specimens from healthy controls and patients with diabetes for 2–23 years. The intensity and islet area stained for Ogg1 was evaluated by semi-quantitative scoring. Results Both the intensity and the area of islet Ogg1 staining were significantly increased in islets from the type 2 diabetic subjects compared to the healthy controls. A correlation between increased Ogg1 fluorescent staining intensity and duration of diabetes was also found. Most of the staining observed was cytoplasmic, suggesting that mitochondrial Ogg1 accounts primarily for the increased Ogg1 expression. Conclusion We conclude that oxidative stress related DNA damage may be a novel important factor in the pathogenesis of human type 2 diabetes. An increase of Ogg1 in islet cell mitochondria is consistent with a model in which hyperglycemia and consequent increased β-cell oxidative metabolism lead to DNA damage and the induction of Ogg1 expression.

  20. Differential sensitivity to beta-cell secretagogues in cultured rat pancreatic islets exposed to human interleukin-1 beta.

    Science.gov (United States)

    Eizirik, D L; Sandler, S; Hallberg, A; Bendtzen, K; Sener, A; Malaisse, W J

    1989-08-01

    The early stages of insulin-dependent diabetes mellitus are characterized by a selective inability to secrete insulin in response to glucose, coupled to a better response to nonnutrient secretagogues. The deficient glucose response may be a result of the autoimmune process directed toward the beta-cells. Interleukin-1 (IL-1) has been suggested to be one possible mediator of immunological damage of the beta-cells. In the present study we characterized the sensitivity of beta-cells to different secretagogues after human recombinant IL-1 beta (rIL-1 beta) exposure. Furthermore, experiments were performed to clarify the biochemical mechanisms behind the defective insulin response observed in these islets. Rat pancreatic islets were isolated and kept in tissue culture (medium RPMI-1640 plus 10% calf serum) for 5 days. The islets were subsequently exposed to 60 pM human recombinant IL-1 beta during 48 h in the same culture conditions as above and examined immediately after IL-1 exposure. The rIL-1 beta-treated islets showed a marked reduction of glucose-stimulated insulin release. Stimulation with arginine plus different glucose concentrations, and leucine plus glutamine partially counteracted the rIL-1 beta-induced reduction of insulin release. The activities of the glycolytic enzymes hexokinase, glucokinase, and glyceraldehyde 3-phosphate dehydrogenase, were similar in control and IL-1-exposed islets. Treatment with IL-1 also did not impair the activities of NADH+- and NADPH+-dependent glutamate dehydrogenase, glutamate-aspartate transaminase, glutamate-alanine transaminase, citrate synthase, and NAD+-linked isocitrate dehydrogenase. The oxidation of D-[6-14C]glucose and L-[U-14C]leucine were decreased by 50% in IL-1-treated islets. Furthermore, there was a significant decrease in the ratios of [2-14C]pyruvate oxidation/[1-14C]pyruvate decarboxylation and L-[U-14C]leucine oxidation/L-[1-14C]leucine decarboxylation, indicating that IL-1 decreases the proportion of

  1. Residue specific effects of human islet polypeptide amyloid on self-assembly and on cell toxicity.

    Science.gov (United States)

    Khemtemourian, Lucie; Guillemain, Ghislaine; Foufelle, Fabienne; Killian, J Antoinette

    2017-08-01

    Type 2 diabetes mellitus is characterized histopathologically by the presence of fibrillary amyloid deposits in the pancreatic islets of Langerhans. Human islet amyloid polypeptide (hIAPP), the 37-residue pancreatic hormone, is the major constituent of these amyloid deposits. The propensity of IAPP to form amyloid fibrils is strongly dependent on its primary sequence. An intriguing example is His at residue 18. Although H18 is located outside the amyloidogenic region, it has been suggested that this residue and its charge state play an important role in the kinetics of conformational changes and fibril formation as well as in mediating cell toxicity. To gain more insight into the importance of this residue, we have synthesized four analogues (H18R-IAPP, H18K-IAPP, H18A-IAPP and H18E-IAPP) and we performed a full biophysical study on the properties of these peptides. Kinetic experiments as monitored by thioflavin-T fluorescence, transmission electron microscopy, circular dichroism and cell toxicity assays revealed that all variants are less fibrillogenic and less toxic than native hIAPP both at neutral pH and at low pH. This demonstrates that the effect of H18 in native IAPP is not simply determined by its charge state, but rather that residue 18 is important for specific intra- and intermolecular interactions that occur during fibril formation and that may involve charge, size and hydrophobicity. Furthermore, our results indicate that H18R-IAPP has a strong inhibiting effect on native hIAPP fibril formation. Together these results highlight the large impact of modifying a single residue outside the amyloidogenic domain on fibril formation and cell toxicity induced by IAPP, opening up new avenues for design of inhibitors or modulators of IAPP aggregation. Copyright © 2017. Published by Elsevier B.V.

  2. Identification of the ectonucleotidases expressed in mouse, rat, and human Langerhans islets: potential role of NTPDase3 in insulin secretion.

    Science.gov (United States)

    Lavoie, Elise G; Fausther, Michel; Kauffenstein, Gilles; Kukulski, Filip; Künzli, Beat M; Friess, Helmut; Sévigny, Jean

    2010-10-01

    Extracellular nucleotides and adenosine regulate endocrine pancreatic functions such as insulin secretion by Langerhans islet β-cells via the activation of specific P2 and P1 receptors. Membrane-bound ectonucleotidases regulate the local concentration of these ligands and consequently control the activation of their receptors. The objective of this study was to identify and localize the major ectonucleotidases, namely NTPDases and ecto-5'-nucleotidase, present in the endocrine pancreas. In addition, the potential implication of ecto-ATPase activity on insulin secretion was investigated in the rat β-cell line INS-1 (832/13). The localization of ectonucleotidase activity and protein was carried out in situ by enzyme histochemistry and immunolocalization in mouse, rat, and human pancreas sections. NTPDase1 was localized in all blood vessels and acini, and NTPDase2 was localized in capillaries of Langerhans islets and in peripheral conjunctive tissue, whereas NTPDase3 was detected in all Langerhans islet cell types. Interestingly, among the mammalian species tested, ecto-5'-nucleotidase was present only in rat Langerhans islet cells, where it was coexpressed with NTPDase3. Notably, the inhibition of NTPDase3 activity by BG0136 and NF279 facilitated insulin release from INS-1 (832/13) cells under conditions of low glycemia, probably by affecting P2 receptor activation. NTPDase3 activity also regulated the inhibitory effect of exogenous ATP in the presence of a high glucose concentration most likely by controlling adenosine production. In conclusion, all pancreatic endocrine cells express NTPDase3 that was shown to modulate insulin secretion in rat INS-1 (832/13) β-cells. Ecto-5'-nucleotidase is expressed in rat Langerhans islet cells but absent in human and mouse endocrine cells.

  3. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro.

    Science.gov (United States)

    Al-Romaiyan, A; Liu, B; Asare-Anane, H; Maity, C R; Chatterjee, S K; Koley, N; Biswas, T; Chatterji, A K; Huang, G-C; Amiel, S A; Persaud, S J; Jones, P M

    2010-09-01

    Many plant-based products have been suggested as potential antidiabetic agents, but few have been shown to be effective in treating the symptoms of Type 2 diabetes mellitus (T2DM) in human studies, and little is known of their mechanisms of action. Extracts of Gymnema sylvestre (GS) have been used for the treatment of T2DM in India for centuries. The effects of a novel high molecular weight GS extract, Om Santal Adivasi, (OSA(R)) on plasma insulin, C-peptide and glucose in a small cohort of patients with T2DM are reported here. Oral administration of OSA(R) (1 g/day, 60 days) induced significant increases in circulating insulin and C-peptide, which were associated with significant reductions in fasting and post-prandial blood glucose. In vitro measurements using isolated human islets of Langerhans demonstrated direct stimulatory effects of OSA(R) on insulin secretion from human ß-cells, consistent with an in vivo mode of action through enhancing insulin secretion. These in vivo and in vitro observations suggest that OSA(R) may provide a potential alternative therapy for the hyperglycemia associated with T2DM.

  4. Regional differences in islet distribution in the human pancreas--preferential beta-cell loss in the head region in patients with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Xiaojun Wang

    Full Text Available While regional heterogeneity in islet distribution has been well studied in rodents, less is known about human pancreatic histology. To fill gaps in our understanding, regional differences in the adult human pancreas were quantitatively analyzed including the pathogenesis of type 2 diabetes (T2D. Cadaveric pancreas specimens were collected from the head, body and tail regions of each donor, including subjects with no history of diabetes or pancreatic diseases (n = 23 as well as patients with T2D (n = 12. The study further included individuals from whom islets were isolated (n = 7 to study islet yield and function in a clinical setting of islet transplantation. The whole pancreatic sections were examined using an innovative large-scale image capture and unbiased detailed quantitative analyses of the characteristics of islets from each individual (architecture, size, shape and distribution. Islet distribution/density is similar between the head and body regions, but is >2-fold higher in the tail region. In contrast to rodents, islet cellular composition and architecture were similar throughout the pancreas and there was no difference in glucose-stimulated insulin secretion in islets isolated from different regions of the pancreas. Further studies revealed preferential loss of large islets in the head region in patients with T2D. The present study has demonstrated distinct characteristics of the human pancreas, which should provide a baseline for the future studies integrating existing research in the field and helping to advance bi-directional research between humans and preclinical models.

  5. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  6. Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function.

    Science.gov (United States)

    Fueger, Patrick T; Schisler, Jonathan C; Lu, Danhong; Babu, Daniella A; Mirmira, Raghavendra G; Newgard, Christopher B; Hohmeier, Hans E

    2008-05-01

    Both major forms of diabetes involve a decline in beta-cell mass, mediated by autoimmune destruction of insulin-producing cells in type 1 diabetes and by increased rates of apoptosis secondary to metabolic stress in type 2 diabetes. Methods for controlled expansion of beta-cell mass are currently not available but would have great potential utility for treatment of these diseases. In the current study, we demonstrate that overexpression of trefoil factor 3 (TFF3) in rat pancreatic islets results in a 4- to 5-fold increase in [(3)H]thymidine incorporation, with full retention of glucose-stimulated insulin secretion. This increase was almost exclusively due to stimulation of beta-cell replication, as demonstrated by studies of bromodeoxyuridine incorporation and co-immunofluorescence analysis with anti-bromodeoxyuridine and antiinsulin or antiglucagon antibodies. The proliferative effect of TFF3 required the presence of serum or 0.5 ng/ml epidermal growth factor. The ability of TFF3 overexpression to stimulate proliferation of rat islets in serum was abolished by the addition of epidermal growth factor receptor antagonist AG1478. Furthermore, TFF3-induced increases in [3H]thymidine incorporation in rat islets cultured in serum was blocked by overexpression of a dominant-negative Akt protein or treatment with triciribine, an Akt inhibitor. Finally, overexpression of TFF3 also caused a doubling of [3H]thymidine incorporation in human islets. In summary, our findings reveal a novel TFF3-mediated pathway for stimulation of beta-cell replication that could ultimately be exploited for expansion or preservation of islet beta-cell mass.

  7. Pancreatic islet blood flow and its measurement.

    Science.gov (United States)

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-05-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.

  8. Localization of two human autoantigen genes by PCR screening and in situ hybridization-glycyl-tRNA synthetase locates to 7p15 and Alanyl-tRNA synthetase locates to 16q22

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.C.; Pai, S.I.; Liu, P. [National Inst. of Health, Bethesda, MD (United States); Ge, Q.; Targoff, I.N. [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States)

    1995-11-01

    Aminoacyl-tRNA synthetases (aminoacyl-RS) catalyze the attachment of an amino acid to its cognate tRNA. Five of 20 human aminoacyl-RS (histidyl-RS, threonyl-RS, isoleucyl-RS, glycyl-RS, and alanyl-RS) have been identified as targets of autoantibodies in the autoimmune disease polymyositis/dermatomyositis (PM/DM; 9). A sixth autoantigenic amino-acyl-RS, lysyl-RS, was recently reported. The genes for histidyl-RS and threonyl-RS have been assigned to chromosome 5, as have the genes for leucyl-RS and arginyl-RS. Six other aminoacyl-RS (glutamyl-prolyl-RS, valyl-RS, cysteinyl-RS, methionyl-RS, tryptophanyl-RS, and asparaginyl-RS) were assigned to chromosomes 1, 6, 11, 12, 14, and 18, respectively. The reason for a preponderance of aminoacyl-RS genes on chromosome 5 is unknown, but it has been suggested that regulatory relatedness might be a factor. Recently the entire or partial cDNA sequences for two autoantigenic aminoacyl-RS genes, glycyl-RS (gene symbol GARS; 4) and alanyl-RS (gene symbol AARS; 1), were reported. To understand further the genesis of autoimmune responses to aminoacyl-RS and to determine whether genes for autoantigenic aminoacyl-RS colocalize to chromosome 5, we have determined the chromosomal site of the GARS and AARS genes by PCR-based screening of somatic cell hybrid panels and by fluorescence in situ hybridization (FISH) analysis. 10 refs., 1 fig.

  9. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong, E-mail: yongzhao@uic.edu [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Guo, Chengshan; Hwang, David; Lin, Brian; Dingeldein, Michael; Mihailescu, Dan; Sam, Susan; Sidhwani, Seema [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Zhang, Yongkang [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Jain, Sumit [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Skidgel, Randal A. [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Prabhakar, Bellur S. [Department of Immunology and Microbiology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Mazzone, Theodore [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Holterman, Mark J. [Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  10. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines.

    Directory of Open Access Journals (Sweden)

    Décio L Eizirik

    Full Text Available Type 1 diabetes (T1D is an autoimmune disease in which pancreatic beta cells are killed by infiltrating immune cells and by cytokines released by these cells. Signaling events occurring in the pancreatic beta cells are decisive for their survival or death in diabetes. We have used RNA sequencing (RNA-seq to identify transcripts, including splice variants, expressed in human islets of Langerhans under control conditions or following exposure to the pro-inflammatory cytokines interleukin-1β (IL-1β and interferon-γ (IFN-γ. Based on this unique dataset, we examined whether putative candidate genes for T1D, previously identified by GWAS, are expressed in human islets. A total of 29,776 transcripts were identified as expressed in human islets. Expression of around 20% of these transcripts was modified by pro-inflammatory cytokines, including apoptosis- and inflammation-related genes. Chemokines were among the transcripts most modified by cytokines, a finding confirmed at the protein level by ELISA. Interestingly, 35% of the genes expressed in human islets undergo alternative splicing as annotated in RefSeq, and cytokines caused substantial changes in spliced transcripts. Nova1, previously considered a brain-specific regulator of mRNA splicing, is expressed in islets and its knockdown modified splicing. 25/41 of the candidate genes for T1D are expressed in islets, and cytokines modified expression of several of these transcripts. The present study doubles the number of known genes expressed in human islets and shows that cytokines modify alternative splicing in human islet cells. Importantly, it indicates that more than half of the known T1D candidate genes are expressed in human islets. This, and the production of a large number of chemokines and cytokines by cytokine-exposed islets, reinforces the concept of a dialog between pancreatic islets and the immune system in T1D. This dialog is modulated by candidate genes for the disease at both the

  11. ISLET FORMATION AND REGENERATION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To explore the mechanisms of differentiation and development of pancreatic endocrine cells as well as pancreatic regeneration. Methods Human embryonic pancreatic tissue at 7-14 weeks of gestation was collected. Diabetes mellitus rat model was induced with 65 mg/kg of streptozotocin. Insulin, glucagon, somatostatin, nestin, and cytokeratin 19 (CK19)of pancreatic tissues were observed by immunohistochemistry. Results At 9 weeks of gestation, pancreatic epithelial cells began to co-express insulin, glucagon, somatostatin, and CK19 before migration. Islet cells gradually congregated along with the increase of aging, and at 14 weeks of gestation histological examination showed islet formation. At 12 weeks of gestation, nestin-positive cells could be seen in the pancreatic mesenchyme. During early embryogenesis, islet cells of pancreatic ducts co-expressed insulin, glucagon, and somatostatin. During pancreatic regeneration after damage, nestin expression of islet cells increased. Conclusion In the early stage of embryogenesis, islet cells of primary pancreatic ducts can be differentiated to multipotential endocrine cells before migration. During tissue regeneration, pancreatic stem cells may differentiate and proliferate to form pancreatic islet.

  12. Islet neogenesis potential of human adult stem cells and its applications in cell replacement therapy for diabetes

    Directory of Open Access Journals (Sweden)

    Bhonde RR

    2008-11-01

    Full Text Available In recent years regenerative biology has reached to greater heights due to its therapeutic potential in treating degenerative diseases; as they are not curable by modern medicine. With the advent of research in stem cells and developmental biology the regenerative potential of adult resident stem cells is becoming clearer. The long term objective of regenerative medicine or cell therapy is to treat patients with their own stem cells. These stem cells could be derived from the diseased organs such as skin, liver, pancreas etc. or from reservoirs of multipotent stem cells such as bone marrow or cord blood.Manipulating the ability of tissue resident stem cells as well as from multipotent reservoirs such as bone marrow, umbilical cord and cord blood to give rise to endocrine cells may open new avenues in the treatment of diabetes. A better understanding of stem cell biology would almost certainly allow for the establishment of efficient and reliable cell transplantation experimental programs in the clinic. We show here that multipotent mesenchymal stem cells can be isolated from various sources such as the bone marrow, placenta, umbilical cord. Upon stimulation with specific growth factors they differentiate into islet like clusters (ILCs. When ILCs obtained from the above mentioned sources were transplanted in experimental diabetic mice, restoration of normoglycemia was observed within three weeks of transplantation with concomitant increase in the body weight. These euglycemic mice exhibited normal glucose tolerance test indicating normal utilization of glucose. Allthough the MSCs isolated from all the sources had the same characteristics; they showed significant differences in their islet differentiation potential. ILCs isolated for the human bone marrow did not show any pancreatic hormones in vitro, but upon transplantation they matured into insulin and somatostatin producing hormones. Placental MSCs as well as ILCs showed insulin trascripts

  13. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets

    Science.gov (United States)

    Maedler, Kathrin; Sergeev, Pavel; Ris, Frédéric; Oberholzer, José; Joller-Jemelka, Helen I.; Spinas, Giatgen A.; Kaiser, Nurit; Halban, Philippe A.; Donath, Marc Y.

    2002-01-01

    In type 2 diabetes, chronic hyperglycemia is suggested to be detrimental to pancreatic β cells, causing impaired insulin secretion. IL-1β is a proinflammatory cytokine acting during the autoimmune process of type 1 diabetes. IL-1β inhibits β cell function and promotes Fas-triggered apoptosis in part by activating the transcription factor NF-κB. Recently, we have shown that increased glucose concentrations also induce Fas expression and β cell apoptosis in human islets. The aim of the present study was to test the hypothesis that IL-1β may mediate the deleterious effects of high glucose on human β cells. In vitro exposure of islets from nondiabetic organ donors to high glucose levels resulted in increased production and release of IL-1β, followed by NF-κB activation, Fas upregulation, DNA fragmentation, and impaired β cell function. The IL-1 receptor antagonist protected cultured human islets from these deleterious effects. β cells themselves were identified as the islet cellular source of glucose-induced IL-1β. In vivo, IL-1β–producing β cells were observed in pancreatic sections of type 2 diabetic patients but not in nondiabetic control subjects. Similarly, IL-1β was induced in β cells of the gerbil Psammomys obesus during development of diabetes. Treatment of the animals with phlorizin normalized plasma glucose and prevented β cell expression of IL-1β. These findings implicate an inflammatory process in the pathogenesis of glucotoxicity in type 2 diabetes and identify the IL-1β/NF-κB pathway as a target to preserve β cell mass and function in this condition. PMID:12235117

  14. Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells.

    Science.gov (United States)

    Nair, Gopika; Hebrok, Matthias

    2015-06-01

    The Islets of Langerhans are crucial 'micro-organs' embedded in the glandular exocrine pancreas that regulate nutrient metabolism. They not only synthesize, but also secrete endocrine hormones in a modulated fashion in response to physiologic metabolic demand. These highly sophisticated structures with intricate organization of multiple cell types, namely endocrine, vascular, neuronal and mesenchymal cells, have evolved to perform this task to perfection over time. Not surprisingly, islet architecture and function are dissimilar between humans and typically studied model organisms, such as rodents and zebrafish. Further, recent findings also suggest noteworthy differences in human islet development from that in mouse, including delayed appearance and gradual resolution of key differentiation markers, a single-phase of endocrine differentiation, and prenatal association of developing islets with neurovascular milieu. In light of these findings, it is imperative that a systematic study is undertaken to compare islet development between human and mouse. Illuminating inter-species differences in islet development will likely be critical in furthering our pursuit to generate an unlimited supply of truly functional and fully mature β-cells from human pluripotent stem cell (hPSC) sources for therapeutic purposes.

  15. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide

    Science.gov (United States)

    Xu, Zhi-Xue; Zhang, Qiang; Ma, Gong-Li; Chen, Cong-Heng; He, Yan-Ming; Xu, Li-Hui; Zhang, Yuan; Zhou, Guang-Rong; Li, Zhen-Hua

    2016-01-01

    The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (−)-epigallocatechin gallate (EGCG) is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III)/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III) and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III) and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III) could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III)/EGCG complex in molar ratio of 1 : 1 as Al(EGCG)(H2O)2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes. PMID:28074190

  16. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Zhi-Xue Xu

    2016-01-01

    Full Text Available The abnormal fibrillation of human islet amyloid polypeptide (hIAPP has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (−-epigallocatechin gallate (EGCG is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III/EGCG complex in molar ratio of 1 : 1 as Al(EGCG(H2O2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes.

  17. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Revital Sharivkin

    Full Text Available The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+, glucagon-producing alpha cells (CD9-/CD56+ and trypsin-producing acinar cells (CD9-/CD56-. This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples.

  18. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation.

    Directory of Open Access Journals (Sweden)

    Volkert A L Huurman

    Full Text Available BACKGROUND: Islet cell transplantation can cure type 1 diabetes (T1D, but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG induction and tacrolimus plus mycophenolate mofetil (MMF maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively. Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome. CONCLUSIONS/SIGNIFICANCE: In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG

  19. Protection of Human Pancreatic Islets from Lipotoxicity by Modulation of the Translocon.

    Directory of Open Access Journals (Sweden)

    R Cassel

    Full Text Available Type 2 diabetes is characterized by peripheral insulin resistance and pancreatic beta cell dysfunction. Elevated free fatty acids (FFAs may impair beta cell function and mass (lipotoxicity. Altered calcium homeostasis may be involved in defective insulin release. The endoplasmic reticulum (ER is the major intracellular calcium store. Lipotoxicity induces ER stress and in parallel an ER calcium depletion through unknown ER calcium leak channels. The main purposes of this study is first to identify one of these channels and secondly, to check the opportunity to restore beta cells function (i.e., insulin secretion after pharmacological inhibition of ER calcium store depletion. We investigated the functionality of translocon, an ER calcium leak channel and its involvement on FFAs-induced alterations in MIN6B1 cells and in human pancreatic islets. We evidenced that translocon acts as a functional ER calcium leak channel in human beta cells using anisomycin and puromycin (antibiotics, respectively blocker and opener of this channel. Puromycin induced a significant ER calcium release, inhibited by anisomycin pretreatment. Palmitate treatment was used as FFA model to induce a mild lipotoxic effect: ER calcium content was reduced, ER stress but not apoptosis were induced and glucose induced insulin secretion was decreased in our beta cells. Interestingly, translocon inhibition by chronic anisomycin treatment prevented dysfunctions induced by palmitate, avoiding reticular calcium depletion, ER stress and restoring insulin secretion. Our results provide for the first time compelling evidence that translocon actively participates to the palmitate-induced ER calcium leak and insulin secretion decrease in beta cells. Its inhibition reduces these lipotoxic effects. Taken together, our data indicate that TLC may be a new potential target for the treatment of type 2 diabetes.

  20. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.

    Science.gov (United States)

    Jaikaran, E T; Higham, C E; Serpell, L C; Zurdo, J; Gross, M; Clark, A; Fraser, P E

    2001-05-04

    Human islet amyloid polypeptide (hIAPP) accumulates as pancreatic amyloid in type 2 diabetes and readily forms fibrils in vitro. Investigations into the mechanism of hIAPP fibril formation have focused largely on residues 20 to 29, which are considered to comprise a primary amyloidogenic domain. In rodents, proline substitutions within this region and the subsequent beta-sheet disruption, prevents fibril formation. An additional amyloidogenic fragment within the C-terminal sequence, residues 30 to 37, has been identified recently. We have extended these observations by examining a series of overlapping peptide fragments from the human and rodent sequences. Using protein spectroscopy (CD/FTIR), electron microscopy and X-ray diffraction, a previously unrecognised amyloidogenic domain was localised within residues 8 to 20. Synthetic peptides corresponding to this region exhibited a transition from random coil to beta-sheet conformation and assembled into fibrils having a typical amyloid-like morphology. The comparable rat 8-20 sequence, which contains a single His18Arg substitution, was also capable of assembling into amyloid-like fibrils. Examination of peptide fragments corresponding to residues 1 to 13 revealed that the immediate N-terminal region is likely to have only a modulating influence on fibril formation or conformational conversion. The contributions of charged residues as they relate to the amyloid-forming 8-20 sequence were also investigated using IAPP fragments and by assessing the effects of pH and counterions. The identification of these principal amyloidogenic sequences and the effects of associated factors provide details on the IAPP aggregation pathway and structure of the peptide in its fibrillar state. Copyright 2001 Academic Press.

  1. Downregulation of Type II Diabetes Mellitus and Maturity Onset Diabetes of Young Pathways in Human Pancreatic Islets from Hyperglycemic Donors

    Directory of Open Access Journals (Sweden)

    Jalal Taneera

    2014-01-01

    Full Text Available Although several molecular pathways have been linked to type 2 diabetes (T2D pathogenesis, it is uncertain which pathway has the most implication on the disease. Changes in the expression of an entire pathway might be more important for disease pathogenesis than changes in the expression of individual genes. To identify the molecular alterations in T2D, DNA microarrays of human pancreatic islets from donors with hyperglycemia n=20 and normoglycemia n=58 were subjected to Gene Set Enrichment Analysis (GSEA. About 178 KEGG pathways were investigated for gene expression changes between hyperglycemic donors compared to normoglycemic. Pathway enrichment analysis showed that type II diabetes mellitus (T2DM and maturity onset diabetes of the young (MODY pathways are downregulated in hyperglycemic donors, while proteasome and spliceosome pathways are upregulated. The mean centroid of gene expression of T2DM and MODY pathways was shown to be associated positively with insulin secretion and negatively with HbA1c level. To conclude, downregulation of T2DM and MODY pathways is involved in islet function and might be involved in T2D. Also, the study demonstrates that gene expression profiles from pancreatic islets can reveal some of the biological processes related to regulation of glucose hemostats and diabetes pathogenesis.

  2. Pancreatic islet transplantation

    Directory of Open Access Journals (Sweden)

    Corrêa-Giannella Maria

    2009-09-01

    Full Text Available Abstract Background No formulation of exogenous insulin available to date has yet been able to mimic the physiological nictemeral rhythms of this hormone, and despite all engineering advancements, the theoretical proposal of developing a mechanical replacement for pancreatic β cell still has not been reached. Thus, the replacement of β cells through pancreas and pancreatic islet transplantation are the only concrete alternatives for re-establishing the endogenous insulin secretion in type 1 diabetic patients. Since only 1 to 1.5% of the pancreatic mass corresponds to endocrine tissue, pancreatic islets transplantation arises as a natural alternative. Data from the International Islet Transplant Registry (ITR from 1983 to December 2000 document a total of 493 transplants performed around the world, with progressively worse rates of post-transplant insulin independence. In 2000, the "Edmonton Protocol" introduced several modifications to the transplantation procedure, such as the use of a steroid-free immunosuppression regimen and transplantation of a mean islet mass of 11,000 islet equivalents per kilogram, which significantly improved 1-year outcomes. Although the results of a 5-year follow-up in 65 patients demonstrated improvement in glycemic instability in a significant portion of them, only 7.5% of the patients have reached insulin independence, indicating the need of further advances in the preservation of the function of transplanted islet. In addition to the scarcity of organs available for transplantation, islets transplantation still faces major challenges, specially those related to cell loss during the process of islet isolation and the losses related to the graft site, apoptosis, allorejection, autoimmunity, and immunosuppression. The main strategies to optimize islet transplantation aim at improving all these aspects. Conclusion Human islet transplantation should be regarded as an intervention that can decrease the frequency of

  3. Assignment of two human autoantigen genes-isoleucyl-tRNA synthetase locates to 9q21 and lysyl-tRNA synthetase locates to 16q23-q24

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.C.; Blinder, J.; Pai, S.I. [National Inst. of Health, Bethesda, MD (United States)] [and others

    1996-08-15

    Protein synthesis is initiated by the attachment of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (aaRS). Five of twenty human aaRS (histidyl-RS, threonyl-RS, alanyl-RS, glycyl-RS, and isoleucyl-RS) have been identified as targets of autoantibodies in the autoimmune disease polymyositis/dermatomyositis. Autoantibodies to human lysyl-RS, a sixth autoantigenic aminoacyl-RS, were recently identified. The genes for histidyl-RS and threonyl-RS have been localized to chromosome 5, and we recently reported that the genes for alanyl-RS and glycyl-RS localize to chromosomes 16 and 7, respectively. To understand the genesis of autoimmune responses to aaRS better, we have used PCR-based screening of somatic cell hybrid panels and fluorescence in situ hybridization (FISH) to assign the genes for isoleucyl-RS and lysyl-RS. 19 refs., 1 fig.

  4. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kuo Ching Chao

    Full Text Available BACKGROUND: There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs, which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets. METHODOLOGY AND PRINCIPAL FINDINGS: HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic beta-cell-related genes (Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2 in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules. CONCLUSIONS AND SIGNIFICANCE: In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin

  5. Differential transcriptome analysis of diabetes-resistant and -sensitive mouse islets reveals significant overlap with human diabetes susceptibility genes.

    Science.gov (United States)

    Kluth, Oliver; Matzke, Daniela; Schulze, Gunnar; Schwenk, Robert W; Joost, Hans-Georg; Schürmann, Annette

    2014-12-01

    Type 2 diabetes in humans and in obese mice is polygenic. In recent genome-wide association studies, genetic markers explaining a small portion of the genetic contribution to the disease were discovered. However, functional evidence linking these genes with the pathogenesis of diabetes is scarce. We performed RNA sequencing-based transcriptomics of islets from two obese mouse strains, a diabetes-susceptible (NZO) and a diabetes-resistant (B6-ob/ob) mouse, after a short glucose challenge and compared these results with human data. Alignment of 2,328 differentially expressed genes to 106 human diabetes candidate genes revealed an overlap of 20 genes, including TCF7L2, IGFBP2, CDKN2A, CDKN2B, GRB10, and PRC1. The data provide a functional validation of human diabetes candidate genes, including those involved in regulating islet cell recovery and proliferation, and identify additional candidates that could be involved in human β-cell failure. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans

    DEFF Research Database (Denmark)

    Bendtzen, K; Mandrup-Poulsen, T; Nerup, J

    1986-01-01

    . This cytotoxic activity was eliminated from crude cytokine preparations by adsorption with immobilized, purified antibody to interleukin-1 (IL-1). The islet-inhibitory activity and the IL-1 activity (determined by its comitogenic effect on thymocytes) were recovered by acid wash. Purified natural IL-1...

  7. KU-32, a Novel Drug for Diabetic Neuropathy, Is Safe for Human Islets and Improves In Vitro Insulin Secretion and Viability

    Directory of Open Access Journals (Sweden)

    Kevin Farmer

    2012-01-01

    Full Text Available KU-32 is a novel, novobiocin-based Hsp90 inhibitor that protects against neuronal glucotoxicity and reverses multiple clinical indices of diabetic peripheral neuropathy in a rodent model. However, any drug with potential for treating diabetic complications must also have no adverse effects on the function of pancreatic islets. Thus, the goal of the current study was to assess the effect of KU-32 on the in vitro viability and function of human islets. Treating human islets with KU-32 for 24 hours showed no toxicity as assessed using the alamarBlue assay. Confocal microscopy confirmed that with a minimum of 2-day exposure, KU-32 improved cellular viability by blocking apoptosis. Functionally, isolated human islets released more glucose-stimulated insulin when preincubated in KU-32. However, diabetic BKS-db/db mice, a model for type 2 diabetes, administered KU-32 for 10 weeks did not show any significant changes in blood glucose and insulin levels, despite having greater insulin staining/beta cell in the pancreas compared to untreated BKS db/db mice. In summary, KU-32 did not harm isolated human islets and may even be protective. However, the effect does not appear significant enough to alter the in vivo metabolic parameters of diabetic mice.

  8. KU-32, a novel drug for diabetic neuropathy, is safe for human islets and improves in vitro insulin secretion and viability.

    Science.gov (United States)

    Farmer, Kevin; Williams, S Janette; Novikova, Lesya; Ramachandran, Karthik; Rawal, Sonia; Blagg, Brian S J; Dobrowsky, Rick; Stehno-Bittel, Lisa

    2012-01-01

    KU-32 is a novel, novobiocin-based Hsp90 inhibitor that protects against neuronal glucotoxicity and reverses multiple clinical indices of diabetic peripheral neuropathy in a rodent model. However, any drug with potential for treating diabetic complications must also have no adverse effects on the function of pancreatic islets. Thus, the goal of the current study was to assess the effect of KU-32 on the in vitro viability and function of human islets. Treating human islets with KU-32 for 24 hours showed no toxicity as assessed using the alamarBlue assay. Confocal microscopy confirmed that with a minimum of 2-day exposure, KU-32 improved cellular viability by blocking apoptosis. Functionally, isolated human islets released more glucose-stimulated insulin when preincubated in KU-32. However, diabetic BKS-db/db mice, a model for type 2 diabetes, administered KU-32 for 10 weeks did not show any significant changes in blood glucose and insulin levels, despite having greater insulin staining/beta cell in the pancreas compared to untreated BKS db/db mice. In summary, KU-32 did not harm isolated human islets and may even be protective. However, the effect does not appear significant enough to alter the in vivo metabolic parameters of diabetic mice.

  9. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    Science.gov (United States)

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  10. Islet Transplantation

    Science.gov (United States)

    ... transplanted islet cells failed. But in recent years, scientists have begun to make rapid advances in transplant technology, and some of the most exciting new research comes to us from researchers at the University of ... Canada. These scientists have used a new procedure called the Edmonton ...

  11. Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Luisa Martino

    Full Text Available We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.

  12. Establishing a human pancreatic stem cell line and transplanting induced pancreatic islets to reverse experimental diabetes in rats

    Institute of Scientific and Technical Information of China (English)

    XIAO Mei; DOU ZhongYing; AN LiLong; YANG XueYi; GE Xin; QIAO Hai; ZHAO Ting; MA XiaoFei; FAN JingZhua; ZHU MengYang

    2008-01-01

    The major obstacle in using pancreatic islet transplantation to cure type Ⅰ and some type Ⅱ diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant trans-plantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type Ⅳ collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem ceils started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1×109 mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdxl, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with β-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet

  13. Establishing a human pancreatic stem cell line and transplanting induced pancreatic islets to reverse experimental diabetes in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The major obstacle in using pancreatic islet transplantation to cure type I and some type II diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant trans-plantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type IV collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem cells started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1×109 mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdx1, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with β-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet

  14. The effects of exendin-4 treatment on graft failure: an animal study using a novel re-vascularized minimal human islet transplant model.

    Directory of Open Access Journals (Sweden)

    Afaf Sahraoui

    Full Text Available Islet transplantation has become a viable clinical treatment, but is still compromised by long-term graft failure. Exendin-4, a glucagon-like peptide 1 receptor agonist, has in clinical studies been shown to improve insulin secretion in islet transplanted patients. However, little is known about the effect of exendin-4 on other metabolic parameters. We therefore aimed to determine what influence exendin-4 would have on revascularized minimal human islet grafts in a state of graft failure in terms of glucose metabolism, body weight, lipid levels and graft survival. Introducing the bilateral, subcapsular islet transplantation model, we first transplanted diabetic mice with a murine graft under the left kidney capsule sufficient to restore normoglycemia. After a convalescent period, we performed a second transplantation under the right kidney capsule with a minimal human islet graft and allowed for a second recovery. We then performed a left-sided nephrectomy, and immediately started treatment with exendin-4 with a low (20μg/kg/day or high (200μg/kg/day dose, or saline subcutaneously twice daily for 15 days. Blood was sampled, blood glucose and body weight monitored. The transplanted human islet grafts were collected at study end point and analyzed. We found that exendin-4 exerts its effect on failing human islet grafts in a bell-shaped dose-response curve. Both doses of exendin-4 equally and significantly reduced blood glucose. Glucagon-like peptide 1 (GLP-1, C-peptide and pro-insulin were conversely increased. In the course of the treatment, body weight and cholesterol levels were not affected. However, immunohistochemistry revealed an increase in beta cell nuclei count and reduced TUNEL staining only in the group treated with a low dose of exendin-4 compared to the high dose and control. Collectively, these results suggest that exendin-4 has a potential rescue effect on failing, revascularized human islets in terms of lowering blood glucose

  15. The effects of exendin-4 treatment on graft failure: an animal study using a novel re-vascularized minimal human islet transplant model.

    Science.gov (United States)

    Sahraoui, Afaf; Winzell, Maria Sörhede; Gorman, Tracy; Smith, Dave M; Skrtic, Stanko; Hoeyem, Merete; Abadpour, Shadab; Johansson, Lars; Korsgren, Olle; Foss, Aksel; Scholz, Hanne

    2015-01-01

    Islet transplantation has become a viable clinical treatment, but is still compromised by long-term graft failure. Exendin-4, a glucagon-like peptide 1 receptor agonist, has in clinical studies been shown to improve insulin secretion in islet transplanted patients. However, little is known about the effect of exendin-4 on other metabolic parameters. We therefore aimed to determine what influence exendin-4 would have on revascularized minimal human islet grafts in a state of graft failure in terms of glucose metabolism, body weight, lipid levels and graft survival. Introducing the bilateral, subcapsular islet transplantation model, we first transplanted diabetic mice with a murine graft under the left kidney capsule sufficient to restore normoglycemia. After a convalescent period, we performed a second transplantation under the right kidney capsule with a minimal human islet graft and allowed for a second recovery. We then performed a left-sided nephrectomy, and immediately started treatment with exendin-4 with a low (20μg/kg/day) or high (200μg/kg/day) dose, or saline subcutaneously twice daily for 15 days. Blood was sampled, blood glucose and body weight monitored. The transplanted human islet grafts were collected at study end point and analyzed. We found that exendin-4 exerts its effect on failing human islet grafts in a bell-shaped dose-response curve. Both doses of exendin-4 equally and significantly reduced blood glucose. Glucagon-like peptide 1 (GLP-1), C-peptide and pro-insulin were conversely increased. In the course of the treatment, body weight and cholesterol levels were not affected. However, immunohistochemistry revealed an increase in beta cell nuclei count and reduced TUNEL staining only in the group treated with a low dose of exendin-4 compared to the high dose and control. Collectively, these results suggest that exendin-4 has a potential rescue effect on failing, revascularized human islets in terms of lowering blood glucose, maintaining beta

  16. Lixisenatide accelerates restoration of normoglycemia and improves human beta-cell function and survival in diabetic immunodeficient NOD–scid IL-2rgnull RIP-DTR mice engrafted with human islets

    Directory of Open Access Journals (Sweden)

    Yang C

    2015-08-01

    Full Text Available Chaoxing Yang,1 Matthias Loehn,2 Agata Jurczyk,1 Natalia Przewozniak,1 Linda Leehy,1 Pedro L Herrera,3 Leonard D Shultz,4 Dale L Greiner,1 David M Harlan,5 Rita Bortell1 1Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA; 2Sanofi-Aventis, Diabetes Division, Frankfurt, Germany; 3University of Geneva, Geneva, Switzerland; 4The Jackson Laboratory, Bar Harbor, ME, USA; 5Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA Objective: Glucagon-like peptide-1 induces glucose-dependent insulin secretion and, in rodents, increases proliferation and survival of pancreatic beta cells. To investigate the effects on human beta cells, we used immunodeficient mice transplanted with human islets. The goal was to determine whether lixisenatide, a glucagon-like peptide-1 receptor agonist, improves human islet function and survival in vivo. Methods: Five independent transplant studies were conducted with human islets from five individual donors. Diabetic human islet-engrafted immunodeficient mice were treated with lixisenatide (50, 150, and 500 µg/kg or vehicle. Islet function was determined by blood glucose, plasma human insulin/C-peptide, and glucose tolerance tests. Grafts were analyzed for total beta- and alpha-cell number, percent proliferation, and levels of apoptosis. Results: Diabetic mice transplanted with marginal human islet mass and treated with lixisenatide were restored to euglycemia more rapidly than vehicle-treated mice. Glucose tolerance tests, human plasma insulin, and glucose-stimulation indices of lixisenatide-treated mice were significantly improved compared to vehicle-treated mice. The percentages of proliferating or apoptotic beta cells at graft recovery were not different between lixisenatide-treated and vehicle-treated mice. Nevertheless, in one experiment we found a significant twofold to threefold

  17. Human Islet Amyloid Polypeptide N-Terminus Fragment Self-Assembly: Effect of Conserved Disulfide Bond on Aggregation Propensity

    Science.gov (United States)

    Ilitchev, Alexandre I.; Giammona, Maxwell J.; Do, Thanh D.; Wong, Amy G.; Buratto, Steven K.; Shea, Joan-Emma; Raleigh, Daniel P.; Bowers, Michael T.

    2016-06-01

    Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding.

  18. The Pancreatic Islet Regulome Browser

    Science.gov (United States)

    Mularoni, Loris; Ramos-Rodríguez, Mireia; Pasquali, Lorenzo

    2017-01-01

    The pancreatic islet is a highly specialized tissue embedded in the exocrine pancreas whose primary function is that of controlling glucose homeostasis. Thus, understanding the transcriptional control of islet-cell may help to puzzle out the pathogenesis of glucose metabolism disorders. Integrative computational analyses of transcriptomic and epigenomic data allows predicting genomic coordinates of putative regulatory elements across the genome and, decipher tissue-specific functions of the non-coding genome. We herein present the Islet Regulome Browser, a tool that allows fast access and exploration of pancreatic islet epigenomic and transcriptomic data produced by different labs worldwide. The Islet Regulome Browser is now accessible on the internet or may be installed locally. It allows uploading custom tracks as well as providing interactive access to a wealth of information including Genome-Wide Association Studies (GWAS) variants, different classes of regulatory elements, together with enhancer clusters, stretch-enhancers and transcription factor binding sites in pancreatic progenitors and adult human pancreatic islets. Integration and visualization of such data may allow a deeper understanding of the regulatory networks driving tissue-specific transcription and guide the identification of regulatory variants. We believe that such tool will facilitate the access to pancreatic islet public genomic datasets providing a major boost to functional genomics studies in glucose metabolism related traits including diabetes. PMID:28261261

  19. Munc18b Increases Insulin Granule Fusion, Restoring Deficient Insulin Secretion in Type-2 Diabetes Human and Goto-Kakizaki Rat Islets with Improvement in Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Tairan Qin

    2017-02-01

    Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS.

  20. Adult Human Biliary Tree Stem Cells Differentiate to β-Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide.

    Directory of Open Access Journals (Sweden)

    Vincenzo Cardinale

    Full Text Available Generation of β-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs towards β-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1 has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the β-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage β-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional β-pancreatic cells.

  1. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process.

    Science.gov (United States)

    Ghosal, Abhisek; Sekar, Thillai V; Said, Hamid M

    2014-08-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na(+)-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na(+)-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS.

  2. Discovery of novel glucose-regulated proteins in isolated human pancreatic islets using LC-MS/MS-based proteomics.

    Science.gov (United States)

    Schrimpe-Rutledge, Alexandra C; Fontès, Ghislaine; Gritsenko, Marina A; Norbeck, Angela D; Anderson, David J; Waters, Katrina M; Adkins, Joshua N; Smith, Richard D; Poitout, Vincent; Metz, Thomas O

    2012-07-06

    The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (∼p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (pleiotropic regulator 1), processing (retinoblastoma binding protein 6), and function (nuclear RNA export factor 1), in addition to neuron navigator 1 and plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and synaptotagmin-17. Up-regulation of dicer 1 and SLC27A2 and down-regulation of phospholipase Cβ4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles.

  3. Noninvasive imaging of islet grafts using positron-emission tomography

    Science.gov (United States)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  4. The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome II, and its polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.B.; Itoh, Kazuko (Oklahoma Medical Research Foundation, Oklahoma City (United States)); Fujisaku, Atsushi (Hokkaido Univ., Sapporo (Japan)); Pontarotti, P. (Centre de Recherches sur le Polymorphisme Genetique des Populations Humaines, Toulouse (France)); Mattei, M.G. (INSERM U 242, Marseille (France)); Neas, B.R. (Oklahoma Medical Research Foundation, Oklahoma City (United States) Univ. of Oklahoma, Oklahoma City (United States))

    1993-01-01

    Autoantibodies to the ribonucleoprotein Ro/SSA occur in nearly half of the patients with systemic lupus erythematosus and are associated with lymphopenia, photosensitive dermatitis, and pulmonary and renal disease, which suggests that they have an immunopathologic role. The majority of Ro/SSA precipitin-positive patients produce serum antibodies that bind to the 60-kD and 52-kD Ro/SSA proteins. The authors previously isolated and determined the nucleotide sequence of a cDNA clone that encodes the 52-kD form of the human Ro/SSA protein. In the present study, they have determined the chromosomal location of the gene by in situ hybridization to the end of the short arm of chromosome 11. Hybridization of portions of the cDNA probe to restriction enzyme-digested DNA indicated the gene is composed of at least three exons. The exon encoding the putative zinc fingers of this protein was found to be distinct from that which encodes the leucine zipper. An RFLP of this gene was identified and is associated with the presence of lupus, primarily in black Americans. 60 refs., 3 figs., 3 tabs.

  5. Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.

    Science.gov (United States)

    Swadzba, Margarete E; Hauck, Stefanie M; Naim, Hassan Y; Amann, Barbara; Deeg, Cornelia A

    2012-01-01

    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology.

  6. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes

    NARCIS (Netherlands)

    Llacua Carrasco, Luis; de Haan, Bart J; Smink, Sandra A; de Vos, Paul

    2016-01-01

    In the pancreas, extracellular matrix (ECM) components play an import role in providing mechanical and physiological support, and also contribute to the function of islets. These ECM-connections are damaged during islet-isolation from the pancreas and are not fully recovered after encapsulation and

  7. Discovery of novel glucose-regulated proteins in isolated human pancreatic islets using LC-MS/MS-based proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, Alexandra C.; Fontes, Ghislaine; Gritsenko, Marina A.; Norbeck, Angela D.; Anderson, David J.; Waters, Katrina M.; Adkins, Joshua N.; Smith, Richard D.; Poitout, Vincent; Metz, Thomas O.

    2012-07-06

    The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is due in part to insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent and physiologically important regulators of beta-cell function under physiological conditions, understanding the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins ({approx}p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (Pleiotropic regulator 1), processing (Retinoblastoma binding protein 6), and function (Nuclear RNA export factor 1), in addition to Neuron navigator 1 and Plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and Synaptotagmin-17. Many proteins found to be differentially abundant after high glucose stimulation were uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles.

  8. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    Science.gov (United States)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  9. Potential for clinical pancreatic islet xenotransplantation

    Directory of Open Access Journals (Sweden)

    Bottino R

    2014-09-01

    Full Text Available Rita Bottino,1 Santosh Nagaraju,2 Vikas Satyananda,2 Hidetaka Hara,2 Martin Wijkstrom,2 Massimo Trucco,1 David KC Cooper2 1Institute of Cellular Therapeutics, Allegheny Health Network, 2Thomas E Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Diabetes mellitus is increasing worldwide. Type 1 diabetes can be treated successfully by islet allotransplantation, the results of which are steadily improving. However, the number of islets that can be obtained from deceased human donors will never be sufficient to cure more than a very small percentage of patients who might benefit from transplantation. Although there are some differences in glucose metabolism between pigs and humans, the use of pigs could provide an unlimited supply of islets, and the insulin produced would undoubtedly control glucose levels. Transplantation of islets into the portal vein results in islets residing in the liver; however, an early inflammatory response and rejection remain problematic, even when the recipient is receiving immunosuppressive therapy. In the long term, immunosuppressive drugs may exhibit toxicities to patients and specifically harm the islet cells. In contrast, encapsulation techniques provide islets with a physical barrier that prevents antibodies binding to the islet graft while still allowing insulin to be released into the recipient's circulation; in theory, patients receiving encapsulated grafts might not require exogenous immunosuppressive therapy. Nonhuman primates with encapsulated pig islet transplants have remained insulin-independent for several weeks, but long-term efficacy remains uncertain. Furthermore, techniques are now available to knock out genes from the pig and/or insert human genes, thus rendering the antigenic structure of pigs closer to that of humans, and providing protection from the human immune response. Islet transplantation from genetically engineered pigs has been

  10. Apelin is a novel islet peptide

    DEFF Research Database (Denmark)

    Ringström, Camilla; Nitert, Marloes Dekker; Bennet, Hedvig;

    2010-01-01

    Apelin, a recently discovered peptide with wide tissue distribution, regulates feeding behavior, improves glucose utilization, and inhibits insulin secretion. We examined whether apelin is expressed in human islets, as well as in normal and type 2 diabetic (T2D) animal islets. Further, we studied...

  11. Secretion of neurotensin from a human pancreatic islet cell carcinoma cell line (QGP-1N).

    Science.gov (United States)

    Tateishi, K; Funakoshi, A; Kitayama, N; Matsuoka, Y

    1993-12-10

    Effects of various secretagogues on secretion of neurotensin from a pancreatic islet cell carcinoma cell line (QGP-1N) were examined. Carbachol stimulated secretion of neurotensin concentration-dependently in the range of 10(-6) - 10(-4) M. The neurotensin secretion stimulated with 10(-5) M carbachol was completely inhibited by atropine at 10(-5) M. Phorbol ester and calcium ionophore (A23187) stimulated secretion of neurotensin. The removal of extracellular Ca2+ suppressed the secretion through the stimulation with 10(-5) M carbachol. Fluoride, an activator of guanine nucleotide-binding (G) protein, stimulated secretion of neurotensin. Neurotensin released into culture medium through stimulation with carbachol coeluted with neurotensin 1-13 on a gel-chromatography. Our results suggest that secretion of neurotensin from QGP-1N cells is mainly regulated by acetylcholine through muscarinic receptors coupled to G protein and that an increase in intracellular Ca2+ and protein kinase C play an important role in stimulus-secretion coupling.

  12. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus.

    Science.gov (United States)

    Westermark, Per; Andersson, Arne; Westermark, Gunilla T

    2011-07-01

    Islet amyloid polypeptide (IAPP, or amylin) is one of the major secretory products of β-cells of the pancreatic islets of Langerhans. It is a regulatory peptide with putative function both locally in the islets, where it inhibits insulin and glucagon secretion, and at distant targets. It has binding sites in the brain, possibly contributing also to satiety regulation and inhibits gastric emptying. Effects on several other organs have also been described. IAPP was discovered through its ability to aggregate into pancreatic islet amyloid deposits, which are seen particularly in association with type 2 diabetes in humans and with diabetes in a few other mammalian species, especially monkeys and cats. Aggregated IAPP has cytotoxic properties and is believed to be of critical importance for the loss of β-cells in type 2 diabetes and also in pancreatic islets transplanted into individuals with type 1 diabetes. This review deals both with physiological aspects of IAPP and with the pathophysiological role of aggregated forms of IAPP, including mechanisms whereby human IAPP forms toxic aggregates and amyloid fibrils.

  13. Human umbilical cord matrix-derived stem cells exert trophic effects on β-cell survival in diabetic rats and isolated islets

    Directory of Open Access Journals (Sweden)

    Yunting Zhou

    2015-12-01

    Full Text Available Human umbilical cord matrix-derived stem cells (uMSCs, owing to their cellular and procurement advantages compared with mesenchymal stem cells derived from other tissue sources, are in clinical trials to treat type 1 (T1D and type 2 diabetes (T2D. However, the therapeutic basis remains to be fully understood. The immunomodulatory property of uMSCs could explain the use in treating T1D; however, the mere immune modulation might not be sufficient to support the use in T2D. We thus tested whether uMSCs could exert direct trophic effects on β-cells. Infusion of uMSCs into chemically induced diabetic rats prevented hyperglycemic progression with a parallel preservation of islet size and cellularity, demonstrating the protective effect of uMSCs on β-cells. Mechanistic analyses revealed that uMSCs engrafted long-term in the injured pancreas and the engraftment markedly activated the pancreatic PI3K pathway and its downstream anti-apoptotic machinery. The pro-survival pathway activation was associated with the expression and secretion of β-cell growth factors by uMSCs, among which insulin-like growth factor 1 (IGF1 was highly abundant. To establish the causal relationship between the uMSC-secreted factors and β-cell survival, isolated rat islets were co-cultured with uMSCs in the transwell system. Co-culturing improved the islet viability and insulin secretion. Furthermore, reduction of uMSC-secreted IGF1 via siRNA knockdown diminished the protective effects on islets in the co-culture. Thus, our data support a model whereby uMSCs exert trophic effects on islets by secreting β-cell growth factors such as IGF1. The study reveals a novel therapeutic role of uMSCs and suggests that multiple mechanisms are employed by uMSCs to treat diabetes.

  14. T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents.

    OpenAIRE

    Honeyman, M C; Stone, N. L.; Harrison, L. C.

    1998-01-01

    The tyrosine phosphatase IA-2 is a molecular target of pancreatic islet autoimmunity in type 1 diabetes. T-cell epitope peptides in autoantigens have potential diagnostic and therapeutic applications, and they may hold clues to environmental agents with similar sequences that could trigger or exacerbate autoimmune disease. We identified 13 epitope peptides in IA-2 by measuring peripheral blood T-cell proliferation to 68 overlapping, synthetic peptides encompassing the intracytoplasmic domain ...

  15. Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells.

    Science.gov (United States)

    Tapia-Limonchi, Rafael; Díaz, Irene; Cahuana, Gladys M; Bautista, Mario; Martín, Franz; Soria, Bernat; Tejedo, Juan R; Bedoya, Francisco J

    2014-01-01

    Homeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition. These include stress response mitochondrial proteins (UQCRC2, VDAC1, ATP5C1, ATP5A1) in RINm5F cells and stress response endoplasmic reticulum proteins (HSPA5, PDIA6, VCP, GANAB) in HPI. In addition, metabolic and structural proteins, oxidoreductases and chaperones related with protein metabolism are also regulated by NO treatment. Network analysis of differentially expressed proteins shows their interaction in glucocorticoid receptor and NRF2-mediated oxidative stress response pathways and eNOS signaling. The results indicate that exposure to exogenous NO counteracts the impact of serum deprivation on pancreatic β cell proteome. Species differences in the proteins involved are apparent.

  16. Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells

    Science.gov (United States)

    Tapia-Limonchi, Rafael; Díaz, Irene; Cahuana, Gladys M; Bautista, Mario; Martín, Franz; Soria, Bernat; Tejedo, Juan R; Bedoya, Francisco J

    2014-01-01

    Homeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition. These include stress response mitochondrial proteins (UQCRC2, VDAC1, ATP5C1, ATP5A1) in RINm5F cells and stress response endoplasmic reticulum proteins (HSPA5, PDIA6, VCP, GANAB) in HPI. In addition, metabolic and structural proteins, oxidoreductases and chaperones related with protein metabolism are also regulated by NO treatment. Network analysis of differentially expressed proteins shows their interaction in glucocorticoid receptor and NRF2-mediated oxidative stress response pathways and eNOS signaling. The results indicate that exposure to exogenous NO counteracts the impact of serum deprivation on pancreatic β cell proteome. Species differences in the proteins involved are apparent. PMID:25658244

  17. Disturbed α-Cell Function in Mice with β-Cell Specific Overexpression of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2008-01-01

    Full Text Available Exogenous administration of islet amyloid polypeptide (IAPP has been shown to inhibit both insulin and glucagon secretion. This study examined α-cell function in mice with β-cell specific overexpression of human IAPP (hIAPP after an oral protein gavage (75 mg whey protein/mouse. Baseline glucagon levels were higher in transgenic mice (41±4.0 pg/mL, n=6 than in wildtype animals (19±5.1 pg/mL, n=5, P=.015. In contrast, the glucagon response to protein was impaired in transgenic animals (21±2.7 pg/mL in transgenic mice versus 38±5.7 pg/mL in wildtype mice at 15 minutes; P=.027. Baseline insulin levels did not differ between the groups, while the insulin response, as the glucagon response, was impaired after protein challenge (P=.018. Glucose levels were not different between the groups and did not change significantly after protein gavage. Acetaminophen was given through gavage to the animals (2 mg/mouse to estimate gastric emptying. The plasma acetaminophen profile was similar in the two groups of mice. We conclude that disturbances in glucagon secretion exist in mice with β-cell specific overexpression of human IAPP, which are not secondary to changes in gastric emptying. The reduced glucagon response to protein challenge may reflect a direct inhibitory influence of hIAPP on glucagon secretion.

  18. Homing of GAD65 specific autoimmunity and development of insulitis requires expression of both DQ8 and human GAD65 in transgenic mice

    Science.gov (United States)

    Elagin, Raya B.; Balijepalli, Sadguna; Diacovo, Maria J.; Baekkeskov, Steinunn; Jaume, Juan C.

    2009-01-01

    MHC-class II genes determine susceptibility in human type-1 diabetes. In their context, presentation of target antigen(s) results in autoimmunity and β-cell destruction. An animal model, in which human β-cell autoantigen(s) are presented to effector-cells in the context of human MHC-class II diabetes susceptibility genes, would be desirable for studying molecular mechanisms of disease and developing antigen-specific immune-interventions. We report the development of antigen-specific insulitis in double-transgenic mice carrying the HLA-DQ8 diabetes susceptibility haplotype and expressing the human autoantigen GAD65 in pancreatic β-cells. Immunization with human GAD65 cDNA resulted in severe insulitis and low antibody levels in double-transgenic mice while control mice were mostly insulitis free. CFA/protein immunization resulted in high antibody levels and modest insulitis. Pancreatic lymphocytic infiltration progressed through stages (exocrine pancreas followed by peri and intra-insulitis). Adoptive transfer of splenocytes from DNA-immunized mice resulted in development of insulitis in recipient transgenics. Our results show that immunization with a clinically relevant, type-1 diabetes human autoantigen, in a humanized genetic setting, results in the development of an immune response that homes to islets of Langerhans. This animal model will facilitate studies of autoimmunity to GAD65 in the context of HLA-DQ8, and development of methods to induce tolerance and prevent insulitis. PMID:19289270

  19. Characterisation of the insulinotropic activity of an aqueous extract of Gymnema sylvestre in mouse beta-cells and human islets of Langerhans.

    Science.gov (United States)

    Liu, Bo; Asare-Anane, Henry; Al-Romaiyan, Altaf; Huang, Guocai; Amiel, Stephanie A; Jones, Peter M; Persaud, Shanta J

    2009-01-01

    Leaves of the Gymnema sylvestre (GS) plant have been used to treat diabetes mellitus for millennia, but the previously documented insulin secretagogue effects of GS extracts in vitro may be non-physiological through damage to the beta-cells. We have now examined the effects of a novel GS extract (termed OSA) on insulin secretion from the MIN6 beta-cell line and isolated human islets of Langerhans. Insulin secretion from MIN6 cells was stimulated by OSA in a concentration-dependent manner, with low concentrations (0.06-0.25 mg/ml) having no deleterious effects on MIN6 cell viability, while higher concentrations (> or = 0.5 mg/ml) caused increased Trypan blue uptake. OSA increased beta-cell Ca2+ levels, an effect that was mediated by Ca2+ influx through voltage-operated calcium channels. OSA also reversibly stimulated insulin secretion from isolated human islets and its insulin secretagogue effects in MIN6 cells and human islets were partially dependent on the presence of extracellular Ca2+. These data indicate that low concentrations of the GS isolate OSA stimulate insulin secretion in vitro, at least in part as a consequence of Ca2+ influx, without compromising beta-cell viability. Identification of the component of the OSA extract that stimulates regulated insulin exocytosis, and further investigation of its mode(s) of action, may provide promising lead targets for Type 2 diabetes therapy.

  20. A somatostatin-secreting cell line established from a human pancreatic islet cell carcinoma (somatostatinoma): release experiment and immunohistochemical study.

    Science.gov (United States)

    Iguchi, H; Hayashi, I; Kono, A

    1990-06-15

    Production and secretion of somatostatin (SRIF) were studied using a carcinoembryonic antigen (CEA)-producing cell line (QGP-1) established from a human pancreatic islet cell carcinoma. High concentrations of SRIF (274 +/- 51 ng/mg of protein, mean +/- SD, n = 5) and CEA (3083 +/- 347 ng/mg of protein, mean +/- SD, n = 5) were present in QGP-1 cells, and the basal secretion rates of SRIF and CEA by the cells (n = 5) were 46.4 +/- 4.8 and 1690 +/- 78 pg/10(5) cells/h, respectively. Immunohistochemical studies revealed the presence of SRIF in xenografts of QGP-1 cells and colocalization of SRIF and CEA. Secretion of SRIF by QGP-1 cells was stimulated in the presence of high K+ (50 mmol) and theophylline (10 mmol), but arginine (10 mmol) and glucose (300 mg/dl) had no effect on the SRIF secretion. The QGP-1 cell line may be useful for studying the regulation mechanism of SRIF secretion.

  1. Mechanism of Inhibition of Human Islet Amyloid Polypeptide-Induced Membrane Damage by a Small Organic Fluorogen

    Science.gov (United States)

    Li, Xiaoxu; Wan, Mingwei; Gao, Lianghui; Fang, Weihai

    2016-02-01

    Human islet amyloid polypeptide (hIAPP) is believed to be responsible for the death of insulin-producing β-cells. However, the mechanism of membrane damage at the molecular level has not been fully elucidated. In this article, we employ coarse- grained dissipative particle dynamics simulations to study the interactions between a lipid bilayer membrane composed of 70% zwitterionic lipids and 30% anionic lipids and hIAPPs with α-helical structures. We demonstrated that the key factor controlling pore formation is the combination of peptide charge-induced electroporation and peptide hydrophobicity-induced lipid disordering and membrane thinning. According to these mechanisms, we suggest that a water-miscible tetraphenylethene BSPOTPE is a potent inhibitor to rescue hIAPP-induced cytotoxicity. Our simulations predict that BSPOTPE molecules can bind directly to the helical regions of hIAPP and form oligomers with separated hydrophobic cores and hydrophilic shells. The micelle-like hIAPP-BSPOTPE clusters tend to be retained in the water/membrane interface and aggregate therein rather than penetrate into the membrane. Electrostatic attraction between BSPOTPE and hIAPP also reduces the extent of hIAPP binding to the anionic lipid bilayer. These two modes work together and efficiently prevent membrane poration.

  2. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression

    DEFF Research Database (Denmark)

    Bergholdt, Regine; Brorsson, Caroline; Palleja, Albert;

    2012-01-01

    Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated...... with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize...... and substantiate these networks, we performed expressional profiling in human pancreatic islets exposed to proinflammatory cytokines. Three networks were significantly enriched for cytokine-regulated genes and, thus, likely to play an important role for type 1 diabetes in pancreatic islets. Eight of the regulated...

  3. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans

    DEFF Research Database (Denmark)

    Wolden-Kirk, Heidi; Rondas, D; Bugliani, M

    2014-01-01

    . The aim of this study was to clarify the molecular mechanisms by which 1,25(OH)2D3 contributes to β-cell protection against cytokine-induced β-cell dysfunction and death. Human and mouse islets were exposed to IL-1β and interferon-γ in the presence or absence of 1,25(OH)2D3. Effects on insulin secretion....../phenotype. In conclusion, these findings demonstrate a direct protective effect of 1,25(OH)2D3 against inflammation-induced β-cell dysfunction and death in human and murine islets, with, in particular, alterations in chemokine production by the islets. These effects may contribute to the beneficial effects of 1,25(OH)2D3......Protection against insulitis and diabetes by active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), in nonobese diabetic mice has until now mainly been attributed to its immunomodulatory effects, but also protective effects of this hormone on inflammation-induced β-cell death have been reported...

  4. Microwell scaffolds for the extrahepatic transplantation of islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Mijke Buitinga

    Full Text Available Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate-poly(butylene terephthalate (PEOT/PBT block copolymer (composition: 4000PEOT30PBT70 and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet's native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation.

  5. The heterogeneity of islet autoantibodies and the progression of islet failure in type 1 diabetic patients.

    Science.gov (United States)

    Liu, Jin; Bian, Lingling; Ji, Li; Chen, Yang; Chen, Heng; Gu, Yong; Ma, Bingqin; Gu, Wei; Xu, Xinyu; Shi, Yun; Wang, Jian; Zhu, Dalong; Sun, Zilin; Ma, Jianhua; Jin, Hui; Shi, Xing; Miao, Heng; Xin, Bing; Zhu, Yan; Zhang, Zhenwen; Bu, Ruifang; Xu, Lan; Shi, Guangde; Tang, Wei; Li, Wei; Zhou, Dongmei; Liang, Jun; Cheng, Xingbo; Shi, Bimin; Dong, Jixiang; Hu, Ji; Fang, Chen; Zhong, Shao; Yu, Weinan; Lu, Weiping; Wu, Chenguang; Qian, Li; Yu, Jiancheng; Gao, Jialin; Fei, Xiaoqiang; Zhang, Qingqing; Wang, Xueqin; Cui, Shiwei; Cheng, Jinluo; Xu, Ning; Wang, Guofeng; Han, Guoqing; Xu, Chunrong; Xie, Yun; An, Minmin; Zhang, Wei; Wang, Zhixiao; Cai, Yun; Fu, Qi; Fu, Yu; Zheng, Shuai; Yang, Fan; Hu, Qingfang; Dai, Hao; Jin, Yu; Zhang, Zheng; Xu, Kuanfeng; Li, Yifan; Shen, Jie; Zhou, Hongwen; He, Wei; Zheng, Xuqin; Han, Xiao; Yu, Liping; She, Jinxiong; Zhang, Mei; Yang, Tao

    2016-09-01

    Type 1 diabetes mellitus is heterogeneous in many facets. The patients suffered from type 1 diabetes present several levels of islet function as well as variable number and type of islet-specific autoantibodies. This study was to investigate prevalence and heterogeneity of the islet autoantibodies and clinical phenotypes of type 1 diabetes mellitus; and also discussed the process of islet failure and its risk factors in Chinese type 1 diabetic patients. A total of 1,291 type 1 diabetic patients were enrolled in this study. Demographic information was collected. Laboratory tests including mixed-meal tolerance test, human leukocyte antigen alleles, hemoglobinA1c, lipids, thyroid function and islet autoantibodies were conducted. The frequency of islet-specific autoantibody in newly diagnosed T1DM patients (duration shorter than half year) was 73% in East China. According to binary logistic regressions, autoantibody positivity, longer duration and lower Body Mass Index were the risk factors of islet failure. As the disease developed, autoantibodies against glutamic acid decarboxylase declined as well as the other two autoantibodies against zinc transporter 8 and islet antigen 2. The decrease of autoantibodies was positively correlated with aggressive beta cell destruction. Autoantibodies can facilitate the identification of classic T1DM from other subtypes and predict the progression of islet failure. As there were obvious heterogeneity in autoantibodies and clinical manifestation in different phenotypes of the disease, we should take more factors into consideration when identifying type 1 diabetes mellitus.

  6. Differential interleukin-1 receptor antagonism on pancreatic beta and alpha cells. Studies in rodent and human islets and in normal rats

    DEFF Research Database (Denmark)

    Zumsteg, U; Reimers, J I; Pociot, F;

    1993-01-01

    The monokines interleukin-1 alpha and -beta have been implicated as effector molecules in the immune-mediated pancreatic beta-cell destruction leading to insulin-dependent diabetes mellitus. Here we investigated the effects of interleukin-1 receptor antagonism on insulin and glucagon release of rat......, mouse and human islets exposed to recombinant human interleukin-1 beta, and on interleukin-1 beta induced changes in blood glucose, serum insulin and serum glucagon levels in Wistar Kyoto rats. The interleukin-1 receptor antagonist reduced the co-mitogenic effect of interleukin-1 beta on mouse and rat...

  7. Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus.

    Science.gov (United States)

    Cheng, Biao; Liu, Xinran; Gong, Hao; Huang, Lianqi; Chen, Hong; Zhang, Xin; Li, Chuanzhou; Yang, Muyang; Ma, Bingjun; Jiao, Lihua; Zheng, Ling; Huang, Kun

    2011-12-28

    Global epidemic studies have suggested that coffee consumption is reversely correlated with the incidence of type 2 diabetes mellitus (T2DM), a metabolic disease. The misfolding of human islet amyloid polypeptide (hIAPP) is regarded as one of the causative factors of T2DM. Coffee extracts have three major active components: caffeine, caffeic acid (CA), and chlorogenic acid (CGA). In this study, the effects of these major coffee components, as well as dihydrocaffeic acid (DHCA) (a major metabolite of CGA and CA), on the amyloidogenicity of hIAPP were investigated by thioflavin-T based fluorescence emission, transmission electronic microscopy, circular dichroism, light-induced cross-linking, dynamic light scattering, and MTT-based cell viability assays. The results suggest that all components show varied inhibitory effects on the formation of toxic hIAPP amyloids, in which CA shows the highest potency in delaying the conformational transition of the hIAPP molecule with the most prolonged lag time, whereas caffeine shows the lowest potency. At a 5-fold excess molar ratio of compound to hIAPP, all coffee-derived compounds affect the secondary structures of incubated hIAPP as suggested by the circular dichroism spectra and CDPro deconvolution analysis. Further photoinduced cross-linking based oligomerization and dynamic light scattering studies suggested CA and CGA significantly suppressed the formation of hIAPP oligomers, whereas caffeine showed no significant effect on oligomerization. Cell protection effects were also observed for all three compounds, with the protection efficiency being greatest for CA and least for CGA. These findings suggest that the beneficial effects of coffee consumption on T2DM may be partly due to the ability of the major coffee components and metabolites to inhibit the toxic aggregation of hIAPP.

  8. New insights into side effect of solvents on the aggregation of human islet amyloid polypeptide 11-20.

    Science.gov (United States)

    Mao, Yexuan; Yu, Lanlan; Yang, Ran; Ma, Chuanguo; Qu, Ling-bo; Harrington, Peter de B

    2016-02-01

    The formation of highly ordered fibrils for the human islet amyloid polypeptide (hIAPP) is considered as one of the precipitating factors of type 2 diabetes mellitus. In this study, an emerging new approach microscale thermophoresis and conventional ThT fluorescence assay were utilized to investigate the aggregation behavior of hIAPP(11-20), giving a new insight of the solvent effect on the aggregation of hIAPP(11-20). hIAPP(11-20) displayed different aggregation behaviors in various buffers, revealing that hIAPP(11-20) not only self-aggregates but also binds to solvent components. hIAPP(11-20) had a higher binding affinity for Tris than other selected buffers because multiple hydrogen bonds form, resulting in weaker self-aggregation of hIAPP(11-20) at the early stage of aggregation and prolonging the fibril formation process. hIAPP(11-20) displayed similar self-aggregation in both HEPES and pure water. Negatively charged phosphate ions in the PBS solution 'neutralize' the charges carried by hIAPP(11-20) itself to some extent, causing rapid aggregation of hIAPP(11-20), and leading to a shorter fibrillation process of hIAPP(11-20). These results revealed that solvents contribute to the aggregation of hIAPP(11-20) and demonstrated the affect of solvents on the activity of biomolecules. Additionally, as a new technique, microscale thermophoresis offers a powerful and promising approach to study the early stages of aggregation of peptides or proteins.

  9. Adult Human Pancreatic Islet Beta-Cells Display Limited Turnover and Long Lifespan as Determined by In-Vivo Thymidine Analog Incorporation and Radiocarbon Dating

    Energy Technology Data Exchange (ETDEWEB)

    Perl, S; Kushner, J A; Buchholz, B A; Meeker, A K; Stein, G M; Hsieh, M; Kirby, M; Pechhold, S; Liu, E H; Harlan, D M; Tisdale, J F

    2010-03-15

    Diabetes mellitus results from an absolute or relative deficiency of insulin producing pancreatic beta-cells. The adult human beta-cell's turnover rate remains unknown. We employed novel techniques to examine adult human islet beta-cell turnover and longevity in vivo. Subjects enrolled in NIH clinical trials received thymidine analogues [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8-days to 4-years prior to death. Archival autopsy samples from ten patients (aged 17-74 years) were employed to assess beta-cell turnover by scoring nuclear analog labeling within insulin staining cells. Human adult beta-cell longevity was determined by estimating the cells genomic DNA integration of atmospheric carbon-14 ({sup 14}C). DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15 year old donor, and purified beta-cell DNA was obtained from two donors (age 48 and 80 years). {sup 14}C levels were then determined using accelerator mass spectrometry (AMS). Cellular 'birth date' was determined by comparing the subject's DNA {sup 14}C content relative to a well-established {sup 14}C atmospheric prevalence curve. In the two subjects less than age 20 years, 1-2% of the beta-cell nuclei co-stained for BrdU/IdU. No beta-cell nuclei co-stained in the eight patients more than 30 years old. Consistent with the BrdU/IdU turnover data, beta-cell DNA {sup 14}C content indicated the cells 'birth date' occurred within the subject's first 30 years of life. Under typical circumstances, adult human beta-cells and their cellular precursors are established by young adulthood.

  10. Pig islets xenotransplantation: recent progress and current perspectives

    Directory of Open Access Journals (Sweden)

    Haitao eZhu

    2014-03-01

    Full Text Available Islet xenotransplantation is a prospective treatment to bridge the gap between available human cells and needs of patients with diabetes. Pig is the ideal candidate to obtain such available islet cells. However, potential clinical application of pig islet transplantation still faces obstacles such as inadequate yield of high-quality functional islets and xenorejection of the transplants. Adequate amounts of available islets can be obtained based on selection of a suitable pathogen-free source herd and the development of isolation and purification methods. Several studies demonstrated feasibility of successful pre-clinical pig islet xenotransplantation and provided insights and possible mechanisms of xenogeneic immune recognition and rejection. Particularly promising is the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much more data on safety and efficacy to translate these findings into clinical practice

  11. Saffold Virus, a Human Cardiovirus, and Risk of Persistent Islet Autoantibodies in the Longitudinal Birth Cohort Study MIDIA.

    Directory of Open Access Journals (Sweden)

    German Tapia

    Full Text Available The aim of this study was to describe the frequency and distribution of Saffold virus in longitudinal stool samples from children, and test for association with development of persistent autoantibodies predictive of type 1 diabetes. A cohort of Norwegian children carrying the HLA genotype associated with highest risk of type 1 diabetes ("DR4-DQ8/DR3-DQ2" was followed with monthly stool samples from 3 to 35 months of age. Blood samples were tested for autoantibodies to insulin, glutamic acid decarboxylase65 and Islet Antigen-2. 2077 stool samples from 27 children with ≥ 2 repeatedly positive islet autoantibodies (cases, and 53 matched controls were analysed for Saffold virus genomic RNA by semi-quantitative real-time reverse transcriptase PCR. Saffold virus was found in 53 of 2077 (2.6% samples, with similar proportions between cases (2.5% and controls (2.6%. The probability of being infected by 3 years of age was 28% (95% CI 0.18-0.40. Viral quantities ranged from <1 to almost 105 copies/μl. Estimated odds ratio between islet autoimmunity and infection episodes prior to seroconversion was 1.98 (95% CI: 0.57-6.91, p = 0.29. Saffold virus had no statistically significant association with islet autoimmunity.

  12. The role of islet neogenesis-associated protein (INGAP) in islet neogenesis.

    Science.gov (United States)

    Lipsett, Mark; Hanley, Stephen; Castellarin, Mauro; Austin, Emily; Suarez-Pinzon, Wilma L; Rabinovitch, Alex; Rosenberg, Lawrence

    2007-01-01

    Islet Neogenesis-Associated Protein (INGAP) is a member of the Reg family of proteins implicated in various settings of endogenous pancreatic regeneration. The expression of INGAP and other RegIII proteins has also been linked temporally and spatially with the induction of islet neogenesis in animal models of disease and regeneration. Furthermore, administration of a peptide fragment of INGAP (INGAP peptide) has been demonstrated to reverse chemically induced diabetes as well as improve glycemic control and survival in an animal model of type 1 diabetes. Cultured human pancreatic tissue has also been shown to be responsive to INGAP peptide, producing islet-like structures with function, architecture and gene expression matching that of freshly isolated islets. Likewise, studies in normoglycemic animals show evidence of islet neogenesis. Finally, recent clinical studies suggest an effect of INGAP peptide to improve insulin production in type 1 diabetes and glycemic control in type 2 diabetes.

  13. Isolation, characterization, and chromosomal mapping of the human Nkx6.1 gene (NKX6A), a new pancreatic islet homeobox gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hiroshi; Permutt, M.A.; Veile, R. [Washington Univ. School of Medicine, St. Louis, MO (United States)] [and others

    1997-03-01

    Nkx6.1 (gene symbol NKX6A), a new member of the NK homeobox gene family, was recently identified in rodent pancreatic islet 13-cell lines. The pattern of expression suggested that this gene product might be important for control of islet development and/or regulation of insulin biosynthesis. We now report cloning of human NKX6A, characterization of its genomic structure, and its chromosomal localization. The predicted protein of human NKX6A contained 367 amino acids and had 97% identity to the hamster protein. The highly conserved NK decapeptide and homeodomain regions were identical between human and hamster, suggesting functional importance of these domains. The coding region spanned approximately 4.8 kb and was composed of three exons. The gene was localized to four CEPH {open_quotes}B{close_quotes} yeast artificial chromosome clones (914B4, 951G9, 981D6, and 847133), and a nearby polymorphic marker (D4S1538) on chromosome 4 was identified <1270 kb from the gene. Using fluorescence in situ hybridization, we also determined that NKX6A maps to 4q21.2-q22. 11 refs., 2 figs.

  14. The Choice of Enzyme for Human Pancreas Digestion Is a Critical Factor for Increasing the Success of Islet Isolation

    Science.gov (United States)

    Qi, Meirigeng; Valiente, Luis; McFadden, Brian; Omori, Keiko; Bilbao, Shiela; Juan, Jemily; Rawson, Jeffrey; Scott, Stephen; Ferreri, Kevin; Mullen, Yoko; El-Shahawy, Mohamed; Dafoe, Donald; Kandeel, Fouad; Al-Abdullah, Ismail H.

    2015-01-01

    Background We evaluated 3 commercially available enzymes for pancreatic digestion by comparing key parameters during the islet isolation process, as well as islet quality after isolation. Methods Retrospectively compared and analyzed islet isolations from pancreata using 3 different enzyme groups: liberase HI (n = 63), collagenase NB1/neutral protease (NP) (n = 43), and liberase mammalian tissue-free collagenase/thermolysin (MTF C/T) (n = 115). A standardized islet isolation and purification method was used. Islet quality assessment was carried out using islet count, viability, in vitro glucose-stimulated insulin secretion (GSIS), glucose-stimulated oxygen consumption rate, and in vivo transplantation model in mice. Results Donor characteristics were not significantly different among the 3 enzyme groups used in terms of age, sex, hospital stay duration, cause of death, body mass index, hemoglobin A1c, cold ischemia time, and pancreas weight. Digestion efficacy (percentage of digested tissue by weight) was significantly higher in the liberase MTF C/T group (73.5 ± 1.5 %) when compared to the liberase HI group (63.6 ± 2.3 %) (P < 0.001) and the collagenase NB1/NP group (61.7 ± 2.9%) (P < 0.001). The stimulation index for GSIS was significantly higher in the liberase MTF C/T group (5.3 ± 0.5) as compared to the liberase HI (2.9 ± 0.2) (P < 0.0001) and the collagenase NB1/NP (3.6 ± 2.9) (P = 0.012) groups. Furthermore, the liberase MTF C/T enzymes showed the highest success rate of transplantation in diabetic non-obese diabetic severe combined immunodeficiency mice (65%), which was significantly higher than the liberase HI (42%, P = 0.001) and the collagenase NB1/NP enzymes (41%, P < 0.001). Conclusions Liberase MTF C/T is superior to liberase HI and collagenase NB1/NP in terms of digestion efficacy and GSIS in vitro. Moreover, liberase MTF C/T had a significantly higher success rate of transplantation in diabetic NOD Scid mice compared to liberase HI and

  15. Saffold Virus, a Human Cardiovirus, and Risk of Persistent Islet Autoantibodies in the Longitudinal Birth Cohort Study MIDIA.

    Science.gov (United States)

    Tapia, German; Bøås, Håkon; de Muinck, Eric J; Cinek, Ondrej; Stene, Lars C; Torjesen, Peter A; Rasmussen, Trond; Rønningen, Kjersti S

    2015-01-01

    The aim of this study was to describe the frequency and distribution of Saffold virus in longitudinal stool samples from children, and test for association with development of persistent autoantibodies predictive of type 1 diabetes. A cohort of Norwegian children carrying the HLA genotype associated with highest risk of type 1 diabetes ("DR4-DQ8/DR3-DQ2") was followed with monthly stool samples from 3 to 35 months of age. Blood samples were tested for autoantibodies to insulin, glutamic acid decarboxylase65 and Islet Antigen-2. 2077 stool samples from 27 children with ≥ 2 repeatedly positive islet autoantibodies (cases), and 53 matched controls were analysed for Saffold virus genomic RNA by semi-quantitative real-time reverse transcriptase PCR. Saffold virus was found in 53 of 2077 (2.6%) samples, with similar proportions between cases (2.5%) and controls (2.6%). The probability of being infected by 3 years of age was 28% (95% CI 0.18-0.40). Viral quantities ranged from Saffold virus had no statistically significant association with islet autoimmunity.

  16. 1型糖尿病自身抗原研究进展%Autoantigens in type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    翟双

    2015-01-01

    自身免疫是1型糖尿病发病的重要机制.1型糖尿病自身抗原的发现为疾病的发病机制及临床诊治开拓了视野.胰岛素、谷氨酸脱羧酶65、胰岛细胞瘤相关抗原2等是已发现的1型糖尿病主要的自身抗原.近年来,1型糖尿病自身抗原如嗜铬粒蛋白A、胰岛淀粉样多肽、锌转运体8、胰-十二指肠同源盒因子1备受重视.该文就1型糖尿病自身抗原的研究进展进行综述.%Autoimmunity is the main mechanism of type 1 diabetes.The discovery of autoantigens has broadened our understanding of pathogenesis and clinical diagnosis of type 1 diabetes.Insulin,glutamic acid decarboxylase 65,and insulinoma-associated protein 2 have been found to be major autoantigens of type 1 diabetes.In recent years,some autoantigens in type 1 diabetes,such as chromogranin A,islet amyloid polypeptide,zinc transporter 8,and pancreatic duodenal homeobox factor-1,have received some attention in the literature.The purpose of this article is to review the progress of novel autoantigens in type 1 diabetes.

  17. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell.

    Science.gov (United States)

    Niknamasl, Azadeh; Ostad, Seyed Nasser; Soleimani, Mansoureh; Azami, Mahmoud; Salmani, Maryam Kabir; Lotfibakhshaiesh, Nasrin; Ebrahimi-Barough, Somayeh; Karimi, Roya; Roozafzoon, Reza; Ai, Jafar

    2014-10-01

    Metabolic diabetes mellitus as the most serious and prevalent metabolic disease in the world has various complications. The most effective treatment of type I diabetes seems to be islet cell transplantation. Shortage of donors and difficult procedures and high rate of rejection have always restricted this approach. Tissue engineering is a novel effective solution to many medical problems such as diabetes. Endometrial mesenchymal stem cells as a lineage which have the potential to differentiate to mesodermal and endodermal tissues seem to be suitable for this purpose. Fibrin hydrogel with a high degree of biocompatibility and specific properties making it similar to normal pancreas seems to be an ideal scaffold. After successfully isolating stem cells (hEnSCs) from human endometrium, a three-step protocol was used to differentiate them into pancreatic beta cells. Fibrin was used as 3D scaffold. After 2 weeks, cells formed clusters like islets cells, and secretion of insulin was measured by chemiluminescence. PDX1, proinsulin, and c-peptide as special markers of β cells were detected by immunofluorescence. Expression of glucagon, PDX1, and insulin genes in mRNA level was detected by Real time PCR and gel electrophoresis. The former showed higher levels of gene expression in 3D cultures. SEM analysis showed good integrity between cells and scaffold. No toxicity was detected with fibrin scaffold by MTT assay.

  18. Tat-biliverdin reductase A protects INS-1 cells from human islet amyloid polypeptide-induced cytotoxicity by alleviating oxidative stress and ER stress.

    Science.gov (United States)

    Lee, Su Jin; Kang, Hyung Kyung; Eum, Won Sik; Park, Jinseu; Choi, Soo Young; Kwon, Hyeok Yil

    2017-02-15

    Human islet amyloid polypeptide (hIAPP), a major constituent of islet amyloid deposits, induces pancreatic β-cell apoptosis and eventually contributes to β-cell deficit in patients with type 2 diabetes mellitus (T2DM). In this study, Tat-mediated transduction of biliverdin reductase A (BLVRA) was investigated in INS-1 cells to examine whether exogenous supplementation of BLVRA prevented hIAPP-induced apoptosis and dysfunction in insulin secretion in β-cells. Tat-BLVRA fusion protein was efficiently delivered into INS-1 cells in a time- and dose-dependent manner. Exposure of cells to hIAPP induced apoptotic cell death, which was dose-dependently inhibited by pre-treatment with Tat-BLVRA for 1 h. Transduced Tat-BLVRA reduced hIAPP-evoked generation of reactive oxygen species, a crucial mediator of β-cell destruction. Immunoblot analysis showed that Tat-BLVRA suppressed hIAPP-induced increase in the levels of proteins involved in endoplasmic reticulum (ER) stress and apoptosis signaling. Transduced Tat-BLVRA also recovered hIAPP-induced dysfunction in basal and glucose-stimulated insulin secretions. These results suggested that transduced Tat-BLVRA enhanced the tolerance of β-cells against IAPP-induced cytotoxicity by alleviating oxidative stress and ER stress. Therefore, Tat-mediated transduction of BLVRA may provide a potential tool to ameliorate β-cell deficit in pancreas with T2DM.

  19. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C;

    1992-01-01

    Synthetic peptides representing unique sequences in rat proinsulin C-peptide I and II were used to generate highly specific antisera, which, when applied on sections of normal rat pancreas, confirm a homogeneous coexpression of the two C-peptides in all islet beta-cells. Insulin gene expression...... is induced in the transformed heterogeneous rat islet cell clone, NHI-6F, by transient in vivo passage. During this process a transfected human insulin gene is coactivated with the endogenous nonallelic rat insulin I and II genes. Newly established cultures from NHI-6F insulinomas having a high frequency...

  20. Differential interleukin-1 receptor antagonism on pancreatic beta and alpha cells. Studies in rodent and human islets and in normal rats

    DEFF Research Database (Denmark)

    Zumsteg, U; Reimers, J I; Pociot, F

    1993-01-01

    The monokines interleukin-1 alpha and -beta have been implicated as effector molecules in the immune-mediated pancreatic beta-cell destruction leading to insulin-dependent diabetes mellitus. Here we investigated the effects of interleukin-1 receptor antagonism on insulin and glucagon release of rat......, mouse and human islets exposed to recombinant human interleukin-1 beta, and on interleukin-1 beta induced changes in blood glucose, serum insulin and serum glucagon levels in Wistar Kyoto rats. The interleukin-1 receptor antagonist reduced the co-mitogenic effect of interleukin-1 beta on mouse and rat...... thymocytes with a 50% inhibitory concentration of 10- and 100-fold molar excess, respectively. Complete inhibition was obtained with a 100-1,000-fold molar excess. However, at a 100-fold molar excess the interleukin-1 receptor antagonist did not antagonise the potentiating effect of interleukin-1 beta on rat...

  1. Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations

    Science.gov (United States)

    Mee, Lisa; Nabokina, Svetlana M.; Sekar, V. Thillai; Subramanian, Veedamali S.; Maedler, Kathrin; Said, Hamid M.

    2009-01-01

    Thiamin is essential for the normal function of the endocrine pancreas, but very little is known about uptake mechanism(s) and regulation by beta cells. We addressed these issues using mouse-derived pancreatic beta-TC-6 cells, and freshly isolated primary mouse and human pancreatic islets. Results showed that thiamin uptake by beta-TC-6 cells involves a pH (but not Na+)-dependent carrier-mediated process that is saturable at both the nanomolar (apparent Km = 37.17 ± 9.9 nM) and micromolar (apparent Km = 3.26 ± 0.86 μM) ranges, cis-inhibited by thiamin structural analogs, and trans-stimulated by unlabeled thiamin. Involvement of carrier-mediated process was also confirmed in primary mouse and human pancreatic islets. Both THTR-1 and THTR-2 were found to be expressed in these mouse and human pancreatic preparations. Maintaining beta-TC-6 cells in the presence of a high level of thiamin led to a significant (P < 0.01) decrease in thiamin uptake, which was associated with a significant downregulation in level of expression of THTR-1 and THTR-2 at the protein and mRNA levels and a decrease in transcriptional (promoter) activity. Modulators of intracellular Ca2+/calmodulin- and protein-tyrosine kinase-mediated pathways also altered thiamin uptake. Finally, confocal imaging of live beta-TC-6 cells showed that clinical mutants of THTR-1 have mixed expression phenotypes and all led to impairment in thiamin uptake. These studies demonstrate for the first time that thiamin uptake by the endocrine pancreas is carrier mediated and is adaptively regulated by the prevailing vitamin level via transcriptional mechanisms. Furthermore, clinical mutants of THTR-1 impair thiamin uptake via different mechanisms. PMID:19423748

  2. Automated digital image analysis of islet cell mass using Nikon's inverted eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

    Science.gov (United States)

    Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie

    2015-01-01

    Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p < 0.001). Comparisons of individual methods showed good correlations between mean values of IEQ number (r(2) = 0.91) and total islet number (r(2) = 0.88) and thus increased to r(2) = 0.93 when islet surface area was estimated comparatively with IEQ number. The ADIA method showed very high intraobserver reproducibility compared to the standard manual method (p < 0.001). However, islet purity was routinely estimated as significantly higher with the manual method versus the ADIA method (p < 0.001). The ADIA method also detected small islets between 10 and 50 µm in size. Automated digital image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this

  3. Towards engineering a novel transplantation site for pancreatic islets

    NARCIS (Netherlands)

    Smink, Alexandra Maria

    2016-01-01

    Intraportal pancreatic islet transplantation is a promising therapy for type 1 diabetes, but the liver is not an optimal site as it is associated with massive cell-death in the graft. Several alternative sites were investigated, but the human body does not contain an adequate islet transplantation s

  4. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices.

    Science.gov (United States)

    Johansson, Ulrika; Ria, Massimiliano; Åvall, Karin; Dekki Shalaly, Nancy; Zaitsev, Sergei V; Berggren, Per-Olof; Hedhammar, My

    2015-01-01

    Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets

  5. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices.

    Directory of Open Access Journals (Sweden)

    Ulrika Johansson

    Full Text Available Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79% with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year, the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial

  6. Transcriptional profiling of type 1 diabetes genes on chromosome 21 in a rat beta-cell line and human pancreatic islets

    DEFF Research Database (Denmark)

    Bergholdt, R.; Karlsen, A.E.; Hagedorn, Peter;

    2007-01-01

    We recently finemapped a type 1 diabetes (T1D)-linked region on chromosome 21, indicating that one or more T1D-linked genes exist in this region with 33 annotated genes. In the current study, we have taken a novel approach using transcriptional profiling in predicting and prioritizing the most...... likely candidate genes influencing beta-cell function in this region. Two array-based approaches were used, a rat insulinoma cell line (INS-1alphabeta) overexpressing pancreatic duodenum homeobox 1 (pdx-1) and treated with interleukin 1beta (IL-1beta) as well as human pancreatic islets stimulated...... with a mixture of cytokines. Several candidate genes with likely functional significance in T1D were identified. Genes showing differential expression in the two approaches were highly similar, supporting the role of these specific gene products in cytokine-induced beta-cell damage. These were genes involved...

  7. Purification of pituitary autoantigen by column liquid chromatography and chromatofocusing

    OpenAIRE

    Gut, Paweł; Fischbach, Jakub; Ziemnicka, Katarzyna; Bączyk, Maciej; Baszko-Błaszyk, Daria; Wrotkowska, Elżbieta; Ruchała, Marek

    2014-01-01

    Introduction Pituitary autoantibodies can be determined both in patients with pituitary disease as well as patients with autoimmune endocrine diseases. The purpose of the study was to isolate and purify pituitary autoantigen using sera of patients and the microsomal fraction of the pituitary. Material and methods To isolate a pituitary autoantigen, patient sera were used, which showed a strong immune response to pituitary antigens. Pituitary microsomal fractions were prepared from pituitary t...

  8. PDZ-domain containing-2 (PDZD2) drives the maturity of human fetal pancreatic progenitor-derived islet-like cell clusters with functional responsiveness against membrane depolarization.

    Science.gov (United States)

    Leung, Kwan Keung; Suen, Po Man; Lau, Tse Kin; Ko, Wing Hung; Yao, Kwok Ming; Leung, Po Sing

    2009-09-01

    We recently reported the isolation and characterization of a population of pancreatic progenitor cells (PPCs) from early trimester human fetal pancreata. The PPCs, being the forerunners of adult pancreatic cell lineages, were amenable to growth and differentiation into insulin-secreting islet-like cell clusters (ICCs) upon stimulation by adequate morphogens. Of note, a novel morphogenic factor, PDZ-domain containing-2 (PDZD2) and its secreted form (sPDZD2) were ubiquitously expressed in the PPCs. Our goals for this study were to evaluate the potential role of sPDZD2 in stimulating PPC differentiation and to establish the optimal concentration for such stimulation. We found that 10(-9)M sPDZD2 promoted PPC differentiation, as evidenced by the upregulation of the pancreatic endocrine markers (PDX-1, NGN3, NEURO-D, ISL-1, NKX 2.2, NKX 6.1) and INSULIN mRNA. Inhibited endogenous production of sPDZD2 suppressed expression of these factors. Secreted PDZD2 treatment significantly elevated the C-peptide content of the ICCs and increased the basal rate of insulin secretion. However, they remained unresponsive to glucose stimulation, reflected by a minimal increase in GLUT-2 and GLUCOKINASE mRNA expression. Interestingly, sPDZD2 treatment induced increased expression of the L-type voltage-gated calcium channel (Ca(v)1.2) in the ICCs, triggering calcium ion influx under KCl stimulation and conferring an ability to secrete insulin in response to KCl. Pancreatic progenitor cells from 10- and 13-week fetal pancreata showed peak expression of endogenous sPDZD2, implying that sPDZD2 has a specific role in islet development during the first trimester. In conclusion, our data suggest that sPDZD2 promotes functional maturation of human fetal PPC-derived ICCs, thus enhancing its transplanting potentials.

  9. The morphology of islets within the porcine donor pancreas determines the isolation result: successful isolation of pancreatic islets can now be achieved from young market pigs.

    Science.gov (United States)

    Krickhahn, Mareike; Bühler, Christoph; Meyer, Thomas; Thiede, Arnulf; Ulrichs, Karin

    2002-01-01

    Clinical islet allotransplantation has become an increasingly efficient "routine" therapy in recent years. Shortage of human donor organs leads to porcine pancreatic islets as a potential source for islet xenotransplantation. Yet it is still very difficult to isolate sufficient numbers of intact porcine islets, particularly from young market pigs. In the following study islets were successfully isolated from retired breeders [4806 +/- 720 islet equivalents per gram organ (IEQ/g); n = 25; 2-3 years old; RB] and also from young hybrid pigs [2868 +/- 260 IEQ/g; n = 65; 4-6 months old; HY] using LiberasePI and a modified version of Ricordi's digestion-filtration technique. As expected, isolations from RB showed significantly better results (p organs from RB (80%) contained mainly large islets (diameter > 200 microm), in contrast to only 35% of all pancreases from HY. Remarkably, the islet size in situ, regardless whether detected in RB or HY, strongly determined the isolation result. A donor organ with predominantly large islets resulted in significantly higher numbers of IEQs compared with a donor organ with predominantly small islets [RB(Large Islets): 5680 +/- 3,318 IEQ/g (n= 20); RB(Small Islets): 1353 +/- 427 IEQ/g (n = 5); p organ prior to the isolation process. Under these conditions highly successful isolations can reliably be performed even from young market pigs.

  10. Exocrine contamination impairs implantation of pancreatic islets transplanted beneath the kidney capsule.

    Science.gov (United States)

    Gray, D W; Sutton, R; McShane, P; Peters, M; Morris, P J

    1988-11-01

    The effect of exocrine contamination on islets implanted under the kidney capsule has been studied by histological examination of pure or exocrine-contamination human, monkey, or rat islets transplanted to the kidney capsule of the nude rat, monkey, or rat, respectively. Exocrine contamination resulted in an appearance suggestive of impaired islet implantation, due to tissue necrosis and subsequent fibrosis. The effect of exocrine contamination was examined quantitatively in a rat islet isograft model in which handpicked DA rat islets were transplanted under the kidney capsule of normal DA rats. The islets were either pure or deliberately recontaminated with exocrine tissue (50 or 90% contamination). Four hundred pure islets were placed under one kidney capsule and 400 islets (of similar size and from the same islet preparation) were contaminated and then placed under the contralateral kidney capsule. After 2 weeks the kidneys were removed and extracted for insulin content. The insulin content of kidneys bearing islets contaminated by either 50 or 90% exocrine tissue was significantly reduced when compared to the contralateral kidney bearing pure islets. These findings support the view that exocrine contamination of islets resulted in impaired islet implantation when transplanted to a confined site such as the kidney subcapsule.

  11. Identification of the novel autoantigen candidate Rab GDP dissociation inhibitor alpha in isolated adrenocorticotropin deficiency.

    Science.gov (United States)

    Kiyota, Atsushi; Iwama, Shintaro; Sugimura, Yoshihisa; Takeuchi, Seiji; Takagi, Hiroshi; Iwata, Naoko; Nakashima, Kohtaro; Suzuki, Haruyuki; Nishioka, Tomoki; Kato, Takuya; Enomoto, Atsushi; Arima, Hiroshi; Kaibuchi, Kozo; Oiso, Yutaka

    2015-01-01

    Isolated adrenocorticotropin deficiency (IAD) is characterized by low or absent adrenocorticotropic hormone (ACTH) production. IAD is presumed to be caused in part by an autoimmune mechanism, and several lines of evidence have suggested the presence of anti-pituitary antibodies in IAD. However, the exact autoantigens remain unknown. The present study was designed to identify the autoantigen(s) in IAD using chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Rat anterior pituitary lysate was subjected to SDS-PAGE, and immunoblotting was performed using the sera from two patients with IAD and from a healthy subject. The bands detected by the patient serum samples, but not by the healthy subject sample, were excised, in-gel digested using trypsin, and subjected to LC-MS/MS analysis. On immunoblots, a 51-kDa band in the insoluble pellet was detected by the sera from the IAD patients but not from the healthy subject. Mass spectrometric analysis revealed the 51-kDa band contained Rab guanine nucleotide dissociation inhibitor (GDI) alpha. Consistent with the mass spectrometric analysis, a recombinant full-length human Rab GDI alpha was recognized by the two IAD patient samples but not by the healthy subject sample using immunoblotting. In total, anti-Rab GDI alpha antibodies were detected in serum samples from three of five patients with IAD (60%) but were absent in 5 healthy subjects. In addition, Rab GDI alpha was expressed in the anterior pituitary. In conclusion, it appears that Rab GDI alpha is a candidate autoantigen involved in IAD, and that anti-Rab GDI alpha antibodies are present predominantly in patients with IAD.

  12. Re-exposure to beta cell autoantigens in pancreatic allograft recipients with preexisting beta cell autoantibodies.

    Science.gov (United States)

    Mujtaba, Muhammad Ahmad; Fridell, Jonathan; Book, Benita; Faiz, Sara; Sharfuddin, Asif; Wiebke, Eric; Rigby, Mark; Taber, Tim

    2015-11-01

    Re-exposure to beta cell autoantigens and its relevance in the presence of donor-specific antibodies (DSA) in pancreatic allograft recipients is not well known. Thirty-three patients requiring a pancreas transplant were enrolled in an IRB approved study. They underwent prospective monitoring for DSA and beta cell autoantibody (BCAA) levels to GAD65, insulinoma-associated antigen 2 (IA-2), insulin (micro-IAA [mIAA]), and islet-specific zinc transporter isoform-8 (ZnT8). Twenty-five (75.7%) had pre-transplant BCAA. Twenty had a single antibody (mIAA n = 15, GAD65 n = 5); five had two or more BCAA (GAD65 + mIAA n = 2, GAD65 + mIAA+IA-2 n = 2, GA65 + mIAA+IA-2 + ZnT8 = 1). No changes in GAD65 (p > 0.29), IA-2 (>0.16), and ZnT8 (p > 0.07) were observed between pre-transplant and post-transplant at 6 or 12 months. A decrease in mIAA from pre- to post-6 months (p BCAA was observed at one yr. Seven (21.0%) developed de novo DSA. The incidence of DSA was 24% in patients with BCAA vs. 25% in patients without BCAA (p = 0.69). Pancreatic allograft function of patients with vs. without BCAA, and with and without BCAA + DSA was comparable until last follow-up (three yr). Re-exposure to beta cell autoantigens by pancreas transplant may not lead to increased levels or development of new BCAA or pancreatic allograft dysfunction.

  13. Ultrastructural studies of time-course and cellular specificity of interleukin-1 mediated islet cytotoxicity

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Egeberg, J; Nerup, J

    1987-01-01

    Previous electron-microscopic studies of isolated islets of Langerhans exposed to the monokine interleukin-1 for 7 days have indicated that interleukin-1 is cytotoxic to all islet cells. To study the time-course and possible cellular specificity of interleukin-1 cytotoxicity to islets exposed...... to interleukin-1 for short time periods, isolated rat or human islets were incubated with or without 25 U/ml highly purified human interleukin-1 for 24 h. Samples of rat islets were taken after 5 min, 30 min, 1, 2, 4, 6, 8, 10, 12, 16, 20 and 24 h and samples of human islets after 5 min, 30 min and 24 h...... of incubation and examined by electron microscopy in a blinded fashion. Already after 30 min, accumulation of opaque intracytoplasmic bodies without apparent surrounding membranes, and autophagic vacuoles were seen in about 20% of the beta cells examined in rat islets exposed to interleukin-1. After 16 h...

  14. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria.

    Science.gov (United States)

    Pound, Lynley D; Patrick, Christopher; Eberhard, Chandra E; Mottawea, Walid; Wang, Gen-Sheng; Abujamel, Turki; Vandenbeek, Roxanne; Stintzi, Alain; Scott, Fraser W

    2015-12-01

    Cathelicidin antimicrobial peptide (CAMP) is a naturally occurring secreted peptide that is expressed in several organs with pleiotropic roles in immunomodulation, wound healing, and cell growth. We previously demonstrated that gut Camp expression is upregulated when type 1 diabetes-prone rats are protected from diabetes development. Unexpectedly, we have also identified novel CAMP expression in the pancreatic β-cells of rats, mice, and humans. CAMP was present even in sterile rat embryo islets, germ-free adult rat islets, and neogenic tubular complexes. Camp gene expression was downregulated in young BBdp rat islets before the onset of insulitis compared with control BBc rats. CAMP treatment of dispersed islets resulted in a significant increase in intracellular calcium mobilization, an effect that was both delayed and blunted in the absence of extracellular calcium. Additionally, CAMP treatment promoted insulin and glucagon secretion from isolated rat islets. Thus, CAMP is a promoter of islet paracrine signaling that enhances islet function and glucoregulation. Finally, daily treatment with the CAMP/LL-37 peptide in vivo in BBdp rats resulted in enhanced β-cell neogenesis and upregulation of potentially beneficial gut microbes. In particular, CAMP/LL-37 treatment shifted the abundance of specific bacterial populations, mitigating the gut dysbiosis observed in the BBdp rat. Taken together, these findings indicate a novel functional role for CAMP/LL-37 in islet biology and modification of gut microbiota. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Pancreas procurement from multiorgan donors for islet trasplantation.

    Science.gov (United States)

    Ricordi, C; Mazzeferro, V; Casavilla, A; Scotti, C; Pinna, A; Tzakis, A; Starzl, T E

    1992-01-01

    The outcome of human islet isolation procedures can be significantly effected by the technique used for pancreas procurement. In fact, the final step of islet purification using discontinuous density gradients requires a significant difference between the density of the islets and the density of the non-endocrine component of the gland. Therefore, any procedure during multi-organ procurement that will result in edema or degranulation of the acinar tissue will result in failure of the islet purification step. In this report a technique for combined harvesting of liver and pancreas is presented. The use of this procedure can be of assistance to avoid damage to the pancreas that could result in a compromised islet purification for improper handling of the gland even before it arrives to the isolation facility.

  16. Islet transplantation and antioxidant management A comprehensive review

    Institute of Scientific and Technical Information of China (English)

    Seyed Sajad Mohseni Salehi Monfared; Bagher Larijani; Mohammad Abdollahi

    2009-01-01

    Islet transplantation as a promising treatment for type 1 diabetes has received widespread attention.Oxidative stress plays an essential role in cell injury during islet isolation and transplantation procedures.Antioxidants have been used in various studies to improve islet transplantation procedures. The present study reviews the role of oxidative stress and the benefits of antioxidants in islet transplantation procedures. The bibliographical databases Pubmed and Scopus were searched up to November 2008.All relevant human and animal in-vivo and in-vitro studies, which investigated antioxidants on islets,were included. Almost all the tested antioxidants used in the in-vitro studies enhanced islet viability and insulin secretion. Better control of blood glucose after transplantation was the major outcome of antioxidant therapy in all in-vivo studies. The data also indicated that antioxidants improved islet transplantation procedures. Although there is still insufficient evidence to draw definitive conclusions about the efficacy of individual supplements, the benefits of antioxidants in islet isolation procedures cannot be ignored.

  17. Mild exposure of RIN-5F β-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: An hormetic stimulus

    Directory of Open Access Journals (Sweden)

    Elisabetta Borchi

    2014-01-01

    Full Text Available The presence of amyloid aggregates of human islet amyloid polypeptide (hIAPP, a hallmark of type 2 diabetes, contributes to pancreatic β-cell impairment, where oxidative stress plays a key role. A contribution of NADPH oxidase to reactive oxygen species (ROS generation after cell exposure to micromolar concentrations of hIAPP aggregates has been suggested. However, little is known about β-cells exposure to lower amounts of hIAPP aggregates, similar to those found in human pancreas. Thus, we aimed to investigate the events resulting from RIN-5F cells exposure to nanomolar concentrations of toxic hIAPP aggregates. We found an early and transient rise of NADPH oxidase activity resulting from increased Nox1 expression following the engagement of receptor for advanced glycation end-products (RAGE by hIAPP aggregates. Unexpectedly, NADPH oxidase activation was not accompanied by a significant ROS increase and the lipoperoxidation level was significantly reduced. Indeed, cell exposure to hIAPP aggregates affected the antioxidant defences, inducing a significant increase of the expression and activity of catalase and glutathione peroxidase. We conclude that exposure of pancreatic β-cells to nanomolar concentrations of hIAPP aggregates for a short time induces an hormetic response via the RAGE-Nox1 axis; the latter stimulates the enzymatic antioxidant defences that preserve the cells against oxidative stress damage.

  18. Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes.

    Science.gov (United States)

    Gong, Hao; Zhang, Xin; Cheng, Biao; Sun, Yue; Li, Chuanzhou; Li, Ting; Zheng, Ling; Huang, Kun

    2013-01-01

    Bisphenol A (BPA) is a chemical compound widely used in manufacturing plastic products. Recent epidemiological studies suggest BPA exposure is positively associated with the incidence of type 2 diabetes mellitus (T2DM), however the mechanisms underlying this link remain unclear. Human islet amyloid polypeptide (hIAPP) is a hormone synthesized and secreted by the pancreatic β-cells. Misfolding of hIAPP into toxic oligomers and mature fibrils can disrupt cell membrane and lead to β-cell death, which is regarded as one of the causative factors of T2DM. To test whether there are any connections between BPA exposure and hIAPP misfolding, we investigated the effects of BPA on hIAPP aggregation using thioflavin-T based fluorescence, transmission electronic microscopy, circular dichroism, dynamic light scattering, size-exclusion chromatography, fluorescence-dye leakage assay in an artificial micelle system and the generation of reactive oxygen species in INS-1 cells. We demonstrated that BPA not only dose-dependently promotes the aggregation of hIAPP and enhances the membrane disruption effects of hIAPP, but also promotes the extent of hIAPP aggregation related oxidative stress. Taken together, our results suggest that BPA exposure increased T2DM risk may involve the exacerbated toxic aggregation of hIAPP.

  19. Targeted Mass Spectrometry Approach Enabled Discovery of O-Glycosylated Insulin and Related Signaling Peptides in Mouse and Human Pancreatic Islets.

    Science.gov (United States)

    Yu, Qing; Canales, Alejandra; Glover, Matthew S; Das, Rahul; Shi, Xudong; Liu, Yang; Keller, Mark P; Attie, Alan D; Li, Lingjun

    2017-08-07

    O-Linked glycosylation often involves the covalent attachment of sugar moieties to the hydroxyl group of serine or threonine on proteins/peptides. Despite growing interest in glycoproteins, little attention has been directed to glycosylated signaling peptides, largely due to lack of enabling analytical tools. Here we explore the occurrence of naturally O-linked glycosylation on the signaling peptides extracted from mouse and human pancreatic islets using mass spectrometry (MS). A novel targeted MS-based method is developed to increase the likelihood of capturing these modified signaling peptides and to provide improved sequence coverage and accurate glycosite localization, enabling the first large-scale discovery of O-glycosylation on signaling peptides. Several glycosylated signaling peptides with multiple glycoforms are identified, including the first report of glycosylated insulin-B chain and insulin-C peptide and BigLEN. This discovery may reveal potential novel functions as glycosylation could influence their conformation and biostability. Given the importance of insulin and its related peptide hormones and previous studies of glycosylated insulin analogues, this natural glycosylation may provide important insights into diabetes research and therapeutic treatments.

  20. Effects of cholesterol on pore formation in lipid bilayers induced by human islet amyloid polypeptide fragments: A coarse-grained molecular dynamics study

    Science.gov (United States)

    Xu, Weixin; Wei, Guanghong; Su, Haibin; Nordenskiöld, Lars; Mu, Yuguang

    2011-11-01

    Disruption of the cellular membrane by the amyloidogenic peptide, islet amyloid polypeptide (IAPP), has been considered as one of the mechanisms of β-cell death during type 2 diabetes. The N-terminal region (residues 1-19) of the human version of IAPP is suggested to be primarily responsible for the membrane-disrupting effect of the full-length hIAPP peptide. However, the detailed assembly mode of hIAPP1-19 with membrane remains unclear. To gain insight into the interactions of hIAPP1-19 oligomer with the model membrane, we have employed coarse-grained molecular dynamics self-assembly simulations to study the aggregation of hIAPP1-19 fragments in the binary lipid made of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and anionic dipalmitoylphosphatidylserine (DPPS) in the presence and absence of different levels of cholesterol content. The membrane-destabilizing effect of hIAPP1-19 is found to be modulated by the presence of cholesterol. In the absence of cholesterol, hIAPP1-19 aggregates prefer to locate inside the bilayer, forming pore-like assemblies. While in the presence of cholesterol molecules, the lipid bilayer becomes more ordered and stiff, and the hIAPP1-19 aggregates are dominantly positioned at the bilayer-water interface. The action of cholesterol may suggest a possible way to maintain the membrane integrity by small molecule interference.

  1. Microencapsulation of pancreatic islets for use in a bioartificial pancreas.

    Science.gov (United States)

    Opara, Emmanuel C; McQuilling, John P; Farney, Alan C

    2013-01-01

    Islet transplantation is the most exciting treatment option for individuals afflicted with Type 1 diabetes. However, the severe shortage of human pancreas and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles for the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets with biopolymers for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this chapter, we provide a detailed description of the microencapsulation process.

  2. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?

    Science.gov (United States)

    Xie, Heng; Zhou, Fubo; Liu, Ling; Zhu, Guannan; Li, Qiang; Li, Chunying; Gao, Tianwen

    2016-01-01

    Vitiligo is a common depigmentation disorder characterized by a loss of functional melanocytes and melanin from epidermis, in which the autoantigens and subsequent autoimmunity caused by oxidative stress play significant roles according to hypotheses. Various factors lead to reactive oxygen species (ROS) overproduction in the melanocytes of vitiligo: the exogenous and endogenous stimuli that cause ROS production, low levels of enzymatic and non-enzymatic antioxidants, disturbed antioxidant pathways and polymorphisms of ROS-associated genes. These factors synergistically contribute to the accumulation of ROS in melanocytes, finally leading to melanocyte damage and the production of autoantigens through the following ways: apoptosis, accumulation of misfolded peptides and cytokines induced by endoplasmic reticulum stress as well as the sustained unfolded protein response, and an 'eat me' signal for phagocytic cells triggered by calreticulin. Subsequently, autoantigens presentation and dendritic cells maturation occurred mediated by the release of antigen-containing exosomes, adenosine triphosphate and melanosomal autophagy. With the involvement of inducible heat shock protein 70, cellular immunity targeting autoantigens takes the essential place in the destruction of melanocytes, which eventually results in vitiligo. Several treatments, such as narrow band ultraviolet, quercetin and α-melanophore-stimulating hormone, are reported to be able to lower ROS thereby achieving repigmentation in vitiligo. In therapies targeting autoimmunity, restore of regulatory T cells is absorbing attention, in which narrow band ultraviolet also plays a role.

  3. Pig islets for islet xenotransplantation: current status and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Hu Qinghua; Liu Zhongwei; Zhu Haitao

    2014-01-01

    Objective To review the current status and progress on pig islet xenotransplantation.Data sources Data used in this review were mainly from English literature of Pubmed database.The search terms were "pig islet" and "xenotransplantation".Study selection The original articles and critical reviews selected were relevant to this review's theme.Results Pigs are suggested to be an ideal candidate for obtaining available islet cells for transplantation.However,the potential clinical application of pig islet is still facing challenges including inadequate yield of high-quality functional islets and xenorejection of the transplants.The former can be overcome mainly by selection of a suitable pathogen-free source herd and the development of isolation and purification technology.While the feasibility of successful preclinical pig islet xenotranplantation provides insights in the possible mechanisms of xenogeneic immune recognition and rejection to overwhelm the latter.In addition,the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies is promising.Conclusions Pig islet xenotransplantation is one of the prospective treatments to bridge the gap between the needs of transplantation in patients with diabetes and available islet cells.Nonetheless,further studies and efforts are needed to translate obtained findings into tangible applications.

  4. Islet transplantation in rodents: do encapsulated islets really work?

    Directory of Open Access Journals (Sweden)

    Yngrid Ellyn Dias Maciel de Souza

    2011-06-01

    Full Text Available CONTEXT: Diabetes mellitus type I affects around 240 million people in the world and only in the USA 7.8% of the population. It has been estimated that the costs of its complications account for 5% to 10% of the total healthcare spending around the world. According to World Health Organization, 300 million people are expected to develop diabetes mellitus by the year 2025. The pancreatic islet transplantation is expected to be less invasive than a pancreas transplant, which is currently the most commonly used approach. OBJECTIVES: To compare the encapsulated and free islet transplantation in rodents looking at sites of islet implantation, number of injected islets, viability and immunosuppression. METHODS: A literature search was conducted using MEDLINE/PUBMED and SCIELO with terms about islet transplantation in the rodent from 2000 to 2010. We found 2,636 articles but only 56 articles from 2000 to 2010 were selected. RESULTS: In these 56 articles used, 34% were encapsulated and 66% were nonencapsulated islets. Analyzing both types of islets transplantation, the majority of the encapsulated islets were implanted into the peritoneal cavity and the nonencapsulated islets into the liver, through the portal vein. In addition, the great advantage of the peritoneal cavity as the site of islet transplantation is its blood supply. Both vascular endothelial cells and vascular endothelial growth factor were used to stimulate angiogenesis of the islet grafts, increasing the vascularization rapidly after implantation. It also has been proven that there is influence of the capsules, since the larger the capsule more chances there are of central necrosis. In some articles, the use of immunosuppression demonstrated to increase the life expectancy of the graft. CONCLUSION: While significant progress has been made in the islets transplantation field, many obstacles remain to be overcome. Microencapsulation provides a means to transplant islets without

  5. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion.

    Science.gov (United States)

    Locke, J M; da Silva Xavier, G; Dawe, H R; Rutter, G A; Harries, L W

    2014-01-01

    Type 2 diabetes is characterised by progressive beta cell dysfunction, with changes in gene expression playing a crucial role in its development. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and therefore alterations in miRNA levels may be involved in the deterioration of beta cell function. Global TaqMan arrays and individual TaqMan assays were used to measure islet miRNA expression in discovery (n = 20) and replication (n = 20) cohorts from individuals with and without type 2 diabetes. The role of specific dysregulated miRNAs in regulating insulin secretion, content and apoptosis was subsequently investigated in primary rat islets and INS-1 cells. Identification of miRNA targets was assessed using luciferase assays and by measuring mRNA levels. In the discovery and replication cohorts miR-187 expression was found to be significantly increased in islets from individuals with type 2 diabetes compared with matched controls. An inverse correlation between miR-187 levels and glucose-stimulated insulin secretion (GSIS) was observed in islets from normoglycaemic donors. This correlation paralleled findings in primary rat islets and INS-1 cells where overexpression of miR-187 markedly decreased GSIS without affecting insulin content or apoptotic index. Finally, the gene encoding homeodomain-interacting protein kinase-3 (HIPK3), a known regulator of insulin secretion, was identified as a direct target of miR-187 and displayed reduced expression in islets from individuals with type 2 diabetes. Our findings suggest a role for miR-187 in the blunting of insulin secretion, potentially involving regulation of HIPK3, which occurs during the pathogenesis of type 2 diabetes.

  6. Increased polyamines alter chromatin and stabilize autoantigens in autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Wesley H. Brooks

    2013-04-01

    Full Text Available Polyamines are small cations with unique combinations of charge and length that give them many putative interactions in cells. Polyamines are essential since they are involved in replication, transcription, translation, and stabilization of macro-molecular complexes. However, polyamine synthesis competes with cellular methylation for S-adenosylmethionine, the methyl donor. Also, polyamine degradation can generate reactive molecules like acrolein. Therefore, polyamine levels are tightly controlled. This control may be compromised in autoimmune diseases since elevated polyamine levels are seen in autoimmune diseases. Here a hypothesis is presented explaining how polyamines can stabilize autoantigens. In addition, the hypothesis explains how polyamines can inappropriately activate enzymes involved in NETosis, a process in which chromatin is modified and extruded from cells as extracellular traps that bind pathogens during an immune response. This polyamine-induced enzymatic activity can lead to an increase in NETosis resulting in release of autoantigenic material and tissue damage.

  7. The Pattern of Neural Elements in the Islets of Normal and Diseased Pancreas and in Isolated Islets

    Directory of Open Access Journals (Sweden)

    Parviz M Pour

    2011-07-01

    Full Text Available Context The association between islet cells and neural elements, the so-called “neuro-insular complex”, has been known for centuries. Objective We examined the expression of beta-III tubulin, in normal pancreases from organ donors, surgical specimens of chronic pancreatitis, surgical specimens of ductal type carcinoma, isolated and purified islets of a 57-year-old male and the pancreases of adult Syrian golden hamsters by immunohistochemistry using a monoclonal antibody to beta-tubulin. Results In the normal pancreas of humans and hamsters, beta-III tubulin was expressed in alpha- and beta-cells, but not in PP cells, neural fibers and gangliae. Occasionally, intra-and peri-insular neural elements were also found. In chronic pancreatitis and pancreatic cancer samples, the number of beta-cells and the immunoreactivity of the beta-III tubulin antibody in islet cells were decreased in most cases. In cultured human islets, devoid of neural elements, no correlation was found between the expression of beta-III tubulin and islet cell hormones. Conclusion Beta-III tubulin is only expressed in the islets derived from the dorsal pancreas and in neural elements. In chronic pancreatitis and pancreatic cancer swelling of intra- and peri-insular nerves occurs, possibly in response to the loss of beta-cells. The secretion of insulin and the expression of beta-tubulin seem to be regulated by nerves.

  8. Ultrastructural studies of time-course and cellular specificity of interleukin-1 mediated islet cytotoxicity

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Egeberg, J; Nerup, J

    1987-01-01

    of incubation and examined by electron microscopy in a blinded fashion. Already after 30 min, accumulation of opaque intracytoplasmic bodies without apparent surrounding membranes, and autophagic vacuoles were seen in about 20% of the beta cells examined in rat islets exposed to interleukin-1. After 16 h......Previous electron-microscopic studies of isolated islets of Langerhans exposed to the monokine interleukin-1 for 7 days have indicated that interleukin-1 is cytotoxic to all islet cells. To study the time-course and possible cellular specificity of interleukin-1 cytotoxicity to islets exposed...... of incubation with interleukin-1, more than 80% of rat beta cells showed signs of degeneration. Beta cell specific changes similar to those observed in rat islets exposed to IL-1 for 30 min were seen in human islets exposed to IL-1 for 24 h. The described changes were not observed in alpha cells in interleukin...

  9. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes

    OpenAIRE

    Yoon Kun-Ho; Wang-Rodriguez Jessica; Dib Sergio A.; Anachkov Kamen A; Tyrberg Björn; Levine Fred

    2002-01-01

    Abstract Background It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously o...

  10. Mechanisms of pancreatic islet cell destruction. Dose-dependent cytotoxic effect of soluble blood mononuclear cell mediators on isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    contents of insulin and glucagon in a dose-dependent manner. A maximal effect on islet function was obtained with supernatant concentrations down to 5%. Supernatants of mononuclear cells stimulated with tuberculin were more potent than supernatants produced by lectin stimulation. Culture medium......Supernatants of peripheral blood mononuclear cells from healthy human donors stimulated with recall antigen (purified protein derivative of tuberculin) or lectin (phytohaemagglutinin) markedly inhibited the insulin release from isolated human and rat islets of Langerhans, and decreased rat islet...... reconstituted with tuberculin or phytohaemagglutinin did not impair islet function. Electron microscopy demonstrated that supernatants were cytotoxic to islet cells. The cytotoxic mononuclear cell mediator(s) was non-dialysable, sensitive to heating to 56 degrees C, labile even when stored at -70 degrees C...

  11. Effect of interleukin-1 on the biosynthesis of proinsulin and insulin in isolated rat pancreatic islets

    DEFF Research Database (Denmark)

    Hansen, Birgit Sehested; Linde, S; Spinas, G A

    1988-01-01

    Insulin dependent diabetes mellitus (IDDM) is often preceded or associated with lymphocytic infiltration in the islets of Langerhans (insulitis). We recently demonstrated that interleukin-1 (IL-1) produced by activated macrophages exerts a bimodal effect on insulin release and biosynthesis...... in isolated rat islets. In the present study we have further analysed the effect of recombinant human interleukin-1 beta (rIL-1) on the biosynthesis and conversion of proinsulin 1 and 2 in rat islets. By RP-HPLC-analysis of islets labelled with [3H]leucine we found that exposure to 6 ng/ml of IL-1 for 24 h...

  12. Adaptation of pancreatic islet cyto-architecture during development

    Science.gov (United States)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.

  13. Islet cell development.

    Science.gov (United States)

    Rojas, Anabel; Khoo, Adrian; Tejedo, Juan R; Bedoya, Francisco J; Soria, Bernat; Martín, Franz

    2010-01-01

    Over the last years, there has been great success in driving stem cells toward insulin-expressing cells. However, the protocols developed to date have some limitations, such as low reliability and low insulin production. The most successful protocols used for generation of insulin-producing cells from stem cells mimic in vitro pancreatic organogenesis by directing the stem cells through stages that resemble several pancreatic developmental stages. Islet cell fate is coordinated by a complex network of inductive signals and regulatory transcription factors that, in a combinatorial way, determine pancreatic organ specification, differentiation, growth, and lineage. Together, these signals and factors direct the progression from multipotent progenitor cells to mature pancreatic cells. Later in development and adult life, several of these factors also contribute to maintain the differentiated phenotype of islet cells. A detailed understanding of the processes that operate in the pancreas during embryogenesis will help us to develop a suitable source of cells for diabetes therapy. In this chapter, we will discuss the main transcription factors involved in pancreas specification and beta-cell formation.

  14. Protection of rat islet viability following heme oxygenase-1 gene transfection via adenoviral vector in vitro

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Chen; Yongxiang Li; Weiping Dong; Yang Jiao; Jianming Tan

    2007-01-01

    Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombinant adenovirus vector containing human HO-1 gene(Ad-HO-1 ) or enhanced green fluorescent protein gene(Ad-EGFP) was generated by using AdEasy system respectively.The rat islets were transfected with Ad-HO-1, Ad-EGFP or blank vector and then cultured for 7 days. Transfection was confirmed by expression of EGFP and human HO-1 protein detected by fluorescence photographs and western blot, respectively. The insulin release upon different concentration of glucose stimulation was detected using insulin radioimmunoassay kit, and stimulation index (SI) was calculated. Glucose-stimulated insulin release was usedto assess islet viability. Results:Adenovirus vector successfully transferred HO-1 gene to rat islet cells in vitro, and the insulin release upon high level of glucose stimulation and stimulation index(SI) of Ad-HO-1-infected islets were significantly higher than those of Ad-EGFP-infected islets and control islets(P < 0.05).Conclusion: Adenovirus-mediated HO-1 gene transfection is a feasible strategy to confer cytoprotection and therefore protect the viability of cultured rat islets.

  15. Macro-or microencapsulation of pig islets to cure type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    Denis Dufrane; Pierre Gianello

    2012-01-01

    Although allogeneic islet transplantation can successfully cure type 1 diabetes,it has limited applicability.For example,organs are in short supply; several human pancreas donors are often needed to treat one diabetic recipient; the intrahepatic site may not be the most appropriate site for islet implantation; and immunosuppressive regimens,which are associated with side effects,are often required to prolong survival of the islet graft.An altemative source of insulinproducing cells would therefore be of major interest.Pigs represent a possible alternative source of beta cells.Grafting of pig islets may appear difficult because of the immunologic species barrier,but pig islets have been shown to function in primates for at least 6 mo with clinically incompatible immunosuppression.Therefore,a bioartificial pancreas made of encapsulated pig islets may resolve issues associated with islet allotransplantation.Although several groups have shown that encapsulated pig islets are functional in small-animal models,less is known about the use of bioartificial pancreases in large-animal models.In this review,we summarize current knowledge of encapsulated pig islets,to determine obstacles to implantation in humans and possible solutions to overcome these obstacles.

  16. New Insight in Copper-Ion Binding to Human Islet Amyloid: The Contribution of Metal-Complex Speciation To Reveal the Polypeptide Toxicity.

    Science.gov (United States)

    Magrì, Antonio; La Mendola, Diego; Nicoletti, Vincenzo Giuseppe; Pappalardo, Giuseppe; Rizzarelli, Enrico

    2016-09-05

    Type-2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace-element serum level is significantly influenced during the development of diabetes. In particular, the dys-homeostasis of Cu(2+) ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu(2+) ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal-ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17-29 and 14-22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17-29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu(2+) ions with Ac-PEG-hIAPP(17-29)-NH2 , Ac-rIAPP(17-29)R18H-NH2 , and Ac-PEG-hIAPP(14-22)-NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu(2+) ions starting from the His18 imidazole nitrogen atom toward the N-terminus domain. The stability constants of copper(II) complexes with Ac-PEG-hIAPP(14-22)-NH2 were used to simulate the different

  17. Islet Xenotransplantation and Xeno-antigenicity: studies in a preclinical model

    NARCIS (Netherlands)

    P.P.M. Rood (Pleunie)

    2008-01-01

    textabstractShortage of human donor organs is the major limiting factor for clinical islet allotransplantation. Xenotransplantation, using the pig as the source of islets is considered a potential solution to this problem. Since the development of pigs homozygous for α1,3-galactosyltransfer

  18. The role of the disulfide bond in the interaction of islet amyloid polypeptide with membranes

    NARCIS (Netherlands)

    Khemtemourian, L.P.; Engel, M.F.M.; Kruijtzer, J.A.W.; Hoppener, J.W.M.; Liskamp, R.M.J.; Killian, J.A.

    2010-01-01

    Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus. It has been suggested that the N-terminal part, which contains a conserved intramolecular disulfide bond between residues 2 and 7, interacts with membranes, ultimately

  19. An imidazoline compound completely counteracts interleukin-1[beta] toxic effects to rat pancreatic islet [beta] cells

    DEFF Research Database (Denmark)

    Papaccio, Gianpaolo; Nicoletti, Ferdinando; Pisanti, Francesco A

    2002-01-01

    In vitro studies have demonstrated that interleukin (IL)-1beta decreases insulin and DNA contents in pancreatic islet beta cells, causing structural damage, that it is toxic to cultured human islet beta cells and that it is able to induce apoptosis in these cells....

  20. Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in β-cell death in type II diabetes mellitus

    NARCIS (Netherlands)

    Khemtémourian, L.P.|info:eu-repo/dai/nl/304824372; Killian, J.A.|info:eu-repo/dai/nl/071792317; Höppener, J.W.M.; Engel, M.F.M.|info:eu-repo/dai/nl/263614190

    2008-01-01

    The presence of fibrillar protein deposits (amyloid) of human islet amyloid polypeptide (hIAPP) in the pancreatic islets of Langerhans is thought to be related to death of the insulin-producing islet β-cells in type 2 diabetes mellitus (DM2). The mechanism of hIAPP-induced β-cell death is not

  1. Immunosuppression for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Noguchi,Hirofumi

    2006-04-01

    Full Text Available The development by the Edmonton group of a sirolimus-based, steroid-free, low-tacrolimus regimen is a significant breakthrough that allows the rate of insulin independence after islet transplantation to increase from 13% to 80% at 1 year ; however, the rate is reduced to 50% at 3 years, attributed to prolonged tacrolimus exposure. Recently, immunosuppression agents such as cyclosporine, mycophenolate mofetil, and the novel agent FTY 720 have been used instead of tacrolimus. Lymphocytedepleting antibodies such as anti-thymocyte globulin, alemtuzumab, and hOKT3gamma 1 (ala, ala have been launched, and a costimulatory blockade of anti-CD40 monoclonal antibodies and CTLA4-Ig will be attempted in the near future. Moreover, the potential of a novel immunosuppressing peptide could now be realized using new technology called the protein transduction system. In this review, we show some of the most recent contributions to the advancement of knowledge in this field.

  2. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  3. Purification of pituitary autoantigen by column liquid chromatography and chromatofocusing.

    Science.gov (United States)

    Gut, Paweł; Fischbach, Jakub; Ziemnicka, Katarzyna; Bączyk, Maciej; Baszko-Błaszyk, Daria; Wrotkowska, Elżbieta; Ruchała, Marek

    2014-01-01

    Pituitary autoantibodies can be determined both in patients with pituitary disease as well as patients with autoimmune endocrine diseases. The purpose of the study was to isolate and purify pituitary autoantigen using sera of patients and the microsomal fraction of the pituitary. To isolate a pituitary autoantigen, patient sera were used, which showed a strong immune response to pituitary antigens. Pituitary microsomal fractions were prepared from pituitary tissue homogenates. In the study, sera of patients with pituitary disease, Addison and Graves' disease were used. The initial stages were carried out by affinity chromatography on CN -Br sepharose column whereas purification was continued by column liquid chromatography on AcA54 Ultrogel. Chromatofocusing was performed by Polybuffer exchanger PBE 94. (125)I-labeled pituitary antigens after isolation appeared in column chromatography in three peaks. The first peak contained 50-70 kDa proteins, the second peak - 17 to 22 kDa proteins and the third peak contains (125)-iodides. Three fractions obtained from filtration on Ultrogel were separated in a polyacrylamide gel. In the first peak two bands 67 and 55 kDa appeared. The second peak contained low molecular weight substances, and the third peak contained (125)I. The first peak from Ultrogel was isolated by chromatofocusing - the first peak with pH 5.9 and the second one with pH 4.9. Isolation and purification of pituitary autoantigen with the use of column liquid chromatography and chromatofocusing resulted in obtainment of two antigenic proteins of specific gravity of 67 and 55 kDa.

  4. Angiopoetin-2 Signals Do Not Mediate the Hypervascularization of Islets in Type 2 Diabetes

    Science.gov (United States)

    Shah, Payal; Lueschen, Navina; Ardestani, Amin; Oberholzer, Jose; Olerud, Johan; Carlsson, Per-Ola; Maedler, Kathrin

    2016-01-01

    Aims Changes in the islet vasculature have been implicated in the regulation of β-cell survival and function during the progression to type 2 diabetes (T2D). Failure of the β-cell to compensate for the increased insulin demand in obesity eventually leads to diabetes; as a result of the complex interplay of genetic and environmental factors (e.g. ongoing inflammation within the islets) and impaired vascular function. The Angiopoietin/Tie (Ang/Tie) angiogenic system maintains vasculature and is closely related to organ inflammation and angiogenesis. In this study we aimed to identify whether the vessel area within the islets changes in diabetes and whether such changes would be triggered by the Tie-antagonist Ang-2. Methods Immunohistochemical and qPCR analyses to follow islet vascularization and Ang/Tie levels were performed in human pancreatic autopsies and isolated human and mouse islets. The effect of Ang-2 was assessed in β-cell-specific Ang-2 overexpressing mice during high fat diet (HFD) feeding. Results Islet vessel area was increased in autopsy pancreases from patients with T2D. The vessel markers Tie-1, Tie-2 and CD31 were upregulated in mouse islets upon HFD feeding from 8 to 24 weeks. Ang-2 was transiently upregulated in mouse islets at 8 weeks of HFD and under glucolipotoxic conditions (22.2 mM glucose/ 0.5 mM palmitate) in vitro in human and mouse islets, in contrast to its downregulation by cytokines (IL-1β, IFN-ɣ and TNF-α). Ang-1 on the other hand was oppositely regulated, with a significant loss under glucolipotoxic condition, a trend to reduce in islets from patients with T2D and an upregulation by cytokines. Modulation of such changes in Ang-2 by its overexpression or the inhibition of its receptor Tie-2 impaired β-cell function at basal conditions but protected islets from cytokine induced apoptosis. In vivo, β-cell-specific Ang-2 overexpression in mice induced hypervascularization under normal diet but contrastingly led to

  5. Peroxiredoxin 2 is a novel autoantigen for anti-endothelial cell antibodies in systemic vasculitis

    Science.gov (United States)

    Karasawa, R; Kurokawa, M S; Yudoh, K; Masuko, K; Ozaki, S; Kato, T

    2010-01-01

    Anti-endothelial cell antibodies (AECA) have been frequently detected in systemic vasculitis, which affects blood vessels of various sizes. To understand the pathogenic roles of AECA in systemic vasculitis, we attempted to identify target antigens for AECA comprehensively by a proteomic approach. Proteins extracted from human umbilical vein endothelial cells (HUVEC) were separated by two-dimensional electrophoresis, and Western blotting was subsequently conducted using sera from patients with systemic vasculitis. As a result, 53 autoantigenic protein spots for AECA were detected, nine of which were identified by mass spectrometry. One of the identified proteins was peroxiredoxin 2 (Prx2), an anti-oxidant enzyme. Frequency of anti-Prx2 autoantibodies, measured by enzyme-linked immunosorbent assay (ELISA), was significantly higher in systemic vasculitis (60%) compared to those in collagen diseases without clinical vasculitis (7%, P vasculitis and would be involved in the inflammatory processes of systemic vasculitis. PMID:20646000

  6. Quantitative Assessment of Islets of Langerhans Encapsulated in Alginate

    Science.gov (United States)

    Johnson, Amy S.; O'Sullivan, Esther; D'Aoust, Laura N.; Omer, Abdulkadir; Bonner-Weir, Susan; Fisher, Robert J.; Weir, Gordon C.

    2011-01-01

    Improved methods have recently been developed for assessing islet viability and quantity in human islet preparations for transplantation, and these measurements have proven useful for predicting transplantation outcome. The objectives of this study were to adapt these methods for use with microencapsulated islets, to verify that they provide meaningful quantitative measurements, and to test them with two model systems: (1) barium alginate and (2) barium alginate containing a 70% (w/v) perfluorocarbon (PFC) emulsion, which presents challenges to use of these assays and is of interest in its own right as a means for reducing oxygen supply limitations to encapsulated tissue. Mitochondrial function was assessed by oxygen consumption rate measurements, and the analysis of data was modified to account for the increased solubility of oxygen in the PFC-alginate capsules. Capsules were dissolved and tissue recovered for nuclei counting to measure the number of cells. Capsule volume was determined from alginate or PFC content and used to normalize measurements. After low oxygen culture for 2 days, islets in normal alginate lost substantial viable tissue and displayed necrotic cores, whereas most of the original oxygen consumption rate was recovered with PFC alginate, and little necrosis was observed. All nuclei were recovered with normal alginate, but some nuclei from nonrespiring cells were lost with PFC alginate. Biocompatibility tests revealed toxicity at the islet periphery associated with the lipid emulsion used to provide surfactants during the emulsification process. We conclude that these new assay methods can be applied to islets encapsulated in materials as complex as PFC-alginate. Measurements made with these materials revealed that enhancement of oxygen permeability of the encapsulating material with a concentrated PFC emulsion improves survival of encapsulated islets under hypoxic conditions, but reformulation of the PFC emulsion is needed to reduce toxicity

  7. Unraveling pancreatic islet biology by quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianying; Dann, Geoffrey P.; Liew, Chong W.; Smith, Richard D.; Kulkarni, Rohit N.; Qian, Weijun

    2011-08-01

    The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.

  8. An Innovative Method to Identify Autoantigens Expressed on the Endothelial Cell Surface: Serological Identification System for Autoantigens Using a Retroviral Vector and Flow Cytometry (SARF

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Shirai

    2013-01-01

    Full Text Available Autoantibodies against integral membrane proteins are usually pathogenic. Although anti-endothelial cell antibodies (AECAs are considered to be critical, especially for vascular lesions in collagen diseases, most molecules identified as autoantigens for AECAs are localized within the cell and not expressed on the cell surface. For identification of autoantigens, proteomics and expression library analyses have been performed for many years with some success. To specifically target cell-surface molecules in identification of autoantigens, we constructed a serological identification system for autoantigens using a retroviral vector and flow cytometry (SARF. Here, we present an overview of recent research in AECAs and their target molecules and discuss the principle and the application of SARF. Using SARF, we successfully identified three different membrane proteins: fibronectin leucine-rich transmembrane protein 2 (FLRT2 from patients with systemic lupus erythematosus (SLE, intercellular adhesion molecule 1 (ICAM-1 from a patient with rheumatoid arthritis, and Pk (Gb3/CD77 from an SLE patient with hemolytic anemia, as targets for AECAs. SARF is useful for specific identification of autoantigens expressed on the cell surface, and identification of such interactions of the cell-surface autoantigens and pathogenic autoantibodies may enable the development of more specific intervention strategies in autoimmune diseases.

  9. B7-H4 as a protective shield for pancreatic islet beta cells

    Institute of Scientific and Technical Information of China (English)

    Annika; C; Sun; Dawei; Ou; Dan; S; Luciani; Garth; L; Warnock

    2014-01-01

    Auto- and alloreactive T cells are major culprits that damage β-cells in type 1 diabetes(T1D) and islet transplantation. Current immunosuppressive drugs can alleviate immune-mediated attacks on islets. T cell co-stimulation blockade has shown great promise in autoimmunity and transplantation as it solely targets activated T cells, and therefore avoids toxicity of current immunosuppressive drugs. An attractive approach is offered by the newly-identified negative T cell cosignaling molecule B7-H4 which is expressed in normal human islets, and its expression co-localizes with insulin. A concomitant decrease in B7-H4/insulin colocalization is observed in human type 1 diabetic islets. B7-H4 may play protective roles in the pancreatic islets, preserving their function and survival. In this review we outline the protective effect of B7-H4 in the contexts of T1 D, islet cell transplantation, and potentially type 2 diabetes. Current evidence offers encouraging data regarding the role of B7-H4 in reversal of autoimmune diabetes and donor-specific islet allograft tolerance. Additionally, unique expression of B7-H4 may serve as a potential biomarker for the development of T1 D. Futurestudies should continue to focus on the islet-specific effects of B7-H4 with emphasis on mechanistic pathways in order to promote B7-H4 as a potential therapy and cure for T1 D.

  10. Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture.

    Science.gov (United States)

    Malenczyk, Katarzyna; Keimpema, Erik; Piscitelli, Fabiana; Calvigioni, Daniela; Björklund, Peyman; Mackie, Kenneth; Di Marzo, Vincenzo; Hökfelt, Tomas G M; Dobrzyn, Agnieszka; Harkany, Tibor

    2015-11-10

    Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.

  11. Fibroblast populated collagen matrix promotes islet survival and reduces the number of islets required for diabetes reversal.

    Science.gov (United States)

    Jalili, Reza B; Moeen Rezakhanlou, Alireza; Hosseini-Tabatabaei, Azadeh; Ao, Ziliang; Warnock, Garth L; Ghahary, Aziz

    2011-07-01

    Islet transplantation represents a viable treatment for type 1 diabetes. However, due to loss of substantial mass of islets early after transplantation, islets from two or more donors are required to achieve insulin independence. Islet-extracellular matrix disengagement, which occurs during islet isolation process, leads to subsequent islet cell apoptosis and is an important contributing factor to early islet loss. In this study, we developed a fibroblast populated collagen matrix (FPCM) as a novel scaffold to improve islet cell viability and function post-transplantation. FPCM was developed by embedding fibroblasts within type-I collagen and used as scaffold for islet grafts. Viability and insulin secretory function of islets embedded within FPCM was evaluated in vitro and in a syngeneic murine islet transplantation model. Islets embedded within acellular matrix or naked islets were used as control. Islet cell survival and function was markedly improved particularly after embedding within FPCM. The composite scaffold significantly promoted islet isograft survival and reduced the critical islet mass required for diabetes reversal by half (from 200 to 100 islets per recipient). Fibroblast embedded within FPCM produced fibronectin and growth factors and induced islet cell proliferation. No evidence of fibroblast over-growth within composite grafts was noticed. These results confirm that FPCM significantly promotes islet viability and functionality, enhances engraftment of islet grafts and decreases the critical islet mass needed to reverse hyperglycemia. This promising finding offers a new approach to reducing the number of islet donors per recipient and improving islet transplant outcome.

  12. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    Science.gov (United States)

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  13. Experimental studies on islet isolation and islet graft function

    NARCIS (Netherlands)

    Suijlichem, Paul Tjepke Robert van

    1994-01-01

    In the first part of the introduction (Chapter 1) of this thesis an overview of the numerous techniques used in islet isolation procedures is presented. The differing lines of approach for the dissociation of the pancreas which have been applied, and are still being further developed, indicate that

  14. The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512

    Directory of Open Access Journals (Sweden)

    Hassan Mziaut

    2016-08-01

    Conclusion: Our findings show that villin controls the size of the F-actin cages restricting SGs and, thus, regulates their dynamics and availability for exocytosis. Evidence that villin acts downstream of Ica512 also indicates that SGs directly influence the remodeling properties of the cortical actin cytoskeleton for tight control of insulin secretion.

  15. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen.

    Science.gov (United States)

    Xue, Dahai; Shi, Hong; Smith, James D; Chen, Xinguo; Noe, Dennis A; Cedervall, Tommy; Yang, Derek D; Eynon, Elizabeth; Brash, Douglas E; Kashgarian, Michael; Flavell, Richard A; Wolin, Sandra L

    2003-06-24

    Antibodies against a conserved RNA-binding protein, the Ro 60-kDa autoantigen, occur in 24-60% of all patients with systemic lupus erythematosus. Anti-Ro antibodies are correlated with photosensitivity and cutaneous lesions in these patients and with neonatal lupus, a syndrome in which mothers with anti-Ro antibodies give birth to children with complete congenital heart block and photosensitive skin lesions. In higher eukaryotes, the Ro protein binds small RNAs of unknown function known as Y RNAs. Because the Ro protein also binds misfolded 5S rRNA precursors, it is proposed to function in a quality-control pathway for ribosome biogenesis. Consistent with a role in the recognition or repair of intracellular damage, an orthologue of Ro in the radiation-resistant eubacterium Deinococcus radiodurans contributes to survival of this bacterium after UV irradiation. Here, we show that mice lacking the Ro protein develop an autoimmune syndrome characterized by anti-ribosome antibodies, anti-chromatin antibodies, and glomerulonephritis. Moreover, in one strain background, Ro-/- mice display increased sensitivity to irradiation with UV light. Thus, one function of this major human autoantigen may be to protect against autoantibody development, possibly by sequestering defective ribonucleoproteins from immune surveillance. Furthermore, the finding that mice lacking the Ro protein are photosensitive suggests that loss of Ro function could contribute to the photosensitivity associated with anti-Ro antibodies in humans.

  16. Classification of microscopy images of Langerhans islets

    Science.gov (United States)

    Å vihlík, Jan; Kybic, Jan; Habart, David; Berková, Zuzana; Girman, Peter; Kříž, Jan; Zacharovová, Klára

    2014-03-01

    Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully comparable with medical experts.

  17. Immunohistochemical analysis of medullary breast carcinoma autoantigens in different histological types of breast carcinomas

    National Research Council Canada - National Science Library

    Kostianets, Olga; Antoniuk, Stepan; Filonenko, Valeriy; Kiyamova, Ramziya

    2012-01-01

    ... and treatment of this disease. In current study we analyzed six previously identified medullary breast carcinoma autoantigens including LGALS3BP, RAD50, FAM50A, RBPJ, PABPC4, LRRFIP1 with cancer restricted serological profile...

  18. Interleukin 1 dose-dependently affects the biosynthesis of (pro)insulin in isolated rat islets of Langerhans

    DEFF Research Database (Denmark)

    Spinas, G A; Hansen, B S; Linde, S

    1987-01-01

    Human crude and recombinant interleukin 1 (IL-1) was found to dose- and time-dependently affect the biosynthesis of (pro)insulin in isolated rat islets of Langerhans. Incubation of rat islets with either 0.5 U/ml or 5 U/ml of crude IL-1 for 1 h had no detectable effect on (pro)insulin biosynthesis...

  19. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Deborah A Striegel

    2015-08-01

    Full Text Available Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.

  20. Islet cryopreservation: improved recovery following taurine pretreatment.

    Science.gov (United States)

    Hardikar, A A; Risbud, M V; Remacle, C; Reusens, B; Hoet, J J; Bhonde, R R

    2001-01-01

    Simple and efficient freezing methods with maximal postthawing recovery form the basis of ideal cryopreservation. Taurine (2-amino ethanesulfonic acid), an end-product of sulphur amino acid metabolism, is one of the most abundant free amino acids in the body. The membrane stabilizing, free radical scavenging, and osmoregulatory roles of taurine have been well documented. We studied the effect of physiological and supra-physiological concentrations (0.3 and 3.0 mM) of taurine on islet cryopreservation. Islet viability on cryopreservation was significantly improved in both the taurine-treated groups (91.9 +/- 2.3% in 0.3 mM and 94.6 +/- 1.58% in 3.0 mM group, p taurine group, as examined under phase contrast and quantified by islet morphometric analysis (p Taurine-treated islets showed significant reduction in lipid peroxidation (0.905 and 0.848 nM MDA/microg protein for 0.3 and 3.0 mM taurine, respectively, p 200 mg/dl) following removal of the graft. Suboptimal islet transplantation using 250 IE suggests that the grafted islet mass was inadequate for diabetes reversal. In addition, no significant differences were observed in the islet insulin content between the three groups following cryopreservation of the islets at -196 degrees C. Our studies indicate that taurine pretreatment and its continued presence during islet cryopreservation improves the postthawing viable recovery of islets.

  1. Progress in Clinical Encapsulated Islet Xenotransplantation.

    Science.gov (United States)

    Cooper, David K C; Matsumoto, Shinichi; Abalovich, Adrian; Itoh, Takeshi; Mourad, Nizar I; Gianello, Pierre R; Wolf, Eckhard; Cozzi, Emanuele

    2016-11-01

    At the 2015 combined congress of the Cell Transplant Society, International Pancreas and Islet Transplant Association, and International Xenotransplantation Association, a symposium was held to discuss recent progress in pig islet xenotransplantation. The presentations focused on 5 major topics - (1) the results of 2 recent clinical trials of encapsulated pig islet transplantation, (2) the inflammatory response to encapsulated pig islets, (3) methods to improve the secretion of insulin by pig islets, (4) genetic modifications to the islet-source pigs aimed to protect the islets from the primate immune and/or inflammatory responses, and (5) regulatory aspects of clinical pig islet xenotransplantation. Trials of microencapsulated porcine islet transplantation to treat unstable type 1 diabetic patients have been associated with encouraging preliminary results. Further advances to improve efficacy may include (1) transplantation into a site other than the peritoneal cavity, which might result in better access to blood, oxygen, and nutrients; (2) the development of a more biocompatible capsule and/or the minimization of a foreign body reaction; (3) pig genetic modification to induce a greater secretion of insulin by the islets, and/or to reduce the immune response to islets released from damaged capsules; and (4) reduction of the inflammatory response to the capsules/islets by improvements in the structure of the capsules and/or in genetic engineering of the pigs and/or in some form of drug therapy. Ethical and regulatory frameworks for islet xenotransplantation are already available in several countries, and there is now a wider international perception of the importance of developing an internationally harmonized ethical and regulatory framework.

  2. Combinations of siRNAs against La Autoantigen with NS5B or hVAP-A Have Additive Effect on Inhibition of HCV Replication

    Science.gov (United States)

    Mandal, Anirban; Ganta, Krishna Kumar

    2016-01-01

    Hepatitis C virus is major cause of chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Presently available direct-acting antiviral drugs have improved success rate; however, high cost limits their utilization, especially in developing countries like India. In the present study, we evaluated anti-HCV potential of several siRNAs targeted against the HCV RNA-dependent RNA polymerase NS5B and cellular factors, La autoantigen, PSMA7, and human VAMP-associated protein to intercept different steps of viral life cycle. The target genes were downregulated individually as well as in combinations and their impact on viral replication was evaluated. Individual downregulation of La autoantigen, PSMA7, hVAP-A, and NS5B resulted in inhibition of HCV replication by about 67.2%, 50.7%, 39%, and 52%, respectively. However, antiviral effect was more pronounced when multiple genes were downregulated simultaneously. Combinations of siRNAs against La autoantigen with NS5B or hVAP-A resulted in greater inhibition in HCV replication. Our findings indicate that siRNA is a potential therapeutic tool for inhibiting HCV replication and simultaneously targeting multiple viral steps with the combination of siRNAs is more effective than silencing a single target. PMID:27446609

  3. Identification of novel autoantigens by a triangulation approach.

    Science.gov (United States)

    Cottrell, Tricia R; Hall, John C; Rosen, Antony; Casciola-Rosen, Livia

    2012-11-30

    High titer autoantibodies, which are often associated with specific clinical phenotypes, are useful diagnostically and prognostically in systemic autoimmune diseases. In several autoimmune rheumatic diseases (e.g. myositis and Sjogren's syndrome), 20-40% of patients are autoantibody negative as assessed by conventional assays. The recent discovery of new specificities (e.g., anti-MDA5) in a subset of these autoantibody-negative subjects demonstrates that additional specificities await identification. In this manuscript, we describe a rapid multidimensional method to identify new autoantigens. A central foundation of this rapid approach is the use of an antigen source in which a pathogenic pathway active in the disease is recapitulated. Additionally, the method involves a modified serological proteome analysis strategy which allows confirmation that the correct gel plug has been removed prior to sending for sequencing. Lastly, the approach uses multiple sources of information to enable rapid triangulation and identification of protein candidates. Possible permutations and underlying principles of this triangulation strategy are elaborated to demonstrate the broad utility of this approach for antigen discovery.

  4. Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome.

    Science.gov (United States)

    Shapiro, A M James

    2012-01-01

    Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp.

  5. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes

    Science.gov (United States)

    Varshney, Arushi; Scott, Laura J.; Welch, Ryan P.; Erdos, Michael R.; Chines, Peter S.; Narisu, Narisu; Albanus, Ricardo D’O.; Orchard, Peter; Wolford, Brooke N.; Kursawe, Romy; Vadlamudi, Swarooparani; Cannon, Maren E.; Didion, John P.; Hensley, John; Kirilusha, Anthony; Bonnycastle, Lori L.; Taylor, D. Leland; Watanabe, Richard; Mohlke, Karen L.; Boehnke, Michael; Collins, Francis S.; Parker, Stephen C. J.; Stitzel, Michael L.

    2017-01-01

    Genome-wide association studies (GWAS) have identified >100 independent SNPs that modulate the risk of type 2 diabetes (T2D) and related traits. However, the pathogenic mechanisms of most of these SNPs remain elusive. Here, we examined genomic, epigenomic, and transcriptomic profiles in human pancreatic islets to understand the links between genetic variation, chromatin landscape, and gene expression in the context of T2D. We first integrated genome and transcriptome variation across 112 islet samples to produce dense cis-expression quantitative trait loci (cis-eQTL) maps. Additional integration with chromatin-state maps for islets and other diverse tissue types revealed that cis-eQTLs for islet-specific genes are specifically and significantly enriched in islet stretch enhancers. High-resolution chromatin accessibility profiling using assay for transposase-accessible chromatin sequencing (ATAC-seq) in two islet samples enabled us to identify specific transcription factor (TF) footprints embedded in active regulatory elements, which are highly enriched for islet cis-eQTL. Aggregate allelic bias signatures in TF footprints enabled us de novo to reconstruct TF binding affinities genetically, which support the high-quality nature of the TF footprint predictions. Interestingly, we found that T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprints. Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly disrupt the RFX motifs at high-information content positions. Together, these results suggest that common regulatory variations have shaped islet TF footprints and the transcriptome and that a confluent RFX regulatory grammar plays a significant role in the genetic component of T2D predisposition. PMID:28193859

  6. Improving Islet Engraftment by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2011-01-01

    Full Text Available Islet cell transplantation is currently the only feasible long-term treatment option for patients with type 1 diabetes. However, the majority of transplanted islets experience damage and apoptosis during the isolation process, a blood-mediated inflammatory microenvironment in the portal vein upon islet infusion, hypoxia induced by the low oxygenated milieu, and poor-revascularization-mediated lack of nutrients, and impaired hormone modulation in the local transplanted site. Strategies using genetic modification methods through overexpression or silencing of those proteins involved in promoting new formation of blood vessels or inhibition of apoptosis may overcome these hurdles and improve islet engraftment outcomes.

  7. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  8. Calpain-10 expression is elevated in pancreatic islets from patients with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Charlotte Ling

    Full Text Available BACKGROUND: Calpain-10 was the first gene to be identified influencing the risk of type 2 diabetes (T2D by positioning cloning. Studies in beta-cell lines and rodent islets suggest that calpain-10 may act as a regulator of insulin secretion. However, its role in human pancreatic islets remains unclear. The aim of this study was to examine if calpain-10 expression is altered in islets from patients with T2D and if the transcript level correlates with insulin release. We also tested if polymorphisms in the CAPN10 gene are associated with gene expression and insulin secretion in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Calpain-10 mRNA expression was analysed in human pancreatic islets from 34 non-diabetic and 10 T2D multi-organ donors. CAPN10 SNP-43 and SNP-44 were genotyped and related to gene expression and insulin release in response to glucose, arginine and glibenclamide. The mRNA level of calpain-10 was elevated by 64% in pancreatic islets from patients with T2D compared with non-diabetic donors (P = 0.01. Moreover, the calpain-10 expression correlated positively with arginine-stimulated insulin release in islets from non-diabetic donors (r = 0.45, P = 0.015. However, this correlation was lost in islets from patients with T2D (r = 0.09; P = 0.8. The G/G variant of SNP-43 was associated with reduced insulin release in response to glucose (Phuman islets, this correlation is lost in T2D suggesting that a stimulatory effect of calpain-10 could be lost in patients with T2D.

  9. β2-Glycoprotein I/HLA class II complexes are novel autoantigens in antiphospholipid syndrome.

    Science.gov (United States)

    Tanimura, Kenji; Jin, Hui; Suenaga, Tadahiro; Morikami, Satoko; Arase, Noriko; Kishida, Kazuki; Hirayasu, Kouyuki; Kohyama, Masako; Ebina, Yasuhiko; Yasuda, Shinsuke; Horita, Tetsuya; Takasugi, Kiyoshi; Ohmura, Koichiro; Yamamoto, Ken; Katayama, Ichiro; Sasazuki, Takehiko; Lanier, Lewis L; Atsumi, Tatsuya; Yamada, Hideto; Arase, Hisashi

    2015-04-30

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy complications. β2-glycoprotein I (β2GPI) complexed with phospholipid is recognized as a major target for autoantibodies in APS; however, less than half the patients with clinical manifestations of APS possess autoantibodies against the complexes. Therefore, the range of autoantigens involved in APS remains unclear. Recently, we found that human leukocyte antigen (HLA) class II molecules transport misfolded cellular proteins to the cell surface via association with their peptide-binding grooves. Furthermore, immunoglobulin G heavy chain/HLA class II complexes were specific targets for autoantibodies in rheumatoid arthritis. Here, we demonstrate that intact β2GPI, not peptide, forms a complex with HLA class II molecules. Strikingly, 100 (83.3%) of the 120 APS patients analyzed, including those whose antiphospholipid antibody titers were within normal range, possessed autoantibodies that recognize β2GPI/HLA class II complexes in the absence of phospholipids. In situ association between β2GPI and HLA class II was observed in placental tissues of APS patients but not in healthy controls. Furthermore, autoantibodies against β2GPI/HLA class II complexes mediated complement-dependent cytotoxicity against cells expressing the complexes. These data suggest that β2GPI/HLA class II complexes are a target in APS that might be involved in the pathogenesis.

  10. MHC Class II Auto-antigen Processing and Presentation is Unconventional

    Directory of Open Access Journals (Sweden)

    Scheherazade eSadegh-Nasseri

    2015-07-01

    Full Text Available Antigen presentation is highly critical in adoptive immunity. Only by interacting with antigens presented by MHC Class II molecules, can helper T cells be stimulated to fight infections or diseases. The degradation of a full protein into small peptide fragments bound to class II molecules is a dynamic, lengthy process consisting of many steps and chaperons. Deregulation in any step of antigen processing could lead to the development of self-reactive T cells or defective immune response to pathogens. Indeed Human Leucocyte Antigens (HLA Class II genes are the predominant contributors to susceptibility to autoimmune diseases. Conventional antigen processing calls for internalization of extracellular antigens followed by processing and epitope selection within antigen processing subcellular compartments, enriched with all necessary accessory molecules, processing enzymes, and proper pH and denaturing conditions. However, recent data examining the temporal relationship between antigen uptakes, processing and epitope selection revealed unexpected characteristics for autoantigenic epitopes, which was not shared with antigenic epitopes from pathogens. This review provides a discussion of the relevance of these findings to the mechanisms of autoimmunity.

  11. A health-economic analysis of porcine islet xenotransplantation.

    Science.gov (United States)

    Beckwith, Jessica; Nyman, John A; Flanagan, Brian; Schrover, Rudolf; Schuurman, Henk-Jan

    2010-01-01

    Islet cell transplantation is a promising treatment for type 1 diabetes. To overcome the shortage of deceased human pancreas donors, porcine islet cell xenotransplantation is being developed as an alternative to allotransplantation. The objective of this study was to perform a cost-effectiveness analysis of porcine islet transplantation in comparison with standard insulin therapy. The patient population for this study was young adults, ages 20 to 40, for whom standard medical care is inadequate in controlling blood glucose levels (hypoglycemia unawareness). Since trial data were lacking, estimates used extrapolations from data found in the literature and ongoing trials in clinical allotransplantation. Cost estimates were based on the data available in the USA. Markov modeling and Monte Carlo simulations using software specifically developed for health-economic evaluations were used. Outcomes data for ongoing clinical islet allotransplantation from the University of Minnesota were used, along with probabilities of complications from the Diabetes Control and Complications Trial. Quality-adjusted life years (QALYs) were the effectiveness measure. The upper limit of being cost-effective is $100,000 per QALY. Cost data from the literature were used and adjusted to 2007 US dollars using the medical care portion of the Consumer Price Index. In both Markov modeling and Monte Carlo simulations, porcine islet xenotransplantation was both more effective and less costly over the course of the 20-yr model. For standard insulin therapy, cumulative cost per patient was $661,000, while cumulative effectiveness was 9.4 QALYs, for a cost of $71,100 per QALY. Transplantation had a cumulative cost of $659 000 per patient, a cumulative effectiveness of 10.9 QALYs, and a cost per QALY of $60,700. Islet transplantation became cost-effective at 4 yr after transplantation, and was more cost-effective than standard insulin treatment at 14 yr. These findings are related to relative high

  12. Control of islet intercellular adhesion molecule-1 expression by interferon-alpha and hypoxia.

    Science.gov (United States)

    Chakrabarti, D; Huang, X; Beck, J; Henrich, J; McFarland, N; James, R F; Stewart, T A

    1996-10-01

    The ability of interferon-alpha (IFN-alpha) to induce the adhesion molecules that characterize the islets of patients with type I diabetes has been investigated. We have found that all tested recombinant IFN-as will induce major histocompatibility complex (MHC) class I on arterial endothelial cells. Some but not all IFN-as will induce intercellular adhesion molecule-1 (ICAM-1). However, there is only a transient and modest increase in VCAM on arterial endothelial cells. IFN-alpha has very little effect on endothelial MHC class II expression but will induce these proteins on monocytes. Thus, there is a close concordance between the biological actions of IFN-alpha and the appearance of those adhesion molecules induced in the islets of patients with type I diabetes. IFN-alpha is also produced in normal human islets during short-term cultures, probably as a result of the ischemia present at the center of the islet. This induction of IFN-alpha by hypoxia may explain the previously reported spontaneous induction of ICAM-1 in human islets and may also be a contributing factor to the failure of islet grafts.

  13. The Mitochondrial Peptidase Pitrilysin Degrades Islet Amyloid Polypeptide in Beta-Cells.

    Directory of Open Access Journals (Sweden)

    Hanjun Guan

    Full Text Available Amyloid formation and mitochondrial dysfunction are characteristics of type 2 diabetes. The major peptide constituent of the amyloid deposits in type 2 diabetes is islet amyloid polypeptide (IAPP. In this study, we found that pitrilysin, a zinc metallopeptidase of the inverzincin family, degrades monomeric, but not oligomeric, islet amyloid polypeptide in vitro. In insulinoma cells when pitrilysin expression was decreased to 5% of normal levels, there was a 60% increase in islet amyloid polypeptide-induced apoptosis. In contrast, overexpression of pitrilysin protects insulinoma cells from human islet amyloid polypeptide-induced apoptosis. Since pitrilysin is a mitochondrial protein, we used immunofluorescence staining of pancreases from human IAPP transgenic mice and Western blot analysis of IAPP in isolated mitochondria from insulinoma cells to provide evidence for a putative intramitochondrial pool of IAPP. These results suggest that pitrilysin regulates islet amyloid polypeptide in beta cells and suggest the presence of an intramitochondrial pool of islet amyloid polypeptide involved in beta-cell apoptosis.

  14. A stereological study of effects of aqueous extract of Tamarindus indica seeds on pancreatic islets in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Hamidreza, Hamidreza; Heidari, Zahra; Shahraki, Mohammadreza; Moudi, Bita

    2010-10-01

    Tamarindus indica Linn was used as a traditional medicine for the management of diabetes mellitus in human and experimental animals. This study investigated effects of aqueous extract of Tamarindus indica seeds (AETIS) against STZ-induced damages in pancreatic islands by means of stereological methods. sixty matured normoglycemic male Wistar rats, weighing 200-250 gr, were selected and randomly divided into 6 groups (n=10). Control, STZ-induced diabetic; by intraperitoneal injection of 55 mg/Kg streptozotocin, Treated control group (TC); received AETIS at a dose of 200mg/kg/day, and AETIS treated diabetic groups (TD1-3); received respectively AETIS at the dose of 50, 100,and 200 mg/kg/day by gavage from one week after induction of diabetes by STZ. After 8 weeks of experiment, stereological estimation of volume density and total volume of islets and beta cells, volume weighted mean islets volume, mass of beta cells, islets, and pancreas and total number of islets were done. Volume density and total volume of islets, volume weighted mean islets volume, volume density islets/pancreas, volume density beta cells/islet, mass of islets and pancreas of treated diabetic groups (TD1-3) were significantly higher than untreated diabetic group (P0.05). Total number of islets, pancreas wet weight and volume did not show any significant changes between control and experimental groups (P>0.05). Results suggested that AETIS partially restores pancreatic beta cells and repairs STZ-induced damages in rats.

  15. Rac1 regulates pancreatic islet morphogenesis.

    OpenAIRE

    2009-01-01

    Abstract Background Pancreatic islets of Langerhans originate from endocrine progenitors within the pancreatic ductal epithelium. Concomitant with differentiation of these progenitors into hormone-producing cells such cells delaminate, aggregate and migrate away from the ductal epithelium. The cellular and molecular mechanisms regulating islet cell delamination and cell migration are poorly understood. Extensive biochemical and cell biological studies using cultured cells demonstrated that Ra...

  16. Canine islets in an ultrafiltered environment.

    Science.gov (United States)

    Merrell, R C; Basadonna, G

    1985-11-01

    Molecular sieve membranes can protect pancreatic islets against immune recognition in diabetic patients treated by endocrine tissue replacement. These biocompatible membranes permit the passage of small peptides such as insulin, and preclude the diffusion of immunoglobulins and immunogenic molecules. However, the tissue must function indefinitely in an ultrafiltered environment determined by the sequestering membranes. The chronic perifusion of canine islet tissue was compared in ultrafiltered and microfiltered chambers. The biphasic pattern of insulin release by similar numbers of islets from the same pancrease preparation was not significantly different when tissue was cultured in a micro- or an ultrafiltered environment. The cumulative insulin output of the two systems was quite similar over 3 days of culture. Canine islet tissue can be sustained in an ultrafiltered environment with maintenance of insulin release to glucose stimulation, which is quantitatively similar to islet tissue maintained in chronic perifusion without ultrafiltration.

  17. Autoantigens produced in plants for oral tolerance therapy of autoimmune diseases.

    Science.gov (United States)

    Ma, S; Jevnikar, A M

    1999-01-01

    Oral administration of protein antigens can induce antigen-specific immune hyporesponsiveness and may be useful in treating autoimmune diseases or preventing transplant rejection. However, the therapeutic value of oral tolerance may be limited when candidate autoantigens cannot be produced by conventional system in quantities sufficient for clinical studies. Plants may be ideally suited for this purpose, as they can produce hugh quantities of functional mammalian proteins at extremely competitive cost. Furthermore, transgenic food plants could provide a simple and direct method of autoantigen delivery for oral tolerance. Here we show that the diabetes-associated autoantigen glutamic acid decarboxylase (GAD) is efficiently expressed in both tobacco and potato plants, and that mice, when fed with fresh transgenic potato tubers, are fully protected from diabetes.

  18. Major retinal autoantigens remain stably expressed during all stages of spontaneous uveitis.

    Science.gov (United States)

    Deeg, Cornelia A; Hauck, Stefanie M; Amann, Barbara; Kremmer, Elisabeth; Stangassinger, Manfred; Ueffing, Marius

    2007-07-01

    Equine recurrent uveitis (ERU) is a valuable model for autoimmune diseases, since it develops frequently and occurs spontaneously. We investigated the overall expression level of three major retinal autoantigens in normal retinas and various ERU stages. Analysis of retinal proteomes of both, healthy and diseased retinas revealed an almost unaffected expression of IRBP, S-antigen and cRALBP in ERU cases. Validation of these findings with western blots and immunohistochemistry confirmed constant to increased expression of these autoantigens, although loss of their physiological expression sites within retina is evident. In contrast to stable expression of autoantigens, rhodopsin, the major component of phototransduction in photoreceptors, disappeared from destructed retinas. These results explain persistent uveitic attacks even in severely damaged eyes and draw the attention to further investigations of biological pathways and regulations in autoimmune target tissues.

  19. Rac1 regulates pancreatic islet morphogenesis

    Directory of Open Access Journals (Sweden)

    Ståhlberg Anders

    2009-01-01

    Full Text Available Abstract Background Pancreatic islets of Langerhans originate from endocrine progenitors within the pancreatic ductal epithelium. Concomitant with differentiation of these progenitors into hormone-producing cells such cells delaminate, aggregate and migrate away from the ductal epithelium. The cellular and molecular mechanisms regulating islet cell delamination and cell migration are poorly understood. Extensive biochemical and cell biological studies using cultured cells demonstrated that Rac1, a member of the Rho family of small GTPases, acts as a key regulator of cell migration. Results To address the functional role of Rac1 in islet morphogenesis, we generated transgenic mice expressing dominant negative Rac1 under regulation of the Rat Insulin Promoter. Blocking Rac1 function in beta cells inhibited their migration away from the ductal epithelium in vivo. Consistently, transgenic islet cell spreading was compromised in vitro. We also show that the EGF-receptor ligand betacellulin induced actin remodelling and cell spreading in wild-type islets, but not in transgenic islets. Finally, we demonstrate that cell-cell contact E-cadherin increased as a consequence of blocking Rac1 activity. Conclusion Our data support a model where Rac1 signalling controls islet cell migration by modulating E-cadherin-mediated cell-cell adhesion. Furthermore, in vitro experiments show that betacellulin stimulated islet cell spreading and actin remodelling is compromised in transgenic islets, suggesting that betacellulin may act as a regulator of Rac1 activity and islet migration in vivo. Our results further emphasize Rac1 as a key regulator of cell migration and cell adhesion during tissue and organ morphogenesis.

  20. Pancreatic islet renin angiotensin system: its novel roles in islet function and in diabetes mellitus.

    Science.gov (United States)

    Leung, Po Sing; Carlsson, Per-Ola

    2005-05-01

    Several regulatory systems are implicated in the regulation of islet function and beta cell mass. Of great interest in this context are some endocrine, paracrine/autocrine, and intracrine regulators. These include, to name but a few, the gut peptides, growth factors, prostaglandins, and some vasoactive mediators such as nitric oxide, bradykinins, endothelins, and angiotensins. Apart from its potent vasoconstrictor actions, the renin-angiotensin system (RAS) that generates angiotensin II has several novel functions-stimulation and inhibition of cell proliferation; induction of apoptosis; generation of reactive oxygen species; regulation of hormone secretion; and proinflammatory and profibrogenic actions. In the pancreas, recent evidence supports the presence of an islet RAS, which is subject to activation by islet transplantation and diabetes. Such a local islet RAS, if activated, may drive islet fibrosis and reduce islet blood flow, oxygen tension, and insulin biosynthesis. Moreover, activation of an islet RAS may drive the synthesis of reactive oxygen species, cause oxidative stress-induced beta cell dysfunction and apoptosis, and thus contribute to the islet dysfunction seen in type 2 diabetes and after islet transplantation. Blockade of the RAS could contribute to the development of novel therapeutic strategies in the prevention and treatment of patients with diabetes and in islet transplantation.

  1. Small Islets Transplantation Superiority to Large Ones: Implications from Islet Microcirculation and Revascularization

    Directory of Open Access Journals (Sweden)

    Wenjuan Li

    2014-01-01

    Full Text Available Pancreatic islet transplantation is a promising therapy to regain glycemic control in diabetic patients. The selection of ideal grafts is the basis to guarantee short-term effectivity and longevity of the transplanted islets. Contradictory to the traditional notion, recent findings implied the superiority of small islets for better transplantation outcomes rather than the large and intact ones. However, the mechanisms remain to be elucidated. Recent evidences emphasized the major impact of microcirculation on islet β-cell mass and function. And potentials in islet graft revascularization are crucial for their survival and preserved function in the recipient. In this study, we verified the distinct histological phenotype and functionality of small islets versus large ones both in vitro and in vivo. With efforts to exploring the differences in microcirculation and revascularization of islet grafts, we further evaluated local expressions of angiotensin and vascular endothelial growth factor A (VEGF-A at different levels. Our findings reveal that, apart from the higher density of insulin-producing β-cells, small islets express less angiotensin and more angiotrophic VEGF-A. We therefore hypothesized a logical explanation of the small islet superiority for transplantation outcome from the aspects of facilitated microcirculation and revascularization intrinsically in small islets.

  2. Identification of immunodominant autoantigens in rat autoimmune orchitis.

    Science.gov (United States)

    Fijak, Monika; Iosub, Radu; Schneider, Eva; Linder, Monika; Respondek, Kathrin; Klug, Jörg; Meinhardt, Andreas

    2005-10-01

    Infection and inflammation of the genital tract are amongst the leading causes of male infertility. Experimental autoimmune orchitis (EAO) in the rat serves as a model for the investigation of inflammatory testicular impairment. In this study, experiments were conducted to identify the molecules that are responsible for eliciting the autoimmune attack on the testis. EAO was induced in in-bred Wistar rats by active immunization with testis homogenates (EAO group I). Development of disease was observed using histological techniques and a new non-invasive three-dimensional (3D) imaging technology for in vivo monitoring, termed flat-panel volumetric computed tomography (fpvCT). Examination of control and EAO testes demonstrated the superior image quality of high-resolution fpvCT. A proteomics approach using 2D SDS-PAGE and immunoblotting analysis with EAO sera identified 12 spots. Seven were subsequently identified by mass spectrometry as heat shock proteins 60 (Hsp60) and 70 (Hsp70), disulphide isomerase ER-60, alpha-1-anti-trypsin, heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1), sperm outer dense fibre major protein 2 (ODF-2), and phosphoglycerate kinase 1. Hsp70, ODF-2, hnRNP H1, and ER-60 were identified by all EAO sera studied. To test the capacity of the identified proteins to elicit testicular autoimmune disease, recombinant proteins were used either individually or in combination to immunize rats (EAO group II). In all groups, the incidence of EAO was 25%. Inflammatory-type (ED1+) and resident (ED2+) macrophages, lymphocytes (CD45RA+), and dendritic cells (Ox-62+) were strongly increased in EAO group II animals, comparable to the testes of EAO I rats. Pre-immunization with a low dose of recombinant Hsp 70, hnRNP H1 or ODF-2 before induction of EAO with testis homogenate significantly delayed the onset of EAO but could not prevent disease. The identification of testicular autoantigens will allow a better understanding of disease pathogenesis and could

  3. Identification of Donor Origin and Condition of Transplanted Islets In Situ in the Liver of a Type 1 Diabetic Recipient.

    Science.gov (United States)

    van der Torren, Cornelis R; Suwandi, Jessica S; Lee, DaHae; Van't Wout, Ernst-Jan T; Duinkerken, Gaby; Swings, Godelieve; Mulder, Arend; Claas, Frans H J; Ling, Zhidong; Gillard, Pieter; Keymeulen, Bart; In't Veld, Peter; Roep, Bart O

    2017-01-24

    Transplantation of islet allografts into type 1 diabetic recipients usually requires multiple pancreas donors to achieve insulin independence. This adds to the challenges of immunological monitoring of islet transplantation currently relying on surrogate immune markers in peripheral blood. We investigated donor origin and infiltration of islets transplanted in the liver of a T1D patient who died of hemorrhagic stroke 4 months after successful transplantation with two intraportal islet grafts combining six donors. Immunohistological staining for donor HLA using a unique panel of human monoclonal HLA-specific alloantibodies was performed on liver cryosections after validation on cryopreserved kidney, liver, and pancreas and compared with auto- and alloreactive T-cell immunity in peripheral blood. HLA-specific staining intensity and signal-to-noise ratio varied between tissues from very strong on kidney glomeruli, less in liver, kidney tubuli, and endocrine pancreas to least in exocrine pancreas, complicating the staining of inflamed islets in an HLA-disparate liver. Nonetheless, five islets from different liver lobes could be attributed to donors 1, 2, and 5 by staining patterns with multiple HLA types. All islets showed infiltration with CD8+ cytotoxic T cells that was mirrored by progressive alloreactive responses in peripheral blood mononuclear cells (PBMCs) to donors 1, 2, and 5 after transplantation. Stably low rates of peripheral islet autoreactive T-cell responses after islet infusion fit with a complete HLA mismatch between grafts and recipient and exclude the possibility that the islet-infiltrating CD8 T cells were autoreactive. HLA-specific immunohistochemistry can identify donor origin in situ and differentiate graft dysfunction and immunological destruction.

  4. Clinical use of fructosamine in islet transplantation.

    Science.gov (United States)

    Tharavanij, Thipaporn; Froud, Tatiana; Leitao, Cristiane B; Baidal, David A; Paz-Pabon, Charlotte N; Shari, Messinger; Cure, Pablo; Bernetti, Karina; Ricordi, Camillo; Alejandro, Rodolfo

    2009-01-01

    Many islet transplant recipients have medical conditions that could interfere with the accuracy of HbA1c measurements (e.g., anemia/dapsone use). Fructosamine is less prone to have clinical interferences and reflects glucose control in a shorter period of time than HbA1c. This study aimed to validate fructosamine use in islet transplant subjects and to evaluate its effectiveness as a predictor for islet graft dysfunction. Thirty-three islet transplant recipients who had concomitant fructosamine and HbA1c data available were retrospectively analyzed. HbA1c, fructosamine, mean capillary blood glucose, and islet graft function (fasting C-peptide/glucose ratio) were assessed. There was a significant and positive association between fructosamine and HbA1c (p 6% was predictive of this outcome 1 month in advance (OR 2.95, p = 0.003). However, although significantly associated with graft dysfunction, use of this cutoff as a predictor of dysfunction has poor sensitivity (50%) and specificity (77.6%). Fructosamine above the normal range (>270 mumol/L Quest Diagnostics) was also predictive of ensuing dysfunction (OR 2.47, p = 0.03); however, it had similarly poor sensitivity (62%) and specificity (64%). Fructosamine can be used as an alternative to HbA1c for glycemic assessment in islet transplant recipients in situations with HbA1c assay interference. Neither HbA1c nor fructosamine are good predictors of islet graft dysfunction.

  5. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Li, Xiao-Ling; Xu, Gang; Chen, Tianfeng; Wong, Yum-Shing; Zhao, Hai-Lu; Fan, Rong-Rong; Gu, Xue-Mei; Tong, Peter C Y; Chan, Juliana C N

    2009-07-01

    It is widely accepted that human islet amyloid polypeptide (hIAPP) aggregation plays an important role in the loss of insulin-producing pancreatic beta cells. hIAPP-induced cytotoxicity is mediated by generation of reactive oxygen species (ROS). Phycocyanin (PC) is a natural compound from blue-green algae that is widely used as food supplement. Currently, little is known about the effects of PC on beta cells with the presence of hIAPP. The aim of this study was to investigate the in vitro protective effects of PC on INS-1E rat insulinoma beta cells against hIAPP-induced cell death, as well as the underlying mechanisms. Our results showed that hIAPP-induced cell death with apoptotic characteristics including growth inhibition, chromatin condensation and DNA fragmentation. However, cytotoxicity of hIAPP was significantly attenuated by co-incubation of the cells with PC. The results of Western blotting showed that activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP) in hIAPP-treated cells was blocked by PC. Moreover, PC significantly prevented the hIAPP-induced overproduction of intracellular ROS and malondialdehyde (MDA), as well as changes in activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes. Furthermore, hIAPP triggered the activation of mitogen-activated protein kinases (MAPKs), and these effects were effectively suppressed by PC. Taken together, our results suggest that PC protects INS-1E pancreatic beta cells against hIAPP-induced apoptotic cell death through attenuating oxidative stress and modulating c-Jun N-terminal kinase (JNK) and p38 pathways.

  6. Selenium-enriched Spirulina protects INS-1E pancreatic beta cells from human islet amyloid polypeptide-induced apoptosis through suppression of ROS-mediated mitochondrial dysfunction and PI3/AKT pathway.

    Science.gov (United States)

    Li, Xiao-Ling; Wong, Yum-Shing; Xu, Gang; Chan, Juliana C N

    2015-06-01

    Human islet amyloid polypeptide (hIAPP) aggregation is linked to loss of pancreatic beta cells in type 2 diabetes, in part due to oxidative stress. Currently, little is known about the effects of selenium-enriched Spirulina on beta cells with the presence of hIAPP. In this study, INS-1E rat insulinoma cells were used as a model to evaluate in vitro protective effects of Se-enriched Spirulina extract (Se-SE) against hIAPP-induced cell death, as well as the underlying mechanisms. Flow cytometric analysis was used to evaluate cell apoptosis, mitochondrial membrane potential (ΔΨm) and ROS generation. Caspase activity was measured using a fluorometric method. Western blotting was applied to detect protein expression. Our results showed that exposure of INS-1E cells to hIAPP resulted in cell viability loss, LDH release and appearance of sub-G peak. However, cytotoxicity of hIAPP was significantly attenuated by co-treatment with Se-SE. Se-SE also inhibited hIAPP-induced activation of caspase-3, -8 and -9. Additionally, hIAPP-induced accumulation of ROS and superoxide was suppressed by co-treatment with Se-SE. Moreover, Se-SE was able to prevent hIAPP-induced depletion of ΔΨm and intracellular ATP, reduction in mitochondrial mass, changes in the expression of Bcl-2 family members, release of mitochondrial apoptogenic factors. Furthermore, hIAPP-mediated AKT inhibition was restored by co-treatment with Se-SE. Our results showed that Se-SE protects INS-1E cells from hIAPP-induced cell death through preventing ROS overproduction, mitochondrial dysfunction and modulating PI3K/AKT pathway.

  7. Suppression of islet homeostasis protein thwarts diabetes mellitus progression.

    Science.gov (United States)

    Oh, Seh-Hoon; Jorgensen, Marda L; Wasserfall, Clive H; Gjymishka, Altin; Petersen, Bryon E

    2017-05-01

    During progression to type 1 diabetes, insulin-producing β-cells are lost through an autoimmune attack resulting in unrestrained glucagon expression and secretion, activation of glycogenolysis, and escalating hyperglycemia. We recently identified a protein, designated islet homeostasis protein (IHoP), which specifically co-localizes within glucagon-positive α-cells and is overexpressed in the islets of both post-onset non-obese diabetic (NOD) mice and type 1 diabetes patients. Here we report that in the αTC1.9 mouse α-cell line, IHoP was released in response to high-glucose challenge and was found to regulate secretion of glucagon. We also show that in NOD mice with diabetes, major histocompatibility complex class II was upregulated in islets. In addition hyperglycemia was modulated in NOD mice via suppression of IHoP utilizing small interfering RNA (IHoP-siRNA) constructs/approaches. Suppression of IHoP in the pre-diabetes setting maintained normoglycemia, glyconeolysis, and fostered β-cell restoration in NOD mice 35 weeks post treatment. Furthermore, we performed adoptive transfer experiments using splenocytes from IHoP-siRNA-treated NOD/ShiLtJ mice, which thwarted the development of hyperglycemia and the extent of insulitis seen in recipient mice. Last, IHoP can be detected in the serum of human type 1 diabetes patients and could potentially serve as an early novel biomarker for type 1 diabetes in patients.

  8. Epiplakin Is a Paraneoplastic Pemphigus Autoantigen and Related to Bronchiolitis Obliterans in Japanese Patients

    NARCIS (Netherlands)

    Tsuchisaka, Atsunari; Numata, Sanae; Teye, Kwesi; Natsuaki, Yohei; Kawakami, Tamihiro; Takeda, Yoshito; Wang, Wenqing; Ishikawa, Kazushi; Goto, Mizuki; Koga, Hiroshi; Sogame, Ryosuke; Ishii, Norito; Takamori, Shinzo; Hoshino, Tomoaki; Brandt, Oliver; Pas, Hendri H.; Fujiwara, Sakuhei; Hashimoto, Takashi

    All plakin family proteins are known to be autoantigens in paraneoplastic pemphigus (PNP). In this study, we first examined whether PNP sera also react with epiplakin, another plakin protein, by various immunological methods using 48 Japanese PNP sera. Immunofluorescence confirmed that cultured

  9. Novel stable isotope analyses demonstrate significant rates of glucose cycling in mouse pancreatic islets.

    Science.gov (United States)

    Wall, Martha L; Pound, Lynley D; Trenary, Irina; O'Brien, Richard M; Young, Jamey D

    2015-06-01

    A polymorphism located in the G6PC2 gene, which encodes an islet-specific glucose-6-phosphatase catalytic subunit, is the most important common determinant of variations in fasting blood glucose (FBG) levels in humans. Studies of G6pc2 knockout (KO) mice suggest that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion (GSIS) that acts by hydrolyzing glucose-6-phosphate (G6P), thereby reducing glycolytic flux. However, this conclusion conflicts with the very low estimates for the rate of glucose cycling in pancreatic islets, as assessed using radioisotopes. We have reassessed the rate of glucose cycling in pancreatic islets using a novel stable isotope method. The data show much higher levels of glucose cycling than previously reported. In 5 mmol/L glucose, islets from C57BL/6J chow-fed mice cycled ∼16% of net glucose uptake. The cycling rate was further increased at 11 mmol/L glucose. Similar cycling rates were observed using islets from high fat-fed mice. Importantly, glucose cycling was abolished in G6pc2 KO mouse islets, confirming that G6pc2 opposes the action of the glucose sensor glucokinase by hydrolyzing G6P. The demonstration of high rates of glucose cycling in pancreatic islets explains why G6pc2 deletion enhances GSIS and why variants in G6PC2 affect FBG in humans. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells.

    Science.gov (United States)

    Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T

    2006-01-01

    Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.

  11. Insulin release from islets of Langerhans entrapped in a poly(N-isopropylacrylamide-co-acrylic acid) polymer gel.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    1999-01-01

    A copolymer of N-isopropylacrylamide (98 mol% in feed) and acrylic acid, poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-AAc)), was prepared by free radical polymerization for development of a thermally reversible polymer to entrap islets of Langerhans for a refillable biohybrid artificial pancreas. A 5 wt% solution of the polymer in Hanks' balanced salt solution forms a gel at 37 degrees C that exhibits no syneresis. Diffusion of fluorescein isothiocyanate (FITC) dextrans having molecular weights of 4400 and 70000 were used to evaluate mass transport in the gel at 37 degrees C. Insulin secretion from islets in the polymer gel was also investigated in both static and dynamic systems. The polymer gel exhibited excellent diffusion of FITC dextran 4400 and FITC dextran 70000 with diffusion ratios, D/D0 (ratio of diffusion in the gel to diffusion in water), of 0.20+/-0.04 and 0.35+/-0.17, respectively. Human islets entrapped in the polymer gel showed prolonged insulin secretion in response to basal (5.5 mM) glucose concentration compared to free human islets. Rat islets showed prolonged insulin secretion in response to high (16.5 mM) glucose concentrations compared to free rat islets. Rat islets in the polymer gel maintained insulin secretion in response to the higher glucose concentration for over 26 days. Rat islets entrapped by the polymer also released higher quantities of insulin more rapidly in response to changes in concentrations of glucose and other stimulants than rat islets entrapped in an alginate control. These results suggest that this material would provide adequate diffusion for rapid insulin release in an application as a synthetic extracellular matrix for a biohybrid artificial pancreas.

  12. IDDM: an islet or an immune disease?

    Science.gov (United States)

    Boitard, C; Larger, E; Timsit, J; Sempe, P; Bach, J F

    1994-09-01

    Insulin-dependent diabetes develops as a consequence of the selective destruction of insulin-producing cells by an autoimmune reaction. However, the precise series of events which trigger anti-islet autoreactive T cells is still being investigated. Major issues will need to be raised before a comprehensive view of the anti-islet autoimmune reaction can be delineated. These include defining the primary site of activation of autoreactive lymphocytes and exploring hypotheses to explain the chronicity of the diabetes process. These issues all relate with the more general dilemma of the actual role of the islets of Langerhans in breaking self tolerance to beta-cell antigens. By studying non-obese diabetic mice deprived of beta cells following a single injection of a high dose of alloxan at 3 weeks of age, we recently obtained evidence that the activation of autoreactive T cells requires the presence of target islet cells in order to develop.

  13. Effects of mature Sertoli cells on allogeneic islets cocultured in vitro

    Institute of Scientific and Technical Information of China (English)

    Heli Xiang; Wujun Xue; Yan Teng; Xinshun Feng; Puxun Tian; Xiaoming Ding

    2006-01-01

    Objective: To set up a method for isolation and culture of mature Sertoli cells and to estimate their effects on allogeneic islets cocultured in vitro. Methods: Adult SD rat testicular Sertoli cells were prepared successfully by three-step enzyme digestion. Then they were cocultured respectively with allogeneic islets and activated Wistar rat splenocytes. 24-hour cumulative insulin release and glucose-stimulated insulin secretion test were performed to detect islet function between pure islets culture group and coculture group. Splenocyte proliferation activity was determined by MTT colorimetry assay to observe the inhibition effect of Sertoli cells in different densities. Result: Firstly, in pure islet culture group, the 24-hour cumulative insulin release was gradually decreased in 21-day culture time. Compared to day 3, this change was significant on day 7 (P < 0.05) and on day 10,14,21 (P < 0.01). In contrast, in coculture group, compared to day 3, the 24-hour cumulative insulin release was increased significantly on day 7 (P < 0.01 ), and then gradually decreased on day 10 and 14, but still higher than that of day 3. It was on day 21 that it began to decrease compared to day 3 (P < 0.05). During the culture time in vitro, the 24-hour cumulative insulin release of islet coculture group was significantly higher than that of pure islets culture group (P < 0.01). In the case of stimulation index(SI), there was a similar tendency as insulin release in the two groups. Secondly, mature Sertoli cells(1×106/mL)pretreated by 15 grays irradiation could decrease proliferation activity of activated splenocytes compared to that of control group (P < 0.01 ). This inhibition effect was dose-dependent. Conclusion: Mature Sertoli cells can improve the function and prolong the survival of islet cells cultured in vitro. They can also provide an immune protection to islet cells. The approach described above might be applicable to human islet transplantation as soon as

  14. Percutaneous transhepatic portal catheterization guided by ultrasound technology for islet transplantation in rhesus monkey

    Institute of Scientific and Technical Information of China (English)

    FengGao; Shao-DongAi; ShengLiu; Wen-BinZeng; WeiWang

    2012-01-01

    BACKGROUND: Pig islet xenotransplantation has the potential to overcome the shortage of donated human islets for islet cell transplantation in type 1 diabetes. Testing in non-human primate models is necessary before clinical application in humans. Intraportal islet transplantation in monkeys is usually performed by surgical infusion during laparotomy or laparoscopy. In this paper, we describe a new method of percutaneous transhepatic portal catheterization (PTPC) as an alternative to current methods of islet transplantation in rhesus monkeys. METHODS: We performed ultrasound-guided PTPC in five adult rhesus monkeys weighing 7-8 kg, with portal vein catheterization confirmed by digital subtraction angiography. We monitored for complications in the thoracic and abdominal cavity. To evaluate the safety of ultrasound-guided PTPC, we recorded the changes in portal pressure throughout the microbead transplantation procedure. RESULTS:  Ultrasound-guided PTPC and infusion of 16 000 microbeads/kg body weight into the portal vein was successful in all five monkeys. Differences in the hepatobiliary anatomy of rhesus monkeys compared to humans led to a higher initial complication rate. The first monkey died of abdominal hemorrhage 10 hours post-transplantation. The second suffered from a mild pneumothorax but recovered fully after taking only conservative measures. After gaining experience with the first two monkeys, we decreased both the hepatic puncture time and the number of puncture attempts required, with the remaining three monkeys experiencing no complications. Portal pressures initially increased proportional to the number of transplanted microbeads but returned to pre-infusion levels at 30 minutes post-transplantation. The changes in portal pressures occurring during the procedure were not significantly different. CONCLUSIONS: Ultrasound-guided PTPC is an effective, convenient, and minimally invasive method suitable for use in non-human primate models of

  15. Justifying clinical trials for porcine islet xenotransplantation.

    Science.gov (United States)

    Ellis, Cara E; Korbutt, Gregory S

    2015-01-01

    The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.

  16. Cytokines cause functional and structural damage to isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Bendixen, G

    1985-01-01

    -dependent diabetes mellitus, isolated human or rat islets of Langerhans were incubated for 7 days with cytokine-rich, cell-free supernatants of blood mononuclear cells from healthy human donors stimulated with or without purified protein derivative of tuberculin or phytohaemagglutinin. Glucose stimulated insulin......Cytokines are soluble, antigen non-specific, non-immunoglobulin mediators produced and secreted by blood mononuclear cells interacting in the cellular immune-response. To test the possibility that cytokines participate in the autoimmune destruction of the pancreatic beta-cells leading to insulin......-release, and contents of insulin and glucagon in islets incubated with cytokine-rich supernatants were markedly reduced. This impairment of islet function was due to a cytotoxic effect of cytokine-rich supernatants as judged by disintegration of normal light-microscopic morphology....

  17. Histomorphology of the bottlenose dolphin (Tursiops truncatus) pancreas and association of increasing islet β-cell size with chronic hypercholesterolemia.

    Science.gov (United States)

    Colegrove, Kathleen M; Venn-Watson, Stephanie

    2015-04-01

    Bottlenose dolphins (Tursiops truncatus) can develop metabolic states mimicking prediabetes, including hyperinsulinemia, hyperlipidemia, elevated glucose, and fatty liver disease. Little is known, however, about dolphin pancreatic histomorphology. Distribution and area of islets, α, β, and δ cells were evaluated in pancreatic tissue from 22 dolphins (mean age 25.7years, range 0-51). Associations of these measurements were evaluated by sex, age, percent high glucose and lipids during the last year of life, and presence or absence of fatty liver disease and islet cell vacuolation. The most common pancreatic lesions identified were exocrine pancreas fibrosis (63.6%) and mild islet cell vacuolation (47.4%); there was no evidence of insulitis or amyloid deposition, changes commonly associated with type 2 diabetes. Dolphin islet architecture appears to be most similar to the pig, where α and β cells are localized to the central or periphery of the islet, respectively, or are well dispersed throughout the islet. Unlike pigs, large islets (greater than 10,000μm(2)) were common in dolphins, similar to that found in humans. A positive linear association was identified between dolphin age and islet area average, supporting a compensatory response similar to other species. The strongest finding in this study was a positive linear association between islet size, specifically β-cells, and percent blood samples with high cholesterol (greater than 280mg/dl, R(2)=0.57). This study is the most comprehensive assessment of the dolphin pancreas to date and may help direct future studies, including associations between chronic hypercholesterolemia and β-cell size.

  18. In vivo islet protection by a nuclear import inhibitor in a mouse model of type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Daniel J Moore

    Full Text Available BACKGROUND: Insulin-dependent Type 1 diabetes (T1D is a devastating autoimmune disease that destroys beta cells within the pancreatic islets and afflicts over 10 million people worldwide. These patients face life-long risks for blindness, cardiovascular and renal diseases, and complications of insulin treatment. New therapies that protect islets from autoimmune destruction and allow continuing insulin production are needed. Increasing evidence regarding the pathomechanism of T1D indicates that islets are destroyed by the relentless attack by autoreactive immune cells evolving from an aberrant action of the innate, in addition to adaptive, immune system that produces islet-toxic cytokines, chemokines, and other effectors of islet inflammation. We tested the hypothesis that targeting nuclear import of stress-responsive transcription factors evoked by agonist-stimulated innate and adaptive immunity receptors would protect islets from autoimmune destruction. PRINCIPAL FINDINGS: Here we show that a first-in-class inhibitor of nuclear import, cSN50 peptide, affords in vivo islet protection following a 2-day course of intense treatment in NOD mice, which resulted in a diabetes-free state for one year without apparent toxicity. This nuclear import inhibitor precipitously reduces the accumulation of islet-destructive autoreactive lymphocytes while enhancing activation-induced cell death of T and B lymphocytes derived from autoimmune diabetes-prone, non-obese diabetic (NOD mice that develop T1D. Moreover, in this widely used model of human T1D we noted attenuation of pro-inflammatory cytokine and chemokine production in immune cells. CONCLUSIONS: These results indicate that a novel form of immunotherapy that targets nuclear import can arrest inflammation-driven destruction of insulin-producing beta cells at the site of autoimmune attack within pancreatic islets during the progression of T1D.

  19. Activin B regulates islet composition and islet mass but not whole body glucose homeostasis or insulin sensitivity

    Science.gov (United States)

    Bonomi, Lara; Brown, Melissa; Ungerleider, Nathan; Muse, Meghan; Matzuk, Martin M.

    2012-01-01

    Based on the phenotype of the activin-like kinase-7 (ALK7)-null mouse, activins A and B have been proposed to play distinct roles in regulating pancreatic islet function and glucose homeostasis, with activin A acting to enhance islet function and insulin release while activin B antagonizes these actions. We therefore hypothesized that islets from activin B-null (BBKO) mice would have enhanced glucose-stimulated insulin secretion. In addition, we hypothesized that this enhanced islet function would translate into increased whole body glucose tolerance. We tested these hypotheses by analyzing glucose homeostasis, insulin secretion, and islet function in BBKO mice. No differences were observed in fasting glucose or insulin levels, glucose tolerance, or insulin sensitivity compared with weight-matched young or older males. Similarly, there were no significant differences in insulin secretion comparing islets from WT or BBKO males at either age. However, BBKO islets were more sensitive to activin A, myostatin (MSTN), and follistatin (FST) treatments, so that activin A and FST inhibited and MSTN enhanced glucose stimulated insulin secretion. While mean islet area and the distribution of islet areas were not different between the genotypes, islet mass, islet number, and the proportion of α-cells/islet were significantly reduced in BBKO islets. These results indicate that activin B does not antagonize activin A to influence whole body glucose homeostasis or β-cell function but does influence islet mass and proportion of α-cells/islet. Therefore, loss of activin B signaling alone does not account for the ALK7-null phenotype, but activin B may have important roles in modulating islet mass, islet number, and the cellular composition of islets. PMID:22739106

  20. Zebularine induces long-term survival of pancreatic islet allotransplants in streptozotocin treated diabetic rats.

    Directory of Open Access Journals (Sweden)

    Henrietta Nittby

    Full Text Available BACKGROUND: Coping with the immune rejection of allotransplants or autologous cells in patients with an active sensitization towards their autoantigens and autoimmunity presently necessitates life-long immune suppressive therapy acting on the immune system as a whole, which makes the patients vulnerable to infections and increases their risk of developing cancer. New technologies to induce antigen selective long-lasting immunosuppression or immune tolerance are therefore much needed. METHODOLOGY/PRINCIPAL FINDINGS: The DNA demethylating agent Zebularine, previously demonstrated to induce expression of the genes for the immunosuppressive enzymes indolamine-2,3-deoxygenase-1 (IDO1 and kynureninase of the kynurenine pathway, is tested for capacity to suppress rejection of allotransplants. Allogeneic pancreatic islets from Lewis rats were transplanted under the kidney capsule of Fischer rats previously made diabetic by a streptozotocin injection (40 mg/kg. One group was treated with Zebularine (225 mg/kg daily for 14 days from day 6 or 8 after transplantation, and a control group received no further treatment. Survival of the transplants was monitored by blood sugar measurements. Rats, normoglycemic for 90 days after allografting, were subjected to transplant removal by nephrectomy to confirm whether normoglycemia was indeed due to a surviving insulin producing transplant, or alternatively was a result of recovery of pancreatic insulin production in some toxin-treated rats. Of 9 Zebularine treated rats, 4 were still normoglycemic after 90 days and became hyperglycemic after nephrectomy. The mean length of normoglycemia in the Zebularine group was 67±8 days as compared to 14±3 days in 9 controls. Seven rats (2 controls and 5 Zebularine treated were normoglycemic at 90 days due to pancreatic recovery as demonstrated by failure of nephrectomy to induce hyperglycemia. CONCLUSIONS/SIGNIFICANCE: Zebularine treatment in vivo induces a long

  1. Production of the main celiac disease autoantigen by transient expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Vanesa Soledad Marin Viegas

    2015-12-01

    Full Text Available Celiac Disease (CD is a gluten sensitive enteropathy that remains widely undiagnosed and implementation of massive screening tests is needed to reduce the long term complications associated to untreated CD. The main CD autoantigen, human tissue transglutaminase (TG2, is a challenge for the different expression systems available since its cross-linking activity affects cellular processes. Plant-based transient expression systems can be an alternative for the production of this protein. In this work, a transient expression system for the production of human TG2 in Nicotiana benthamiana leaves was optimized and reactivity of plant-produced TG2 in CD screening test was evaluated. First, a subcellular targeting strategy was tested. Cytosolic, secretory, endoplasmic reticulum (C-terminal SEKDEL fusion and vacuolar (C-terminal KISIA fusion TG2 versions were transiently expressed in leaves and recombinant protein yields were measured. ER-TG2 and vac-TG2 levels were 9 to 16 fold higher than their cytosolic and secretory counterparts. As second strategy, TG2 variants were co-expressed with a hydrophobic elastin-like polymer (ELP construct encoding for 36 repeats of the pentapeptide VPGXG in which the guest residue X were V and F in ratio 8:1. Protein bodies (PB were induced by the ELP, with a consequent 2 fold-increase in accumulation of both ER-TG2 and vac-TG2. Subsequently, ER-TG2 and vac-TG2 were produced and purified using immobilized metal ion affinity chromatography. Plant purified ER-TG2 and vac-TG2 were recognized by three anti-TG2 monoclonal antibodies that bind different epitopes proving that plant-produced antigen has immunochemical characteristics similar to those of human TG2. Lastly, an ELISA was performed with sera of CD patients and healthy controls. Both vac-TG2 and ER-TG2 were positively recognized by IgA of CD patients while they were not recognized by serum from non-celiac controls. These results confirmed the usefulness of plant

  2. Islet Oxygen Consumption Rate (OCR Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    Directory of Open Access Journals (Sweden)

    Klearchos K Papas

    Full Text Available Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR in predicting clinical islet autotransplant (IAT insulin independence (II. IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity.Membrane integrity staining (FDA/PI, OCR normalized to DNA (OCR/DNA, islet equivalent (IE and OCR (viable IE normalized to recipient body weight (IE dose and OCR dose, and OCR/DNA normalized to islet size index (ISI were used to characterize autoislet preparations (n = 35. Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis.Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001. These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC = 0.94 for IE dose and 0.96 for OCR dose. FDA/PI (AUC = 0.49 and OCR/DNA (AUC = 0.58 did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72.Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  3. Assessment of Toxicological Perturbations and Variants of Pancreatic Islet Development in the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Karilyn E. Sant

    2016-09-01

    Full Text Available The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio. Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf, raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf, Mono-2-ethylhexyl phthalate (MEHP (3–48 hpf, and Perfluorooctanesulfonic acid (PFOS (3–48 hpf. Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf. Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease.

  4. Protein phosphatase 1 (PP-1)-dependent inhibition of insulin secretion by leptin in INS-1 pancreatic β-cells and human pancreatic islets.

    Science.gov (United States)

    Kuehnen, Peter; Laubner, Katharina; Raile, Klemens; Schöfl, Christof; Jakob, Franz; Pilz, Ingo; Päth, Günter; Seufert, Jochen

    2011-05-01

    Leptin inhibits insulin secretion from pancreatic β-cells, and in turn, insulin stimulates leptin biosynthesis and secretion from adipose tissue. Dysfunction of this adipoinsular feedback loop has been proposed to be involved in the development of hyperinsulinemia and type 2 diabetes mellitus. At the molecular level, leptin acts through various pathways, which in combination confer inhibitory effects on insulin biosynthesis and secretion. The aim of this study was to identify molecular mechanisms of leptin action on insulin secretion in pancreatic β-cells. To identify novel leptin-regulated genes, we performed subtraction PCR in INS-1 β-cells. Regulated expression of identified genes was confirmed by RT-PCR and Northern and Western blotting. Furthermore, functional impact on β-cell function was characterized by insulin-secretion assays, intracellular Ca²(+) concentration measurements, and enzyme activity assays. PP-1α, the catalytic subunit of protein phosphatase 1 (PP-1), was identified as a novel gene down-regulated by leptin in INS-1 pancreatic β-cells. Expression of PP-1α was verified in human pancreatic sections. PP-1α mRNA and protein expression is down-regulated by leptin, which culminates in reduction of PP-1 enzyme activity in β-cells. In addition, glucose-induced insulin secretion was inhibited by nuclear inhibitor of PP-1 and calyculin A, which was in part mediated by a reduction of PP-1-dependent calcium influx into INS-1 β-cells. These results identify a novel molecular pathway by which leptin confers inhibitory action on insulin secretion, and impaired PP-1 inhibition by leptin may be involved in dysfunction of the adipoinsular axis during the development of hyperinsulinemia and type 2 diabetes mellitus.

  5. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  6. Structural Basis for Recognition and Sequestration of UUUOH 3 ' Temini of Nascent RNA Polymerase III Transcripts by La, a Rheumatic Disease Autoantigen

    Energy Technology Data Exchange (ETDEWEB)

    Teplova,M.; Yuan, Y.; Phan, A.; Malinina, L.; Ilin, S.; Teplov, A.; Patel, D.

    2006-01-01

    The nuclear phosphoprotein La was identified as an autoantigen in patients with systemic lupus erythematosus and Sjogren's syndrome. La binds to and protects the UUUOH 3' terminii of nascent RNA polymerase III transcripts from exonuclease digestion. We report the 1.85 Angstroms crystal structure of the N-terminal domain of human La, consisting of La and RRM1 motifs, bound to r(U1-G2-C3-U4-G5-U6-U7-U8-U9OH). The U7-U8-U9OH 3' end, in a splayed-apart orientation, is sequestered within a basic and aromatic amino acid-lined cleft between the La and RRM1 motifs. The specificity-determining U8 residue bridges both motifs, in part through unprecedented targeting of the {beta} sheet edge, rather than the anticipated face, of the RRM1 motif. Our structural observations, supported by mutation studies of both La and RNA components, illustrate the principles behind RNA sequestration by a rheumatic disease autoantigen, whereby the UUUOH 3' ends of nascent RNA transcripts are protected during downstream processing and maturation events.

  7. Mesenchymal stem cells as feeder cells for pancreatic islet transplants.

    OpenAIRE

    2010-01-01

    Allogeneic islet transplantation serves as a source of insulin-secreting beta-cells for the maintenance of normal glucose levels and treatment of diabetes. However, limited availability of islets, high rates of islet graft failure, and the need for life-long non-specific immunosuppressive therapy are major obstacles to the widespread application of this therapeutic approach. To overcome these problems, pancreatic islet transplantation was recently suggested as a potential target of the "thera...

  8. Autoantigenic proteins that bind recombinogenic sequences in Epstein-Barr virus and cellular DNA.

    OpenAIRE

    1994-01-01

    We have identified conserved autoantigenic cellular proteins that bind to G-rich sequence motifs in recombinogenic regions of Epstein-Barr virus (EBV) DNA. This binding activity, called TRBP, recognizes the EBV terminal repeats, a locus responsible for interconversion of linear and circular EBV DNA. We found that TRBP also binds to EBV DNA sequences involved in deletion of EBNA2, a gene product required for immortalization. We show that TRBP binds sequences present in repetitive cellular DNA,...

  9. Heterogeneous nuclear ribonucleoproteins C1/C2 identified as autoantigens by biochemical and mass spectrometric methods

    DEFF Research Database (Denmark)

    Heegaard, N H; Larsen, Martin Røssel; Muncrief, T

    2000-01-01

    The antigenic specificity of an unusual antinuclear antibody pattern in three patient sera was identified after separating HeLa-cell nuclear extracts by two-dimensional (2D) gel electrophoresis and localizing the antigens by immunoblotting with patient serum. Protein spots were excised from the 2......-separation methods and mass-spectrometric peptide mapping in combination with database searches are powerful tools in the identification of novel autoantigen specificities....

  10. Renal adenocarcinoma, hepatocellular carcinoma, and pancreatic islet cell carcinoma in a binturong (Arctictis binturong).

    Science.gov (United States)

    Klaphake, Eric; Shoieb, Ahmed; Ramsay, Ed; Schumacher, Juergen; Craig, Linden

    2005-03-01

    A 19-yr-old binturong (Arctictis binturong) with acute upper respiratory disease was euthanized. Postmortem findings included hepatocellular carcinoma, pancreatic islet cell carcinoma, and renal adenocarcinoma with metastasis to the spleen, pleura, and pericardium. A link between primary hepatic and renal neoplasms has been noted in older humans.

  11. Exploration of α1-antitrypsin treatment protocol for islet transplantation: dosing plan and route of administration.

    Science.gov (United States)

    Baranovski, Boris M; Ozeri, Eyal; Shahaf, Galit; Ochayon, David E; Schuster, Ronen; Bahar, Nofar; Kalay, Noa; Cal, Pablo; Mizrahi, Mark I; Nisim, Omer; Strauss, Pnina; Schenker, Eran; Lewis, Eli C

    2016-11-07

    Life-long weekly infusions of human α1-antitrypsin (hAAT) are currently administered as augmentation therapy for patients with genetic AAT deficiency (AATD). Several recent clinical trials attempt to extend hAAT therapy to conditions outside AATD, including type 1 diabetes. Since the endpoint for AATD is primarily the reduction of risk for pulmonary emphysema, the present study explores hAAT dose protocols and routes of administration in attempt to optimize hAAT therapy for islet-related injury. Islet-grafted mice were treated with hAAT (Glassia™; i.p. or s.c.) under an array of clinically relevant dosing plans. Serum hAAT and immunocyte cell membrane association were examined, as well as parameters of islet survival. Results indicate that dividing the commonly prescribed 60 mg/kg i.p. dose to three 20 mg/kg injections is superior in affording islet graft survival; in addition, a short dynamic descending dose protocol (240→120→60→60 mg/kg i.p.) is comparable in outcomes to indefinite 60 mg/kg injections. While hAAT pharmacokinetics after i.p. administration in mice resembles exogenous hAAT treatment in humans, s.c. administration better imitated the physiological progressive rise of hAAT during acute phase responses; nonetheless, only the 60 mg/kg dose depicted an advantage using the s.c. route. Taken together, this study provides a platform for extrapolating an islet-relevant clinical protocol from animal models that use hAAT to protect islets. In addition, the study places emphasis on outcome-oriented analyses of drug efficacy, particularly important when considering that hAAT is presently at an era of drug-repurposing towards an extended list of clinical indications outside genetic AATD.

  12. Microwell scaffolds for the extrahepatic transplantation of islets of langerhans

    NARCIS (Netherlands)

    Buitinga, M.; Truckenmuller, R.; Engelse, M.A.; Moroni, L.; Ten Hoopen, H.W.; van Blitterswijk, C.A.; de Koning, E.J.; van Apeldoorn, A.A.; Karperien, M.

    2013-01-01

    Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. Thi

  13. Effects of Acute Cytomegalovirus Infection on Rat Islet Allograft Survival

    NARCIS (Netherlands)

    Smelt, M. J.; Faas, M. M.; Melgert, B. N.; de Vos, P.; de Haan, Bart; de Haan, Aalzen

    2011-01-01

    Transplantation of pancreatic islets is a promising therapy for the treatment of type 1 diabetes mellitus. However, long-term islet graft survival rates are still unsatisfactory low. In this study we investigated the role of cytomegalovirus (CMV) in islet allograft failure. STZ-diabetic rats receive

  14. Effects of growth hormone, prolactin, and placental lactogen on insulin content and release, and deoxyribonucleic acid synthesis in cultured pancreatic islets

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1982-01-01

    The direct effects of human GH (hGH), ovine pituitary PRL (oPRL), and human chorionic somatomammotropin [placental lactogen (hPL)] on the endocrine pancreas were studied in isolated pancreatic islets maintained in tissue culture. Islets of Langerhans were isolated by collagenase treatment of panc...... and related hormones have a direct stimulatory effect on both the insulin production and DNA synthesis in isolated islets of Langerhans. Whether the effect is directly on the beta-cell or mediated via locally produced growth factors remains to be determined....

  15. The Study of Non-Viral Nanoscale Delivery Systems for Islet Transplantation

    Science.gov (United States)

    Gutierrez, Diana

    Due to safety concerns associated with using viral systems clinically to expand islet cells and make them available to many more patients, significant emphasis has been placed on producing a safe and effective non-viral delivery system for biological research and gene therapy. To obtain this goal, we propose the use of an innovative technology that utilizes gold nanoparticles (AuNPs) as a non-viral method of delivery. Our laboratory was one of the first to describe the use of AuNPs in human islets and observe AuNPs can penetrate into the core of islets to deliver a gene to the vast majority of the cells, without damaging the cell. Gold nanoparticles proved to be a biocompatible delivery system both in vitro and in vivo. Thus far, gene therapy and molecular biology have focused primarily on delivering DNA of a specific gene into cells. The risk of this approach is that the DNA can be permanently incorporated into the genome and lead to damages in the cell that could result in overexpression of cancerous tumor cells. This risk does not exist with the use of mRNA. Many researchers believe mRNA is too unstable to be used as a molecular tool to overexpress specific proteins. With advances in nanotechnology, and better understanding of the translation process, methods have been developed that allow for expression of specific proteins by intracellular delivery of protein-encoding mRNA. We used AuNPs conjugated to mCherry mRNA to establish a proof of concept of the feasibility of using AuNP-mRNA to achieve increased expression of a specific protein within cells. To do this, we conjugated mCherry mRNA to AuNPs and tested the feasibility for increasing delivery efficacy and preserve functionality of human pancreatic islets. We believe that with this novel technology we can create AuNPs that allow specific mRNA to enter islets and lead to the production of a specific protein within the cell, with the aim to induce beta cell proliferation. In a previous experiment with single

  16. Xenotransplantation of piscine islets into hyperglycemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.; Weil, R. III; McIntosh, R.; Hogle, H.; Warden, G.; Reemtsma, K.

    1975-02-01

    Xenotransplantation of piscine islets into hyperglycemic rats usually lowers the blood sugar level of the recipient. The duration of this effect is prolonged by irradiation of the host or by enclosing donor tissue in synthetic envelopes. This prolongation appears to be related to interference with the host's ability to reject the graft; the duration of the prolongation may be limited by the host tissue reaction surrounding the envelope. The availability of anatomically separate piscine islet tissue makes it potentially useful for xenotransplantation into mammals.

  17. Paradoxical effect of pertussis toxin on the delayed hypersensitivity response to autoantigens in mice.

    Directory of Open Access Journals (Sweden)

    Rajwahrdhan Yadav

    Full Text Available BACKGROUND: Pertussis toxin (PTX, an exotoxin of Bordetella pertussis, enhances the development of experimental autoimmune diseases such as experimental autoimmune uveitis (EAU and experimental autoimmune encephalomyelitis (EAE in rodent models. The mechanisms of the promotion of experimental autoimmune diseases by PTX may be based upon PTX-induced disruption of the blood eye/brain barriers facilitating the infiltration of inflammatory cells, the modulation of inflammatory cell migration and the enhancement of the activation of inflammatory cells. We hypothesized that the facilitation of experimental autoimmunity by PTX suggests that its influence on the in vivo immune response to auto-antigen may differ from its influence on non-self antigens. METHODOLOGY/PRINCIPAL FINDINGS: We have evaluated the effect of PTX on the simultaneous generation of delayed type hypersensitivity (DTH responses and autoimmune responses to uveitogenic interphotoreceptor retinoid binding protein peptide (IRBP161-180, encephalitogenic myelin oligodendrocyte glycoprotein peptide (MOG35-55 or ovalbumin (OVA. PTX injection of mice immunized to IRBP peptide161-180 led to (i the development of EAU as shown by histopathology of the retina, (ii pro-inflammatory cytokine production by splenocytes in response to IRBP peptide161-180, and (iii symptomatic EAE in mice immunized with encephalitogenic MOG peptide35-55. However, mice that received PTX had a reduced DTH response to IRBP161-180 peptide or MOG peptide35-55 when challenged distal to the site affected by autoreactive T cells. Moreover, footpad challenge with MOG35-55 peptide reduced EAE in mice immunized with MOG peptide. In contrast, the use of PTX when immunizing with OVA protein or an OVA immunogenic peptide did not affect the DTH response to OVA. CONCLUSIONS/SIGNIFICANCE: The results suggest that that the reduced DTH response in mice receiving PTX may be specific for autoantigens and autoantigen-reactive T cells are

  18. Inhibition of Insulin-Degrading Enzyme Does Not Increase Islet Amyloid Deposition in Vitro.

    Science.gov (United States)

    Hogan, Meghan F; Meier, Daniel T; Zraika, Sakeneh; Templin, Andrew T; Mellati, Mahnaz; Hull, Rebecca L; Leissring, Malcolm A; Kahn, Steven E

    2016-09-01

    Islet amyloid deposition in human type 2 diabetes results in β-cell loss. These amyloid deposits contain the unique amyloidogenic peptide human islet amyloid polypeptide (hIAPP), which is also a known substrate of the protease insulin-degrading enzyme (IDE). Whereas IDE inhibition has recently been demonstrated to improve glucose metabolism in mice, inhibiting it has also been shown to increase cell death when synthetic hIAPP is applied exogenously to a β-cell line. Thus, we wanted to determine whether a similar deleterious effect is observed when hIAPP is endogenously produced and secreted from islets. To address this issue, we cultured hIAPP transgenic mouse islets that have the propensity to form amyloid for 48 and 144 hours in 16.7 mM glucose in the presence and absence of the IDE inhibitor 1. At neither time interval did IDE inhibition increase amyloid formation or β-cell loss. Thus, the inhibition of IDE may represent an approach to improve glucose metabolism in human type 2 diabetes, without inducing amyloid deposition and its deleterious effects.

  19. Islet-intrinsic effects of CFTR mutation.

    Science.gov (United States)

    Koivula, Fiona N Manderson; McClenaghan, Neville H; Harper, Alan G S; Kelly, Catriona

    2016-07-01

    Cystic fibrosis-related diabetes (CFRD) is the most significant extra-pulmonary comorbidity in cystic fibrosis (CF) patients, and accelerates lung decline. In addition to the traditional view that CFRD is a consequence of fibrotic destruction of the pancreas as a whole, emerging evidence may implicate a role for cystic fibrosis transmembrane-conductance regulator (CFTR) in the regulation of insulin secretion from the pancreatic islet. Impaired first-phase insulin responses and glucose homeostasis have also been reported in CF patients. CFTR expression in both human and mouse beta cells has been confirmed, and recent studies have shown differences in endocrine pancreatic morphology from birth in CF. Recent experimental evidence suggests that functional CFTR channels are required for insulin exocytosis and the regulation of membrane potential in the pancreatic beta cell, which may account for the impairments in insulin secretion observed in many CF patients. These novel insights suggest that the pathogenesis of CFRD is more complicated than originally thought, with implications for diabetes treatment and screening in the CF population. This review summarises recent emerging evidence in support of a primary role for endocrine pancreatic dysfunction in the development of CFRD. Summary • CF is an autosomal recessive disorder caused by mutations in the CFTR gene • The vast majority of morbidity and mortality in CF results from lung disease. However CFRD is the largest extra-pulmonary co-morbidity and rapidly accelerates lung decline • Recent experimental evidence shows that functional CFTR channels are required for normal patterns of first phase insulin secretion from the pancreatic beta cell • Current clinical recommendations suggest that insulin is more effective than oral glucose-lowering drugs for the treatment of CFRD. However, the emergence of CFTR corrector and potentiator drugs may offer a personalised approach to treating diabetes in the CF population.

  20. Isolation and culture of adult Sertoli cells and their effects on the function of co-cultured allogeneic islets in vitro

    Institute of Scientific and Technical Information of China (English)

    TENG Yan; XUE Wu-jun; DING Xiao-ming; FENG Xin-shun; XIANG He-li; JIANG Ya-zhuo; TIAN Pu-xun

    2005-01-01

    Background Globally, 180 million people suffer from diabetes mellitus. Islet transplantation is believed to be an almost ideal therapy for insulin-dependent patients. How to maintain the viability and the function of isolated human islets is a challenge in clinical practice. Sertoli cells are considered ‘nurse cells'in the seminiferous tubules and have been used in cell graft protocols for neurodegenerative diseases and diabetes in many studies. Many researchers have used immature murine testes as the primarily source of Sertoli cells in islet transplantation because they are easily purified. Mature human Sertoli cells have been seldom investigated. In the present study, we developed a method for the isolation and culture of Sertoli cells derived from adult human testes, and investigated their effects on the function of allogeneic islets when they were cultured together in vitro. Methods Adult Sertoli cells were prepared successfully by two-step enzyme digestion with trypsin, collagenase and hyaluronidase. They were identified by morphological characteristics and their activity was determined by MTT colorimetry over a 28-day culture time in vitro. A glucose-stimulated insulin secretion test was performed to detect the effects of Sertoli cells on allogeneic islets' function when they were co-cultured for 21 days in vitro. Results In cultured cells, mature human Sertoli cells accounted for more than 90% of total cells. The activity of Sertoli cells reached 95% and they remained highly cytoactive for a long time in vitro (P>0.05). Compared with the islets cultured alone, the co-cultured islets with allogeneic Sertoli cells maintained higher sensitivity to glucose stimulation for the duration of the experiment (P<0.01). Conclusions A method of isolation and culture of Sertoli cells from adult testes has been established. Sertoli cells could enhance allogeneic islets' function when they were co-cultured in vitro. They could be a helper cell in islet transplantation.

  1. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs. HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1, insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of

  2. Separation of empty microcapsules after microencapsulation of porcine neonatal islets.

    Science.gov (United States)

    Shin, Soojeong; Yoo, Young Je

    2013-12-01

    Pancreatic islet transplantation is used to treat diabetes mellitus that has minimal complications and avoids hypoglycemic shock. Conformal microencapsulation of pancreatic islets improves their function by blocking immunogenic molecules while protecting fragile islets. However, production of empty alginate capsules during microencapsulation causes enlargement of the transplantation volume of the encapsulated islets and interferes with efficient transfer of nutrients and insulin. In this study, empty alginate capsules were separated after microencapsulation of neonatal porcine islet-like cell clusters (NPCC) using density-gradient centrifugation. Densities of NPCC and alginate capsules were determined using Percoll. Encapsulation products following alginate removal were 97 % of products, with less than 10 % of the capsules remaining empty. The viability of this process compared with manually-selected encapsulated islets indicates the separation process does not harm islets.

  3. Is islet transplantation ready for widespread use in diabetes?

    Institute of Scientific and Technical Information of China (English)

    WANG Jin; WANG Qing-hua; XIA Tian; TAN Jian-ming

    2011-01-01

    Up till 2000 when Edmonton group introduced islet transplant procedure in conjunction with a novel glucocorticoid-free immunosuppressive regimen rendering 100% (n=7) of patients with type 1 diabetes insulin-independent for at least 1 year, islet transplant was taken into the clinic. Although significant progress in clinical islet transplant has occurred during recent years, challenges remain, including shortage of available donor organs, technical aspects of islet preparation and transplantation, immunological rejection post-transplant, unclear long-term outcomes of islet transplantation. Special attention is given to current limitation in islet transplantation together with new possible strategies that raise expectations for the widespread use of islet transplantation in the future.

  4. The influence of porcine pancreas digestion parameters and islet histomorphology on islet isolation outcome.

    Science.gov (United States)

    Kinasiewicz, J; Sabat, M; Antosiak-Iwańska, M; Godlewska, E; Sitarek, E; Orłowski, T

    2011-01-01

    Transplantation of the pig islets of Langerhans is considered as the future treatment for patients suffering from type I diabetes mellitus. Despite the adaptation of modified Ricordi method and highly purified collagenase, the results of pancreas digestions are precarious. Selection of proper donor and optimal digestion procedure are fundamental. The aim of this study was to assess the impact of pancreas procuring parameters on pig islets yield. The pancreata were harvested from 69 market sows weighting over 150 kg. After intraductal injection of cold collagenase solution pancreata were transported in UW solution or under conditions of two layer method (TLM). In laboratory pancreata were digested at 37 degrees C according to Ricordi isolation method or stationary in the bottle. The particular parameters of isolation procedure were considered as substantial. Pig weight, volume of infused collagenase solution, TLM application and pancreas dividing before digestion positively affected islet yield. Additionally, the influence of pancreatic islet tissue histomorphology on isolation outcome was studied. Proper donor selection as well as adequate digestion parameters could improve pig islet recovery during islet isolation.

  5. Transplantation of human embryonic stem cells derived pancreatic progenitors and islets corrects diabetes in NOD/SCID mice%人胚胎干细胞体外定向诱导分化胰腺前体细胞及胰岛细胞移植治疗NOD/SCID糖尿病小鼠

    Institute of Scientific and Technical Information of China (English)

    华秀峰; 孙强; 李华峰; 孟晓梅; 王延伟; 于胜强; 丛晋; 刘芙君; 靳少华

    2014-01-01

    Objective To investigate whether pancreatic progenitors and islets differentiated from human embryonic stem cells(hESCs) could correct hyperglycemia in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice.Methods We obtained pancreatic progenitors and islets derived from hES cells line YT1 according to the optimized four-stage differentiation protocol.Stage 1:definitive endoderm formation; Stage 2:pan creatic specialization; Stage 3:amplification of pancreatic progenitors,Stage 4:maturation of pancreatic islets.To observe the morphological changes of each stage and immunofluorescent expression of pancreatic and duodenal homeobox gene(PDX-1),glucagon,insulin,C-peptide,glucose transporter-2(Glut-2).The differentiated cells from stage 3 and stage 4 were then transplanted into one of the epididymal fat pads(EFP) of NOD/SCID mice.The survival and function of the graft were measured by immunohistochemistry and blood glucose monitor.Results The stage 4-differentiated pancreatic islets expressed mature β cell-specific markers such as glucagon,insulin and Glut 2,and even PDX-1 and C-peptide-double-positive.The stage 4-pancreatic islets had nearly 17.1% insulin-positive cells as assayed by flow cytometry analysis.Differentiated pancreatic islets released insulin/C-peptide in response to glucose stimulation.After implantation into EFP of NOD/SCID mice,hES cell-derived human pancreatic progenitors and islets corrected hyperglycemia for at least 12 weeks.Conclusions Pancreatic progenitors and islets differentiated from hESCs can correct hyperglycemia in NOD/SCID mice.%目的 探讨人胚胎干细胞(human embryonic stem cells,hESCs)体外定向诱导分化胰腺前体细胞及胰岛细胞移植治疗非肥胖糖尿病/严重联合免疫缺陷(non-obese diabetic/severe combined immunodeficient,NOD/SCID)小鼠的可行性.方法 体外分4阶段诱导hESCs定向分化为胰岛细胞:①诱导分化形成定型内胚层;②诱导胰腺细胞定向分化;③扩增

  6. Mitis group streptococci express variable pilus islet 2 pili.

    Directory of Open Access Journals (Sweden)

    Dorothea Zähner

    Full Text Available BACKGROUND: Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2-encoded pili to facilitate adhesion to eukaryotic cells. METHODOLOGY/PRINCIPAL FINDINGS: PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. CONCLUSIONS/SIGNIFICANCE: This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to

  7. Islet transplantation in type 1 diabetes

    NARCIS (Netherlands)

    de Kort, H.; de Koning, E.; Rabelink, T.; Bruijn, J.A.; Bajema, I.

    2011-01-01

    Hanneke de Kort, research fellow1, Eelco J de Koning, associate professor, head of clinical islet transplantation programme234, Ton J Rabelink, professor of medicine, chair of department of nephrology2, Jan A Bruijn, professor immunopathology1, Ingeborg M Bajema, renal and transplantation pathologis

  8. Immune tolerance in pancreatic islet xenotransplantation

    Institute of Scientific and Technical Information of China (English)

    Tian-Hua Tang; Chun-Lin Li; Xin Li; Feng-Qin Jiang; Yu-Kun Zhang; Hai-Quan Ren; Shan-Shan Su; Guo-Sheng Jiang

    2004-01-01

    AIM: To observe the effect of tail vein injection with donor hepatocytes and/or splenocytes on the islet xenotransplantation rejection.METHODS: New-bom male pigs and BALB/C mice were selected as donors and recipients respectively. Islet xenotransplantation was performed in recipients just after the third time of tail vein injection with donor hepatocytes and/or splenocytes.Macrophage phagocytosis, NK(natural killing cell) killing activity, T lymphocyte transforming function of spleen cells,antibody forming function of B lymphocytes, and T lymphocyte subsets were taken to monitor transplantation rejection. The effects of this kind of transplantation were indicated as variation of blood glucose and survival days of recipients.RESULTS: The results showed that streptozotocin (STZ) could induce diabetes mellitus models of mice. The preinjection of donor hepatocytes, splenocytes or their mixture by tail vein injection was effective in preventing donor islet transplantation from rejection, which was demonstrated by the above-mentioned immunological marks. Each group of transplantation could decrease blood glucose in recipients and increase survival days. Pre-injection of mixture of donor hepatocytes and splenocytes was more effective in preventing rejection as compared with that of donor hepatocyte or splenocyte pre-injection respectively.CONCLUSION: Pre-injection of donor hepatocytes, splenocytes or their mixture before donor islet transplantation is a good way in preventing rejection.

  9. Limitations in the Use of Fluorescein Diacetate/Propidium Iodide (FDA/PI) and Cell Permeable Nucleic Acid Stains for Viability Measurements of Isolated Islets of Langerhans.

    Science.gov (United States)

    Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K

    2008-03-01

    BACKGROUND: A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO(R)13, SYTO(R)24 and SYBR(R)14 as possible alternatives to FDA. RESULTS: We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO(R)13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. CONCLUSIONS: From a review of the literature and from our observations on

  10. Lagoon islets as indicators of recent environmental changes in the South Pacific - The New Caledonian example

    Science.gov (United States)

    Garcin, Manuel; Vendé-Leclerc, Myriam; Maurizot, Pierre; Le Cozannet, Gonéri; Robineau, Bernard; Nicolae-Lerma, Alexandre

    2016-07-01

    The question of the impacts of climate change and sea level rise on small islands is currently much discussed. The many thousands of Pacific islands in their different contexts (geodynamic, climatic, etc.) and the insufficient data available explain why it is difficult to clearly discern the specific role of climate change in the recent evolution of these islands. To address this question, we investigated the recent changes affecting 21 islets in New Caledonia's lagoon. These islets are either located on small patch-reefs inside the New Caledonia Island lagoon or lie directly on the barrier reef. Based on the studies we conducted (field surveys, reconstruction of changes in the islets over the last decades, shoreline changes) we were able to define a typology of the islets that includes 6 stages and a life expectancy index. Using the life expectancy index, we found that of the 21 islets studied, 19% are in a highly critical situation, meaning they are very likely to be endangered in the short term (within the next few years), 9.5% are in a critical situation, i.e., likely to disappear in the near future and very likely to disappear in the medium term (next few decades), 19% are evolving rapidly, which could lead to their disappearance in the medium term but not in the short term, 9.5% are not endangered in the short and medium term and 43% are not endangered at all (stable or accreting, large area, relatively higher altitude). In this context, the rise in sea level induced by climate change is an adverse factor which is likely to lower the resilience of the islets to erosion processes. Other factors like the degradation of the reef ecosystem due to variations in ocean salinity, temperature and acidity, lower sediment stocks on the beaches and foreshores, human visitors, coastal development and so on are other adverse factors that could modify the capacity for resilience of these islets. Due to their variety and sensitivity, New Caledonia's islets could thus serve

  11. Management of nonfunctioning islet cell tumors

    Institute of Scientific and Technical Information of China (English)

    Han Liang; Pu Wang; Xiao-Na Wang; Jia-Cang Wang; Xi-Shan Hao

    2004-01-01

    AIM: To more clearly define the clinical and pathological characteristics and appropriate diagnosis and treatment of nonfunctioning (NFICTs) islet cell tumors, and to review our institutional experience over the last 30 years.METHODS: The records of 43 patients confirmed to have nonfunctioning islet cell tumors of pancreas were retrospectively reviewed. Survival was estimated by the Kaplan-Meier methods and potential risk factors for survival were compared with the log-rank tests.RESULTS: The mean age was 31.63 years (range, 8 to 67 years). There were 7 men and 36 women. Twentyeight patients had a confirmed diagnosis of nonfunctioning islet cell carcinoma (NFICC) and benign islet cell tumors were found in 15 patients. The most common symptoms in patients with NFICTs were abdominal pain (55.8%),nausea and/or vomiting (32.6%), fatigue (25.6%) and abdominal mass (23.3%). Preoperative ultrasonic and computed tomography localized the tumors in all patients.Forty-three NFICTs were distributed throughout the pancreas, with 21 located to the right of the superior mesenteric vessels, 10 in the body of the pancreas, 6 in the tail of the pancreas, and multiple tumors were found in one patient. Thirty-nine of 43 patients (91%) underwent surgical resection. Surgical treatment was curative in 30patients (70%) and palliative in 9(21%). The resectability and curative resection rate in patients with NFICC of pancreas were 89% and 61%, respectively. The overall cumulative 5- and 10-year survival rates for patients with NFICC were 58.05% and 29.03%, respectively. Radical operation and diameter of cancer small than :10 cm were positive prognostic factors in females younger than 30years old. Multivariate Cox regression analysis indicated that radical operation was the only independent prognostic factor, P=0.007.CONCLUSION: Nonfunctioning islet cell tumors of pancreas are found mainly in young women. The long-term results for patients undergone surgery, especially curative resection are

  12. The Langerhans islet cells of female rabbits are differentially affected by hypothyroidism depending on the islet size.

    Science.gov (United States)

    Rodríguez-Castelán, J; Nicolás, L; Morimoto, S; Cuevas, E

    2015-04-01

    Effects of hypothyroidism on the glucose and insulin levels are controversial, and its impact on the Langerhans islet morphology of adult subjects has been poorly addressed. In spite of hypothyroidism and diabetes mellitus are more frequent in females than in males, most studies using animal models have been done in males. The effect of hypothyroidism on the immunolabeling of thyroid hormone receptors (TRs) and thyrotropin receptor (TSHR) of islet cells is unknown. The aim of this study was to determine the effect of hypothyroidism on the glucose and insulin concentrations, morphometry of islets, and immunostaining of TRs α1-2 and β1 and TSHR of islet cells in female rabbits. Control and hypothyroid (0.02% of methimazole for 30 days) animals were used to quantify blood levels of glucose and insulin, density of islets, cross-sectional area (CSA) of islets, number of cells per islet, cell proliferation, and the immunolabeling of TRs α1-2, TRβ1, and TSHR. Student's t or Mann-Whitney-U tests, two-way ANOVAs, and Fischer's tests were applied. Concentrations of glucose and insulin, as well as the insulin resistance were similar between groups. Hypothyroidism did not affect the density or the CSA of islets. The analysis of islets by size showed that hypothyroidism reduced the cell number in large and medium islets, but not in small ones. In small islets, cell proliferation was increased. The immunoreactivity of TRα1-2, TRβ1, and TSHR was increased by hypothyroidism in all islet sizes. Our results show that hypothyroidism affects differentially the islet cells depending on the size of islets.

  13. A La autoantigen homologue is required for the internal ribosome entry site mediated translation of giardiavirus.

    Directory of Open Access Journals (Sweden)

    Srinivas Garlapati

    Full Text Available Translation of Giardiavirus (GLV mRNA is initiated at an internal ribosome entry site (IRES in the viral transcript. The IRES localizes to a downstream portion of 5' untranslated region (UTR and a part of the early downstream coding region of the transcript. Recent studies indicated that the IRES does not require a pre-initiation complex to initiate translation but may directly recruit the small ribosome subunit with the help of a number of trans-activating protein factors. A La autoantigen homologue in the viral host Giardia lamblia, GlLa, was proposed as one of the potential trans-activating factors based on its specific binding to GLV-IRES in vitro. In this study, we further elucidated the functional role of GlLa in GLV-IRES mediated translation in Giardia by knocking down GlLa with antisense morpholino oligo, which resulted in a reduction of GLV-IRES activity by 40%. An over-expression of GlLa in Giardia moderately stimulated GLV-IRES activity by 20%. A yeast inhibitory RNA (IRNA, known to bind mammalian and yeast La autoantigen and inhibit Poliovirus and Hepatitis C virus IRES activities in vitro and in vivo, was also found to bind to GlLa protein in vitro and inhibited GLV-IRES function in vivo. The C-terminal domain of La autoantigen interferes with the dimerization of La and inhibits its function. An over-expression of the C-terminal domain (200-348aa of GlLa in Giardia showed a dominant-negative effect on GLV-IRES activity, suggesting a potential inhibition of GlLa dimerization. HA tagged GlLa protein was detected mainly in the cytoplasm of Giardia, thus supporting a primary role of GlLa in translation initiation in Giardiavirus.

  14. Identification of novel autoantigen in the synovial fluid of rheumatoid arthritis patients using an immunoproteomics approach.

    Directory of Open Access Journals (Sweden)

    Sagarika Biswas

    Full Text Available Rheumatoid arthritis (RA is a chronic, autoimmune and inflammatory joint disease with a poorly understood etiology. Despite widespread diagnostic use of anti-citrullinated protein antibodies and rheumatoid factor proteins there is a strong demand for novel serological biomarkers to improve the diagnosis this disease. The present study was aimed to identify novel autoantigens involved in rheumatoid arthritis (RA pathogenesis through immune-proteomic strategy. Synovial fluid samples from clinically diagnosed RA patients were separated on two-dimensional gel electrophoresis (2-DE. Samples from patients with non-RA rheumatisms (osteoarthritis and trauma were used as controls. Immunoreactive proteins were spotted by Western blotting followed by identification through Q-TOF mass spectrometer analysis. Forty Western blots were generated using plasma from ten individual RA patients and 33 reactive spots were identified, 20 from the high molecular weight (HMW gel and 13 from the low molecular weight (LMW gel. Among the 33 common immunogenic spots, 18 distinct autoantigens were identified, out of which 14 are novel proteins in this context. Expression analysis of five important proteins, vimentin, gelsolin, alpha 2 HS glycoprotein (AHSG, glial fibrillary acidic protein (GFAP, and α1B-glycoprotein (A1BG by Western blot analysis using their specific antibodies revealed their higher expression in RA synovial fluid as compared to non-RA samples. Recombinantly expressed GFAP and A1BG protein were used to develop an in-house ELISA to quantify the amount of autoantibodies in the RA patients. RA patients revealed an increase in the expression of GFAP and A1BG in the plasma as compared to osteoarthritis patients. Therefore, GFAP and A1BG can be proposed as potential new autoantigens of diagnostic importance for RA subjects. Further characterization of these proteins in rheumatoid arthritis will be helpful in understanding the role of these proteins in the disease

  15. Autoantigen microarrays reveal autoantibodies associated with proliferative nephritis and active disease in pediatric systemic lupus erythematosus.

    Science.gov (United States)

    Haddon, D James; Diep, Vivian K; Price, Jordan V; Limb, Cindy; Utz, Paul J; Balboni, Imelda

    2015-06-17

    Pediatric systemic lupus erythematosus (pSLE) patients often initially present with more active and severe disease than adults, including a higher frequency of lupus nephritis. Specific autoantibodies, including anti-C1q, anti-DNA and anti-alpha-actinin, have been associated with kidney involvement in SLE, and DNA antibodies are capable of initiating early-stage lupus nephritis in severe combined immunodeficiency (SCID) mice. Over 100 different autoantibodies have been described in SLE patients, highlighting the need for comprehensive autoantibody profiling. Knowledge of the antibodies associated with pSLE and proliferative nephritis will increase the understanding of SLE pathogenesis, and may aid in monitoring patients for renal flare. We used autoantigen microarrays composed of 140 recombinant or purified antigens to compare the serum autoantibody profiles of new-onset pSLE patients (n = 45) to healthy controls (n = 17). We also compared pSLE patients with biopsy-confirmed class III or IV proliferative nephritis (n = 23) and without significant renal involvement (n = 18). We performed ELISA with selected autoantigens to validate the microarray findings. We created a multiple logistic regression model, based on the ELISA and clinical information, to predict whether a patient had proliferative nephritis, and used a validation cohort (n = 23) and longitudinal samples (88 patient visits) to test its accuracy. Fifty autoantibodies were at significantly higher levels in the sera of pSLE patients compared to healthy controls, including anti-B cell-activating factor (BAFF). High levels of anti-BAFF were associated with active disease. Thirteen serum autoantibodies were present at significantly higher levels in pSLE patients with proliferative nephritis than those without, and we confirmed five autoantigens (dsDNA, C1q, collagens IV and X and aggrecan) by ELISA. Our model, based on ELISA measurements and clinical variables, correctly identified patients with proliferative

  16. Induction of tolerance with intranasal administration of human cartilage gp-39 in DBA/1 mice - Amelioration of clinical, histologic, and radiologic signs of type II collagen-induced arthritis

    NARCIS (Netherlands)

    Joosten, LAB; Coenen-de Roo, CJJ; Helsen, MMA; Lubberts, E; Boots, AMH; van den Berg, WB; Miltenburg, AMM

    2000-01-01

    Objective. Human cartilage glycoprotein 39 (HC gp-39) was recently identified as a candidate autoantigen in the pathogenesis of rheumatoid arthritis, In the present studies, we investigated the capacity of HC gp-39 to interfere in clinical disease induced by an unrelated autoantigen, type II collage

  17. Characterization of a novel functional protein in the pancreatic islet: islet homeostasis protein regulation of glucagon synthesis in α cells.

    Science.gov (United States)

    Oh, Seh-Hoon; Darwiche, Houda; Cho, Jae-Hyoung; Shupe, Thomas; Petersen, Bryon E

    2012-01-01

    We have identified a novel protein in bone marrow-derived insulin-producing cells. Here we characterize this protein, hereby named islet homeostasis protein (IHoP), in the pancreatic islet. Detection of IHoP mRNA and protein was performed using reverse transcriptase-polymerase chain reaction, immunocytochemistry, and in situ hybridization. Islet homeostasis protein functions were utilizing proliferation, insulin secretion by in vitro assays, and following small interfering RNA protocols for suppression of IHoP. We found that IHoP did not homolog with known pancreatic hormones. Islet homeostasis protein expression was seen in both bone marrow-derived insulin-producing cells and isolated pancreatic islets. Immunohistochemistry on pancreatic islet revealed that IHoP localized to the glucagon-synthesizing α cells. Inhibition of IHoP by small interfering RNA resulted in the loss of glucagon expression, which induced low blood glucose levels (63-85 mg/dL). Subsequently, cellular apoptosis was observed throughout the islet, including the insulin-producing β cells. Islets of preonset diabetic patients showed normal expression of IHoP and glucagon; however, IHoP was lost upon onset of the disease. These data suggest that IHoP could be a new functional protein in the islet and may play a role in islet homeostasis.

  18. Islet β-cell ghrelin signaling for inhibition of insulin secretion.

    Science.gov (United States)

    Dezaki, Katsuya; Yada, Toshihiko

    2012-01-01

    Ghrelin, an acylated 28-amino acid peptide, was isolated from the stomach, where circulating ghrelin is produced predominantly. In addition to its unique role in regulating growth-hormone release, mealtime hunger, lipid metabolism, and the cardiovascular system, ghrelin is involved in the regulation of glucose metabolism. Ghrelin is expressed in pancreatic islets and released into pancreatic microcirculations. Ghrelin inhibits insulin release in mice, rats, and humans. Pharmacological and genetic blockades of islet-derived ghrelin markedly augment glucose-induced insulin release. The signal transduction mechanisms of ghrelin in islet β-cells are very unique, being distinct from those utilized for growth-hormone release. Ghrelin attenuates the glucose-induced cAMP production and PKA activation, which drives activation of Kv channels and suppression of the glucose-induced [Ca(2+)](i) increase and insulin release in β-cells. Insulinostatic function of the ghrelin-GHS-R system in islets is a potential therapeutic target for type 2 diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Reversal of Early Diabetic Nephropathy by Islet Transplantation under the Kidney Capsule in a Rat Model

    Directory of Open Access Journals (Sweden)

    Yunqiang He

    2016-01-01

    Full Text Available Objective. Diabetic nephropathy (DN is a common microvascular complication of diabetes mellitus, and insulin therapy has many side effects in the treatment of DN. Islet transplantation has emerged as a promising therapy for diabetic patients. This study was established to investigate its advantageous effects in a rat model of early DN. Methods. Streptozotocin was administered to the rats to induce diabetes. Twelve weeks later, the diabetic rats were divided into 3 groups: the islet-transplanted group (IT group, the insulin-treated group (IN group, and the untreated group (DN group. Renal injury and kidney structure were assessed by urinalysis and transmission electron microscopy (TEM detection. Immunohistochemical staining and western blotting were performed to assess renal fibrosis levels. Results. The early DN features were reversed and the glomerular filtration barrier and basement membrane structures were improved at 4 weeks after islet transplantation. The urine microalbumin-to-creatinine ratio (ACR, protein-to-creatinine ratio, and mean thickness of the glomerular basement membrane (GBM were significantly decreased in the IT group. The expression of renal fibrotic factors was also significantly decreased. Conclusions. These data suggest that early DN can be reversed after islet transplantation, and they may facilitate the development of a clinical therapeutic strategy for human diabetes mellitus.

  20. Collagen V Is a Potential Substrate for Clostridial Collagenase G in Pancreatic Islet Isolation

    Directory of Open Access Journals (Sweden)

    Hiroki Shima

    2016-01-01

    Full Text Available The clostridial collagenases, H and G, play key roles in pancreatic islet isolation. Collagenases digest the peptide bond between Yaa and the subsequent Gly in Gly-Xaa-Yaa repeats. To fully understand the pancreatic islet isolation process, identification of the collagenase substrates in the tissue is very important. Although collagen types I and III were reported as possible substrates for collagenase H, the substrate for collagenase G remains unknown. In this study, collagen type V was focused upon as the target for collagenases. In vitro digestion experiments for collagen type V were performed and analyzed by SDS-PAGE and mass spectrometry. Porcine pancreatic tissues were digested in vitro under three conditions and observed during digestion. The results revealed that collagen type V was only digested by collagenase G and that the digestion was initiated from the N-terminal part. Tissue degradation during porcine islet isolation was only observed in the presence of both collagenases H and G. These findings suggest that collagen type V is one of the substrates for collagenase G. The enzymatic activity of collagenase G appears to be more important for pancreatic islet isolation in large mammals such as pigs and humans.

  1. Identification of Autoantigen Epitopes in Alopecia Areata.

    Science.gov (United States)

    Wang, Eddy H C; Yu, Mei; Breitkopf, Trisia; Akhoundsadegh, Noushin; Wang, Xiaojie; Shi, Feng-Tao; Leung, Gigi; Dutz, Jan P; Shapiro, Jerry; McElwee, Kevin J

    2016-08-01

    Alopecia areata (AA) is believed to be a cell-mediated autoimmune hair loss disease. Both CD4 and cytotoxic CD8 T cells (CTLs) are important for the onset and progression of AA. Hair follicle (HF) keratinocyte and/or melanocyte antigen epitopes are suspected potential targets of autoreactive CTLs, but the specific epitopes have not yet been identified. We investigated the potential for a panel of known epitopes, expressed by HF keratinocytes and melanocytes, to induce activation of CTL populations in peripheral blood mononuclear cells. Specific synthetic epitopes derived from HF antigens trichohyalin and tyrosinase-related protein-2 induced significantly higher frequencies of response in AA CTLs compared with healthy controls (IFN-gamma secretion). Apoptosis assays revealed conditioned media from AA peripheral blood mononuclear cells stimulated with trichohyalin peptides elevated the expression of apoptosis markers in primary HF keratinocytes. A cytokine array revealed higher expression of IL-13 and chemokine ligand 5 (CCL5, RANTES) from AA peripheral blood mononuclear cells stimulated with trichohyalin peptides compared with controls. The data indicate that AA affected subjects present with an increased frequency of CTLs responsive to epitopes originating from keratinocytes and melanocytes; the activated CTLs secreted soluble factors that induced apoptosis in HF keratinocytes. Potentially, CTL response to self-antigen epitopes, particularly trichohyalin epitopes, could be a prognostic marker for human AA.

  2. 葡萄膜炎自身抗原表位的研究%Studies on autoantigenic epitopes involving in the development of uveitis

    Institute of Scientific and Technical Information of China (English)

    赵长霖; 杨培增

    2008-01-01

    It has been proposed that a few kinds of autoantigens imitate the development of autoimmune uveitis while the immunodominant epitopes of these antigens have not been identified.Researches on retinal S-antigen and interphotoreceptor retinoid-binding protein as well as tyrosinase-related protein epitopes mapping have shown that each autoantigen contains several immunopathogenic epitopes and immunogenic epitopes and that the immunopathogenic sites ale not coincident with the immunogenic epitopes.The reactivity of peripheral blood mononucleal cells from uveitis patients against each autoantigenic epitopes displays high heterogeneity.Epitopes spreading phenomenon has been disclosed in human uveifis study and reinforced in animal experiments.Study on this epitope spreading may contribute to our understanding of immune tolerance induced by different epitopes in the treatment of autoimmune disease including uveifis.%多种抗原参与自身免疫性葡萄膜炎的发生发展,但是这些抗原的免疫优势表位尚不明确.针对视网膜S抗原等葡萄膜炎自身抗原免疫表位的研究显示,每种抗原蛋白均存在多个可诱导易感动物葡萄膜炎发作的致病位点,每种抗原均存在多个可诱导葡萄膜炎患者产生体外细胞免疫反应的免疫原性表位,同种抗原的致病表位和免疫原性表位不完全一致.葡萄膜炎患者对于各抗原表位肽的反应性显示出高度异质性,表现为不同患者对不同肽发生反应和同一例患者在不同时期对不同肽发生反应.由此,提出了葡萄膜炎表位扩展现象,并利用动物实验得以证实.表位扩展可能是自身免疫反应的防御现象,但是自身免疫反应的多样化同时又对抗原特异性耐受疗法提出了挑战.

  3. Dexamethasone counteracts the effect of prolactin on islet function: implications for islet regulation in late pregnancy.

    Science.gov (United States)

    Weinhaus, A J; Bhagroo, N V; Brelje, T C; Sorenson, R L

    2000-04-01

    Islets undergo a number of up-regulatory changes to meet the increased demand for insulin during pregnancy, including increased insulin secretion and beta-cell proliferation. It has been shown that elevated lactogenic hormone is directly responsible for these changes, which occur in a phasic pattern, peaking on day 15 of pregnancy and returning to control levels by day 20 (term). As placental lactogen levels remain elevated through late gestation, it was of interest to determine whether glucocorticoids (which increase during late gestation) could counteract the effects of lactogens on insulin secretion, beta-cell proliferation, and apoptosis. We found that insulin secretion measured over 24 h in culture and acute secretion measured over 1 h in response to high glucose were increased at least 2-fold by PRL treatment after 6 days in culture. Dexamethasone (DEX) treatment had a significant inhibitory effect on secretion in a dose-dependent manner at concentrations greater than 1 nM. At 100 nM, a concentration equivalent to the plasma corticosteroid level during late pregnancy, DEX inhibited secretion to below control levels. The addition of DEX (>1 nM) inhibited secretion from PRL-treated islets to levels similar to those produced by DEX treatment alone. Bromodeoxyuridine (10 microM) staining for the final 24 h of a 6-day culture showed that PRL treatment increased cell proliferation 6-fold over the control level. DEX treatment alone (1-1000 nM) did not reduce cell division below the control level, but significantly inhibited the rate of division in PRL-treated islets. YoYo-1, an ultrasensitive fluorescent nucleic acid stain, was added (1 microM; 8 h) to the medium after 1-3 days of culture to examine cell death. Islets examined under confocal microscopy showed that DEX treatment (100 nM) increased the number of cells with apoptotic nuclear morphologies. This was quantified by counting the number of YoYo-labeled nuclei per islet under conventional epifluorescence

  4. Differentiation of fetal pancreatic stem cells into neuron-like and islet-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Hua; Yanwei Wang; Peiwen Lian; Shouxin Zhang; Jianyuan Li; Haiyan Wang; Shulin Chen; Wei Gao

    2012-01-01

    Pancreatic stem cells were isolated and cultured from aborted human fetal pancreases of gestational age 14-20 weeks.They were seeded at a density of 1 × 104 in serum-free media for differentiation into neuron-like cells, expressing β-tubulin III and glial fibrillary acidic protein.These neuron-like cells displayed a synapse-like morphology and appeared to form a neuronal network.Pancreatic stem cells were also seeded at a density of 1 × 105 for differentiation into islet-like cells, expressing insulin and glucagon, with an islet-like morphology.These cells had glucose-stimulated secretion of human insulin and C-peptide.Results suggest that pancreatic stem cells can be differentiated into neuron-like and islet-like cells.

  5. The clinical significance of posttranslational modification of autoantigens.

    Science.gov (United States)

    Zavala-Cerna, Maria G; Martínez-García, Erika A; Torres-Bugarín, Olivia; Rubio-Jurado, Benjamín; Riebeling, Carlos; Nava, Arnulfo

    2014-08-01

    Posttranslational modifications (PTMs) are defined as covalent modifications occurring in a specific protein amino acid in a time- and signal-dependent manner. Under physiological conditions, proteins are posttranslationally modified to carry out a large number of cellular events from cell signaling to DNA replication. However, an absence, deficiency, or excess in PTMs of a given protein can evolve into a target to trigger autoimmunity, since PTMs arise in the periphery and may not occur in the thymus; hence, proteins with PTMs never tolerize developing thymocytes. Consequently, when PTMs arise during cellular responses, such as inflammation, these modified self-antigens can be taken up and processed by the antigen-presenting cells (APCs). Autoreactive T cells, which recognize peptides presented by APCs, can then infiltrate into host tissue where the modified antigen serves to amplify the autoimmune response, eventually leading to autoimmune pathology. Furthermore, a PTM occurring in an amino acid residue can induce changes in the net charge of the protein, leading to conformational modifications in the tertiary and quaternary structure of the protein, especially interaction with human leukocyte antigen (HLA) molecules. Molecular mimicry (MM) was until now the prevailing hypothesis explaining generation of autoimmunity; nevertheless, experimental animal models need inflammation via infection or other immunogens to ensure autoimmunity; MM alone is not sufficient to develop autoimmunity. PTMs could arise as an additive factor to MM, which is required to start an autoimmune response. PTMs have been found to be present in different pathologic conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), antiphospholipid syndrome, and primary biliary cirrhosis. The aim of the present review is to expose protein posttranslational modifications and the evidence suggesting their role in the generation of autoimmunity.

  6. Possible modulatory effect of endogenous islet catecholamines on insulin secretion

    Directory of Open Access Journals (Sweden)

    Gagliardino Juan J

    2001-10-01

    Full Text Available Abstract Background The possible participation of endogenous islet catecholamines (CAs in the control of insulin secretion was tested. Methods Glucose-induced insulin secretion was measured in the presence of 3-Iodo-L-Tyrosine (MIT, a specific inhibitor of tyrosine-hydroxylase activity, in fresh and precultured islets isolated from normal rats. Incubated islets were also used to measure CAs release in the presence of low and high glucose, and the effect of α2-(yohimbine [Y] and idazoxan [I] and α1-adrenergic antagonists (prazosin [P] and terazosin [T] upon insulin secretion elicited by high glucose. Results Fresh islets incubated with 16.7 mM glucose released significantly more insulin in the presence of 1 μM MIT (6.66 ± 0.39 vs 5.01 ± 0.43 ng/islet/h, p Conclusion Our results suggest that islet-originated CAs directly modulate insulin release in a paracrine manner.

  7. File list: Pol.Pan.50.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.AllAg.Pancreatic_islets hg19 RNA polymerase Pancreas Pancreatic islets h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.50.AllAg.Pancreatic_islets.bed ...

  8. File list: Pol.Pan.10.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.AllAg.Pancreatic_islets hg19 RNA polymerase Pancreas Pancreatic islets h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.10.AllAg.Pancreatic_islets.bed ...

  9. File list: Pol.Pan.20.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.20.AllAg.Pancreatic_islets hg19 RNA polymerase Pancreas Pancreatic islets h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.20.AllAg.Pancreatic_islets.bed ...

  10. File list: Pol.Pan.05.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.05.AllAg.Pancreatic_islets hg19 RNA polymerase Pancreas Pancreatic islets h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.05.AllAg.Pancreatic_islets.bed ...

  11. Cytokines inducing bone marrow SCA+ cells migration into pancreatic islet and conversion into insulin-positive cells in vivo.

    Directory of Open Access Journals (Sweden)

    LuGuang Luo

    Full Text Available We hypothesize that specific bone marrow lineages and cytokine treatment may facilitate bone marrow migration into islets, leading to a conversion into insulin producing cells in vivo. In this study we focused on identifying which bone marrow subpopulations and cytokine treatments play a role in bone marrow supporting islet function in vivo by evaluating whether bone marrow is capable of migrating into islets as well as converting into insulin positive cells. We approached this aim by utilizing several bone marrow lineages and cytokine-treated bone marrow from green fluorescent protein (GFP positive bone marrow donors. Sorted lineages of Mac-1(+, Mac-1(-, Sca(+, Sca(-, Sca(-/Mac-1(+ and Sca(+/Mac-1(- from GFP positive mice were transplanted to irradiated C57BL6 GFP negative mice. Bone marrow from transgenic human ubiquitin C promoter GFP (uGFP, with strong signal C57BL6 mice was transplanted into GFP negative C57BL6 recipients. After eight weeks, migration of GFP positive donor' bone marrow to the recipient's pancreatic islets was evaluated as the percentage of positive GFP islets/total islets. The results show that the most effective migration comes from the Sca(+/Mac(- lineage and these cells, treated with cytokines for 48 hours, were found to have converted into insulin positive cells in pancreatic islets in vivo. This study suggests that bone marrow lineage positive cells and cytokine treatments are critical factors in determining whether bone marrow is able to migrate and form insulin producing cells in vivo. The mechanisms causing this facilitation as well as bone marrow converting to pancreatic beta cells still need to be investigated.

  12. Tacrolimus inhibits the revascularization of isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Ryuichi Nishimura

    Full Text Available AIMS: Immunosuppressive drugs could be crucial factors for a poor outcome after islet allotransplantation. Unlike rapamycin, the effects of tacrolimus, the current standard immunosuppressant used in islet transplantation, on graft revascularization remain unclear. We examined the effects of tacrolimus on islet revascularization using a highly sensitive imaging system, and analyzed the gene expression in transplanted islets by introducing laser microdissection techniques. METHODS: Islets isolated from C57BL/6-Tg (CAG-EGFP mice were transplanted into the nonmetallic dorsal skinfold chamber on the recipients. Balb/c athymic mice were used as recipients and were divided into two groups: including a control group (n = 9 and tacrolimus-treated group (n = 7. The changes in the newly-formed vessels surrounding the islet grafts were imaged and semi-quantified using multi-photon laser-scanning microscopy and a Volocity system. Gene expression in transplanted islets was analyzed by the BioMark dynamic system. RESULTS: The revascularization process was completed within 14 days after pancreatic islet transplantation at subcutaneous sites. The newly-formed vascular volume surrounding the transplanted islets in the tacrolimus-treated group was significantly less than that in the control group (p<0.05. Although the expression of Vegfa (p<0.05 and Ccnd1 (p<0.05 was significantly upregulated in the tacrolimus-treated group compared with that of the control group, no differences were observed between the groups in terms of other types of gene expression. CONCLUSIONS: The present study demonstrates that tacrolimus inhibits the revascularization of isolated pancreatic islets without affecting the characteristics of the transplanted grafts. Further refinements of this immunosuppressive regimen, especially regarding the revascularization of islet grafts, could improve the outcome of islet allotransplantation.

  13. Lack of evidence for a role of islet autoimmunity in the aetiology of canine diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Kerstin M Ahlgren

    Full Text Available AIMS/HYPOTHESIS: Diabetes mellitus is one of the most common endocrine disorders in dogs and is commonly proposed to be of autoimmune origin. Although the clinical presentation of human type 1 diabetes (T1D and canine diabetes are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported. METHODS: Sera from 121 diabetic dogs representing 40 different breeds were tested for islet cell antibodies (ICA and GAD65 autoantibodies (GADA and compared with sera from 133 healthy dogs. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT of human and canine GAD65, followed by immune precipitation. Sections of pancreata from five diabetic dogs and two control dogs were examined histopathologically including immunostaining for insulin, glucagon, somatostatin and pancreas polypeptide. RESULTS: None of the canine sera analysed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay. Histopathology showed marked degenerative changes in endocrine islets, including vacuolisation and variable loss of immune-staining for insulin. No sign of inflammation was noted. CONCLUSIONS/INTERPRETATIONS: Contrary to previous observations, based on results from tests for humoral autoreactivity towards islet proteins using four different assays, and histopathological examinations, we do not find any support for an islet autoimmune aetiology in canine diabetes mellitus.

  14. CT features of nonfunctioning islet cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Eelkema, E.A.; Stephens, D.H.; Ward, E.M.; Sheedy, P.F. II

    1984-11-01

    To determine the computed tomographic (CT) characteristics of nonfunctioning islet cell carcinoma of the pancreas, the CT scans of 27 patients with that disease were reviewed. The pancreatic tumor was identified as a mass in 26 patients (96%) Of the 25 tumors evaluated with contrast enhancement, 20 became partially diffusely hyperdense relative to nearby normal pancreatic tissue. Hepatic metastases were identified in 15 patients (56%), regional lymphadenopathy in 10 (37%), atrophy of the gland proximal to the tumor in six (22%), dilatation of the biliary ducts in five (19%), and dilatation of the pancreatic duct in four (15%). The CT appearances of the nonfunctioning islet cell tumors were compared with those of 100 ordinary (ductal) pancreatic adenocarcinomas. Although the two types of tumors were sometimes indistinguishable, features found to be more characteristic of islet cell carcinoma included a pancreatic mass of unusually large size, calcification within the tumor, and contrast enhancement of either the primary tumor or hepatic metastases. Involvement of the celiac axis or proximal superior mesenteric artery was limited to ductal carcinoma.

  15. Altered islet morphology but normal islet secretory function in vitro in a mouse model with microvascular alterations in the pancreas.

    Directory of Open Access Journals (Sweden)

    Elena Kostromina

    Full Text Available BACKGROUND: Our previous studies have shown that signal transducer and activator of transcription 3 (STAT3 signaling is important for the development of pancreatic microvasculature via its regulation of vascular endothelial growth factor-A (VEGF-A. Pancreas-specific STAT3-KO mice exhibit glucose intolerance and impaired insulin secretion in vivo, along with microvascular alterations in the pancreas. However, the specific role of STAT3 signaling in the regulation of pancreatic islet development and function is not entirely understood. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of STAT3 signaling in the formation and maintenance of pancreatic islets, we studied pancreas-specific STAT3-KO mice. Histological analysis showed that STAT3 deficiency affected pancreatic islet morphology. We found an increased proportion of small-sized islets and a reduced fraction of medium-sized islets, indicating abnormal islet development in STAT3-KO mice. Interestingly, the islet area relative to the whole pancreas area in transgenic and control mice was not significantly different. Immunohistochemical analysis on pancreatic cryosections revealed abnormalities in islet architecture in STAT3-KO mice: the pattern of peripheral distribution of glucagon-positive α-cells was altered. At the same time, islets belonging to different size categories isolated from STAT3-KO mice exhibited normal glucose-stimulated insulin secretion in perifusion experiments in vitro when compared to control mice. CONCLUSIONS: Our data demonstrate that STAT3 signaling in the pancreas is required for normal islet formation and/or maintenance. Altered islet size distribution in the KO mice does not result in an impaired islet secretory function in vitro. Therefore, our current study supports that the glucose intolerance and in vivo insulin secretion defect in pancreas-specific STAT3-KO mice is due to altered microvasculature in the pancreas, and not intrinsic beta-cell function.

  16. Effect of polyethylene glycol grafted onto islet capsules on prevention of splenocyte and cytokine attacks.

    Science.gov (United States)

    Lee, Dong Yun; Nam, Jong Hee; Byun, Youngro

    2004-01-01

    In the graft rejection of transplanted islets, the host's immune cells recognize the islets as antigens, which then stimulate the immune cells to begin the cytokine secretion and also the proliferation of immune cells. To prevent the recognition of islets by the immune cells, we grafted biocompatible polyethylene glycol (PEG) onto the collagen capsule of islets without incurring any changes in the morphology and function of islets. To evaluate the efficiency of PEG grafting, PEG-grafted islets were cultured with splenocytes consisting mainly of lymphocytes and macrophages. A splenocyte proliferation assessment using a BrdU incorporation assay showed that the PEG-grafted islets did not stimulate the splenocytes. In addition, the viability and microorganisms in islet cells of co-cultured PEG-grafted islets were not altered. However, in the co-culture of free islets (control) splenocytes were stimulated; they mainly secreted TNF-alpha and strongly affected the viability and structure of free islets. Furthermore, when islets were treated with the rat recombinant TNF-alpha for 7 days, the viabilities of PEG-grafted and free islets were significantly damaged, although the viability of PEG-grafted islets was higher than that of free islets by nearly three times. These results demonstrate that PEG grafted on the surface of islets could prevent the recognition of islets by splenocytes, but could not completely protect islets from cytokines.

  17. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions.

    Science.gov (United States)

    Seneviratne, Ayesh K; Bell, Gillian I; Sherman, Stephen E; Cooper, Tyler T; Putman, David M; Hess, David A

    2016-04-01

    Human umbilical cord blood (UCB) hematopoietic progenitor cells (HPC) purified for high aldehyde dehydrogenase activity (ALDH(hi) ) stimulate islet regeneration after transplantation into mice with streptozotocin-induced β cell deletion. However, ALDH(hi) cells represent a rare progenitor subset and widespread use of UCB ALDH(hi) cells to stimulate islet regeneration will require progenitor cell expansion without loss of islet regenerative functions. Here we demonstrate that prospectively purified UCB ALDH(hi) cells expand efficiently under serum-free, xeno-free conditions with minimal growth factor supplementation. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, kinetic analyses over 9 days revealed the frequency of ALDH(hi) cells diminished as culture time progressed such that total ALDH(hi) cell number was maximal (increased 3-fold) at day 6. Subsequently, day 6 expanded cells (bulk cells) were sorted after culture to reselect differentiated progeny with low ALDH-activity (ALDH(lo) subset) from less differentiated progeny with high ALDH-activity (ALDH(hi) subset). The ALDH(hi) subset retained primitive cell surface marker coexpression (32.0% ± 7.0% CD34(+) /CD38(-) cells, 37.0% ± 6.9% CD34(+) /CD133(+) cells), and demonstrated increased hematopoietic colony forming cell function compared with the ALDH(lo) subset. Notably, bulk cells or ALDH(lo) cells did not possess the functional capacity to lower hyperglycemia after transplantation into streptozotocin-treated NOD/SCID mice. However, transplantation of the repurified ALDH(hi) subset significantly reduced hyperglycemia, improved glucose tolerance, and increased islet-associated cell proliferation and capillary formation. Thus, expansion and delivery of reselected UCB cells that retain high ALDH-activity after short-term culture represents an improved strategy for the development of cellular therapies to enhance islet regeneration in situ.

  18. Correction of diabetic pattern of insulin release from islets of the spiny mouse (Acomys cahirinus) by glucose priming in vitro.

    Science.gov (United States)

    Nesher, R; Abramovitch, E; Cerasi, E

    1985-04-01

    Insulin release kinetics were studied in perifused islets of Langerhans, isolated from mildly hyperglycaemic and from normoglycaemic spiny mice (Acomys cahirinus), a rodent predisposed to develop spontaneously non-ketotic diabetes. In both groups, insulin response to glucose (16.7 mmol/l) was delayed in comparison with that of rat islets, the release kinetics being analogous to that of human Type 2 (non-insulin-dependent) diabetes. Thirty min priming of the isolated Acomys islets with glucose (16.7 mmol/l) resulted in potentiation of the insulin release to a second stimulation. The degree of potentiation decreased exponentially with the time interval between stimulations, showing a t1/2 of 18 min. Induction of potentiation by glucose was time-dependent, giving a maximal effect after 20 min of priming. In addition to overall amplification of the insulin response, priming with glucose accelerated markedly the initial release rates, correcting the dynamics of the response. We conclude that: (1) decreased and delayed insulin secretion is found in Acomys cahirinus before the development of hyperglycaemia; (2) induction of time-dependent potentiation in the islet by priming with glucose corrects the diabetic-type dynamics of insulin release; (3) therefore the deficient insulin release of Acomys is of a functional nature, the mechanism of potentiation bypassing the defect; (4) since insulin release in Acomys resembles that in prediabetic and diabetic man, similar conclusions might apply to the islet dysfunction in Type 2 diabetes.

  19. Lessons From Pancreas Transplantation in Type 1 Diabetes: Recurrence of Islet Autoimmunity.

    Science.gov (United States)

    Burke, George W; Vendrame, Francesco; Virdi, Sahil K; Ciancio, G; Chen, Linda; Ruiz, Phillip; Messinger, Shari; Reijonen, Helena K; Pugliese, Alberto

    2015-12-01

    Type 1 diabetes recurrence (T1DR) affecting pancreas transplants was first reported in recipients of living-related pancreas grafts from twins or HLA identical siblings; given HLA identity, recipients received no or minimal immunosuppression. This observation provided critical evidence that type 1 diabetes (T1D) is an autoimmune disease. However, T1DR is traditionally considered very rare in immunosuppressed recipients of pancreas grafts from organ donors, representing the majority of recipients, and immunological graft failures are ascribed to chronic rejection. We have been performing simultaneous pancreas-kidney (SPK) transplants for over 25 years and find that 6-8 % of our recipients develop T1DR, with symptoms usually becoming manifest on extended follow-up. T1DR is typically characterized by (1) variable degree of insulitis and loss of insulin staining, on pancreas transplant biopsy (with most often absent), minimal to moderate and rarely severe pancreas, and/or kidney transplant rejection; (2) the conversion of T1D-associated autoantibodies (to the autoantigens GAD65, IA-2, and ZnT8), preceding hyperglycemia by a variable length of time; and (3) the presence of autoreactive T cells in the peripheral blood, pancreas transplant, and/or peripancreatic transplant lymph nodes. There is no therapeutic regimen that so far has controlled the progression of islet autoimmunity, even when additional immunosuppression was added to the ongoing chronic regimens; we hope that further studies and, in particular, in-depth analysis of pancreas transplant biopsies with recurrent diabetes will help identify more effective therapeutic approaches.

  20. Transient systemic inflammation does not alter the induction of tolerance to gastric autoantigens by migratory dendritic cells.

    Science.gov (United States)

    Bourges, Dorothée; Ross, Ellen M; Allen, Stacey; Read, Simon; Houghton, Fiona J; Bedoui, Sammy; Boon, Louis; Gleeson, Paul A; van Driel, Ian R

    2014-06-01

    It has been proposed that activation of dendritic cells (DCs) presenting self-antigens during inflammation may lead to activation of autoreactive T cells and the development of autoimmunity. To test this hypothesis, we examined the presentation of the autoantigen recognized in autoimmune gastritis, gastric H(+)/K(+) ATPase, which is naturally expressed in the stomach and is constitutively presented in the stomach-draining lymph nodes. Systemic administration to mice of the TLR9 agonist CpG DNA, agonist anti-CD40 Ab, or TLR4 agonist LPS all failed to abrogate the process of peripheral clonal deletion of H(+)/K(+) ATPase-specific CD4 T cells or promote the development of autoimmune gastritis. We demonstrated that migratory DCs from the stomach-draining lymph nodes are the only DC subset capable of constitutively presenting the endogenous gastric H(+)/K(+) ATPase autoantigen in its normal physiological context. Analysis of costimulatory molecules indicated that, relative to resident DCs, migratory DCs displayed a partially activated phenotype in the steady state. Furthermore, migratory DCs were refractory to stimulation by transient exposure to TLR agonists, as they failed to upregulate costimulatory molecules, secrete significant amounts of inflammatory cytokines, or induce differentiation of effector T cells. Together, these data show that transient systemic inflammation failed to break tolerance to the gastric autoantigen, as migratory DCs presenting the gastric autoantigen remain tolerogenic under such conditions, demonstrating the robust nature of peripheral tolerance.

  1. The orthologue of Sjogren's syndrome nuclear autoantigen 1 (SSNA1 in Trypanosoma brucei is an immunogenic self-assembling molecule.

    Directory of Open Access Journals (Sweden)

    Helen P Price

    Full Text Available Primary Sjögren's Syndrome (PSS is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14 is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13 and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle.

  2. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qing [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Che, Yongzhe [School of Medicine, Nankai University, Tianjin 300071 (China); Li, Qiang; Zhang, Shangrong [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Gao, Ying-Tang [Key Laboratory of Artificial Cell, Third Central Clinical College of Tianjin Medical University, Tianjin 300170 (China); Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Li, Shu Jie, E-mail: shujieli@nankai.edu.cn [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China)

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca{sup 2+} homeostasis.

  3. Exploration of α1-Antitrypsin Treatment Protocol for Islet Transplantation: Dosing Plan and Route of Administration

    OpenAIRE

    Baranovski, Boris M.; Ozeri, Eyal; Shahaf, Galit; Ochayon, David E.; Schuster, Ronen; Bahar, Nofar; Kalay, Noa; Cal, Pablo; Mizrahi, Mark I.; Nisim, Omer; Strauss, Pnina; Schenker, Eran; Eli C Lewis

    2016-01-01

    Lifelong weekly infusions of human α1-antitrypsin (hAAT) are currently administered as augmentation therapy for patients with genetic AAT deficiency (AATD). Several recent clinical trials attempt to extend hAAT therapy to conditions outside AATD, including type 1 diabetes. Because the endpoint for AATD is primarily the reduction of risk for pulmonary emphysema, the present study explores hAAT dose protocols and routes of administration in attempt to optimize hAAT therapy for islet-related inj...

  4. Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons

    Science.gov (United States)

    Guardado-Mendoza, Rodolfo; Davalli, Alberto M.; Chavez, Alberto O.; Hubbard, Gene B.; Dick, Edward J.; Majluf-Cruz, Abraham; Tene-Perez, Carlos E.; Goldschmidt, Lukasz; Hart, John; Perego, Carla; Comuzzie, Anthony G.; Tejero, Maria Elizabeth; Finzi, Giovanna; Placidi, Claudia; La Rosa, Stefano; Capella, Carlo; Halff, Glenn; Gastaldelli, Amalia; DeFronzo, Ralph A.; Folli, Franco

    2009-01-01

    β-Cell dysfunction is an important factor in the development of hyperglycemia of type-2 diabetes mellitus, and pancreatic islet amyloidosis (IA) has been postulated to be one of the main contributors to impaired insulin secretion. The aim of this study was to evaluate the correlation of IA with metabolic parameters and its effect on islets of Langerhans remodeling and relative endocrine-cell volume in baboons. We sequenced the amylin peptide, determined the fibrillogenic propensities, and evaluated pancreatic histology, clinical and biochemical characteristics, and endocrine cell proliferation and apoptosis in 150 baboons with different metabolic status. Amylin sequence in the baboon was 92% similar to humans and showed superimposable fibrillogenic propensities. IA severity correlated with fasting plasma glucose (FPG) (r = 0.662, P < 0.001) and HbA1c (r = 0.726, P < 0.001), as well as with free fatty acid, glucagon values, decreased homeostasis model assessment (HOMA) insulin resistance, and HOMA-B. IA severity was associated with a decreased relative β-cell volume, and increased relative α-cell volume and hyperglucagonemia. These results strongly support the concept that IA and β-cell apoptosis in concert with α-cell proliferation and hypertrophy are key determinants of islets of Langerhans “dysfunctional remodeling” and hyperglycemia in the baboon, a nonhuman primate model of type-2 diabetes mellitus. The most important determinants of IA were age and FPG (R2 = 0.519, P < 0.0001), and different FPG levels were sensitive and specific to predict IA severity. Finally, a predictive model for islet amyloid severity was generated with age and FPG as required variables. PMID:19666551

  5. Islet cytotoxicity of interleukin 1. Influence of culture conditions and islet donor characteristics

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Spinas, G A; Prowse, S J

    1987-01-01

    We recently demonstrated that the macrophage product interleukin 1 (IL-1) is cytotoxic to isolated pancreatic islets and hypothesized that IL-1 is responsible for beta-cell destruction in insulin-dependent diabetes mellitus (IDDM). We studied whether the variation in IDDM preponderance with age...

  6. Teucrium polium complex with molybdate enhance cultured islets secretory function.

    Science.gov (United States)

    Mohseni Salehi Monfared, Seyed Sajad; Pournourmohammadi, Shirin

    2010-02-01

    Islet transplantation has become a promising treatment in the therapy of type 1 diabetes. Its function improvement, after isolation and before transplantation, is crucial because of their loss both in number and function of islets after isolation procedures. Trace elements sodium orthovanadate (SOV) and sodium molybdate (SM), as well as medicinal plant Teucrium polium L. (TP), showed and possessed high beneficial antioxidative potential and even hypoglycemic properties via their effect on islets. We evaluated the effect of these components in combination on cultured islet function in order to improve pancreatic islet transplantation. Rat pancreatic islets were cultured for 24 h then incubated with different concentrations of TP (0.01 and 0.1 mg/mL) alone and in combination with SOV (1 mM) or SM (1 mM). Insulin concentration in buffer media was measured as islet secretory function. Administration of TP (0.01 mg/mL), SM, and SOV alone or in combination with each other significantly increased insulin secretion at high glucose concentration (16.7 mM); insulin secretion was significantly greater in the group containing both TP and SM than other treated groups (p molybdate with TP could improve islet cells function before transplantation.

  7. [The effect of long-term exposure to low doses of endocrine disruptor ddt on serum levels of thyroid protein autoantigenes and antithyroid autoantibodies].

    Science.gov (United States)

    Yaglova, N V; Yaglov, V V

    2016-01-01

    Changes in secretion of thyroid autoantigenes and production of antithyroid autoantibodies after long-term exposure to low doses of DDT were studied. Changes in serum levels of antithyroid peroxidase antibodies and thyroid peroxidase, attributed to disruption of thyroxine production by DDT were found. Long-term exposure of rats to low doses of DDT revealed no specific impact on serum autoantibodies to all thyroid autoantigenes studied. The increase of the ratio of autoantibody/autoantigen for thyroid peroxidase and thyroglobulin was rather small and thus could not be considered as a significant symptom of thyroid autoimmunity.

  8. Asialoglycoprotein receptor (ASGPR) as target autoantigen in liver autoimmunity: lost and found.

    Science.gov (United States)

    Rigopoulou, Eirini I; Roggenbuck, Dirk; Smyk, Daniel S; Liaskos, Christos; Mytilinaiou, Maria G; Feist, Eugen; Conrad, Karsten; Bogdanos, Dimitrios P

    2012-12-01

    Asialoglycoprotein receptor (ASGPR) has attracted the attention of liver immunologists for many years. This liver-specific lectin was found to be a major B and T cell autoantigenic target in patients with autoimmune liver diseases, and in particular in autoimmune hepatitis (AIH). This review discusses the biological significance of ASGPR and its relevance to the pathogenesis of autoimmune and virus-triggered liver diseases. We also discuss emerging data on the diagnostic and clinical relevance of anti-ASGPR antibodies in light of recent reports based on commercially available anti-ASGPR enzyme-linked immunosorbent assays. Finally, we critically revisit the data reporting on disease-specific cellular immune responses against ASGPR and their relevance in relation to the pathogenesis of AIH.

  9. Structural and Biochemical Basis for Misfolded RNA Recognition by the Ro Autoantigen

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs,G.; Stein, A.; Fu, C.; Reinisch, K.; Wolin, S.

    2006-01-01

    The Ro autoantigen is ring-shaped, binds misfolded noncoding RNAs and is proposed to function in quality control. Here we determine how Ro interacts with misfolded RNAs. Binding of Ro to misfolded precursor (pre)-5S ribosomal RNA requires a single-stranded 3 end and helical elements. As mutating most sequences of the helices and tail results in modest decreases in binding, Ro may be able to associate with a range of RNAs. Ro binds several other RNAs that contain single-stranded tails. A crystal structure of Ro bound to a misfolded pre-5S rRNA fragment reveals that the tail inserts into the cavity, while a helix binds on the surface. Most contacts of Ro with the helix are to the backbone. Mutagenesis reveals that Ro has an extensive RNA-binding surface. We propose that Ro uses this surface to scavenge RNAs that fail to bind their specific RNA-binding proteins.

  10. Multiple sclerosis autoantigen myelin basic protein escapes control by ubiquitination during proteasomal degradation.

    Science.gov (United States)

    Belogurov, Alexey; Kudriaeva, Anna; Kuzina, Ekaterina; Smirnov, Ivan; Bobik, Tatyana; Ponomarenko, Natalia; Kravtsova-Ivantsiv, Yelena; Ciechanover, Aaron; Gabibov, Alexander

    2014-06-20

    The vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis. Enzymatic deimination prevents hydrolysis of MBP by the proteasome, suggesting that an abnormally basic charge contributes to its susceptibility toward proteasome-mediated degradation. To our knowledge, our data reveal the first case of a pathophysiologically important autoantigen as a ubiquitin-independent substrate of the 26S proteasome.

  11. Autoantigen Microarray for High-throughput Autoantibody Profiling in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Honglin Zhu

    2015-08-01

    Full Text Available Systemic lupus erythematosus (SLE is a complex autoimmune disease characterized by the production of autoantibodies to a broad range of self-antigens. Profiling the autoantibody repertoire using array-based technology has emerged as a powerful tool for the identification of biomarkers in SLE and other autoimmune diseases. Proteomic microarray has the capacity to hold large number of self-antigens on a solid surface and serve as a high-throughput screening method for the determination of autoantibody specificities. The autoantigen arrays carrying a wide variety of self-antigens, such as cell nuclear components (nucleic acids and associated proteins, cytoplasmic proteins, phospholipid proteins, cell matrix proteins, mucosal/secreted proteins, glomeruli, and other tissue-specific proteins, have been used for screening of autoantibody specificities associated with different manifestations of SLE. Arrays containing synthetic peptides and molecular modified proteins are also being utilized for identification of autoantibodies targeting to special antigenic epitopes. Different isotypes of autoantibodies, including IgG, IgM, IgA, and IgE, as well as other Ig subtypes, can be detected simultaneously with multi-color labeled secondary antibodies. Serum and plasma are the most common biologic materials for autoantibody detection, but other body fluids such as cerebrospinal fluid, synovial fluid, and saliva can also be a source of autoantibody detection. Proteomic microarray as a multiplexed high-throughput screening platform is playing an increasingly-important role in autoantibody diagnostics. In this article, we highlight the use of autoantigen microarrays for autoantibody exploration in SLE.

  12. Autoantigen Microarray for High-throughput Autoantibody Profiling in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Zhu, Honglin; Luo, Hui; Yan, Mei; Zuo, Xiaoxia; Li, Quan-Zhen

    2015-08-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the production of autoantibodies to a broad range of self-antigens. Profiling the autoantibody repertoire using array-based technology has emerged as a powerful tool for the identification of biomarkers in SLE and other autoimmune diseases. Proteomic microarray has the capacity to hold large number of self-antigens on a solid surface and serve as a high-throughput screening method for the determination of autoantibody specificities. The autoantigen arrays carrying a wide variety of self-antigens, such as cell nuclear components (nucleic acids and associated proteins), cytoplasmic proteins, phospholipid proteins, cell matrix proteins, mucosal/secreted proteins, glomeruli, and other tissue-specific proteins, have been used for screening of autoantibody specificities associated with different manifestations of SLE. Arrays containing synthetic peptides and molecular modified proteins are also being utilized for identification of autoantibodies targeting to special antigenic epitopes. Different isotypes of autoantibodies, including IgG, IgM, IgA, and IgE, as well as other Ig subtypes, can be detected simultaneously with multi-color labeled secondary antibodies. Serum and plasma are the most common biologic materials for autoantibody detection, but other body fluids such as cerebrospinal fluid, synovial fluid, and saliva can also be a source of autoantibody detection. Proteomic microarray as a multiplexed high-throughput screening platform is playing an increasingly-important role in autoantibody diagnostics. In this article, we highlight the use of autoantigen microarrays for autoantibody exploration in SLE.

  13. 人胚胎干细胞体外定向诱导分化胰岛细胞移植治疗非肥胖联合免疫缺陷糖尿病小鼠%Pancreatic islets differentiated from human embryonic stem cells correct hyperglycemia in non-obese diabetic /severe combined immunodeficient mice

    Institute of Scientific and Technical Information of China (English)

    华秀峰; 孙强; 王延伟; 丛晋; 刘芙君; 孟晓梅; 李华峰; 靳少华; 王海燕; 李建远

    2013-01-01

    目的 探讨人胚胎干细胞(hESs)体外定向诱导分化胰岛细胞移植治疗非肥胖联合免疫缺陷(NOD/SCID)糖尿病小鼠的可行性.方法 体外分四阶段诱导hESs定向分化为胰岛细胞:第一阶段,予以活化素A(activin A)、渥曼青霉素(wortmannin)诱导分化形成定型内胚层;第二阶段,予以全反式维甲酸(RA)、NOGGIN、碱性成纤维细胞生长因子(bFGF)诱导胰腺细胞定向分化;第三阶段,予以表皮生长因子(EGF)扩增胰腺祖细胞;第四阶段,予以尼克酰胺(nicotinamide)、唾液素4(exendin-4)、bFGF及骨形成蛋白(BMP4)促进胰岛细胞成熟;观察诱导各阶段细胞形态变化、免疫荧光鉴定胰十二指肠同源异型盒基因(PDX-1)、胰高糖素、胰岛素、C肽、葡萄糖转运子2(Glut-2)的表达;四阶段分化成熟的胰岛细胞体外检测胰岛素释放反应并植入链脲菌素(STZ)诱导形成的NOD/SCID糖尿病小鼠一侧附睾脂肪垫内,观察血糖变化.结果 诱导第四阶段14天时hESs出现胰高糖素荧光表达;20天时细胞出现PDX-1和C肽共表达;22天形成的成熟胰岛细胞出现Glut-2和胰岛素的阳性表达;流式鉴定胰岛素阳性细胞占17.1%,C肽阳性细胞占3.8%;体外检测有葡萄糖刺激的胰岛素释放反应.分化成熟胰岛细胞约(3~5)×106植入NOD/SCID糖尿病小鼠体内可以逆转其高血糖至少8周.结论 体外定向诱导hESs分化形成的胰岛细胞植入NOD/SCID糖尿病小鼠附睾脂肪垫内可以逆转其高血糖.%Objective To investigate whether pancreatic progenitors differentiated from human embryonic stem (hES) cells could correct hyperglycemia in non-obese diabetic(NOD)/severe combined immunodeficient(SCID) mice or not. Methods Pancreatic islets derived from hES cells line YT1 according to the optimized four-stage differentiation protocol in a chemical-defined culture system were observed. In the first stage.activin A and wortmannin were utilized to induce definitive endoderm

  14. The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity.

    Science.gov (United States)

    Wali, J A; Rondas, D; McKenzie, M D; Zhao, Y; Elkerbout, L; Fynch, S; Gurzov, E N; Akira, S; Mathieu, C; Kay, T W H; Overbergh, L; Strasser, A; Thomas, H E

    2014-03-13

    Apoptosis of pancreatic beta cells is a feature of type 2 diabetes and its prevention may have therapeutic benefit. High glucose concentrations induce apoptosis of islet cells, and this requires the proapoptotic Bcl-2 homology domain 3 (BH3)-only proteins Bim and Puma. We studied the stress pathways induced by glucotoxicity in beta cells that result in apoptosis. High concentrations of glucose or ribose increased expression of the transcription factor CHOP (C/EBP homologous protein) but not endoplasmic reticulum (ER) chaperones, indicating activation of proapoptotic ER stress signaling. Inhibition of ER stress prevented ribose-induced upregulation of Chop and Puma mRNA, and partially protected islets from glucotoxicity. Loss of Bim or Puma partially protected islets from the canonical ER stressor thapsigargin. The antioxidant N-acetyl-cysteine also partially protected islets from glucotoxicity. Islets deficient in both Bim and Puma, but not Bim or Puma alone, were significantly protected from killing induced by the mitochondrial reactive oxygen species donor rotenone. Our data demonstrate that high concentrations of glucose induce ER and oxidative stress, which causes cell death mediated by Bim and Puma. We observed significantly higher Bim and Puma mRNA in islets of human donors with type 2 diabetes. This indicates that inhibition of Bim and Puma, or their inducers, may prevent beta-cell destruction in type 2 diabetes.

  15. The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice.

    Science.gov (United States)

    Maier, Bernhard; Ogihara, Takeshi; Trace, Anthony P; Tersey, Sarah A; Robbins, Reiesha D; Chakrabarti, Swarup K; Nunemaker, Craig S; Stull, Natalie D; Taylor, Catherine A; Thompson, John E; Dondero, Richard S; Lewis, Eli C; Dinarello, Charles A; Nadler, Jerry L; Mirmira, Raghavendra G

    2010-06-01

    In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to beta cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent beta cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions.

  16. The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice

    Science.gov (United States)

    Maier, Bernhard; Ogihara, Takeshi; Trace, Anthony P.; Tersey, Sarah A.; Robbins, Reiesha D.; Chakrabarti, Swarup K.; Nunemaker, Craig S.; Stull, Natalie D.; Taylor, Catherine A.; Thompson, John E.; Dondero, Richard S.; Lewis, Eli C.; Dinarello, Charles A.; Nadler, Jerry L.; Mirmira, Raghavendra G.

    2010-01-01

    In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to β cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent β cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions. PMID:20501948

  17. Intra- and Inter-islet Synchronization of Metabolically Driven Insulin Secretion

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bertram, Richard; Sherman, Arthur

    2005-01-01

    mechanisms for intra-islet and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on a simple model "liver......,'' which responds to the level of insulin secretion by adjusting the blood glucose concentration in an appropriate way. Since all islets are exposed to the blood, the distributed islet-liver system can synchronize the individual islet insulin oscillations. Thus, we demonstrate how intra-islet and inter...

  18. Influence of heme oxygenase-1 gene transfer on the viability and function of rat islets in in vitro culture

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bo Chen; Yong-Xiang Li; Yang Jiao; Wei-Ping Dong; Ge Li; Jing Chen; Jian-Ming Tan

    2007-01-01

    AIM:To ifivestigate the influence of heme oxygenase-1(HO-1)gene transfer on the viability and function of cultured rat islets in vitro.METHODS:Islets were isolated from the pancreata of Sprague-Dawley rats by intraductal collagenase digestion,and purified by discontinuous Ficoll density gradient centrifugation.Purified rat islets were transfected with adenoviral vectors containing human HO-1 gene(Ad-HO-1)or enhanced green fluorescent protein gene(Ad-EGFP),and then cultured for seven days.Transfection was confirmed by fluorescence microscopy and Western blot.Islet viability was evaluated by acridine orange/propidium iodide fluorescent staining.Glucose-stimulated insulin release was detected using insulin radioimmunoassay kits and was used to assess the function of islets.Stimulation index (SI)was calculated by dividing the insulin release upon high glucose stimulation by the insulin release upon low glucose stimulation.RESULTS:After seven days culture,the viability of cultured rat islets decreased significantly(92% ± 6% vs 52% ± 13%,P < 0.05),and glucose-stimulated insulin release also decreased significantly(6.47 ± 0.55 mIU/L/30IEQ vs 4.57 ± 0.40 mIU/L/30IEQ,14.93 ± 1.17mIU/L/30IEQ vs 9.63 ± 0.71 mIU/L/30IEQ,P < 0.05).Transfection of rat Islets with adenoviral vectors at an MOI of 20 was efficient,and did not impair islet function.At 7 d post-transfection,the viability of Ad-HO-1 transfected islets was higher than that of control islets (71% ± 15% vs 52% ± 13%,P < 0.05).There was no significant difference in insulin release upon low glucose stimulation(2.8 mmol/L)among Ad-HO-1 transfected group,Ad-EGFP transfected group,and control group(P > 0.05),while when stimulated by high glucose(16.7 mmol/L)solution,insulin release in Ad-HO-1 transfected group was significantly higher than that in Ad-EGFP transfected group and control group,respectively(12.50 ± 2.17 mIU/L/30IEQ vs 8.87 ± 0.65 mIU/L/30IEQ;12.50 ± 2.17 mIU/L/30IEQ vs 9.63 ± 0.71 mIU/L/30IEQ

  19. Photoacoustic imaging of angiogenesis in subdermal islet transplant sites

    Science.gov (United States)

    Shi, Wei; Pawlick, Rena; Bruni, Antonio; Rafiei, Yasmin; Pepper, Andrew R.; Gala-Lopez, Boris; Choi, Min; Malcolm, Andrew; Zemp, Roger J.; Shapiro, A. M. James

    2016-03-01

    Exogenous insulin administration is the mainstay treatment therapy for patients with Type-1 diabetes mellitus (T1DM). However, for select patients, clinical islet transplantation is an alternative therapeutic treatment. In this procedure, islets are transplanted into the hepatic portal vein, and despite improved success within the last decade, obstacles are still associated with this approach. It has been discovered that the subcutaneous space may be an effective alternative site for islet transplantation, and may provide advantages of easy access and potential for simple monitoring. The ability to monitor islet viability and the transplant microenvironment may be key to future success in islet transplantation. A subcutaneous device-less technique has been developed to facilitate angiogenesis in the islet transplant site, however, a method for monitoring the potential engraftment site have yet to be explored fully. Here we demonstrate the ability to track angiogenesis in mice with 1, 2, 3 and 4 weeks post-catheter implant on both sides of the abdomen using a FujiFilm VisualSonics Vevo-LAZR system. Quantitative analysis on vessel densities exhibited gradual vessel growth successfully induced by catheter implantation. Our study demonstrates the ability of employing photoacoustic and micro-ultrasound imaging to track angiogenesis around the catheter site prior to islet transplantation.

  20. Hexose metabolism in pancreatic islets: the Pasteur effect.

    Science.gov (United States)

    Malaisse, W J; Rasschaert, J; Zähner, D; Sener, A

    1988-02-01

    In rat pancreatic islets, hypoxia severely decreased both the oxidation of D-[U-14C]glucose and the release of insulin evoked by D-glucose. The production of [14C]lactate was increased in the hypoxic islets, the relative magnitude of such an increment being greater at low (2.8 mM) than high (8.3 and 16.7 mM) D-glucose concentrations. Hypoxia increased the detritiation of D-[5-3H]glucose at low glucose concentration (2.8 mM), failed to affect 3H2O production at an intermediate glucose level (8.3 mM), and inhibited the utilization of D-[5-3H]glucose at a higher hexose concentration (16.7 mM). In tumoral islet cells (RINm5F line) exposed to 16.7 mM D-glucose, hypoxia decreased D-[U-14C]glucose oxidation to the same extent as in normal islet cells, but increased the production of [14C]lactate and 3H2O to a greater extent than in normal islets. These findings indicate that the Pasteur effect is operative in islet cells. The experimental data also suggest that, under normal conditions of oxygenation, high concentrations of D-glucose lead to both activation of phosphofructokinase and stimulation of mitochondrial oxidative events in normal, but not tumoral, islet cells.

  1. Screening and identification of human ZnT8-specific single-chain variable fragment (scFv) from type 1 diabetes phage display library.

    Science.gov (United States)

    Wu, Qian; Wang, Xiaodong; Gu, Yong; Zhang, Xiao; Qin, Yao; Chen, Heng; Xu, Xinyu; Yang, Tao; Zhang, Mei

    2016-07-01

    Zinc transporter 8 (ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes (T1D). To investigate ZnT8-specific antibodies, a phage display library from T1D was constructed and single-chain antibodies against ZnT8 were screened and identified. Human T1D single-chain variable fragment (scFv) phage display library consists of approximately 1×10(8) clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325Trp mutation. The specificity to human islet cells of these scFvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1D phage display antibody library and identified two ZnT8-specific scFv clones, C27 and C22. These ZnT8-specific scFvs are potential agents in immunodiagnostic and immunotherapy of T1D.

  2. Remodelling sympathetic innervation in rat pancreatic islets ontogeny

    Directory of Open Access Journals (Sweden)

    Hiriart Marcia

    2009-06-01

    Full Text Available Abstract Background Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas. We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19, early postnatal (P1, weaning period (P20 and adults. We temporarily correlated these events to NGF secretion by islet cells. Results Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF–immunoreactive only at early stages (foetal and P0. Conclusion The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life.

  3. Siglec-7 restores β-cell function and survival and reduces inflammation in pancreatic islets from patients with diabetes

    Science.gov (United States)

    Dharmadhikari, Gitanjali; Stolz, Katharina; Hauke, Michael; Morgan, Noel G.; Varki, Ajit; de Koning, Eelco; Kelm, Sørge; Maedler, Kathrin

    2017-01-01

    Chronic inflammation plays a key role in both type 1 and type 2 diabetes. Cytokine and chemokine production within the islets in a diabetic milieu results in β-cell failure and diabetes progression. Identification of targets, which both prevent macrophage activation and infiltration into islets and restore β-cell functionality is essential for effective diabetes therapy. We report that certain Sialic-acid-binding immunoglobulin-like-lectins (siglecs) are expressed in human pancreatic islets in a cell-type specific manner. Siglec-7 was expressed on β-cells and down-regulated in type 1 and type 2 diabetes and in infiltrating activated immune cells. Over-expression of Siglec-7 in diabetic islets reduced cytokines, prevented β-cell dysfunction and apoptosis and reduced recruiting of migrating monocytes. Our data suggest that restoration of human Siglec-7 expression may be a novel therapeutic strategy targeted to both inhibition of immune activation and preservation of β-cell function and survival. PMID:28378743

  4. Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the "Scene of the Crime".

    Science.gov (United States)

    Kent, Sally C; Mannering, Stuart I; Michels, Aaron W; Babon, Jenny Aurielle B

    2017-09-02

    Autoimmune-mediated destruction of insulin-producing β-cells within the pancreas results in type 1 diabetes (T1D), which is not yet preventable or curable. Previously, our understanding of the β-cell specific T cell repertoire was based on studies of autoreactive T cell responses in the peripheral blood of patients at risk for, or with, T1D; more recently, investigations have included immunohistochemical analysis of some T cell specificities in the pancreas from organ donors with T1D. Now, we are able to examine live, islet-infiltrating T cells from donors with T1D. Analysis of the T cell repertoire isolated directly from the pancreatic islets of donors with T1D revealed pro-inflammatory T cells with targets of known autoantigens, including proinsulin and glutamic acid decarboxylase, as well as modified autoantigens. We have assayed the islet-infiltrating T cell repertoire for autoreactivity and function directly from the inflamed islets of T1D organ donors. Design of durable treatments for prevention of or therapy for T1D requires understanding this repertoire.

  5. Clinical islet transplantation at the University of California, San Francisco.

    Science.gov (United States)

    Posselt, Andrew M; Szot, Gregory L; Frassetto, Lynda A; Masharani, Umesh; Stock, Peter G

    2010-01-01

    The UCSF clinical islet transplant program has evolved to utilize immunosuppressive strategies that do not rely on CNIs or other nephro- and beta-cell-toxic immunosuppressive agents. These novel strategies depend on lymphocyte-depleting induction immunotherapy and maintenance immunosuppression with novel agents that focus on co-stimulation and/or lymphocyte migration blockade. These drugs are well tolerated, frequently allow establishment of insulin independence after single islet infusions, and minimize allosensitization. Our early results suggest these regimens will be attractive immunosuppressive agents for future protocols in allogeneic islet transplantation as well as protocols utilizing stem-cell-derived beta cells.

  6. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone.

    OpenAIRE

    Nishi, M.; Chan, S J; Nagamatsu, S; Bell, G I; Steiner, D. F.

    1989-01-01

    Islet amyloid polypeptide (IAPP) is a 37-amino acid peptide found in the pancreatic amyloid deposits of type II (non-insulin-dependent) diabetic patients and insulinomas. We previously reported the nucleotide sequence of a human cDNA, which indicated that IAPP is a C-terminally amidated peptide derived by proteolytic processing of an 89-amino acid precursor. We now report the isolation of cDNA clones coding for cat, rat, mouse, and guinea pig IAPP precursors, obtained using the combination of...

  7. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    2015-02-01

    Full Text Available The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.

  8. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble

    DEFF Research Database (Denmark)

    Christgau, S; Schierbeck, H; Aanstoot, H J

    1991-01-01

    The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic...... acid decarboxylase. We have identified two autoantigenic forms of this protein in rat pancreatic beta-cells, a Mr 65,000 (GAD65) hydrophilic and soluble form of pI 6.9-7.1 and a Mr 64,000 (GAD64) component of pI 6.7. GAD64 is more abundant than GAD65 and has three distinct forms with regard to cellular...... compartment and hydrophobicity. A major portion of GAD64 is hydrophobic and firmly membrane-anchored and can only be released from membrane fractions by detergent. A second portion is hydrophobic but soluble or of a low membrane avidity, and a third minor portion is soluble and hydrophilic. All the GAD64...

  9. Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+](i and insulin rhythms in mouse islets.

    Directory of Open Access Journals (Sweden)

    Craig S Nunemaker

    Full Text Available We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+](i that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed "islet imprinting." We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J as well as outbred mouse strains (Swiss-Webster; CD1. Second, imprinting was observed in NAD(PH oscillations, indicating a metabolic component. Further, short-term exposure to a glucose-free solution, which transiently silenced [Ca2+](i oscillations, reset the oscillatory patterns to a higher frequency. This suggests a key role for glucose metabolism in maintaining imprinting, as transiently suppressing the oscillations with diazoxide, a K(ATP-channel opener that blocks [Ca2+](i influx downstream of glucose metabolism, did not change the imprinted patterns. Third, imprinting was not as readily observed at the level of single beta cells, as the [Ca2+](i oscillations of single cells isolated from imprinted islets exhibited highly variable, and typically slower [Ca2+](i oscillations. Lastly, to test whether the imprinted [Ca2+](i patterns were of functional significance, a novel microchip platform was used to monitor insulin release from multiple islets in real time. Insulin release patterns correlated closely with [Ca2+](i oscillations and showed significant mouse-to-mouse differences, indicating imprinting. These results indicate that islet imprinting is a general feature of islets and is likely to be of physiological significance. While islet imprinting did not depend on the genetic background of the mice, glucose metabolism and intact islet architecture may be important for the imprinting phenomenon.

  10. The Edges of Pancreatic Islet β Cells Constitute Adhesive and Signaling Microdomains

    Directory of Open Access Journals (Sweden)

    Erez Geron

    2015-01-01

    Full Text Available Pancreatic islet β cells are organized in rosette-like structures around blood vessels and exhibit an artery-to-vein orientation, but they do not display the typical epithelial polarity. It is unclear whether these cells present a functional asymmetry related to their spatial organization. Here, we identify murine β cell edges, the sites at which adjacent cell faces meet at a sharp angle, as surface microdomains of cell-cell adhesion and signaling. The edges are marked by enrichment of F-actin and E-cadherin and are aligned between neighboring cells. The edge organization is E-cadherin contact dependent and correlates with insulin secretion capacity. Edges display elevated levels of glucose transporters and SNAP25 and extend numerous F-actin-rich filopodia. A similar β cell edge organization was observed in human islets. When stimulated, β cell edges exhibit high calcium levels. In view of the functional importance of intra-islet communication, the spatial architecture of their edges may prove fundamental for coordinating physiological insulin secretion.

  11. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    Science.gov (United States)

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis. PMID:28212332

  12. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis.

    Science.gov (United States)

    Størling, Joachim; Pociot, Flemming

    2017-02-16

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis.

  13. Apoptosis and Redistribution of the Ro Autoantigen in Balb/c Mouse Like in Subacute Cutaneous Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Rafael Herrera-Esparza

    2006-01-01

    Full Text Available In subacute cutaneous lupus eryhematosus (SCLE the cutaneous antigens constitute the main source of Ro and La autoantigens. The aim of this investigation was to demonstrate if UV light increases the availability of Ro autoantigen in the skin, also the blocking effect of Ac-DEVD-CMK a caspase inhibitor was assessed. For this purpose newborn Balb/c mice were UVB irradiated (5–30 mJ/cm2 equivalent to a moderate to severe sunburn. Animals were injected with monoclonal anti-Ro antibodies from SCLE patients. Apoptosis was also induced by anti-Fas antibody injection. Skin samples were examined by direct immunofluoresence, by TUNEL, and the expression of caspase 3 by RT-PCR. Major findings of present studies were: 1. UVB irradiation and anti-Fas induced apoptosis of keratinocytes. 2. Apoptosis redistribute the Ro antigen on cell surface and is better triggered by Ro antibody. 3. The caspase 3 inhibitor Ac-DEVD-CMK decreases the availability of Ro autoantigen in epidermis and prevents deposition of anti-Ro. In conclusion, the caspase pathway would be blocked to avoid anti-Ro deposition along skin; this finding would be a prospect in the treatment of SCLE patients.

  14. Ectopic pancreatic islets in Splenic hilum and peripancreatic fat

    Directory of Open Access Journals (Sweden)

    Vasishta RK

    2008-01-01

    Full Text Available Abstract The presence of pancreatic islets alone in the peripancreatic region and splenic hilum is an uncommon occurrence. Herein, we describe their presence in this rare location.

  15. Islet-cell dysfunction induced by glucocorticoid treatment

    DEFF Research Database (Denmark)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E

    2013-01-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system....

  16. Assimilating Dokdo: The Islets in Korean Everyday Life

    Directory of Open Access Journals (Sweden)

    Brandon Palmer

    2016-03-01

    Full Text Available Sovereignty over the Tokto Islets is heatedly contested between South Korea and Japan. The Korean government and citizenry have responded to this dispute by inserting the islets into their national collective memory in multifarious ways in an attempt to strengthen their nation’s claim to Tokto. The islets are included in the material culture and public memory of the nation in ways that make them part of everyday life for millions of Koreans. Korea’s claim to Tokto is currently taught in schools, presented in museums, found in popular songs, and exploited by businesses for profit. The deeper Tokto becomes entrenched in Korean society, the less likely a compromise can be reached with Japan over the islets.

  17. Islet cell xenotransplantation: a serious look toward the clinic.

    Science.gov (United States)

    Samy, Kannan P; Martin, Benjamin M; Turgeon, Nicole A; Kirk, Allan D

    2014-01-01

    Type I diabetes remains a significant clinical problem in need of a reliable, generally applicable solution. Both whole organ pancreas and islet allotransplantation have been shown to grant patients insulin independence, but organ availability has restricted these procedures to an exceptionally small subset of the diabetic population. Porcine islet xenotransplantation has been pursued as a potential means of overcoming the limits of allotransplantation, and several preclinical studies have achieved near-physiologic function and year-long survival in clinically relevant pig-to-primate model systems. These proof-of-concept studies have suggested that xenogeneic islets may be poised for use in clinical trials. In this review, we examine recent progress in islet xenotransplantation, with a critical eye toward the gaps between the current state of the art and the state required for appropriate clinical investigation.

  18. In situ application of hydrogel-type fibrin-islet composite optimized for rapid glycemic control by subcutaneous xenogeneic porcine islet transplantation.

    Science.gov (United States)

    Kim, Jung-Sik; Lim, Jong-Hyung; Nam, Hye-Young; Lim, Hyun-Ju; Shin, Jun-Seop; Shin, Jin-Young; Ryu, Ju-Hee; Kim, Kwangmeyung; Kwon, Ick-Chan; Jin, Sang-Man; Kim, Hang-Rae; Kim, Sang-Joon; Park, Chung-Gyu

    2012-09-10

    Maximum engraftment of transplanted islets is essential for the clinical application of a subcutaneous site. Significant barriers to the current approaches are associated with their low effectiveness, complexity and unproven biosafety. Here, we evaluated and optimized a fibrin-islet composite for effective glycemic control in a subcutaneous site whose environment is highly hypoxic due to low vascularization potential. In the setting of xenogeneic porcine islet transplantation into the subcutaneous space of a diabetic mouse, the in vivo islet functions were greatly affected by the concentrations of fibrinogen and thrombin. The optimized hydrogel-type fibrin remarkably reduced the marginal islet mass to approximately one tenth that of islets without fibrin. This marginal islet mass was comparable to that in the setting of the subcapsular space of the kidney, which is a highly vascularized organ. Highly vascularized structures were generated inside and on the outer surface of the grafts. A hydrogel-type fibrin-islet composite established early diabetic control within an average of 3.4days after the transplantation. In the mechanistic studies, fibrin promoted local angiogenesis, enhanced islet viability and prevented fragmentation of islets into single cells. In conclusion, in situ application of hydrogel-type fibrin-islet composite may be a promising modality in the clinical success of subcutaneous islet transplantation.

  19. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    Science.gov (United States)

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules.

  20. Development of (99m)Tc-Labeled Pyridyl Benzofuran Derivatives To Detect Pancreatic Amylin in Islet Amyloid Model Mice.

    Science.gov (United States)

    Yoshimura, Masashi; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Saji, Hideo

    2016-06-15

    While islet amyloid deposition comprising amylin is one of pathological hallmarks of type 2 diabetes mellitus (T2DM), no useful amylin-imaging probe has been reported. In this study, we evaluated two (99m)Tc-labeled pyridyl benzofuran derivatives as novel amylin-imaging probes using the newly established islet amyloid model mouse. Binding experiments in vitro demonstrated that [(99m)Tc]1 displayed a higher affinity for amylin aggregates than [(99m)Tc]2. Autoradiographic studies using human pancreas sections with T2DM revealed that [(99m)Tc]1 clearly labeled islet amyloid in T2DM pancreatic sections, while [(99m)Tc]2 did not. Although the initial uptake of [(99m)Tc]1 by the normal mouse pancreas was low (0.74%ID/g at 2 min post-injection), [(99m)Tc]1 showed higher retention in the model mouse pancreas than that of the normal mouse, and exhibited strong binding to amylin aggregates in the living pancreas of the model mice. These results suggest that [(99m)Tc]1 is a potential imaging probe targeting islet amyloids in the T2DM pancreas.

  1. Intraportal islet transplantation: the impact of the liver microenvironment.

    Science.gov (United States)

    Delaune, Vaihere; Berney, Thierry; Lacotte, Stéphanie; Toso, Christian

    2017-03-01

    The portal vein remains the preferred site for pancreatic islet transplantation due to its easy access and low morbidity. However, despite great progress in isolation and transplantation protocols over the past few years, it is still associated with the early loss of some 50-70% of transplanted islets. The complex liver microenvironment itself presumably plays an important role in this loss. The present review focuses on the specifics of the liver microenvironment, notably the localized hepatic ischemia/reperfusion injury following transplantation, the low oxygenation of the portal vein, the instant blood-mediated inflammatory reaction, the endogenous liver immune system, and the gut-liver axis, and how they can each have an impact on the transplanted islets. It identifies the potential, or already applied, clinical interventions for improving intraportal islet survival, and pinpoints those promising areas still lacking preclinical research. Future interventions on clinical intraportal islet transplantation need to take into account the global context of the liver microenvironment, with multi-point interventions being most likely to improve early islet survival and engraftment. © 2017 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT.

  2. Autoantigen Microarray for High-throughput Autoantibody Profiling in Systemic Lupus Erythematosus

    Institute of Scientific and Technical Information of China (English)

    Honglin Zhu; Hui Luo; Mei Yan; Xiaoxia Zuo; Quan-Zhen Li

    2015-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the production of autoantibodies to a broad range of self-antigens. Profiling the autoantibody repertoire using array-based technology has emerged as a powerful tool for the identification of biomarkers in SLE and other autoimmune diseases. Proteomic microarray has the capacity to hold large number of self-antigens on a solid surface and serve as a high-throughput screening method for the determination of autoantibody specificities. The autoantigen arrays carrying a wide variety of self-antigens, such as cell nuclear components (nucleic acids and associated proteins), cytoplas-mic proteins, phospholipid proteins, cell matrix proteins, mucosal/secreted proteins, glomeruli, and other tissue-specific proteins, have been used for screening of autoantibody specificities associated with different manifestations of SLE. Arrays containing synthetic peptides and molecular modified proteins are also being utilized for identification of autoantibodies targeting to special antigenic epi-topes. Different isotypes of autoantibodies, including IgG, IgM, IgA, and IgE, as well as other Ig subtypes, can be detected simultaneously with multi-color labeled secondary antibodies. Serum and plasma are the most common biologic materials for autoantibody detection, but other body fluids such as cerebrospinal fluid, synovial fluid, and saliva can also be a source of autoantibody detection.

  3. Autoantigen TRIM21/Ro52 as a Possible Target for Treatment of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Ryusuke Yoshimi

    2012-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a chronic, systemic, and autoimmune disease, whose etiology is still unknown. Although there has been progress in the treatment of SLE through the use of glucocorticoid and immunosuppressive drugs, these drugs have limited efficacy and pose significant risks of toxicity. Moreover, prognosis of patients with SLE has remained difficult to assess. TRIM21/Ro52/SS-A1, a 52-kDa protein, is an autoantigen recognized by antibodies in sera of patients with SLE and Sjögren's syndrome (SS, another systemic autoimmune disease, and anti-TRIM21 antibodies have been used as a diagnostic marker for decades. TRIM21 belongs to the tripartite motif-containing (TRIM super family, which has been found to play important roles in innate and acquired immunity. Recently, TRIM21 has been shown to be involved in both physiological immune responses and pathological autoimmune processes. For example, TRIM21 ubiquitylates proteins of the interferon-regulatory factor (IRF family and regulates type I interferon and proinflammatory cytokines. In this paper, we summarize molecular features of TRIM21 revealed so far and discuss its potential as an attractive therapeutic target for SLE.

  4. Atomic features of an autoantigen in heparin-induced thrombocytopenia (HIT).

    Science.gov (United States)

    Cai, Zheng; Zhu, Zhiqiang; Greene, Mark I; Cines, Douglas B

    2016-07-01

    Autoantigen development is poorly understood at the atomic level. Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by antibodies to an antigen composed of platelet factor 4 (PF4) and heparin or cellular glycosaminoglycans (GAGs). In solution, PF4 exists as an equilibrium among monomers, dimers and tetramers. Structural studies of these interacting components helped delineate a multi-step process involved in the pathogenesis of HIT. First, heparin binds to the 'closed' end of the PF4 tetramer and stabilizes its conformation; exposing the 'open' end. Second, PF4 arrays along heparin/GAG chains, which approximate tetramers, form large antigenic complexes that enhance antibody avidity. Third, pathogenic HIT antibodies bind to the 'open' end of stabilized PF4 tetramers to form an IgG/PF4/heparin ternary immune complex and also to propagate the formation of 'ultralarge immune complexes' (ULCs) that contain multiple IgG antibodies. Fourth, ULCs signal through FcγRIIA receptors, activating platelets and monocytes directly and generating thrombin, which transactivates hematopoietic and endothelial cells. A non-pathogenic anti-PF4 antibody prevents tetramer formation, binding of pathogenic antibody, platelet activation and thrombosis, providing a new approach to manage HIT. An improved understanding of the pathogenesis of HIT may lead to novel diagnostics and therapeutics for this autoimmune disease.

  5. Continuous Glucose Monitoring Analysis as Predictor of Islet Yield and Insulin Requirements in Autologous Islet Transplantation After Complete Pancreatectomy

    Science.gov (United States)

    Georgiev, George Ivanov; Cercone, Renee; Tiwari, Mukesh; Rilo, Horacio L. R.

    2014-01-01

    We analyzed the pretransplant continuous glucose monitoring (CGM) data of 45 patients that underwent total pancreatectomy followed by autologous islet transplantation (AIT) at the University of Arizona Medical Center. Traditional and novel metrics of CGM time series were correlated to the total islet count (TIC), islet equivalents (IEQs), and weight-normalized IEQs (IEQ/kg). In a subset cohort (n = 26) we analyzed the relationship among the infused number of islets, the CGM indicators, and the first recorded insulin requirement after the procedure. We conclude that receiving a high islet yield is sufficient yet not necessary to achieve low or null insulin requirements within the first 50 days after surgery. Furthermore, CGM inertia and CGM length of curve (2 novel CGM indicators) are shown to be correlated to islet yield, and the CGMs normalized area (Ao) and time ratio above hyperglycemic level (To) are strongly correlated to insulin requirement. A screening test based on To is shown to have 100% sensitivity and 88% specificity discriminating insulin independence upon discharge. PMID:25190081

  6. 系统性红斑狼疮中内皮细胞相关自身抗原的鉴定%Identification of autoantigens associated with systemic lupus erythematosus from endothelial cells

    Institute of Scientific and Technical Information of China (English)

    曹毅; 吴乔; 牟芝蓉

    2012-01-01

    We aimed to identify new potential autoantigens associated with systemic lupus erythematosus (SLE) in human umbilical vein endothelial cells (HUVEC). Serum samples were collected from 27 SLE patients and 24 health donors. And IgG from serum was captured by Protein G Beads. Then the beads were washed and incubated with HUVEC lysate. The proteins which reacted with IgG-Beads were separated by immobilized pH gradient two -dimensional (2 -D) gel electrophoresis, and the unique protein spots in SLE patients group were identified by LC -MS -MS. We identified several proteins including known SLE autoantigen GAPDH, in which calcium/calmodulin-dependent serine protein kinase (CASK) was the first find to be involved in SLE. Furthermore, we also found that CASK antibody expression in SLE was significantly higher than that in health donor. From all the results, we presumed that CASK in HUVEC may be a new potential autoantigen in SLE. Systemic lupus erythematosus; Human umbilical vein endothelial cells; Calcium/calmodulin-%目的 在内皮细胞中筛选与系统性红斑狼疮(systemic lupus erythematosus,SLE)疾病相关的自身抗原.方法 用免疫沉淀法以SLE病人血清中自身抗体捕获人脐带内皮细胞(human umbilical vein endothelial cell,HUVEC)相关抗原,并用双向电泳法分离免疫沉淀产物,然后用LC-MS-MS串联质谱鉴定与SLE病人血清反应的蛋白点.最后用Western blot法验证部分鉴定蛋白.结果 相对于正常人血清对照,SLE病人血清捕获了多个内皮细胞相关蛋白,质谱鉴定结果 显示:通过免疫沉淀与双向电泳结合的方法 成功鉴定了包括GAPDH等已知SLE自身抗原在内的一系列蛋白,其中钙/钙调蛋白依赖性丝氨酸蛋白激酶(calcium/calmodulin-dependent serine protein kinase,CASK)为新发现SLE候选自身抗原.并以重组人CASK蛋白证实SLE病人血清中CASK抗体水平显著高于正常人对照.结论 内皮细胞蛋白CASK可能作为一个新的SLE相关自身抗原.

  7. Cloning and molecular characterization of cDNA encoding a mouse male-enhanced antigen-2 (Mea-2): a putative family of the Golgi autoantigen.

    Science.gov (United States)

    Kondo, M; Sutou, S

    1997-01-01

    The male-enhanced antigen-2 (Mea-2) gene was originally identified with a monoclonal histocompatibility Y (H-Y) antibody (mAb4VII). There is no report of the full length cDNA encode for Mea-2 product until this report. In this study, we isolated the full length mouse Mea-2 cDNA by screening a testis cDNA library with a PCR-amplified Mea-2 product, and direct PCR amplification of its upstream sequences from the cDNA library. The primary structure of the Mea-2 peptide, deduced from this nucleotide sequence, shows that it encode a 150 kDa protein, of 1325 amino acid residues, which contained five putative N-glycosylation sites and four leucine zipper motifs. A data bank search indicated that it has high homology with a human Golgi autoantigen (golgin-160) both in its nucleotides (78%) and amino acids sequence (83%). This suggests that Mea-2 gene product may encode a golgi structural protein. In situ hybridization analysis suggested that the Mea-2 gene is expressed in spermatids during spermatogenesis as already shown by Mea-1, suggesting that Mea-2 gene product as well as Mea-1 have also some role for spermatogenesis.

  8. La Autoantigen Induces Ribosome Binding Protein 1 (RRBP1) Expression through Internal Ribosome Entry Site (IRES)-Mediated Translation during Cellular Stress Condition.

    Science.gov (United States)

    Gao, Wenqing; Li, Qi; Zhu, Ruiyu; Jin, Jian

    2016-07-20

    The function of ribosome binding protein 1 (RRBP1) is regulating the transportation and secretion of some intracellular proteins in mammalian cells. Transcription of RRBP1 is induced by various cytokines. However, few studies focused on the process of RRPB1 mRNA translation. The RRBP1 mRNA has a long 5' untranslated region that potentially formed a stable secondary structure. In this study, we show that the 5' UTR of RRBP1 mRNA contains an internal ribosome entry site (IRES). Moreover, the RRBP1 expression is induced by chemotherapeutic drug paclitaxel or adriamycin in human hepatocellular carcinoma cells and accompanied with the increased expression of La autoantigen (La), which binds to RRBP1 IRES element and facilitates translation initiation. Interestingly, we found IRES-mediated RRBP1 translation is also activated during serum-starvation condition which can induce cytoplasmic localization of La. After mapping the entire RRBP1 5' UTR, we determine the core IRES activity is located between nt-237 and -58. Furthermore, two apical GARR loops within the functional RRBP1 IRES elements may be important for La binding. These results strongly suggest an important role for IRES-dependent translation of RRBP1 mRNA in hepatocellular carcinoma cells during cellular stress conditions.

  9. Islet amyloid polypeptide and insulin expression are controlled differently in primary and transformed islet cells

    DEFF Research Database (Denmark)

    Madsen, O D; Michelsen, Bo Thomas; Westermark, P;

    1991-01-01

    in unstable heterogeneous clones such as NHI-6F. This clone is composed of primarily glucagon-producing cells in vitro, but insulin gene expression becomes dominant after passage in vivo. Interestingly, IAPP was hyperexpressed with glucagon under in vitro conditions in this clone. We conclude that the tissue...... specificity of expressions of IAPP and insulin are controlled differently, and that coexpression of IAPP with hormones different from insulin may be a marker for pluripotent transformed rat islet cell clones, which are able to activate insulin gene transcription during passage in vivo....

  10. Regulation of Pancreatic Islet Gene Expression in Mouse Islets by Pregnancy

    DEFF Research Database (Denmark)

    Layden, Brian Thomas; Durai, Vivek; Newman, Marsha V;

    2010-01-01

    beta cell proliferation (E13.5), and RNA levels were determined by 2 different assays (global gene expression array and G protein-coupled receptor array). Follow-up studies confirmed the findings for select genes. Differential expression of 110 genes was identified and follow-up studies confirmed......-inflammatory molecule. Complementing these studies, an expression array was performed to define pregnancy-induced changes in expression of G protein-coupled receptors which are known to impact islet cell function and proliferation. This assay, the results of which were confirmed using real time RT-PCR assays...

  11. Investigating the role of islet cytoarchitecture in its oscillation using a new beta-cell cluster model.

    Directory of Open Access Journals (Sweden)

    Aparna Nittala

    Full Text Available The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of beta cells in each islet. The functional role of islet beta cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP cluster that is conventionally used. Using our new model we investigated the functional characteristics of beta-cell clusters, including the fraction of cells able to burst f(b, the synchronization index lambda of the bursting beta cells, the bursting period T(b, the plateau fraction p(f, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells n(beta, number of inter-beta cell couplings of each beta cell n(c, and the coupling strength g(c. We found that at low values of n(beta, n(c and g(c, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at n(beta approximately 100, n(c approximately 6 and g(c approximately 200 pS. In addition, normal beta-cell clusters are robust against significant perturbation to their architecture, including the presence of non-beta cells or dead beta cells. In clusters with n(beta> approximately 100, coordinated beta-cell bursting can be maintained at up to 70% of beta-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a beta-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are

  12. Isolation of viable porcine islets by selective osmotic shock without enzymatic digestion.

    Science.gov (United States)

    Atwater, I; Guajardo, M; Caviedes, P; Jeffs, S; Parrau, D; Valencia, M; Romero, C; Arriagada, C; Caamaño, E; Salas, A; Olguin, F; Atlagich, M; Maas, R; Mears, D; Rojas, E

    2010-01-01

    Islet transplantation is a potential cure for type 1 diabetes, but clinical results have been disappointing. Currently, islet isolation is by enzymatic digestion of the pancreas which has significant pitfalls: warm ischemia exposure, collagenase-induced damage to the islet mass and viability, poor reproducibility, high cost, a relatively low number of islets obtained per whole pancreas, and selection of islets for collagenase resistance rather than for glucose responsiveness. In the present study we performed a series of experiments in a porcine model to demonstrate the feasibility of a new isolation method based on selective osmotic shock (SOS) using very high glucose solutions, doubling or tripling physiological osmotic strength. The SOS method can be carried out at room temperature or in the cold eliminating warm ischemia time which damages the islets. The SOS method does not depend on the texture of the pancreas so all pancreases can be processed identically and the process can be fully automated. The SOS method isolates all the islets of the pancreas regardless of size and shape allowing a greater number of islets to be harvested. The SOS method avoids exposure to toxins in collagenase solutions, is inexpensive and selects for islets with high concentrations of Glut 2 transporters, representing the best glucose responding islets. The SOS method showed a comparable recovery of islets from young pig pancreas and the islets showed improved viability. We conclude that the selective osmotic shock (SOS) method of separating islets from the pancreatic tissue is superior to the collagenase method.

  13. Automated recognition and quantification of pancreatic islets in Zucker diabetic fatty rats treated with exendin-4.

    Science.gov (United States)

    Kakimoto, Tetsuhiro; Kimata, Hirotaka; Iwasaki, Satoshi; Fukunari, Atsushi; Utsumi, Hiroyuki

    2013-01-01

    Type 2 diabetes is characterized by impaired insulin secretion from pancreatic β-cells. Quantification of the islet area in addition to the insulin-positive area is important for detailed understanding of pancreatic islet histopathology. Here we show computerized automatic recognition of the islets of Langerhans as a novel high-throughput method to quantify islet histopathology. We utilized state-of-the-art tissue pattern recognition software to enable automatic recognition of islets, eliminating the need to laboriously trace islet borders by hand. After training by a histologist, the software successfully recognized even irregularly shaped islets with depleted insulin immunostaining, which were quite difficult to automatically recognize. The results from automated image analysis were highly correlated with those from manual image analysis. To establish whether this automated, rapid, and objective determination of islet area will facilitate studies of islet histopathology, we showed the beneficial effect of chronic exendin-4, a glucagon-like peptide-1 analog, treatment on islet histopathology in Zucker diabetic fatty (ZDF) rats. Automated image analysis provided qualitative and quantitative evidence that exendin-4 treatment ameliorated the loss of pancreatic insulin content and gave rise to islet hypertrophy. We also showed that glucagon-positive α-cell area was decreased significantly in ZDF rat islets with disorganized structure. This study is the first to demonstrate the utility of automatic quantification of digital images to study pancreatic islet histopathology. The proposed method will facilitate evaluations in preclinical drug efficacy studies as well as elucidation of the pathophysiology of diabetes.

  14. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

    Science.gov (United States)

    Cataldo, L. R.; Olmos, P.; Galgani, J. E.; Valenzuela, R.; Aranda, E.; Cortés, V. A.; Santos, J. L.

    2016-01-01

    High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p < 0.0001) and oleate (−43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content. PMID:27366756

  15. Genetics and pathophysiology of granulomatosis with polyangiitis (GPA) and its main autoantigen proteinase 3.

    Science.gov (United States)

    Relle, Manfred; Föhr, Bernd; Fasola, Federica; Schwarting, Andreas

    2016-12-01

    Granulomatosis with polyangiitis (GPA) is a severe autoimmune disease and one of the small vessel anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides. Although its etiology and pathophysiology are still widely unknown, it is accepted that infections, environmental factors, epigenetic modifications, and a genetic predisposition provide the basis for this systemic disorder. GPA typically evolves into two phases: an initial phase characterized by ear, nose and throat (ENT) manifestations, such as chronic sinusitis and otitis, ulceration of the oral cavity and pharynx, as well as pulmonary nodules and a severe generalized phase, defined by the occurrence of rapidly progressive glomerulonephritis, pulmonary hemorrhage, and arthritis. ANCAs, directed against the neutrophilic enzymes proteinase 3 and myeloperoxidase, are present in up to 90% of the affected patients in the systemic phase. As the humoral immunity is predominantly directed against neutrophilic antigens, it is apparent that neutrophils play a critical role in GPA both as target and effector cells. Although GPA pathogenesis is not well known, some susceptibility genes and loci have been identified by candidate gene approaches, genome-wide association studies, and meta-analyses, as well as familial association studies. Such genes are CTLA4, PTPN22, COL11A2, SERPINA1, and the MHC class II gene cluster. This review highlights the clinical, pathophysiological, and genetic background of GPA and aims to give an overview of recent efforts to identify GPA susceptibility genes. We point out the genetic basis of the main autoantigen PR3 and why it is so difficult to establish a murine GPA model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification of critical residues of linear B cell epitope on Goodpasture autoantigen.

    Directory of Open Access Journals (Sweden)

    Xiao-yu Jia

    Full Text Available The autoantigen of anti-glomerular basement membrane (GBM disease has been identified as the non-collagenous domain 1 of α3 chain of type IV collagen, α3(IVNC1. Our previous study revealed a peptide on α3(IVNC1 as a major linear epitope for B cells and potentially nephrogenic, designated as P14 (α3129-150. This peptide has also been proven to be the epitope of auto-reactive T cells in anti-GBM patients. This study was aimed to further characterize the critical motif of P14.16 patients with anti-GBM disease and positive anti-P14 antibodies were enrolled. A set of truncated and alanine substituted peptides derived from P14 were synthesized. Circulating antibodies against the peptides were detected by enzyme linked immunosorbent assay (ELISA.We found that all sera with anti-P14 antibodies reacted with the 13-mer sequence in the C-terminus of P14 (P14c exclusively. The level of antibodies against P14 was highly correlated with the level of antibodies against P14c (r=0.970, P<0.001. P14c was the core immunogenic region and the amino acid sequence (ISLWKGFSFIMFT was highly hydrophobic. Each amino acid residue in P14c was sequentially replaced by alanine. Three residues of glycine142, phenylalanine143, and phenylalanine145 were identified crucial for antibody binding based on the remarkable decline (P<0.001 of antibody reaction after each residue replacement.We defined GFxF (α3142, 143,145 as the critical motif of P14. It may provide some clues for understanding the etiology of anti-GBM disease.

  17. Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity.

    Science.gov (United States)

    Le, Sarah N; Porebski, Benjamin T; McCoey, Julia; Fodor, James; Riley, Blake; Godlewska, Marlena; Góra, Monika; Czarnocka, Barbara; Banga, J Paul; Hoke, David E; Kass, Itamar; Buckle, Ashley M

    2015-01-01

    Thyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B). TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined. We have used a molecular modelling approach to investigate plausible modes of TPO structure and dimer organisation. Sequence features of the C-terminus are consistent with a coiled-coil dimerization motif that most likely anchors the TPO dimer in the apical membrane of thyroid follicular cells. Two contrasting models of TPO were produced, differing in the orientation and exposure of their active sites relative to the membrane. Both models are equally plausible based upon the known enzymatic function of TPO. The "trans" model places IDR-B on the membrane-facing side of the myeloperoxidase (MPO)-like domain, potentially hindering access of autoantibodies, necessitating considerable conformational change, and perhaps even dissociation of the dimer into monomers. IDR-A spans MPO- and CCP-like domains and is relatively fragmented compared to IDR-B, therefore most likely requiring domain rearrangements in order to coalesce into one compact epitope. Less epitope fragmentation and higher solvent accessibility of the "cis" model favours it slightly over the "trans" model. Here, IDR-B clusters towards the surface of the MPO-like domain facing the thyroid follicular lumen preventing steric hindrance of autoantibodies. However, conformational rearrangements may still be necessary to allow full engagement with autoantibodies, with IDR-B on both models being close to the dimer interface. Taken together, the modelling highlights the need to consider the oligomeric state of TPO, its conformational

  18. Optimal pig donor selection in islet xenotransplantation: current status and future perspectives.

    Science.gov (United States)

    Zhu, Hai-tao; Yu, Liang; Lyu, Yi; Wang, Bo

    2014-08-01

    Islet transplantation is an attractive treatment of type 1 diabetes mellitus. Xenotransplantation, using the pig as a donor, offers the possibility of an unlimited supply of islet grafts. Published studies demonstrated that pig islets could function in diabetic primates for a long time (>6 months). However, pig-islet xenotransplantation must overcome the selection of an optimal pig donor to obtain an adequate supply of islets with high-quality, to reduce xeno-antigenicity of islet and prolong xenograft survival, and to translate experimental findings into clinical application. This review discusses the suitable pig donor for islet xenotransplantation in terms of pig age, strain, structure/function of islet, and genetically modified pig.

  19. [Updated inventory of mosquitoes (Dipbra: Culkidae) from the French islets of Europa, Juan-de-Nova and Grande-Glorieuse (Mozambique channel, Indian Ocean)].

    Science.gov (United States)

    Girod, R; Le Goff, G

    2006-05-01

    The islets of Europa, Juan-de-Nova and Grande-Glorieuse are French territories isolated in the Mozambique Channel (Indian Ocean) which have remained relatively preserved from anthropization all along their history These three islets have been classified entire nature reserves from 1975 and are today inhabited only by a permanent military detachment of about fifteen men even if they occasionally greet technical and scientific staff. Sanitary and environmental issues brought about assessment of the present culicid fauna. The authors propose a synthesis of the culicid knowledge from the islets and make an inventory of new species. The role played by humans in importation of culicids is discussed as well as sanitary consequences of their adaptation to environment

  20. Release of Active Peptidyl Arginine Deiminases by Neutrophils Can Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid

    Science.gov (United States)

    Spengler, Julia; Lugonja, Božo; Jimmy Ytterberg, A.; Zubarev, Roman A.; Creese, Andrew J.; Pearson, Mark J.; Grant, Melissa M.; Milward, Michael; Lundberg, Karin; Buckley, Christopher D.; Filer, Andrew; Raza, Karim; Cooper, Paul R.; Chapple, Iain L.

    2015-01-01

    Objective In the majority of patients with rheumatoid arthritis (RA), antibodies specifically recognize citrullinated autoantigens that are generated by peptidylarginine deiminases (PADs). Neutrophils express high levels of PAD and accumulate in the synovial fluid (SF) of RA patients during disease flares. This study was undertaken to test the hypothesis that neutrophil cell death, induced by either NETosis (extrusion of genomic DNA–protein complexes known as neutrophil extracellular traps [NETs]) or necrosis, can contribute to production of autoantigens in the inflamed joint. Methods Extracellular DNA was quantified in the SF of patients with RA, patients with osteoarthritis (OA), and patients with psoriatic arthritis (PsA). Release of PAD from neutrophils was investigated by Western blotting, mass spectrometry, immunofluorescence staining, and PAD activity assays. PAD2 and PAD4 protein expression, as well as PAD enzymatic activity, were assessed in the SF of patients with RA and those with OA. Results Extracellular DNA was detected at significantly higher levels in RA SF than in OA SF (P < 0.001) or PsA SF (P < 0.05), and its expression levels correlated with neutrophil concentrations and PAD activity in RA SF. Necrotic neutrophils released less soluble extracellular DNA compared to NETotic cells in vitro (P < 0.05). Higher PAD activity was detected in RA SF than in OA SF (P < 0.05). The citrullinated proteins PAD2 and PAD4 were found attached to NETs and also freely diffused in the supernatant. PAD enzymatic activity was detected in supernatants of neutrophils undergoing either NETosis or necrosis. Conclusion Release of active PAD isoforms into the SF by neutrophil cell death is a plausible explanation for the generation of extracellular autoantigens in RA. PMID:26245941

  1. Study of the immunoisolating effects of barium-alginate microencapsulation on rat islets allograft survival

    Institute of Scientific and Technical Information of China (English)

    Mei Zhang; Chao Liu; Cuiping Liu; Youwen Qin; Zhaosun Zhen

    2005-01-01

    Objective: To evaluate the immunoisolating effects of barium-alginate microencapsulation on islets allograft survival. Methods: The nonmicroencapsulated and microencapsulated islets were transplanted under the kidney capsule or intraperitoneally into Wistar rat with STZ-induced diabetes. The blood glucose and insulin secretion of grafts were observed. Graft function was tested by oral rats was associated with normal glucose and insulin profiles in response to OGTT. Conclusion: Microencapsulation with barium-alginate membrane can prolong islet survival and protect islets against allorejection.

  2. Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation

    Science.gov (United States)

    Schultz, Sebastian Wolfgang; Nilsson, K. Peter R.; Westermark, Gunilla Torstensdotter

    2011-01-01

    Background Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology. PMID:21695120

  3. RELATION OF ISLET CELLS ANTIBODIES AND RESIDUAL FUNCTION OF PANCREAS IN PATIENTS WITH DIABETES TYPE I

    Directory of Open Access Journals (Sweden)

    T. A. Tihomirova

    2005-01-01

    Full Text Available Abstract. Islet cells antibodies of a pancreas (ICA are the sensitive and high–specific serological marker of diabetes type I (IDDM. Serum of 50 children (less than 16 yr.old and 46 adult patients with IDDM was tested for ICA with indirect immunofluorescence. The control group consisted of 10 children and 40 adults without endocrinologic disorders.Serial cryosections of human pancreas 5 mkm thick were incubated with patients serum for 30 min. After the unbound serum proteins were washed away with phosphate buffered saline (0.01M, pH 7.2 the section was incubated with FITC labeled antiserum against human immunoglobulins. Specific cytoplasmic fluorescence of islet cells was scored as positive test result.No specific staining was found in serum of the control group and specificity of the method was 100%. In adults and children at onset of IDDM ICA were found statistically more frequently than in patients with longstanding disease: 75,6 % v.s. 21,8 % (p <0,05. All ICA–seropositive patients require significantly smaller doseof insulin than seronegative patients independently of disease duration. In children ICA–seropositive patients require 0,056±0,04 U per kg of body weight per day v.s. 0,747±0,08 U/kg/day (p<0,05 in seronegative patients. In adults seropositive patients used 34,8±2,3 U/day v.s. 50,42±2,55 U/day in seronegative patients.Immunofluorescent test for ICA detection could be used in children with recent onset of the disease for confirmation of IDDM. Also, ICA in a patient with IDDM could indirectly indicate the presence of residual function of islet cells. (Med. Immunol., 2005, vol.7, № 1, pp. 41548

  4. Acceleration of Functional Maturation and Differentiation of Neonatal Porcine Islet Cell Monolayers Shortly In Vitro Cocultured with Microencapsulated Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Francesca Mancuso

    2010-01-01

    Full Text Available The limited availability of cadaveric human donor pancreata as well as the incomplete success of the Edmonton protocol for human islet allografts fasten search for new sources of insulin the producing cells for substitution cell therapy of insulin-dependent diabetes mellitus (T1DM. Starting from isolated neonatal porcine pancreatic islets (NPIs, we have obtained cell monolayers that were exposed to microencapsulated monolayered Sertoli cells (ESCs for different time periods (7, 14, 21 days. To assess the development of the cocultured cell monolayers, we have studied either endocrine cell phenotype differentiation markers or c-kit, a hematopoietic stem cell marker, has recently been involved with growth and differentiation of β-cell subpopulations in human as well as rodent animal models. ESC which were found to either accelerate maturation and differentiation of the NPIs β-cell phenotype or identify an islet cell subpopulation that was marked positively for c-kit. The insulin/c-kit positive cells might represent a new, still unknown functionally immature β-cell like element in the porcine pancreas. Acceleration of maturation and differentiation of our NPI cell monolayers might generate a potential new opportunity to develop insulin-producing cells that may suite experimental trials for cell therapy of T1DM.

  5. File list: NoD.Pan.05.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.05.AllAg.Pancreatic_islets hg19 No description Pancreas Pancreatic islets E.../dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Pan.05.AllAg.Pancreatic_islets.bed ...

  6. File list: Oth.Pan.10.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.AllAg.Pancreatic_islets hg19 TFs and others Pancreas Pancreatic islets S...RX026702,SRX026719,SRX026720,SRX026721,SRX026714,SRX026706 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Pan.10.AllAg.Pancreatic_islets.bed ...

  7. File list: InP.Pan.10.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.10.AllAg.Pancreatic_islets hg19 Input control Pancreas Pancreatic islets SR...3,SRX340803,SRX375327,SRX340794,SRX026707,SRX375320 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Pan.10.AllAg.Pancreatic_islets.bed ...

  8. File list: His.Pan.50.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.AllAg.Pancreatic_islets hg19 Histone Pancreas Pancreatic islets SRX37532...0804,SRX340799,SRX340802,SRX340809,SRX026708,SRX026713 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.50.AllAg.Pancreatic_islets.bed ...

  9. File list: ALL.Pan.20.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.Pancreatic_islets hg19 All antigens Pancreas Pancreatic islets ERX...SRX026709,SRX026714,SRX026718,ERX321654,ERX321649,SRX026724 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.20.AllAg.Pancreatic_islets.bed ...

  10. File list: DNS.Pan.20.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.20.AllAg.Pancreatic_islets hg19 DNase-seq Pancreas Pancreatic islets ERX873...854,ERX873852,SRX026725,SRX026723,SRX026724 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Pan.20.AllAg.Pancreatic_islets.bed ...

  11. File list: DNS.Pan.50.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.50.AllAg.Pancreatic_islets hg19 DNase-seq Pancreas Pancreatic islets ERX873...854,ERX873852,SRX026725 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Pan.50.AllAg.Pancreatic_islets.bed ...

  12. File list: Oth.Pan.20.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.20.AllAg.Pancreatic_islets hg19 TFs and others Pancreas Pancreatic islets S...RX026719,SRX026702,SRX026720,SRX026706,SRX026721,SRX026714 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Pan.20.AllAg.Pancreatic_islets.bed ...

  13. File list: Unc.Pan.05.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.05.AllAg.Pancreatic_islets hg19 Unclassified Pancreas Pancreatic islets SRX...016328,SRX016329,SRX016330 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Pan.05.AllAg.Pancreatic_islets.bed ...

  14. File list: InP.Pan.20.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.20.AllAg.Pancreatic_islets hg19 Input control Pancreas Pancreatic islets SR...5,SRX375327,SRX340803,SRX340794,SRX026707,SRX375320 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Pan.20.AllAg.Pancreatic_islets.bed ...

  15. File list: NoD.Pan.50.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.50.AllAg.Pancreatic_islets hg19 No description Pancreas Pancreatic islets E.../dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Pan.50.AllAg.Pancreatic_islets.bed ...

  16. File list: Unc.Pan.50.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.50.AllAg.Pancreatic_islets hg19 Unclassified Pancreas Pancreatic islets SRX...016328,SRX016329,SRX016330 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Pan.50.AllAg.Pancreatic_islets.bed ...

  17. File list: ALL.Pan.10.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Pancreatic_islets hg19 All antigens Pancreas Pancreatic islets SRX...ERX321646,ERX321661,SRX375319,SRX026706,SRX026709,SRX026718 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.10.AllAg.Pancreatic_islets.bed ...

  18. File list: NoD.Pan.10.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.10.AllAg.Pancreatic_islets hg19 No description Pancreas Pancreatic islets E.../dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Pan.10.AllAg.Pancreatic_islets.bed ...

  19. File list: ALL.Pan.05.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreatic_islets hg19 All antigens Pancreas Pancreatic islets SRX...SRX375319,ERX321669,SRX026709,SRX375326,SRX026706,SRX026718 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.05.AllAg.Pancreatic_islets.bed ...

  20. File list: Oth.Pan.05.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Pancreatic_islets hg19 TFs and others Pancreas Pancreatic islets S...RX026714,SRX026702,SRX026720,SRX026719,SRX026721,SRX026706 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Pan.05.AllAg.Pancreatic_islets.bed ...

  1. File list: InP.Pan.05.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.05.AllAg.Pancreatic_islets hg19 Input control Pancreas Pancreatic islets SR...5,SRX375327,SRX340803,SRX375320,SRX340794,SRX026707 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Pan.05.AllAg.Pancreatic_islets.bed ...

  2. File list: His.Pan.20.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.AllAg.Pancreatic_islets hg19 Histone Pancreas Pancreatic islets SRX37532...0790,SRX026716,SRX026713,SRX026708,SRX026709,SRX026718 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.20.AllAg.Pancreatic_islets.bed ...

  3. File list: Unc.Pan.20.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.20.AllAg.Pancreatic_islets hg19 Unclassified Pancreas Pancreatic islets SRX...016328,SRX016329,SRX016330 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Pan.20.AllAg.Pancreatic_islets.bed ...

  4. File list: Oth.Pan.50.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.50.AllAg.Pancreatic_islets hg19 TFs and others Pancreas Pancreatic islets S...RX026719,SRX026702,SRX026720,SRX026706,SRX026721,SRX026714 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Pan.50.AllAg.Pancreatic_islets.bed ...

  5. File list: InP.Pan.50.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.50.AllAg.Pancreatic_islets hg19 Input control Pancreas Pancreatic islets SR...5,SRX340795,SRX340793,SRX340803,SRX026707,SRX375320 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Pan.50.AllAg.Pancreatic_islets.bed ...

  6. File list: DNS.Pan.05.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.05.AllAg.Pancreatic_islets hg19 DNase-seq Pancreas Pancreatic islets ERX873...854,ERX873852,SRX026723,SRX026725,SRX026724 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Pan.05.AllAg.Pancreatic_islets.bed ...

  7. File list: NoD.Pan.20.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.20.AllAg.Pancreatic_islets hg19 No description Pancreas Pancreatic islets E.../dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Pan.20.AllAg.Pancreatic_islets.bed ...

  8. File list: His.Pan.05.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.AllAg.Pancreatic_islets hg19 Histone Pancreas Pancreatic islets SRX37532...0809,SRX340814,SRX375319,SRX026709,SRX375326,SRX026718 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.05.AllAg.Pancreatic_islets.bed ...

  9. File list: His.Pan.10.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.AllAg.Pancreatic_islets hg19 Histone Pancreas Pancreatic islets SRX37532...0804,SRX026716,SRX375326,SRX375319,SRX026709,SRX026718 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.10.AllAg.Pancreatic_islets.bed ...

  10. File list: ALL.Pan.50.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreatic_islets hg19 All antigens Pancreas Pancreatic islets ERX...SRX026707,SRX375320,SRX026708,SRX026713 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.50.AllAg.Pancreatic_islets.bed ...

  11. File list: DNS.Pan.10.AllAg.Pancreatic_islets [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.10.AllAg.Pancreatic_islets hg19 DNase-seq Pancreas Pancreatic islets ERX873...854,ERX873852,SRX026725,SRX026723,SRX026724 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Pan.10.AllAg.Pancreatic_islets.bed ...

  12. File list: ALL.Pan.50.AllAg.Islet_tumor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Islet_tumor mm9 All antigens Pancreas Islet tumor SRX751769,SRX751...768,SRX751770 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.50.AllAg.Islet_tumor.bed ...

  13. File list: ALL.Pan.05.AllAg.Islet_tumor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Islet_tumor mm9 All antigens Pancreas Islet tumor SRX751769,SRX751...768,SRX751770 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.05.AllAg.Islet_tumor.bed ...

  14. MRI of transplanted surface-labeled pancreatic islets with heparinized superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Jung, Min Jin; Lee, Seung Soo; Hwang, Yong Hwa; Jung, Hae Song; Hwang, Jin Wook; Kim, Min Jun; Yoon, Sangwoo; Lee, Dong Yun

    2011-12-01

    Transplantation of insulin-secreting pancreatic islets can provide real-time regulation of blood glucose in patients with type 1 diabetes mellitus. Currently, noninvasive and repetitive monitoring of islet engraftment and function is an emerging and promising modality for successful islet transplantation. Here we report a new technique for highly sensitive in vivo magnetic resonance (MR) imaging of transplanted pancreatic islets. To this end, heparinized superparamagnetic iron oxide (heparin-SPIO) nanoparticle was newly synthesized for chemical conjugation onto islet surface. Compared to typical cellular labeling of Feridex(®) via random endocytosis, chemical conjugation of heparin-SPIO was stable and improved the hypointensity of transplanted islets due to surface modification of every islet. These heparin-SPIO-conjugated islets showed normal viability and insulin secretion, and were quantified by spin echo T(2)-weighted MR imaging with linear correlation depending on transplanted islet mass in vitro and in vivo for 30 days. Also, from the immunohistochemistry, we confirmed the existence of heparin-SPIO and insulin biosynthesis in transplanted islets. However, Feridex-uptake islets showed late glucose responsiveness according to changing glucose concentration although they could normally control the blood glucose levels in diabetic mouse. Thus, we anticipate that this surface labeling with heparin-SPIO can be directly applicable for MR imaging of transplanted islets.

  15. File list: Unc.Pan.50.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.50.AllAg.Islets_of_Langerhans mm9 Unclassified Pancreas Islets of Langerhan...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.50.AllAg.Islets_of_Langerhans.bed ...

  16. Pancreatic islet insulin secretion and metabolism in adult rats malnourished during neonatal life

    DEFF Research Database (Denmark)

    Barbosa, Francisco B; Capito, Kirsten; Kofod, Hans;

    2002-01-01

    Pancreatic islets were isolated from rats that had been nursed by dams fed with a control or an 8.7% protein diet during the first 12 d of the lactation period. Glucose-induced insulin secretion from islets in the 8.7% protein group was reduced 50%. The islet insulin and DNA content were similar,...

  17. Technique of endoscopic biopsy of islet allografts transplanted into the gastric submucosal space in pigs

    NARCIS (Netherlands)

    T. Fujita (Tetsuji); K.M. McGrath (Kevin); R. Bottino (Rita); E.M. Dons (Eefje); C. Long (Cassandra); G. Kumar (Goutham); B. Ekser; G.J. Echeverri (Gabriel); A. Hata (Akira); K. Haruma (Ken); D.K.C. Cooper (David); H. Hara (Hidetaka)

    2013-01-01

    textabstractCurrently, islet cells are transplanted into the liver via portal vein infusion. One disadvantage of this approach is that it is not possible to adequately biopsy the islets in the liver to assess for rejection. Islet transplantation (Tx) into the gastric submucosal space (GSMS) can be p

  18. File list: DNS.Pan.10.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.10.AllAg.Islets_of_Langerhans mm9 DNase-seq Pancreas Islets of Langerhans h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.10.AllAg.Islets_of_Langerhans.bed ...

  19. File list: His.Pan.50.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.AllAg.Islets_of_Langerhans mm9 Histone Pancreas Islets of Langerhans SRX...SRX751758 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.50.AllAg.Islets_of_Langerhans.bed ...

  20. File list: His.Pan.20.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.AllAg.Islets_of_Langerhans mm9 Histone Pancreas Islets of Langerhans SRX...SRX751761 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.20.AllAg.Islets_of_Langerhans.bed ...

  1. File list: Pol.Pan.50.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.AllAg.Islets_of_Langerhans mm9 RNA polymerase Pancreas Islets of Langerh...ans http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.50.AllAg.Islets_of_Langerhans.bed ...

  2. File list: DNS.Pan.20.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.20.AllAg.Islets_of_Langerhans mm9 DNase-seq Pancreas Islets of Langerhans h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.20.AllAg.Islets_of_Langerhans.bed ...

  3. File list: Oth.Pan.05.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Islets_of_Langerhans mm9 TFs and others Pancreas Islets of Langerh...ans SRX081539,SRX188610,SRX081538 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.AllAg.Islets_of_Langerhans.bed ...

  4. File list: Unc.Pan.10.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.10.AllAg.Islets_of_Langerhans mm9 Unclassified Pancreas Islets of Langerhan...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.10.AllAg.Islets_of_Langerhans.bed ...

  5. File list: ALL.Pan.05.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Islets_of_Langerhans mm9 All antigens Pancreas Islets of Langerhan...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.05.AllAg.Islets_of_Langerhans.bed ...

  6. File list: ALL.Pan.50.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Islets_of_Langerhans mm9 All antigens Pancreas Islets of Langerhan...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.50.AllAg.Islets_of_Langerhans.bed ...

  7. File list: Oth.Pan.50.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.50.AllAg.Islets_of_Langerhans mm9 TFs and others Pancreas Islets of Langerh...ans SRX081539,SRX188610,SRX081538 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.50.AllAg.Islets_of_Langerhans.bed ...

  8. File list: Pol.Pan.10.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.AllAg.Islets_of_Langerhans mm9 RNA polymerase Pancreas Islets of Langerh...ans http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.10.AllAg.Islets_of_Langerhans.bed ...

  9. File list: Oth.Pan.20.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.20.AllAg.Islets_of_Langerhans mm9 TFs and others Pancreas Islets of Langerh...ans SRX081539,SRX188610,SRX081538 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.20.AllAg.Islets_of_Langerhans.bed ...

  10. File list: His.Pan.05.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.AllAg.Islets_of_Langerhans mm9 Histone Pancreas Islets of Langerhans SRX...SRX751761 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.05.AllAg.Islets_of_Langerhans.bed ...

  11. File list: Unc.Pan.05.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.05.AllAg.Islets_of_Langerhans mm9 Unclassified Pancreas Islets of Langerhan...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.05.AllAg.Islets_of_Langerhans.bed ...

  12. File list: Oth.Pan.10.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.AllAg.Islets_of_Langerhans mm9 TFs and others Pancreas Islets of Langerh...ans SRX081539,SRX188610,SRX081538 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.10.AllAg.Islets_of_Langerhans.bed ...

  13. File list: Unc.Pan.20.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.20.AllAg.Islets_of_Langerhans mm9 Unclassified Pancreas Islets of Langerhan...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.20.AllAg.Islets_of_Langerhans.bed ...

  14. File list: ALL.Pan.20.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.Islets_of_Langerhans mm9 All antigens Pancreas Islets of Langerhan...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.20.AllAg.Islets_of_Langerhans.bed ...

  15. File list: DNS.Pan.05.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.05.AllAg.Islets_of_Langerhans mm9 DNase-seq Pancreas Islets of Langerhans h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.05.AllAg.Islets_of_Langerhans.bed ...

  16. File list: Pol.Pan.05.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.05.AllAg.Islets_of_Langerhans mm9 RNA polymerase Pancreas Islets of Langerh...ans http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.05.AllAg.Islets_of_Langerhans.bed ...

  17. File list: Pol.Pan.20.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.20.AllAg.Islets_of_Langerhans mm9 RNA polymerase Pancreas Islets of Langerh...ans http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.20.AllAg.Islets_of_Langerhans.bed ...

  18. File list: ALL.Pan.10.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Islets_of_Langerhans mm9 All antigens Pancreas Islets of Langerhan...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.10.AllAg.Islets_of_Langerhans.bed ...

  19. File list: His.Pan.10.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.AllAg.Islets_of_Langerhans mm9 Histone Pancreas Islets of Langerhans SRX...SRX751761 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.10.AllAg.Islets_of_Langerhans.bed ...

  20. File list: DNS.Pan.50.AllAg.Islets_of_Langerhans [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.50.AllAg.Islets_of_Langerhans mm9 DNase-seq Pancreas Islets of Langerhans h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.50.AllAg.Islets_of_Langerhans.bed ...

  1. File list: ALL.Pan.20.AllAg.Islet_tumor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.Islet_tumor mm9 All antigens Pancreas Islet tumor SRX751769,SRX751...770,SRX751768 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.20.AllAg.Islet_tumor.bed ...

  2. File list: ALL.Pan.10.AllAg.Islet_tumor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Islet_tumor mm9 All antigens Pancreas Islet tumor SRX751769,SRX751...768,SRX751770 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.10.AllAg.Islet_tumor.bed ...

  3. C-peptide responses alter meal challenge in mice transplanted with microencapsulated rat islets

    NARCIS (Netherlands)

    Tatarkiewicz, K; Garcia, M; Omer, A; Weir, GC; De Vos, P

    2001-01-01

    Aims/hypothesis. This study aimed to assess a response of microencapsulated rat islets to a meal challenge after being transplanted intraperitoneally into diabetic mice. Methods. Microencapsulated rat: islets or control naked syngeneic mouse islets were transplanted intraperitoneally into mice with

  4. The Efficacy of Intraperitoneal Pancreatic Islet Isografts in the Reversal of Diabetes in Rats

    NARCIS (Netherlands)

    Fritschy, Wilbert M.; Straaten, Jeanette F.M. van; Vos, Paul de; Strubbe, Jan H.; Wolters, Gerrit H.J.; Schilfgaarde, Reinout van

    1991-01-01

    The peritoneal cavity is of renewed interest for pancreatic islet transplantation, since it is the preferable site for transplantation of immunoisolated islets. In this study we investigated the minimum islet graft volume needed to restore normoglycemia after free intraperitoneal isogenic transplant

  5. Amount and distribution of collagen in the pancreas have no effect on porcine islet isolation outcome.

    Science.gov (United States)

    Hilling, D; Rijkelijkhuizen, J K R A; Töns, H A M; Terpstra, O T; Bouwman, E

    2009-01-01

    Xenotransplantation of porcine islets of Langerhans is considered to be a possible alternative for clinical islet transplantation. However, porcine islet isolation procedures have been shown to produce highly variable yields between pigs with similar backgrounds. One of the variables that could account for this is the collagen substrate within the pancreas. We determined the amount and distribution of collagen within porcine pancreata as they determined islet isolation outcomes. This study involved the histological examination of 140 porcine pancreata (64 juvenile and 76 adult) and islet isolation from 58 adult organs. To quantify the amount of collagen, tissue samples were stained with Sirius Red. Collagen distribution was determined by assessing the presence of collagen in the endocrine-exocrine interface (the "islet capsule"), in tissue samples double-stained with Sirius Red and anti-insulin. Strong variation in total collagen was observed in both adult and juvenile pigs. The mean collagen content in the juvenile group was significantly lower than that in the adult group. Apparently, the pancreas undergoes a process of fibrosis as pigs age. The vast majority of islets from both adult and juvenile pancreata had no or only a limited collagen capsule. However, islet encapsulation was highly variable between pancreata. We observed no significant correlation between total collagen content or the percentage islet encapsulation and islet yield. Although total collagen content and islet encapsulation show great variability between pancreata, neither the amount nor the distribution of collagen affected porcine islet isolation outcome.

  6. 诱导人脐带MSCs分化为胰岛样细胞团的促成熟方案及机制%Maturity-promoting protocols and mechanisms directing differentiation of human umbilical cord-derived MSCs towards islet-like clusters

    Institute of Scientific and Technical Information of China (English)

    苏仲春; 陈家劲; 王圳; 陈志明; 王跃春

    2013-01-01

    AIM: To determine the maturity-promoting protocols for directing the differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs)towards islet-like clusters (ILCs) expressing prohormone conver-tase (PC) 1 and PC2 through different combinations of biological products. METHODS: Primary hUC-MSCs were isolated from the whole human umbilical cord by digestion (with collagenase Ⅱ) , filtration and centrifugation, and then were purified by incomplete digestion. The stem cell-specific markers were detected by the methods of flow cytometry, RT-PCR and immunocytofluorescence. The protocols were adopted for inducing the differentiation of hUC-MSCs towards ILCs. Protocol A consisted of IMDM culture medium containing 10 μg/L basic fibroblast growth factor (bFGF) , 10 μg/L epidermal growth factor ( EGF) , 10 mg/L Ginkgo biloba extract ( GBE) and 2% fetal calf serum ( FCS) . Protocol B was based on the protocol A plus 10 μg/L nicotinamide. Protocol C was based on the protocol B plus 10 μg/L hepatocyte growth factor ( HGF). Before and after induction, the morphological changes of hUC-MSCs were observed under inverted microscope. The islet-related mRNA and proteins especially PCI and PC2 were measured by RT-PCR, qPCR and Western blotting. RESULTS: The cell morphology, surface antigen and stem cell-specific markers indicated that hUC-MSCs were successfully isolated and purified from human umbilical cord. hUC-MSCs expressed nestin broadly and Isll to a less degree. ILCs induced by protocol A expressed Glut-2 and MafA mRNA. ILCs induced by protocol B expressed Glut-2, MafA, Nkx6. 1 and PC2 mRNA. ILCs induced by protocol C expressed Glut-2, MafA, Nkx6. 1, PC2, Ngn3, Pdxl, PCI and insulin mRNA. The expression of PCI mRNA was only observed in ILCs induced by protocol C. ILCs induced by protocol B and protocol C both expressed PC2 mRNA and the expression in the cells induced by protocol C was significantly higher than that in the cells induced by protocol B

  7. Intracerebral xenotransplantation of semipermeable membrane- encapsuled pancreatic islets

    Institute of Scientific and Technical Information of China (English)

    Zhao-Liang Xin; Song-Lin Ge; Xiao-Kang Wu; Yan-Jie Jia; Han-Tao Hu

    2005-01-01

    AIM: To identify the decreasing effect of xenotransplantion in combination with privileged sites on rejection and death of biological semipermeable membrane-(BSM) encapsulated implanted islets.METHODS: After the BSM experiment in vitro, BSMencapsulated SD rat's islet-like cell clusters (ICCs) were xenotransplanted into normal dog's brain. Morphological changes were observed under light and transmission electron microscope. The islets and apoptosis of implanted B cells were identified by insulin-TUNEL double staining.RESULTS: The BSM used in our study had a favorable permeability, some degree of rigidity, lighter foreign body reaction and toxicity. The grafts consisted of epithelioid cells and loose connective tissue. Severe infiltration of inflammatory cells was not observed. The implanted ICCs were identified 2 mo later and showed typical apoptosis.CONCLUSION: BSM xenotransplantation in combination with the privileged site can inhibit the rejection of implanted heterogeneous ICCs, and death of implanted heterogeneous B cells is associated with apoptosis.

  8. Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells.

    Science.gov (United States)

    Katsiougiannis, S; Tenta, R; Skopouli, F N

    2015-08-01

    The aim of this study was to examine the levels of endoplasmic reticulum (ER) stress in minor salivary glands, to investigate the interplay between ER stress-induced autophagy and apoptosis in human salivary gland (HSG) cells and to test the effect of ER stress-induced apoptosis on the cellular redistribution of the two major Sjögren's syndrome (SS) autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/Sjögren's syndrome-related antigen B (SSB). Minor salivary gland biopsies from SS patients and sicca controls were examined by immunohistochemistry for the expression of 78 kDa glucose-regulated protein/binding immunoglobulin protein (GRP78/BiP) as an indicator of unfolded protein response (UPR). HSG cells were treated with thapsigargin (TG) and cell viability, autophagy and apoptosis were assessed. Immunoblot was applied to detect the conversion of LC3I to LC3II and the protein levels of GRP78/BiP and X-box binding protein-1 (XBP-1). Apoptosis was evaluated by a single-stranded DNA enzyme-linked immunosorbent assay (ELISA). Ro/SSA and La/SSB localization was visualized using immunofluorescence. GRP78/BiP was expressed by acinar and ductal epithelial cells in salivary glands of patients and sicca controls. TG treatment induced autophagy, as indicated by enhanced protein expression of LC3II. The protein levels of UPR marker XBP-1 were increased after TG treatment, while GRP78/BiP levels were decreased. TG treatment resulted in induction of HSG apoptosis. Ro/SSA and La/SSB autoantigens were localized predominantly to the cytoplasm in resting cells, while they were redistributed to cell membrane and blebs in the apoptotic cells. In conclusion, ER stress is activated in minor salivary gland epithelial cells from SS patients and controls. ER stress-induced apoptosis in HSG cells leads to cell surface and apoptotic blebs relocalization of Ro/SSA and La/SSB autoantigens.

  9. Mercuric Compounds Induce Pancreatic Islets Dysfunction and Apoptosis in Vivo

    Directory of Open Access Journals (Sweden)

    Yi-Chang Su

    2012-09-01

    Full Text Available Mercury is a toxic heavy metal that is an environmental and industrial pollutant throughout the world. Mercury exposure leads to many physiopathological injuries in mammals. However, the precise toxicological effects of mercury on pancreatic islets in vivo are still unclear. Here, we investigated whether mercuric compounds can induce dysfunction and damage in the pancreatic islets of mice, as well as the possible mechanisms involved in this process. Mice were treated with methyl mercuric chloride (MeHgCl, 2 mg/kg and mercuric chloride (HgCl2, 5 mg/kg for more than 2 consecutive weeks. Our results showed that the blood glucose levels increased and plasma insulin secretions decreased in the mice as a consequence of their exposure. A significant number of TUNEL-positive cells were revealed in the islets of mice that were treated with mercury for 2 consecutive weeks, which was accompanied by changes in the expression of the mRNA of anti-apoptotic (Bcl-2, Mcl-1, and Mdm-2 and apoptotic (p53, caspase-3, and caspase-7 genes. Moreover, plasma malondialdehyde (MDA levels increased significantly in the mice after treatment with mercuric compounds for 2 consecutive weeks, and the generation of reactive oxygen species (ROS in the pancreatic islets also markedly increased. In addition, the mRNA expression of genes related to antioxidation, including Nrf2, GPx, and NQO1, were also significantly reduced in these islets. These results indicate that oxidative stress injuries that are induced by mercuric compounds can cause pancreatic islets dysfunction and apoptosis in vivo.

  10. Dynamics and Synchrony of Pancreatic beta-cells and Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2006-01-01

    biological hypotheses. The subjects addressed are: Quasi-steady-state approximations of enzyme reactions, the effect of noise on bursting electrical behavior, exciation wave propagation in pancreatic islets, intra- and inter-islet synchronization and pulsatile insulin secretion, and mitochondrial dynamics.......Pancreatic beta-cells secrete insulin in response to raised glucose levels. Malfunctioning of this system plays an important role in the metabolic disease diabetes. The biological steps from glucose stimulus to the final release of insulin are incompletely understood, and a more complete...

  11. Prevention of core cell damage in isolated islets of Langerhans by low temperature preconditioning

    Institute of Scientific and Technical Information of China (English)

    Yun-Fu Cui; Ming Ma; Gui-Yu Wang; De-En Han; Brigitte Vollmar; Michael D. Menger

    2005-01-01

    AIM: To study the core cell damage in isolated islets of Langerhans and its prevention by low temperature preconditioning (26 ℃).METHODS: Islets were cultured at 37 ℃ for 7-14 d after isolation, and then at 26 ℃ for 2, 4 and 7 d before additional culture at 37 ℃ for another 7 d. Core cell damage in the isolated islets was monitored by video-microscopy and analyzed quantitatively by use of a computer-assisted image analysis system. The analysis included daily measurement of the diameter and the area of the isolated islets and the area of the core cell damage that developed in those islets over time during culture. Histology and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay were used to characterize the cell damage and to monitor islet function.RESULTS: Microscopic analysis showed that during the 7 to 14 d of culture at 37 ℃, core cell damage occurred in the larger islets with diameters >200 μm, which included both necrotic and apoptotic cell death. Low temperature (26 ℃) culture could prevent core cell damage of isolated islets. The 7-d culture procedure at 26 ℃ could inhibit most of the core cell (excluding diameters>300 μm) damages when the islets were re-warmed at 37 ℃.CONCLUSION: Our results indicate that core cell damage within isolated islets of Langerhans correlates with the size of islets. Low temperature (26 ℃) culture can prevent core cell damage in isolated islets, and successfully precondition these islets for incubation at 37 ℃. These novel findings may help to understand the pathophysiology of early loss of islet tissue after transplantation, and may provide a new strategy to improve graft function in the clinical setting of islet transplantation.

  12. Antigen-Encoding Bone Marrow Terminates Islet-Directed Memory CD8+ T-Cell Responses to Alleviate Islet Transplant Rejection

    DEFF Research Database (Denmark)

    Coleman, Miranda; Jessup, Claire F.; Bridge, Jennifer A.

    2016-01-01

    antigen directed to dendritic cells, under mild, immune-preserving conditions, inactivates established memory CD8+ T-cell populations and generates a long-lived, antigen-specific tolerogenic environment. Consequently, CD8+ memory T cell–mediated targeting of islet-expressed antigens is prevented and islet......Islet-specific memory T cells arise early in type 1 diabetes (T1D), persist for long periods, perpetuate disease, and are rapidly reactivated by islet transplantation. As memory T cells are poorly controlled by “conventional” therapies, memory T cell–mediated attack is a substantial challenge...... in islet transplantation, and this will extend to application of personalized approaches using stem cell–derived replacement β-cells. New approaches are required to limit memory autoimmune attack of transplanted islets or replacement β-cells. Here, we show that transfer of bone marrow encoding cognate...

  13. Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity.

    Directory of Open Access Journals (Sweden)

    Sarah N Le

    Full Text Available Thyroid peroxidase (TPO catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B. TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined. We have used a molecular modelling approach to investigate plausible modes of TPO structure and dimer organisation. Sequence features of the C-terminus are consistent with a coiled-coil dimerization motif that most likely anchors the TPO dimer in the apical membrane of thyroid follicular cells. Two contrasting models of TPO were produced, differing in the orientation and exposure of their active sites relative to the membrane. Both models are equally plausible based upon the known enzymatic function of TPO. The "trans" model places IDR-B on the membrane-facing side of the myeloperoxidase (MPO-like domain, potentially hindering access of autoantibodies, necessitating considerable conformational change, and perhaps even dissociation of the dimer into monomers. IDR-A spans MPO- and CCP-like domains and is relatively fragmented compared to IDR-B, therefore most likely requiring domain rearrangements in order to coalesce into one compact epitope. Less epitope fragmentation and higher solvent accessibility of the "cis" model favours it slightly over the "trans" model. Here, IDR-B clusters towards the surface of the MPO-like domain facing the thyroid follicular lumen preventing steric hindrance of autoantibodies. However, conformational rearrangements may still be necessary to allow full engagement with autoantibodies, with IDR-B on both models being close to the dimer interface. Taken together, the modelling highlights the need to consider the oligomeric state of TPO, its

  14. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis.

    Science.gov (United States)

    Pedchenko, Vadim; Bondar, Olga; Fogo, Agnes B; Vanacore, Roberto; Voziyan, Paul; Kitching, A Richard; Wieslander, Jörgen; Kashtan, Clifford; Borza, Dorin-Bogdan; Neilson, Eric G; Wilson, Curtis B; Hudson, Billy G

    2010-07-22

    In Goodpasture's disease, circulating autoantibodies bind to the noncollagenous-1 (NC1) domain of type IV collagen in the glomerular basement membrane (GBM). The specificity and molecular architecture of epitopes of tissue-bound autoantibodies are unknown. Alport's post-transplantation nephritis, which is mediated by alloantibodies against the GBM, occurs after kidney transplantation in some patients with Alport's syndrome. We compared the conformations of the antibody epitopes in Goodpasture's disease and Alport's post-transplantation nephritis with the intention of finding clues to the pathogenesis of anti-GBM glomerulonephritis. We used an enzyme-linked immunosorbent assay to determine the specificity of circulating autoantibodies and kidney-bound antibodies to NC1 domains. Circulating antibodies were analyzed in 57 patients with Goodpasture's disease, and kidney-bound antibodies were analyzed in 14 patients with Goodpasture's disease and 2 patients with Alport's post-transplantation nephritis. The molecular architecture of key epitope regions was deduced with the use of chimeric molecules and a three-dimensional model of the alpha345NC1 hexamer. In patients with Goodpasture's disease, both autoantibodies to the alpha3NC1 monomer and antibodies to the alpha5NC1 monomer (and fewer to the alpha4NC1 monomer) were bound in the kidneys and lungs, indicating roles for the alpha3NC1 and alpha5NC1 monomers as autoantigens. High antibody titers at diagnosis of anti-GBM disease were associated with ultimate loss of renal function. The antibodies bound to distinct epitopes encompassing region E(A) in the alpha5NC1 monomer and regions E(A) and E(B) in the alpha3NC1 monomer, but they did not bind to the native cross-linked alpha345NC1 hexamer. In contrast, in patients with Alport's post-transplantation nephritis, alloantibodies bound to the E(A) region of the alpha5NC1 subunit in the intact hexamer, and binding decreased on dissociation. The development of Goodpasture

  15. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation.

    Science.gov (United States)

    Caillon, Lucie; Lequin, Olivier; Khemtémourian, Lucie

    2013-09-01

    Human islet amyloid polypeptide (IAPP) forms amyloid fibrils in the pancreatic islets of patients suffering from type 2 diabetes mellitus (T2DM). The formation of IAPP fibrils has been shown to cause membrane damage which most likely is responsible for the death of pancreatic islet β-cells during the pathogenesis of T2DM. Several studies have demonstrated a clear interaction between IAPP and lipid membranes. However the effect of different lipid compositions and of various membrane mimetics (including micelles, bicelles, SUV and LUV) on fibril formation kinetics and fibril morphology has not yet systematically been analysed. Here we report that the interaction of IAPP with various membrane models promoted different processes of fibril formation. Our data reveal that in SDS and DPC micelles, IAPP adopts a stable α-helical structure for several days, suggesting that the micelle models may stabilize monomeric or small oligomeric species of IAPP. In contrast, zwitterionic DMPC/DHPC bicelles and DOPC SUV accelerate the fibril formation compared to zwitterionic DOPC LUV, indicating that the size of the membrane model and its curvature influence the fibrillation process. Negatively charged membranes decrease the lag-time of the fibril formation kinetics while phosphatidylethanolamine and cholesterol have an opposite effect, probably due to the modulation of the physical properties of the membrane and/or due to direct interactions with IAPP within the membrane core. Finally, our results show that the modulation of lipid composition influences not only the growth of fibrils at the membrane surface but also the interactions of β-sheet oligomers with membranes.

  16. Islet neogenesis: a possible pathway for beta-cell replenishment.

    Science.gov (United States)

    Bonner-Weir, Susan; Guo, Lili; Li, Wan-Chun; Ouziel-Yahalom, Limor; Lysy, Philippe A; Weir, Gordon C; Sharma, Arun

    2012-01-01

    Diabetes, particularly type 1 diabetes, results from the lack of pancreatic β-cells. β-cell replenishment can functionally reverse diabetes, but two critical challenges face the field: 1. protection of the new β-cells from autoimmunity and allorejection, and 2. development of β-cells that are readily available and reliably functional. This chapter will examine the potential of endogenous replenishment of pancreatic β-cells as a possible therapeutic tool if autoimmunity could be blunted. Two pathways for endogenous replenishment exist in the pancreas: replication and neogenesis, defined as the formation of new islet cells from pancreatic progenitor/stem cells. These pathways of β-cell expansion are not mutually exclusive and both occur in embryonic development, in postnatal growth, and in response to some injuries. Since the β-cell population is dramatically reduced in the pancreas of type 1 diabetes patients, with only a small fraction of the β-cells surviving years after onset, replication of preexisting β-cells would not be a reasonable start for replenishment. However, induction of neogenesis could provide a starting population that could be further expanded by replication. It is widely accepted that neogenesis occurs in the initial embryonic formation of the endocrine pancreas, but its occurrence anytime after birth has become controversial because of discordant data from lineage tracing experiments. However, the concept was built upon many observations from different models and species over many years. Herein, we discuss the role of neogenesis in normal growth and regeneration, as learned from rodent models, followed by an analysis of what has been found in humans.

  17. Islet Xeno/transplantation and the risk of contagion: local responses from Canada and Australia to an emerging global technoscience.

    Science.gov (United States)

    Cheng, Myra

    2015-01-01

    This paper situates the public debate over the use of living animal organs and tissue for human therapies within the history of experimental islet transplantation. Specifically, the paper compares and contrasts the Canadian and Australian responses on xenotransplantation to consider what lessons can be learnt about the regulation of a complex and controversial biotechnology. Sobbrio and Jorqui described public engagement on xenotransplantation in these countries as 'important forms of experimental democracy.' While Canada experimented with a novel nation-wide public consultation, Australia sought public input within the context of a national inquiry. In both instances, the outcome was a temporary moratorium on all forms of clinical xenotransplantation comparable to the policies adopted in some European countries. In addition, the Australian xenotransplantation ban coincided with a temporary global ban on experimental islet allotransplantation in 2007. Through historical and comparative research, this paper investigates how public controversies over organ and tissue transplantation can inform our understanding of the mediation of interspeciality and the regulation of a highly contested technoscience. It offers an alternative perspective on the xenotransplantation controversy by exploring the ways in which coinciding moratoriums on islet allograft and xenograft challenge, complicate and confound our assumptions regarding the relationships between human and animal, between routine surgery and clinical experimentation, between biomedical science and social science, and between disease risks and material contagion.

  18. A modified method for isolating mouse islets of an adequate quality, quantity, and purity.

    Science.gov (United States)

    Xu, Jiejie; Peng, Baogang; Zhang, Caiyun; Xu, Jiwei; Ma, Yi; Lu, Xinjun

    2017-08-01

    Mouse islets are widely used in diabetes research. Thus an adequate quality, quantity, and purity of islets are needed for high-quality investigations. We performed a combination of filtration and density gradient separation and optimized many steps in the islet isolation procedure, including perfusion, digestion, and purification. Our results show that an increased quality, quantity, and purity of isolated islets can be achieved using these modifications. Moreover, this method can guarantee maximal recovery and purity of the isolated islets and is easy to perform with practice.

  19. Bone marrow cells produce nerve growth factor and promote angiogenesis around transplanted islets

    Institute of Scientific and Technical Information of China (English)

    Naoaki; Sakata; Nathaniel; K; Chan; John; Chrisler; Andre; Obenaus; Eba; Hathout

    2010-01-01

    AIM:To clarify the mechanism by which bone marrow cells promote angiogenesis around transplanted islets.METHODS: Streptozotocin induced diabetic BALB/ c mice were transplanted syngeneically under the kidney capsule with the following: (1) 200 islets (islet group: n=12), (2) 1-5×106 bone marrow cells (bone marrow group: n=11), (3) 200 islets and 1-5×106 bone marrow cells (islet + bone marrow group: n= 13), or (4) no cells (sham group:n=5). All mice were evaluated for blood glucose, serum insulin, serum nerve...

  20. Advances in pancreatic islet transplantation for the treatment of diabetes%胰岛移植治疗糖尿病的现状和进展

    Institute of Scientific and Technical Information of China (English)

    彭丹凤; 贾伟平

    2012-01-01

    胰岛移植是治疗糖尿病尤其是1型糖尿病的一种简单有效的方法,相较与胰腺移植,它较为简单和方便,但存在组织来源匮乏和免疫移植排斥等障碍.新的胰岛分离纯化方法提高了供移植的胰岛的纯度和活性.成体干细胞研究、异种移植研究,有望解决移植的供源问题.Edmonton方案在胰岛移植的临床应用中具有里程碑意义.新型的免疫抑制剂和免疫诱导剂的研究可以提高临床胰岛移植的成功率.%Objective Pancreatic islet transplantation is effective in treating diabetes, especially in type 1 diabetes. It can provide diabetes management with good glycemic control and insulin independence. Compared to pancreas transplantation, islet transplantation is technically much simplier and safer. However, currently its clinical use is highly restricted by a series of influence factors, including lack of sufficient donor organs and the side effects of immunosuppressive therapy. With recent advances in methods of islet isolation and purification, we can get better donor organs. Deriving islet cells from other sources such as pigs, human pancreatic duct cells, fetal pancreatic stem cells, and embryonic stem cells will overcome shortage of donor organs. The use of the Edmonton protocol has been proved to be the key procedure of clinical islet transplantation. And study of new immunosuppressive drugs and immunomodulators can provide higher rate of success for clinical islet transplantation.

  1. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    Energy Technology Data Exchange (ETDEWEB)

    Dumpala, Pradeep R., E-mail: pdumpala@rixd.org [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Parker, Thomas S.; Levine, Daniel M. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); Smith, Barry H. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); NewYork-Presbyterian Hospital, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021 (United States); Gazda, Lawrence S. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States)

    2016-08-05

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  2. Altered Expression of Somatostatin Receptors in Pancreatic Islets from NOD Mice Cultured at Different Glucose Concentrations In Vitro and in Islets Transplanted to Diabetic NOD Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Eva Ludvigsen

    2011-01-01

    Full Text Available Somatostatin acts via five receptors (sst1-5. We investigated if the changes in pancreatic islet sst expression in diabetic NOD mice compared to normoglycemic mice are a consequence of hyperglycemia or the ongoing immune reaction in the pancreas. Pancreatic islets were isolated from NOD mice precultured for 5 days and further cultured for 3 days at high or low glucose before examined. Islets were also isolated from NOD mice and transplanted to normal or diabetic mice in a number not sufficient to cure hyperglycemia. After three days, the transplants were removed and stained for sst1-5 and islet hormones. Overall, changes in sst islet cell expression were more common in islets cultured in high glucose concentration in vitro as compared to the islet transplantation in vivo to diabetic mice. The beta and PP cells exhibited more frequent changes in sst expression, while the alpha and delta cells were relatively unaffected by the high glucose condition. Our findings suggest that the glucose level may alter sst expressed in islets cells; however, immune mechanisms may counteract such changes in islet sst expression.

  3. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan

    2016-01-01

    Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2'-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans.

  4. Characterization of islet cells during development and after transplantation

    NARCIS (Netherlands)

    van Gurp, Léon

    2017-01-01

    Diabetes Mellitus is a disease in which patients are not able to maintain blood glucose levels. This is caused by dysfunction or destruction of the beta cells in the islets of Langerhans, located in the pancreas. Beta cells are responsible for the production of insulin, a hormone that decreases the

  5. Beating diabetes: strategies to improve pancreatic islet transplantation

    NARCIS (Netherlands)

    Hilderink, J.

    2013-01-01

    Type 1 diabetes is a chronic disease that is caused by nearly complete destruction of insulin producing beta-cells in the islets of Langerhans, affecting approximately 25 million people worldwide. Prior to the discovery of insulin, diabetes most certainly led to death. To date, patients with type 1

  6. Effects of thioacetamide on pancreatic islet B-cell function

    NARCIS (Netherlands)

    Malaisse, WJ; Lebrun, P; Sener, A; Wolters, GHJ; Ravazzola, M

    2004-01-01

    Thioacetamide (0.01-1.3 mM) fails to exert any significant immediate effect upon insulin release from rat isolated islets. However, when administered (4 mumol/g body wt) intraperitoneally 24 h before sacrifice, it reduced food intake and body weight and affected the secretory response of isolated is

  7. [Effects of chemical constituents of Crossostephium chinense on insulin secretion in rat islets in vitro].

    Science.gov (United States)

    Zou, Lei; Wu, Qi; Yang, Xiuwei; Fu, Dexian

    2009-06-01

    To investigate the effects of the chemical constituents of the whole herbs of Crossostephium chinense on insulin secretion in rat islets. Islets were isolated from rat pancreata, cultured in vitro, and measured by color signals of dithizone stained digestion solution for detection of pancreatic islets. The morphological observation of islets was carried out by inverted microscope. The effects of test compounds, scopoletin (1), scopolin (2), tanacetin (3), quercetagetin-3,6,7-trimethylether (4) and 5-O-methyl-myo-inositol (5) isolated from the whole herbs of C. chinense, on the insulin secreting level from islets were compared with those of glybenclamide as a positive control substances, and the difference in insulin secreting level from islets between the presence and absence of test compounds was assayed. There was no difference in basal insulin secretion before and after 2 h incubation period of rat islets. The islets treated with quercetagetin-3,6,7-trimethylether have about 2-fold higher insulin secreting level (P < 0.01) compared a normal control group. The islets treated with 5-O-methyl-myo-inositol have about 1.5-fold higher insulin secreting level (P < 0.05) compared to a normal control group. Whereas the islets treated with scopoletin show about 1.9-fold lower basal insulin secreting level (P < 0.05) than a normal control group. In this paper the developed cultivation method of isolated pancreatic islets from rat can be used as a kind of islet-based drug screening model for diabetes mellitus in vitro. Quercetagetin-3,6,7-trimethylether and 5-O-methyl-myo-inositol could enhance rat islet insulin secretion and further in vivo studies are needed to clarify the nature of such an observation. However, scopletin suppress rat islet insulin secretion.

  8. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--Chapter 1: update on national regulatory frameworks pertinent to clinical islet xenotransplantation.

    Science.gov (United States)

    Cozzi, Emanuele; Tönjes, Ralf R; Gianello, Pierre; Bühler, Léo H; Rayat, Gina R; Matsumoto, Shinichi; Park, Chung-Gyu; Kwon, Ivo; Wang, Wei; O'Connell, Philip; Jessamine, Stewart; Elliott, Robert B; Kobayashi, Takaaki; Hering, Bernhard J

    2016-01-01

    Islet xenotransplantation represents an attractive solution to overcome the shortage of human islets for use in type 1 diabetes. The wide-scale application of clinical islet xenotransplantation, however, requires that such a procedure takes place in a specifically and tightly regulated environment. With a view to promoting the safe application of clinical islet xenotransplantation, a few years ago the International Xenotransplantation Association (IXA) published a Consensus Statement that outlined the key ethical and regulatory requirements to be satisfied before the initiation of xenotransplantation studies in diabetic patients. This earlier IXA Statement also documented a disparate regulatory landscape among different geographical areas. This situation clearly fell short of the 2004 World Health Assembly Resolution WHA57.18 that urged Member States "to cooperate in the formulation of recommendations and guidelines to harmonize global practices" to ensure the highest ethical and regulatory standards on a global scale. In this new IXA report, IXA members who are active in xenotransplantation research in their respective geographic areas herewith briefly describe changes in the regulatory frameworks that have taken place in the intervening period in the various geographic areas or countries. The key reassuring take-home message of the present report is that many countries have embraced the encouragement of the WHO to harmonize the procedures in a more global scale. Indeed, important regulatory changes have taken place or are in progress in several geographic areas that include Europe, Korea, Japan, and China. Such significant regulatory changes encompass the most diverse facets of the clinical application of xenotransplantation and comprise ethical aspects, source animals and product specifications, study supervision, sample archiving, patient follow-up and even insurance coverage in some legislations. All these measures are expected to provide a better care and

  9. Islet Stellate Cells Isolated from Fibrotic