WorldWideScience

Sample records for human ips-derived retinal

  1. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Li, Yao; Chan, Lawrence; Nguyen, Huy V; Tsang, Stephen H

    2016-01-01

    Interest in generating human induced pluripotent stem (iPS) cells for stem cell modeling of diseases has overtaken that of patient-specific human embryonic stem cells due to the ethical, technical, and political concerns associated with the latter. In ophthalmology, researchers are currently using iPS cells to explore various applications, including: (1) modeling of retinal diseases using patient-specific iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-derived retinal cells treated with gene therapy. In this review, we will discuss the uses of patient-specific iPS cells for differentiating into retinal pigment epithelium (RPE) cells, uncovering disease pathophysiology, and developing new treatments such as gene therapy and cell replacement therapy via autologous transplantation.

  2. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Deepak A Lamba

    2010-01-01

    Full Text Available Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell based therapies, we developed methods to derive retinal progenitors from human ES cells.In this report we have used a similar method to direct induced pluripotent stem cells (iPS from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors. We also found we could purify the photoreceptors derived from the iPS cells using fluorescence activated cell sorting (FACS after labeling photoreceptors with a lentivirus driving GFP from the IRBP cis-regulatory sequences. Moreover, we found that when we transplanted the FACS purified iPSC derived photoreceptors, they were able to integrate into a normal mouse retina and express photoreceptor markers.This report provides evidence that enriched populations of human photoreceptors can be derived from iPS cells.

  3. Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel.

    Science.gov (United States)

    Oyama, Hiroshi; Takahashi, Koji; Tanaka, Yoshikazu; Takemoto, Hiroshi; Haga, Hisashi

    2018-01-01

    It takes several months to form the 3-dimensional morphology of the human embryonic brain. Therefore, establishing a long-term culture method for neuronal tissues derived from human induced pluripotent stem (iPS) cells is very important for studying human brain development. However, it is difficult to keep primary neurons alive for more than 3 weeks in culture. Moreover, long-term adherent culture to maintain the morphology of telencephalic neuron aggregates induced from human iPS cells is also difficult. Although collagen gel has been widely used to support long-term culture of cells, it is not clear whether human iPS cell-derived neuron aggregates can be cultured for long periods on this substrate. In the present study, we differentiated human iPS cells to telencephalic neuron aggregates and examined long-term culture of these aggregates on collagen gel. The results indicated that these aggregates could be cultured for over 3 months by adhering tightly onto collagen gel. Furthermore, telencephalic neuronal precursors within these aggregates matured over time and formed layered structures. Thus, long-term culture of telencephalic neuron aggregates derived from human iPS cells on collagen gel would be useful for studying human cerebral cortex development.Key words: Induced pluripotent stem cell, forebrain neuron, collagen gel, long-term culture.

  4. Generation of an iPS cell line via a non-integrative method using urine-derived cells from a patient with USH2A-associated retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Yonglong Guo

    2018-05-01

    Full Text Available We have established an induced pluripotent stem (iPS cell line using urine-derived cells from a 27-year-old male patient with retinitis pigmentosa associated with point mutations in the USH2A gene. Feeder-free culture conditions and the integration-free CytoTune™-iPS 2.0 Sendai Reprogramming Kit were used.

  5. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishii

    2014-10-01

    Full Text Available Recently, fertile spermatozoa and oocytes were generated from mouse induced pluripotent (iPS cells using a combined in vitro and in vivo induction system. With regard to germ cell induction from human iPS cells, progress has been made particularly in the male germline, demonstrating in vitro generation of haploid, round spermatids. Although iPS-derived germ cells are expected to be developed to yield a form of assisted reproductive technology (ART that can address unmet reproductive needs, genetic and/or epigenetic instabilities abound in iPS cell generation and germ cell induction. In addition, there is still room to improve the induction protocol in the female germline. However, rapid advances in stem cell research are likely to make such obstacles surmountable, potentially translating induced germ cells into the clinical setting in the immediate future. This review examines the current status of the induction of germ cells from human iPS cells and discusses the clinical potential, as well as future directions.

  6. Retinal vascular injuries and intravitreal human embryonic stem cell-derived haemangioblasts.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Zhang, Wei; Lanza, Robert; Lu, Shi-Jiang; Jonas, Jost B; Xu, Liang

    2017-09-01

    To investigate whether intravitreally applied haemangioblasts (HB) derived from human embryonic stem cells (hESCs) are helpful for the repair of vascular damage caused in animals by an oxygen-induced retinopathy (OIR), by an induced diabetic retinopathy (DR) or by an induced retinal ischaemia with subsequent reperfusion. Human embryonic stem cell-derived HBs were transplanted intravitreally into C57BL/6J mice (OIR model), into male Wistar rats with an induced DR and into male Wistar rats undergoing induced retinal ischaemia with subsequent reperfusion. Control groups of animals received an intravitreal injection of endothelial cells (ECs) or phosphate-buffered saline (PBS). We examined the vasculature integrity in the mice with OIR, the blood-retina barrier in the rats with induced DR, and retinal thickness and retinal ganglion cell density in retina flat mounts of the rats with the retinal ischaemic-reperfusion retinopathy. In the OIR model, the study group versus control groups showed a significantly (p < 0.001) smaller retinal avascular area [5.1 ± 2.7%;n = 18 animals versus 12.2 ± 2.8% (PBS group; n = 10 animals) and versus 11.8 ± 3.7% (EC group; n = 8 animals)] and less retinal neovascularization [6.3 ± 2.5%;n = 18 versus 15.2 ± 6.3% (n = 10; PBS group) and versus 15.8 ± 3.3% (n = 8; EC group)]. On retinal flat mounts, hESC-HBs were integrated into damaged retinal vessels and stained positive for PECAM (CD31) as EC marker. In the DR model, the study group versus the EC control group showed a significantly (p = 0.001) better blood-retina barrier function as measured at 2 days after the intravitreal injections [study group: 20.2 ± 12.8 μl/(g × hr); n = 6; versus EC control group: 52.9 ± 9.9 μl/(g × hr; n = 6)]. In the retinal ischaemia-reperfusion model, the groups did not differ significantly in retinal thickness and retinal ganglion cell density at 2, 5 and 7 days after baseline. By integrating into

  7. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future

    Directory of Open Access Journals (Sweden)

    Mingyue Luo

    2018-01-01

    Full Text Available As a constituent of blood-retinal barrier and retinal outer segment (ROS scavenger, retinal pigmented epithelium (RPE is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  8. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future.

    Science.gov (United States)

    Luo, Mingyue; Chen, Youxin

    2018-01-01

    As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  9. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    2017-01-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  10. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  11. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kirstin B. Langer

    2018-04-01

    Full Text Available Summary: Retinal ganglion cells (RGCs are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs. : In this article, Langer and colleagues present extensive characterization of RGC subtypes derived from human pluripotent stem cells, with multiple subtypes identified by subtype-specific molecular markers. Their results present a more detailed analysis of RGC diversity in human cells and yield the use of different markers to identify RGC subtypes. Keywords: iPSC, retina, retinal ganglion cell, RGC subtype, stem cell, ipRGC, alpha RGC, direction selective RGC, RNA-seq

  12. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    2011-04-01

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  13. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  15. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  16. Production of iPS-Derived Human Retinal Organoids for Use in Transgene Expression Assays

    NARCIS (Netherlands)

    Quinn, Peter M; Buck, Thilo M; Ohonin, Charlotte; Mikkers, Harald M M; Wijnholds, J.

    2018-01-01

    In vitro retinal organoid modeling from human pluripotent stem cells is becoming more common place in many ophthalmic laboratories worldwide. These organoids mimic human retinogenesis through formation of organized layered retinal structures that display markers for typical retinal cell types.

  17. Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Naoki Yahata

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ, which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex-mediated sequential cleavage. Induced pluripotent stem (iPS cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We differentiated human iPS (hiPS cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI, and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge and drastic decline of Aβ production. CONCLUSIONS/SIGNIFICANCE: These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation.

  18. The circadian response of intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew J Zele

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGC signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central or intrinsic (retinal network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC and outer retina (cone photoreceptors was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux. Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin retinal ganglion cells mediate this circadian variation.

  19. Vitamin A Derivatives as Treatment Options for Retinal Degenerative Diseases

    Directory of Open Access Journals (Sweden)

    Tadao Maeda

    2013-07-01

    Full Text Available The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT and retinal pigment epithelium-specific 65-kDa protein (RPE65 known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA and retinitis pigmentosa (RP. Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients.

  20. New medium used in the differentiation of human pluripotent stem cells to retinal cells is comparable to fetal human eye tissue.

    Science.gov (United States)

    Wang, Xiaobing; Xiong, Kai; Lin, Cong; Lv, Lei; Chen, Jing; Xu, Chongchong; Wang, Songtao; Gu, Dandan; Zheng, Hua; Yu, Hurong; Li, Yan; Xiao, Honglei; Zhou, Guomin

    2015-06-01

    Human pluripotent stem cells (hPSCs) have the potential to differentiate along the retinal lineage. However, most induction systems are dependent on multiple small molecular compounds such as Dkk-1, Lefty-A, and retinoic acid. In the present study, we efficiently differentiated hPSCs into retinal cells using a retinal differentiation medium (RDM) without the use of small molecular compounds. This novel differentiation system recapitulates retinal morphogenesis in humans, i.e. hPSCs gradually differentiate into optic vesicle-shaped spheres, followed by optic cup-shaped spheres and, lastly, retinal progenitor cells. Furthermore, at different stages, hPSC-derived retinal cells mirror the transcription factor expression profiles seen in their counterparts during human embryogenesis. Most importantly, hinge epithelium was found between the hPSC-derived neural retina (NR) and retinal pigment epithelium (RPE). These data suggest that our culture system provides a new method for generating hPSC-derived retinal cells that, for the first time, might be used in human transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines.

    Science.gov (United States)

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-04-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration.

  2. Modeling retinal degeneration using patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Zi-Bing Jin

    Full Text Available Retinitis pigmentosa (RP is the most common inherited human eye disease resulting in night blindness and visual defects. It is well known that the disease is caused by rod photoreceptor degeneration; however, it remains incurable, due to the unavailability of disease-specific human photoreceptor cells for use in mechanistic studies and drug screening. We obtained fibroblast cells from five RP patients with distinct mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-specific induced pluripotent stem (iPS cells by ectopic expression of four key reprogramming factors. We differentiated the iPS cells into rod photoreceptor cells, which had been lost in the patients, and found that they exhibited suitable immunocytochemical features and electrophysiological properties. Interestingly, the number of the patient-derived rod cells with distinct mutations decreased in vitro; cells derived from patients with a specific mutation expressed markers for oxidation or endoplasmic reticulum stress, and exhibited different responses to vitamin E than had been observed in clinical trials. Overall, patient-derived rod cells recapitulated the disease phenotype and expressed markers of cellular stresses. Our results demonstrate that the use of patient-derived iPS cells will help to elucidate the pathogenic mechanisms caused by genetic mutations in RP.

  3. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.

    Science.gov (United States)

    Sridhar, Akshayalakshmi; Ohlemacher, Sarah K; Langer, Kirstin B; Meyer, Jason S

    2016-04-01

    The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hi

  4. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  5. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  6. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.

    Directory of Open Access Journals (Sweden)

    Thomas A Mendel

    Full Text Available Retinal vasculopathies, including diabetic retinopathy (DR, threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy.We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR, ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area. ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction. Treatment of ASCs with transforming growth factor beta (TGF-β1 enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection.ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated

  7. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kuroda

    Full Text Available Human induced pluripotent stem cells (hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical problems associated with human embryonic stem cells (hESCs. These characteristics make hiPSCs a promising choice for future regenerative medicine research. There are significant obstacles, however, preventing the clinical use of hiPSCs. One of the most obvious safety issues is the presence of residual undifferentiated cells that have tumorigenic potential. To locate residual undifferentiated cells, in vivo teratoma formation assays have been performed with immunodeficient animals, which is both costly and time-consuming. Here, we examined three in vitro assay methods to detect undifferentiated cells (designated an in vitro tumorigenicity assay: soft agar colony formation assay, flow cytometry assay and quantitative real-time polymerase chain reaction assay (qRT-PCR. Although the soft agar colony formation assay was unable to detect hiPSCs even in the presence of a ROCK inhibitor that permits survival of dissociated hiPSCs/hESCs, the flow cytometry assay using anti-TRA-1-60 antibody detected 0.1% undifferentiated hiPSCs that were spiked in primary retinal pigment epithelial (RPE cells. Moreover, qRT-PCR with a specific probe and primers was found to detect a trace amount of Lin28 mRNA, which is equivalent to that present in a mixture of a single hiPSC and 5.0×10⁴ RPE cells. Our findings provide highly sensitive and quantitative in vitro assays essential for facilitating safety profiling of hiPSC-derived products for future regenerative medicine research.

  8. Safety and Efficacy of Human Wharton's Jelly-Derived Mesenchymal Stem Cells Therapy for Retinal Degeneration.

    Directory of Open Access Journals (Sweden)

    S N Leow

    Full Text Available To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs on retinal structure and function in Royal College of Surgeons (RCS rats.RCS rats were divided into 2 groups: hWJ-MSCs treated group (n = 8 and placebo control group (n = 8. In the treatment group, hWJ-MSCs from healthy donors were injected into the subretinal space in one eye of each rat at day 21. Control group received saline injection of the same volume. Additional 3 animals were injected with nanogold-labelled stem cells for in vivo tracking of cells localisation using a micro-computed tomography (microCT. Retinal function was assessed by electroretinography (ERG 3 days before the injection and repeated at days 15, 30 and 70 after the injection. Eyes were collected at day 70 for histology, cellular and molecular studies.No retinal tumor formation was detected by histology during the study period. MicroCT scans showed that hWJ-MSCs stayed localised in the eye with no systemic migration. Transmission electron microscopy showed that nanogold-labelled cells were located within the subretinal space. Histology showed preservation of the outer nuclear layer (ONL in the treated group but not in the control group. However, there were no significant differences in the ERG responses between the groups. Confocal microscopy showed evidence of hWJ-MSCs expressing markers for photoreceptor, Müller cells and bipolar cells.Subretinal injection of hWJ-MSCs delay the loss of the ONL in RCS rats. hWJ-MSCs appears to be safe and has potential to differentiate into retinal-like cells. The potential of this cell-based therapy for the treatment of retinal dystrophies warrants further studies.

  9. Safety and Efficacy of Human Wharton's Jelly-Derived Mesenchymal Stem Cells Therapy for Retinal Degeneration.

    Science.gov (United States)

    Leow, S N; Luu, Chi D; Hairul Nizam, M H; Mok, P L; Ruhaslizan, R; Wong, H S; Wan Abdul Halim, Wan Haslina; Ng, M H; Ruszymah, B H I; Chowdhury, S R; Bastion, M L C; Then, K Y

    2015-01-01

    To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats. RCS rats were divided into 2 groups: hWJ-MSCs treated group (n = 8) and placebo control group (n = 8). In the treatment group, hWJ-MSCs from healthy donors were injected into the subretinal space in one eye of each rat at day 21. Control group received saline injection of the same volume. Additional 3 animals were injected with nanogold-labelled stem cells for in vivo tracking of cells localisation using a micro-computed tomography (microCT). Retinal function was assessed by electroretinography (ERG) 3 days before the injection and repeated at days 15, 30 and 70 after the injection. Eyes were collected at day 70 for histology, cellular and molecular studies. No retinal tumor formation was detected by histology during the study period. MicroCT scans showed that hWJ-MSCs stayed localised in the eye with no systemic migration. Transmission electron microscopy showed that nanogold-labelled cells were located within the subretinal space. Histology showed preservation of the outer nuclear layer (ONL) in the treated group but not in the control group. However, there were no significant differences in the ERG responses between the groups. Confocal microscopy showed evidence of hWJ-MSCs expressing markers for photoreceptor, Müller cells and bipolar cells. Subretinal injection of hWJ-MSCs delay the loss of the ONL in RCS rats. hWJ-MSCs appears to be safe and has potential to differentiate into retinal-like cells. The potential of this cell-based therapy for the treatment of retinal dystrophies warrants further studies.

  10. Human stem cell-derived retinal epithelial cells activate complement via collectin 11 in response to stress

    DEFF Research Database (Denmark)

    Fanelli, Giorgia; Gonzalez-Cordero, Anai; Gardner, Peter J

    2017-01-01

    induced-pluripotent stem cell (iPSC)-derived RPE cells, particularly with regard to the complement pathway. We focused on collectin-11 (CL-11), a pattern recognition molecule that can trigger complement activation in renal epithelial tissue. We found evidence of constitutive and hypoxia-induced expression......, failed to activate complement. The presence of CL-11 in healthy murine and human retinal tissues confirmed the biological relevance of CL-11. Our data describe a new trigger mechanism of complement activation that could be important in disease pathogenesis and therapeutic interventions....

  11. Extracellular matrix components expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix.

    Science.gov (United States)

    Felemban, Majed; Dorgau, Birthe; Hunt, Nicola Claire; Hallam, Dean; Zerti, Darin; Bauer, Roman; Ding, Yuchun; Collin, Joseph; Steel, David; Krasnogor, Natalio; Al-Aama, Jumana; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-17

    The extracellular matrix (ECM) plays an important role in numerous processes including cellular proliferation, differentiation, migration, maturation, adhesion guidance and axonal growth. To date, there has been no detailed analysis of the ECM distribution during retinal ontogenesis in humans and the functional importance of many ECM components is poorly understood. In this study, the expression of key ECM components in adult mouse and monkey retina, developing and adult human retina and retinal organoids derived from human pluripotent stem cells was studied. Our data indicate that basement membrane ECMs (Fibronectin and Collagen IV) were expressed in Bruch's membrane and the inner limiting membrane of the developing human retina, whilst the hyalectins (Versican and Brevican), cluster of differentiation 44 (CD44), photoreceptor-specific ECMs Interphotoreceptor Matrix Proteoglycan 1 (IMPG1) and Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) were detected in the developing interphotoreceptor matrix (IPM). The expression of IMPG1, Versican and Brevican in the developing IPM was conserved between human developing retina and human pluripotent stem cell-derived retinal organoids. Blocking the action of CD44 and IMPG1 in pluripotent stem cell derived retinal organoids affected the development of photoreceptors, their inner/outer segments and connecting cilia and disrupted IPM formation, with IMPG1 having an earlier and more significant impact. Together, our data suggest an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation during human retinogenesis. The expression and the role of many extracellular matrix (ECM) components during human retinal development is not fully understood. In this study, expression of key ECM components (Collagen IV, Fibronectin, Brevican, Versican, IMPG1 and IMPG2) was investigated during human retinal ontogenesis. Collagen IV and Fibronectin were expressed in Bruch's membrane; whereas Brevican, Versican

  12. Human bone marrow mesenchymal stem cells for retinal vascular injury.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Jonas, Jost B; Xu, Liang; Zhang, Wei

    2017-09-01

    To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley

  13. Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration.

    Science.gov (United States)

    Qu, Zepeng; Guan, Yuan; Cui, Lu; Song, Jian; Gu, Junjie; Zhao, Hanzhi; Xu, Lei; Lu, Lixia; Jin, Ying; Xu, Guo-Tong

    2015-11-09

    Degenerative retinal diseases like age-related macular degeneration (AMD) are the leading cause of blindness. Cell transplantation showed promising therapeutic effect for such diseases, and embryonic stem cell (ESC) is one of the sources of such donor cells. Here, we aimed to generate retinal progenitor cells (RPCs) from rat ESCs (rESCs) and to test their therapeutic effects in rat model. The rESCs (DA8-16) were cultured in N2B27 medium with 2i, and differentiated to two types of RPCs following the SFEBq method with modifications. For rESC-RPC1, the cells were switched to adherent culture at D10, while for rESC-RPC2, the suspension culture was maintained to D14. Both RPCs were harvested at D16. Primary RPCs were obtained from P1 SD rats, and some of them were labeled with EGFP by infection with lentivirus. To generate Rax::EGFP knock-in rESC lines, TALENs were engineered to facilitate homologous recombination in rESCs, which were cotransfected with the targeting vector and TALEN vectors. The differentiated cells were analyzed with live image, immunofluorescence staining, flow cytometric analysis, gene expression microarray, etc. RCS rats were used to mimic the degeneration of retina and test the therapeutic effects of subretinally transplanted donor cells. The structure and function of retina were examined. We established two protocols through which two types of rESC-derived RPCs were obtained and both contained committed retina lineage cells and some neural progenitor cells (NPCs). These rESC-derived RPCs survived in the host retinas of RCS rats and protected the retinal structure and function in early stage following the transplantation. However, the glia enriched rESC-RPC1 obtained through early and longer adherent culture only increased the b-wave amplitude at 4 weeks, while the longer suspension culture gave rise to evidently neuronal differentiation in rESC-RPC2 which significantly improved the visual function of RCS rats. We have successfully differentiated

  14. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  15. An in vitro expansion system for generation of human iPS cell-derived hepatic progenitor-like cells exhibiting a bipotent differentiation potential.

    Directory of Open Access Journals (Sweden)

    Ayaka Yanagida

    Full Text Available Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13(highCD133(+ cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632, individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein and a cholangiocytic marker gene (cytokeratin 7, and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that

  16. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Xie

    Full Text Available The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs. The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.

  17. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene.

    Science.gov (United States)

    Rezanejad, Habib; Soheili, Zahra-Soheila; Haddad, Farhang; Matin, Maryam M; Samiei, Shahram; Manafi, Ali; Ahmadieh, Hamid

    2014-04-01

    The neural retina is subjected to various degenerative conditions. Regenerative stem-cell-based therapy holds great promise for treating severe retinal degeneration diseases, although many drawbacks remain to be overcome. One important problem is to gain authentically differentiated cells for replacement. Paired box 6 protein (5a) (PAX6 (5a)) is a highly conserved master control gene that has an essential role in the development of the vertebrate visual system. Human adipose-tissue-derived stem cell (hADSC) isolation was performed by using fat tissues and was confirmed by the differentiation potential of the cells into adipocytes and osteocytes and by their surface marker profile. The coding region of the human PAX6 (5a) gene isoform was cloned and lentiviral particles were propagated in HEK293T. The differentiation of hADSCs into retinal cells was characterized by morphological characteristics, quantitative real-time reverse transcription plus the polymerase chain reaction (qPCR) and immunocytochemistry (ICC) for some retinal cell-specific and retinal pigmented epithelial (RPE) cell-specific markers. hADSCs were successfully isolated. Flow cytometric analysis of surface markers indicated the high purity (~97 %) of isolated hADSCs. After 30 h of post-transduction, cells gradually showed the characteristic morphology of neuronal cells and small axon-like processes emerged. qPCR and ICC confirmed the differentiation of some neural retinal cells and RPE cells. Thus, PAX6 (5a) transcription factor expression, together with medium supplemented with fibronectin, is able to induce the differentiation of hADSCs into retinal progenitors, RPE cells and photoreceptors.

  18. Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases.

    Science.gov (United States)

    Cramer, Alona O; MacLaren, Robert E

    2013-04-01

    Induced pluripotent stem cells (iPSc) are a scientific and medical frontier. Application of reprogrammed somatic cells for clinical trials is in its dawn period; advances in research with animal and human iPSc are paving the way for retinal therapies with the ongoing development of safe animal cell transplantation studies and characterization of patient- specific and disease-specific human iPSc. The retina is an optimal model for investigation of neural regeneration; amongst other advantageous attributes, it is the most accessible part of the CNS for surgery and outcome monitoring. A recent clinical trial showing a degree of visual restoration via a subretinal electronic prosthesis implies that even a severely degenerate retina may have the capacity for repair after cell replacement through potential plasticity of the visual system. Successful differentiation of neural retina from iPSc and the recent generation of an optic cup from human ESc invitro increase the feasibility of generating an expandable and clinically suitable source of cells for human clinical trials. In this review we shall present recent studies that have propelled the field forward and discuss challenges in utilizing iPS cell derived retinal cells as reliable models for clinical therapies and as a source for clinical cell transplantation treatment for patients suffering from genetic retinal disease.

  19. Effect of glial cell line-derived neurotrophic factor on retinal function after experimental branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Ejstrup, Rasmus; Dornonville de la Cour, Morten; Kyhn, Maria Voss

    2012-01-01

    The objective of the study was to investigate the effect of glial cell line-derived neurotrophic factor (GDNF) on the multifocal electroretinogram (mfERG) following an induced branch retinal vein occlusion (BRVO) in pigs.......The objective of the study was to investigate the effect of glial cell line-derived neurotrophic factor (GDNF) on the multifocal electroretinogram (mfERG) following an induced branch retinal vein occlusion (BRVO) in pigs....

  20. Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients

    Directory of Open Access Journals (Sweden)

    Wen-Li Deng

    2018-04-01

    Full Text Available Summary: Retinitis pigmentosa (RP is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. : Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy. Keywords: RPGR, photoreceptor, electrophysiology, retinitis pigmentosa, patient-derived iPSCs, retinal organoid, RPE cells, cilium, ciliopathy, disease modeling

  1. Efficacy and Safety of Human Retinal Progenitor Cells

    Science.gov (United States)

    Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony

    2016-01-01

    Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556

  2. Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine.

    Science.gov (United States)

    Rathod, Reena; Surendran, Harshini; Battu, Rajani; Desai, Jogin; Pal, Rajarshi

    2018-02-12

    Retinal degenerative disorders are a leading cause of the inherited, irreversible and incurable vision loss. While various rodent model systems have provided crucial information in this direction, lack of disease-relevant tissue availability and species-specific differences have proven to be a major roadblock. Human induced pluripotent stem cells (iPSC) have opened up a whole new avenue of possibilities not just in understanding the disease mechanism but also potential therapeutic approaches towards a cure. In this review, we have summarized recent advances in the methods of deriving retinal cell types from iPSCs which can serve as a renewable source of disease-relevant cell population for basic as well as translational studies. We also provide an overview of the ongoing efforts towards developing a suitable in vitro model for modeling retinal degenerative diseases. This basic understanding in turn has contributed to advances in translational goals such as drug screening and cell-replacement therapies. Furthermore we discuss gene editing approaches for autologous repair of genetic disorders and allogeneic transplantation of stem cell-based retinal derivatives for degenerative disorders with an ultimate goal to restore vision. It is pertinent to note however, that these exciting new developments throw up several challenges that need to be overcome before their full clinical potential can be realized. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Modulation of radiation injury response in retinal endothelial cells by quinic acid derivative KZ-41 involves p38 MAPK.

    Directory of Open Access Journals (Sweden)

    Jordan J Toutounchian

    Full Text Available Radiation-induced damage to the retina triggers leukostasis, retinal endothelial cell (REC death, and subsequent hypoxia. Resultant ischemia leads to visual loss and compensatory retinal neovascularization (RNV. Using human RECs, we demonstrated that radiation induced leukocyte adhesion through mechanisms involving p38MAPK, p53, and ICAM-1 activation. Additional phenotypic changes included p38MAPK-dependent tyrosine phosphorylation of the focal adhesion scaffolding protein, paxillin (Tyr118. The quinic acid derivative KZ-41 lessened leukocyte adhesion and paxillin-dependent proliferation via inhibition of p38MAPK-p53-ICAM-1 signaling. Using the murine oxygen-induced retinopathy (OIR model, we examined the effect of KZ-41 on pathologic RNV. Daily ocular application of a KZ-41-loaded nanoemulsion significantly reduced both the avascular and neovascular areas in harvested retinal flat mounts when compared to the contralateral eye receiving vehicle alone. Our data highlight the potential benefit of KZ-41 in reducing both the retinal ischemia and neovascularization provoked by genotoxic insults. Further research into how quinic acid derivatives target and mitigate inflammation is needed to fully appreciate their therapeutic potential for the treatment of inflammatory retinal vasculopathies.

  4. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation.

    Science.gov (United States)

    Vugler, Anthony; Carr, Amanda-Jayne; Lawrence, Jean; Chen, Li Li; Burrell, Kelly; Wright, Andrew; Lundh, Peter; Semo, Ma'ayan; Ahmado, Ahmad; Gias, Carlos; da Cruz, Lyndon; Moore, Harry; Andrews, Peter; Walsh, James; Coffey, Peter

    2008-12-01

    Healthy Retinal Pigment Epithelium (RPE) cells are required for proper visual function and the phenomenon of RPE derivation from Human Embryonic Stem Cells (HESC) holds great potential for the treatment of retinal diseases. However, little is known about formation, expansion and expression profile of RPE-like cells derived from HESC (HESC-RPE). By studying the genesis of pigmented foci we identified OTX1/2-positive cell types as potential HESC-RPE precursors. When pigmented foci were excised from culture, HESC-RPE expanded to form extensive monolayers, with pigmented cells at the leading edge assuming a precursor role: de-pigmenting, proliferating, expressing keratin 8 and subsequently re-differentiating. As they expanded and differentiated in vitro, HESC-RPE expressed markers of both developing and mature RPE cells which included OTX1/2, Pax6, PMEL17 and at low levels, RPE65. In vitro, without signals from a developing retinal environment, HESC-RPE could produce regular, polarised monolayers with developmentally important apical and basal features. Following transplantation of HESC-RPE into the degenerating retinal environment of Royal College of Surgeons (RCS) dystrophic rats, the cells survived in the subretinal space, where they maintained low levels of RPE65 expression and remained out of the cell cycle. The HESC-RPE cells responded to the in vivo environment by downregulating Pax6, while maintaining expression of other markers. The presence of rhodopsin-positive material within grafted HESC-RPE indicates that in the future, homogenous transplants of this cell type may be capable of supporting visual function following retinal dystrophy.

  5. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    Science.gov (United States)

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  7. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells.

    Directory of Open Access Journals (Sweden)

    Yanting Xue

    Full Text Available Induced pluripotent stem cell (iPS cell holds great potential for applications in regenerative medicine, drug discovery, and disease modeling. We describe here a practical method to generate human iPS cells from urine-derived cells (UCs under feeder-free, virus-free, serum-free condition and without oncogene c-MYC. We showed that this approach could be applied in a large population with different genetic backgrounds. UCs are easily accessible and exhibit high reprogramming efficiency, offering advantages over other cell types used for the purpose of iPS generation. Using the approach described in this study, we have generated 93 iPS cell lines from 20 donors with diverse genetic backgrounds. The non-viral iPS cell bank with these cell lines provides a valuable resource for iPS cells research, facilitating future applications of human iPS cells.

  8. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement

    OpenAIRE

    Cideciyan, Artur V.; Jacobson, Samuel G.; Beltran, William A.; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J.; Olivares, Melani B.; Schwartz, Sharon B.; Komáromy, András M.; Hauswirth, William W.; Aguirre, Gustavo D.

    2013-01-01

    The first retinal gene therapy in human blindness from RPE65 mutations has focused on safety and efficacy, as defined by improved vision. The disease component not studied, however, has been the fate of photoreceptors in this progressive retinal degeneration. We show that gene therapy improves vision for at least 3 y, but photoreceptor degeneration progresses unabated in humans. In the canine model, the same result occurs when treatment is at the disease stage equivalent to humans. The study ...

  9. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid.

    Science.gov (United States)

    Sanie-Jahromi, Fatemeh; Ahmadieh, Hamid; Soheili, Zahra-Soheila; Davari, Maliheh; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Deezagi, Abdolkhalegh; Pakravesh, Jalil; Bagheri, Abouzar

    2012-04-10

    Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers) during treatment of human retinal pigment epithelium (RPE) cells with amniotic fluid (AF), RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1) confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  10. Human Adipose-Derived Stem Cells Delay Retinal Degeneration in Royal College of Surgeons Rats Through Anti-Apoptotic and VEGF-Mediated Neuroprotective Effects.

    Science.gov (United States)

    Li, Z; Wang, J; Gao, F; Zhang, J; Tian, H; Shi, X; Lian, C; Sun, Y; Li, W; Xu, J-Y; Li, P; Zhang, J; Gao, Z; Xu, J; Wang, F; Lu, L; Xu, G-T

    2016-01-01

    Stem cell therapy is a promising therapeutic approach for retinal degeneration (RD). Our study investigated the effects of human adipose derived stem cell (hADSCs) on Royal College of Surgeons (RCS) rats. Green fluorescent protein (GFP)-labeled hADSCs were transplanted subretinally into RCS rats at postnatal (PN) 21 days to explore potential therapeutic effects, while adeno-associated viral vector (AAV2)-vascular endothelial growth factor (VEGF) and siVEGF-hADSCs were used to aid the mechanistic dissections. Visual function was evaluated by Electroretinogram (ERG) recording. Potential transdifferentiations were examined by Immunofluorescence (IF) and gene expressions were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Apoptotic retinal cells were detected by Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) assay and the cytokines secreted by hADSCs were measured by Enzyme-linked Immunosorbent Assay (ELISA). The visual function of RCS rats began to decrease one week after their eyes opened at PN week 3 and almost lost in PN 5 weeks, accompanied by the loss of retinal outer nuclear layer (ONL). Subretinal transplantation of hADSCs significantly improved the visual function 2 weeks after the transplantation and such therapeutic effect persisted up to 8 weeks after the treatment (PN 11 weeks), with 3-4 rows of photoreceptors remained in the ONL and reduced apoptosis. Consistent with these phenotypic changes, the gene expression of rod photoreceptor markers Rhodopsin (Rho), Crx and Opsin (Opn1) in RCS rats showed obvious decreasing trends over time after PN 3 weeks, but were elevated with hADSC treatment. hADSC transplantation also repressed the expressions of Bax, Bak and Caspase 3, but not the expression of anti-apoptotic genes, including Bcl-2 and Bcl-XL. Finally, substantial VEGF, hepatocyte growth factor (HGF) and pigment epithelium-derived factor (PEDF) secretions from hADSCs were detected, while endogenous

  11. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    Directory of Open Access Journals (Sweden)

    Sanie-Jahromi Fatemeh

    2012-04-01

    Full Text Available Abstract Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers during treatment of human retinal pigment epithelium (RPE cells with amniotic fluid (AF, RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1 confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  12. Stem cells in retinal regeneration: past, present and future.

    Science.gov (United States)

    Ramsden, Conor M; Powner, Michael B; Carr, Amanda-Jayne F; Smart, Matthew J K; da Cruz, Lyndon; Coffey, Peter J

    2013-06-01

    Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardt's disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.

  13. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zou, He [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Otani, Atsushi, E-mail: otan@kuhp.kyoto-u.ac.jp [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan)

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  14. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-01

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137 Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  15. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    International Nuclear Information System (INIS)

    Liu, Te; Cheng, Weiwei; Huang, Yongyi; Huang, Qin; Jiang, Lizhen; Guo, Lihe

    2012-01-01

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: ► microRNA-145 inhibits Sox2 expression in human iPS cells. ► microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. ► HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. ► HuAECs feeder layers maintain human iPS cells pluripotency. ► HuAECs negatively regulates the synthesis of

  16. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Te, E-mail: liute79@yahoo.com [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Shanghai Geriatric Institute of Chinese Medicine, Shanghai 200031 (China); Cheng, Weiwei [International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200030 (China); Huang, Yongyi [Laboratoire PROTEE, Batiment R, Universite du Sud Toulon-Var, 83957 LA GARDE Cedex (France); Huang, Qin; Jiang, Lizhen [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Guo, Lihe, E-mail: liute79@yahoo.com [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2012-02-15

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: Black-Right-Pointing-Pointer microRNA-145 inhibits Sox2 expression in human iPS cells. Black-Right-Pointing-Pointer microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. Black-Right-Pointing-Pointer HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. Black-Right-Pointing-Pointer HuAECs feeder

  17. Retinal pigment epithelium culture;a potential source of retinal stem cells.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-07-01

    To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.

  18. Identification of MHC class I H-2 Kb/Db-restricted immunogenic peptides derived from retinal proteins

    DEFF Research Database (Denmark)

    Wang, Mingjun; Bai, Fang; Pries, Mette

    2006-01-01

    PURPOSE: To identify H-2 Kb/Db-binding immunogenic peptides derived from retinal proteins. METHODS: Computer-based prediction was used to identify potentially H-2 Kb/Db-binding peptides derived from the interphotoreceptor retinol-binding protein (IRBP), soluble retinal antigen (S...... on day 21 after immunization with IRBP or IRBP and the immunogenic peptides. RESULTS: All the 21 predicted peptides were found to upregulate expression of H-2 Kb/Db on RMA-S cells. Five peptides, the two IRBP-derived peptides IRBP89-96 and IRBP(101-108), and the three PEDF-derived peptides, PEDF389....... The immunogenic peptides alone did not induce inflammation in the eyes, but they could enhance severity of uveitis induced by IRBP. CONCLUSIONS: Five of 21 H-2 Kb/Db-binding retinal protein-derived peptides were found to be immunogenic, suggesting that these peptides could function as autoantigenic epitopes...

  19. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey

    DEFF Research Database (Denmark)

    Hannibal, J; Kankipati, L; Strang, C E

    2014-01-01

    ). The ipRGCs regulate other nonimage-forming visual functions such as the pupillary light reflex, masking behavior, and light-induced melatonin suppression. To evaluate whether PACAP-immunoreactive retinal projections are useful as a marker for central projection of ipRGCs in the monkey brain, we......, supporting previous retrograde tracer studies demonstrating that melanopsin-containing retinal projections reach areas in the primate brain involved in both image- and nonimage-forming visual processing....

  20. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor expression and function.

    Science.gov (United States)

    Bill, Anke; Rosethorne, Elizabeth M; Kent, Toby C; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P; Renaud, Nicole A; Charlton, Steven J; Gosling, Martin; Gaither, L Alex; Groot-Kormelink, Paul J

    2014-01-01

    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  1. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP receptor expression and function.

    Directory of Open Access Journals (Sweden)

    Anke Bill

    Full Text Available The human prostacyclin receptor (hIP receptor is a seven-transmembrane G protein-coupled receptor (GPCR that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  2. Quantitative analysis of intraneuronal transport in human iPS neurons

    Directory of Open Access Journals (Sweden)

    Haruko Nakamura

    2015-08-01

    Full Text Available Induced pluripotent stem (iPS cells are promising tools to investigate disease mechanism and develop new drugs. Intraneuronal transport, which is fundamental for neuronal survival and function, is vulnerable to various pharmacological and chemical agents and is disrupted in some neurodegenerative disorders. We applied a quantification method for axonal transport by counting CM-DiI–labeled particles traveling along the neurite, which allowed us to monitor and quantitate, for the first time, intraneuronal transport in human neurons differentiated from iPS cells (iCell neurons. We evaluated the acute effects of several anti-neoplastic agents that have been previously shown to affect intraneuronal transport. Vincristine, paclitaxel and oxaliplatin decreased the number of moving particle along neurites. Cisplatin, however, produced no effect on intraneuronal transport, which is in contrast to our previous report indicating that it inhibits transport in chick dorsal root ganglion neurons. Our system may be a useful method for assessing intraneuronal transport and neurotoxicity in human iPS neurons.

  3. In Vitro Reconstruction of Neuronal Networks Derived from Human iPS Cells Using Microfabricated Devices.

    Directory of Open Access Journals (Sweden)

    Yuzo Takayama

    Full Text Available Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues, which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases, appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study, we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS cell derived peripheral nervous system (PNS and central nervous system (CNS, or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally, calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next, we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs, and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions.

  4. Alkaline phosphatase and OCT-3/4 as useful markers for predicting susceptibility of human deciduous teeth-derived dental pulp cells to reprogramming factor-induced iPS cells.

    Science.gov (United States)

    Inada, Emi; Saitoh, Issei; Kubota, Naoko; Soda, Miki; Matsueda, Kazunari; Murakami, Tomoya; Sawami, Tadashi; Kagoshima, Akiko; Yamasaki, Youichi; Sato, Masahiro

    2017-11-01

    The aim of the present study was to prove that primary cells enriched with stem cells are more easily reprogrammed to generate induced pluripotent stem (iPS) cells than those with scarce numbers of stem cells. We surveyed the alkaline phosphatase (ALP) activity in five primarily-isolated human deciduous teeth-derived dental pulp cells (HDDPC) with cytochemical staining to examine the possible presence of stem cells. Next, the expression of stemness-specific factors, such as OCT(Octumer-binding transcription factor)3/4, NANOG, SOX2(SRY (sex determining region Y)-box 2), CD90, muscle segment homeodomain homeobox (MSX) 1, and MSX2, was assessed with a reverse transcription polymerase chain reaction method. Finally, these isolated HDDPC were transfected with plasmids carrying genes coding Yamanaka factors to determine whether these cells could be reprogrammed to generate iPS cells. Of the five primarily-isolated HDDPC, two (HDDPC-1 and -5) exhibited higher degrees of ALP activity. OCT-3/4 expression was also prominent in those two lines. Furthermore, these two lines proliferated faster than the other three lines. The transfection of HDDPC with Yamanaka factors resulted in the generation of iPS cells from HDDPC-1 and -5. The number of cells with the stemness property of HDDPC differs among individuals, which suggests that HDDPC showing an increased expression of both ALP and OCT-3/4 can be more easily reprogrammed to generate iPS cells after the forced expression of reprogramming factors. © 2016 John Wiley & Sons Australia, Ltd.

  5. PlGF gene knockdown in human retinal pigment epithelial cells.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Ahmadieh, Hamid; Rezaeikanavi, Mozhgan; Samiei, Shahram; Khalooghi, Keynoush

    2011-04-01

    To evaluate the knockdown of placental growth factor (PlGF) gene expression in human retinal pigment epithelium (RPE) cells and its effect on cell proliferation, apoptosis and angiogenic potential of RPE cells. Human RPE cells were isolated by dispase I solution and cultured in DMEM/F12 supplemented with 10% fetal calf serum (FCS). A small interfering RNA (siRNA) corresponding to PlGF mRNA and a scrambled siRNA (scRNA) were introduced into the cells. Cell proliferation and cell death were examined by ELISA. PlGF mRNA and protein were quantified by real-time polymerase chain reaction (PCR) and western blot. The levels of gene expression for human retinal pigment epithelium-specific protein 65 kDa (RPE65), cellular retinaldehyde-binding protein (CRALBP) and tyrosinase were examined by real-time PCR. The angiogenic activity of RPE cell-derived conditioned media was assayed by a tube formation assay using human umbilical vein endothelial cells (HUVECs). At a final siRNA concentration of 20 pmol/ml, the transfection efficiency was about 80%. The amount of PlGF transcripts was reduced to 10% after 36 h of incubation, and the amount of PlGF protein in culture supernatant was significantly decreased. Suppression of PlGF gene had no effect on RPE cell proliferation and survival, and there were no notable changes in the transcript levels of RPE65, CRALBP or tyrosinase for the cultures treated by siRNA cognate to PlGF. Vascular tube formation was efficiently reduced in HUVECs. Our findings present PlGF as a key modulator of angiogenic potential in RPE cells of the human retina.

  6. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats.

    Science.gov (United States)

    Lund, Raymond D; Wang, Shaomei; Klimanskaya, Irina; Holmes, Toby; Ramos-Kelsey, Rebeca; Lu, Bin; Girman, Sergej; Bischoff, N; Sauvé, Yves; Lanza, Robert

    2006-01-01

    Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.

  7. Effects of the Macular Carotenoid Lutein in Human Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Xiaoming Gong

    2017-12-01

    Full Text Available Retinal pigment epithelial (RPE cells are central to retinal health and homoeostasis. Oxidative stress-induced damage to the RPE occurs as part of the pathogenesis of age-related macular degeneration and neovascular retinopathies (e.g., retinopathy of prematurity, diabetic retinopathy. The xanthophyll carotenoids, lutein and zeaxanthin, are selectively taken up by the RPE, preferentially accumulated in the human macula, and transferred to photoreceptors. These macular xanthophylls protect the macula (and the broader retina via their antioxidant and photo-protective activities. This study was designed to investigate effects of various carotenoids (β-carotene, lycopene, and lutein on RPE cells subjected to either hypoxia or oxidative stress, in order to determine if there is effect specificity for macular pigment carotenoids. Using human RPE-derived ARPE-19 cells as an in vitro model, we exposed RPE cells to various concentrations of the specific carotenoids, followed by either graded hypoxia or oxidative stress using tert-butyl hydroperoxide (tBHP. The results indicate that lutein and lycopene, but not β-carotene, inhibit cell growth in undifferentiated ARPE-19 cells. Moreover, cell viability was decreased under hypoxic conditions. Pre-incubation of ARPE-19 cells with lutein or lycopene protected against tBHP-induced cell loss and cell co-exposure of lutein or lycopene with tBHP essentially neutralized tBHP-dependent cell death at tBHP concentrations up to 500 μM. Our findings indicate that lutein and lycopene inhibit the growth of human RPE cells and protect the RPE against oxidative stress-induced cell loss. These findings contribute to the understanding of the protective mechanisms attributable to retinal xanthophylls in eye health and retinopathies.

  8. EFFECTUAL HUMAN AUTHENTICATION FOR CRITICAL SECURITY APPLICATIONS USING RETINAL IMAGES

    Directory of Open Access Journals (Sweden)

    L. Latha

    2010-11-01

    Full Text Available A robust method of human authentication based on the retinal blood vessel pattern is presented in this paper. This method entails a segmentation process to identify retinal blood vessel pattern, template generation consisting of the bifurcation points in the retina and matching of the intersection points in the template patterns. The number of matched blood vessel intersection points between the two patterns compared is used as a measure of similarity. As Liveness detection is a highly desirable anti-spoofing measure in biometric authentication, it is ensured while acquiring retinal images in realtime. The validity of our approach is verified with experimental results obtained from 603 comparisons made using 303 retinal images from three different publicly available databases, namely DRIVE, VARIA and STARE. We found that the proposed retinal recognition method gives 100%, 96.3% and 91.1% recognition rates respectively for the above databases. To the best of our knowledge, this is the first work that uses a large number of retinal images from different retinal databases for the authentication purpose.

  9. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model

    Directory of Open Access Journals (Sweden)

    Alvaro Plaza Reyes

    2016-01-01

    Full Text Available Human embryonic stem cell (hESC-derived retinal pigment epithelial (RPE cells could replace lost tissue in geographic atrophy (GA but efficacy has yet to be demonstrated in a large-eyed model. Also, production of hESC-RPE has not yet been achieved in a xeno-free and defined manner, which is critical for clinical compliance and reduced immunogenicity. Here we describe an effective differentiation methodology using human laminin-521 matrix with xeno-free and defined medium. Differentiated cells exhibited characteristics of native RPE including morphology, pigmentation, marker expression, monolayer integrity, and polarization together with phagocytic activity. Furthermore, we established a large-eyed GA model that allowed in vivo imaging of hESC-RPE and host retina. Cells transplanted in suspension showed long-term integration and formed polarized monolayers exhibiting phagocytic and photoreceptor rescue capacity. We have developed a xeno-free and defined hESC-RPE differentiation method and present evidence of functional integration of clinically compliant hESC-RPE in a large-eyed disease model.

  10. An IP-10 (CXCL10)-Derived Peptide Inhibits Angiogenesis

    Science.gov (United States)

    Yates-Binder, Cecelia C.; Rodgers, Margaret; Jaynes, Jesse; Wells, Alan; Bodnar, Richard J.; Turner, Timothy

    2012-01-01

    Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3) and, activation by its ligand IP-10 (CXCL10), both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77–98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis. PMID:22815829

  11. Structures of holo wild-type human cellular retinol-binding protein II (hCRBPII) bound to retinol and retinal.

    Science.gov (United States)

    Nossoni, Zahra; Assar, Zahra; Yapici, Ipek; Nosrati, Meisam; Wang, Wenjing; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James

    2014-12-01

    Cellular retinol-binding proteins (CRBPs) I and II, which are members of the intracellular lipid-binding protein (iLBP) family, are retinoid chaperones that are responsible for the intracellular transport and delivery of both retinol and retinal. Although structures of retinol-bound CRBPI and CRBPII are known, no structure of a retinal-bound CRBP has been reported. In addition, the retinol-bound human CRBPII (hCRBPII) structure shows partial occupancy of a noncanonical conformation of retinol in the binding pocket. Here, the structure of retinal-bound hCRBPII and the structure of retinol-bound hCRBPII with retinol fully occupying the binding pocket are reported. It is further shown that the retinoid derivative seen in both the zebrafish CRBP and the hCRBPII structures is likely to be the product of flux-dependent and wavelength-dependent X-ray damage during data collection. The structures of retinoid-bound CRBPs are compared and contrasted, and rationales for the differences in binding affinities for retinal and retinol are provided.

  12. Human amniotic fluid promotes retinal pigmented epithelial cells' trans-differentiation into rod photoreceptors and retinal ganglion cells.

    Science.gov (United States)

    Ghaderi, Shima; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Davari, Maliheh; Jahromi, Fatemeh Sanie; Samie, Shahram; Rezaie-Kanavi, Mozhgan; Pakravesh, Jalil; Deezagi, Abdolkhalegh

    2011-09-01

    To evaluate the effect of human amniotic fluid (HAF) on retinal pigmented epithelial cells growth and trans-differentiation into retinal neurons, retinal pigmented epithelium (RPE) cells were isolated from neonatal human cadaver eye globes and cultured in Dulbecco's modified Eagle's medium-F12 supplemented with 10% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using FBS-containing or HAF-containing media. Amniotic fluid samples were received from pregnant women in the first trimester of gestation. Cell proliferation and death enzyme-linked immunosorbent assays were performed to assess the effect of HAF on RPE cell growth. Trans-differentiation into rod photoreceptors and retinal ganglion cells was also studied using immunocytochemistry and real-time polymerase chain reaction techniques. Primary cultures of RPE cells were successfully established under FBS-containing or HAF-containing media leading to rapid cell growth and proliferation. When RPE cells were moved to in vitro culture system, they began to lose their differentiation markers such as pigmentation and RPE65 marker and trans-differentiated neural-like cells followed by spheroid colonies pertaining to stem/progenitor cells were morphologically detected. Immunocytochemistry (ICC) analysis of HAF-treated cultures showed a considerable expression of Rhodopsin gene (30% Rhodopsin-positive cells) indicating trans-differentiation of RPE cells to rod photoreceptors. Real-time polymerase chain reaction revealed an HAF-dose-dependant expression of Thy-1 gene (RGC marker) and significant promoting effect of HAF on RGCs generation. The data presented here suggest that HAF possesses invaluable stimulatory effect on RPE cells growth and trans-differentiation into retinal neurons. It can be regarded as a newly introduced enriched supplement in serum-free kinds of media used in neuro-retinal regeneration studies.

  13. Comparative study of human embryonic stem cells (hESC and human induced pluripotent stem cells (hiPSC as a treatment for retinal dystrophies

    Directory of Open Access Journals (Sweden)

    Marina Riera

    2016-01-01

    Full Text Available Retinal dystrophies (RD are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC-based therapies. We differentiated RPE from human embryonic stem cells (hESCs or human-induced pluripotent stem cells (hiPSCs and transplanted them into the subretinal space of the Royal College of Surgeons (RCS rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD.

  14. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies

    Science.gov (United States)

    Riera, Marina; Fontrodona, Laura; Albert, Silvia; Ramirez, Diana Mora; Seriola, Anna; Salas, Anna; Muñoz, Yolanda; Ramos, David; Villegas-Perez, Maria Paz; Zapata, Miguel Angel; Raya, Angel; Ruberte, Jesus; Veiga, Anna; Garcia-Arumi, Jose

    2016-01-01

    Retinal dystrophies (RD) are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE) cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC)-based therapies. We differentiated RPE from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) and transplanted them into the subretinal space of the Royal College of Surgeons (RCS) rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD. PMID:27006969

  15. ipRGCs: possible causation accounts for the higher prevalence of sleep disorders in glaucoma patients

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen Guo

    2017-07-01

    Full Text Available Sleep accounts for a third of one’s lifetime, partial or complete deprivation of sleep could elicit sever disorders of body function. Previous studies have reported the higher prevalence of sleep disorders in glaucoma patients, but the definite mechanism for this phenomenon is unknown. On the other hand, it is well known by us that the intrinsically photosensitive retinal ganglion cells (ipRGCs serve additional ocular functions, called non-image-forming (NIF functions, in the regulation of circadian rhythm, melatonin secretion, sleep, mood and others. Specifically, ipRGCs can directly or indirectly innervate the central areas such as suprachiasmatic nucleus (SCN, downstream pineal gland (the origin of melatonin, sleep and wake-inducing centers and mood regulation areas, making NIF functions of ipRGCs relate to sleep. The more interesting thing is that previous research showed glaucoma not only affected visual functions such as the degeneration of classical retinal ganglion cells (RGCs, but also affected ipRGCs. Therefore, we hypothesize that higher prevalence of sleep disorders in glaucoma patients maybe result from the underlying glaucomatous injuries of ipRGCs leading to the abnormalities of diverse NIF functions corresponding to sleep.

  16. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    Science.gov (United States)

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  17. Impact of genome assembly status on ChIP-Seq and ChIP-PET data mapping

    Directory of Open Access Journals (Sweden)

    Sachs Laurent

    2009-12-01

    Full Text Available Abstract Background ChIP-Seq and ChIP-PET can potentially be used with any genome for genome wide profiling of protein-DNA interaction sites. Unfortunately, it is probable that most genome assemblies will never reach the quality of the human genome assembly. Therefore, it remains to be determined whether ChIP-Seq and ChIP-PET are practicable with genome sequences other than a few (e.g. human and mouse. Findings Here, we used in silico simulations to assess the impact of completeness or fragmentation of genome assemblies on ChIP-Seq and ChIP-PET data mapping. Conclusions Most currently published genome assemblies are suitable for mapping the short sequence tags produced by ChIP-Seq or ChIP-PET.

  18. Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Wen-Long Sheng

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGCs are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions.

  19. Protection of visual functions by human neural progenitors in a rat model of retinal disease.

    Directory of Open Access Journals (Sweden)

    David M Gamm

    2007-03-01

    Full Text Available A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat.Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed.Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in

  20. Retinal oximetry in patients with ischaemic retinal diseases

    DEFF Research Database (Denmark)

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2017-01-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between...... retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic...... retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO2 ) were associated with present as well as increasing levels of DR. Four of six studies also found...

  1. A PEDF-Derived Peptide Inhibits Retinal Neovascularization and Blocks Mobilization of Bone Marrow-Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Richard Longeras

    2012-01-01

    Full Text Available Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs. Pigment epithelium-derived factor (PEDF contains an N-terminal 34-amino acid peptide (PEDF-34 that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+ cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS. OIR significantly increased the number of circulating Tie2-GFP+ at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+ cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+ cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization.

  2. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  3. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity.

    Science.gov (United States)

    Hannibal, Jens; Christiansen, Anders Tolstrup; Heegaard, Steffen; Fahrenkrug, Jan; Kiilgaard, Jens Folke

    2017-06-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions. © 2017 Wiley Periodicals, Inc.

  4. NUTRITION AND VASCULAR SUPPLY OF RETINAL GANGLION CELLS DURING HUMAN DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Paul eRutkowski

    2016-04-01

    Full Text Available Purpose. To review the roles of the different vascular beds nourishing the inner retina (retinal ganglion cells during normal development of the human eye and using our own tissue specimens to support our conclusions.Methods. An extensive search of the appropriate literature included PubMed, Google scholar, and numerous available textbooks. In addition, choroidal and retinal NADPH-diaphorase stained whole mount preparations were investigated.Results. The first critical interaction between vascular bed and retinal ganglion cell (RGC formation occurs in the 6th-8th month of gestation leading to a massive reduction of RGCs mainly in the peripheral retina. The first three years of age are characterized by an intense growth of the eyeball to near adult size. In the adult eye, the influence of the choroid on inner retinal nutrition was determined by examining the peripheral retinal watershed zones in more detail.Conclusion. This delicately balanced situation of retinal ganglion cell nutrition is described in the different regions of the eye, and a new graphic presentation is introduced to combine morphological measurements and clinical visual field data.

  5. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    Science.gov (United States)

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. Copyright © 2012 AlphaMed Press.

  6. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    Directory of Open Access Journals (Sweden)

    Stephanie Friedrichs

    2015-01-01

    Full Text Available Disease-specific induced pluripotent stem (iPS cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  7. Distributions of elements in the human retinal pigment epithelium

    International Nuclear Information System (INIS)

    Ulshafer, R.J.; Allen, C.B.; Rubin, M.L.

    1990-01-01

    Distributions of elements above the atomic number of sodium were mapped in the retinal pigment epithelia of eight human eyes. X-ray energy spectra and maps were collected from cryofixed, freeze-dried, and epoxy-embedded tissues using energy-dispersive x-ray microanalysis. All eyes had high concentrations of phosphorus in the nuclei of retinal pigment epithelial cells. Melanosomes were rich in sulfur, zinc, calcium, and iron. Lipofuscin and cytoplasm contained only phosphorus and sulfur in detectable amounts. Drusen, when present, contained phosphorus and calcium. Six eyes had a prominent aluminum peak recorded from melanosomes, nuclei, and Bruch's membrane. In one pair of 90-year-old eyes, small, electron-dense deposits surrounded many melanosomes and contained mercury and selenium. Retinal pigment epithelial melanosomes may bind and accumulate metals and other potentially toxic ions over time, preventing them from reaching the neural retina

  8. CERKL knockdown causes retinal degeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Marina Riera

    Full Text Available The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration.

  9. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    Science.gov (United States)

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  10. An Efficient and Secure m-IPS Scheme of Mobile Devices for Human-Centric Computing

    Directory of Open Access Journals (Sweden)

    Young-Sik Jeong

    2014-01-01

    Full Text Available Recent rapid developments in wireless and mobile IT technologies have led to their application in many real-life areas, such as disasters, home networks, mobile social networks, medical services, industry, schools, and the military. Business/work environments have become wire/wireless, integrated with wireless networks. Although the increase in the use of mobile devices that can use wireless networks increases work efficiency and provides greater convenience, wireless access to networks represents a security threat. Currently, wireless intrusion prevention systems (IPSs are used to prevent wireless security threats. However, these are not an ideal security measure for businesses that utilize mobile devices because they do not take account of temporal-spatial and role information factors. Therefore, in this paper, an efficient and secure mobile-IPS (m-IPS is proposed for businesses utilizing mobile devices in mobile environments for human-centric computing. The m-IPS system incorporates temporal-spatial awareness in human-centric computing with various mobile devices and checks users’ temporal spatial information, profiles, and role information to provide precise access control. And it also can extend application of m-IPS to the Internet of things (IoT, which is one of the important advanced technologies for supporting human-centric computing environment completely, for real ubiquitous field with mobile devices.

  11. Expression of Sirtuins in the Retinal Neurons of Mice, Rats, and Humans

    Directory of Open Access Journals (Sweden)

    Hongdou Luo

    2017-11-01

    Full Text Available Sirtuins are a class of histone deacetylases (HDACs that have been shown to regulate a range of pathophysiological processes such as cellular aging, inflammation, metabolism, and cell proliferation. There are seven mammalian Sirtuins (SIRT1-7 that play important roles in stress response, aging, and neurodegenerative diseases. However, the location and function of Sirtuins in neurons are not well defined. This study assessed the retinal expression of Sirtuins in mice, rats, and humans and measured the expression of Sirtuins in aged and injured retinas. Expression of all 7 Sirtuins was confirmed by Western blot and Real-Time PCR analysis in all three species. SIRT1 is highly expressed in mouse, rat, and human retinas, whereas SIRT2-7 expression was relatively lower in human retinas. Immunofluorescence was also used to examine the expression and localization of Sirtuins in rat retinal neurons. Importantly, we demonstrate a marked reduction of SIRT1 expression in aged retinal neurons as well as retinas injured by acute ischemia-reperfusion. On the other hand, none of the other Sirtuins exhibit any significant age-related changes in expression except for SIRT5, which was significantly higher in the retinas of adults compared to both young and aged rats. Our work presents the first composite analysis of Sirtuins in the retinal neurons of mice, rats, and humans, and suggests that increasing the expression and activity of SIRT1 may be beneficial for the treatment of glaucoma and other age-related eye dysfunction.

  12. Efficient generation of fully reprogrammed human iPS cells via polycistronic retroviral vector and a new cocktail of chemical compounds.

    Directory of Open Access Journals (Sweden)

    Zhonghui Zhang

    Full Text Available Direct reprogramming of human somatic cells into induced pluripotent stem (iPS cells by defined transcription factors (TFs provides great potential for regenerative medicine and biomedical research. This procedure has many challenges, including low reprogramming efficiency, many partially reprogrammed colonies, somatic coding mutations in the genome, etc. Here, we describe a simple approach for generating fully reprogrammed human iPS cells by using a single polycistronic retroviral vector expressing four human TFs in a single open reading frame (ORF, combined with a cocktail containing three small molecules (Sodium butyrate, SB431542, and PD0325901. Our results demonstrate that human iPS cells generated by this approach express human ES cells markers and exhibit pluripotency demonstrated by their abilities to differentiate into the three germ layers in vitro and in vivo. Notably, this approach not only provides a much faster reprogramming process but also significantly diminishes partially reprogrammed iPS cell colonies, thus facilitating efficient isolation of desired fully reprogrammed iPS cell colonies.

  13. The retinal clock in mammals: role in health and disease

    Directory of Open Access Journals (Sweden)

    Felder-Schmittbuhl MP

    2017-05-01

    Full Text Available Marie-Paule Felder-Schmittbuhl,1,* Hugo Calligaro,2 Ouria Dkhissi-Benyahya2,* 1Institute of Cellular and Integratives Neurosciences, UPR3212, CNRS, Université de Strasbourg, Strasbourg, 2University of Lyon, Stem Cell and Brain Research Institute, INSERM U1208, Bron, France *These authors contributed equally to this work Abstract: The mammalian retina contains an extraordinary diversity of cell types that are highly organized into precise circuits to perceive and process visual information in a dynamic manner and transmit it to the brain. Above this builds up another level of complex dynamic, orchestrated by a circadian clock located within the retina, which allows retinal physiology, and hence visual function, to adapt to daily changes in light intensity. The mammalian retina is a remarkable model of circadian clock because it harbors photoreception, self-sustained oscillator function, and physiological outputs within the same tissue. However, the location of the retinal clock in mammals has been a matter of long debate. Current data have shown that clock properties are widely distributed among retinal cells and that the retina is composed of a network of circadian clocks located within distinct cellular layers. Nevertheless, the identity of the major pacemaker, if any, still warrants identification. In addition, the retina coordinates rhythmic behavior by providing visual input to the master hypothalamic circadian clock in the suprachiasmatic nuclei (SCN. This light entrainment of the SCN to the light/dark cycle involves a network of retinal photoreceptor cells: rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs. Although it was considered that these photoreceptors synchronized both retinal and SCN clocks, new data challenge this view, suggesting that none of these photoreceptors is involved in photic entrainment of the retinal clock. Because circadian organization is a ubiquitous feature of the retina and controls

  14. Macroglia-derived thrombospondin 2 regulates alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure.

    Science.gov (United States)

    Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan

    2017-01-01

    protein upregulated the level of presynaptic proteins. Finally, gabapentin decreased the expression of presynaptic proteins in mixed cultures by blocking the interaction of thrombospondin 2 and α2δ-1. Taken together, these results indicate that activated macroglia cells may participate in alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure, and macroglia-derived thrombospondin 2 may modulate these changes via binding to its neuronal receptor α2δ-1.

  15. Retinal and post-retinal contributions to the Quantum efficiency of the human eye revealed by electrical neuroimaging

    Directory of Open Access Journals (Sweden)

    Gibran eManasseh

    2013-11-01

    Full Text Available The retina is one of the best known quantum detectors with rods able to reliably respond to single photons. However, estimates on the number of photons eliciting conscious perception, based on signal detection theory, are systematically above these values after discounting by retinal losses. One possibility is that there is a trade-off between the limited motor resources available to living systems and the excellent reliability of the visual photoreceptors. On this view, the limits to sensory thresholds are not set by the individual reliability of the receptors within each sensory modality (as often assumed but rather by the limited central processing and motor resources available to process the constant inflow of sensory information. To investigate this issue, we reproduced the classical experiment from Hetch aimed to determine the sensory threshold in human vision. We combined a careful physical control of the stimulus parameters with high temporal/spatial resolution recordings of EEG signals and behavioral variables over a relatively large sample of subjects (12. Contrarily to the idea that the limits to visual sensitivity are fully set by the statistical fluctuations in photon absorption on retinal photoreceptors we observed that the state of ongoing neural oscillations before any photon impinges the retina helps to determine if the responses of photoreceptors have access to central conscious processing. Our results suggest that motivational and attentional off-retinal mechanisms play a major role in reducing the QE efficiency of the human visual system when compared to the efficiency of isolated retinal photoreceptors. Yet, this mechanism might subserve adaptive behavior by enhancing the overall multisensory efficiency of the whole system composed by diverse reliable sensory modalities.

  16. Zinc uptake in vitro by human retinal pigment epithelium

    International Nuclear Information System (INIS)

    Newsome, D.A.; Rothman, R.J.

    1987-01-01

    Zinc, an essential trace element, is present in unusually high concentrations in the chorioretinal complex relative to most other tissues. Because little has been known about the interactions between the retinal pigment epithelium and free or protein-associated zinc, we studied 65 Zn uptake by human retinal pigment epithelium in vitro. When monolayers were exposed to differing concentrations from 0 to 30 microM 65 Zn in Dulbecco's modified Eagle's medium with 5.4 gm/l glucose at 37 degrees C and 4 degrees C, we observed a temperature-dependent saturable accumulation of the radiolabel. With 15 microM 65 Zn, we saw a biphasic pattern of uptake with a rapid first phase and a slower second phase over 120 min. Uptake of 65 Zn was inhibited by iodacetate and cold, and reduced approximately 50% by the addition of 2% albumin to the labelling medium. Neither ouabain nor 2-deoxyglucose inhibited uptake. Cells previously exposed to 65 Zn retained approximately 70% of accumulated 65 Zn 60 min after being changed to radiolabel-free medium. Following removal of cells from the extracellular matrix adherent to the dish bottom, a variable amount of nonspecific binding of 65 Zn to the residual matrix was demonstrated. These observations are consistent with a facilitated type of transport and demonstrate the ability of human retinal pigment epithelium in vitro to accumulate and retain zinc

  17. Intrinsically photosensitive retinal ganglion cell function in relation to age

    DEFF Research Database (Denmark)

    Herbst, Kristina; Sander, Birgit; Lund-Andersen, Henrik

    2012-01-01

    The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim...... of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC....

  18. Platelet-derived growth factor (PDGF)-C inhibits neuroretinal apoptosis in a murine model of focal retinal degeneration.

    Science.gov (United States)

    Wang, Yujuan; Abu-Asab, Mones S; Yu, Cheng-Rong; Tang, Zhongshu; Shen, Defen; Tuo, Jingsheng; Li, Xuri; Chan, Chi-Chao

    2014-06-01

    Platelet-derived growth factor (PDGF)-C is a member of the PDGF family and is critical for neuronal survival in the central nervous system. We studied the possible survival and antiapoptotic effects of PDGF-C on focal retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)] (DKO rd8) background mice, a model for progressive and focal retinal degeneration. We found no difference in transcript and protein expression of PDGF-C in the retina between DKO rd8 mice and wild type (WT, C57BL/6N). Recombinant PDGF-CC protein (500 ng/eye) was injected intravitreally into the right eye of DKO rd8 mice with phosphate-buffered saline as controls into the left eye. The retinal effects of PDGF-C were assessed by fundoscopy, ocular histopathology, A2E levels, apoptotic molecule analysis, and direct flat mount retinal vascular labeling. We found that the PDGF-CC-treated eyes showed slower progression or attenuation of the focal retinal lesions, lesser photoreceptor and retinal pigment epithelial degeneration resulting in better-preserved photoreceptor structure. Lower expression of apoptotic molecules was detected in the PDGF-CC-treated eyes than in controls. In addition, no retinal neovascularization was observed after PDGF-CC treatment. Our results demonstrate that PDGF-C potently ameliorates photoreceptor degeneration via the suppression of apoptotic pathways without inducing retinal angiogenesis. The protective effects of PDGF-C suggest a novel alternative approach for potential age-related retinal degeneration treatment.

  19. Functional annotation of the human retinal pigment epithelium transcriptome

    Directory of Open Access Journals (Sweden)

    Gorgels Theo GMF

    2009-04-01

    Full Text Available Abstract Background To determine level, variability and functional annotation of gene expression of the human retinal pigment epithelium (RPE, the key tissue involved in retinal diseases like age-related macular degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy human donor eyes (aged 63–78 years were laser dissected and used for 22k microarray studies (Agilent technologies. Data were analyzed with Rosetta Resolver, the web tool DAVID and Ingenuity software. Results In total, we identified 19,746 array entries with significant expression in the RPE. Gene expression was analyzed according to expression levels, interindividual variability and functionality. A group of highly (n = 2,194 expressed RPE genes showed an overrepresentation of genes of the oxidative phosphorylation, ATP synthesis and ribosome pathways. In the group of moderately expressed genes (n = 8,776 genes of the phosphatidylinositol signaling system and aminosugars metabolism were overrepresented. As expected, the top 10 percent (n = 2,194 of genes with the highest interindividual differences in expression showed functional overrepresentation of the complement cascade, essential in inflammation in age-related macular degeneration, and other signaling pathways. Surprisingly, this same category also includes the genes involved in Bruch's membrane (BM composition. Among the top 10 percent of genes with low interindividual differences, there was an overrepresentation of genes involved in local glycosaminoglycan turnover. Conclusion Our study expands current knowledge of the RPE transcriptome by assigning new genes, and adding data about expression level and interindividual variation. Functional annotation suggests that the RPE has high levels of protein synthesis, strong energy demands, and is exposed to high levels of oxidative stress and a variable degree of inflammation. Our data sheds new light on the molecular composition of BM, adjacent to the

  20. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation.

    Science.gov (United States)

    Yoshimatsu, Gumpei; Kunnathodi, Faisal; Saravanan, Prathab Balaji; Shahbazov, Rauf; Chang, Charles; Darden, Carly M; Zurawski, Sandra; Boyuk, Gulbahar; Kanak, Mazhar A; Levy, Marlon F; Naziruddin, Bashoo; Lawrence, Michael C

    2017-11-01

    Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation. © 2017 by the American Diabetes Association.

  1. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer

    Science.gov (United States)

    Diniz, Bruno; Thomas, Padmaja; Thomas, Biju; Ribeiro, Ramiro; Hu, Yuntao; Brant, Rodrigo; Ahuja, Ashish; Zhu, Danhong; Liu, Laura; Koss, Michael; Maia, Mauricio; Chader, Gerald; Hinton, David R.; Humayun, Mark S.

    2013-01-01

    Purpose. To evaluate cell survival and tumorigenicity of human embryonic stem cell–derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). Methods. Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). Results. The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. Conclusions. hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects. PMID:23833067

  2. Delayed administration of glial cell line-derived neurotrophic factor (GDNF) protects retinal ganglion cells in a pig model of acute retinal ischemia

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Klassen, Henry; Johansson, Ulrica Englund

    2009-01-01

    electroretinography (mfERG), quantification of NeuN positive cells and evaluation of the degree of retinal perivasculitis and inflammation 6 weeks after the insult. In the post-injection eyes (days 14, 28 and 42), the ratios of the iN1 and the iP2 amplitudes were 0.10 (95% CI: 0.05-0.15) and 0.09 (95% CI: 0.......04-0.16) in eyes treated with blank microspheres, and 0.24 (95% CI: 0.18-0.32) and 0.23 (95% CI: 0.15-0.33) in eyes treated with GDNF microspheres. These differences were statistically significant (P eyes...... injected with GDNF microspheres compared to eyes injected with blank microspheres. In eyes injected with GDNF microspheres the ganglion cell count was 9.5/field (s.e.m.: 2.1, n = 8), in eyes injected with blank microspheres it was 3.5/field (s.e.m.: 1.2, n = 7). This difference was statistically...

  3. Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

    Directory of Open Access Journals (Sweden)

    Marie-Noëlle Delyfer

    Full Text Available BACKGROUND: Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. METHODOLOGY/PRINCIPAL FINDINGS: Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. CONCLUSIONS/SIGNIFICANCE: This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery.

  4. Molecular Responses of Human Retinal Cells to Infection with Dengue Virus.

    Science.gov (United States)

    Carr, Jillian M; Ashander, Liam M; Calvert, Julie K; Ma, Yuefang; Aloia, Amanda; Bracho, Gustavo G; Chee, Soon-Phaik; Appukuttan, Binoy; Smith, Justine R

    2017-01-01

    Recent clinical reports indicate that infection with dengue virus (DENV) commonly has ocular manifestations. The most serious threat to vision is dengue retinopathy, including retinal vasculopathy and macular edema. Mechanisms of retinopathy are unstudied, but observations in patients implicate retinal pigment epithelial cells and retinal endothelial cells. Human retinal cells were inoculated with DENV-2 and monitored for up to 72 hours. Epithelial and endothelial cells supported DENV replication and release, but epithelial cells alone demonstrated clear cytopathic effect, and infection was more productive in those cells. Infection induced type I interferon responses from both cells, but this was stronger in epithelial cells. Endothelial cells increased expression of adhesion molecules, with sustained overexpression of vascular adhesion molecule-1. Transcellular impedance decreased for epithelial monolayers, but not endothelial monolayers, coinciding with cytopathic effect. This reduction was accompanied by disorganization of intracellular filamentous-actin and decreased expression of junctional molecules, zonula occludens 1, and catenin- β 1. Changes in endothelial expression of adhesion molecules are consistent with the retinal vasculopathy seen in patients infected with DENV; decreases in epithelial junctional protein expression, paralleling loss of integrity of the epithelium, provide a molecular basis for DENV-associated macular edema. These molecular processes present potential therapeutic targets for vision-threatening dengue retinopathy.

  5. Molecular Responses of Human Retinal Cells to Infection with Dengue Virus

    Directory of Open Access Journals (Sweden)

    Jillian M. Carr

    2017-01-01

    Full Text Available Recent clinical reports indicate that infection with dengue virus (DENV commonly has ocular manifestations. The most serious threat to vision is dengue retinopathy, including retinal vasculopathy and macular edema. Mechanisms of retinopathy are unstudied, but observations in patients implicate retinal pigment epithelial cells and retinal endothelial cells. Human retinal cells were inoculated with DENV-2 and monitored for up to 72 hours. Epithelial and endothelial cells supported DENV replication and release, but epithelial cells alone demonstrated clear cytopathic effect, and infection was more productive in those cells. Infection induced type I interferon responses from both cells, but this was stronger in epithelial cells. Endothelial cells increased expression of adhesion molecules, with sustained overexpression of vascular adhesion molecule-1. Transcellular impedance decreased for epithelial monolayers, but not endothelial monolayers, coinciding with cytopathic effect. This reduction was accompanied by disorganization of intracellular filamentous-actin and decreased expression of junctional molecules, zonula occludens 1, and catenin-β1. Changes in endothelial expression of adhesion molecules are consistent with the retinal vasculopathy seen in patients infected with DENV; decreases in epithelial junctional protein expression, paralleling loss of integrity of the epithelium, provide a molecular basis for DENV-associated macular edema. These molecular processes present potential therapeutic targets for vision-threatening dengue retinopathy.

  6. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells

    Science.gov (United States)

    Han, Meng; Blindewald-Wittich, Almut; Holz, Frank G.; Giese, Günter; Niemz, Markolf H.; Snyder, Sarah; Sun, Hui; Yu, Jiayi; Agopov, Michael; La Schiazza, Olivier; Bille, Josef F.

    2006-01-01

    Degeneration of retinal pigment epithelial (RPE) cells severely impairs the visual function of retina photoreceptors. However, little is known about the events that trigger the death of RPE cells at the subcellular level. Two-photon excited autofluorescence (TPEF) imaging of RPE cells proves to be well suited to investigate both the morphological and the spectral characteristics of the human RPE cells. The dominant fluorophores of autofluorescence derive from lipofuscin (LF) granules that accumulate in the cytoplasm of the RPE cells with increasing age. Spectral TPEF imaging reveals the existence of abnormal LF granules with blue shifted autofluorescence in RPE cells of aging patients and brings new insights into the complicated composition of the LF granules. Based on a proposed two-photon laser scanning ophthalmoscope, TPEF imaging of the living retina may be valuable for diagnostic and pathological studies of age related eye diseases.

  7. Human Decidua-Derived Mesenchymal Cells Are a Promising Source for the Generation and Cell Banking of Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Shofuda, Tomoko; Kanematsu, Daisuke; Fukusumi, Hayato; Yamamoto, Atsuyo; Bamba, Yohei; Yoshitatsu, Sumiko; Suemizu, Hiroshi; Nakamura, Masato; Sugimoto, Yoshikazu; Furue, Miho Kusuda; Kohara, Arihiro; Akamatsu, Wado; Okada, Yohei; Okano, Hideyuki; Yamasaki, Mami; Kanemura, Yonehiro

    2013-01-01

    Placental tissue is a biomaterial with remarkable potential for use in regenerative medicine. It has a three-layer structure derived from the fetus (amnion and chorion) and the mother (decidua), and it contains huge numbers of cells. Moreover, placental tissue can be collected without any physical danger to the donor and can be matched with a variety of HLA types. The decidua-derived mesenchymal cells (DMCs) are highly proliferative fibroblast-like cells that express a similar pattern of CD antigens as bone marrow-derived mesenchymal cells (BM-MSCs). Here we demonstrated that induced pluripotent stem (iPS) cells could be efficiently generated from DMCs by retroviral transfer of reprogramming factor genes. DMC-hiPS cells showed equivalent characteristics to human embryonic stem cells (hESCs) in colony morphology, global gene expression profile (including human pluripotent stem cell markers), DNA methylation status of the OCT3/4 and NANOG promoters, and ability to differentiate into components of the three germ layers in vitro and in vivo. The RNA expression of XIST and the methylation status of its promoter region suggested that DMC-iPSCs, when maintained undifferentiated and pluripotent, had three distinct states: (1) complete X-chromosome reactivation, (2) one inactive X-chromosome, or (3) an epigenetic aberration. Because DMCs are derived from the maternal portion of the placenta, they can be collected with the full consent of the adult donor and have considerable ethical advantages for cell banking and the subsequent generation of human iPS cells for regenerative applications. PMID:26858858

  8. Canine and human visual cortex intact and responsive despite early retinal blindness from RPE65 mutation.

    Directory of Open Access Journals (Sweden)

    Geoffrey K Aguirre

    2007-06-01

    Full Text Available RPE65 is an essential molecule in the retinoid-visual cycle, and RPE65 gene mutations cause the congenital human blindness known as Leber congenital amaurosis (LCA. Somatic gene therapy delivered to the retina of blind dogs with an RPE65 mutation dramatically restores retinal physiology and has sparked international interest in human treatment trials for this incurable disease. An unanswered question is how the visual cortex responds after prolonged sensory deprivation from retinal dysfunction. We therefore studied the cortex of RPE65-mutant dogs before and after retinal gene therapy. Then, we inquired whether there is visual pathway integrity and responsivity in adult humans with LCA due to RPE65 mutations (RPE65-LCA.RPE65-mutant dogs were studied with fMRI. Prior to therapy, retinal and subcortical responses to light were markedly diminished, and there were minimal cortical responses within the primary visual areas of the lateral gyrus (activation amplitude mean +/- standard deviation [SD] = 0.07% +/- 0.06% and volume = 1.3 +/- 0.6 cm(3. Following therapy, retinal and subcortical response restoration was accompanied by increased amplitude (0.18% +/- 0.06% and volume (8.2 +/- 0.8 cm(3 of activation within the lateral gyrus (p < 0.005 for both. Cortical recovery occurred rapidly (within a month of treatment and was persistent (as long as 2.5 y after treatment. Recovery was present even when treatment was provided as late as 1-4 y of age. Human RPE65-LCA patients (ages 18-23 y were studied with structural magnetic resonance imaging. Optic nerve diameter (3.2 +/- 0.5 mm was within the normal range (3.2 +/- 0.3 mm, and occipital cortical white matter density as judged by voxel-based morphometry was slightly but significantly altered (1.3 SD below control average, p = 0.005. Functional magnetic resonance imaging in human RPE65-LCA patients revealed cortical responses with a markedly diminished activation volume (8.8 +/- 1.2 cm(3 compared to controls

  9. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  10. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  11. Possible mechanisms of retinal function recovery with the use of cell therapy with bone marrow-derived stem cells

    Directory of Open Access Journals (Sweden)

    Rubens Camargo Siqueira

    2010-10-01

    Full Text Available Bone marrow has been proposed as a potential source of stem cells for regenerative medicine. In the eye, degeneration of neural cells in the retina is a hallmark of such widespread ocular diseases as age-related macular degeneration (AMD and retinitis pigmentosa. Bone marrow is an ideal tissue for studying stem cells mainly because of its accessibility. Furthermore, there are a number of well-defined mouse models and cell surface markers that allow effective study of hematopoiesis in healthy and injured mice. Because of these characteristics and the experience of bone marrow transplantation in the treatment of hematological disease such as leukemia, bone marrow-derived stem cells have also become a major tool in regenerative medicine. Those cells may be able to restore the retina function through different mechanisms: A cellular differentiation, B paracrine effect, and C retinal pigment epithelium repair. In this review, we described these possible mechanisms of recovery of retinal function with the use of cell therapy with bone marrow-derived stem cells.

  12. Course of Sodium Iodate-Induced Retinal Degeneration in Albino and Pigmented Mice.

    Science.gov (United States)

    Chowers, Guy; Cohen, Matan; Marks-Ohana, Devora; Stika, Shelly; Eijzenberg, Ayala; Banin, Eyal; Obolensky, Alexey

    2017-04-01

    To characterize the course of sodium iodate (SI)-induced retinal degeneration in young adult albino and pigmented mice. Single intraperitoneal (IP) injections of SI (25, 50, and 100 mg/kg) were performed in 7- to 8-week-old BALB/c and C57Bl/6J mice. Retinal function and structure was assessed at baseline, 24 hours, 3 days, 1, 2, 3, and 4 weeks postinjection by optokinetic tracking response, ERG, optical coherence tomography (OCT), and histologic and immunohistochemical techniques. The 50 mg/kg SI dosage was selected after dose ranging due to consistent retinal effects and lack of systemic toxicity. Time-dependent deterioration in retinal function and morphology was consistently observed between 1 and 4 weeks in all measured parameters. These include reduction of ERG responses, thinning of retinal layers as observed by OCT and histology, and loss of RPE nuclei. Immunohistochemistry revealed rapid RPE disorganization with loss of tight junctions and markedly reduced expression of RPE65 and rod opsin, accompanied by mislocalization of cone opsins. Earlier time points displayed variable results, including partial recovery of visual acuity at 1 week and supranormal ERG cone responses at 24 hours, suggesting possible limitations of early intervention and assessment in the SI model. A single IP injection of 50 mg/kg SI leads to severe RPE injury followed by vision impairment, dysfunction, and loss of photoreceptors in both BALB/c and C57Bl/6J mice. This easily induced and reproducible noninherited model may serve as a useful tool for seeking and evaluating novel therapeutic modalities for the treatment of retinal degenerations caused by primary failure of the RPE.

  13. Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer.

    Science.gov (United States)

    Malik, Durr-E-Shahwar; David, Rhiannon M; Gooderham, Nigel J

    2018-04-01

    Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10 -7 -10 -4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10 -3 -10 -1 M) with PhIP (10 -7 -10 -4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.

  14. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  15. Application of morphological bit planes in retinal blood vessel extraction.

    Science.gov (United States)

    Fraz, M M; Basit, A; Barman, S A

    2013-04-01

    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

  16. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration.

    Science.gov (United States)

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru; Hara, Hideaki

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.

  17. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  18. Induction of oxidative and nitrosative stresses in human retinal pigment epithelial cells by all-trans-retinal

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xue [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province (China); Wang, Ke, E-mail: wangke@jsinm.org [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province (China); Zhang, Kai [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province (China); Zhou, Fanfan [Faculty of Pharmacy, University of Sydney, New South Wales 2006 (Australia); Zhu, Ling [Save Sight Institute, University of Sydney, New South Wales 2000 (Australia)

    2016-10-15

    Delayed clearance of free form all-trans-retinal (atRAL) is estimated be the key cause of retinal pigment epithelium (RPE) cells injury during the pathogenesis of retinopathies such as age-related macular degeneration (AMD), however, the underlying molecular mechanisms are far from clear. In this study, we investigated the cytotoxicity effect and underlying molecular mechanism of atRAL on human retinal pigment epithelium ARPE-19 cells. The results indicated that atRAL could cause cell dysfunction by inducing oxidative and nitrosative stresses in ARPE-19 cells. The oxidative stress induced by atRAL was mediated through up-regulation of reactive oxygen species (ROS) generation, activating mitochondrial-dependent and MAPKs signaling pathways, and finally resulting in apoptosis of ARPE-19 cells. The NADPH oxidase inhibitor apocynin could partly attenuated ROS generation, indicating that NADPH oxidase activity was involved in atRAL-induced oxidative stress in ARPE-19 cells. The nitrosative stress induced by atRAL was mainly reflected in increasing nitric oxide (NO) production, enhancing iNOS, ICAM-1 and VCAM-1 expressions, and promoting monocyte adhesion. Furthermore, above effects could be dramatically blocked by using a nuclear factor kappa B (NF-κB) inhibitor SN50, indicated that atRAL-induced oxidative and nitrosative stresses were mediated by NF-κB. The results provide better understanding of atRAL-induced toxicity in human RPE cells. - Highlights: • atRAL induces oxidative stress-mediated apoptosis in ARPE-19 cells. • atRAL induces oxidative stress-mediated inflammation in ARPE-19 cells. • NF-κB is involved in atRAL-induced oxidative and nitrosative stresses.

  19. Induction of oxidative and nitrosative stresses in human retinal pigment epithelial cells by all-trans-retinal

    International Nuclear Information System (INIS)

    Zhu, Xue; Wang, Ke; Zhang, Kai; Zhou, Fanfan; Zhu, Ling

    2016-01-01

    Delayed clearance of free form all-trans-retinal (atRAL) is estimated be the key cause of retinal pigment epithelium (RPE) cells injury during the pathogenesis of retinopathies such as age-related macular degeneration (AMD), however, the underlying molecular mechanisms are far from clear. In this study, we investigated the cytotoxicity effect and underlying molecular mechanism of atRAL on human retinal pigment epithelium ARPE-19 cells. The results indicated that atRAL could cause cell dysfunction by inducing oxidative and nitrosative stresses in ARPE-19 cells. The oxidative stress induced by atRAL was mediated through up-regulation of reactive oxygen species (ROS) generation, activating mitochondrial-dependent and MAPKs signaling pathways, and finally resulting in apoptosis of ARPE-19 cells. The NADPH oxidase inhibitor apocynin could partly attenuated ROS generation, indicating that NADPH oxidase activity was involved in atRAL-induced oxidative stress in ARPE-19 cells. The nitrosative stress induced by atRAL was mainly reflected in increasing nitric oxide (NO) production, enhancing iNOS, ICAM-1 and VCAM-1 expressions, and promoting monocyte adhesion. Furthermore, above effects could be dramatically blocked by using a nuclear factor kappa B (NF-κB) inhibitor SN50, indicated that atRAL-induced oxidative and nitrosative stresses were mediated by NF-κB. The results provide better understanding of atRAL-induced toxicity in human RPE cells. - Highlights: • atRAL induces oxidative stress-mediated apoptosis in ARPE-19 cells. • atRAL induces oxidative stress-mediated inflammation in ARPE-19 cells. • NF-κB is involved in atRAL-induced oxidative and nitrosative stresses.

  20. Inner Retinal Oxygen Extraction Fraction in Response to Light Flicker Stimulation in Humans

    Science.gov (United States)

    Felder, Anthony E.; Wanek, Justin; Blair, Norman P.; Shahidi, Mahnaz

    2015-01-01

    Purpose Light flicker has been shown to stimulate retinal neural activity, increase blood flow, and alter inner retinal oxygen metabolism (MO2) and delivery (DO2). The purpose of the study was to determine the change in MO2 relative to DO2 due to light flicker stimulation in humans, as assessed by the inner retinal oxygen extraction fraction (OEF). Methods An optical imaging system, based on a modified slit lamp biomicroscope, was developed for simultaneous measurements of retinal vascular diameter (D) and oxygen saturation (SO2). Retinal images were acquired in 20 healthy subjects before and during light flicker stimulation. Arterial and venous D (DA and DV) and SO2 (SO2A and SO2V) were quantified within a circumpapillary region. Oxygen extraction fraction was defined as the ratio of MO2 to DO2 and was calculated as (SO2A − SO2V)/SO2A. Reproducibility of measurements was assessed. Results Coefficients of variation and intraclass correlation coefficients of repeated measurements were <5% and ≥0.83, respectively. During light flicker stimulation, DA, DV , and SO2V significantly increased (P ≤ 0.004). Oxygen extraction fraction was 0.37 ± 0.08 before light flicker and significantly decreased to 0.31 ± 0.07 during light flicker (P = 0.001). Conclusions Oxygen extraction fraction before and during light flicker stimulation is reported in human subjects for the first time. Oxygen extraction fraction decreased during light flicker stimulation, indicating the change in DO2 exceeded that of MO2. This technology is potentially useful for the detection of changes in OEF response to light flicker in physiological and pathological retinal conditions. PMID:26469748

  1. Why directionality is an important light factor for human health to consider in lighting design?

    NARCIS (Netherlands)

    Khademagha, P.; Aries, M.B.C.; Rosemann, A.L.P.; van Loenen, E.J.

    2016-01-01

    Both image-forming and non-image-forming effects of radiation require proper attention in lighting design that aims at meeting human vision and health requirements. Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) appear to play an essential role in stimulation of the non-image forming

  2. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach.

    Science.gov (United States)

    Debowski, Katharina; Warthemann, Rita; Lentes, Jana; Salinas-Riester, Gabriela; Dressel, Ralf; Langenstroth, Daniel; Gromoll, Jörg; Sasaki, Erika; Behr, Rüdiger

    2015-01-01

    Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in

  3. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach.

    Directory of Open Access Journals (Sweden)

    Katharina Debowski

    Full Text Available Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80 and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement

  4. Human Blue Cone Opsin Regeneration Involves Secondary Retinal Binding with Analog Specificity.

    Science.gov (United States)

    Srinivasan, Sundaramoorthy; Fernández-Sampedro, Miguel A; Morillo, Margarita; Ramon, Eva; Jiménez-Rosés, Mireia; Cordomí, Arnau; Garriga, Pere

    2018-03-27

    Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Cell-mediated immunity against human retinal extract, S-antigen, and interphotoreceptor retinoid binding protein in onchocercal chorioretinopathy

    NARCIS (Netherlands)

    van der Lelij, A.; Rothova, A.; Stilma, J. S.; Hoekzema, R.; Kijlstra, A.

    1990-01-01

    Autoimmune mechanisms are thought to be involved in the pathogenesis of onchocercal chorioretinopathy. Cell-mediated immune responses to human retinal S-antigen, interphotoreceptor retinoid binding protein (IRBP), and crude retinal extract were investigated in patients with onchocerciasis from

  6. Biomonitoring of urinary metabolites of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) following human consumption of cooked chicken

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lauritz

    2008-01-01

    Human risk assessment of exposure to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through the diet may be improved by conducting biomonitoring studies comparing metabolism in humans and rodents. Eleven volunteers ingested a meal of cooked chicken containing 4-OH-PhIP and PhIP in amounts...... for detoxification and the last a biomarker for activation. The eleven volunteers eliminated large amounts of 4'-OH-PhiP in the urine. The majority of which Could be accounted for by the presence of 4'-OH-PhIP in the fried chicken, showing that PhIP only to a small extent (11%) was metabolised to 4'-OH...

  7. Split bundle detection in polarimetric images of the human retinal nerve fiber layer

    NARCIS (Netherlands)

    Vermeer, K. A.; Reus, N. J.; Vos, F. M.; Lemij, H. G.; Vossepoel, A. M.

    2007-01-01

    One method for assessing pathological retinal nerve fiber layer (NFL) appearance is by comparing the NFL to normative values, derived from healthy subjects. These normative values will be more specific when normal physiological differences are taken into account. One common variation is a split

  8. Pigment Epithelium-Derived Factor Reduces Apoptosis and Pro-Inflammatory Cytokine Gene Expression in a Murine Model of Focal Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Yujuan Wang

    2013-10-01

    Full Text Available AMD (age-related macular degeneration is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2 −/− /Cx3cr1 −/− on C57BL/6N [Crb1rd8 ] mice, a model for progressive, focal rd (retinal degeneration. First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium than WT (wild-type, C57BL/6N. Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg, followed by a subconjunctival injection of PEDF (3 μg 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment.

  9. Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration.

    Science.gov (United States)

    Wang, Yujuan; Subramanian, Preeti; Shen, Defen; Tuo, Jingsheng; Becerra, S Patricia; Chan, Chi-Chao

    2013-11-26

    AMD (age-related macular degeneration) is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor) is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)]) mice, a model for progressive, focal rd (retinal degeneration). First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium) than WT (wild-type, C57BL/6N). Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg), followed by a subconjunctival injection of PEDF (3 μg) 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment.

  10. RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells.

    Science.gov (United States)

    Walker, Marquis T; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D; Sheng, Wenlong; Weng, Shijun; Berson, David M; Hattar, Samer; Montell, Craig

    2015-10-15

    A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. © 2015 Walker et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Assessment of Rod, Cone, and Intrinsically Photosensitive Retinal Ganglion Cell Contributions to the Canine Chromatic Pupillary Response.

    Science.gov (United States)

    Yeh, Connie Y; Koehl, Kristin L; Harman, Christine D; Iwabe, Simone; Guzman, José M; Petersen-Jones, Simon M; Kardon, Randy H; Komáromy, András M

    2017-01-01

    The purpose of this study was to evaluate a chromatic pupillometry protocol for specific functional assessment of rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) in dogs. Chromatic pupillometry was tested and compared in 37 dogs in different stages of primary loss of rod, cone, and combined rod/cone and optic nerve function, and in 5 wild-type (WT) dogs. Eyes were stimulated with 1-s flashes of dim (1 cd/m2) and bright (400 cd/m2) blue light (for scotopic conditions) or bright red (400 cd/m2) light with 25-cd/m2 blue background (for photopic conditions). Canine retinal melanopsin/Opn4 was cloned, and its expression was evaluated using real-time quantitative reverse transcription-PCR and immunohistochemistry. Mean ± SD percentage of pupil constriction amplitudes induced by scotopic dim blue (scDB), scotopic bright blue (scBB), and photopic bright red (phBR) lights in WT dogs were 21.3% ± 10.6%, 50.0% ± 17.5%, and 19.4% ± 7.4%, respectively. Melanopsin-mediated responses to scBB persisted for several minutes (7.7 ± 4.6 min) after stimulus offset. In dogs with inherited retinal degeneration, loss of rod function resulted in absent scDB responses, followed by decreased phBR responses with disease progression and loss of cone function. Primary loss of cone function abolished phBR responses but preserved those responses to blue light (scDB and scBB). Although melanopsin/Opn4 expression was diminished with retinal degeneration, melanopsin-expressing ipRGCs were identified for the first time in both WT and degenerated canine retinas. Pupil responses elicited by light stimuli of different colors and intensities allowed differential functional assessment of canine rods, cones, and ipRGCs. Chromatic pupillometry offers an effective tool for diagnosing retinal and optic nerve diseases.

  12. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations

    Directory of Open Access Journals (Sweden)

    Aaron H Fronk

    2016-07-01

    Full Text Available The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.

  13. Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    Full Text Available A goal in human embryonic stem cell (hESC research is the faithful differentiation to given cell types such as neural lineages. During embryonic development, a basement membrane surrounds the neural plate that forms a tight, apico-basolaterally polarized epithelium before closing to form a neural tube with a single lumen. Here we show that the three-dimensional epithelial cyst culture of hESCs in Matrigel combined with neural induction results in a quantitative conversion into neuroepithelial cysts containing a single lumen. Cells attain a defined neuroepithelial identity by 5 days. The neuroepithelial cysts naturally generate retinal epithelium, in part due to IGF-1/insulin signaling. We demonstrate the utility of this epithelial culture approach by achieving a quantitative production of retinal pigment epithelial (RPE cells from hESCs within 30 days. Direct transplantation of this RPE into a rat model of retinal degeneration without any selection or expansion of the cells results in the formation of a donor-derived RPE monolayer that rescues photoreceptor cells. The cyst method for neuroepithelial differentiation of pluripotent stem cells is not only of importance for RPE generation but will also be relevant to the production of other neuronal cell types and for reconstituting complex patterning events from three-dimensional neuroepithelia.

  14. Understanding Innovative Potential (IP) in an ICT Context

    DEFF Research Database (Denmark)

    Rai, Sudhanshu

    a dynamic perspective in its conception, operation and instantiation. I conclude this paper with insights on what I call the dynamic IP threshold arguing that being dynamic cannot be seen as a point in time but a threshold existing over time. I then discuss some implications. I suggest that firms need...... to consider IP as a long term investment not only in human capital but in the way the human capital is allowed to engage with new ideas. I suggest IP can be build using institutional logics that enable openness and collegiality....

  15. Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles.

    Science.gov (United States)

    Yang, Chun; Xiong, Wei; Qiu, Qian; Shao, Zhuo; Shao, Zuo; Hamel, David; Tahiri, Houda; Leclair, Grégoire; Lachapelle, Pierre; Chemtob, Sylvain; Hardy, Pierre

    2012-04-15

    Microparticles possess therapeutic potential regarding angiogenesis. We have demonstrated the contribution of apoptotic human CEM T lymphocyte-derived microparticles (LMPs) as inhibitors of angiogenic responses in animal models of inflammation and tumor growth. In the present study, we characterized the antivascular endothelial growth factor (VEGF) effects of LMPs on pathological angiogenesis in an animal model of oxygen-induced retinopathy and explored the role of receptor-mediated endocytosis in the effects of LMPs on human retinal endothelial cells (HRECs). LMPs dramatically inhibited cell growth of HRECs, suppressed VEGF-induced cell migration in vitro experiments, and attenuated VEGF-induced retinal vascular leakage in vivo. Intravitreal injections of fluorescently labeled LMPs revealed accumulation of LMPs in retinal tissue, with more than 60% reductions of the vascular density in retinas of rats with oxygen-induced neovascularization. LMP uptake experiments demonstrated that the interaction between LMPs and HRECs is dependent on temperature. In addition, endocytosis is partially dependent on extracellular calcium. RNAi-mediated knockdown of low-density lipoprotein receptor (LDLR) reduced the uptake of LMPs and attenuated the inhibitory effects of LMPs on VEGF-A protein expression and HRECs cell growth. Intravitreal injection of lentivirus-mediated RNA interference reduced LDLR protein expression in retina by 53% and significantly blocked the antiangiogenic effects of LMPs on pathological vascularization. In summary, the potent antiangiogenic LMPs lead to a significant reduction of pathological retinal angiogenesis through modulation of VEGF signaling, whereas LDLR-mediated endocytosis plays a partial, but pivotal, role in the uptake of LMPs in HRECs.

  16. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  17. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models

    Directory of Open Access Journals (Sweden)

    Mundackal S. Divya

    2017-09-01

    Full Text Available Retinal ganglion cell (RGC transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC to RGC lineage, capable of retinal ganglion cell layer (GCL integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP were transplanted into N-Methyl-D-Aspartate (NMDA injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J having sustained higher intra ocular pressure (IOP. Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.

  18. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo

    OpenAIRE

    Clémence Roux; Clémence Roux; Clémence Roux; Gaëlle Saviane; Gaëlle Saviane; Jonathan Pini; Jonathan Pini; Nourhène Belaïd; Nourhène Belaïd; Gihen Dhib; Gihen Dhib; Christine Voha; Christine Voha; Christine Voha; Lidia Ibáñez

    2018-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for th...

  19. Protection against cancer by dietary IP6 and inositol.

    Science.gov (United States)

    Vucenik, Ivana; Shamsuddin, AbulKalam M

    2006-01-01

    Inositol hexaphosphate (IP(6)) is a naturally occurring polyphosphorylated carbohydrate, abundantly present in many plant sources and in certain high-fiber diets, such as cereals and legumes. In addition to being found in plants, IP(6) is contained in almost all mammalian cells, although in much smaller amounts, where it is important in regulating vital cellular functions such as signal transduction, cell proliferation, and differentiation. For a long time IP(6) has been recognized as a natural antioxidant. Recently IP(6) has received much attention for its role in cancer prevention and control of experimental tumor growth, progression, and metastasis. In addition, IP(6) possesses other significant benefits for human health, such as the ability to enhance immune system, prevent pathological calcification and kidney stone formation, lower elevated serum cholesterol, and reduce pathological platelet activity. In this review we show the efficacy and discuss some of the molecular mechanisms that govern the action of this dietary agent. Exogenously administered IP(6) is rapidly taken up into cells and dephosphorylated to lower inositol phosphates, which further affect signal transduction pathways resulting in cell cycle arrest. A striking anticancer action of IP(6) was demonstrated in different experimental models. In addition to reducing cell proliferation, IP(6) also induces differentiation of malignant cells. Enhanced immunity and antioxidant properties also contribute to tumor cell destruction. Preliminary studies in humans show that IP(6) and inositol, the precursor molecule of IP(6), appear to enhance the anticancer effect of conventional chemotherapy, control cancer metastases, and improve quality of life. Because it is abundantly present in regular diet, efficiently absorbed from the gastrointestinal tract, and safe, IP(6) + inositol holds great promise in our strategies for cancer prevention and therapy. There is clearly enough evidence to justify the

  20. IP Centrex

    OpenAIRE

    Massa Torrelles, Roger

    2006-01-01

    Este documento recoge el trabajo realizado para diseñar e implementar una centralita o PBX para Telefonía IP basada en VoIP (Voz sobre IP) mediante SIP. Proporcionando una alternativa a las actuales centralitas de telefonía, basadas en hardware, que son caras y poco escalables. Se detallan los conceptos VoIP, IP Centrex, se plantean diferentes esquemas para el diseño de IP Centrex y se presentan los detalles de la implementación de IP Centrex. Para la implementación de IP...

  1. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Kokubu, Yasuhiro; Yamaguchi, Tomoko; Kawabata, Kenji

    2017-04-29

    Brain-derived microvascular endothelial cells (BMECs), which play a central role in blood brain barrier (BBB), can be used for the evaluation of drug transport into the brain. Although human BMEC cell lines have already been reported, they lack original properties such as barrier integrity. Pluripotent stem cells (PSCs) can be used for various applications such as regenerative therapy, drug screening, and pathological study. In the recent study, an induction method of BMECs from PSCs has been established, making it possible to more precisely study the in vitro human BBB function. Here, using induced pluripotent stem (iPS) cell-derived BMECs, we examined the effects of oxygen-glucose deprivation (OGD) and OGD/reoxygenation (OGD/R) on BBB permeability. OGD disrupted the barrier function, and the dysfunction was rapidly restored by re-supply of the oxygen and glucose. Interestingly, TNF-α, which is known to be secreted from astrocytes and microglia in the cerebral ischemia, prevented the restoration of OGD-induced barrier dysfunction in an apoptosis-independent manner. Thus, we could establish the in vitro BBB disease model that mimics the cerebral ischemia by using iPS cell-derived BMECs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Admittance Control for Robot Assisted Retinal Vein Micro-Cannulation under Human-Robot Collaborative Mode.

    Science.gov (United States)

    Zhang, He; Gonenc, Berk; Iordachita, Iulian

    2017-10-01

    Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations.

  3. Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence

    OpenAIRE

    Li, Cecilia; Lev, Sophie; Saiardi, Adolfo; Desmarini, Desmarini; Sorrell, Tania C.; Djordjevic, Julianne T.

    2016-01-01

    Fungal inositol polyphosphate (IP) kinases catalyse phosphorylation of IP3 to inositol pyrophosphate, PP-IP5/IP7, which is essential for virulence of Cryptococcus neoformans. Cryptococcal Kcs1 converts IP6 to PP-IP5/IP7, but the kinase converting IP5 to IP6 is unknown. Deletion of a putative IP5 kinase-encoding gene (IPK1) alone (ipk1?), and in combination with KCS1 (ipk1?kcs1?), profoundly reduced virulence in mice. However, deletion of KCS1 and IPK1 had a greater impact on virulence attenua...

  4. Induced Retro-Differentiation of Human Retinal Pigment Epithelial Cells on PolyHEMA.

    Science.gov (United States)

    Nazemroaya, Fatemeh; Soheili, Zahra-Soheila; Samiei, Shahram; Deezagi, Abdolkhalegh; Ahmadieh, Hamid; Davari, Malihe; Heidari, Razeih; Bagheri, Abouzar; Darvishalipour-Astaneh, Shamila

    2017-10-01

    Retinal pigment epithelium (RPE) cells represent a great potential to rescue degenerated cells of the damaged retina. Activation of the virtually plastic properties of RPE cells may aid in recovery of retinal degenerative disorders without the need for entire RPE sheet transplantation. Poly (2-hydroxyethyl methacrylate)(PolyHEMA) is one of the most important hydrogels in the biomaterials world. This hydrophobic polymer does not normally support attachment of mammalian cells. In the current study we investigated the effect of PolyHEMA as a cell culture substrate on the growth, differentiation, and plasticity of hRPE cells. hRPE cells were isolated from neonatal human globes and cultured on PolyHEMA and polystyrene substrates (as controls) in 24-well culture plates. DMEM/F12 was supplemented with 10% fetal bovine serum (FBS) and/or 30% human amniotic fluid (HAF) for cultured cells on polystyrene and PolyHEMA coated vessels. Morphology, rate of cell proliferation and cell death, MTT assay, immunocytochemistry and Real-Time RT-PCR were performed to investigate the effects of PolyHEMA on the growth and differentiation of cultured hRPE cells. Proliferation rate of the cells that had been cultured on PolyHEMA was reduced; PolyHEMA did not induce cell death in the hRPE cultures. hRPE cells cultured on PolyHEMA formed many giant spheroid colonies. The giant colonies were re-cultured and the presence of retinal progenitor markers and markers of hRPE cells were detected in cell cultures on PolyHEMA. PolyHEMA seems to be promising for both maintenance and de-differentiation of hRPE cells and expansion of the retinal progenitor cells from the cultures that are originated from hRPE cells. J. Cell. Biochem. 118: 3080-3089, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration.

    Science.gov (United States)

    Tzameret, Adi; Sher, Ifat; Belkin, Michael; Treves, Avraham J; Meir, Amilia; Nagler, Arnon; Levkovitch-Verbin, Hani; Rotenstreich, Ygal; Solomon, Arieh S

    2015-09-01

    Vision incapacitation and blindness associated with incurable retinal degeneration affect millions of people worldwide. In this study, 0.25×10(6) human bone marrow stem cells (hBM-MSCs) were transplanted epiretinally in the right eye of Royal College Surgeons (RCS) rats at the age of 28 days. Epiretinally transplanted cells were identified as a thin layer of cells along vitreous cavity, in close proximity to the retina or attached to the lens capsule, up to 6 weeks following transplantation. Epiretinal transplantation delayed photoreceptor degeneration and rescued retinal function up to 20 weeks following cell transplantation. Visual functions remained close to normal levels in epiretinal transplantation rats. No inflammation or any other adverse effects were observed in transplanted eyes. Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection. Copyright © 2015. Published by Elsevier B.V.

  6. Chemically-induced photoreceptor degeneration and protection in mouse iPSC-derived three-dimensional retinal organoids

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Ito

    2017-10-01

    Full Text Available Induced pluripotent stem cells (iPSCs, which can be differentiated into various tissues and cell types, have been used for clinical research and disease modeling. Self-organizing three-dimensional (3D tissue engineering has been established within the past decade and enables researchers to obtain tissues and cells that almost mimic in vivo development. However, there are no reports of practical experimental procedures that reproduce photoreceptor degeneration. In this study, we induced photoreceptor cell death in mouse iPSC-derived 3D retinal organoids (3D-retinas by 4-hydroxytamoxifen (4-OHT, which induces photoreceptor degeneration in mouse retinal explants, and then established a live-cell imaging system to measure degeneration-related properties. Furthermore, we quantified the protective effects of representative ophthalmic supplements for treating the photoreceptor degeneration. This drug evaluation system enables us to monitor drug effects in photoreceptor cells and could be useful for drug screening.

  7. Edaravone Protect against Retinal Damage in Streptozotocin-Induced Diabetic Mice

    Science.gov (United States)

    Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes. PMID:24897298

  8. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    Directory of Open Access Journals (Sweden)

    Dongqing Yuan

    Full Text Available Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p. treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs damage was evaluated by recording the pattern electroretinogram (ERG. RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining, and the levels of reactive oxygen species (ROS were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  9. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization.

    Science.gov (United States)

    Hazim, Roni A; Karumbayaram, Saravanan; Jiang, Mei; Dimashkie, Anupama; Lopes, Vanda S; Li, Douran; Burgess, Barry L; Vijayaraj, Preethi; Alva-Ornelas, Jackelyn A; Zack, Jerome A; Kohn, Donald B; Gomperts, Brigitte N; Pyle, April D; Lowry, William E; Williams, David S

    2017-10-02

    Dysfunction of the retinal pigment epithelium (RPE) is implicated in numerous forms of retinal degeneration. The readily accessible environment of the eye makes it particularly suitable for the transplantation of RPE cells, which can now be derived from autologous induced pluripotent stem cells (iPSCs), to treat retinal degeneration. For RPE transplantation to become feasible in the clinic, patient-specific somatic cells should be reprogrammed to iPSCs without the introduction of reprogramming genes into the genome of the host cell, and then subsequently differentiated into RPE cells that are well characterized for safety and functionality prior to transplantation. We have reprogrammed human dermal fibroblasts to iPSCs using nonintegrating RNA, and differentiated the iPSCs toward an RPE fate (iPSC-RPE), under Good Manufacturing Practice (GMP)-compatible conditions. Using highly sensitive assays for cell polarity, structure, organelle trafficking, and function, we found that iPSC-RPE cells in culture exhibited key characteristics of native RPE. Importantly, we demonstrate for the first time with any stem cell-derived RPE cell that live cells are able to support dynamic organelle transport. This highly sensitive test is critical for RPE cells intended for transplantation, since defects in intracellular motility have been shown to promote RPE pathogenesis akin to that found in macular degeneration. To test their capabilities for in-vivo transplantation, we injected the iPSC-RPE cells into the subretinal space of a mouse model of retinal degeneration, and demonstrated that the transplanted cells are capable of rescuing lost RPE function. This report documents the successful generation, under GMP-compatible conditions, of human iPSC-RPE cells that possess specific characteristics of healthy RPE. The report adds to a growing literature on the utility of human iPSC-RPE cells for cell culture investigations on pathogenicity and for therapeutic transplantation, by

  10. Noninvasive Retinal Markers in Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Torp, Thomas Lee; Lundberg, Kristian

    2017-01-01

    The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber...... and fractals with micro- and macrovascular dysfunction in diabetes. Likewise, the retinal metabolism can be evaluated by retinal oximetry, and higher retinal venular oxygen saturation has been demonstrated in patients with diabetic retinopathy. So far, most studies have been cross-sectional, but these can only...... retinopathy and diabetic macular edema. The Department of Ophthalmology at Odense University Hospital, Denmark, has a strong tradition of studying the retinal microvasculature in diabetic retinopathy. In the present paper, we demonstrate the importance of the retinal vasculature not only as predictors of long...

  11. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19...

  12. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Zhouhui Geng

    Full Text Available Fidelity in pluripotent stem cell differentiation protocols is necessary for the therapeutic and commercial use of cells derived from embryonic and induced pluripotent stem cells. Recent advances in stem cell technology, especially the widespread availability of a range of chemically defined media, substrates and differentiation components, now allow the design and implementation of fully defined derivation and differentiation protocols intended for replication across multiple research and manufacturing locations. In this report we present an application of these criteria to the generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. Primary conjunctival cells from human donors aged 70-85 years were reprogrammed to derive multiple iPSC lines that were differentiated into functional RPE using a rapid and defined differentiation protocol. The combination of defined iPSC derivation and culture with a defined RPE differentiation protocol, reproducibly generated functional RPE from each donor without requiring protocol adjustments for each individual. This successful validation of a standardized, iPSC derivation and RPE differentiation process demonstrates a practical approach for applications requiring the cost-effective generation of RPE from multiple individuals such as drug testing, population studies or for therapies requiring patient-specific RPE derivations. In addition, conjunctival cells are identified as a practical source of somatic cells for deriving iPSCs from elderly individuals.

  13. The Developmental Stage of Adult Human Stem Cell-Derived Retinal Pigment Epithelium Cells Influences Transplant Efficacy for Vision Rescue

    Directory of Open Access Journals (Sweden)

    Richard J. Davis

    2017-07-01

    Full Text Available Age-related macular degeneration (AMD is a common cause of central visual loss in the elderly. Retinal pigment epithelial (RPE cell loss occurs early in the course of AMD and RPE cell transplantation holds promise to slow disease progression. We report that subretinal transplantation of RPE stem cell (RPESC-derived RPE cells (RPESC-RPE preserved vision in a rat model of RPE cell dysfunction. Importantly, the stage of differentiation that RPESC-RPE acquired prior to transplantation influenced the efficacy of vision rescue. Whereas cells at all stages of differentiation tested rescued photoreceptor layer morphology, an intermediate stage of RPESC-RPE differentiation obtained after 4 weeks of culture was more consistent at vision rescue than progeny that were differentiated for 2 weeks or 8 weeks of culture. Our results indicate that the developmental stage of RPESC-RPE significantly influences the efficacy of RPE cell replacement, which affects the therapeutic application of these cells for AMD.

  14. Admittance Control for Robot Assisted Retinal Vein Micro-Cannulation under Human-Robot Collaborative Mode

    Science.gov (United States)

    Gonenc, Berk; Iordachita, Iulian

    2017-01-01

    Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations. PMID:29607442

  15. Human induced pluripotent stem cells: a review of the US patent landscape.

    Science.gov (United States)

    Georgieva, Bilyana P; Love, Jane M

    2010-07-01

    Human induced pluripotent stem (iPS) cells and human embryonic stem cells are cells that have the ability to differentiate into a variety of cell types. Embryonic stem cells are derived from human embryos; however, by contrast, human iPS cells can be obtained from somatic cells that have undergone a process of 'reprogramming' via genetic manipulation such that they develop pluripotency. Since iPS cells are not derived from human embryos, they are a less complicated source of human pluripotent cells and are considered valuable research tools and potentially useful in therapeutic applications in regenerative medicine. Worldwide, there are only three issued patents concerning iPS cells. Therefore, the patent landscape in this field is largely undefined. This article provides an overview of the issued patents as well as the pending published patent applications in the field.

  16. Retinal Vascular and Oxygen Temporal Dynamic Responses to Light Flicker in Humans.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Blair, Norman P; Shahidi, Mahnaz

    2017-11-01

    To mathematically model the temporal dynamic responses of retinal vessel diameter (D), oxygen saturation (SO2), and inner retinal oxygen extraction fraction (OEF) to light flicker and to describe their responses to its cessation in humans. In 16 healthy subjects (age: 60 ± 12 years), retinal oximetry was performed before, during, and after light flicker stimulation. At each time point, five metrics were measured: retinal arterial and venous D (DA, DV) and SO2 (SO2A, SO2V), and OEF. Intra- and intersubject variability of metrics was assessed by coefficient of variation of measurements before flicker within and among subjects, respectively. Metrics during flicker were modeled by exponential functions to determine the flicker-induced steady state metric values and the time constants of changes. Metrics after the cessation of flicker were compared to those before flicker. Intra- and intersubject variability for all metrics were less than 6% and 16%, respectively. At the flicker-induced steady state, DA and DV increased by 5%, SO2V increased by 7%, and OEF decreased by 13%. The time constants of DA and DV (14, 15 seconds) were twofold smaller than those of SO2V and OEF (39, 34 seconds). Within 26 seconds after the cessation of flicker, all metrics were not significantly different from before flicker values (P ≥ 0.07). Mathematical modeling revealed considerable differences in the time courses of changes among metrics during flicker, indicating flicker duration should be considered separately for each metric. Future application of this method may be useful to elucidate alterations in temporal dynamic responses to light flicker due to retinal diseases.

  17. Influence of transverse mode on retinal spot size and retinal injury effect: A theoretical analysis on 532-nm laser

    Directory of Open Access Journals (Sweden)

    Jia-Rui Wang

    2014-05-01

    Full Text Available The fundamental transverse mode (TEM00 is preferable for experimental and theoretical study on the laser-induced retinal injury effect, for it can produce the minimal retinal image and establish the most strict laser safety standards. But actually lasers with higher order mode were frequently used in both earlier and recent studies. Generally higher order mode leads to larger retinal spot size and so higher damage threshold, but there are few quantitative analyses on this problem. In this paper, a four-surface schematic eye model is established for human and macaque. The propagation of 532-nm laser in schematic eye is analyzed by the ABCD law of Gaussian optics. It is shown that retinal spot size increases with laser transverse mode order. For relative lower mode order, the retinal spot diameter will not exceed the minimum laser-induced retinal lesion (25 ~ 30 μm in diameter, and so has little effect on retinal damage threshold. While for higher order mode, the larger retinal spot requires more energy to induce injury and so the damage threshold increases. When beam divergence is lowered, the retinal spot size decreases correspondingly, so the effect of mode order can be compensated. The retinal spot size of macaque is slightly smaller than that of human and the ratio between them is independent of mode order. We conclude that the laser mode order has significant influence on retinal spot size but limited influence on the retinal injury effect.

  18. Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells.

    Science.gov (United States)

    Massumi, Mohammad; Hoveizi, Elham; Baktash, Parvaneh; Hooti, Abdollah; Ghazizadeh, Leili; Nadri, Samad; Pourasgari, Farzaneh; Hajarizadeh, Athena; Soleimani, Masoud; Nabiuni, Mohammad; Khorramizadeh, Mohammad R

    2014-03-10

    Due to pluripotency of induced pluripotent stem (iPS) cells, and the lack of immunological incompatibility and ethical issues, iPS cells have been considered as an invaluable cell source for future cell replacement therapy. This study was aimed first at establishment of novel iPS cells, ECiPS, which directly reprogrammed from human Eye Conjunctiva-derived Mesenchymal Stem Cells (EC-MSCs); second, comparing the inductive effects of Wnt3a/Activin A biomolecules to IDE1 small molecule in derivation of definitive endoderm (DE) from the ECiPS cells. To that end, first, the EC-MSCs were transduced by SOKM-expressing lentiviruses and characterized for endogenous expression of embryonic markers Then the established ECiPS cells were induced to DE formation by Wnt3a/Activin A or IDE1. Quantification of GSC, Sox17 and Foxa2 expression, as DE-specific markers, in both mRNA and protein levels revealed that induction of ECiPS cells by either Wnt3a/Activin A or IDE1 could enhance the expression level of the genes; however the levels of increase were higher in Wnt3a/Activin A induced ECiPS-EBs than IDE1 induced cells. Furthermore, the flow cytometry analyses showed no synergistic effect between Activin A and Wnt3a to derive DE-like cells from ECiPS cells. The comparative findings suggest that although both Wnt3a/Activin A signaling and IDE1 molecule could be used for differentiation of iPS into DE cells, the DE-inducing effect of Wnt3a/Activin A was statistically higher than IDE1. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Genome-wide ChIP-seq analysis of human TOP2B occupancy in MCF7 breast cancer epithelial cells

    Directory of Open Access Journals (Sweden)

    Catriona M. Manville

    2015-11-01

    Full Text Available We report the whole genome ChIP seq for human TOP2B from MCF7 cells. Using three different peak calling methods, regions of binding were identified in the presence or absence of the nuclear hormone estradiol, as TOP2B has been reported to play a role in ligand-induced transcription. TOP2B peaks were found across the whole genome, 50% of the peaks fell either within a gene or within 5 kb of a transcription start site. TOP2B peaks coincident with gene promoters were less frequently associated with epigenetic features marking active promoters in estradiol treated than in untreated cells. Significantly enriched transcription factor motifs within the DNA sequences underlying the peaks were identified. These included SP1, KLF4, TFAP2A, MYF, REST, CTCF, ESR1 and ESR2. Gene ontology analysis of genes associated with TOP2B peaks found neuronal development terms including axonogenesis and axon guidance were significantly enriched. In the absence of functional TOP2B there are errors in axon guidance in the zebrafish eye. Specific heparin sulphate structures are involved in retinal axon targeting. The glycosaminoglycan biosynthesis–heparin sulphate/heparin pathway is significantly enriched in the TOP2B gene ontology analysis, suggesting changes in this pathway in the absence of TOP2B may cause the axon guidance faults.

  20. Endogenous retinal neural stem cell reprogramming for neuronal regeneration

    Directory of Open Access Journals (Sweden)

    Romain Madelaine

    2017-01-01

    Full Text Available In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by permanent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal neurons and thereby restore neuronal functions and vision. Identifying cellular and molecular mechanisms allowing to replace damaged neurons is a major goal for basic and translational research in regenerative medicine. Contrary to mammals, the zebrafish has the capacity to fully regenerate entire parts of the nervous system, including retina. This regenerative process depends on endogenous retinal neural stem cells, the Müller glial cells. Following injury, zebrafish Müller cells go back into cell cycle to proliferate and generate new neurons, while mammalian Müller cells undergo reactive gliosis. Recently, transcription factors and microRNAs have been identified to control the formation of new neurons derived from zebrafish and mammalian Müller cells, indicating that cellular reprogramming can be an efficient strategy to regenerate human retinal neurons. Here we discuss recent insights into the use of endogenous neural stem cell reprogramming for neuronal regeneration, differences between zebrafish and mammalian Müller cells, and the need to pursue the identification and characterization of new molecular factors with an instructive and potent function in order to develop theurapeutic strategies for eye diseases.

  1. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Wielgus, Albert R.; Zhao, Baozhong; Chignell, Colin F.; Hu, Dan-Ning; Roberts, Joan E.

    2010-01-01

    The water-soluble nanoparticle hydroxylated fullerene [fullerol, nano-C 60 (OH) 22-26 ] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have previously found that fullerol is both cytotoxic and phototoxic to human lens epithelial cells (HLE B-3) and that the endogenous antioxidant lutein blocked some of this phototoxicity. In the present study we have found that fullerol induces cytotoxic and phototoxic damage to human retinal pigment epithelial cells. Accumulation of nano-C 60 (OH) 22-26 in the cells was confirmed spectrophotometrically at 405 nm, and cell viability, cell metabolism and membrane permeability were estimated using trypan blue, MTS and LDH assays, respectively. Fullerol was cytotoxic toward hRPE cells maintained in the dark at concentrations higher than 10 μM. Exposure to an 8.5 J.cm -2 dose of visible light in the presence of > 5 μM fullerol induced TBARS formation and early apoptosis, indicating phototoxic damage in the form of lipid peroxidation. Pretreatment with 10 and 20 μM lutein offered some protection against fullerol photodamage. Using time resolved photophysical techniques, we have now confirmed that fullerol produces singlet oxygen with a quantum yield of Φ = 0.05 in D 2 O and with a range of 0.002-0.139 in various solvents. As our previous studies have shown that fullerol also produces superoxide in the presence of light, retinal phototoxic damage may occur through both type I (free radical) and type II (singlet oxygen) mechanisms. In conclusion, ocular exposure to fullerol, particularly in the presence of sunlight, may lead to retinal damage.

  2. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.

    Directory of Open Access Journals (Sweden)

    Hu Huang

    Full Text Available Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD, the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV, a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP. Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+, CD45(+ or Iba1(+ cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1 delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101 had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp and CX3CR1(gfp/+ mice. Minocycline treatment caused a significant increase in lectin(+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia

  3. Advances in Retinal Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2013-01-01

    Full Text Available Tremendous progress has been made in recent years to generate retinal cells from pluripotent cell sources. These advances provide hope for those suffering from blindness due to lost retinal cells. Understanding the intrinsic genetic network in model organisms, like fly and frog, has led to a better understanding of the extrinsic signaling pathways necessary for retinal progenitor cell formation in mouse and human cell cultures. This review focuses on the culture methods used by different groups, which has culminated in the generation of laminated retinal tissue from both embryonic and induced pluripotent cells. The review also briefly describes advances made in transplantation studies using donor retinal progenitor and cultured retinal cells.

  4. Chick derived induced pluripotent stem cells by the poly-cistronic transposon with enhanced transcriptional activity.

    Science.gov (United States)

    Katayama, Masafumi; Hirayama, Takashi; Tani, Tetsuya; Nishimori, Katsuhiko; Onuma, Manabu; Fukuda, Tomokazu

    2018-02-01

    Induced pluripotent stem (iPS) cell technology lead terminally differentiated cells into the pluripotent stem cells through the expression of defined reprogramming factors. Although, iPS cells have been established in a number of mammalian species, including mouse, human, and monkey, studies on iPS cells in avian species are still very limited. To establish chick iPS cells, six factors were used within the poly-cistronic reprogramming vector (PB-R6F), containing M3O (MyoD derived transactivation domain fused with Oct3/4), Sox2, Klf4, c-Myc, Lin28, and Nanog. The PB-R6F derived iPS cells were alkaline-phosphatase and SSEA-1 positive, which are markers of pluripotency. Elevated levels of endogenous Oct3/4 and Nanog genes were detected in the established iPS cells, suggesting the activation of the FGF signaling pathway is critical for the pluripotent status. Histological analysis of teratoma revealed that the established chick iPS cells have differentiation ability into three-germ-layer derived tissues. This is the first report of establishment of avian derived iPS cells with a single poly-cistronic transposon based expression system. The establishment of avian derived iPS cells could contribute to the genetic conservation and modification of avian species. © 2017 Wiley Periodicals, Inc.

  5. Cue-dependent memory-based smooth-pursuit in normal human subjects: importance of extra-retinal mechanisms for initial pursuit.

    Science.gov (United States)

    Ito, Norie; Barnes, Graham R; Fukushima, Junko; Fukushima, Kikuro; Warabi, Tateo

    2013-08-01

    Using a cue-dependent memory-based smooth-pursuit task previously applied to monkeys, we examined the effects of visual motion-memory on smooth-pursuit eye movements in normal human subjects and compared the results with those of the trained monkeys. These results were also compared with those during simple ramp-pursuit that did not require visual motion-memory. During memory-based pursuit, all subjects exhibited virtually no errors in either pursuit-direction or go/no-go selection. Tracking eye movements of humans and monkeys were similar in the two tasks, but tracking eye movements were different between the two tasks; latencies of the pursuit and corrective saccades were prolonged, initial pursuit eye velocity and acceleration were lower, peak velocities were lower, and time to reach peak velocities lengthened during memory-based pursuit. These characteristics were similar to anticipatory pursuit initiated by extra-retinal components during the initial extinction task of Barnes and Collins (J Neurophysiol 100:1135-1146, 2008b). We suggest that the differences between the two tasks reflect differences between the contribution of extra-retinal and retinal components. This interpretation is supported by two further studies: (1) during popping out of the correct spot to enhance retinal image-motion inputs during memory-based pursuit, pursuit eye velocities approached those during simple ramp-pursuit, and (2) during initial blanking of spot motion during memory-based pursuit, pursuit components appeared in the correct direction. Our results showed the importance of extra-retinal mechanisms for initial pursuit during memory-based pursuit, which include priming effects and extra-retinal drive components. Comparison with monkey studies on neuronal responses and model analysis suggested possible pathways for the extra-retinal mechanisms.

  6. Melanopsin-expressing retinal ganglion cells: implications for human diseases

    DEFF Research Database (Denmark)

    La Morgia, Chiara; Ross-Cisneros, Fred N; Hannibal, Jens

    2011-01-01

    In the last decade, there was the seminal discovery of melanopsin-expressing retinal ganglion cells (mRGCs) as a new class of photoreceptors that subserve the photoentrainment of circadian rhythms and other non-image forming functions of the eye. Since then, there has been a growing research...... interest on these cells, mainly focused on animal models. Only recently, a few studies have started to address the relevance of the mRGC system in humans and related diseases. We recently discovered that mRGCs resist neurodegeneration in two inherited mitochondrial disorders that cause blindness, i...

  7. Barrier properties of cultured retinal pigment epithelium.

    Science.gov (United States)

    Rizzolo, Lawrence J

    2014-09-01

    The principal function of an epithelium is to form a dynamic barrier that regulates movement between body compartments. Each epithelium is specialized with barrier functions that are specific for the tissues it serves. The apical surface commonly faces a lumen, but the retinal pigment epithelium (RPE) appears to be unique by a facing solid tissue, the sensory retina. Nonetheless, there exists a thin (subretinal) space that can become fluid filled during pathology. RPE separates the subretinal space from the blood supply of the outer retina, thereby forming the outer blood-retinal barrier. The intricate interaction between the RPE and sensory retina presents challenges for learning how accurately culture models reflect native behavior. The challenge is heightened by findings that detail the variation of RPE barrier proteins both among species and at different stages of the life cycle. Among the striking differences is the expression of claudin family members. Claudins are the tight junction proteins that regulate ion diffusion across the spaces that lie between the cells of a monolayer. Claudin expression by RPE varies with species and life-stage, which implies functional differences among commonly used animal models. Investigators have turned to transcriptomics to supplement functional studies when comparing native and cultured tissue. The most detailed studies of the outer blood-retinal barrier have focused on human RPE with transcriptome and functional studies reported for human fetal, adult, and stem-cell derived RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Antibody-directed lentiviral gene transduction for live-cell monitoring and selection of human iPS and hES cells.

    Directory of Open Access Journals (Sweden)

    Dai-tze Wu

    Full Text Available The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular, in the identification of induced pluripotent stem (iPS cells during the reprogramming process. Based on the selective expression of stem cell surface markers, a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts, allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells, but that specific genes, including positive and negative selection markers, regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.

  9. The Retinal Pigment Epithelium: a Convenient Source of New Photoreceptor cells?

    Directory of Open Access Journals (Sweden)

    Shu-Zhen Wang

    2014-01-01

    Full Text Available Recent success in restoring visual function through photoreceptor replacement in mouse models of photoreceptor degeneration intensifies the need to generate or regenerate photoreceptor cells for the ultimate goal of using cell replacement therapy for blindness caused by photoreceptor degeneration. Current research on deriving new photoreceptors for replacement, as regenerative medicine in general, focuses on the use of embryonic stem cells and induced pluripotent stem (iPS cells to generate transplantable cells. Nonetheless, naturally occurring regeneration, such as wound healing, involves awakening cells at or near a wound site to produce new cells needed to heal the wound. Here we discuss the possibility of tweaking an ocular tissue, the retinal pigment epithelium (RPE, to produce photoreceptor cells in situ in the eye. Unlike the neural retina, the RPE in adult mammals maintains cell proliferation capability. Furthermore, progeny cells from RPE proliferation may differentiate into cells other than RPE. The combination of proliferation and plasticity opens a question of whether they could be channeled by a regulatory gene with pro-photoreceptor activity towards photoreceptor production. Studies using embryonic chick and transgenic mouse showed that indeed photoreceptor-like cells were produced in culture and in vivo in the eye using genedirected reprogramming of RPE cells, supporting the feasibility of using the RPE as a convenient source of new photoreceptor cells for in situ retinal repair without involving cell transplantation.

  10. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula.

    Science.gov (United States)

    Hammoum, Imane; Benlarbi, Maha; Dellaa, Ahmed; Szabó, Klaudia; Dékány, Bulcsú; Csaba, Dávid; Almási, Zsuzsanna; Hajdú, Rozina I; Azaiz, Rached; Charfeddine, Ridha; Lukáts, Ákos; Ben Chaouacha-Chekir, Rafika

    2017-09-01

    The purpose of this work was to evaluate a potentially useful animal model, Meriones shawi (M.sh)-developing metabolic X syndrome, diabetes and possessing a visual streak similar to human macula-in the study of diabetic retinopathy and diabetic macular edema (DME). Type 2 diabetes (T2D) was induced by high fat diet administration in M.sh. Body weights, blood glucose levels were monitored throughout the study. Diabetic retinal histopathology was evaluated 3 and 7 months after diabetes induction. Retinal thickness was measured, retinal cell types were labeled by immunohistochemistry and the number of stained elements were quantified. Apoptosis was determined with TUNEL assay. T2D induced progressive changes in retinal histology. A significant decrease of retinal thickness and glial reactivity was observed without an increase in apoptosis rate. Photoreceptor outer segment degeneration was evident, with a significant decrease in the number of all cones and M-cone subtype, but-surprisingly-an increase in S-cones. Damage of the pigment epithelium was also confirmed. A decrease in the number and labeling intensity of parvalbumin- and calretinin-positive amacrine cells and a loss of ganglion cells was detected. Other cell types showed no evident alterations. No DME-like condition was noticed even after 7 months. M.sh could be a useful model to study the evolution of diabetic retinal pathology and to identify the role of hypertension and dyslipidemia in the development of the reported alterations. Longer follow up would be needed to evaluate the potential use of the visual streak in modeling human macular diseases. © 2017 Wiley Periodicals, Inc.

  11. Comparison of pre-treatment and post-treatment use of selenium in retinal ischemia reperfusion injury

    Directory of Open Access Journals (Sweden)

    Alper Yazici

    2015-04-01

    Full Text Available AIM: To investigate the effects of selenium in rat retinal ischemia reperfusion (IR model and compare pre-treatment and post-treatment use. METHODS: Selenium pre-treatment group (n=8 was treated with intraperitoneal (i.p. selenium 0.5 mg/kg for 7d and terminated 24h after the IR injury. Selenium post-treatment group (n=8 was treated with i.p. selenium 0.5 mg/kg for 7d after the IR injury with termination at the end of the 7d period. Sham group (n=8 received i.p. saline injections identical to the selenium volume for 7d with termination 24h after the IR injury. Control group (n=8 received no intervention. Main outcome measures were retina superoxide dismutase (SOD, glutathione (GSH, total antioxidant status (TAS, malondialdehyde (MDA, DNA fragmentation levels, and immunohistological apoptosis evaluation. RESULTS: Compared to the Sham group, selenium pre-treatment had a statistical difference in all parameters except SOD. Post-treatment selenium also resulted in statistical differences in all parameters except the MDA levels. When comparing selenium groups, the pre-treatment selenium group had a statistically higher success in reduction of markers of cell damage such as MDA and DNA fragmentation. In contrast, the post-selenium treatment group had resulted in statistically higher levels of GSH. Histologically both selenium groups succeeded to limit retinal thickening and apoptosis. Pre-treatment use was statistically more successful in decreasing apoptosis in ganglion cell layer compared to post-treatment use. CONCLUSION: Selenium was successful in retinal protection in IR injuries. Pre-treatment efficacy was superior in terms of prevention of tissue damage and apoptosis.

  12. Epigalloccatechin-3-gallate Inhibits Ocular Neovascularization and Vascular Permeability in Human Retinal Pigment Epithelial and Human Retinal Microvascular Endothelial Cells via Suppression of MMP-9 and VEGF Activation

    Directory of Open Access Journals (Sweden)

    Hak Sung Lee

    2014-08-01

    Full Text Available Epigalloccatechin-3-gallate (EGCG is the main polyphenol component of green tea (leaves of Camellia sinensis. EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs and vascular endothelial growth factor (VEGF play a key role in the processes of extracellular matrix (ECM remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA and tumor necrosis factor alpha (TNF-α in human retinal pigment epithelial cells (HRPECs. EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2 by inhibiting generation of reactive oxygen species (ROS. EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs. Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31 on corneal neovascularization (CNV induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization.

  13. Honokiol inhibits pathological retinal neovascularization in oxygen-induced retinopathy mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Vavilala, Divya Teja [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO (United States); O’Bryhim, Bliss E. [Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS (United States); Ponnaluri, V.K. Chaithanya [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO (United States); White, R. Sid; Radel, Jeff [Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS (United States); Symons, R.C. Andrew [Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS (United States); Ophthalmology Department, Royal Melbourne Hospital, University of Melbourne, Victoria (Australia); Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Victoria (Australia); Mukherji, Mridul, E-mail: mukherjim@umkc.edu [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO (United States)

    2013-09-06

    Highlights: •Aberrant activation of HIF pathway is the underlying cause of ischemic neovascularization. •Honokiol has better therapeutic index as a HIF inhibitor than digoxin and doxorubicin. •Daily IP injection of honokiol in OIR mouse model reduced retinal neovascularization. •Honokiol also prevents vaso-obliteration, the characteristic feature of the OIR model. •Honokiol enhanced physiological revascularization of the retinal vascular plexuses. -- Abstract: Aberrant activation of the hypoxia inducible factor (HIF) pathway is the underlying cause of retinal neovascularization, one of the most common causes of blindness worldwide. The HIF pathway also plays critical roles during tumor angiogenesis and cancer stem cell transformation. We have recently shown that honokiol is a potent inhibitor of the HIF pathway in a number of cancer and retinal pigment epithelial cell lines. Here we evaluate the safety and efficacy of honokiol, digoxin, and doxorubicin, three recently identified HIF inhibitors from natural sources. Our studies show that honokiol has a better safety to efficacy profile as a HIF inhibitor than digoxin and doxorubicin. Further, we show for the first time that daily intraperitoneal injection of honokiol starting at postnatal day (P) 12 in an oxygen-induced retinopathy (OIR) mouse model significantly reduced retinal neovascularization at P17. Administration of honokiol also prevents the oxygen-induced central retinal vaso-obliteration, characteristic feature of the OIR model. Additionally, honokiol enhanced physiological revascularization of the retinal vascular plexuses. Since honokiol suppresses multiple pathways activated by HIF, in addition to the VEGF signaling, it may provide advantages over current treatments utilizing specific VEGF antagonists for ocular neovascular diseases and cancers.

  14. Bioelectronic retinal prosthesis

    Science.gov (United States)

    Weiland, James D.

    2016-05-01

    Retinal prosthesis have been translated to clinical use over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa and one device is in clinical trials for treatment of age-related macular degeneration. These devices provide partial sight restoration and patients use this improved vision in their everyday lives to navigate and to detect large objects. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. In particular, current retinal prostheses do not provide peripheral visions due to technical and surgical limitations, thus limiting the effectiveness of the treatment. This paper reviews recent results from human implant patients and presents technical approaches for peripheral vision.

  15. VoIP Security

    OpenAIRE

    Fontanini, Piero

    2008-01-01

    VOIP or Voice Over Internet Protocol is a common term for phone service over IP based networks. There are much information about VoIP and some of how VoIP can be secured. There is however no standard for VoIP and no general solution for VoIP Security. The security in VoIP systems today are often non existing or in best case weak and often based on proprietary solutions. This master thesis investigates threats to VoIP system and describes existing alternatives for securing Vo...

  16. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Carver, Kyle A.; Yang, Dongli

    2016-01-01

    Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs. PMID:26842754

  17. Parallel factor ChIP provides essential internal control for quantitative differential ChIP-seq.

    Science.gov (United States)

    Guertin, Michael J; Cullen, Amy E; Markowetz, Florian; Holding, Andrew N

    2018-04-17

    A key challenge in quantitative ChIP combined with high-throughput sequencing (ChIP-seq) is the normalization of data in the presence of genome-wide changes in occupancy. Analysis-based normalization methods were developed for transcriptomic data and these are dependent on the underlying assumption that total transcription does not change between conditions. For genome-wide changes in transcription factor (TF) binding, these assumptions do not hold true. The challenges in normalization are confounded by experimental variability during sample preparation, processing and recovery. We present a novel normalization strategy utilizing an internal standard of unchanged peaks for reference. Our method can be readily applied to monitor genome-wide changes by ChIP-seq that are otherwise lost or misrepresented through analytical normalization. We compare our approach to normalization by total read depth and two alternative methods that utilize external experimental controls to study TF binding. We successfully resolve the key challenges in quantitative ChIP-seq analysis and demonstrate its application by monitoring the loss of Estrogen Receptor-alpha (ER) binding upon fulvestrant treatment, ER binding in response to estrodiol, ER mediated change in H4K12 acetylation and profiling ER binding in patient-derived xenographs. This is supported by an adaptable pipeline to normalize and quantify differential TF binding genome-wide and generate metrics for differential binding at individual sites.

  18. Pharmacology of functional endogenous IP prostanoid receptors in NCB-20 cells: comparison with binding data from human platelets.

    Science.gov (United States)

    Crider, J Y; Xu, S X; Sharif, N A

    2001-01-01

    The objective of these studies was to characterize the effects of a broad range of prostanoid agonists upon the stimulation of cAMP production in National Cancer Bank (NCB-20; mouse neuroblastoma/hamster brain hybridoma) cells. The pharmacology of these functional responses in NCB-20 cells was compared with that of the classic endogenous IP receptor present on human platelets using [3H]-iloprost binding techniques. In both assay systems, agonists from the IP prostanoid class exhibited the highest affinities and functional potencies. Specific prostanoids exhibited the following rank order of potency (EC50 +/- SEM) in stimulating cAMP production in the NCB-20 cells: carbaprostacyclin (4.3 +/- 0.9 nM) = PGI2 (6.6 +/-1.5 nM) > iloprost (75+/-13 nM) > 11-deoxy PGE, (378+/-138 nM) > misoprostol (1,243+/-48) > PGE2 (3020+/-700 nM) > ZK-118182 (7265+/-455 nM). Iloprost wasthe most potent compound in the human platelet binding assay while prostanoidsfromthe DPand EP receptor classes showed modest affinity. These studies provide functional and binding information for a broad range of both natural and synthetic prostanoid receptor ligands at the endogenous IP receptor in two different cell types.

  19. One-step derivation of mesenchymal stem cell (MSC-like cells from human pluripotent stem cells on a fibrillar collagen coating.

    Directory of Open Access Journals (Sweden)

    Yongxing Liu

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs into cells that resemble adult mesenchymal stem cells (MSCs is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.

  20. Securing VoIP keeping your VoIP network safe

    CERN Document Server

    (Bud) Bates, Regis J Jr

    2015-01-01

    Securing VoIP: Keeping Your VoIP Network Safe will show you how to take the initiative to prevent hackers from recording and exploiting your company's secrets. Drawing upon years of practical experience and using numerous examples and case studies, technology guru Bud Bates discusses the business realities that necessitate VoIP system security and the threats to VoIP over both wire and wireless networks. He also provides essential guidance on how to conduct system security audits and how to integrate your existing IT security plan with your VoIP system and security plans, helping you prevent

  1. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures.

    Science.gov (United States)

    Davari, Maliheh; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2-7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid-binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum-treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases.

  2. ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation

    Directory of Open Access Journals (Sweden)

    Porter Christopher J

    2007-09-01

    Full Text Available Abstract Background SNP microarrays are designed to genotype Single Nucleotide Polymorphisms (SNPs. These microarrays report hybridization of DNA fragments and therefore can be used for the purpose of detecting genomic fragments. Results Here, we demonstrate that a SNP microarray can be effectively used in this way to perform chromatin immunoprecipitation (ChIP on chip as an alternative to tiling microarrays. We illustrate this novel application by mapping whole genome histone H4 hyperacetylation in human myoblasts and myotubes. We detect clusters of hyperacetylated histone H4, often spanning across up to 300 kilobases of genomic sequence. Using complementary genome-wide analyses of gene expression by DNA microarray we demonstrate that these clusters of hyperacetylated histone H4 tend to be associated with expressed genes. Conclusion The use of a SNP array for a ChIP-on-chip application (ChIP on SNP-chip will be of great value to laboratories whose interest is the determination of general rules regarding the relationship of specific chromatin modifications to transcriptional status throughout the genome and to examine the asymmetric modification of chromatin at heterozygous loci.

  3. Multiple cone pathways are involved in photic regulation of retinal dopamine.

    Science.gov (United States)

    Qiao, Sheng-Nan; Zhang, Zhijing; Ribelayga, Christophe P; Zhong, Yong-Mei; Zhang, Dao-Qi

    2016-06-30

    Dopamine is a key neurotransmitter in the retina and plays a central role in the light adaptive processes of the visual system. The sole source of retinal dopamine is dopaminergic amacrine cells (DACs). We and others have previously demonstrated that DACs are activated by rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) upon illumination. However, it is still not clear how each class of photosensitive cells generates light responses in DACs. We genetically isolated cone function in mice to specifically examine the cone-mediated responses of DACs and their neural pathways. In addition to the reported excitatory input to DACs from light-increment (ON) bipolar cells, we found that cones alternatively signal to DACs via a retrograde signalling pathway from ipRGCs. Cones also produce ON and light-decrement (OFF) inhibitory responses in DACs, which are mediated by other amacrine cells, likely driven by type 1 and type 2/3a OFF bipolar cells, respectively. Dye injections indicated that DACs had similar morphological profiles with or without ON/OFF inhibition. Our data demonstrate that cones utilize specific parallel excitatory and inhibitory circuits to modulate DAC activity and efficiently regulate dopamine release and the light-adaptive state of the retina.

  4. Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells

    International Nuclear Information System (INIS)

    Choudhary, S.; Xiao, T.; Srivastava, S.; Zhang, W.; Chan, L.L.; Vergara, L.A.; Van Kuijk, F.J.G.M.; Ansari, N.H.

    2005-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the developed world and yet its pathogenesis remains poorly understood. Retina has high levels of polyunsaturated fatty acids (PUFAs) and functions under conditions of oxidative stress. To investigate whether peroxidative products of PUFAs induce apoptosis in retinal pigmented epithelial (RPE) cells and possibly contribute to ARMD, human retinal pigmented epithelial cells (ARPE-19) were exposed to micromolar concentrations of H 2 O 2 , 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE). A concentration- and time-dependent increase in H 2 O 2 -, HNE-, and HHE-induced apoptosis was observed when monitored by quantifying DNA fragmentation as determined by ELISA, flow cytometry, and Hoechst staining. The broad-spectrum inhibitor of apoptosis Z-VAD inhibited apoptosis. Treatment of RPE cells with a thionein peptide prior to exposure to H 2 O 2 or HNE reduced the formation of protein-HNE adducts as well as alteration in mitochondrial membrane potential and apoptosis. Using 3 H-HNE, various metabolic pathways to detoxify HNE by ARPE-19 cells were studied. The metabolites were separated by HPLC and characterized by ElectroSpray Ionization-Mass Spectrometry (ESI-MS) and gas chromatography-MS. Three main metabolic routes of HNE detoxification were detected: (1) conjugation with glutathione (GSH) to form GS-HNE, catalyzed by glutathione-S-transferase (GST) (2) reduction of GS-HNE catalyzed by aldose reductase, and (3) oxidation of HNE catalyzed by aldehyde dehydrogenase (ALDH). Preventing HNE formation by a combined strategy of antioxidants, scavenging HNE by thionein peptide, and inhibiting apoptosis by caspase inhibitors may offer a potential therapy to limit retinal degeneration in ARMD

  5. A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS cells.

    Directory of Open Access Journals (Sweden)

    Pollyanna A Goh

    Full Text Available A systematic evaluation of three different methods for generating induced pluripotent stem (iPS cells was performed using the same set of parental cells in our quest to develop a feeder independent and xeno-free method for somatic cell reprogramming that could be transferred into a GMP environment. When using the BJ fibroblast cell line, the highest reprogramming efficiency (1.89% of starting cells was observed with the mRNA based method which was almost 20 fold higher than that observed with the retrovirus (0.2% and episomal plasmid (0.10% methods. Standard characterisation tests did not reveal any differences in an array of pluripotency markers between the iPS lines derived using the various methods. However, when the same methods were used to reprogram three different primary fibroblasts lines, two derived from patients with rapid onset parkinsonism dystonia and one from an elderly healthy volunteer, we consistently observed higher reprogramming efficiencies with the episomal plasmid method, which was 4 fold higher when compared to the retroviral method and over 50 fold higher than the mRNA method. Additionally, with the plasmid reprogramming protocol, recombinant vitronectin and synthemax® could be used together with commercially available, fully defined, xeno-free essential 8 medium without significantly impacting the reprogramming efficiency. To demonstrate the robustness of this protocol, we reprogrammed a further 2 primary patient cell lines, one with retinosa pigmentosa and the other with Parkinsons disease. We believe that we have optimised a simple and reproducible method which could be used as a starting point for developing GMP protocols, a prerequisite for generating clinically relevant patient specific iPS cells.

  6. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta

    International Nuclear Information System (INIS)

    Myllynen, Paeivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysae, Jaana; Pirilae, Rauna; Lastumaeki, Anni; Vaehaekangas, Kirsi H.

    2008-01-01

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of 14 C-PhIP (2 μM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 ± 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of 14 C-PhIP from maternal to fetal circulation (FM ratio 0.90 ± 0.08 at 6 h, p 14 C-PhIP (R = - 0.81, p 14 C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells

  7. Impact of artefact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data.

    Directory of Open Access Journals (Sweden)

    Thomas Samuel Carroll

    2014-04-01

    Full Text Available With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium’s large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency.

  8. Myogenic Differentiation from MYOGENIN-Mutated Human iPS Cells by CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Koki Higashioka

    2017-01-01

    Full Text Available It is well known that myogenic regulatory factors encoded by the Myod1 family of genes have pivotal roles in myogenesis, with partially overlapping functions, as demonstrated for the mouse embryo. Myogenin-mutant mice, however, exhibit severe myogenic defects without compensation by other myogenic factors. MYOGENIN might be expected to have an analogous function in human myogenic cells. To verify this hypothesis, we generated MYOGENIN-mutated human iPS cells by using CRISPR/Cas9 genome-editing technology. Our results suggest that MYOD1-independent or MYOD1-dependent mechanisms can compensate for the loss of MYOGENIN and that these mechanisms are likely to be crucial for regulating skeletal muscle differentiation and formation.

  9. Extraction Of Electronic Evidence From VoIP: Identification & Analysis Of Digital Speech

    Directory of Open Access Journals (Sweden)

    David Irwin

    2012-09-01

    Full Text Available The Voice over Internet Protocol (VoIP is increasing in popularity as a cost effective and efficient means of making telephone calls via the Internet. However, VoIP may also be an attractive method of communication to criminals as their true identity may be hidden and voice and video communications are encrypted as they are deployed across the Internet. This produces in a new set of challenges for forensic analysts compared with traditional wire-tapping of the Public Switched Telephone Network (PSTN infrastructure, which is not applicable to VoIP. Therefore, other methods of recovering electronic evidence from VoIP are required.  This research investigates the analysis and recovery of digitised human, which persists in computer memory after a VoIP call.This paper proposes a proof of concept how remnants of digitised human speech from a VoIP call may be identified within a forensic memory capture based on how the human voice is detected via a microphone and encoded to a digital format using the sound card of your personal computer. This digital format is unencrypted whist processed in Random Access Memory (RAM before it is passed to the VoIP application for encryption and  transmission over the Internet. Similarly, an incoming encrypted VoIP call is decrypted by the VoIP application and passes through RAM unencrypted in order to be played via the speaker output.A series of controlled tests were undertaken whereby RAM captures were analysed for remnants of digital speech after a VoIP audio call with known conversation. The identification and analysis of digital speech from RAM attempts to construct an automatic process for the identification and subsequent reconstruction of the audio content of a VoIP call.

  10. Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing

    Science.gov (United States)

    2013-01-01

    Inherited retinal degenerative diseases (RDDs) display wide variation in their mode of inheritance, underlying genetic defects, age of onset, and phenotypic severity. Molecular mechanisms have not been delineated for many retinal diseases, and treatment options are limited. In most instances, genotype-phenotype correlations have not been elucidated because of extensive clinical and genetic heterogeneity. Next-generation sequencing (NGS) methods, including exome, genome, transcriptome and epigenome sequencing, provide novel avenues towards achieving comprehensive understanding of the genetic architecture of RDDs. Whole-exome sequencing (WES) has already revealed several new RDD genes, whereas RNA-Seq and ChIP-Seq analyses are expected to uncover novel aspects of gene regulation and biological networks that are involved in retinal development, aging and disease. In this review, we focus on the genetic characterization of retinal and macular degeneration using NGS technology and discuss the basic framework for further investigations. We also examine the challenges of NGS application in clinical diagnosis and management. PMID:24112618

  11. Optimized formation of detergent micelles of beta-carotene and retinal production using recombinant human beta,beta-carotene 15,15'-monooxygenase.

    Science.gov (United States)

    Kim, Nam-Hee; Kim, Yeong-Su; Kim, Hye-Jung; Oh, Deok-Kun

    2008-01-01

    The formation of beta-carotene detergent micelles and their conversion into retinal by recombinant human beta,beta-carotene 15,15'-monooxygenase was optimized under aqueous conditions. Toluene was the most hydrophobic among the organic solvents tested; thus, it was used to dissolve beta-carotene, which is a hydrophobic compound. Tween 80 was selected as the detergent because it supported the highest level of retinal production among all of the detergents tested. The maximum production of retinal was achieved in detergent micelles containing 200 mg/L of beta-carotene and 2.4% (w/v) Tween 80. Under these conditions, the recombinant enzyme produced 97 mg/L of retinal after 16 h with a conversion yield of 48.5% (w/w). The amount of retinal produced, which is the highest ever reported, is a result of the ability of our system to dissolve large amounts of beta-carotene.

  12. Retinal detachment and retinal holes in retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Csaky, K; Olk, R J; Mahl, C F; Bloom, S M

    1991-01-01

    Retinal detachment and retinal holes in two family members with retinitis pigmentosa sine pigmento are reported. We believe these are the first such cases reported in the literature. We describe the presenting symptoms and management, including cryotherapy, scleral buckling procedure, and sulfur hexafluoride injection (SF6), resulting in stable visual acuity in one case and retinal reattachment and improved visual acuity in the other case.

  13. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  14. Aldose reductase mediates retinal microglia activation

    International Nuclear Information System (INIS)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark

    2016-01-01

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1"G"F"P mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR"W"T background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  15. Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development.

    Science.gov (United States)

    Li, Jing; Wang, Shusheng; Anderson, Chastain; Zhao, Fangkun; Qin, Yu; Wu, Di; Wu, Xinwei; Liu, Jia; He, Xuefei; Zhao, Jiangyue; Zhang, Jinsong

    2016-01-01

    Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development.

  16. Monomethylfumarate induces γ-globin expression and fetal hemoglobin production in cultured human retinal pigment epithelial (RPE) and erythroid cells, and in intact retina.

    Science.gov (United States)

    Promsote, Wanwisa; Makala, Levi; Li, Biaoru; Smith, Sylvia B; Singh, Nagendra; Ganapathy, Vadivel; Pace, Betty S; Martin, Pamela M

    2014-05-13

    Sickle retinopathy (SR) is a major cause of vision loss in sickle cell disease (SCD). There are no strategies to prevent SR and treatments are extremely limited. The present study evaluated (1) the retinal pigment epithelial (RPE) cell as a hemoglobin producer and novel cellular target for fetal hemoglobin (HbF) induction, and (2) monomethylfumarate (MMF) as an HbF-inducing therapy and abrogator of oxidative stress and inflammation in SCD retina. Human globin gene expression was evaluated by RT-quantitative (q)PCR in the human RPE cell line ARPE-19 and in primary RPE cells isolated from Townes humanized SCD mice. γ-Globin promoter activity was monitored in KU812 stable dual luciferase reporter expressing cells treated with 0 to 1000 μM dimethylfumarate, MMF, or hydroxyurea (HU; positive control) by dual luciferase assay. Reverse transcriptase-qPCR, fluorescence-activated cell sorting (FACS), immunofluorescence, and Western blot techniques were used to evaluate γ-globin expression and HbF production in primary human erythroid progenitors, ARPE-19, and normal hemoglobin producing (HbAA) and homozygous β(s) mutation (HbSS) RPE that were treated similarly, and in MMF-injected (1000 μM) HbAA and HbSS retinas. Dihydroethidium labeling and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), IL-1β, and VEGF expression were also analyzed. Retinal pigment epithelial cells express globin genes and synthesize adult and fetal hemoglobin MMF stimulated γ-globin expression and HbF production in cultured RPE and erythroid cells, and in HbSS mouse retina where it also reduced oxidative stress and inflammation. The production of hemoglobin by RPE suggests the potential involvement of this cell type in the etiology of SR. Monomethylfumarate influences multiple parameters consistent with improved retinal health in SCD and may therefore be of therapeutic potential in SR treatment. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  17. Direct reduction of N-acetoxy-PhIP by tea polyphenols: a possible mechanism for chemoprevention against PhIP-DNA adduct formation

    International Nuclear Information System (INIS)

    Lin Dongxin; Thompson, Patricia A.; Teitel, Candee; Chen Junshi; Kadlubar, Fred F.

    2003-01-01

    The chemopreventive effect of tea against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adduct formation and its mechanism were studied. Rats were exposed to freshly prepared aqueous extracts of green tea (3% (w/v)) as the sole source of drinking water for 10 days prior to administration with a single dose of PhIP (10 mg/kg body weight) by oral gavage. PhIP-DNA adducts in the liver, colon, heart, and lung were measured using the 32 P-postlabelling technique. Rats pre-treated with tea and given PhIP 20 h before sacrifice had significantly reduced levels of PhIP-DNA adducts as compared with controls given PhIP alone. The possible mechanism of protective effect of tea on PhIP-DNA adduct formation was then examined in vitro. It was found that an aqueous extract of green and black tea, mixtures of green and black tea polyphenols, as well as purified polyphenols could strongly inhibit the DNA binding of N-acetoxy-PhIP, a putative ultimate carcinogen of PhIP formed in vivo via metabolic activation. Among these, epigallocatechin gallate was exceptionally potent. HPLC analyses of these incubation mixtures containing N-acetoxy-PhIP and the tea polyphenols each revealed the production of the parent amine, PhIP, indicating the involvement of a redox mechanism. In view of the presence of relatively high levels of tea polyphenols in rat and human plasma after ingestion of tea, this study suggests that direct reduction of the ultimate carcinogen N-acetoxy-PhIP by tea polyphenols is likely to be involved in the mechanism of chemoprotection of tea against this carcinogen

  18. Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration.

    Science.gov (United States)

    Zhu, DanHong; Sreekumar, Parameswaran G; Hinton, David R; Kannan, Ram

    2010-03-31

    Ceramide and its metabolic derivatives are important modulators of cellular apoptosis and proliferation. Dysregulation or imbalance of their metabolic pathways may promote the development of retinal degeneration. The aim of this study was to identify the expression and regulation of key enzymes of the ceramide pathway in retinal pigment epithelial (RPE) cells. RT-PCR was used to screen the enzymes involved in ceramide metabolism that are expressed in RPE. Over-expression of neutral sphingomyelinase-2 (SMPD3) or sphingosine kinase 1 (Sphk1) in ARPE-19 cells was achieved by transient transfection of SMPD3 or Sphk1 cDNA subcloned into an expression vector. The number of apoptotic or proliferating cells was determined using TUNEL and BrdU assays, respectively. Neutral sphingomyelinase-1, neutral sphingomyelinase-2, acidic ceramidase, ceramide kinase, SphK1 and Sphk2 were expressed in both ARPE-19 and early passage human fetal RPE (fRPE) cells, while alkaline ceramidase 2 was only expressed in fRPE cells. Over-expression of SMPD3 decreased RPE cell proliferation and increased cell apoptosis. The percentage of apoptotic cells increased proportionally with the amount of transfected SMPD3 DNA. Over-expression of SphK1 promoted cell proliferation and protected ARPE-19 cells from ceramide-induced apoptosis. The effect of C(2) ceramide on induction of apoptosis was evaluated in polarized vs. non-polarized RPE cultures; polarization of RPE was associated with much reduced apoptosis in response to ceramide. In conclusion, RPE cells possess the synthetic machinery for the production of ceramide, sphingosine, ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P). Over-expression of SMPD3 may increase cellular ceramide levels, leading to enhanced cell death and arrested cell proliferation. The selective induction of apoptosis in non-polarized RPE cultures by C(2) ceramide suggests that increased ceramide levels will preferentially affect non-polarized RPE, as are found in

  19. Beyond iPS!

    Directory of Open Access Journals (Sweden)

    Editorial

    2012-01-01

    open acknowledgement that he chose a research career as he was not good in surgical procedures, is something that teaches us to keep going ahead even when we know our limitations. Another important quality we appreciate in him is his team-spirit and perseverance. Not only as a member of the university Judo team, but after starting the iPS research when sourcing research funds was difficult, he plunged into organizing a marathon run, which he completed till the finish line is a marvelous feat to showcase his perseverance. As this issue is published with articles on molecular profiling of human breast cancer initiating cells, allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC transplantation and mononuclear stem cell therapy, we look back, recognize and salute the genius of Alexander Maximov, who coined the term “Stem Cell” in 1908, Joseph Altman & Gopal D.Das who reported the post-natal neurogenesis in the 1960s and James E.Till & Ernest McCulloch, who discovered the presence of self-renewing cells in bone-marrow in 1963 that later led to the bone-marrow transplantation as a treatment. “…But they, while their companions slept, were toiling upward in the night.” - Henry Wadsworth Longfellow

  20. Stem Cell Therapies in Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Aakriti Garg

    2017-02-01

    Full Text Available Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients’ diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.

  1. A simple improvement of the conventional cryopreservation for human ES and iPS cells

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Midori Ozawa, Yutaka Ozawa, Masashi Iemura, Arihiro Kohara, Kana Yanagihara & Miho K Furue ### Abstract In this study, a simple method for the cryopreservation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells is proposed. It is based on the conventional slow-freezing method with 10% DMSO and modified mainly in a thawing protocol without specific equipment or reagents. Recovery rate of the cells cryopreserved by this method was equally high, which is compa...

  2. Retinal Protection and Distribution of Curcumin in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Chiara B. M. Platania

    2018-06-01

    Full Text Available Diabetic retinopathy (DR, a secondary complication of diabetes, is a leading cause of irreversible blindness accounting for 5% of world blindness cases in working age. Oxidative stress and inflammation are considered causes of DR. Curcumin, a product with anti-oxidant and anti-inflammatory properties, is currently proposed as oral supplementation therapy for retinal degenerative diseases, including DR. In this study we predicted the pharmacodynamic profile of curcumin through an in silico approach. Furthermore, we tested the anti-oxidant and anti-inflammatory activity of curcumin on human retinal pigmented epithelial cells exposed to oxidative stress, human retinal endothelial and human retinal pericytes (HRPCs cultured with high glucose. Because currently marketed curcumin nutraceutical products have not been so far evaluated for their ocular bioavailability; we assessed retinal distribution of curcumin, following oral administration, in rabbit eye. Curcumin (10 μM decreased significantly (p < 0.01 ROS concentration and TNF-α release in retinal pigmented epithelial cells and retinal endothelial cells, respectively. The same curcumin concentration significantly (p < 0.01 protected retinal pericytes from high glucose damage as assessed by cell viability and LDH release. Among the tested formulations, only that containing a hydrophilic carrier provided therapeutic levels of curcumin in rabbit retina. In conclusion, our data suggest that curcumin, when properly formulated, may be of value in clinical practice to manage retinal diseases.

  3. Missed retinal breaks in rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Brijesh Takkar

    2016-12-01

    Full Text Available AIM: To evaluate the causes and associations of missed retinal breaks (MRBs and posterior vitreous detachment (PVD in patients with rhegmatogenous retinal detachment (RRD. METHODS: Case sheets of patients undergoing vitreo retinal surgery for RRD at a tertiary eye care centre were evaluated retrospectively. Out of the 378 records screened, 253 were included for analysis of MRBs and 191 patients were included for analysis of PVD, depending on the inclusion criteria. Features of RRD and retinal breaks noted on examination were compared to the status of MRBs and PVD detected during surgery for possible associations. RESULTS: Overall, 27% patients had MRBs. Retinal holes were commonly missed in patients with lattice degeneration while missed retinal tears were associated with presence of complete PVD. Patients operated for cataract surgery were significantly associated with MRBs (P=0.033 with the odds of missing a retinal break being 1.91 as compared to patients with natural lens. Advanced proliferative vitreo retinopathy (PVR and retinal bullae were the most common reasons for missing a retinal break during examination. PVD was present in 52% of the cases and was wrongly assessed in 16%. Retinal bullae, pseudophakia/aphakia, myopia, and horse shoe retinal tears were strongly associated with presence of PVD. Traumatic RRDs were rarely associated with PVD. CONCLUSION: Pseudophakic patients, and patients with retinal bullae or advanced PVR should be carefully screened for MRBs. Though Weiss ring is a good indicator of PVD, it may still be over diagnosed in some cases. PVD is associated with retinal bullae and pseudophakia, and inversely with traumatic RRD.

  4. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    Energy Technology Data Exchange (ETDEWEB)

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  5. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo.

    Science.gov (United States)

    Roux, Clémence; Saviane, Gaëlle; Pini, Jonathan; Belaïd, Nourhène; Dhib, Gihen; Voha, Christine; Ibáñez, Lidia; Boutin, Antoine; Mazure, Nathalie M; Wakkach, Abdelilah; Blin-Wakkach, Claudine; Rouleau, Matthieu

    2017-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4 + FoxP3 + regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3 + -Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo . They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  6. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Clémence Roux

    2018-01-01

    Full Text Available Despite mesenchymal stromal cells (MSCs are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate. Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs, and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4+ FoxP3+ regulatory T (Treg cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3+-Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo. They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  7. Retinal expression, regulation, and functional bioactivity of prostacyclin-stimulating factor

    OpenAIRE

    Hata, Yasuaki; Clermont, Allen Charles; Yamauchi, Teruaki; Pierce, Eric Adam; Suzuma, Izumi; Kagokawa, Hiroyuki; Yoshikawa, Hiroshi; Robinson, Gregory S.; Ishibashi, Tatsuro; Hashimoto, Toshihiko; Umeda, Fumio; Bursell, Sven E.; Aiello, Lloyd Paul

    2000-01-01

    Prostacyclin-stimulating factor (PSF) acts on vascular endothelial cells to stimulate the synthesis of the vasodilatory molecule prostacyclin (PGI2). We have examined the expression, regulation, and hemodynamic bioactivity of PSF both in whole retina and in cultured cells derived from this tissue. PSF was expressed in all retinal cell types examined in vitro, but immunohistochemical analysis revealed PSF mainly associated with retinal vessels. PSF expression was constitutive in retinal pericy...

  8. Modeling human neurological disorders with induced pluripotent stem cells.

    Science.gov (United States)

    Imaizumi, Yoichi; Okano, Hideyuki

    2014-05-01

    Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient-specific genetic information. For example, disease-specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi-omics analysis of neural cells originating from patient-derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large-scale screening of chemical libraries with disease-specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient-derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs. The production of human induced pluripotent stem (iPS) cells from the patients' somatic cells and their subsequent differentiation into specific cells have permitted the in vitro construction of disease models that contain patient-specific genetic information. Furthermore, innovations of gene-editing technologies on iPS cells are enabling new approaches for illuminating the pathogenic mechanisms of human diseases. In this review article, we outlined the current status of neurological diseases-specific iPS cell research and described recently obtained

  9. Localitzador Gràfic de Direccions IP 'IpLocInspector'

    OpenAIRE

    Ordóñez Chapado, Miguel

    2006-01-01

    En aquest treball s'ha desenvolupat una aplicació capaç de localitzar adreces IP. En este trabajo se ha desarrollado una aplicación capaz de localizar direcciones IP. In this work an application was developed capable of locating IP addresses.

  10. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice.

    Science.gov (United States)

    Chen, Jayson X; Li, Guangxun; Wang, Hong; Liu, Anna; Lee, Mao-Jung; Reuhl, Kenneth; Suh, Nanjoo; Bosland, Maarten C; Yang, Chung S

    2016-02-01

    Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200 mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  12. A systemized approach to investigate Ca2+ synchronization in clusters of human induced pluripotent stem-cell derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Aled R Jones

    2016-01-01

    Full Text Available Induced pluripotent stem cell-derived cardiomyocytes (IPS-CM are considered by many to be the cornerstone of future approaches to repair the diseased heart. However, current methods for producing IPS-CM typically yield highly variable populations with low batch-to-batch reproducibility. The underlying reasons for this are not fully understood. Here we report on a systematized approach to investigate the effect of maturation in embryoid bodies (EB versus ‘on plate’ culture on spontaneous activity and regional Ca2+ synchronization in IPS-CM clusters. A detailed analysis of the temporal and spatial organization of Ca2+ spikes in IPS-CM clusters revealed that the disaggregation of EBs between 0.5 and 2 weeks produced IPS-CM characterized by spontaneous beating and high levels of regional Ca2+ synchronization. These phenomena were typically absent in IPS-CM obtained from older EBs (> 2 weeks. The maintenance of all spontaneously active IPS-CM clusters under ‘on plate’ culture conditions promoted the progressive reduction in regional Ca2+ synchronization and the loss of spontaneous Ca2+ spiking. Raising the extracellular [Ca2+] surrounding these quiescent IPS-CM clusters from approximately 0.4 to 1.8 mM unmasked discrete behaviours typified by either a long-lasting Ca2+ elevation that returned to baseline or b persistent, large-amplitude Ca2+ oscillations around an increased cytoplasmic [Ca2+]. The different responses of IPS-CM to elevated extracellular [Ca2+] could be traced back to their routes of derivation. The data point to the possibility of predictably influencing IPS-CM phenotype and response to external activation via defined interventions at early stages in their maturation.

  13. IL-27 Activates Human Trophoblasts to Express IP-10 and IL-6: Implications in the Immunopathophysiology of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Nanlin Yin

    2014-01-01

    Full Text Available Purpose. To investigate the effects of IL-27 on human trophoblasts and the underlying regulatory signaling mechanisms in preeclampsia. Methods. The expression of IL-27 and IL-27 receptor (WSX-1 was studied in the placenta or sera from patients with preeclampsia. In vitro, we investigated the effects of IL-27 alone or in combination with inflammatory cytokine tumor necrosis factor (TNF-α on the proinflammatory activation of human trophoblast cells (HTR-8/SVneo and the underlying intracellular signaling molecules. Results. The expression of IL-27 and IL-27 receptor α (WSX-1 was significantly elevated in the trophoblastic cells from the placenta of patients with preeclampsia compared with control specimens. In vitro, IL-27 could induce the expression of inflammatory factors IFN-γ-inducible protein 10 (CXCL10/IP-10 and IL-6 in trophoblasts, and a synergistic effect was observed in the combined treatment of IL-27 and TNF-α on the release of IP-10 and IL-6. Furthermore, the production of IP-10 and IL-6 stimulated by IL-27 was differentially regulated by intracellular activation of phosphatidylinositol 3-OH kinase-AKT, p38MAPK, and JAK/STAT pathways. Conclusions. These results provide a new insight into the IL-27-activated immunopathological effects mediated by distinct intracellular signal transduction molecules in preeclampsia.

  14. A Deconvolution Protocol for ChIP-Seq Reveals Analogous Enhancer Structures on the Mouse and Human Ribosomal RNA Genes

    Directory of Open Access Journals (Sweden)

    Jean-Clement Mars

    2018-01-01

    Full Text Available The combination of Chromatin Immunoprecipitation and Massively Parallel Sequencing, or ChIP-Seq, has greatly advanced our genome-wide understanding of chromatin and enhancer structures. However, its resolution at any given genetic locus is limited by several factors. In applying ChIP-Seq to the study of the ribosomal RNA genes, we found that a major limitation to resolution was imposed by the underlying variability in sequence coverage that very often dominates the protein–DNA interaction profiles. Here, we describe a simple numerical deconvolution approach that, in large part, corrects for this variability, and significantly improves both the resolution and quantitation of protein–DNA interaction maps deduced from ChIP-Seq data. This approach has allowed us to determine the in vivo organization of the RNA polymerase I preinitiation complexes that form at the promoters and enhancers of the mouse (Mus musculus and human (Homo sapiens ribosomal RNA genes, and to reveal a phased binding of the HMG-box factor UBF across the rDNA. The data identify and map a “Spacer Promoter” and associated stalled polymerase in the intergenic spacer of the human ribosomal RNA genes, and reveal a very similar enhancer structure to that found in rodents and lower vertebrates.

  15. IP-10 is a potential biomarker of cystic fibrosis acute pulmonary exacerbations.

    Directory of Open Access Journals (Sweden)

    George M Solomon

    Full Text Available Cystic fibrosis (CF is characterized by acute pulmonary exacerbations (APE. The CF nasal airway exhibits a similar ion transport defect as the lung, and colonization, infection, and inflammation within the nasal passages are common among CF patients. Nasal lavage fluid (NLF is a minimally invasive means to collect upper airway samples.We collected NLF at the onset and resolution of CF APE and compared a 27-plex cytokine profile to stable CF outpatients and normal controls. We also tested IP-10 levels in the bronchoalveolar lavage fluid (BALF of CF patients. Well-differentiated murine sinonasal monolayers were exposed to bacterial stimulus, and IP-10 levels were measured to test epithelial secretion.Subjects hospitalized for APE had elevated IP-10 (2582 pg/mL [95% CL of mean: 818,8165], N=13 which significantly decreased (647 pg/mL [357,1174], P<0.05, N =13 following antimicrobial therapy. Stable CF outpatients exhibited intermediately elevated levels (680 pg/mL [281,1644], N=13 that were less than CF inpatients upon admission (P=0.056 but not significantly different than normal controls (342 pg/mL [110,1061]; P=0.3, N=10. IP-10 was significantly increased in CF BALF (2673 pg/mL [1306,5458], N=10 compared to healthy post-lung transplant patients (8.4 pg/mL [0.03,2172], N=5, P<0.001. IP-10 levels from well-differentiated CF murine nasal epithelial monolayers exposed to Pseudomonas PAO-1 bacteria-free prep or LPS (100 nM apically for 24 hours were significantly elevated (1159 ± 147, P<0.001 for PAO-1; 1373 ± 191, P<0.001 for LPS vs. 305 ± 68 for vehicle controls. Human sino-nasal epithelial cells derived from CF patients had a similar response to LPS (34% increase, P<0.05, N=6.IP-10 is elevated in the nasal lavage of CF patients with APE and responds to antimicrobial therapy. IP-10 is induced by airway epithelia following stimulation with bacterial pathogens in a murine model. Additional research regarding IP-10 as a potential biomarker is

  16. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density.

    Science.gov (United States)

    Pfeffer, Bruce A; Xu, Libin; Porter, Ned A; Rao, Sriganesh Ramachandra; Fliesler, Steven J

    2016-04-01

    Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL > DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that

  17. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  18. Bone Marrow–Derived Cells Home to and Regenerate Retinal Pigment Epithelium after Injury

    Science.gov (United States)

    Harris, Jeffrey R.; Brown, Gary A. J.; Jorgensen, Marda; Kaushal, Shalesh; Ellis, E. Ann; Grant, Maria B.; Scott, Edward W.

    2013-01-01

    Purpose To determine whether hematopoietic stem and progenitor cells (HSCs/HPCs) can home to and regenerate the retinal pigment epithelium (RPE) after induced injury. Methods Enriched HSCs/HPCs from green fluorescent protein (gfp) transgenic mice were transplanted into irradiated recipient mice to track bone marrow–derived cells. Physical damage was induced by breaching Bruch’s membrane and inducing vascular endothelial growth factor A (VEGFa) expression to promote neovascularization. RPE damage was also induced by sodium iodate injection (40 mg/kg) into wild-type or albino C57Bl/6 mice. Cell morphology, gfp expression, the presence of the Y chromosome, and the presence of melanosomes were used to determine whether the injured RPE was being repaired by the donor bone marrow. Results Injury to the RPE recruits HSC/HPC–derived cells to incorporate into the RPE layer and differentiate into an RPE phenotype. A portion of the HSCs/HPCs adopt RPE morphology, express melanosomes, and integrate into the RPE without cell fusion. Conclusions HSCs/HPCs can migrate to the RPE layer after physical or chemical injury and regenerate a portion of the damaged cell layer. PMID:16639022

  19. Antigen-Specific IP-10 Release Is a Sensitive Biomarker of Mycobacterium bovis Infection in Cattle.

    Directory of Open Access Journals (Sweden)

    Sven D C Parsons

    Full Text Available The most widely used ante-mortem diagnostic tests for tuberculosis in cattle are the tuberculin skin test and the interferon-gamma (IFN-γ release assay, both of which measure cell-mediated immune responses to Mycobacterium bovis infection. However, limitations in the performance of these tests results in a failure to identify all infected animals. In attempting to increase the range of diagnostic tests for tuberculosis, measurement of the cytokine IP-10 in antigen-stimulated blood has previously been shown to improve the detection of M. tuberculosis and M. bovis infection, in humans and African buffaloes (Syncerus caffer, respectively. In the present study, 60 cattle were identified by the single intradermal comparative tuberculin test as tuberculosis reactors (n = 24 or non-reactors (n = 36 and the release of IFN-γ and IP-10 in antigen-stimulated whole blood from these animals was measured using bovine specific ELISAs. There was a strong correlation between IP-10 and IFN-γ production in these samples. Moreover, measurement of the differential release of IP-10 in response to stimulation with M. bovis purified protein derivative (PPD and M. avium PPD distinguished between reactor and non-reactor cattle with a sensitivity of 100% (95% CI, 86%-100% and a specificity of 97% (95% CI, 85%-100%. These results suggest that IP-10 might prove valuable as a diagnostic biomarker of M. bovis infection in cattle.

  20. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm 2 , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  1. Stem cell biology and cell transplantation therapy in the retina.

    Science.gov (United States)

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  2. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells

    Directory of Open Access Journals (Sweden)

    Jeron Andreas

    2012-12-01

    Full Text Available Abstract Background The transcription factor (TF forkhead box P3 (FOXP3 is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs. It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. Results ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin–stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Conclusions Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.

  3. Analysis of the rdd locus in chicken: a model for human retinitis pigmentosa.

    Science.gov (United States)

    Burt, David W; Morrice, David R; Lester, Douglas H; Robertson, Graeme W; Mohamed, Moin D; Simmons, Ian; Downey, Louise M; Thaung, Caroline; Bridges, Leslie R; Paton, Ian R; Gentle, Mike; Smith, Jacqueline; Hocking, Paul M; Inglehearn, Chris F

    2003-04-30

    To identify the locus responsible for the blind mutation rdd (retinal dysplasia and degeneration) in chickens and to further characterise the rdd phenotype. The eyes of blind and sighted birds were subjected to ophthalmic, morphometric and histopathological examination to confirm and extend published observations. Electroretinography was used to determine age of onset. Birds were crossed to create pedigrees suitable for genetic mapping. DNA samples were obtained and subjected to a linkage search. Measurement of IOP, axial length, corneal diameter, and eye weight revealed no gross morphological changes in the rdd eye. However, on ophthalmic examination, rdd homozygotes have a sluggish pupillary response, atrophic pecten, and widespread pigmentary disturbance that becomes more pronounced with age. Older birds also have posterior subcapsular cataracts. At three weeks of age, homozygotes have a flat ERG indicating severe loss of visual function. Pathological examination shows thinning of the RPE, ONL, photoreceptors and INL, and attenuation of the ganglion cell layer. From 77 classified backcross progeny, 39 birds were blind and 38 sighted. The rdd mutation was shown to be sex-linked and not autosomal as previously described. Linkage analysis mapped the rdd locus to a small region of the chicken Z chromosome with homologies to human chromosomes 5q and 9p. Ophthalmic, histopathologic, and electrophysiological observations suggest rdd is similar to human recessive retinitis pigmentosa. Linkage mapping places rdd in a region homologous to human chromosomes 9p and 5q. Candidate disease genes or loci include PDE6A, WGN1, and USH2C. This is the first use of genetic mapping in a chicken model of human disease.

  4. A new approach to optic disc detection in human retinal images using the firefly algorithm.

    Science.gov (United States)

    Rahebi, Javad; Hardalaç, Fırat

    2016-03-01

    There are various methods and algorithms to detect the optic discs in retinal images. In recent years, much attention has been given to the utilization of the intelligent algorithms. In this paper, we present a new automated method of optic disc detection in human retinal images using the firefly algorithm. The firefly intelligent algorithm is an emerging intelligent algorithm that was inspired by the social behavior of fireflies. The population in this algorithm includes the fireflies, each of which has a specific rate of lighting or fitness. In this method, the insects are compared two by two, and the less attractive insects can be observed to move toward the more attractive insects. Finally, one of the insects is selected as the most attractive, and this insect presents the optimum response to the problem in question. Here, we used the light intensity of the pixels of the retinal image pixels instead of firefly lightings. The movement of these insects due to local fluctuations produces different light intensity values in the images. Because the optic disc is the brightest area in the retinal images, all of the insects move toward brightest area and thus specify the location of the optic disc in the image. The results of implementation show that proposed algorithm could acquire an accuracy rate of 100 % in DRIVE dataset, 95 % in STARE dataset, and 94.38 % in DiaRetDB1 dataset. The results of implementation reveal high capability and accuracy of proposed algorithm in the detection of the optic disc from retinal images. Also, recorded required time for the detection of the optic disc in these images is 2.13 s for DRIVE dataset, 2.81 s for STARE dataset, and 3.52 s for DiaRetDB1 dataset accordingly. These time values are average value.

  5. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells

    DEFF Research Database (Denmark)

    Engelund, Anna Iversen; Fahrenkrug, Jan; Harrison, Adrian Paul

    2010-01-01

    The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression......-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably...

  6. Differential behavioral outcomes following neonatal versus fetal human retinal pigment epithelial cell striatal implants in parkinsonian rats

    DEFF Research Database (Denmark)

    Russ, Kaspar; Flores, Joseph; Brudek, Tomasz

    2017-01-01

    Following the failure of a Phase II clinical study evaluating human retinal pigment epithelial (hRPE) cell implants as a potential treatment option for Parkinson's disease, speculation has centered on implant function and survival as possible contributors to the therapeutic outcomes. We recently ...

  7. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Science.gov (United States)

    Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand

    2015-01-01

    Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393

  8. Prosthetic vision: devices, patient outcomes and retinal research.

    Science.gov (United States)

    Hadjinicolaou, Alex E; Meffin, Hamish; Maturana, Matias I; Cloherty, Shaun L; Ibbotson, Michael R

    2015-09-01

    Retinal disease and its associated retinal degeneration can lead to the loss of photoreceptors and therefore, profound blindness. While retinal degeneration destroys the photoreceptors, the neural circuits that convey information from the eye to the brain are sufficiently preserved to make it possible to restore sight using prosthetic devices. Typically, these devices consist of a digital camera and an implantable neurostimulator. The image sensor in a digital camera has the same spatiotopic arrangement as the photoreceptors of the retina. Therefore, it is possible to extract meaningful spatial information from an image and deliver it via an array of stimulating electrodes directly to the surviving retinal circuits. Here, we review the structure and function of normal and degenerate retina. The different approaches to prosthetic implant design are described in the context of human and preclinical trials. In the last section, we review studies of electrical properties of the retina and its response to electrical stimulation. These types of investigation are currently assessing a number of key challenges identified in human trials, including stimulation efficacy, spatial localisation, desensitisation to repetitive stimulation and selective activation of retinal cell populations. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  9. Method to investigate temporal dynamics of ganglion and other retinal cells in the living human eye

    Science.gov (United States)

    Kurokawa, Kazuhiro; Liu, Zhuolin; Crowell, James; Zhang, Furu; Miller, Donald T.

    2018-02-01

    The inner retina is critical for visual processing, but much remains unknown about its neural circuitry and vulnerability to disease. A major bottleneck has been our inability to observe the structure and function of the cells composing these retinal layers in the living human eye. Here, we present a noninvasive method to observe both structural and functional information. Adaptive optics optical coherence tomography (AO-OCT) is used to resolve the inner retinal cells in all three dimensions and novel post processing algorithms are applied to extract structure and physiology down to the cellular level. AO-OCT captured the 3D mosaic of individual ganglion cell somas, retinal nerve fiber bundles of micron caliber, and microglial cells, all in exquisite detail. Time correlation analysis of the AO-OCT videos revealed notable temporal differences between the principal layers of the inner retina. The GC layer was more dynamic than the nerve fiber and inner plexiform layers. At the cellular level, we applied a customized correlation method to individual GCL somas, and found a mean time constant of activity of 0.57 s and spread of +/-0.1 s suggesting a range of physiological dynamics even in the same cell type. Extending our method to slower dynamics (from minutes to one year), time-lapse imaging and temporal speckle contrast revealed appendage and soma motion of resting microglial cells at the retinal surface.

  10. Evaluation of IP Portfolios

    DEFF Research Database (Denmark)

    Søberg, Peder Veng

    2009-01-01

    As a result of an inquiry concerning how to evaluate IP (intellectual property) portfolios in order to enable the best possible use of IP resources within organizations, an IP evaluation approach primarily applicable for patents and utility models is developed. The developed approach is useful...... of the organization owning the IP....

  11. Retinal stem cells and potential cell transplantation treatments

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  12. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    Science.gov (United States)

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. 2016 BMJ Publishing Group Ltd.

  13. Adrenergic Stress Protection of Human iPS Cell-Derived Cardiomyocytes by Fast Kv7.1 Recycling

    Directory of Open Access Journals (Sweden)

    Ilaria Piccini

    2017-09-01

    Full Text Available The fight-or-flight response (FFR, a physiological acute stress reaction, involves positive chronotropic and inotropic effects on heart muscle cells mediated through β-adrenoceptor activation. Increased systolic calcium is required to enable stronger heart contractions whereas elevated potassium currents are to limit the duration of the action potentials and prevent arrhythmia. The latter effect is accomplished by an increased functional activity of the Kv7.1 channel encoded by KCNQ1. Current knowledge, however, does not sufficiently explain the full extent of rapid Kv7.1 activation and may hence be incomplete. Using inducible genetic KCNQ1 complementation in KCNQ1-deficient human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs, we here reinvestigate the functional role of Kv7.1 in adapting human CMs to adrenergic stress. Under baseline conditions, Kv7.1 was barely detectable at the plasma membrane of hiPSC-CMs, yet it fully protected these from adrenergic stress-induced beat-to-beat variability of repolarization and torsade des pointes-like arrhythmia. Furthermore, isoprenaline treatment increased field potential durations specifically in KCNQ1-deficient CMs to cause these adverse macroscopic effects. Mechanistically, we find that the protective action by Kv7.1 resides in a rapid translocation of channel proteins from intracellular stores to the plasma membrane, induced by adrenergic signaling. Gene silencing experiments targeting RAB GTPases, mediators of intracellular vesicle trafficking, showed that fast Kv7.1 recycling under acute stress conditions is RAB4A-dependent.Our data reveal a key mechanism underlying the rapid adaptation of human cardiomyocytes to adrenergic stress. These findings moreover aid to the understanding of disease pathology in long QT syndrome and bear important implications for safety pharmacological screening.

  14. PVM and IP multicast

    Energy Technology Data Exchange (ETDEWEB)

    Dunigan, T.H.; Hall, K.A.

    1996-12-01

    This report describes a 1994 demonstration implementation of PVM that uses IP multicast. PVM`s one-to-many unicast implementation of its pvm{_}mcast() function is replaced with reliable IP multicast. Performance of PVM using IP multicast over local and wide-area networks is measured and compared with the original unicast implementation. Current limitations of IP multicast are noted.

  15. Retina tissue engineering by conjunctiva mesenchymal stem cells encapsulated in fibrin gel: Hypotheses on novel approach to retinal diseases treatment.

    Science.gov (United States)

    Soleimannejad, Mostafa; Ebrahimi-Barough, Somayeh; Nadri, Samad; Riazi-Esfahani, Mohammad; Soleimani, Masoud; Tavangar, Seyed Mohammad; Ai, Jafar

    2017-04-01

    Retinitis pigmentosa (RP) and age related macular degeneration (AMD) are two retinal diseases that progress by photoreceptor cells death. In retinal transplantation studies, stem and progenitor cells inject into the sub retinal space or vitreous and then these cells can be migrate to the site of retinal degeneration and locate in the host retina and restitute vision. Our hypothesis suggests that using human conjunctiva stem cells (as the source for increasing the number of human stem cells progenitor cells in retina dysfunction diseases) with fibrin gel and also assessing its relating in vitro (cellular and molecular processes) and in vivo (vision tests and pathology) could be a promising strategy for treatment of AMD and RP disorders. In this idea, we describe a novel approach for retina tissue engineering with differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells in fibrin gel with induction medium contain taurine. For assessment of differentiation, immunocytochemistry and real time PCR are used for the expression of Rhodopsin, RPE65, Nestin as differentiated photoreceptor cell markers in 2D and 3D culture. The results show that fibrin gel will offer a proper 3D scaffold for CJMSCs derived photoreceptor cell-like cells. Application of immune-privileged, readily available sources of adult stem cells like human conjunctiva stem cells with fibrin gel would be a promising strategy to increase the number of photoreceptor progenitor cells and promote involuntary angiogenesis needed in retina layer repair and regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A novel imidazopyridine derivative, X22, prevents the retinal ischemia-reperfusion injury via inhibition of MAPKs.

    Science.gov (United States)

    Bian, Yang; Ren, Luqing; Wang, Lei; Xu, Shanmei; Tao, Jianjian; Zhang, Xiuhua; Huang, Yi; Qian, Yuanyuan; Zhang, Xin; Song, Zongming; Wu, Wencan; Wang, Yi; Liang, Guang

    2015-06-01

    Inflammation is a pathological hallmark of ischemia reperfusion (I/R) injury. The present study was conducted to explore the ability of a new anti-inflammatory compound, X22, to attenuate retinal I/R injury via cytokine-inhibitory mechanism. For the in vitro experiment, ARPE-19 cells were pretreated with X22 (5 or 10 μM) or saline for 2 h, followed by stimulation with tert-butyl hydroperoxide (TBHP, 1000 μM) for an indicated amount of time. The expression of inflammatory mediators, cell viability, and cell apoptosis were evaluated. For the in vivo experiment, the rats were randomized to receive treatment with saline or X22 (0.1 μM/kg, 3 μL) before the induction of I/R injury. Histological evaluation, apoptosis of retinal cells, macrophage infiltration, and retina functional changes were further determined. Our data showed that pretreatment with X22 significantly inhibited TBHP-induced inflammatory cytokine expression in ARPE-19 cells. The anti-inflammatory activity of X22 may be associated with its inhibition on MAPKs, rather than NF-κB. Subsequently, our data proved that TBHP induced apoptosis in ARPE-19 cells, while pretreatment of X22 significantly suppressed TBHP-caused ARPE-19 apoptosis. Finally, the in vivo data revealed that X22 administration maintained better inner retinal layer structures, reduced apoptosis of retinal ganglion cell, and improved retinal function in retinal I/R rat models, which were accompanied with a remarkable decrease in retinal macrophage infiltration. These results suggest that the novel compound X22 is a potential agent for the treatment of retinal I/R-related diseases via the MAPKs-targeting anti-inflammatory mechanism and deserves the further development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Physiological characterisation of human iPS-derived dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Hartfield

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson's disease (PD, in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2, representative of the A9 population of substantia nigra pars compacta (SNc neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3 receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+ which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models.

  18. Retinal Vasculitis

    Science.gov (United States)

    Rosenbaum, James T.; Sibley, Cailin H.; Lin, Phoebe

    2016-01-01

    Purpose of review Ophthalmologists and rheumatologists frequently miscommunicate in consulting on patients with retinal vasculitis. This report seeks to establish a common understanding of the term, retinal vasculitis, and to review recent papers on this diagnosis. Recent findings 1) The genetic basis of some rare forms of retinal vascular disease have recently been described. Identified genes include CAPN5, TREX1, and TNFAIP3; 2) Behçet’s disease is a systemic illness that is very commonly associated with occlusive retinal vasculitis; 3) retinal imaging including fluorescein angiography and other newer imaging modalities has proven crucial to the identification and characterization of retinal vasculitis and its complications; 4) although monoclonal antibodies to IL-17A or IL-1 beta failed in trials for Behçet’s disease, antibodies to TNF alpha, either infliximab or adalimumab, have demonstrated consistent benefit in managing this disease. Interferon treatment and B cell depletion therapy via rituximab may be beneficial in certain types of retinal vasculitis. Summary Retinal vasculitis is an important entity for rheumatologists to understand. Retinal vasculitis associated with Behçet’s disease responds to monoclonal antibodies that neutralize TNF, but the many other forms of non-infectious retinal vasculitis may require alternate therapeutic management. PMID:26945335

  19. Müller stem cell dependent retinal regeneration.

    Science.gov (United States)

    Chohan, Annu; Singh, Usha; Kumar, Atul; Kaur, Jasbir

    2017-01-01

    Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement. Copyright © 2016. Published by Elsevier B.V.

  20. Hydrostatic Pressure Does Not Cause Detectable Changes in Survival of Human Retinal Ganglion Cells

    Science.gov (United States)

    Osborne, Andrew; Aldarwesh, Amal; Rhodes, Jeremy D.; Broadway, David C.; Everitt, Claire; Sanderson, Julie

    2015-01-01

    Purpose Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina. PMID:25635827

  1. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta.

    Science.gov (United States)

    Myllynen, Päivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysä, Jaana; Pirilä, Rauna; Lastumäki, Anni; Vähäkangas, Kirsi H

    2008-10-15

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of (14)C-PhIP (2 microM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72+/-0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of (14)C-PhIP from maternal to fetal circulation (FM ratio 0.90+/-0.08 at 6 h, p<0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75+/-0.10, p=0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of (14)C-PhIP (R=-0.81, p<0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: -0.11, p=0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of (14)C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarcinoma cells.

  2. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Shobi Veleri

    2015-02-01

    Full Text Available Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.

  3. Can the hair follicle become a model for studying selected aspects of human ocular immune privilege?

    Science.gov (United States)

    Kinori, Michael; Kloepper, Jennifer E; Paus, Ralf

    2011-06-23

    Immune privilege (IP) is important in maintaining ocular health. Understanding the mechanism underlying this dynamic state would assist in treating inflammatory eye diseases. Despite substantial progress in defining eye IP mechanisms, because of the scarcity of human ocular tissue for research purposes, most of what we know about ocular IP is based on rodent models (of unclear relevance to human eye immunology) and on cultured human eye-derived cells that cannot faithfully mirror the complex cell-tissue interactions that underlie normal human ocular IP in situ. Therefore, accessible, instructive, and clinically relevant human in vitro models are needed for exploring the general principles of why and how IP collapses under clinically relevant experimental conditions and how it can be protected or even restored therapeutically. Among the few human IP sites, the easily accessible and abundantly available hair follicle (HF) may offer one such surrogate model. There are excellent human HF organ culture systems for the study of HF IP in situ that instructively complement in vivo autoimmunity research in the human system. In this article, we delineate that the human eye and HF, despite their obvious differences, share key molecular and cellular mechanisms for maintaining IP. We argue that, therefore, human scalp HFs can provide an unconventional, but highly instructive, accessible, easily manipulated, and clinically relevant preclinical model for selected aspects of ocular IP. This essay is an attempt to encourage professional eye researchers to turn their attention, with appropriate caveats, to this candidate surrogate model for ocular IP in the human system.

  4. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway.

    Science.gov (United States)

    Fan, Sabrina Mai-Yi; Chang, Yi-Ting; Chen, Chih-Lung; Wang, Wei-Hung; Pan, Ming-Kai; Chen, Wen-Pin; Huang, Wen-Yen; Xu, Zijian; Huang, Hai-En; Chen, Ting; Plikus, Maksim V; Chen, Shih-Kuo; Lin, Sung-Jan

    2018-06-29

    Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.

  5. Mobile IP and protocol authentication extension

    OpenAIRE

    Nguyen, Phuc V.

    2011-01-01

    Mobile IP is an open standard, defined by the Internet Engineering Task Force (IETF) RFC 3220. By using Mobile IP, you can keep the same IP address, stay connected, and maintain ongoing applications while roaming between IP networks. Mobile IP is scalable for the Internet because it is based on IP - any media that can support IP can support Mobile IP.

  6. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The retinal blood vessels were segmented through color space conversion and color channel .... Retinal blood vessel segmentation was also attempted through multi-scale operators. A few works in this ... fundus camera at 35 degrees field of view. The image ... vessel segmentation is available from two human observers.

  7. Retinitis-pigmentosa-like tapetoretinal degeneration in a rabbit breed.

    Science.gov (United States)

    Reichenbach, A; Baar, U

    1985-08-15

    By chance, we found a rabbit strain with retinal dystrophy. The eyes of these rabbits were examined by ophthalmoscopy, electroretinography, histology, and cytology--the latter after retina dissociation with papaine. The results suggest this rabbit strain to be a possible animal model for human retinitis pigmentosa.

  8. Generation of Hepatocyte-like Cells from Human Induced Pluripotent Stem (iPS) Cells By Co-culturing Embryoid Body Cells with Liver Non-parenchymal Cell Line TWNT-1

    International Nuclear Information System (INIS)

    Javed, M. S.; Yaqoob, N.; Iwamuro, M.; Kobayashi, N.; Fujiwara, T.

    2014-01-01

    Objective: To generate a homogeneous population of patient-specific hepatocyte-like cells (HLCs) from human iPS cells those show the morphologic and phenotypic properties of primary human hepatocytes. Study Design: An experimental study. Place and Duration of Study: Department of Surgery, Okayama University, Graduate School of Medicine, Japan, from April to December 2011. Methodology: Human iPS cells were generated and maintained on ES qualified matrigel coated plates supplemented with mTeSR medium or alternatively on mitotically inactivated MEF feeder layer in DMEM/F12 medium containing 20% KOSR, 4ng/ml bFGF-2, 1 x 10-4 M 2-mercaptoethanol, 1 mmol/L NEAA, 2mM L-glutamine and 1% penicillin-streptomycin. iPS cells were differentiated to HLCs by sequential culture using a four step differentiation protocol: (I) Generation of embryoid bodies (EBs) in suspension culture; (II) Induction of definitive endoderm (DE) from 2 days old EBs by growth in human activin-A (100 ng/ml) and basic fibroblasts growth factor (bFGF2) (100 ng/ml) on matrigel coated plates; (III) Induction of hepatic progenitors by co-culture with non-parenchymal human hepatic stellate cell line (TWNT-1); and (IV) Maturation by culture in dexamethasone. Characterization was performed by RT-PCR and functional assays. Results: The generated HLCs showed microscopically morphological phenotype of human hepatocytes, expressed liver specific genes (ASGPR, Albumin, AFP, Sox17, Fox A2), secreted human liver-specific proteins such as albumin, synthesized urea and metabolized ammonia. Conclusion: Functional HLCs were generated from human iPS cells, which could be used for autologus hepatocyte transplantation for liver failure and as in vitro model for determining the metabolic and toxicological properties of drug compounds. (author)

  9. RETINAL NEOVASCULARIZATION FROM A PATIENT WITH CUTIS MARMORATA TELANGIECTATICA CONGENITA.

    Science.gov (United States)

    Sassalos, Thérèse M; Fields, Taylor S; Levine, Robert; Gao, Hua

    2018-03-14

    To report a rare case of peripheral retinal neovascularization in a patient diagnosed with cutis marmorata telangiectatica congenita (CMTC). Observational case report. A 16-year-old girl was referred to clinic for retinal evaluation. The patient had a clinical diagnosis of CMTC later confirmed by skin biopsy. Examination revealed temporal peripheral retinal sheathing, as well as lattice degeneration in both eyes. Wide-field fluorescein angiogram showed substantive peripheral retinal nonperfusion with evidence of vascular leakage from areas of presumed retinal neovascularization. The patient subsequently had pan retinal photocoagulation laser treatment to each eye without complication. Cutis marmorata telangiectatica congenita is a rare vascular condition known to affect multiple organ systems including the eyes. Although ocular manifestations of CMTC are rare, instances of congenital glaucoma, suprachoroidal hemorrhage, and bilateral total retinal detachments resulting in secondary neovascular glaucoma have been reported. Our patient demonstrates the first reported findings of peripheral nonperfusion and retinal neovascularization related to CMTC in a 16-year-old girl. We propose early retinal examination, wide-field fluorescein angiogram, and early pan retinal photocoagulation laser treatment in patients with peripheral nonperfusion and retinal neovascularization from CMTC.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  10. Stem cell therapy for retinal diseases

    Science.gov (United States)

    Garcia, José Mauricio; Mendonça, Luisa; Brant, Rodrigo; Abud, Murilo; Regatieri, Caio; Diniz, Bruno

    2015-01-01

    In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions. PMID:25621115

  11. Progressive outer retinal necrosis: manifestation of human immunodeficiency virus infection.

    Science.gov (United States)

    Lo, Phey Feng; Lim, Rongxuan; Antonakis, Serafeim N; Almeida, Goncalo C

    2015-05-06

    We present the case of a 54-year-old man who developed progressive outer retinal necrosis (PORN) as an initial manifestation of HIV infection without any significant risk factors for infection with HIV. PORN is usually found as a manifestation of known AIDS late in the disease. Our patient presented with transient visual loss followed by decrease in visual acuity and facial rash. Subsequent investigation revealed anterior chamber tap positive for varicella zoster virus (VZV), as well as HIV positivity, with an initial CD4 count of 48 cells/µL. Systemic and intravitreal antivirals against VZV, and highly active antiretroviral therapy against HIV were started, which halted further progression of retinal necrosis. This case highlights the importance of suspecting PORN where there is a rapidly progressive retinitis, and also testing the patient for HIV, so appropriate treatment can be started. 2015 BMJ Publishing Group Ltd.

  12. ejIP: A TCP/IP Stack for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2011-01-01

    present the design and implementation of a network stack written entirely in Java. This implementation serves as an example how to implement system functions in a safe language and gives evidence that Java can be used for operating system related functionality. The described TCP/IP stack ejIP has already...

  13. Decreased VEGF-A and sustained PEDF expression in a human retinal pigment epithelium cell line cultured under hypothermia

    Directory of Open Access Journals (Sweden)

    Masayuki Takeyama

    2015-01-01

    Full Text Available BACKGROUND: Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A and in vitro angiogen-esis in retinal pigment epithelium (RPE. RESULTS: We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium-derived factor (PEDF. We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased. CONCLUSIONS: RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD.

  14. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Je-Hyuk Lee

    2009-11-01

    Full Text Available Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  15. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, A.; Gorgels, T.G.M.F.; ten Brink, J.B.; van der Spek, P.J.; Bossers, K.; Heine, V.M.; Bergen, A.A.

    2015-01-01

    Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to

  16. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles : Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, Anna; Gorgels, Theo G M F; Ten Brink, Jacoline B; van der Spek, Peter J; Bossers, Koen; Heine, Vivi M; Bergen, Arthur A

    2015-01-01

    BACKGROUND: The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to

  17. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, Anna; Gorgels, Theo G. M. F.; ten Brink, Jacoline B.; van der Spek, Peter J.; Bossers, Koen; Heine, Vivi M.; Bergen, Arthur A.

    2015-01-01

    The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new

  18. APLIKASI SERVER VIRTUAL IP UNTUK MIKROKONTROLER

    OpenAIRE

    Ashari, Ahmad

    2008-01-01

    Selama ini mikrokontroler yang terhubung ke satu komputer hanya dapat diakses melalui satu IP saja, padahal kebanyakan sistem operasi sekarang dapat memperjanjikan lebih dari satu IP untuk setiap komputer dalam bentuk virtual IP. Penelitian ini mengkaji pemanfaatan virtual IP dari IP aliasing pada sistem operasi Linux sebagai Server Virtual IP untuk mikrokontroler. Prinsip dasar Server Virtual IP adalah pembuatan Virtual Host pada masing-masing IP untuk memproses paket-paket data dan menerjem...

  19. Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Tingting Jiang

    2016-01-01

    Full Text Available Oxidative stress and inflammation are important pathogenic factors contributing to the etiology of diabetic retinopathy (DR. Melatonin is an endogenous hormone that exhibits a variety of biological effects including antioxidant and anti-inflammatory functions. The goals of this study were to determine whether melatonin could ameliorate retinal injury and to explore the potential mechanisms. Diabetes was induced by a single intraperitoneal (i.p. injection of STZ (60 mg/kg in Sprague-Dawley rats. Melatonin (10 mg kg−1 daily, i.p. was administered from the induction of diabetes and continued for up to 12 weeks, after which the animals were sacrificed and retinal samples were collected. The retina of diabetic rats showed depletion of glutathione and downregulation of glutamate cysteine ligase (GCL. Melatonin significantly upregulated GCL by retaining Nrf2 in the nucleus and stimulating Akt phosphorylation. The production of proinflammatory cytokines and proteins, including interleukin 1β, TNF-α, and inducible nitric oxide synthase (iNOS, was inhibited by melatonin through the NF-κB pathway. At 12 weeks, melatonin prevented the significant decrease in the ERG a- and b-wave amplitudes under the diabetic condition. Our results suggest potent protective functions of melatonin in diabetic retinopathy. In addition to being a direct antioxidant, melatonin can exert receptor-mediated signaling effects to attenuate inflammation and oxidative stress of the retina.

  20. Focal retinal phlebitis.

    Science.gov (United States)

    Hoang, Quan V; Freund, K Bailey; Klancnik, James M; Sorenson, John A; Cunningham, Emmett T; Yannuzzi, Lawrence A

    2012-01-01

    To report three cases of solitary, focal retinal phlebitis. An observational case series. Three eyes in three patients were noted to have unilateral decreased vision, macular edema, and a focal retinal phlebitis, which was not at an arteriovenous crossing. All three patients developed a branch retinal vein occlusion at the site of inflammation. These patients had no other evidence of intraocular inflammation, including vitritis, retinitis, retinal vasculitis, or choroiditis, nor was there any systemic disorder associated with inflammation, infection, or coagulation identified. Focal retinal phlebitis appears to be an uncommon and unique entity that produces macular edema and ultimately branch retinal vein occlusion. In our patients, the focal phlebitis and venous occlusion did not occur at an arteriovenous crossing, which is the typical site for branch retinal venous occlusive disease. This suggests that our cases represent a distinct clinical entity, which starts with a focal abnormality in the wall of a retinal venule, resulting in surrounding exudation and, ultimately, ends with branch retinal vein occlusion.

  1. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Osama Mohamad

    Full Text Available Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited, stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently, the creation of induced pluripotent stem (iPS cells through reprogramming of somatic cells has revolutionized cell therapy by providing an unlimited source of autologous cells for transplantation. In addition, the creation of vector-free and transgene-free human iPS (hiPS cells provides a new generation of stem cells with a reduced risk of tumor formation that was associated with the random integration of viral vectors seen with previous techniques. However, the potential use of these cells in the treatment of ischemic stroke has not been explored. In the present investigation, we examined the neuronal differentiation of vector-free and transgene-free hiPS cells and the transplantation of hiPS cell-derived neural progenitor cells (hiPS-NPCs in an ischemic stroke model in mice. Vector-free hiPS cells were maintained in feeder-free and serum-free conditions and differentiated into functional neurons in vitro using a newly developed differentiation protocol. Twenty eight days after transplantation in stroke mice, hiPS-NPCs showed mature neuronal markers in vivo. No tumor formation was seen up to 12 months after transplantation. Transplantation of hiPS-NPCs restored neurovascular coupling, increased trophic support and promoted behavioral recovery after stroke. These data suggest that using vector-free and transgene-free hiPS cells in stem cell therapy are safe and efficacious in enhancing recovery after focal ischemic stroke in mice.

  2. Assessment of Safety and Functional Efficacy of Stem Cell-Based Therapeutic Approaches Using Retinal Degenerative Animal Models

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2017-01-01

    Full Text Available Dysfunction and death of retinal pigment epithelium (RPE and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula. Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed.

  3. Whole-exome sequencing of fibroblast and its iPS cell lines derived from a patient diagnosed with xeroderma pigmentosum

    Directory of Open Access Journals (Sweden)

    Kohji Okamura

    2015-12-01

    Full Text Available Cells from a patient with a DNA repair-deficiency disorder are anticipated to bear a large number of somatic mutations. Because such mutations occur independently in each cell, there is a high degree of mosaicism in patients' tissues. While major mutations that have been expanded in many cognate cells are readily detected by sequencing, minor ones are overlaid with a large depth of non-mutated alleles and are not detected. However, cell cloning enables us to observe such cryptic mutations as well as major mutations. In the present study, we focused on a fibroblastic cell line that is derived from a patient diagnosed with xeroderma pigmentosum (XP, which is an autosomal recessive disorder caused by a deficiency in nucleotide excision repair. By making a list of somatic mutations, we can expect to see a characteristic pattern of mutations caused by the hereditary disorder. We cloned a cell by generating an iPS cell line and performed a whole-exome sequencing analysis of the progenitor and its iPS cell lines. Unexpectedly, we failed to find causal mutations in the XP-related genes, but we identified many other mutations including homozygous deletion of GSTM1 and GSTT1. In addition, we found that the long arm of chromosome 9 formed uniparental disomy in the iPS cell line, which was also confirmed by a structural mutation analysis using a SNP array. Type and number of somatic mutations were different from those observed in XP patients. Taken together, we conclude that the patient might be affected by a different type of the disorder and that some of the mutations that we identified here may be responsible for exhibiting the phenotype. Sequencing and SNP-array data have been submitted to SRA and GEO under accession numbers SRP059858 and GSE55520, respectively.

  4. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.

    Science.gov (United States)

    Yang, Chia-Chun; Andrews, Erik H; Chen, Min-Hsuan; Wang, Wan-Yu; Chen, Jeremy J W; Gerstein, Mark; Liu, Chun-Chi; Cheng, Chao

    2016-08-12

    Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the

  5. Pharmacotherapy of retinal disease with visual cycle modulators.

    Science.gov (United States)

    Hussain, Rehan M; Gregori, Ninel Z; Ciulla, Thomas A; Lam, Byron L

    2018-04-01

    Pharmacotherapy with visual cycle modulators (VCMs) is under investigation for retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), Stargardt macular dystrophy (SMD) and nonexudative age-related macular degeneration (AMD), all blinding diseases that lack effective treatment options. Areas covered: The authors review investigational VCMs, including oral retinoids, 9-cis-retinyl-acetate (zuretinol) and 9-cis-β-carotene, which restore 11-cis-retinal levels in RP and LCA caused by LRAT and RPE65 gene mutations, and may improve visual acuity and visual fields. Therapies for SMD aiming to decrease accumulation of toxic Vitamin A dimers and lipofuscin in the retina and retinal pigment epithelium (RPE) include C20-D3-vitamin A (ALK-001), isotretinoin, VM200, emixustat, and A1120. Mouse models of SMD show promising data for these treatments, though proof of efficacy in humans is currently lacking. Fenretinide and emixustat are investigational VCMs for dry AMD, though neither has been shown to reduce geographic atrophy or improve vision in human trials. A1120 prevents retinol transport into the RPE and may spare the side effects typically seen in VCMs (nyctalopia and chromatopsia) per mouse studies. Expert opinion: Oral VCMs may be feasible treatment options for degenerative retinal diseases based on pre-clinical and some early clinical studies. Further trials are warranted to assess their efficacy and safety in humans.

  6. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq

    NARCIS (Netherlands)

    Johannes, Frank; Wardenaar, Rene; Colomé Tatché, Maria; Mousson, Florence; de Graaf, Petra; Mokry, Michal; Guryev, Victor; Timmers, H. Th. Marc; Cuppen, Edwin; Jansen, Ritsert C.; Bateman, Alex

    2010-01-01

    Motivation: ChIP-chip and ChIP-seq technologies provide genomewide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/ or individuals, we can now begin to characterize stochastic or systematic changes in

  7. Progress toward the maintenance and repair of degenerating retinal circuitry.

    Science.gov (United States)

    Vugler, Anthony A

    2010-01-01

    Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.

  8. CtIP Mutations Cause Seckel and Jawad Syndromes.

    Directory of Open Access Journals (Sweden)

    Per Qvist

    2011-10-01

    Full Text Available Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5 but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2. Here, we report two mutations in the CtIP (RBBP8 gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.

  9. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq

    NARCIS (Netherlands)

    Johannes, F.; Wardenaar, R.; Colome-Tatche, M.; Mousson, F.; de Graaf, P.; Mokry, M.; Guryev, V.; Timmers, H.T.; Cuppen, E.; Jansen, R.

    2010-01-01

    MOTIVATION: ChIP-chip and ChIP-seq technologies provide genome-wide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/or individuals, we can now begin to characterize stochastic or systematic changes in

  10. Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients

    Science.gov (United States)

    Harwerth, Ronald S.; Quigley, Harry A.

    2007-01-01

    Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839

  11. Plastic roles of pericytes in the blood-retinal barrier.

    Science.gov (United States)

    Park, Do Young; Lee, Junyeop; Kim, Jaeryung; Kim, Kangsan; Hong, Seonpyo; Han, Sangyeul; Kubota, Yoshiaki; Augustin, Hellmut G; Ding, Lei; Kim, Jin Woo; Kim, Hail; He, Yulong; Adams, Ralf H; Koh, Gou Young

    2017-05-16

    The blood-retinal barrier (BRB) consists of tightly interconnected capillary endothelial cells covered with pericytes and glia, but the role of the pericytes in BRB regulation is not fully understood. Here, we show that platelet-derived growth factor (PDGF)-B/PDGF receptor beta (PDGFRβ) signalling is critical in formation and maturation of BRB through active recruitment of pericytes onto growing retinal vessels. Impaired pericyte recruitment to the vessels shows multiple vascular hallmarks of diabetic retinopathy (DR) due to BRB disruption. However, PDGF-B/PDGFRβ signalling is expendable for maintaining BRB integrity in adult mice. Although selective pericyte loss in stable adult retinal vessels surprisingly does not cause BRB disintegration, it sensitizes retinal vascular endothelial cells (ECs) to VEGF-A, leading to upregulation of angiopoietin-2 (Ang2) in ECs through FOXO1 activation and triggering a positive feedback that resembles the pathogenesis of DR. Accordingly, either blocking Ang2 or activating Tie2 greatly attenuates BRB breakdown, suggesting potential therapeutic approaches to reduce retinal damages upon DR progression.

  12. Self-organising aggregates of zebrafish retinal cells for investigating mechanisms of neural lamination.

    Science.gov (United States)

    Eldred, Megan K; Charlton-Perkins, Mark; Muresan, Leila; Harris, William A

    2017-03-15

    To investigate the cell-cell interactions necessary for the formation of retinal layers, we cultured dissociated zebrafish retinal progenitors in agarose microwells. Within these wells, the cells re-aggregated within hours, forming tight retinal organoids. Using a Spectrum of Fates zebrafish line, in which all different types of retinal neurons show distinct fluorescent spectra, we found that by 48 h in culture, the retinal organoids acquire a distinct spatial organisation, i.e. they became coarsely but clearly laminated. Retinal pigment epithelium cells were in the centre, photoreceptors and bipolar cells were next most central and amacrine cells and retinal ganglion cells were on the outside. Image analysis allowed us to derive quantitative measures of lamination, which we then used to find that Müller glia, but not RPE cells, are essential for this process. © 2017. Published by The Company of Biologists Ltd.

  13. Novel Eicosapentaenoic Acid-derived F3-isoprostanes as Biomarkers of Lipid Peroxidation*

    Science.gov (United States)

    Song, Wen-Liang; Paschos, Georgios; Fries, Susanne; Reilly, Muredach P.; Yu, Ying; Rokach, Joshua; Chang, Chih-Tsung; Patel, Pranav; Lawson, John A.; FitzGerald, Garret A.

    2009-01-01

    Isoprostanes (iPs) are prostaglandin (PG) isomers generated by free radical-catalyzed peroxidation of polyunsaturated fatty acids (PUFAs). Urinary F2-iPs, PGF2α isomers derived from arachidonic acid (AA) are used as indices of lipid peroxidation in vivo. We now report the characterization of two major F3-iPs, 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI, derived from the ω-3 fatty acid, eicosapentaenoic acid (EPA). Although the potential therapeutic benefits of EPA receive much attention, a shift toward a diet rich in ω-3 PUFAs may also predispose to enhanced lipid peroxidation. Urinary 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI are highly correlated and unaltered by cyclooxygenase inhibition in humans. Fish oil dose-dependently elevates urinary F3-iPs in mice and a shift in dietary ω-3/ω-6 PUFAs is reflected by an increasing slope [m] of the line relating urinary 8, 12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI. Administration of bacterial lipopolysaccharide evokes a reversible increase in both urinary 8,12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI in humans on an ad lib diet. However, while excretion of the iPs is highly correlated (R2 median = 0.8), [m] varies by an order of magnitude, reflecting marked inter-individual variability in the relative peroxidation of ω-3 versus ω-6 substrates. Clustered analysis of F2- and F3-iPs refines assessment of the oxidant stress response to an inflammatory stimulus in vivo by integrating variability in dietary intake of ω-3/ω-6 PUFAs. PMID:19520854

  14. Quantitative ChIP-Seq Normalization Reveals Global Modulation of the Epigenome

    Directory of Open Access Journals (Sweden)

    David A. Orlando

    2014-11-01

    Full Text Available Epigenomic profiling by chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq is a prevailing methodology used to investigate chromatin-based regulation in biological systems such as human disease, but the lack of an empirical methodology to enable normalization among experiments has limited the precision and usefulness of this technique. Here, we describe a method called ChIP with reference exogenous genome (ChIP-Rx that allows one to perform genome-wide quantitative comparisons of histone modification status across cell populations using defined quantities of a reference epigenome. ChIP-Rx enables the discovery and quantification of dynamic epigenomic profiles across mammalian cells that would otherwise remain hidden using traditional normalization methods. We demonstrate the utility of this method for measuring epigenomic changes following chemical perturbations and show how reference normalization of ChIP-seq experiments enables the discovery of disease-relevant changes in histone modification occupancy.

  15. Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics.

    Science.gov (United States)

    Liu, Tao; Jung, HaeWon; Liu, Jianfei; Droettboom, Michael; Tam, Johnny

    2017-10-01

    The retinal pigment epithelial (RPE) cells contain intrinsic fluorophores that can be visualized using infrared autofluorescence (IRAF). Although IRAF is routinely utilized in the clinic for visualizing retinal health and disease, currently, it is not possible to discern cellular details using IRAF due to limits in resolution. We demonstrate that the combination of adaptive optics (AO) with IRAF (AO-IRAF) enables higher-resolution imaging of the IRAF signal, revealing the RPE mosaic in the living human eye. Quantitative analysis of visualized RPE cells in 10 healthy subjects across various eccentricities demonstrates the possibility for in vivo density measurements of RPE cells, which range from 6505 to 5388 cells/mm 2 for the areas measured (peaking at the fovea). We also identified cone photoreceptors in relation to underlying RPE cells, and found that RPE cells support on average up to 18.74 cone photoreceptors in the fovea down to an average of 1.03 cone photoreceptors per RPE cell at an eccentricity of 6 mm. Clinical application of AO-IRAF to a patient with retinitis pigmentosa illustrates the potential for AO-IRAF imaging to become a valuable complementary approach to the current landscape of high resolution imaging modalities.

  16. Inhibition by salmeterol and cilomilast of fluticasone-enhanced IP-10 release in airway epithelial cells.

    Science.gov (United States)

    Reddy, P J; Aksoy, Mark O; Yang, Yi; Li, Xiu Xia; Ji, Rong; Kelsen, Steven G

    2008-02-01

    The CXC chemokines, IP-10/CXCL10 and IL-8/CXCL8, play a role in obstructive lung disease by attracting Th1/Tc1 lymphocytes and neutrophils, respectively. Inhaled corticosteroids (ICS) and long acting beta 2-agonists (LABA) are widely used. However, their effect(s) on the release of IP-10 and IL-8 by airway epithelial cells are poorly understood. This study examined the effects of fluticasone, salmeterol, and agents which raise intracellular cAMP (cilomilast and db-cAMP) on the expression of IP-10 and IL-8 protein and mRNA. Studies were performed in cultured human airway epithelial cells during cytokine-stimulated IP-10 and IL-8 release. Cytokine treatment (TNF-alpha, IL-1beta and IFN-gamma) increased IP-10 and IL-8 protein and mRNA levels. Fluticasone (0.1 nM to 1 microM) increased IP-10 but reduced IL-8 protein release without changing IP-10 mRNA levels assessed by real time RT-PCR. The combination of salmeterol (1 micro M) and cilomilast (1-10 mu M) reduced IP-10 but had no effect on IL-8 protein. Salmeterol alone (1 micro M) and db-cAMP alone (1 mM) antagonised the effects of fluticasone on IP-10 but not IL-8 protein. In human airway epithelial cells, inhibition by salmeterol of fluticasone-enhanced IP-10 release may be an important therapeutic effect of the LABA/ICS combination not present when the two drugs are used separately.

  17. Implementasi Sistem IP PBX menggunakan Briker

    Directory of Open Access Journals (Sweden)

    DWI ARYANTA

    2017-06-01

    Full Text Available Abstrak VoIP (Voice over Internet Protocol adalah komunikasi suara jarak jauh yang digunakan melalui jaringan IP. Pada penelitian ini dirancang sistem IP PBX dengan menggunakan teknologi berbasis VoIP. IP PBX adalah perangkat switching komunikasi telepon dan data berbasis teknologi Internet Protocol (IP yang mengendalikan ekstension telepon analog maupun ekstension IP Phone. Software VirtualBox digunakan dengan tujuan agar lebih memudahkan dalam sistem pengoperasian Linux yang dimana program untuk membuat IP PBX adalah menggunakan Briker yang bekerja pada Operating System Linux 2.6. Setelah proses penginstalan Briker pada Virtualbox dilakukan implementasi jaringan IP PBX. Setelah mengimplementasikan jaringan IP PBX sesuai dengan topologi, kemudian melakukan pengujian success call rate dan analisis Quality of Service (QoS. Pengukuran QoS menggunakan parameter jitter, delay, dan packet loss yang dihasilkan dalam sistem IP PBX ini. Nilai jitter sesama user Briker (baik pada smartphone maupun komputer mempunyai rata-rata berada pada nilai 16,77 ms. Sedangkan nilai packetloss yang didapat pada saat terdapat pada saat user 1 sebagai pemanggil telepon adalah 0%. Sedangkan persentase packet loss pada saat user 1 sebagai penerima telepon adalah 0,01%. Nilai delay pada saat berkomunikasi antar user berada pada 11,75 ms. Secara keseluruhan nilai yang didapatkan melalui penelitian ini, dimana hasil pengujian parameter-parameter QOS sesuai dengan standar yang telah direkomendasikan oleh ITU dan didapatkan nilai QoS dengan hasil “baik”. Kata Kunci : Briker, VoIP, QoS, IP PBX, Smartphone. Abstract VoIP (Voice over Internet Protocol is a long-distance voice communications over IP networks are used. In this study, IP PBX systems designed using VoIP -based technologies. IP PBX is a telephone switching device and data communication technology-based Internet Protocol (IP which controls the analog phone extensions and IP Phone extensions. VirtualBox software is

  18. Dorzolamide increases retinal oxygen tension after branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Noergaard, Michael Hove; Bach-Holm, Daniella; Scherfig, Erik

    2008-01-01

    To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs.......To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs....

  19. Peripheral retinal degenerations and the risk of retinal detachment.

    Science.gov (United States)

    Lewis, Hilel

    2003-07-01

    To review the degenerative diseases of the peripheral retina in relationship with the risk to develop a rhegmatogenous retinal detachment and to present recommendations for use in eyes at increased risk of developing a retinal detachment. Focused literature review and author's clinical experience. Retinal degenerations are common lesions involving the peripheral retina, and most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and, rarely, zonular traction tufts, can result in a rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic therapy; however, adequate studies have not been performed to date. Well-designed, prospective, randomized clinical studies are necessary to determine the benefit-risk ratio of prophylactic treatment. In the meantime, the evidence available suggests that most of the peripheral retinal degenerations should not be treated except in rare, high-risk situations.

  20. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  1. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  2. An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration

    NARCIS (Netherlands)

    Lahdenranta, J.; Pasqualini, R.; Schlingemann, R. O.; Hagedorn, M.; Stallcup, W. B.; Bucana, C. D.; Sidman, R. L.; Arap, W.

    2001-01-01

    Abnormal angiogenesis accompanies many pathological conditions including cancer, inflammation, and eye diseases. Proliferative retinopathy because of retinal neovascularization is a leading cause of blindness in developed countries. Another major cause of irreversible vision loss is retinitis

  3. Retinal vascular oximetry during ranibizumab treatment of central retinal vein occlusion

    DEFF Research Database (Denmark)

    Traustason, Sindri; la Cour, Morten; Larsen, Michael

    2014-01-01

    PURPOSE: To investigate the effect of intravitreal injections of the vascular endothelial growth factor inhibitor ranibizumab on retinal oxygenation in patients with central retinal vein occlusion (CRVO). METHODS: Retinal oxygen saturation in patients with CRVO was analysed using the Oxymap Retin...

  4. Ensuring Software IP Cleanliness

    OpenAIRE

    Mahshad Koohgoli; Richard Mayer

    2007-01-01

    At many points in the life of a software enterprise, determination of intellectual property (IP) cleanliness becomes critical. The value of an enterprise that develops and sells software may depend on how clean the software is from the IP perspective. This article examines various methods of ensuring software IP cleanliness and discusses some of the benefits and shortcomings of current solutions.

  5. Gevaar VoIP voor telecomsector overdreven

    NARCIS (Netherlands)

    Deventer, M.O. van; Wegberg, M. van

    2004-01-01

    Het is een hype Voice-over-IP (VoIP) voor te stellen als een ontwrichtende technologie die de telecomindustrie ingrijpend zal veranderen. Maar hoe ontwrichtend is VoIP eigenlijk? Oskar van Deventer en Marc van Wegberg analyseren drie vormen van VoIP en laten zien dat alleen ‘VoIP-chat’ potentieel

  6. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  7. Transport of protons and lactate in cultured human fetal retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Hamann, Steffen; Cour, Morten la; Ming Lui, Ge

    2000-01-01

    Electron microscopy, intracellular pH, monocarboxylate transport, pigment epithelium of eye, proton-lactate cotransport, retinal metabolism, sodium/proton exchange......Electron microscopy, intracellular pH, monocarboxylate transport, pigment epithelium of eye, proton-lactate cotransport, retinal metabolism, sodium/proton exchange...

  8. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    Science.gov (United States)

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  9. Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes.

    Science.gov (United States)

    Beltramo, Elena; Nizheradze, Konstantin; Berrone, Elena; Tarallo, Sonia; Porta, Massimo

    2009-10-01

    Early and selective loss of pericytes and thickening of the basement membrane are hallmarks of diabetic retinopathy. We reported reduced adhesion, but no changes in apoptosis, of bovine retinal pericytes cultured on extracellular matrix (ECM) produced by endothelial cells in high glucose (HG). Since human and bovine pericytes may behave differently in conditions mimicking the diabetic milieu, we verified the behaviour of human retinal pericytes cultured on HG-conditioned ECM. Pericytes were cultured in physiological/HG on ECM produced by human umbilical vein endothelial cells in physiological/HG, alone or in the presence of thiamine and benfotiamine. Adhesion, proliferation, apoptosis, p53 and Bcl-2/Bax ratio (mRNA levels and protein concentrations) were measured in wild-type and immortalized human pericytes. Both types of pericytes adhered less to HG-conditioned ECM and plastic than to physiological glucose-conditioned ECM. DNA synthesis was impaired in pericytes cultured in HG on the three different surfaces but there were no differences in proliferation. DNA fragmentation and Bcl-2/Bax ratio were greatly enhanced by HG-conditioned ECM in pericytes kept in both physiological and HG. Addition of thiamine and benfotiamine to HG during ECM production completely prevented these damaging effects. Apoptosis is strongly increased in pericytes cultured on ECM produced by endothelium in HG, probably due to impairment of the Bcl-2/Bax ratio. Thiamine and benfotiamine completely revert this effect. This behaviour is therefore completely different from that of bovine pericytes, underlining the importance of establishing species-specific cell models to study the mechanisms of diabetic retinopathy. (c) 2009 John Wiley & Sons, Ltd.

  10. Ensuring Software IP Cleanliness

    Directory of Open Access Journals (Sweden)

    Mahshad Koohgoli

    2007-12-01

    Full Text Available At many points in the life of a software enterprise, determination of intellectual property (IP cleanliness becomes critical. The value of an enterprise that develops and sells software may depend on how clean the software is from the IP perspective. This article examines various methods of ensuring software IP cleanliness and discusses some of the benefits and shortcomings of current solutions.

  11. Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space

    Directory of Open Access Journals (Sweden)

    Boris V. Stanzel

    2014-01-01

    Full Text Available Transplantation of the retinal pigment epithelium (RPE is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC and induced pluripotent stem cell (iPSC-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies.

  12. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    Directory of Open Access Journals (Sweden)

    Cheryl A Arcinue

    Full Text Available To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula compared with age-matched HIV-negative controls.Cohort of patients with known HIV under CART (combination Antiretroviral Therapy treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT to assess retinal layers and retinal thickness.Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior, the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2. A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea. We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer was also significantly thickened in all the different locations scanned compared with HIV-negative controls.Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  13. Therapeutic avenues for hereditary forms of retinal blindness.

    Science.gov (United States)

    Kannabiran, Chitra; Mariappan, Indumathi

    2018-03-01

    Hereditary retinal diseases, known as retinal degenerations or dystrophies, are a large group of inherited eye disorders resulting in irreversible visual loss and blindness. They develop due to mutations in one or more genes that lead to the death of the retinal photoreceptor cells. Till date, mutations in over 200 genes are known to be associated with all different forms of retinal disorders. The enormous genetic heterogeneity of this group of diseases has posedmany challenges in understanding the mechanisms of disease and in developing suitable therapies. Therapeutic avenues that are being investigated for these disorders include gene therapy to replace the defective gene, treatment with neurotrophic factors to stimulate the growth of photoreceptors, cell replacement therapy, and prosthetic devices that can capture light and transmit electrical signals through retinal neurons to the brain. Several of these are in process of human trials in patients, and have shown safety and efficacy of the treatment. A combination of approaches that involve both gene replacement and cell replacement may be required for optimum benefit.

  14. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    Directory of Open Access Journals (Sweden)

    Hyde David R

    2007-10-01

    Full Text Available Abstract Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO, subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.

  15. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  16. Implementasi Protokol Keamanan TLS pada Aplikasi Layanan Komunikasi Suara Melalui Jaringan TCP/IP (VoIP)

    OpenAIRE

    Hariady, Ricky

    2011-01-01

    Saat ini layanan komunikasi suara melalui jaringan TCP/IP atau yang lebih dikenal dengan VoIP (Voice over IP) telah semakin banyak digunakan, namun teknologi VoIP yang ada saat ini masih rentan terhadap penyadapan ataupun pencurian data. Sementara protokol kriptografi TLS (Transport Layer Security) telah teruji dan banyak digunakan untuk mengamankan komunikasi melalui internet seperti pada layanan email dan web. Dengan mengimplementasikan protokol TLS pada sebuah aplikasi Vo...

  17. Synthesis and evaluation of p-iodo-phentermine (IP) as a brain perfusion imaging agent

    International Nuclear Information System (INIS)

    Kizuka, H.; Elmaleh, D.R.; Brownell, G.L.; Strauss, H.W.

    1985-01-01

    rho-( 123 I and 131 I) iodo α,α-dimethylphenethylamine (rho-iodophentermine, IP) as the α-methylated analogue of iodoamphetamine has been prepared. It is hoped that this methyl substitution will increase the lipophilicity of the agent, enhance resistance to metabolism by monoamine oxidase, and will result in increased initial uptake and slower washout from the brain as compared to N-isopropyl-rho-( 123 I) iodoamphetamine. IP was prepared by diazotization of rho-aminophentermine followed by decomposition of the diazonium salt with KI. Radioiodinated IP was prepared either by the solid-phase isotopic exchange reaction or by decomposition of the piperidinotriazene derivative with a radiochemical yield of 40-60%. Biodistribution of 131 I-IP in rats showed brain uptake in the range of 1.7% dose g -1 at 5, 30 and 60 min. Imaging studies with 123 I-IP in dogs showed high brain extraction and slow washout of activity. (author)

  18. Noninvasive Retinal Markers in Diabetic Retinopathy: Advancing from Bench towards Bedside

    Directory of Open Access Journals (Sweden)

    Søren Leer Blindbæk

    2017-01-01

    Full Text Available The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber and fractals with micro- and macrovascular dysfunction in diabetes. Likewise, the retinal metabolism can be evaluated by retinal oximetry, and higher retinal venular oxygen saturation has been demonstrated in patients with diabetic retinopathy. So far, most studies have been cross-sectional, but these can only disclose associations and are not able to separate cause from effect or to establish the predictive value of retinal vascular dysfunction with respect to long-term complications. Likewise, retinal markers have not been investigated as markers of treatment outcome in patients with proliferative diabetic retinopathy and diabetic macular edema. The Department of Ophthalmology at Odense University Hospital, Denmark, has a strong tradition of studying the retinal microvasculature in diabetic retinopathy. In the present paper, we demonstrate the importance of the retinal vasculature not only as predictors of long-term microvasculopathy but also as markers of treatment outcome in sight-threatening diabetic retinopathy in well-established population-based cohorts of patients with diabetes.

  19. Noninvasive Retinal Markers in Diabetic Retinopathy: Advancing from Bench towards Bedside

    Science.gov (United States)

    Blindbæk, Søren Leer; Torp, Thomas Lee; Lundberg, Kristian; Soelberg, Kerstin; Vergmann, Anna Stage; Poulsen, Christina Døfler; Frydkjaer-Olsen, Ulrik; Broe, Rebecca; Rasmussen, Malin Lundberg; Wied, Jimmi; Lind, Majbrit; Vestergaard, Anders Højslet; Peto, Tunde

    2017-01-01

    The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber and fractals with micro- and macrovascular dysfunction in diabetes. Likewise, the retinal metabolism can be evaluated by retinal oximetry, and higher retinal venular oxygen saturation has been demonstrated in patients with diabetic retinopathy. So far, most studies have been cross-sectional, but these can only disclose associations and are not able to separate cause from effect or to establish the predictive value of retinal vascular dysfunction with respect to long-term complications. Likewise, retinal markers have not been investigated as markers of treatment outcome in patients with proliferative diabetic retinopathy and diabetic macular edema. The Department of Ophthalmology at Odense University Hospital, Denmark, has a strong tradition of studying the retinal microvasculature in diabetic retinopathy. In the present paper, we demonstrate the importance of the retinal vasculature not only as predictors of long-term microvasculopathy but also as markers of treatment outcome in sight-threatening diabetic retinopathy in well-established population-based cohorts of patients with diabetes. PMID:28491870

  20. Platform image processing to study the structural properties of retinal vessel

    Directory of Open Access Journals (Sweden)

    Miguel Ángel MERCHÁN

    2013-05-01

    Full Text Available This paper presents a technological platform specialized in assessing retinal vessel caliber and describing the relationship of the results obtained to cardiovascular risk. Retinal circulation is an area of active research by numerous groups, and there is general experimental agreement on the analysis of the patterns of the retinal blood vessels in the normal human retina. The development of automated tools designed to improve performance and decrease interobserver variability, therefore, appears necessary. 

  1. Regulation of Reentrainment Function Is Dependent on a Certain Minimal Number of Intact Functional ipRGCs in rd Mice

    Directory of Open Access Journals (Sweden)

    Jingxue Zhang

    2017-01-01

    Full Text Available Purpose. To investigate the effect of partial ablation of melanopsin-containing retinal ganglion cells (mcRGCs on nonimage-forming (NIF visual functions in rd mice lacking rods. Methods. The rd mice were intravitreally injected with different doses (100 ng/μl, 200 ng/μl, and 400 ng/μl of immunotoxin melanopsin-SAP. And then, the density of ipRGCs was examined. After establishing the animal models with different degrees of ipRGC damage, a wheel-running system was used to evaluate their reentrainment response. Results. Intravitreal injection of melanopsin-SAP led to partial ablation of ipRGCs in a dose-dependent manner. The survival rates of ipRGCs in the 100 ng/μl, 200 ng/μl, and 400 ng/μl groups were 74.14% ± 4.15%, 39.25% ± 2.29%, and 38.38% ± 3.74%, respectively. The wheel-running experiments showed that more severe ipRGC loss was associated with a longer time needed for reentrainment. When the light/dark cycle was delayed by 8 h, the rd mice in the PBS control group took 4.67 ± 0.79 days to complete the synchronization with the shifted cycle, while those in the 100 ng/μl and 200 ng/μl groups required 7.90 ± 0.55 days and 11.00 ± 0.79 days to complete the synchronization with the new light/dark cycle, respectively. Conclusion. Our study indicates that the regulation of some NIF visual functions is dependent on a certain minimal number of intact functional ipRGCs.

  2. Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Tasneem P. Sharma

    2017-05-01

    Full Text Available Retinitis pigmentosa (RP is a heterogeneous group of monogenic disorders characterized by progressive death of the light-sensing photoreceptor cells of the outer neural retina. We recently identified novel hypomorphic mutations in the tRNA Nucleotidyl Transferase, CCA-Adding 1 (TRNT1 gene that cause early-onset RP. To model this disease in vitro, we generated patient-specific iPSCs and iPSC-derived retinal organoids from dermal fibroblasts of patients with molecularly confirmed TRNT1-associated RP. Pluripotency was confirmed using rt-PCR, immunocytochemistry, and a TaqMan Scorecard Assay. Mutations in TRNT1 caused reduced levels of full-length TRNT1 protein and expression of a truncated smaller protein in both patient-specific iPSCs and iPSC-derived retinal organoids. Patient-specific iPSCs and iPSC-derived retinal organoids exhibited a deficit in autophagy, as evidenced by aberrant accumulation of LC3-II and elevated levels of oxidative stress. Autologous stem cell-based disease modeling will provide a platform for testing multiple avenues of treatment in patients suffering from TRNT1-associated RP.

  3. Briefer assessment of social network drinking: A test of the Important People Instrument-5 (IP-5).

    Science.gov (United States)

    Hallgren, Kevin A; Barnett, Nancy P

    2016-12-01

    The Important People instrument (IP; Longabaugh et al., 2010) is one of the most commonly used measures of social network drinking. Although its reliability and validity are well-supported, the length of the instrument may limit its use in many settings. The present study evaluated whether a briefer, 5-person version of the IP (IP-5) adequately reproduces scores from the full IP. College freshmen (N = 1,053) reported their own past-month drinking, alcohol-related consequences, and information about drinking in their close social networks at baseline and 1 year later. From this we derived network members' drinking frequency, percentage of drinkers, and percentage of heavy drinkers, assessed for up to 10 (full IP) or 5 (IP-5) network members. We first modeled the expected concordance between full-IP scores and scores from simulated shorter IP instruments by sampling smaller subsets of network members from full IP data. Then, using quasi-experimental methods, we administered the full IP and IP-5 and compared the 2 instruments' score distributions and concurrent and year-lagged associations with participants' alcohol consumption and consequences. Most of the full-IP variance was reproduced from simulated shorter versions of the IP (ICCs ≥ 0.80). The full IP and IP-5 yielded similar score distributions, concurrent associations with drinking (r = 0.22 to 0.52), and year-lagged associations with drinking. The IP-5 retains most of the information about social network drinking from the full IP. The shorter instrument may be useful in clinical and research settings that require frequent measure administration, yielding greater temporal resolution for monitoring social network drinking. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Foundations of hardware IP protection

    CERN Document Server

    Torres, Lionel

    2017-01-01

    This book provides a comprehensive and up-to-date guide to the design of security-hardened, hardware intellectual property (IP). Readers will learn how IP can be threatened, as well as protected, by using means such as hardware obfuscation/camouflaging, watermarking, fingerprinting (PUF), functional locking, remote activation, hidden transmission of data, hardware Trojan detection, protection against hardware Trojan, use of secure element, ultra-lightweight cryptography, and digital rights management. This book serves as a single-source reference to design space exploration of hardware security and IP protection. · Provides readers with a comprehensive overview of hardware intellectual property (IP) security, describing threat models and presenting means of protection, from integrated circuit layout to digital rights management of IP; · Enables readers to transpose techniques fundamental to digital rights management (DRM) to the realm of hardware IP security; · Introduce designers to the concept of salutar...

  5. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells.

    Science.gov (United States)

    el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C

    1996-08-01

    Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.

  6. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Kyle J Hewitt

    2011-02-01

    Full Text Available Human induced pluripotent stem (hiPS cells offer a novel source of patient-specific cells for regenerative medicine. However, the biological potential of iPS-derived cells and their similarities to cells differentiated from human embryonic stem (hES cells remain unclear. We derived fibroblast-like cells from two hiPS cell lines and show that their phenotypic properties and patterns of DNA methylation were similar to that of mature fibroblasts and to fibroblasts derived from hES cells. iPS-derived fibroblasts (iPDK and their hES-derived counterparts (EDK showed similar cell morphology throughout differentiation, and patterns of gene expression and cell surface markers were characteristic of mature fibroblasts. Array-based methylation analysis was performed for EDK, iPDK and their parental hES and iPS cell lines, and hierarchical clustering revealed that EDK and iPDK had closely-related methylation profiles. DNA methylation analysis of promoter regions associated with extracellular matrix (ECM-production (COL1A1 by iPS- and hESC-derived fibroblasts and fibroblast lineage commitment (PDGFRβ, revealed promoter demethylation linked to their expression, and patterns of transcription and methylation of genes related to the functional properties of mature stromal cells were seen in both hiPS- and hES-derived fibroblasts. iPDK cells also showed functional properties analogous to those of hES-derived and mature fibroblasts, as seen by their capacity to direct the morphogenesis of engineered human skin equivalents. Characterization of the functional behavior of ES- and iPS-derived fibroblasts in engineered 3D tissues demonstrates the utility of this tissue platform to predict the capacity of iPS-derived cells before their therapeutic application.

  7. Progress of stem/progenitor cell-based therapy for retinal degeneration.

    Science.gov (United States)

    Tang, Zhimin; Zhang, Yi; Wang, Yuyao; Zhang, Dandan; Shen, Bingqiao; Luo, Min; Gu, Ping

    2017-05-10

    Retinal degeneration (RD), such as age-related macular degeneration (AMD) and retinitis pigmentosa, is one of the leading causes of blindness. Presently, no satisfactory therapeutic options are available for these diseases principally because the retina and retinal pigmented epithelium (RPE) do not regenerate, although wet AMD can be prevented from further progression by anti-vascular endothelial growth factor therapy. Nevertheless, stem/progenitor cell approaches exhibit enormous potential for RD treatment using strategies mainly aimed at the rescue and replacement of photoreceptors and RPE. The sources of stem/progenitor cells are classified into two broad categories in this review, which are (1) ocular-derived progenitor cells, such as retinal progenitor cells, and (2) non-ocular-derived stem cells, including embryonic stem cells, induced pluripotent stem cells, and mesenchymal stromal cells. Here, we discuss in detail the progress in the study of four predominant stem/progenitor cell types used in animal models of RD. A short overview of clinical trials involving the stem/progenitor cells is also presented. Currently, stem/progenitor cell therapies for RD still have some drawbacks such as inhibited proliferation and/or differentiation in vitro (with the exception of the RPE) and limited long-term survival and function of grafts in vivo. Despite these challenges, stem/progenitor cells represent the most promising strategy for RD treatment in the near future.

  8. ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Clérin Emmanuelle

    2011-12-01

    Full Text Available Abstract Background Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research. Methods An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields. Results The method was validated by comparison to the conventional stereological counting. The decrease in cone density in rd1 mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the rd1 mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes Nxnl1 or Nxnl2 encoding RdCVFs, the loss of cones is more pronounced in the ventral retina. Conclusion The automated

  9. ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa.

    Science.gov (United States)

    Clérin, Emmanuelle; Wicker, Nicolas; Mohand-Saïd, Saddek; Poch, Olivier; Sahel, José-Alain; Léveillard, Thierry

    2011-12-20

    Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs) as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research. An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields. The method was validated by comparison to the conventional stereological counting. The decrease in cone density in rd1 mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the rd1 mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes Nxnl1 or Nxnl2 encoding RdCVFs, the loss of cones is more pronounced in the ventral retina. The automated platform ℮-conome used here for retinal disease is a tool that

  10. Modeling the downward transport of 210Pb in Peatlands: Initial Penetration‐Constant Rate of Supply (IP-CRS) model

    International Nuclear Information System (INIS)

    Olid, Carolina; Diego, David; Garcia-Orellana, Jordi; Cortizas, Antonio Martínez; Klaminder, Jonatan

    2016-01-01

    The vertical distribution of 210 Pb is commonly used to date peat deposits accumulated over the last 100–150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of 210 Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from 210 Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived 210 Pb ( 210 Pb xs ) in peat taking into account both incorporation of 210 Pb into the accumulating peat matrix as well as an initial flushing of 210 Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous 210 Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used 210 Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. 241 Am and 137 Cs). Our results showed that the IP-CRS can provide chronologies from peat records where 210 Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene. - Highlights: • Accurate age dating of peat and sediment cores is critical for evaluating change. • A new 210 Pb dating model that includes vertical transport of 210 Pb was developed. • The IP-CRS model provided consistent peat accumulation rates. • The IP-CRS ages were consistent with independent chronological markers. • The IP-CRS model derives peat ages where downward 210 Pb transport is evidenced.

  11. Retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2005-12-01

    Retinal vasculitis is a sight-threatening intraocular inflammation affecting the retinal vessels. It may occur as an isolated ocular condition, as a manifestation of infectious or neoplastic disorders, or in association with a systemic inflammatory disease. The search for an underlying etiology should be approached in a multidisciplinary fashion based on a thorough history, review of systems, physical examination, and laboratory evaluation. Discrimination between infectious and noninfectious etiologies of retinal vasculitis is important because their treatment is different. This review is based on recently published articles on retinal vasculitis and deals with its clinical diagnosis, its link with systemic diseases, and its laboratory investigation.

  12. Automatic Detection of Retinal Exudates using a Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Nualsawat HIRANSAKOLWONG

    2013-02-01

    Full Text Available Retinal exudates are among the preliminary signs of diabetic retinopathy, a major cause of vision loss in diabetic patients. Correct and efficient screening of exudates is very expensive in professional time and may cause human error. Nowadays, the digital retinal image is frequently used to follow-up and diagnoses eye diseases. Therefore, the retinal image is crucial and essential for experts to detect exudates. Unfortunately, it is a normal situation that retinal images in Thailand are poor quality images. In this paper, we present a series of experiments on feature selection and exudates classification using the support vector machine classifiers. The retinal images are segmented following key preprocessing steps, i.e., color normalization, contrast enhancement, noise removal and color space selection. On data sets of poor quality images, sensitivity, specificity and accuracy is 94.46%, 89.52% and 92.14%, respectively.

  13. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment.

    Science.gov (United States)

    Wilkinson, Charles P

    2014-09-05

    Asymptomatic retinal breaks and lattice degeneration are visible lesions that are risk factors for later retinal detachment. Retinal detachments occur when fluid in the vitreous cavity passes through tears or holes in the retina and separates the retina from the underlying retinal pigment epithelium. Creation of an adhesion surrounding retinal breaks and lattice degeneration, with laser photocoagulation or cryotherapy, has been recommended as an effective means of preventing retinal detachment. This therapy is of value in the management of retinal tears associated with the symptoms of flashes and floaters and persistent vitreous traction upon the retina in the region of the retinal break, because such symptomatic retinal tears are associated with a high rate of progression to retinal detachment. Retinal tears and holes unassociated with acute symptoms and lattice degeneration are significantly less likely to be the sites of retinal breaks that are responsible for later retinal detachment. Nevertheless, treatment of these lesions frequently is recommended, in spite of the fact that the effectiveness of this therapy is unproven. The objective of this review was to assess the effectiveness and safety of techniques used to treat asymptomatic retinal breaks and lattice degeneration for the prevention of retinal detachment. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to February 2014), PubMed (January 1948 to February 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials

  14. Treatment of Retinal Separation in HIV-infected Patients with Cytomegalovirus Retinitis

    Directory of Open Access Journals (Sweden)

    A. L. Onischenko

    2017-01-01

    Full Text Available HIV infection — is a socially significant problem for many countries, as the infected die in an average of 10-11 years due to the immunodeficiency virus. Up to 20% of patients with AIDS lose their sight because of cytomegalovirus retinitis (CMV retinitis, which occurs in 70% of HIV-infected people. In some patients with HIV infection blindness occurs because of acute retinal necrosis of CMV etiology. The algorithm of CMV retinitis treatment in HIV-infected patients is described in modern manuals (ganciclovir, valganciclovir, foscarnet and others on the background of antiretroviral therapy, but the tactics of treatment of retinal separation in these patients is not clearly defined. It may be “wait and see”, providing conservative treatment with antiviral drugs, and the active tactics — vitreoretinal surgery. In this article the authors present their personal clinical observations of three HIV-infected patients with CMV retinitis at the age of 8 to 36 years with a detailed analysis of the clinical data and the results of the laboratory tests. In particular, the authors give their own results of intravitreal introduction of ganciclovir in patients with CMV retinitis. Given the poor prognosis for the life of these patients, the authors put a deontological question of justification of active treatment of retinal separation in AIDS patients with CMV retinitis.

  15. Retinal stem cells and regeneration of vision system.

    Science.gov (United States)

    Yip, Henry K

    2014-01-01

    The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina. Copyright © 2013 Wiley Periodicals, Inc.

  16. Impact of retinal pigment epithelium pathology on spectral-domain optical coherence tomography-derived macular thickness and volume metrics and their intersession repeatability.

    Science.gov (United States)

    Hanumunthadu, Daren; Wang, Jin Ping; Chen, Wei; Wong, Evan N; Chen, Yi; Morgan, William H; Patel, Praveen J; Chen, Fred K

    2017-04-01

    To determine the impact of retinal pigment epithelium (RPE) pathology on intersession repeatability of retinal thickness and volume metrics derived from Spectralis spectral-domain optical coherence tomography (Heidelberg Engineering, Heidelberg, Germany). Prospective cross-sectional single centre study. A total of 56 eyes of 56 subjects were divided into three groups: (i) normal RPE band (25 eyes); (ii) RPE elevation: macular soft drusen (13 eyes); and (iii) RPE attenuation: geographic atrophy or inherited retinal diseases (18 eyes). Each subject underwent three consecutive follow-up macular raster scans (61 B-scans at 119 μm separation) at 1-month intervals. Retinal thicknesses and volumes for each zone of the macular subfields before and after manual correction of segmentation error. Coefficients of repeatability (CR) were calculated. Mean (range) age was 57 (21-88) years. Mean central subfield thickness (CST) and total macular volume were 264 and 258 μm (P = 0.62), and 8.0 and 7.8 mm 3 (P = 0.31), before and after manual correction. Intersession CR (95% confidence interval) for CST and total macular volume were reduced from 40 (38-41) to 8.3 (8.1-8.5) and 0.62 to 0.16 mm 3 after manual correction of segmentation lines. CR for CST were 7.4, 23.5 and 66.7 μm before and 7.0, 10.9 and 7.6 μm after manual correction in groups i, ii and iii. Segmentation error in eyes with RPE disease has a significant impact on intersession repeatability of Spectralis spectral-domain optical coherence tomography macular thickness and volume metrics. Careful examination of each B-scan and manual adjustment can enhance the utility of quantitative measurement. Improved automated segmentation algorithms are needed. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  17. IPs

    African Journals Online (AJOL)

    Fr. Ikenga

    special rights to the under-privileged IPs based on their culture, religion and .... and exploitation of natural resources, political determination and autonomy, .... supportive and sustaining.33Balancing individualism and communalism will avoid ...

  18. VoIP Accessibility: A Usability Study of Voice over Internet Protocol (VoIP) Systems and A Survey of VoIP Users with Vision Loss

    Science.gov (United States)

    Packer, Jaclyn; Reuschel, William

    2018-01-01

    Introduction: Accessibility of Voice over Internet Protocol (VoIP) systems was tested with a hands-on usability study and an online survey of VoIP users who are visually impaired. The survey examined the importance of common VoIP features, and both methods assessed difficulty in using those features. Methods: The usability test included four paid…

  19. Offloading IP Flows onto Lambda-Connections

    NARCIS (Netherlands)

    Fioreze, Tiago; Oude Wolbers, Mattijs; van de Meent, R.; Pras, Aiko

    2007-01-01

    Optical networks are capable of switching IP traffic via lambda connections. In this way, big IP flows that overload the regular IP routing level may be moved to the optical level, where they get better Quality of Service (QoS). At the same time, the IP routing level is off-loaded and can serve

  20. Mobile IP: Security & application

    NARCIS (Netherlands)

    Tuquerres, G.; Salvador, M.R.; Sprenkels, Ron

    1999-01-01

    As required in the TGS Mobile IP Advanced Module, this paper presents a survey of common security threats which mobile IP networks are exposed to as well as some proposed solutions to deal with such threats.

  1. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells

    Science.gov (United States)

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-01

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:26775677

  2. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells.

    Science.gov (United States)

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-18

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment.

  3. Voice over IP Security

    CERN Document Server

    Keromytis, Angelos D

    2011-01-01

    Voice over IP (VoIP) and Internet Multimedia Subsystem technologies (IMS) are rapidly being adopted by consumers, enterprises, governments and militaries. These technologies offer higher flexibility and more features than traditional telephony (PSTN) infrastructures, as well as the potential for lower cost through equipment consolidation and, for the consumer market, new business models. However, VoIP systems also represent a higher complexity in terms of architecture, protocols and implementation, with a corresponding increase in the potential for misuse. In this book, the authors examine the

  4. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  5. Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion

    Science.gov (United States)

    Wu, Jing; Waldstein, Sebastian M.; Gerendas, Bianca S.; Langs, Georg; Simader, Christian; Schmidt-Erfurth, Ursula

    2015-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high- resolution, three-dimensional (3D) cross-sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD), glaucoma and retinal vein occlusion (RVO). Disease diagnosis, assessment, and treatment will require a patient to undergo multiple OCT scans, possibly using multiple scanners, to accurately and precisely gauge disease activity, progression and treatment success. However, cross-vendor imaging and patient movement may result in poor scan spatial correlation potentially leading to incorrect diagnosis or treatment analysis. The retinal fovea is the location of the highest visual acuity and is present in all patients, thus it is critical to vision and highly suitable for use as a primary landmark for cross-vendor/cross-patient registration for precise comparison of disease states. However, the location of the fovea in diseased eyes is extremely challenging to locate due to varying appearance and the presence of retinal layer destroying pathology. Thus categorising and detecting the fovea type is an important prior stage to automatically computing the fovea position. Presented here is an automated cross-vendor method for fovea distinction in 3D SD-OCT scans of patients suffering from RVO, categorising scans into three distinct types. OCT scans are preprocessed by motion correction and noise filing followed by segmentation using a kernel graph-cut approach. A statistically derived mask is applied to the resulting scan creating an ROI around the probable fovea location from which the uppermost retinal surface is delineated. For a normal appearance retina, minimisation to zero thickness is computed using the top two retinal surfaces. 3D local minima detection and layer thickness analysis are used

  6. Telefonía IP (ToIP): principios fundamentales, arquitectura y aspecto regulatorio en el Ecuador

    OpenAIRE

    Narváez García, William Fernando; Ugalde Peña, Pablo Esteban

    2006-01-01

    En este documento, hemos tratado de explicar el funcionamiento de la telefonía IP dentro de poco, comenzamos hablando con una introducción al tema al comentar sobre la actual tendencia a la conocida como patrón ALL-IP. Luego hemos visto conveniente hacer un comentario acerca de la evolución de las telecomunicaciones desde sus primeros pasos con Guillermo Marconi hasta nuestros días con la ToIP. De modo que existe un concepto claro de lo que la ToIP significa, en primer lugar se explica ...

  7. Challenges Regarding IP Core Functional Reliability

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth A.

    2017-01-01

    For many years, intellectual property (IP) cores have been incorporated into field programmable gate array (FPGA) and application specific integrated circuit (ASIC) design flows. However, the usage of large complex IP cores were limited within products that required a high level of reliability. This is no longer the case. IP core insertion has become mainstream including their use in highly reliable products. Due to limited visibility and control, challenges exist when using IP cores and subsequently compromise product reliability. We discuss challenges and suggest potential solutions to critical application IP insertion.

  8. Impact of VoIP and QoS on Open and Distance Learning

    Directory of Open Access Journals (Sweden)

    Sanjay JASOLA

    2006-07-01

    Full Text Available Voice over Internet Protocol (VoIP is becoming a reality in many organizations. The potential for mobility in voice over wi-fi networks will derive demand for the technology. Wireless VoIP is poised to rival VoIP as an alternative telephony tool. Internet has been used to transport data in the form of packet. In the past, Internet did not support any kind of sophisticated quality of service (QoS mechanism. Although the type of service (TOS field in the Internet protocol (IP header has been existing and has been allowing the differentiated treatment of packets, it was never really used on a large scale. The voice is sensitive to delay and jitter so bandwidth must be guaranteed while transporting it. With the extensive use of Internet for carrying voice, there is a need to add QoS functionality in it. QoS with reference to VoIP has been discussed in the paper. Limited bandwidth and network latency are the issues which need to be considered while using wireless LAN for packetized voice data. Efforts of standards like 802.11e which will take care of these issues, have also been explored. The impact of these technologies on distance education has also been explored in the paper.

  9. Stem cells in clinical trials for treatment of retinal degeneration.

    Science.gov (United States)

    Klassen, Henry

    2016-01-01

    After decades of basic science research involving the testing of regenerative strategies in animal models of retinal degenerative diseases, a number of clinical trials are now underway, with additional trials set to begin shortly. These efforts will evaluate the safety and preliminary efficacy of cell-based products in the eyes of patients with a number of retinal conditions, notably including age-related macular degeneration, retinitis pigmentosa and Stargardt's disease. This review considers the scientific work and early trials with fetal cells and tissues that set the stage for the current clinical investigatory work, as well the trials themselves, specifically those either now completed, underway or close to initiation. The cells of interest include retinal pigment epithelial cells derived from embryonic stem or induced pluripotent stem cells, undifferentiated neural or retinal progenitors or cells from the vascular/bone marrow compartment or umbilical cord tissue. Degenerative diseases of the retina represent a popular target for emerging cell-based therapeutics and initial data from early stage clinical trials suggest that short-term safety objectives can be met in at least some cases. The question of efficacy will require additional time and testing to be adequately resolved.

  10. Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling

    DEFF Research Database (Denmark)

    Airik, Rannar; Slaats, Gisela G; Guo, Zhi

    2014-01-01

    Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal...... protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8(gt/gt) mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration....... These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys...

  11. IP Infrastructure Geolocation

    Science.gov (United States)

    2015-03-01

    by non-commercial enti- ties. HostiP is a community-driven geolocation service. It provides an Application Pro- gramming Interface ( API ) for...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS IP INFRASTRUCTURE GEOLOCATION Thesis Advisor: Second Reader: by Guan Yan Cai March...FUNDING NUMBERS IP INFRASTRUCfURE GEOLOCATION N66001-2250-59231 6. AUTHOR(S) Guan Yan Cai 7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 9

  12. Mitochondrial Protection by Exogenous Otx2 in Mouse Retinal Neurons

    Directory of Open Access Journals (Sweden)

    Hyoung-Tai Kim

    2015-11-01

    Full Text Available OTX2 (orthodenticle homeobox 2 haplodeficiency causes diverse defects in mammalian visual systems ranging from retinal dysfunction to anophthalmia. We find that the retinal dystrophy of Otx2+/GFP heterozygous knockin mice is mainly due to the loss of bipolar cells and consequent deficits in retinal activity. Among bipolar cell types, OFF-cone bipolar subsets, which lack autonomous Otx2 gene expression but receive Otx2 proteins from photoreceptors, degenerate most rapidly in Otx2+/GFP mouse retinas, suggesting a neuroprotective effect of the imported Otx2 protein. In support of this hypothesis, retinal dystrophy in Otx2+/GFP mice is prevented by intraocular injection of Otx2 protein, which localizes to the mitochondria of bipolar cells and facilitates ATP synthesis as a part of mitochondrial ATP synthase complex. Taken together, our findings demonstrate a mitochondrial function for Otx2 and suggest a potential therapeutic application of OTX2 protein delivery in human retinal dystrophy.

  13. Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa

    NARCIS (Netherlands)

    Alves, Celso Henrique; Pellissier, Lucie P; Vos, Rogier M; Garcia Garrido, Marina; Sothilingam, Vithiyanjali; Seide, Christina; Beck, Susanne C; Klooster, J.; Furukawa, Takahisa; Flannery, John G; Verhaagen, J.; Seeliger, Mathias W; Wijnholds, J.

    2014-01-01

    In humans, the Crumbs homolog-1 (CRB1) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and

  14. Molecular pharmacodynamics of emixustat in protection against retinal degeneration.

    Science.gov (United States)

    Zhang, Jianye; Kiser, Philip D; Badiee, Mohsen; Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Tochtrop, Gregory P; Palczewski, Krzysztof

    2015-07-01

    Emixustat is a visual cycle modulator that has entered clinical trials as a treatment for age-related macular degeneration (AMD). This molecule has been proposed to inhibit the visual cycle isomerase RPE65, thereby slowing regeneration of 11-cis-retinal and reducing production of retinaldehyde condensation byproducts that may be involved in AMD pathology. Previously, we reported that all-trans-retinal (atRAL) is directly cytotoxic and that certain primary amine compounds that transiently sequester atRAL via Schiff base formation ameliorate retinal degeneration. Here, we have shown that emixustat stereoselectively inhibits RPE65 by direct active site binding. However, we detected the presence of emixustat-atRAL Schiff base conjugates, indicating that emixustat also acts as a retinal scavenger, which may contribute to its therapeutic effects. Using agents that lack either RPE65 inhibitory activity or the capacity to sequester atRAL, we assessed the relative importance of these 2 modes of action in protection against retinal phototoxicity in mice. The atRAL sequestrant QEA-B-001-NH2 conferred protection against phototoxicity without inhibiting RPE65, whereas an emixustat derivative incapable of atRAL sequestration was minimally protective, despite direct inhibition of RPE65. These data indicate that atRAL sequestration is an essential mechanism underlying the protective effects of emixustat and related compounds against retinal phototoxicity. Moreover, atRAL sequestration should be considered in the design of next-generation visual cycle modulators.

  15. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  16. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs

    Science.gov (United States)

    Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro

    2017-01-01

    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells. PMID:28332572

  17. Modeling the downward transport of {sup 210}Pb in Peatlands: Initial Penetration‐Constant Rate of Supply (IP-CRS) model

    Energy Technology Data Exchange (ETDEWEB)

    Olid, Carolina, E-mail: olid.carolina@gmail.com [Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå (Sweden); Diego, David [Department of Earth Science, University of Bergen, NO-5020 Bergen (Norway); Garcia-Orellana, Jordi [Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Cortizas, Antonio Martínez [Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Klaminder, Jonatan [Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå (Sweden)

    2016-01-15

    The vertical distribution of {sup 210}Pb is commonly used to date peat deposits accumulated over the last 100–150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of {sup 210}Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from {sup 210}Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived {sup 210}Pb ({sup 210}Pb{sub xs}) in peat taking into account both incorporation of {sup 210}Pb into the accumulating peat matrix as well as an initial flushing of {sup 210}Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous {sup 210}Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used {sup 210}Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. {sup 241}Am and {sup 137}Cs). Our results showed that the IP-CRS can provide chronologies from peat records where {sup 210}Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene. - Highlights: • Accurate age dating of peat and sediment cores is critical for evaluating change. • A new {sup 210}Pb dating model that includes vertical transport of {sup 210}Pb was developed. • The IP-CRS model provided consistent peat accumulation rates. • The IP-CRS ages were consistent with independent chronological markers. • The IP-CRS model derives peat ages where downward {sup 210}Pb transport is

  18. Chaetomium retinitis.

    Science.gov (United States)

    Tabbara, Khalid F; Wedin, Keith; Al Haddab, Saad

    2010-01-01

    To report a case of Chaetomium atrobrunneum retinitis in a patient with Hodgkin lymphoma. We studied the ocular manifestations of an 11-year-old boy with retinitis. Biomicroscopy, ophthalmoscopy, and fundus photography were done. Magnetic resonance imaging of the brain was performed. A vitreous biopsy was subjected to viral, bacterial, and fungal cultures. Vitreous culture grew C. atrobrunneum. Magnetic resonance imaging showed multiple cerebral lesions consistent with an infectious process. The patient was given intravenous voriconazole and showed improvement of the ocular and central nervous system lesions. We report a case of central nervous system and ocular lesions by C. atrobrunneum. The retinitis was initially misdiagnosed as cytomegaloviral retinitis. Vitreous biopsy helped in the early diagnosis and prompt treatment of a life- and vision-threatening infection.

  19. Mobile-ip Aeronautical Network Simulation Study

    Science.gov (United States)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  20. Detection of Anatomic Structures in Human Retinal Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Tobin Jr, Kenneth William [ORNL; Chaum, Edward [ORNL; Muthusamy Govindasamy, Vijaya Priya [ORNL; Karnowski, Thomas Paul [ORNL

    2007-01-01

    The widespread availability of electronic imaging devices throughout the medical community is leading to a growing body of research on image processing and analysis to diagnose retinal disease such as diabetic retinopathy (DR). Productive computer-based screening of large, at-risk populations at low cost requires robust, automated image analysis. In this paper we present results for the automatic detection of the optic nerve and localization of the macula using digital red-free fundus photography. Our method relies on the accurate segmentation of the vasculature of the retina followed by the determination of spatial features describing the density,average thickness, and average orientation of the vasculature in relation to the position of the optic nerve. Localization of the macula follows using knowledge of the optic nerve location to detect the horizontal raphe of the retina using a geometric model of the vasculature. We report 90.4% detection performance for the optic nerve and 92.5% localization performance for the macula for red-free fundus images representing a population of 345 images corresponding to 269 patients with 18 different pathologies associated with DR and other common retinal diseases such as age-related macular degeneration.

  1. Fast rerouting schemes for protected mobile IP over MPLS networks

    Science.gov (United States)

    Wen, Chih-Chao; Chang, Sheng-Yi; Chen, Huan; Chen, Kim-Joan

    2005-10-01

    Fast rerouting is a critical traffic engineering operation in the MPLS networks. To implement the Mobile IP service over the MPLS network, one can collaborate with the fast rerouting operation to enhance the availability and survivability. MPLS can protect critical LSP tunnel between Home Agent (HA) and Foreign Agent (FA) using the fast rerouting scheme. In this paper, we propose a simple but efficient algorithm to address the triangle routing problem for the Mobile IP over the MPLS networks. We consider this routing issue as a link weighting and capacity assignment (LW-CA) problem. The derived solution is used to plan the fast restoration mechanism to protect the link or node failure. In this paper, we first model the LW-CA problem as a mixed integer optimization problem. Our goal is to minimize the call blocking probability on the most congested working truck for the mobile IP connections. Many existing network topologies are used to evaluate the performance of our scheme. Results show that our proposed scheme can obtain the best performance in terms of the smallest blocking probability compared to other schemes.

  2. Subtype-selective regulation of IP(3) receptors by thimerosal via cysteine residues within the IP(3)-binding core and suppressor domain.

    Science.gov (United States)

    Khan, Samir A; Rossi, Ana M; Riley, Andrew M; Potter, Barry V L; Taylor, Colin W

    2013-04-15

    IP(3)R (IP(3) [inositol 1,4,5-trisphosphate] receptors) and ryanodine receptors are the most widely expressed intracellular Ca(2+) channels and both are regulated by thiol reagents. In DT40 cells stably expressing single subtypes of mammalian IP(3)R, low concentrations of thimerosal (also known as thiomersal), which oxidizes thiols to form a thiomercurylethyl complex, increased the sensitivity of IP(3)-evoked Ca(2+) release via IP(3)R1 and IP(3)R2, but inhibited IP(3)R3. Activation of IP(3)R is initiated by IP(3) binding to the IBC (IP(3)-binding core; residues 224-604) and proceeds via re-arrangement of an interface between the IBC and SD (suppressor domain; residues 1-223). Thimerosal (100 μM) stimulated IP(3) binding to the isolated NT (N-terminal; residues 1-604) of IP(3)R1 and IP(3)R2, but not to that of IP(3)R3. Binding of a competitive antagonist (heparin) or partial agonist (dimeric-IP(3)) to NT1 was unaffected by thiomersal, suggesting that the effect of thimerosal is specifically related to IP(3)R activation. IP(3) binding to NT1 in which all cysteine residues were replaced by alanine was insensitive to thimerosal, so too were NT1 in which cysteine residues were replaced in either the SD or IBC. This demonstrates that thimerosal interacts directly with cysteine in both the SD and IBC. Chimaeric proteins in which the SD of the IP(3)R was replaced by the structurally related A domain of a ryanodine receptor were functional, but thimerosal inhibited both IP(3) binding to the chimaeric NT and IP(3)-evoked Ca(2+) release from the chimaeric IP(3)R. This is the first systematic analysis of the effects of a thiol reagent on each IP(3)R subtype. We conclude that thimerosal selectively sensitizes IP(3)R1 and IP(3)R2 to IP(3) by modifying cysteine residues within both the SD and IBC and thereby stabilizing an active conformation of the receptor.

  3. Subtype-selective regulation of IP3 receptors by thimerosal via cysteine residues within the IP3-binding core and suppressor domain

    Science.gov (United States)

    Khan, Samir A.; Rossi, Ana M.; Riley, Andrew M.; Potter, Barry V. L.; Taylor, Colin W.

    2013-01-01

    IP3R (IP3 [inositol 1,4,5-trisphosphate] receptors) and ryanodine receptors are the most widely expressed intracellular Ca2+ channels and both are regulated by thiol reagents. In DT40 cells stably expressing single subtypes of mammalian IP3R, low concentrations of thimerosal (also known as thiomersal), which oxidizes thiols to form a thiomercurylethyl complex, increased the sensitivity of IP3-evoked Ca2+ release via IP3R1 and IP3R2, but inhibited IP3R3. Activation of IP3R is initiated by IP3 binding to the IBC (IP3-binding core; residues 224–604) and proceeds via re-arrangement of an interface between the IBC and SD (suppressor domain; residues 1–223). Thimerosal (100 μM) stimulated IP3 binding to the isolated NT (N-terminal; residues 1–604) of IP3R1 and IP3R2, but not to that of IP3R3. Binding of a competitive antagonist (heparin) or partial agonist (dimeric-IP3) to NT1 was unaffected by thiomersal, suggesting that the effect of thimerosal is specifically related to IP3R activation. IP3 binding to NT1 in which all cysteine residues were replaced by alanine was insensitive to thimerosal, so too were NT1 in which cysteine residues were replaced in either the SD or IBC. This demonstrates that thimerosal interacts directly with cysteine in both the SD and IBC. Chimaeric proteins in which the SD of the IP3R was replaced by the structurally related A domain of a ryanodine receptor were functional, but thimerosal inhibited both IP3 binding to the chimaeric NT and IP3-evoked Ca2+ release from the chimaeric IP3R. This is the first systematic analysis of the effects of a thiol reagent on each IP3R subtype. We conclude that thimerosal selectively sensitizes IP3R1 and IP3R2 to IP3 by modifying cysteine residues within both the SD and IBC and thereby stabilizing an active conformation of the receptor. PMID:23282150

  4. Rapid, Directed Differentiation of Retinal Pigment Epithelial Cells from Human Embryonic or Induced Pluripotent Stem Cells

    OpenAIRE

    Foltz, LP; Clegg, DO

    2017-01-01

    We describe a robust method to direct the differentiation of pluripotent stem cells into retinal pigment epithelial cells (RPE). The purpose of providing a detailed and thorough protocol is to clearly demonstrate each step and to make this readily available to researchers in the field. This protocol results in a homogenous layer of RPE with minimal or no manual dissection needed. The method presented here has been shown to be effective for induced pluripotent stem cells (iPSC) and human embry...

  5. Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Kamil Kruczek

    2017-06-01

    Full Text Available The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs. Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor β2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1−/− mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation.

  6. Neonatal human retinal pigment epithelial cells secrete limited trophic factors in vitro and in vivo following striatal implantation in parkinsonian rats

    DEFF Research Database (Denmark)

    Russ, Kaspar; Flores, Joseph; Brudek, Tomasz

    2015-01-01

    Human retinal pigment epithelial (hRPE) cell implants into the striatum have been investigated as a potential cell-based treatment for Parkinson's disease in a Phase II clinical trial that recently failed. We hypothesize that the trophic factor potential of the hRPE cells could potentially influe...

  7. Msd1/SSX2IP-dependent microtubule anchorage ensures spindle orientation and primary cilia formation

    OpenAIRE

    Hori, Akiko; Ikebe, Chiho; Tada, Masazumi; Toda, Takashi

    2014-01-01

    Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite-dependent manner and binds the microtubule-nucleator ?-tubulin complex. hMsd1/SSX2IP depletion leads to disorganised interphase microtubules and misoriented mitotic spindles with reduced length and intensity....

  8. Visual advantage in deaf adults linked to retinal changes.

    Directory of Open Access Journals (Sweden)

    Charlotte Codina

    Full Text Available The altered sensory experience of profound early onset deafness provokes sometimes large scale neural reorganisations. In particular, auditory-visual cross-modal plasticity occurs, wherein redundant auditory cortex becomes recruited to vision. However, the effect of human deafness on neural structures involved in visual processing prior to the visual cortex has never been investigated, either in humans or animals. We investigated neural changes at the retina and optic nerve head in profoundly deaf (N = 14 and hearing (N = 15 adults using Optical Coherence Tomography (OCT, an in-vivo light interference method of quantifying retinal micro-structure. We compared retinal changes with behavioural results from the same deaf and hearing adults, measuring sensitivity in the peripheral visual field using Goldmann perimetry. Deaf adults had significantly larger neural rim areas, within the optic nerve head in comparison to hearing controls suggesting greater retinal ganglion cell number. Deaf adults also demonstrated significantly larger visual field areas (indicating greater peripheral sensitivity than controls. Furthermore, neural rim area was significantly correlated with visual field area in both deaf and hearing adults. Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL distribution compared to controls. Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity were found. Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.

  9. Applying a gaming approach to IP strategy.

    Science.gov (United States)

    Gasnier, Arnaud; Vandamme, Luc

    2010-02-01

    Adopting an appropriate IP strategy is an important but complex area, particularly in the pharmaceutical and biotechnology sectors, in which aspects such as regulatory submissions, high competitive activity, and public health and safety information requirements limit the amount of information that can be protected effectively through secrecy. As a result, and considering the existing time limits for patent protection, decisions on how to approach IP in these sectors must be made with knowledge of the options and consequences of IP positioning. Because of the specialized nature of IP, it is necessary to impart knowledge regarding the options and impact of IP to decision-makers, whether at the level of inventors, marketers or strategic business managers. This feature review provides some insight on IP strategy, with a focus on the use of a new 'gaming' approach for transferring the skills and understanding needed to make informed IP-related decisions; the game Patentopolis is discussed as an example of such an approach. Patentopolis involves interactive activities with IP-related business decisions, including the exploitation and enforcement of IP rights, and can be used to gain knowledge on the impact of adopting different IP strategies.

  10. Vaccines and IP Rights: A Multifaceted Relationship.

    Science.gov (United States)

    Durell, Karen

    2016-01-01

    Just as there are many forms of vaccines and components to vaccines-particular compositions, delivery systems, components, and distribution networks-there are a variety of intellectual property (IP) protections applicable for vaccines. IP rights such as patent, copyright, trademarks, plant breeders' rights, and trade secrets may all be applicable to vaccines. Thus, discussion of IP rights and vaccines should not begin and end with the application of one IP right to a vaccine. The discussion should engage considerations of multiple IP rights applicable to a vaccine and how these can be utilized in an integrated manner in a strategy aimed at supporting the development and distribution of the vaccine. Such an approach to IP rights to vaccines allows for the integrated rights to be considered in light of the justifications for protecting vaccines with IP rights, as well as the issues relating to specific IP rights for vaccines, such as compulsory license regimes, available humanitarian purpose IP credits, etc. To view vaccines as the subject of multiple IP protections involves a refocusing, but the outcome can provide significant benefits for vaccine development and distribution.

  11. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration

    OpenAIRE

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin

    2014-01-01

    Photoreceptors degenerate in a wide array of hereditary retinal diseases and age-related macular degeneration. There is currently no treatment available for retinal degenerations. While outnumbered roughly 20:1 by rods in the human retina, it is the cones that mediate color vision and visual acuity, and their survival is critical for vision. In this communication, we investigate whether thyroid hormone (TH) signaling affects cone viability in retinal degeneration mouse models. TH signaling is...

  12. Retinitis Pigmentosa.

    Science.gov (United States)

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  13. Multi-nucleate retinal pigment epithelium cells of the human macula exhibit a characteristic and highly specific distribution.

    Science.gov (United States)

    Starnes, Austin C; Huisingh, Carrie; McGwin, Gerald; Sloan, Kenneth R; Ablonczy, Zsolt; Smith, R Theodore; Curcio, Christine A; Ach, Thomas

    2016-01-01

    The human retinal pigment epithelium (RPE) is reportedly 3% bi-nucleated. The importance to human vision of multi-nucleated (MN)-RPE cells could be clarified with more data about their distribution in central retina. Nineteen human RPE-flatmounts (9 ≤ 51 years, 10 > 80 years) were imaged at 12 locations: 3 eccentricities (fovea, perifovea, near periphery) in 4 quadrants (superior, inferior, temporal, nasal). Image stacks of lipofuscin-attributable autofluorescence and phalloidin labeled F-actin cytoskeleton were obtained using a confocal fluorescence microscope. Nuclei were devoid of autofluorescence and were marked using morphometric software. Cell areas were approximated by Voronoi regions. Mean number of nuclei per cell among eccentricity/quadrant groups and by age were compared using Poisson and binominal regression models. A total of 11,403 RPE cells at 200 locations were analyzed: 94.66% mono-, 5.31% bi-, 0.02% tri-nucleate, and 0.01% with 5 nuclei. Age had no effect on number of nuclei. There were significant regional differences: highest frequencies of MN-cells were found at the perifovea (9.9%) and near periphery (6.8%). The fovea lacked MN-cells almost entirely. The nasal quadrant had significantly more MN-cells compared to other quadrants, at all eccentricities. This study demonstrates MN-RPE cells in human macula. MN-cells may arise due to endoreplication, cell fusion, or incomplete cell division. The topography of MN-RPE cells follows the topography of photoreceptors; with near-absence at the fovea (cones only) and high frequency at perifovea (highest rod density). This distribution might reflect specific requirements of retinal metabolism or other mechanisms addressable in further studies.

  14. A novel fusion protein of IP10-scFv retains antibody specificity and chemokine function

    International Nuclear Information System (INIS)

    Guo Junqing; Chen Liu; Ai Hongwu; Jing Jiannian; Zhou Jiyong; Zhang Chuyu; You Shangyou

    2004-01-01

    We combined the specificity of tumor-specific antibody with the chemokine function of interferon-γ inducible protein 10 (IP-10) to recruit immune effector cells in the vicinity of tumor cells. A novel fusion protein of IP10-scFv was constructed by fusing mouse IP-10 to V H region of single-chain Fv fragment (scFv) against acidic isoferritin (AIF), and expressed in NS0 murine myeloma cells. The IP10-scFv fusion protein was shown to maintain the specificity of the antiAIF scFv with similar affinity constant, and bind to the human hepatocarcinoma SMMC 7721 cells secreting AIF as well as the activated mouse T lymphocytes expressing CXCR3 receptor. Furthermore, the IP10-scFv protein either in solution or bound on the surface of SMMC 7721 cells induced significant chemotaxis of mouse T cells in vitro. The results indicate that the IP10-scFv fusion protein possesses both bioactivities of the tumor-specific antibody and IP-10 chemokine, suggesting its possibility to induce an enhanced immune response against the residual tumor cells in vivo

  15. Extending Tactical Fleet Communications Through VoIP

    Science.gov (United States)

    2014-09-01

    corporate world , the military is leveraging VoIP communication solutions as well. Shore commands like Tactical Training Group Pacific use VoIP for...VoIP fuzzing (e.g., Asteroid , PROTOS, Sip-Proxy)  VoIP signaling manipulation (e.g., IAXAuthJack, IAXHangup, SIP-Kill)  VoIP media...as well, but instead of just matching the information to rules, it compares synchronization information between the protocols to determine if the

  16. Retinitis Pigmentosa

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... degenerate. Forms of RP and related diseases include Usher syndrome, Leber congenital amaurosis, and Bardet-Biedl syndrome, among ...

  17. Retinal Diseases

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... central portion of the retina called the macula. Usher Syndrome Usher syndrome is an inherited condition characterized by ...

  18. Hardware IP security and trust

    CERN Document Server

    Bhunia, Swarup; Tehranipoor, Mark

    2017-01-01

    This book provides an overview of current Intellectual Property (IP) based System-on-Chip (SoC) design methodology and highlights how security of IP can be compromised at various stages in the overall SoC design-fabrication-deployment cycle. Readers will gain a comprehensive understanding of the security vulnerabilities of different types of IPs. This book would enable readers to overcome these vulnerabilities through an efficient combination of proactive countermeasures and design-for-security solutions, as well as a wide variety of IP security and trust assessment and validation techniques. This book serves as a single-source of reference for system designers and practitioners for designing secure, reliable and trustworthy SoCs.

  19. Presence in the IP multimedia subsystem

    NARCIS (Netherlands)

    Lin, L.; Liotta, A.

    2007-01-01

    With an ever increasing penetration of Internet Protocol (IP) technologies, the wireless industry is evolving the mobile core network towards all-IP network. The IP Multimedia Subsystem (IMS) is a standardised Next Generation Network (NGN) architectural framework defined by the 3rd Generation

  20. Performance of VoIP on HSDPA

    DEFF Research Database (Denmark)

    Wang, Bang; Pedersen, Klaus I.; Kolding, Troels E.

    2005-01-01

    This paper provides packet scheduler design and performance simulations for running VoIP services over high-speed downlink packet access (HSDPA) in WCDMA. The main challenge of supporting VoIP service on HSDPA is the tight delay requirement combined with the small VoIP packet size. A packet...... scheduler design incorporating VoIP packet aggregation and user multiplexing is proposed and the VoIP capacity is studied for a macro-cellular environment. Results are obtained for different delay budgets and packet scheduling settings, using either blind round robin or a slightly modified version...... of proportional fair scheduling. For proportional fair scheduling with code-multiplexing of 4-users, the downlink VoIP cell capacity on HSDPA is found to be in the range 72-104 users depending on whether the delay budget for the Node-B scheduling and user reception equals 80 ms or 150 ms, respectively....

  1. Suppressed retinal degeneration in aged wild type and APPswe/PS1ΔE9 mice by bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    Full Text Available Alzheimer's disease (AD is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ in brain and retina. Because bone marrow transplantation (BMT results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4% compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.

  2. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells.

    Science.gov (United States)

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y; Tanaka, Minoru; Miyajima, Atsushi

    2015-10-13

    To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM(+) cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM(+) cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM(+) cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy.

    Science.gov (United States)

    Uddin, Md Imam; Evans, Stephanie M; Craft, Jason R; Capozzi, Megan E; McCollum, Gary W; Yang, Rong; Marnett, Lawrence J; Uddin, Md Jashim; Jayagopal, Ashwath; Penn, John S

    2016-08-05

    Ischemia-induced hypoxia elicits retinal neovascularization and is a major component of several blinding retinopathies such as retinopathy of prematurity (ROP), diabetic retinopathy (DR) and retinal vein occlusion (RVO). Currently, noninvasive imaging techniques capable of detecting and monitoring retinal hypoxia in living systems do not exist. Such techniques would greatly clarify the role of hypoxia in experimental and human retinal neovascular pathogenesis. In this study, we developed and characterized HYPOX-4, a fluorescence-imaging probe capable of detecting retinal-hypoxia in living animals. HYPOX-4 dependent in vivo and ex vivo imaging of hypoxia was tested in a mouse model of oxygen-induced retinopathy (OIR). Predicted patterns of retinal hypoxia were imaged by HYPOX-4 dependent fluorescence activity in this animal model. In retinal cells and mouse retinal tissue, pimonidazole-adduct immunostaining confirmed the hypoxia selectivity of HYPOX-4. HYPOX-4 had no effect on retinal cell proliferation as indicated by BrdU assay and exhibited no acute toxicity in retinal tissue as indicated by TUNEL assay and electroretinography (ERG) analysis. Therefore, HYPOX-4 could potentially serve as the basis for in vivo fluorescence-based hypoxia-imaging techniques, providing a tool for investigators to understand the pathogenesis of ischemic retinopathies and for physicians to address unmet clinical needs.

  4. Extracellular Matrix-Dependent Generation of Integration- and Xeno-Free iPS Cells Using a Modified mRNA Transfection Method

    Directory of Open Access Journals (Sweden)

    Kang-In Lee

    2016-01-01

    Full Text Available Human induced pluripotent stem cells (iPS cells hold great promise in the field of regenerative medicine, especially immune-compatible cell therapy. The most important safety-related issues that must be resolved before the clinical use of iPS cells include the generation of “footprint-free” and “xeno-free” iPS cells. In this study, we sought to examine whether an extracellular matrix- (ECM- based xeno-free culture system that we recently established could be used together with a microRNA-enhanced mRNA reprogramming method for the generation of clinically safe iPS cells. The notable features of this method are the use of a xeno-free/feeder-free culture system for the generation and expansion of iPS cells rather than the conventional labor-intensive culture systems using human feeder cells or human feeder-conditioned medium and the enhancement of mRNA-mediated reprogramming via the delivery of microRNAs. Strikingly, we observed the early appearance of iPS cell colonies (~11 days, substantial reprogramming efficiency (~0.2–0.3%, and a high percentage of ESC-like colonies among the total colonies (~87.5%, indicating enhanced kinetics and reprogramming efficiency. Therefore, the combined method established in this study provides a valuable platform for the generation and expansion of clinically safe (i.e., integration- and xeno-free iPS cells, facilitating immune-matched cell therapy in the near future.

  5. Novel characteristics of CtIP at damage-induced foci following the initiation of DNA end resection

    International Nuclear Information System (INIS)

    Fujisawa, Hiroshi; Fujimori, Akira; Okayasu, Ryuichi; Uesaka, Mitsuru; Yajima, Hirohiko

    2015-01-01

    Highlights: • CtIP becomes hyperphosphorylated and forms foci following cell irradiation. • CtIP accumulates in foci subsequent to the peak of hyperphosphorylation. • CtIP is maintained in a hypophosphorylated state at later times. • CtIP is continuously recruited to DNA double strand breaks downstream of resection. • CtIP presumably have a distinct role following the initiation of resection. - Abstract: Homologous recombination (HR) is a major repair pathway for DNA double strand breaks (DSBs), and end resection, which generates a 3′-single strand DNA tail at the DSB, is an early step in the process. Resection is initiated by the Mre11 nuclease together with CtIP. Here, we describe novel characteristics of CtIP at DSBs. At early times following exposure of human cells to ionizing radiation, CtIP localized to the DSB, became hyperphosphorylated and formed foci in an ATM-dependent manner. At later times, when the initiation of resection had occurred, CtIP foci persist but CtIP is maintained in a hypophosphorylated state, which is dependent on ATM and ATR. Exposure to cycloheximide revealed that CtIP turns over at DSB sites downstream of resection. Our findings provide strong evidence that CtIP is continuously recruited to DSBs downstream of both the initiation and extension step of resection, strongly suggesting that CtIP has functions in addition to promoting the initiation of resection during HR

  6. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sara Martina Maffioletti

    2018-04-01

    Full Text Available Summary: Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. : Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons. Keywords: skeletal muscle, pluripotent stem cells, iPS cells, myogenic differentiation, tissue engineering, disease modeling, muscular dystrophy, organoids

  7. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    Science.gov (United States)

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  8. Measuring the impostor phenomenon: a comparison of Clance's IP Scale and Harvey's I-P Scale.

    Science.gov (United States)

    Holmes, S W; Kertay, L; Adamson, L B; Holland, C L; Clance, P R

    1993-02-01

    Many of the discrepancies reported to date in empirical investigations of the impostor phenomenon (IP) may be due in part to (a) the use of different methods for identifying individuals suffering from this syndrome (impostors), (b) the common use of a median split procedure to classify subjects and (c) the fact that subjects in many studies were drawn from impostor-prone samples. In this study, we compared the scores of independently identified impostors and nonimpostors on two instruments designed to measure the IP: Harvey's I-P Scale and Clance's IP Scale. The results suggest that Clance's scale may be the more sensitive and reliable instrument. Cutoff score suggestions for both instruments are offered.

  9. Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Luqing [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Tao, Jianjian; Chen, Huaicheng; Bian, Yang; Yang, Xi [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Chen, Gaozhi; Zhang, Xin; Liang, Guang [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Wencan, E-mail: wuwencan118@163.com [The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Song, Zongming, E-mail: szmeyes@126.com [The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Yi, E-mail: yi.wang1122@wmu.edu.cn [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-02-15

    Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigment epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury. - Highlights: • MD2 inhibition reduced retinal damage after I/R induction in mice. • TBHP induced TLR4/MD2 binding via increasing HMGB-1 expression. • TLR4/MD2 initiated inflammatory response via activation of MAPKs and NF-κB. • MD2 could be the therapeutic target for the treatment of retinal I/R.

  10. Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury

    International Nuclear Information System (INIS)

    Ren, Luqing; Tao, Jianjian; Chen, Huaicheng; Bian, Yang; Yang, Xi; Chen, Gaozhi; Zhang, Xin; Liang, Guang; Wu, Wencan; Song, Zongming; Wang, Yi

    2017-01-01

    Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigment epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury. - Highlights: • MD2 inhibition reduced retinal damage after I/R induction in mice. • TBHP induced TLR4/MD2 binding via increasing HMGB-1 expression. • TLR4/MD2 initiated inflammatory response via activation of MAPKs and NF-κB. • MD2 could be the therapeutic target for the treatment of retinal I/R.

  11. Proposed clinical case definition for cytomegalovirus-immune recovery retinitis.

    Science.gov (United States)

    Ruiz-Cruz, Matilde; Alvarado-de la Barrera, Claudia; Ablanedo-Terrazas, Yuria; Reyes-Terán, Gustavo

    2014-07-15

    Cytomegalovirus (CMV) retinitis has been extensively described in patients with advanced or late human immunodeficiency virus (HIV) disease under ineffective treatment of opportunistic infection and antiretroviral therapy (ART) failure. However, there is limited information about patients who develop active cytomegalovirus retinitis as an immune reconstitution inflammatory syndrome (IRIS) after successful initiation of ART. Therefore, a case definition of cytomegalovirus-immune recovery retinitis (CMV-IRR) is proposed here. We reviewed medical records of 116 HIV-infected patients with CMV retinitis attending our institution during January 2003-June 2012. We retrospectively studied HIV-infected patients who had CMV retinitis on ART initiation or during the subsequent 6 months. Clinical and immunological characteristics of patients with active CMV retinitis were described. Of the 75 patients under successful ART included in the study, 20 had improvement of CMV retinitis. The remaining 55 patients experienced CMV-IRR; 35 of those developed CMV-IRR after ART initiation (unmasking CMV-IRR) and 20 experienced paradoxical clinical worsening of retinitis (paradoxical CMV-IRR). Nineteen patients with CMV-IRR had a CD4 count of ≥50 cells/µL. Six patients with CMV-IRR subsequently developed immune recovery uveitis. There is no case definition for CMV-IRR, although this condition is likely to occur after successful initiation of ART, even in patients with high CD4 T-cell counts. By consequence, we propose the case definitions for paradoxical and unmasking CMV-IRR. We recommend close follow-up of HIV-infected patients following ART initiation. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Translating chimpanzee personality to humans: Investigating the transportability of chimpanzee-derived personality scales to humans.

    Science.gov (United States)

    Latzman, Robert D; Sauvigné, Katheryn C; Hopkins, William D

    2016-06-01

    There is a growing interest in the study of personality in chimpanzees with repeated findings of a similar structure of personality in apes to that found in humans. To date, however, the direct translational value of instruments used to assess chimpanzee personality to humans has yet to be explicitly tested. As such, in the current study we sought to determine the transportability of factor analytically-derived chimpanzee personality scales to humans in a large human sample (N = 301). Human informants reporting on target individuals they knew well completed chimpanzee-derived and human-derived measures of personality from the two most widely studied models of human personality: Big Five and Big Three. The correspondence between informant-reported chimpanzee- and human-derived personality scales was then investigated. Results indicated high convergence for corresponding scales across most chimpanzee- and human-derived personality scales. Findings from the current study provide evidence that chimpanzee-derived scales translate well to humans and operate quite similarly to the established human-derived personality scales in a human sample. This evidence of transportability lends support to the translational nature of chimpanzee personality research suggesting clear relevance of this growing literature to humans. Am. J. Primatol. 78:601-609, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Optical coherence tomography study of retinal changes in normal aging and after ischemia.

    Science.gov (United States)

    Shariati, Mohammad Ali; Park, Joyce Ho; Liao, Yaping Joyce

    2015-05-01

    Age-related thinning of the retinal ganglion cell axons in the nerve fiber layer has been measured in humans using optical coherence tomography (OCT). In this study, we used OCT to measure inner retinal changes in 3-month-, 1-year-, and 2-year-old mice and after experimental anterior ischemic optic neuropathy (AION). We used OCT to quantify retinal thickness in over 200 eyes at different ages before and after a photochemical thrombosis model of AION. The scans were manually or automatically segmented. In normal aging, there was 1.3-μm thinning of the ganglion cell complex (GCC) between 3 months and 1 year (P < 0.0001) and no further thinning at 2 years. In studying age-related inner retinal changes, measurement of the GCC (circular scan) was superior to that of the total retinal thickness (posterior pole scan) despite the need for manual segmentation because it was not contaminated by outer retinal changes. Three weeks after AION, there was 8.9-μm thinning of the GCC (circular scan; P < 0.0001), 50-μm thinning of the optic disc (posterior pole scan; P < 0.0001), and 17-μm thinning of the retina (posterior pole scan; P < 0.0001) in the 3-month-old group. Changes in the older eyes after AION were similar to those of the 3-month-old group. Optical coherence tomography imaging of a large number of eyes showed that, like humans, mice exhibited small, age-related inner retinal thinning. Measurement of the GCC was superior to total retinal thickness in quantifying age-related changes, and both circular and posterior pole scans were useful to track short-term changes after AION.

  14. User-guided segmentation for volumetric retinal optical coherence tomography images

    Science.gov (United States)

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  15. Hydrostatic pressure does not cause detectable changes in survival of human retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew Osborne

    Full Text Available Elevated intraocular pressure (IOP is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP. The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC survival in the human retina was investigated.A chamber was designed to expose cells to increased HP (constant and fluctuating. Accurate pressure control (10-100 mmHg was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs from donor eyes (<24 h post mortem were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD. Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1 and RGC number by immunohistochemistry (NeuN. Activated p38 and JNK were detected by Western blot.Exposure of HORCs to constant (60 mmHg or fluctuating (10-100 mmHg; 1 cycle/min pressure for 24 or 48 h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1 or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24 h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100 mmHg; 1 cycle/min for 15, 30, 60 and 90 min durations, whereas OGD (3 h increased activation of p38 and JNK, remaining elevated for 90 min post-OGD.Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina.

  16. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics.

    Science.gov (United States)

    Höland, W; Schweiger, M; Frank, M; Rheinberger, V

    2000-01-01

    The aim of this report is to analyze the microstructures of glass-ceramics of the IPS Empress 2 and IPS Empress systems by scanning electron microscopy. The main properties of the glass-ceramics were determined and compared to each other. The flexural strength of the pressed glass-ceramic (core material) was improved by a factor of more than three for IPS Empress 2 (lithium disilicate glass-ceramic) in comparison with IPS Empress (leucite glass-ceramic). For the fracture toughness, the K(IC) value was measured as 3.3 +/- 0.3 MPa. m(0.5) for IPS Empress 2 and 1.3 +/- 0.1 MPa. m(0.5) for IPS Empress. Abrasion behavior, chemical durability, and optical properties such as translucency of all glass-ceramics fulfill the dental standards. The authors concluded that IPS Empress 2 can be used to fabricate 3-unit bridges up to the second premolar. Copyright 2000 John Wiley & Sons, Inc.

  17. Comparison of neurosphere-like cell clusters derived from dental follicle precursor cells and retinal Müller cells

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Petersen, Jørgen; Felthaus, Oliver

    2011-01-01

    Unrelated cells such as dental follicle precursor cells (DFPCs) and retinal Müller cells (MCs) make spheres after cultivation in serum-replacement medium (SRM). Until today, the relation and molecular processes of sphere formation from different cell types remain undescribed. Thus in this study we...... compared proteomes of spheres derived from MCs and DFPCs. 73% of 676 identified proteins were similar expressed in both cell types and many of them are expressed in the brain (55%). Moreover proteins are overrepresented that are associated with pathways for neural diseases such as Huntington disease...... or Alzheimer disease. Interestingly up-regulated proteins in DFPCs are involved in the biosynthesis of glycosphingolipids. These lipids are components of gangliosides such as GD3, which is a novel neural stem cell marker. In conclusion spheres from different types of cells have highly similar proteomes...

  18. Summarising the retinal vascular calibres in healthy, diabetic and diabetic retinopathy eyes.

    Science.gov (United States)

    Leontidis, Georgios; Al-Diri, Bashir; Hunter, Andrew

    2016-05-01

    Retinal vessel calibre has been found to be an important biomarker of several retinal diseases, including diabetic retinopathy (DR). Quantifying the retinal vessel calibres is an important step for estimating the central retinal artery and vein equivalents. In this study, an alternative method to the already established branching coefficient (BC) is proposed for summarising the vessel calibres in retinal junctions. This new method combines the mean diameter ratio with an alternative to Murray׳s cube law exponent, derived by the fractal dimension,experimentally, and the branch exponent of cerebral vessels, as has been suggested in previous studies with blood flow modelling. For the above calculations, retinal images from healthy, diabetic and DR subjects were used. In addition, the above method was compared with the BC and was also applied to the evaluation of arteriovenous ratio as a biomarker of progression from diabetes to DR in four consecutive years, i.e. three/two/one years before the onset of DR and the first year of DR. Moreover, the retinal arteries and veins around the optic nerve head were also evaluated. The new approach quantifies the vessels more accurately. The decrease in terms of the mean absolute percentage error was between 0.24% and 0.49%, extending at the same time the quantification beyond healthy subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. ChIP-PIT: Enhancing the Analysis of ChIP-Seq Data Using Convex-Relaxed Pair-Wise Interaction Tensor Decomposition.

    Science.gov (United States)

    Zhu, Lin; Guo, Wei-Li; Deng, Su-Ping; Huang, De-Shuang

    2016-01-01

    In recent years, thanks to the efforts of individual scientists and research consortiums, a huge amount of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experimental data have been accumulated. Instead of investigating them independently, several recent studies have convincingly demonstrated that a wealth of scientific insights can be gained by integrative analysis of these ChIP-seq data. However, when used for the purpose of integrative analysis, a serious drawback of current ChIP-seq technique is that it is still expensive and time-consuming to generate ChIP-seq datasets of high standard. Most researchers are therefore unable to obtain complete ChIP-seq data for several TFs in a wide variety of cell lines, which considerably limits the understanding of transcriptional regulation pattern. In this paper, we propose a novel method called ChIP-PIT to overcome the aforementioned limitation. In ChIP-PIT, ChIP-seq data corresponding to a diverse collection of cell types, TFs and genes are fused together using the three-mode pair-wise interaction tensor (PIT) model, and the prediction of unperformed ChIP-seq experimental results is formulated as a tensor completion problem. Computationally, we propose efficient first-order method based on extensions of coordinate descent method to learn the optimal solution of ChIP-PIT, which makes it particularly suitable for the analysis of massive scale ChIP-seq data. Experimental evaluation the ENCODE data illustrate the usefulness of the proposed model.

  20. Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes.

    Directory of Open Access Journals (Sweden)

    Cristina I López Sanjurjo

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 evokes release of Ca2+ from the endoplasmic reticulum (ER, but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.

  1. Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes.

    Science.gov (United States)

    López Sanjurjo, Cristina I; Tovey, Stephen C; Taylor, Colin W

    2014-01-01

    Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.

  2. Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells.

    Science.gov (United States)

    Amoh, Yasuyuki; Kanoh, Maho; Niiyama, Shiro; Hamada, Yuko; Kawahara, Katsumasa; Sato, Yuichi; Hoffman, Robert M; Katsuoka, Kensei

    2009-08-01

    The optimal source of stem cells for regenerative medicine is a major question. Embryonic stem (ES) cells have shown promise for pluripotency but have ethical issues and potential to form teratomas. Pluripotent stem cells have been produced from skin cells by either viral-, plasmid- or transposon-mediated gene transfer. These stem cells have been termed induced pluripotent stem cells or iPS cells. iPS cells may also have malignant potential and are inefficiently produced. Embryonic stem cells may not be suited for individualized therapy, since they can undergo immunologic rejection. To address these fundamental problems, our group is developing hair follicle pluripotent stem (hfPS) cells. Our previous studies have shown that mouse hfPS cells can differentiate to neurons, glial cells in vitro, and other cell types, and can promote nerve and spinal cord regeneration in vivo. hfPS cells are located above the hair follicle bulge in what we have termed the hfPS cell area (hfPSA) and are nestin positive and keratin 15 (K-15) negative. Human hfPS cells can also differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In the present study, human hfPS cells were transplanted in the severed sciatic nerve of the mouse where they differentiated into glial fibrillary-acidic-protein (GFAP)-positive Schwann cells and promoted the recovery of pre-existing axons, leading to nerve generation. The regenerated nerve recovered function and, upon electrical stimulation, contracted the gastrocnemius muscle. The hfPS cells can be readily isolated from the human scalp, thereby providing an accessible, autologous and safe source of stem cells for regenerative medicine that have important advantages over ES or iPS cells. (c) 2009 Wiley-Liss, Inc.

  3. Outbreak of Ips nitidus and Ips shangrila in northeastern margin of the Tibetan Plateau

    Czech Academy of Sciences Publication Activity Database

    Jakuš, R.; Kalinová, Blanka; Hoskovec, Michal; Knížek, M.; Schlyter, F.; Sun, J.-H.; Zhang, Q. H.

    2011-01-01

    Roč. 89, - (2011), s. 111-117 ISSN 1436-1566 R&D Projects: GA MŠk ME 860 Institutional research plan: CEZ:AV0Z40550506 Keywords : Ips shangrila * Ips nitidus * pheromone s * GCxGC-TOFMS Subject RIV: CC - Organic Chemistry

  4. Retinal Endovascular Surgery with Tissue Plasminogen Activator Injection for Central Retinal Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Yuta Takata

    2018-06-01

    Full Text Available Purpose: To report 2 cases of central retinal artery occlusion (CRAO who underwent retinal endovascular surgery with injection of tissue plasminogen activator (tPA into the retinal artery and showed a remarkable improvement in visual acuity and retinal circulation. Methods: Standard 25-G vitrectomy was performed under local anesthesia. Simultaneously, tPA (80,000 units/mL solution was injected into the retinal artery of the optic disc for 2–3 min using a microneedle. Changes in visual acuity, fundus photography, optical coherence tomography (OCT, fluorescein angiography, and laser speckle flowgraphy (LSFG results were examined. Results: Both cases could be treated within 12 h after the onset of CRAO. Case 1 was a 47-year-old woman. Her visual acuity improved from counting fingers before operation to 0.08 logMAR 1 month after the surgery. However, thinning of the retina at the macula was observed by OCT. Case 2 was a 70-year-old man. His visual acuity improved from counting fingers to 0.1 logMAR 2 months after the surgery. Both fluorescein angiography and LSFG showed improvement in retinal circulation after the surgery in case 2. Conclusions: Retinal endovascular surgery with injection of tPA into the retinal artery was feasible and may be a way to improve visual acuity and retinal circulation when performed in the acute phase of CRAO.

  5. Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE)

    Science.gov (United States)

    Sharon, Dror; Blackshaw, Seth; Cepko, Constance L.; Dryja, Thaddeus P.

    2002-01-01

    We used the serial analysis of gene expression (SAGE) technique to catalogue and measure the relative levels of expression of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium (RPE) from one or both of two humans, aged 88 and 44 years. The cone photoreceptor contribution to all transcription in the retina was found to be similar in the macula versus the retinal periphery, whereas the rod contribution was greater in the periphery versus the macula. Genes encoding structural proteins for axons were found to be expressed at higher levels in the macula versus the retinal periphery, probably reflecting the large proportion of ganglion cells in the central retina. In comparison with the younger eye, the peripheral retina of the older eye had a substantially higher proportion of mRNAs from genes encoding proteins involved in iron metabolism or protection against oxidative damage and a substantially lower proportion of mRNAs from genes encoding proteins involved in rod phototransduction. These differences may reflect the difference in age between the two donors or merely interindividual variation. The RPE library had numerous previously unencountered tags, suggesting that this cell type has a large, idiosyncratic repertoire of expressed genes. Comparison of these libraries with 100 reported nonocular SAGE libraries revealed 89 retina-specific or enriched genes expressed at substantial levels, of which 14 are known to cause a retinal disease and 53 are RPE-specific genes. We expect that these libraries will serve as a resource for understanding the relative expression levels of genes in the retina and the RPE and for identifying additional disease genes. PMID:11756676

  6. Effect of pigment epithelium derived factor on NO and the expression of caspase-3 in retinal tissues of model rats with optic nerve crush injury

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Yan

    2017-06-01

    Full Text Available AIM: To analyze the effect of pigment epithelium derived factor(PEDFon nitrogen monoxide(NOand expression of cysteine-containing, aspartate-specific proteases-3(caspase-3in retinal tissues of model rats with optic nerve crush injury. METHODS: A total of 60 SD rats were randomly divided into the blank control group, model group and PEDF group, with 20 rats in each group. Except the blank control group, the optic nerve crush injury rat models were established in the other groups, and left eyeballs were taken as samples. After successfully modeling, the model group were treated with intravitreal injection of 5μL of balanced salt solution while PEDF group were treated with intravitreal injection of 5μL of PEDF(0.2μg/μL. Two weeks later, the retinal tissues were collected, and changes of shape were observed under microscope after HE staining. The changes of NO level were measured by colorimetry assay, the expression of caspase-3 mRNA and caspase-3 protein was detected by reverse transcription-polymerase chain reaction(RT-PCRand Western-blot. RESULTS: HE staining showed that retinal tissues of the blank control group arranged neatly and clearly. Retinal ganglion cells(RGCsarranged in a monolayer, and cells were oval, uniform in size and distribution, the cell nuclei were clear, closely arranged, with clear boundaries. The retinal tissues of the model group were sparse in shape, RGCs showed vacuolar changes, the overall number of cells was reduced, and cell nuclei of residual RGCs showed pyknosis and uneven staining. RGCs in PEDF group were with slightly edema and arranged closely, and the degree of injury was significantly milder than that in the model group. Levels of Caspase-3 mRNA and protein and NO levels in the three groups showed the model group > PEDF group > blank control group(all P CONCLUSION: The application of PEDF can down regulate the expression of Caspase-3 and NO in rates with optic nerve injury and reduce RGCs injury.

  7. Gene Therapy in a Large Animal Model of PDE6A-Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Freya M. Mowat

    2017-06-01

    Full Text Available Despite mutations in the rod phosphodiesterase 6-alpha (PDE6A gene being well-recognized as a cause of human retinitis pigmentosa, no definitive treatments have been developed to treat this blinding disease. We performed a trial of retinal gene augmentation in the Pde6a mutant dog using Pde6a delivery by capsid-mutant adeno-associated virus serotype 8, previously shown to have a rapid onset of transgene expression in the canine retina. Subretinal injections were performed in 10 dogs at 29–44 days of age, and electroretinography and vision testing were performed to assess functional outcome. Retinal structure was assessed using color fundus photography, spectral domain optical coherence tomography, and histology. Immunohistochemistry was performed to examine transgene expression and expression of other retinal genes. Treatment resulted in improvement in dim light vision and evidence of rod function on electroretinographic examination. Photoreceptor layer thickness in the treated area was preserved compared with the contralateral control vector treated or uninjected eye. Improved rod and cone photoreceptor survival, rhodopsin localization, cyclic GMP levels and bipolar cell dendrite distribution was observed in treated areas. Some adverse effects including foci of retinal separation, foci of retinal degeneration and rosette formation were identified in both AAV-Pde6a and control vector injected regions. This is the first description of successful gene augmentation for Pde6a retinitis pigmentosa in a large animal model. Further studies will be necessary to optimize visual outcomes and minimize complications before translation to human studies.

  8. Voice over IP in Wireless Heterogeneous Networks

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam; Prasad, Ramjee

    with the deployment of wireless heterogeneous systems, both speech and data traffic are carrried over wireless links by the same IP-based packet-switched infrastructure. However, this combination faces some challenges due to the inherent properties of the wireless network. The requirements for good quality VoIP...... communications are difficult to achieve in a time-varying environment due to channel errors and traffic congestion and across different systems. The provision of VoIP in wireless heterogeneous networks requires a set of time-efficient control mechanisms to support a VoIP session with acceptable quality....... The focus of Voice over IP in Wierless Heterogeneous Networks is on mechanisms that affect the VoIP user satisfaction  while not explicitly involved in the media session. This relates to the extra delays introduced by the security and the signaling protocols used to set up an authorized VoIP session...

  9. Endothelial Protein C–Targeting Liposomes Show Enhanced Uptake and Improved Therapeutic Efficacy in Human Retinal Endothelial Cells

    DEFF Research Database (Denmark)

    Arta, Anthoula; Eriksen, Anne Z.; Melander, Fredrik

    2018-01-01

    PURPOSE. To determine whether human retinal endothelial cells (HRECs) express the endothelial cell protein C receptor (EPCR) and to realize its potential as a targeting moiety by developing novel single and dual corticosteroid–loaded functionalized liposomes that exhibit both enhanced uptake by H...... of cell tube formations in contrast to nontargeting liposomes. CONCLUSIONS. We show that HRECs express EPCR and this receptor could be a promising nanomedicine target in ocular diseases where the endothelial barrier of the retina is compromised....

  10. Damage threshold from large retinal spot size repetitive-pulse laser exposures.

    Science.gov (United States)

    Lund, Brian J; Lund, David J; Edsall, Peter R

    2014-10-01

    The retinal damage thresholds for large spot size, multiple-pulse exposures to a Q-switched, frequency doubled Nd:YAG laser (532 nm wavelength, 7 ns pulses) have been measured for 100 μm and 500 μm retinal irradiance diameters. The ED50, expressed as energy per pulse, varies only weakly with the number of pulses, n, for these extended spot sizes. The previously reported threshold for a multiple-pulse exposure for a 900 μm retinal spot size also shows the same weak dependence on the number of pulses. The multiple-pulse ED50 for an extended spot-size exposure does not follow the n dependence exhibited by small spot size exposures produced by a collimated beam. Curves derived by using probability-summation models provide a better fit to the data.

  11. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Directory of Open Access Journals (Sweden)

    Kim Chan

    2007-10-01

    Full Text Available Abstract Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5. RGC-5 cells were cultured in a closed hypoxic chamber (5% O2 with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38 and nuclear factor-kappa B (NF-κB were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF, a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia.

  12. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Science.gov (United States)

    Hong, Samin; Lee, Jong Eun; Kim, Chan Yun; Seong, Gong Je

    2007-01-01

    Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5). RGC-5 cells were cultured in a closed hypoxic chamber (5% O2) with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH) assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38) and nuclear factor-kappa B (NF-κB) were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF), a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia. PMID:17908330

  13. A novel fusion protein of IP10-scFv retains antibody specificity and chemokine function

    Energy Technology Data Exchange (ETDEWEB)

    Junqing, Guo; Liu, Chen; Hongwu, Ai; Jiannian, Jing; Jiyong, Zhou; Chuyu, Zhang; Shangyou, You

    2004-07-23

    We combined the specificity of tumor-specific antibody with the chemokine function of interferon-{gamma} inducible protein 10 (IP-10) to recruit immune effector cells in the vicinity of tumor cells. A novel fusion protein of IP10-scFv was constructed by fusing mouse IP-10 to V{sub H} region of single-chain Fv fragment (scFv) against acidic isoferritin (AIF), and expressed in NS0 murine myeloma cells. The IP10-scFv fusion protein was shown to maintain the specificity of the antiAIF scFv with similar affinity constant, and bind to the human hepatocarcinoma SMMC 7721 cells secreting AIF as well as the activated mouse T lymphocytes expressing CXCR3 receptor. Furthermore, the IP10-scFv protein either in solution or bound on the surface of SMMC 7721 cells induced significant chemotaxis of mouse T cells in vitro. The results indicate that the IP10-scFv fusion protein possesses both bioactivities of the tumor-specific antibody and IP-10 chemokine, suggesting its possibility to induce an enhanced immune response against the residual tumor cells in vivo.

  14. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP)

    NARCIS (Netherlands)

    Kaufmann, K.; Muiño, J.M.; Østerås, M.; Farinelli, L.; Krajewski, P.; Angenent, G.C.

    2010-01-01

    Chromatin immunoprecipitation (ChIP) is a powerful technique to study interactions between transcription factors (TFs) and DNA in vivo. For genome-wide de novo discovery of TF-binding sites, the DNA that is obtained in ChIP experiments needs to be processed for sequence identification. The sequences

  15. Differential diagnosis of retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2009-10-01

    Retinal vaculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and confirmed with the help of fundus fluorescein angiography. Active vascular disease is characterized by exudates around retinal vessels resulting in white sheathing or cuffing of the affected vessels. In this review, a practical approach to the diagnosis of retinal vasculitis is discussed based on ophthalmoscopic and fundus fluorescein angiographic findings.

  16. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis

    KAUST Repository

    Kulakovskiy, Ivan V.; Vorontsov, Ilya E.; Yevshin, Ivan S.; Sharipov, Ruslan N.; Fedorova, Alla D.; Rumynskiy, Eugene I.; Medvedeva, Yulia A.; Magana-Mora, Arturo; Bajic, Vladimir B.; Papatsenko, Dmitry A.; Kolpakov, Fedor A.; Makeev, Vsevolod J.

    2017-01-01

    We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences.

  17. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis

    KAUST Repository

    Kulakovskiy, Ivan V.

    2017-10-31

    We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences.

  18. Retinal pigmentary changes in chronic uveitis mimicking retinitis pigmentosa.

    Science.gov (United States)

    Sevgi, D Damla; Davoudi, Samaneh; Comander, Jason; Sobrin, Lucia

    2017-09-01

    To present retinal pigmentary changes mimicking retinitis pigmentosa (RP) as a finding of advanced uveitis. We retrospectively reviewed charts of patients without a family history of inherited retinal degenerations who presented with retinal pigment changes and signs of past or present intraocular inflammation. Comprehensive eye examination including best-corrected visual acuity, slit-lamp examination and dilated fundus examination was performed on all patients in addition to color fundus photography, optical coherence tomography, fluorescein angiography (FA), and full-field electroretinogram testing. We identified five patients with ages ranging from 33 to 66 years, who presented with RP-like retinal pigmentary changes which were eventually attributed to longstanding uveitis. The changes were bilateral in three cases and unilateral in two cases. Four of five cases presented with active inflammation, and the remaining case showed evidence of active intraocular inflammation during follow-up. This study highlights the overlapping features of advanced uveitis and RP including the extensive pigmentary changes. Careful review of possible past uveitis history, detailed examination of signs of past or present inflammation and ancillary testing, with FA often being most helpful, are required for the correct diagnosis. This is important, because intervention can prevent further damage if the cause of the pigmentary changes is destructive inflammation.

  19. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Min Sun

    2015-06-01

    Full Text Available Background: Anthocyanins have been proven to be beneficial to the eyes. However, information is scarce about the effects of purple sweet potato (Ipomoea batatas, L. anthocyanin (PSPA, a class of anthocyanins derived from purple sweet potato roots, on visual health. Objective: The aim of this study was to investigate whether PSPA could have influences on the growth characteristics (cellular morphology, survival, and proliferation of human retinal pigment epithelial (RPE cells, which perform essential functions for the visual process. Methods: The RPE cell line D407 was used in the present study. The cytotoxicity of PSPA was assessed by MTT assay. Then, cellular morphology, viability, cell cycle, Ki67expression, and PI3K/MAPK activation of RPE cells treated with PSPA were determined. Results: PSPA exhibited dose-dependent promotion of RPE cell proliferation at concentrations ranging from 10 to 1,000 µg/ml. RPE cells treated with PSPA demonstrated a predominantly polygonal morphology in a mosaic arrangement, and colony-like cells displayed numerous short apical microvilli and typical ultrastructure. PSPA treatment also resulted in a better platform growing status, statistically higher viability, an increase in the S-phase, and more Ki67+ cells. However, neither pAkt nor pERK were detected in either group. Conclusions: We found that PSPA maintained high cell viability, boosted DNA synthesis, and preserved a high percentage of continuously cycling cells to promote cell survival and division without changing cell morphology. This paper lays the foundation for further research about the damage-protective activities of PSPA on RPE cells or human vision.

  20. The Contribution of L-Type Cav1.3 Channels to Retinal Light Responses

    Directory of Open Access Journals (Sweden)

    Liheng Shi

    2017-12-01

    Full Text Available L-type voltage-gated calcium channels (LTCCs regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Cav1.2, Cav1.3, and Cav1.4 expressed in the retina. While Cav1.2 is expressed in all retinal cells including the Müller glia and neurons, Cav1.3 and Cav1.4 are expressed in the retinal neurons with Cav1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Cav1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Cav1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Cav1.3 are not associated with severe vision impairment in humans or in Cav1.3-null (Cav1.3−/− mice. However, a failure to regulate Cav1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Cav1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Cav1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG recordings and immunohistochemical staining, we found that Cav1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Cav1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Cav1.3−/− mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT. Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Cav1.3−/− mice retinas. Hence, Cav1.3 plays a more prominent role in retinal physiology and function than previously reported.

  1. The Contribution of L-Type Cav1.3 Channels to Retinal Light Responses.

    Science.gov (United States)

    Shi, Liheng; Chang, Janet Ya-An; Yu, Fei; Ko, Michael L; Ko, Gladys Y-P

    2017-01-01

    L-type voltage-gated calcium channels (LTCCs) regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Ca v 1.2, Ca v 1.3, and Ca v 1.4) expressed in the retina. While Ca v 1.2 is expressed in all retinal cells including the Müller glia and neurons, Ca v 1.3 and Ca v 1.4 are expressed in the retinal neurons with Ca v 1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Ca v 1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Ca v 1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Ca v 1.3 are not associated with severe vision impairment in humans or in Ca v 1.3-null (Ca v 1.3 -/- ) mice. However, a failure to regulate Ca v 1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Ca v 1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Ca v 1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG) recordings and immunohistochemical staining, we found that Ca v 1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Ca v 1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Ca v 1.3 -/- mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT). Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Ca v 1.3 -/- mice retinas. Hence, Ca v 1.3 plays a more prominent role in retinal physiology and function than previously reported.

  2. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    Science.gov (United States)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  3. 77 FR 33227 - Assessment Questionnaire-IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT)

    Science.gov (United States)

    2012-06-05

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0069] Assessment Questionnaire--IP Sector... comments concerning new Information Collection Request--Assessment Questionnaire--IP Sector Specific Agency... http://www.regulations.gov , including any personal information provided. OMB is particularly...

  4. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  5. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-01-01

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases

  6. An optimized protocol for isolating primary epithelial cell chromatin for ChIP.

    Directory of Open Access Journals (Sweden)

    James A Browne

    Full Text Available A critical part of generating robust chromatin immunoprecipitation (ChIP data is the optimization of chromatin purification and size selection. This is particularly important when ChIP is combined with next-generation sequencing (ChIP-seq to identify targets of DNA-binding proteins, genome-wide. Current protocols refined by the ENCODE consortium generally use a two-step cell lysis procedure that is applicable to a wide variety of cell types. However, the isolation and size selection of chromatin from primary human epithelial cells may often be particularly challenging. These cells tend to form sheets of formaldehyde cross-linked material in which cells are resistant to membrane lysis, nuclei are not released and subsequent sonication produces extensive high molecular weight contamination. Here we describe an optimized protocol to prepare high quality ChIP-grade chromatin from primary human bronchial epithelial cells. The ENCODE protocol was used as a starting point to which we added the following key steps to separate the sheets of formaldehyde-fixed cells prior to lysis. (1 Incubation of the formaldehyde-fixed adherent cells in Trypsin-EDTA (0.25% room temperature for no longer than 5 min. (2 Equilibration of the fixed cells in detergent-free lysis buffers prior to each lysis step. (3 The addition of 0.5% Triton X-100 to the complete cell membrane lysis buffer. (4 Passing the cell suspension (in complete cell membrane lysis buffer through a 25-gauge needle followed by continuous agitation on ice for 35 min. Each step of the modified protocol was documented by light microscopy using the Methyl Green-Pyronin dual dye, which stains cytoplasm red (Pyronin and the nuclei grey-blue (Methyl green. This modified method is reproducibly effective at producing high quality sheared chromatin for ChIP and is equally applicable to other epithelial cell types.

  7. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment.

    Directory of Open Access Journals (Sweden)

    Nicole Purrier

    Full Text Available Several aspects of behavior and physiology, such as sleep and wakefulness, blood pressure, body temperature, and hormone secretion exhibit daily oscillations known as circadian rhythms. These circadian rhythms are orchestrated by an intrinsic biological clock in the suprachiasmatic nuclei (SCN of the hypothalamus which is adjusted to the daily environmental cycles of day and night by the process of photoentrainment. In mammals, the neuronal signal for photoentrainment arises from a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs that send a direct projection to the SCN. ipRGCs also mediate other non-image-forming (NIF visual responses such as negative masking of locomotor activity by light, and the pupillary light reflex (PLR via co-release of neurotransmitters glutamate and pituitary adenylate cyclase-activating peptide (PACAP from their synaptic terminals. The relative contribution of each neurotransmitter system for the circadian photoentrainment and other NIF visual responses is still unresolved. We investigated the role of glutamatergic neurotransmission for circadian photoentrainment and NIF behaviors by selective ablation of ipRGC glutamatergic synaptic transmission in mice. Mutant mice displayed delayed re-entrainment to a 6 h phase shift (advance or delay in the light cycle and incomplete photoentrainment in a symmetrical skeleton photoperiod regimen (1 h light pulses between 11 h dark periods. Circadian rhythmicity in constant darkness also was reduced in some mutant mice. Other NIF responses such as the PLR and negative masking responses to light were also partially attenuated. Overall, these results suggest that glutamate from ipRGCs drives circadian photoentrainment and negative masking responses to light.

  8. Repetitive magnetic stimulation improves retinal function in a rat model of retinal dystrophy

    Science.gov (United States)

    Rotenstreich, Ygal; Tzameret, Adi; Levi, Nir; Kalish, Sapir; Sher, Ifat; Zangen, Avraham; Belkin, Michael

    2014-02-01

    Vision incapacitation and blindness associated with retinal dystrophies affect millions of people worldwide. Retinal degeneration is characterized by photoreceptor cell death and concomitant remodeling of remaining retinal cells. Repetitive Magnetic Stimulation (RMS) is a non-invasive technique that creates alternating magnetic fields by brief electric currents transmitted through an insulated coil. These magnetic field generate action potentials in neurons, and modulate the expression of neurotransmitter receptors, growth factors and transcription factors which mediate plasticity. This technology has been proven effective and safe in various psychiatric disorders. Here we determined the effect of RMS on retinal function in Royal College of Surgeons (RCS) rats, a model for retinal dystrophy. Four week-old RCS and control Spargue Dawley (SD) rats received sham or RMS treatment over the right eye (12 sessions on 4 weeks). RMS treatment at intensity of at 40% of the maximal output of a Rapid2 stimulator significantly increased the electroretinogram (ERG) b-wave responses by up to 6- or 10-fold in the left and right eye respectively, 3-5 weeks following end of treatment. RMS treatment at intensity of 25% of the maximal output did not significant effect b-wave responses following end of treatment with no adverse effect on ERG response or retinal structure of SD rats. Our findings suggest that RMS treatment induces delayed improvement of retinal functions and may induce plasticity in the retinal tissue. Furthermore, this non-invasive treatment may possibly be used in the future as a primary or adjuvant treatment for retinal dystrophy.

  9. Therapeutic Effect of Novel Single-Stranded RNAi Agent Targeting Periostin in Eyes with Retinal Neovascularization

    Directory of Open Access Journals (Sweden)

    Takahito Nakama

    2017-03-01

    Full Text Available Retinal neovascularization (NV due to retinal ischemia remains one of the principal causes of vision impairment in patients with ischemic retinal diseases. We recently reported that periostin (POSTN may play a role in the development of preretinal fibrovascular membranes, but its role in retinal NV has not been determined. The purpose of this study was to examine the expression of POSTN in the ischemic retinas of a mouse model of oxygen-induced retinal NV. We also studied the function of POSTN on retinal NV using Postn KO mice and human retinal endothelial cells (HRECs in culture. In addition, we used a novel RNAi agent, NK0144, which targets POSTN to determine its effect on the development of retinal NV. Our results showed that the expression of POSTN was increased in the vascular endothelial cells, pericytes, and M2 macrophages in ischemic retinas. POSTN promoted the ischemia-induced retinal NV by Akt phosphorylation through integrin αvβ3. NK0144 had a greater inhibitory effect than canonical double-stranded siRNA on preretinal pathological NV in vivo and in vitro. These findings suggest a causal relationship between POSTN and retinal NV, and indicate a potential therapeutic role of intravitreal injection of NK0144 for retinal neovascular diseases.

  10. Segmentation of retinal blood vessels for detection of diabetic retinopathy: A review

    Directory of Open Access Journals (Sweden)

    Rezty Amalia Aras

    2016-05-01

    Full Text Available Diabetic detinopathy (DR is effect of diabetes mellitus to the human vision that is the major cause of blindness. Early diagnosis of DR is an important requirement in diabetes treatment. Retinal fundus image is commonly used to observe the diabetic retinopathy symptoms. It can present retinal features such as blood vessel and also capture the pathologies which may lead to DR. Blood vessel is one of retinal features which can show the retina pathologies. It can be extracted from retinal image by image processing with following stages: pre-processing, segmentation, and post-processing. This paper contains a review of public retinal image dataset and several methods from various conducted researches. All discussed methods are applicable to each researcher cases. There is no further analysis to conclude the best method which can be used for general cases. However, we suggest morphological and multiscale method that gives the best accuracy in segmentation.

  11. GMI-IPS: Python Processing Software for Aircraft Campaigns

    Science.gov (United States)

    Damon, M. R.; Strode, S. A.; Steenrod, S. D.; Prather, M. J.

    2018-01-01

    NASA's Atmospheric Tomography Mission (ATom) seeks to understand the impact of anthropogenic air pollution on gases in the Earth's atmosphere. Four flight campaigns are being deployed on a seasonal basis to establish a continuous global-scale data set intended to improve the representation of chemically reactive gases in global atmospheric chemistry models. The Global Modeling Initiative (GMI), is creating chemical transport simulations on a global scale for each of the ATom flight campaigns. To meet the computational demands required to translate the GMI simulation data to grids associated with the flights from the ATom campaigns, the GMI ICARTT Processing Software (GMI-IPS) has been developed and is providing key functionality for data processing and analysis in this ongoing effort. The GMI-IPS is written in Python and provides computational kernels for data interpolation and visualization tasks on GMI simulation data. A key feature of the GMI-IPS, is its ability to read ICARTT files, a text-based file format for airborne instrument data, and extract the required flight information that defines regional and temporal grid parameters associated with an ATom flight. Perhaps most importantly, the GMI-IPS creates ICARTT files containing GMI simulated data, which are used in collaboration with ATom instrument teams and other modeling groups. The initial main task of the GMI-IPS is to interpolate GMI model data to the finer temporal resolution (1-10 seconds) of a given flight. The model data includes basic fields such as temperature and pressure, but the main focus of this effort is to provide species concentrations of chemical gases for ATom flights. The software, which uses parallel computation techniques for data intensive tasks, linearly interpolates each of the model fields to the time resolution of the flight. The temporally interpolated data is then saved to disk, and is used to create additional derived quantities. In order to translate the GMI model data to the

  12. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy.

    Science.gov (United States)

    Alavi, Marcel V; Mao, Mao; Pawlikowski, Bradley T; Kvezereli, Manana; Duncan, Jacque L; Libby, Richard T; John, Simon W M; Gould, Douglas B

    2016-01-27

    Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in vivo using fluorescein angiography, funduscopy and optical coherence tomography. We assessed retinal function by electroretinography and studied the retinal ultrastructural pathology. Retinal examinations revealed serous chorioretinopathy, retinal hemorrhages, fibrosis or signs of pathogenic angiogenesis with chorioretinal anastomosis in up to approximately 90% of Col4a1 mutant eyes depending on age and the specific mutation. To identify the cell-type responsible for pathogenesis we generated a conditional Col4a1 mutation and determined that primary vascular defects underlie Col4a1-associated retinopathy. We also found focal activation of Müller cells and increased expression of pro-angiogenic factors in retinas from Col4a1(+/Δex41)mice. Together, our findings suggest that patients with COL4A1 and COL4A2 mutations may be at elevated risk of retinal hemorrhages and that retinal examinations may be useful for identifying patients with COL4A1 and COL4A2 mutations who are also at elevated risk of hemorrhagic strokes.

  13. Processing of natural temporal stimuli by macaque retinal ganglion cells

    NARCIS (Netherlands)

    Hateren, J.H. van; Rüttiger, L.; Lee, B.B.

    2002-01-01

    This study quantifies the performance of primate retinal ganglion cells in response to natural stimuli. Stimuli were confined to the temporal and chromatic domains and were derived from two contrasting environments, one typically northern European and the other a flower show. The performance of the

  14. Bilateral patching in retinal detachment: fluid mechanics and retinal "settling".

    Science.gov (United States)

    Foster, William J

    2011-07-20

    When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or "settle." Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care.

  15. Calcium-independent phospholipase A2 regulates retinal pigment epithelium proliferation and may be important in the pathogenesis of retinal diseases

    DEFF Research Database (Denmark)

    Kolko, M; Kiilgaard, J F; Wang, J

    2009-01-01

    Calcium-independent phospholipase A2, group VIA (iPLA2-VIA) is involved in cell proliferation. This study aimed to evaluate the role of iPLA2-VIA in retinal pigment epithelium (RPE) cell proliferation and in retinal diseases involving RPE proliferation. A human RPE cell line (ARPE-19) was used...... the expression of iPLA2-VIA in proliferative vitreoretinopathy (PVR). PVR membranes revealed nuclear expression of iPLA2-VIA in the RPE cells which had migrated and participated in the formation of the membranes. Overall, the present results point to an important role of iPLA2-VIA in the regulation of RPE...

  16. Resveratrol Based Oral Nutritional Supplement Produces Long-Term Beneficial Effects on Structure and Visual Function in Human Patients

    Directory of Open Access Journals (Sweden)

    Stuart Richer

    2014-10-01

    Full Text Available Background: Longevinex® (L/RV is a low dose hormetic over-the-counter (OTC oral resveratrol (RV based matrix of red wine solids, vitamin D3 and inositol hexaphosphate (IP6 with established bioavailability, safety, and short-term efficacy against the earliest signs of human atherosclerosis, murine cardiac reperfusion injury, clinical retinal neovascularization, and stem cell survival. We previously reported our short-term findings for dry and wet age-related macular degeneration (AMD patients. Today we report long term (two to three year clinical efficacy. Methods: We treated three patients including a patient with an AMD treatment resistant variant (polypoidal retinal vasculature disease. We evaluated two clinical measures of ocular structure (fundus autofluorescent imaging and spectral domain optical coherence extended depth choroidal imaging and qualitatively appraised changes in macular pigment volume. We further evaluated three clinical measures of visual function (Snellen visual acuity, contrast sensitivity, and glare recovery to a cone photo-stress stimulus. Results: We observed broad bilateral improvements in ocular structure and function over a long time period, opposite to what might be expected due to aging and the natural progression of the patient’s pathophysiology. No side effects were observed. Conclusions: These three cases demonstrate that application of epigenetics has long-term efficacy against AMD retinal disease, when the retinal specialist has exhausted other therapeutic modalities.

  17. Dopaminergic profile of new heterocyclic N-phenylpiperazine derivatives

    Directory of Open Access Journals (Sweden)

    Neves G.

    2003-01-01

    Full Text Available Dopamine constitutes about 80% of the content of central catecholamines and has a crucial role in the etiology of several neuropsychiatric disorders, including Parkinson's disease, depression and schizophrenia. Several dopaminergic drugs are used to treat these pathologies, but many problems are attributed to these therapies. Within this context, the search for new more efficient dopaminergic agents with less adverse effects represents a vast research field. The aim of the present study was to report the structural design of two N-phenylpiperazine derivatives, compound 4: 1-[1-(4-chlorophenyl-1H-4-pyrazolylmethyl]-4-phenylhexahydropyrazine and compound 5: 1-[1-(4-chlorophenyl-1H-1,2,3-triazol-4-ylmethyl]-4-phenylhexahydropyrazine, planned to be dopamine ligands, and their dopaminergic action profile. The two compounds were assayed (dose range of 15-40 mg/kg in three experimental models: 1 blockade of amphetamine (30 mg/kg, ip-induced stereotypy in rats; 2 the catalepsy test in mice, and 3 apomorphine (1 mg/kg, ip-induced hypothermia in mice. Both derivatives induced cataleptic behavior (40 mg/kg, ip and a hypothermic response (30 mg/kg, ip which was not prevented by haloperidol (0.5 mg/kg, ip. Compound 5 (30 mg/kg, ip also presented a synergistic hypothermic effect with apomorphine (1 mg/kg, ip. Only compound 4 (30 mg/kg, ip significantly blocked the amphetamine-induced stereotypy in rats. The N-phenylpiperazine derivatives 4 and 5 seem to have a peculiar profile of action on dopaminergic functions. On the basis of the results of catalepsy and amphetamine-induced stereotypy, the compounds demonstrated an inhibitory effect on dopaminergic behaviors. However, their hypothermic effect is compatible with the stimulation of dopaminergic function which seems not to be mediated by D2/D3 receptors.

  18. Towards a Completely Implantable, Light-Sensitive Intraocular Retinal Prosthesis

    National Research Council Canada - National Science Library

    Humayun, M

    2001-01-01

    .... Previous studies have established the feasibility of the retinal prosthesis. Short-term tests in blind humans have shown that degenerated retina will respond to light in a way that is consistent with form vision...

  19. Politics and Human Welfare: Retinitis Pigmentosa Patients in South Africa.

    Science.gov (United States)

    McKendrick, B. W.; Leketi, M.

    1990-01-01

    The study found that apartheid impacted the sociopsychological and physical circumstances of 12 African and 11 White people with retinitis pigmentosa in South Africa. Findings are discussed in terms of onset of condition, effects on subjects' lives, knowledge of social services, and needs unmet by existing services. (JDD)

  20. Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function.

    Science.gov (United States)

    Scherer, Paul C; Ding, Yan; Liu, Zhiqing; Xu, Jing; Mao, Haibin; Barrow, James C; Wei, Ning; Zheng, Ning; Snyder, Solomon H; Rao, Feng

    2016-03-29

    The family of cullin-RING E3 Ligases (CRLs) and the constitutive photomorphogenesis 9 (COP9) signalosome (CSN) form dynamic complexes that mediate ubiquitylation of 20% of the proteome, yet regulation of their assembly/disassembly remains poorly understood. Inositol polyphosphates are highly conserved signaling molecules implicated in diverse cellular processes. We now report that inositol hexakisphosphate (IP6) is a major physiologic determinant of the CRL-CSN interface, which includes a hitherto unidentified electrostatic interaction between the N-terminal acidic tail of CSN subunit 2 (CSN2) and a conserved basic canyon on cullins. IP6, with an EC50 of 20 nM, acts as an intermolecular "glue," increasing cullin-CSN2 binding affinity by 30-fold, thereby promoting assembly of the inactive CRL-CSN complexes. The IP6 synthase, Ins(1,3,4,5,6)P5 2-kinase (IPPK/IP5K) binds to cullins. Depleting IP5K increases the percentage of neddylated, active Cul1 and Cul4A, and decreases levels of the Cul1/4A substrates p27 and p21. Besides dysregulating CRL-mediated cell proliferation and UV-induced apoptosis, IP5K depletion potentiates by 28-fold the cytotoxic effect of the neddylation inhibitor MLN4924. Thus, IP5K and IP6 are evolutionarily conserved components of the CRL-CSN system and are potential targets for cancer therapy in conjunction with MLN4924.

  1. Lack of FasL expression in cultured human retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Kaestel, C G; Madsen, H O; Prause, J U

    2001-01-01

    Retinal pigment epithelial (RPE) cells have been proposed to play a part in maintaining the eye as an immune privileged organ. However, our knowledge of the implicated mechanism is still sparse. Fas ligand (FasL) expression of RPE cells is generally recognized to be essential for the immune...... privilege of the eye, but due to contradictory published results, it is unclear whether RPE cells express this molecule. The purpose of this study was to investigate the expression of FasL in RPE cells in vitro and in vivo. Cultured human fetal and adult RPE cells were examined by flow cytometry, Western...... blotting, RT-PCR and RNase Protection assay for FasL expression. Additionally, sections of ocular tissue were stained for FasL by immunohistochemistry. None of the used methods indicated FasL expression in cultured fetal or adult RPE cells of various passages. However, RPE cells in vivo, as judged from...

  2. IP Security für Linux

    OpenAIRE

    Parthey, Mirko

    2001-01-01

    Die Nutzung des Internet für sicherheitskritische Anwendungen erfordert kryptographische Schutzmechanismen. IP Security (IPsec) definiert dafür geeignete Protokolle. Diese Arbeit gibt einen Überblick über IPsec. Eine IPsec-Implementierung für Linux (FreeS/WAN) wird auf Erweiterbarkeit und Praxistauglichkeit untersucht. Using the Internet in security-critical areas requires cryptographic protection, for which IP Security (IPsec) defines suitable protocols. This paper gives an overview of IP...

  3. Retinal oxygen saturation in relation to retinal thickness in diabetic macular edema

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Peto, Tunde; Grauslund, Jakob

    to retinal thickness in patients with diabetic macular edema (DME). Methods: We included 18 patients with DME that all had central retinal thickness (CRT) >300 µm and were free of active proliferative diabetic retinopathy. Optical coherence tomography (Topcon 3D OCT-2000 spectral domain OCT) was used...... for paracentral edema, the oxygen saturation in the upper and lower temporal arcade branches were compared to the corresponding upper and lower subfield thickness. Spearman’s rank was used to calculate correlation coefficients between CRT and retinal oximetry. Results: Median age and duration of diabetes was 59....... 92.3%, p=0.52). We found no correlation between CRT and retinal oxygen saturation, even when accounting for paracentral edema (p>0.05). Furthermore, there was no difference in retinal oxygen saturation between the macular hemisphere that was more or less affected by DME (p>0.05). Conclusion: Patients...

  4. PEMBELAJARAN IPS DALAM REALITA DI ERA KTSP: STUDI EKSPLORASI PELAKSANAAN PEMBELAJARAN IPS PADA JENJANG SMP DI KABUPATEN PATI

    Directory of Open Access Journals (Sweden)

    Edi Sutrisna

    2011-10-01

    Full Text Available Application of KTSP as a curriculum based on competency requires the implementation of strategies and methods that can deliver a number of learners achieving a particular competence. IPS as a subject who has a noble purpose, namely to prepare students to be good citizens, should be taught to students through appropriate strategies and methods by utilizing various media sources and learning. Most social studies teachers still promote the use of expository strategies in presenting lessons of Social Science education and the use of resources and learning media are minimal. Environment, as a laboratory of IPS is not utilized properly.The study shows that most teachers still tend to use expository teaching strategies, use of resources and learning media that are less varied, and integrated approaches to teaching social studies can not be realized by the teachers due to various constraints.   Keywords: learning, IPS, junior school, KTSP   Penerapan KTSP sebagai kurikulum berbasis kompetensi membutuhkan penerapan strategi dan metode yang dapat memberikan sejumlah peserta didik mencapai kompetensi tertentu. IPS sebagai subjek yang memiliki tujuan mulia, yaitu untuk mempersiapkan siswa untuk menjadi warga negara yang baik, harus diajarkan kepada siswa melalui strategi yang tepat dan metode dengan memanfaatkan berbagai sumber media dan pembelajaran. Kebanyakan guru IPS masih menggunakan strategi ekspositori dalam menyajikan meteri pelajaran IPS dengan menggunakan sumber daya dan media pembelajaran yang minimal. Lingkungan sekitar, sebagai laboratorium IPS tidak digunakan menunjukkan pembelajaran yang baik. Kebanyakan guru masih cenderung untuk menggunakan strategi pengajaran ekspositori, penggunaan sumber daya dan media pembelajaran yang kurang bervariasi, dan pendekatan terpadu untuk mengajar IPS, sehingga tidak dapat direalisasikan oleh para guru karena berbagai kendala.   Kata kunci: pembelajaran, IPS, SMP, KTSP  

  5. Frequency of lattice degeneration and retinal breaks in the fellow eye in retinal detachment.

    Science.gov (United States)

    Lorentzen, S E

    1988-04-01

    The fellow eye of 100 consecutively admitted cases of retinal detachment was studied with three-mirror examination for the presence of lattice degeneration and retinal breaks. Lattice degeneration was found in 18% and retinal breaks in 20% of fellow eyes.

  6. Lin28b stimulates the reprogramming of rat Müller glia to retinal progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen; Tao, Zui; Xue, Langyue; Zeng, Yuxiao [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China); Wang, Yi, E-mail: wangyieye@aliyun.com [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China); Xu, Haiwei, E-mail: haiweixu2001@163.com [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China); Yin, Zheng Qin, E-mail: qinzyin@aliyun.com [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China)

    2017-03-01

    In lower-order vertebrates, Müller glia exhibit characteristics of retinal progenitor cells, while in higher vertebrates, such as mammals, the regenerative capacity of Müller glia is limited. Recently, we reported that Lin28b promoted the trans-differentiation of Müller cells to rod photoreceptor and bipolar cells in the retina of retinitis pigmentosa rat model, whereas it is unclear whether Lin28b can stimulate the reprogramming of Müller glia in vitro for transplantation into a damaged retina. In the present study, Long-Evens rat Müller glia were infected with Adeno-Lin28b or Adeno-GFP. Over-expression of Lin28b in isolated rat Müller glia resulted in the suppression of GFAP expression, enhancement of cell proliferation and a significant increase of the expression of retinal progenitor markers 5 days after infection. Moreover, Lin28b caused a significant reduction of the Let-7 family of microRNAs. Following sub-retinal space transplantation, Müller glia-derived retinal progenitors improved b-wave amplification of 30d Royal College of Surgeons retinitis pigmentosa model (RCS-P+) rats, as detected by electroretinography (ERG) recordings. Taken together, these data suggest that the up-regulation of Lin28b expression facilitated the reprogramming of Müller cells toward characteristics of retinal progenitors. - Highlights: • Lin28b reprograms Müller glia to retinal progenitors. • Let-7 micrRNAs are suppressed by Lin28b. • Transplantation of reprogrammed Müller glia restores retinal function.

  7. Lin28b stimulates the reprogramming of rat Müller glia to retinal progenitors

    International Nuclear Information System (INIS)

    Zhao, Chen; Tao, Zui; Xue, Langyue; Zeng, Yuxiao; Wang, Yi; Xu, Haiwei; Yin, Zheng Qin

    2017-01-01

    In lower-order vertebrates, Müller glia exhibit characteristics of retinal progenitor cells, while in higher vertebrates, such as mammals, the regenerative capacity of Müller glia is limited. Recently, we reported that Lin28b promoted the trans-differentiation of Müller cells to rod photoreceptor and bipolar cells in the retina of retinitis pigmentosa rat model, whereas it is unclear whether Lin28b can stimulate the reprogramming of Müller glia in vitro for transplantation into a damaged retina. In the present study, Long-Evens rat Müller glia were infected with Adeno-Lin28b or Adeno-GFP. Over-expression of Lin28b in isolated rat Müller glia resulted in the suppression of GFAP expression, enhancement of cell proliferation and a significant increase of the expression of retinal progenitor markers 5 days after infection. Moreover, Lin28b caused a significant reduction of the Let-7 family of microRNAs. Following sub-retinal space transplantation, Müller glia-derived retinal progenitors improved b-wave amplification of 30d Royal College of Surgeons retinitis pigmentosa model (RCS-P+) rats, as detected by electroretinography (ERG) recordings. Taken together, these data suggest that the up-regulation of Lin28b expression facilitated the reprogramming of Müller cells toward characteristics of retinal progenitors. - Highlights: • Lin28b reprograms Müller glia to retinal progenitors. • Let-7 micrRNAs are suppressed by Lin28b. • Transplantation of reprogrammed Müller glia restores retinal function.

  8. Rapid Retinal Release from a Cone Visual Pigment Following Photoactivation*

    Science.gov (United States)

    Chen, Min-Hsuan; Kuemmel, Colleen; Birge, Robert R.; Knox, Barry E.

    2012-01-01

    As part of the visual cycle, the retinal chromophore in both rod and cone visual pigments undergoes reversible Schiff base hydrolysis and dissociation following photobleaching. We characterized light-activated retinal release from a short-wavelength sensitive cone pigment (VCOP) in 0.1% dodecyl maltoside using fluorescence spectroscopy. The half-time (t1/2) of retinal release from VCOP was 7.1 s, 250-fold faster than rhodopsin. VCOP exhibited pH-dependent release kinetics, with the t1/2 decreasing from 23 s to 4 s with pH 4.1 to 8, respectively. However, the Arrhenius activation energy (Ea) for VCOP derived from kinetic measurements between 4° and 20°C was 17.4 kcal/mol, similar to 18.5 kcal/mol for rhodopsin. There was a small kinetic isotope (D2O) effect in VCOP, but less than that observed in rhodopsin. Mutation of the primary Schiff base counterion (VCOPD108A) produced a pigment with an unprotonated chromophore (⌊max = 360 nm) and dramatically slowed (t1/2 ~ 6.8 min) light-dependent retinal release. Using homology modeling, a VCOP mutant with two substitutions (S85D/ D108A) was designed to move the counterion one alpha helical turn into the transmembrane region from the native position. This double mutant had a UV-visible absorption spectrum consistent with a protonated Schiff base (⌊max = 420 nm). Moreover, VCOPS85D/D108A mutant had retinal release kinetics (t1/2 = 7 s) and Ea (18 kcal/mol) similar to the native pigment exhibiting no pH-dependence. By contrast, the single mutant VCOPS85D had a ~3-fold decrease in retinal release rate compared to the native pigment. Photoactivated VCOPD108A had kinetics comparable to a rhodopsin counterion mutant, RhoE113Q, both requiring hydroxylamine to fully release retinal. These results demonstrate that the primary counterion of cone visual pigments is necessary for efficient Schiff base hydrolysis. We discuss how the large differences in retinal release rates between rod and cone visual pigments arise, not from

  9. Analysis of Handoff Mechanisms in Mobile IP

    Science.gov (United States)

    Jayaraj, Maria Nadine Simonel; Issac, Biju; Haldar, Manas Kumar

    2011-06-01

    One of the most important challenges in mobile Internet Protocol (IP) is to provide service for a mobile node to maintain its connectivity to network when it moves from one domain to another. IP is responsible for routing packets across network. The first major version of IP is the Internet Protocol version 4 (IPv4). It is one of the dominant protocols relevant to wireless network. Later a newer version of IP called the IPv6 was proposed. Mobile IPv6 is mainly introduced for the purpose of mobility. Mobility management enables network to locate roaming nodes in order to deliver packets and maintain connections with them when moving into new domains. Handoff occurs when a mobile node moves from one network to another. It is a key factor of mobility because a mobile node can trigger several handoffs during a session. This paper briefly explains on mobile IP and its handoff issues, along with the drawbacks of mobile IP.

  10. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Mingyan Lin

    Full Text Available Genome-wide expression analysis using next generation sequencing (RNA-Seq provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs, pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ, bipolar disorder (BD and autism spectrum disorders (ASD that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients.

  11. An approach to localize the retinal blood vessels using bit planes and centerline detection.

    Science.gov (United States)

    Fraz, M M; Barman, S A; Remagnino, P; Hoppe, A; Basit, A; Uyyanonvara, B; Rudnicka, A R; Owen, C G

    2012-11-01

    The change in morphology, diameter, branching pattern or tortuosity of retinal blood vessels is an important indicator of various clinical disorders of the eye and the body. This paper reports an automated method for segmentation of blood vessels in retinal images. A unique combination of techniques for vessel centerlines detection and morphological bit plane slicing is presented to extract the blood vessel tree from the retinal images. The centerlines are extracted by using the first order derivative of a Gaussian filter in four orientations and then evaluation of derivative signs and average derivative values is performed. Mathematical morphology has emerged as a proficient technique for quantifying the blood vessels in the retina. The shape and orientation map of blood vessels is obtained by applying a multidirectional morphological top-hat operator with a linear structuring element followed by bit plane slicing of the vessel enhanced grayscale image. The centerlines are combined with these maps to obtain the segmented vessel tree. The methodology is tested on three publicly available databases DRIVE, STARE and MESSIDOR. The results demonstrate that the performance of the proposed algorithm is comparable with state of the art techniques in terms of accuracy, sensitivity and specificity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment

    Science.gov (United States)

    Lee, Christine; Tu, Hong Anh; Weir, Mark; Holubowich, Corinne

    2016-01-01

    Background Retinitis pigmentosa is a group of genetic disorders that involves the breakdown and loss of photoreceptors in the retina, resulting in progressive retinal degeneration and eventual blindness. The Argus II Retinal Prosthesis System is the only currently available surgical implantable device approved by Health Canada. It has been shown to improve visual function in patients with severe visual loss from advanced retinitis pigmentosa. The objective of this analysis was to examine the clinical effectiveness, cost-effectiveness, budget impact, and safety of the Argus II system in improving visual function, as well as exploring patient experiences with the system. Methods We performed a systematic search of the literature for studies examining the effects of the Argus II retinal prosthesis system in patients with advanced retinitis pigmentosa, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on visual function, functional outcomes, quality of life, and adverse events. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care over a 10-year time horizon. We also conducted a 5-year budget impact analysis. We used a qualitative design and an interview methodology to examine patients’ lived experience, and we used a modified grounded theory methodology to analyze information from interviews. Transcripts were coded, and themes were compared against one another. Results One multicentre international study and one single-centre study were included in the clinical review. In both studies, patients showed improved visual function with the Argus II system. However, the sight-threatening surgical complication rate was substantial. In the base-case analysis, the Argus II system was cost-effective compared with standard care only if willingness-to-pay was more than $207,616 per quality-adjusted life

  13. Optical modulation of transgene expression in retinal pigment epithelium

    Science.gov (United States)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  14. Live-cell imaging: new avenues to investigate retinal regeneration

    Directory of Open Access Journals (Sweden)

    Manuela Lahne

    2017-01-01

    Full Text Available Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.

  15. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen

    2008-05-01

    Full Text Available Abstract Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs. At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+ showed that (1 the total number of RGC axons projected by the retina and (2 the proportions that are sorted into the ipsilateral and

  16. Raised intraocular pressure and recurrence of retinal detachment as complications of external retinal detachment surgery

    International Nuclear Information System (INIS)

    Jawwad, M.; Khan, B.; Shah, M.A.; Qayyum, I.; Aftab, M.; Qayyum, I.

    2015-01-01

    Patients with Rhegmatogenous retinal detachment may develop raised intraocular pressure and recurrence of retinal detachment when they undergo external retinal detachment surgery. The present study was conducted to determine the postoperative rise in intraocular pressure (IOP) and recurrence of retinal detachment. Methods: The present descriptive study was conducted at Eye department of Lady Reading Hospital, Peshawar on 25 patients of both genders from August 2012 to July 2014. Results: Of the 25 patients, 18 (72%) developed raised IOP in the immediate postoperative period; this figure decreased to 12 (48%) at one week. Following medical or surgical intervention in these 12 cases, there was only 1 (4%) case with mildly raised IOP at two weeks postoperative. Five (20%) cases developed recurrent retinal detachment which later resolved with treatment. There were no significant differences by age or gender. Conclusion: External Retinal Detachment Surgery raised intraocular pressure postoperatively and caused recurrence of retinal detachment. These complications were treated medically and surgically with resolution within two weeks. (author)

  17. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan

    Science.gov (United States)

    Chen, San-Ni; Hwang, Jiunn-Feng; Wu, Wen-Chuan

    2016-01-01

    This is an observational study of fluorescein angiography (FA) in consecutive patients with rhegmatogenous retinal detachment (RRD) in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL), and refraction status (RF) recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8%) in group 1, 3 eyes (4.1%) in group 2, 40 eyes (54.8%) in group 3 and 17 eyes (23.3%) in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion. PMID:26909812

  18. IP3 levels and their modulation FY fusicoccin measured by a novel [3H] IP3 binding assay

    International Nuclear Information System (INIS)

    Aducci, P.; Marra, M.

    1990-01-01

    A recently developed sensitive assay based on the binding reaction of IP3 to bovine adrenal preparations has been utilized for determining the level of endogenous inositol-1,4,5 trisphosphate (IP3) in maize roots and coleoptiles. The amount of IP3 found in these tissues ranges from 0.1 to 1.0 nmol g-1 fresh weight. Reproducible results were obtained with extracts of tissues from a same harvest, while they showed a 2-3 fold variation when different batches of plantlets were compared. The fungal phytotoxin fusicoccin (FC) known to affect several physiological processes in higher plants, increases the level of IP3 in coleoptiles. This observation suggests that IP3 might be involved in the transduction of the FC encoded signal from its receptors at the plasmalemma level to the cell machinery

  19. Retinal Pigmented Epithelial Cells Obtained from Human Induced Pluripotent Stem Cells Possess Functional Visual Cycle Enzymes in Vitro and in Vivo*

    Science.gov (United States)

    Maeda, Tadao; Lee, Mee Jee; Palczewska, Grazyna; Marsili, Stefania; Tesar, Paul J.; Palczewski, Krzysztof; Takahashi, Masayo; Maeda, Akiko

    2013-01-01

    Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. hiPS-RPE cells appeared morphologically similar to mpRPE cells. Notably, expression of certain visual cycle proteins was maintained during cell culture of hiPS-RPE cells, whereas expression of these same molecules rapidly decreased in mpRPE cells. Production of the visual chromophore, 11-cis-retinal, and retinosome formation also were documented in hiPS-RPE cells in vitro. When mpRPE cells with luciferase activity were transplanted into the subretinal space of mice, bioluminance intensity was preserved for >3 months. Additionally, transplantation of mpRPE into blind Lrat−/− and Rpe65−/− mice resulted in the recovery of visual function, including increased electrographic signaling and endogenous 11-cis-retinal production. Finally, when hiPS-RPE cells were transplanted into the subretinal space of Lrat−/− and Rpe65−/− mice, their vision improved as well. Moreover, histological analyses of these eyes displayed replacement of dysfunctional RPE cells by hiPS-RPE cells. Together, our results show that hiPS-RPE cells can exhibit a functional visual cycle in vitro and in vivo. These cells could provide potential treatment options for certain blinding retinal degenerative diseases. PMID:24129572

  20. Real-Time Imaging of Retinal Ganglion Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Timothy E. Yap

    2018-06-01

    Full Text Available Monitoring real-time apoptosis in-vivo is an unmet need of neurodegeneration science, both in clinical and research settings. For patients, earlier diagnosis before the onset of symptoms provides a window of time in which to instigate treatment. For researchers, being able to objectively monitor the rates of underlying degenerative processes at a cellular level provides a biomarker with which to test novel therapeutics. The DARC (Detection of Apoptosing Retinal Cells project has developed a minimally invasive method using fluorescent annexin A5 to detect rates of apoptosis in retinal ganglion cells, the key pathological process in glaucoma. Numerous animal studies have used DARC to show efficacy of novel, pressure-independent treatment strategies in models of glaucoma and other conditions where retinal apoptosis is reported, including Alzheimer’s disease. This may forge exciting new links in the clinical science of treating both cognitive and visual decline. Human trials are now underway, successfully demonstrating the safety and efficacy of the technique to differentiate patients with progressive neurodegeneration from healthy individuals. We review the current perspectives on retinal ganglion cell apoptosis, the way in which this can be imaged, and the exciting advantages that these future methods hold in store.

  1. Induced pluripotent stem (iPS) cells from human fetal stem cells

    OpenAIRE

    Guillot, P. V.

    2016-01-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, f...

  2. A simple method to quantitate IP-10 in dried blood and plasma spots.

    Directory of Open Access Journals (Sweden)

    Martine G Aabye

    Full Text Available BACKGROUND: Antigen specific release of IP-10 is an established marker for infection with M.tuberculosis. Compared to IFN-γ, IP-10 is released in 100-fold higher concentrations enabling the development of novel assays for detection. Dried blood spots are a convenient sample for high throughput newborn screening. AIM: To develop a robust and sensitive ELISA-based assay for IP-10 detection in plasma, dried blood spots (DBS and dried plasma spots (DPS; to validate the ELISA in clinically relevant samples; and to assess the performance of the assay for detection of Cytomegalovirus (CMV and M.tuberculosis specific immune responses. METHOD: We raised mice and rat monoclonal antibodies against human IP-10 and developed an ELISA. The assay was validated and applied to the detection of CMV and M.tuberculosis specific responses in 18 patients with immune reactivity towards M.tuberculosis and 32 healthy controls of which 22 had immune reactivity towards CMV and none towards M.tuberculosis. We compared the performance of this new assay to IFN-γ. RESULTS: The ELISA was reliable for IP-10 detection in both plasma and filter paper samples. The linear range of the ELISA was 2.5-600 pg/ml. IFN-γ was not readily detectable in DPS samples. IP-10 was stabile in filter paper samples for at least 4 weeks at 37 °C. The correlation between IP-10 detected in plasma, DPS and DBS samples was excellent (r(2>0.97. CONCLUSIONS: This newly developed assay is reliable for IP-10 quantification in plasma, DBS and DPS samples from antigen stimulated and non-stimulated whole blood. The filter paper assays enable easy sample acquisition and transport at ambient temperature e.g. via the postal system. The system can potentially simplify diagnostic assays for M.tuberculosis and CMV infection.

  3. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions.

    NARCIS (Netherlands)

    Koenekoop, R.K.; Lopez, I.; Hollander, A.I. den; Allikmets, R.; Cremers, F.P.M.

    2007-01-01

    Human retinal dystrophies have unparalleled genetic and clinical diversity and are currently linked to more than 185 genetic loci. Genotyping is a crucial exercise, as human gene-specific clinical trials to study photoreceptor rescue are on their way. Testing confirms the diagnosis at the molecular

  4. Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data.

    Science.gov (United States)

    Waszak, Sebastian M; Kilpinen, Helena; Gschwind, Andreas R; Orioli, Andrea; Raghav, Sunil K; Witwicki, Robert M; Migliavacca, Eugenia; Yurovsky, Alisa; Lappalainen, Tuuli; Hernandez, Nouria; Reymond, Alexandre; Dermitzakis, Emmanouil T; Deplancke, Bart

    2014-01-15

    High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays. The R package abs filter for library clonality simulations and detection of amplification-biased sites is available from http://updepla1srv1.epfl.ch/waszaks/absfilter

  5. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  6. Role of macrophage migration inhibitory factor (MIF) in the effects of oxidative stress on human retinal pigment epithelial cells.

    Science.gov (United States)

    Ko, Ji-Ae; Sotani, Yasuyuki; Ibrahim, Diah Gemala; Kiuchi, Yoshiaki

    2017-10-01

    Proliferative vitreoretinopathy (PVR) is the major cause of treatment failure in individuals who undergo surgery for retinal detachment. The epithelial-mesenchymal transition (EMT) in retinal pigment epithelium (RPE) cells contributes to the pathogenesis of PVR. Oxidative stress is thought to play a role in the progression of retinal diseases including PVR. We have now examined the effects of oxidative stress on the EMT and related processes in the human RPE cell line. We found that H 2 O 2 induced the contraction of RPE cells in a three-dimensional collagen gel. Analysis of a cytokine array revealed that H 2 O 2 specifically increased the release of macrophage migration inhibitory factor (MIF) from RPE cells. Reverse transcription-polymerase chain reaction and immunoblot analyses showed that H 2 O 2 increased the expression of MIF in RPE cells. Immunoblot and immunofluorescence analyses revealed that H 2 O 2 upregulated the expression of α-SMA and vimentin and downregulated that of ZO-1 and N-cadherin. Consistent with these observations, the transepithelial electrical resistance of cell was reduced by exposure to H 2 O 2 . The effects of oxidative stress on EMT-related and junctional protein expression as well as on transepithelial electrical resistance were inhibited by antibodies to MIF, but they were not mimicked by treatment with recombinant MIF. Finally, analysis with a profiling array for mitogen-activated protein kinase signalling revealed that H 2 O 2 specifically induced the phosphorylation of p38 mitogen-activated protein kinase. Our results thus suggest that MIF may play a role in induction of the EMT and related processes by oxidative stress in RPE cells and that it might thereby contribute to the pathogenesis of PVR. Proliferative vitreoretinopathy is a major complication of rhegmatogenous retinal detachment, and both oxidative stress and induction of the EMT in RPE cells are thought to contribute to the pathogenesis of this condition. We have now

  7. PAR-Complex and Crumbs Function During Photoreceptor Morphogenesis and Retinal Degeneration.

    Science.gov (United States)

    Pichaud, Franck

    2018-01-01

    The fly photoreceptor has long been used as a model to study sensory neuron morphogenesis and retinal degeneration. In particular, elucidating how these cells are built continues to help further our understanding of the mechanisms of polarized cell morphogenesis, intracellular trafficking and the causes of human retinal pathologies. The conserved PAR complex, which in flies consists of Cdc42-PAR6-aPKC-Bazooka, and the transmembrane protein Crumbs (Crb) are key players during photoreceptor morphogenesis. While the PAR complex regulates polarity in many cell types, Crb function in polarity is relatively specific to epithelial cells. Together Cdc42-PAR6-aPKC-Bazooka and Crb orchestrate the differentiation of the photoreceptor apical membrane (AM) and zonula adherens (ZA) , thus allowing these cells to assemble into a neuro-epithelial lattice. In addition to its function in epithelial polarity, Crb has also been shown to protect fly photoreceptors from light-induced degeneration, a process linked to Rhodopsin expression and trafficking. Remarkably, mutations in the human Crumbs1 (CRB1) gene lead to retinal degeneration, making the fly photoreceptor a powerful disease model system.

  8. Retinal Imaging and Image Analysis

    Science.gov (United States)

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:22275207

  9. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    Science.gov (United States)

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Peripheral retinal degenerations--treatment recommendations].

    Science.gov (United States)

    Joussen, A M; Kirchhof, B

    2004-10-01

    This report reviews the clinical appearance of degenerative diseases of the peripheral retina in relationship to the risk of developing a rhegmatogenous retinal detachment. We present recommendations for preventive treatment in eyes at increased risk of developing retinal detachment. Retinal degenerations are common lesions involving the peripheral retina but most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and very rarely zonular traction tufts can result in rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic treatment; however, adequate studies have not been performed to date. Most of the peripheral retinal degenerations may not require treatment except in rare, high-risk situations. According to current knowledge there is no higher incidence of secondary pucker or other side effects after laser coagulation. Therefore, generous laser indication is recommended if risk factors apply.

  11. Biological effects of cigarette smoke in cultured human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alice L Yu

    Full Text Available The goal of the present study was to determine whether treatment with cigarette smoke extract (CSE induces cell loss, cellular senescence, and extracellular matrix (ECM synthesis in primary human retinal pigment epithelial (RPE cells. Primary cultured human RPE cells were exposed to 2, 4, 8, and 12% of CSE concentration for 24 hours. Cell loss was detected by cell viability assay. Lipid peroxidation was assessed by loss of cis-parinaric acid (PNA fluorescence. Senescence-associated ß-galactosidase (SA-ß-Gal activity was detected by histochemical staining. Expression of apolipoprotein J (Apo J, connective tissue growth factor (CTGF, fibronectin, and laminin were examined by real-time PCR, western blot, or ELISA experiments. The results showed that exposure of cells to 12% of CSE concentration induced cell death, while treatment of cells with 2, 4, and 8% CSE increased lipid peroxidation. Exposure to 8% of CSE markedly increased the number of SA-ß-Gal positive cells to up to 82%, and the mRNA expression of Apo J, CTGF, and fibronectin by approximately 3-4 fold. Treatment with 8% of CSE also increased the protein expression of Apo J and CTGF and the secretion of fibronectin and laminin. Thus, treatment with CSE can induce cell loss, senescent changes, and ECM synthesis in primary human RPE cells. It may be speculated that cigarette smoke could be involved in cellular events in RPE cells as seen in age-related macular degeneration.

  12. Aryl hydrocarbon receptor activation and CYP1A induction by cooked food-derived carcinogenic heterocyclic amines in human HepG2 cell lines.

    Science.gov (United States)

    Sekimoto, Masashi; Sumi, Haruna; Hosaka, Takuomi; Umemura, Takashi; Nishikawa, Akiyoshi; Degawa, Masakuni

    2016-11-01

    The ability of nine cooked food-derived heterocyclic aromatic amines (HCAs), such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methylpyrido[12-a:3',2'-d]imidazole (Glu-P-1), 2-amino-pyrido[12-a:3',2'-d]imidazole hydrochloride (Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP), to activate human aryl hydrocarbon receptor (hAhR) was examined using a HepG2-A10 cell line, which has previously established from human hepatocarcinoma-derived HepG2 cells for use in hAhR-based luciferase reporter gene assays. Trp-P-1, Trp-P-2, AαC, MeAαC, IQ and MeIQx showed a definite ability to induce not only luciferase (hAhR activation) in HepG2-A10 cells but also cytochrome P450 (CYP)1A1/1A2 mRNAs in HepG2 cells, while such the ability of Glu-P-1, Glu-P-2, and PhIP was very low. In addition, all the HCAs examined, especially MeAαC and MeIQx, had a definite capacity for inhibiting the activity of ethoxyresorfin O-deethylase (CYP1As, especially CYP1A1). The present findings demonstrate that all the HCAs examined have the ability to activate hAhR and its target genes, and further confirm that these HCAs become good substrates for human CYP1A subfamily enzyme(s). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film.

    Science.gov (United States)

    Najafabadi, Hoda Shams; Soheili, Zahra-Soheila; Ganji, Shahla Mohammad

    2015-01-01

    A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle's-medium-and-Ham's-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures.

  14. Establishing an experimental rat model of photodynamically-induced retinal vein occlusion using erythrosin B

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-04-01

    Full Text Available AIM:To develop a reliable, reproducible rat model of retinal vein occlusion (RVO with a novel photosensitizer (erythrosin B and study the cellular responses in the retina.METHODS:Central and branch RVOs were created in adult male rats via photochemically-induced ischemia. Retinal changes were monitored via color fundus photography and fluorescein angiography at 1 and 3h, and 1, 4, 7, 14, and 21d after irradiation. Tissue slices were evaluated histopathologically. Retinal ganglion cell survival at different times after RVO induction was quantified by nuclear density count. Retinal thickness was also observed.RESULTS:For all rats in both the central and branch RVO groups, blood flow ceased immediately after laser irradiation and retinal edema was evident at one hour. The retinal detachment rate was 100% at 3h and developed into bullous retinal detachment within 24h. Retinal hemorrhages were not observed until 24h. Clearance of the occluded veins at 7d was observed by fluorescein angiography. Disease manifestation in the central RVO eyes was more severe than in the branch RVO group. A remarkable reduction in the ganglion cell count and retinal thickness was observed in the central RVO group by 21d, whereas moderate changes occurred in the branch RVO group.CONCLUSION: Rat RVO created by photochemically-induced ischemia using erythrosin B is a reproducible and reliable animal model for mimicking the key features of human RVO. However, considering the 100% rate of retinal detachment, this animal model is more suitable for studying RVO with chronic retinal detachment.

  15. Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model.

    Science.gov (United States)

    Jeng, Yung-Yue; Lin, Nien-Ting; Chang, Pen-Heng; Huang, Yuan-Ping; Pang, Victor Fei; Liu, Chen-Hsuan; Lin, Chung-Tien

    2007-03-01

    Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction.

  16. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model.

    Science.gov (United States)

    Martin, Keith R G; Quigley, Harry A; Zack, Donald J; Levkovitch-Verbin, Hana; Kielczewski, Jennifer; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Klein, Ronald L; Hauswirth, William W

    2003-10-01

    To develop a modified adenoassociated viral (AAV) vector capable of efficient transfection of retinal ganglion cells (RGCs) and to test the hypothesis that use of this vector to express brain-derived neurotrophic factor (BDNF) could be protective in experimental glaucoma. Ninety-three rats received one unilateral, intravitreal injection of either normal saline (n = 30), AAV-BDNF-woodchuck hepatitis posttranscriptional regulatory element (WPRE; n = 30), or AAV-green fluorescent protein (GFP)-WPRE (n = 33). Two weeks later, experimental glaucoma was induced in the injected eye by laser application to the trabecular meshwork. Survival of RGCs was estimated by counting axons in optic nerve cross sections after 4 weeks of glaucoma. Transgene expression was assessed by immunohistochemistry, Western blot analysis, and direct visualization of GFP. The density of GFP-positive cells in retinal wholemounts was 1,828 +/- 299 cells/mm(2) (72,273 +/- 11,814 cells/retina). Exposure to elevated intraocular pressure was similar in all groups. Four weeks after initial laser treatment, axon loss was 52.3% +/- 27.1% in the saline-treated group (n = 25) and 52.3% +/- 24.2% in the AAV-GFP-WPRE group (n = 30), but only 32.3% +/- 23.0% in the AAV-BDNF-WPRE group (n = 27). Survival in AAV-BDNF-WPRE animals increased markedly and the difference was significant compared with those receiving either AAV-GFP-WPRE (P = 0.002, t-test) or saline (P = 0.006, t-test). Overexpression of the BDNF gene protects RGC as estimated by axon counts in a rat glaucoma model, further supporting the potential feasibility of neurotrophic therapy as a complement to the lowering of IOP in the treatment of glaucoma.

  17. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders.

    Science.gov (United States)

    Cehofski, Lasse Jørgensen; Honoré, Bent; Vorum, Henrik

    2017-04-28

    Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions.

  18. An automated retinal imaging method for the early diagnosis of diabetic retinopathy.

    Science.gov (United States)

    Franklin, S Wilfred; Rajan, S Edward

    2013-01-01

    Diabetic retinopathy is a microvascular complication of long-term diabetes and is the major cause for eyesight loss due to changes in blood vessels of the retina. Major vision loss due to diabetic retinopathy is highly preventable with regular screening and timely intervention at the earlier stages. Retinal blood vessel segmentation methods help to identify the successive stages of such sight threatening diseases like diabetes. To develop and test a novel retinal imaging method which segments the blood vessels automatically from retinal images, which helps the ophthalmologists in the diagnosis and follow-up of diabetic retinopathy. This method segments each image pixel as vessel or nonvessel, which in turn, used for automatic recognition of the vasculature in retinal images. Retinal blood vessels were identified by means of a multilayer perceptron neural network, for which the inputs were derived from the Gabor and moment invariants-based features. Back propagation algorithm, which provides an efficient technique to change the weights in a feed forward network, is utilized in our method. Quantitative results of sensitivity, specificity and predictive values were obtained in our method and the measured accuracy of our segmentation algorithm was 95.3%, which is better than that presented by state-of-the-art approaches. The evaluation procedure used and the demonstrated effectiveness of our automated retinal imaging method proves itself as the most powerful tool to diagnose diabetic retinopathy in the earlier stages.

  19. Macrophage Metalloelastase (MMP-12) Deficiency Mitigates Retinal Inflammation and Pathological Angiogenesis in Ischemic Retinopathy

    Science.gov (United States)

    Li, Jingming; Wang, Joshua J.; Peng, Qisheng; Chen, Chen; Humphrey, Mary Beth; Heinecke, Jay; Zhang, Sarah X.

    2012-01-01

    Pathological angiogenesis is a major cause of vision loss in ischemic and inflammatory retinal diseases. Recent evidence implicates macrophage metalloelastase (MMP-12), a macrophage-derived elastinolytic protease in inflammation, tissue remodeling and angiogenesis. However, little is known about the role of MMP-12 in retinal pathophysiology. The present study aims to explore the enzyme’s contributions to retinal angiogenesis in oxygen-induced retinopathy (OIR) using MMP-12 knockout (KO) mice. We find that MMP-12 expression was upregulated in OIR, accompanied by elevated macrophage infiltration and increased inflammatory markers. Compared to wildtype mice, MMP-12 KO mice had decreased levels of adhesion molecule and inflammatory cytokines and reduced vascular leakage in OIR. Concomitantly, these mice had markedly reduced macrophage content in the retina with impaired macrophage migratory capacity. Significantly, loss of MMP-12 attenuated retinal capillary dropout in early OIR and mitigated pathological retinal neovascularization (NV). Similar results were observed in the study using MMP408, a pharmacological inhibitor of MMP-12. Intriguingly, in contrast to reducing pathological angiogenesis, lack of MMP-12 accelerated revascularization of avascular retina in OIR. Taken together, we conclude that MMP-12 is a key regulator of macrophage infiltration and inflammation, contributing to retinal vascular dysfunction and pathological angiogenesis. PMID:23285156

  20. BEC-BCS crossover in a (p+ip)-wave pairing Hamiltonian coupled to bosonic molecular pairs

    International Nuclear Information System (INIS)

    Dunning, Clare; Isaac, Phillip S.; Links, Jon; Zhao, Shao-You

    2011-01-01

    We analyse a (p+ip)-wave pairing BCS Hamiltonian, coupled to a single bosonic degree of freedom representing a molecular condensate, and investigate the nature of the BEC-BCS crossover for this system. For a suitable restriction on the coupling parameters, we show that the model is integrable and we derive the exact solution by the algebraic Bethe ansatz. In this manner we also obtain explicit formulae for correlation functions and compute these for several cases. We find that the crossover between the BEC state and the strong pairing p+ip phase is smooth for this model, with no intermediate quantum phase transition.

  1. Intellectual Property and Strategic Agreements (IP/SA) | FNLCR

    Science.gov (United States)

    What does IP/SA handle? IP/SA handles all invention issues including patents and copyrights. All employee inventionreports are filed through the IP/SA office for all activities under the OTS contract.Additionally,&nbs

  2. Risk factor profile in retinal detachment

    Directory of Open Access Journals (Sweden)

    Azad Raj

    1988-01-01

    Full Text Available 150 cases of retinal detachment comprising 50 patients each of bilateral retinal detachment, unilateral retinal detachment without any retinal lesions in the fellow eve and unilateral retinal detachment with retinal lesions in the fellow eye were studied and the various associated risk factors were statistically analysed. The findings are discussed in relation to their aetiological and prognostic significance in the different types of retinal detachment. Based on these observations certain guidelines are offered which may be of value in decision making, in prophylactic detachment surgery. Tractional breaks in the superior temporal quadrant especially when symptomatic. mandate prophylactic treatment. Urgency is enhanced it′ the patient is aphakic. Associated myopia adds to the urgency. The higher incidence of initial right e′ e involvement in all groups suggests a vascular original possibly ischaemic.

  3. Cytomegalovirus retinitis after central retinal vein occlusion in a patient on systemic immunosuppression: does venooclusive disease predispose to cytomegalovirus retinitis in patients already at risk?

    Directory of Open Access Journals (Sweden)

    Welling JD

    2012-04-01

    Full Text Available John D Welling, Ahmad B Tarabishy, John ChristoforidisDepartment of Ophthalmology, Havener Eye Institute, Ohio State University, Columbus, OH, USAAbstract: Cytomegalovirus (CMV retinitis remains the most common opportunistic ocular infection in immunocompromised patients. Patients with immunocompromising diseases, such as acquired immunodeficiency syndrome, inherited immunodeficiency states, malignancies, and those on systemic immunosuppressive therapy, are known to be at risk. Recently, it has been suggested that patients undergoing intravitreal injection of immunosuppressive agents may also be predisposed. One previous case report speculated that there may be an additional risk for CMV retinitis in acquired immunodeficiency syndrome patients with venoocclusive disease. This case study presents a case of CMV retinitis following central retinal vein occlusion in a patient on systemic immunosuppressants.Keywords: cytomegalovirus retinitis, central retinal vein occlusion, immunosuppression, solid organ transplant, venous stasis, risk factor

  4. WIDEFIELD SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING OF PERIPHERAL ROUND RETINAL HOLES WITH OR WITHOUT RETINAL DETACHMENT.

    Science.gov (United States)

    Casswell, Edward J; Abou Ltaif, Sleiman; Carr, Thomas; Keane, Pearse A; Charteris, David G; Wickham, Louisa

    2018-03-02

    To describe the widefield spectral-domain optical coherence tomography features of peripheral round retinal holes, with or without associated retinal detachment (RD). Retrospective, observational study of 28 eyes with peripheral round retinal holes, with and without RD. Patients underwent imaging with a widefield 50-degree spectral-domain optical coherence tomography (Heidelberg Engineering, Germany) and Optos ultra-widefield imaging systems (Optos, United Kingdom). Vitreous attachment at the site of the retinal hole was detected in 27/28 (96.4%) cases. Cases were split into three groups: RHs with RD (n = 12); RHs with subretinal fluid (n = 5), and flat RHs (n = 11), with minimal or no subretinal fluid. 91.6% retinal holes associated with subretinal fluid or RD had vitreous attachment at the site of the hole. Eighty percent had vitreous attachment at both edges of the retinal hole, in a U-shape configuration, which appeared to exert traction. By contrast, flat retinal holes had visible vitreous attachment only at one edge of the retinal hole in 45.4%. Vitreous attachment was commonly seen at the site of round retinal holes. Vitreous attachment at both edges of the retinal hole in a U-shape configuration was more commonly seen at holes associated with subretinal fluid or RD.

  5. Opportunities for IP  in Communications Beyond 3G

    DEFF Research Database (Denmark)

    Nielsen, Thomas Toftegaard; Jacobsen, Rune H.

    2005-01-01

    Future communication will be based on TCP/IP as common network and transport layers to provide global connectivity to users and applications. IP is used to provide ubiquitous access across different access networks and exploits the benefits of a common connectivity layer while reducing the cost...... of operation and maintenance of the network. This paper discusses the opportunities for IP in the evolution towards a future broadband, all-IP mobile communication network. In particular, we argue for three opportunities for the future: Interworking access technologies over IP, IP layer transparency...

  6. Suppression of Retinal Neovascularization in vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins

    Science.gov (United States)

    Aiello, Lloyd Paul; Pierce, Eric A.; Foley, Eliot D.; Takagi, Hitoshi; Chen, Helen; Riddle, Lavon; Ferrara, Napoleone; King, George L.; Smith, Lois E. H.

    1995-11-01

    The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-um section averaged 47% ± 4% (P < 0.001) and 37% ± 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66

  7. Survival Improvement in Human Retinal Pigment Epithelial Cells via Fas Receptor Targeting by miR-374a.

    Science.gov (United States)

    Tasharrofi, Nooshin; Kouhkan, Fatemeh; Soleimani, Masoud; Soheili, Zahra-Sheila; Kabiri, Mahboubeh; Mahmoudi Saber, Mohaddeseh; Dorkoosh, Farid Abedin

    2017-12-01

    Oxidative conditions of the eye could contribute to retinal cells loss through activating the Fas-L/Fas pathway. This phenomenon is one of the leading causes of some ocular diseases like age-related macular degeneration (AMD). By targeting proteins at their mRNA level, microRNAs (miRNAs) can regulate gene expression and cell function. The aim of the present study is to investigate Fas targeting by miR-374a and find whether it can inhibit Fas-mediated apoptosis in primary human retinal pigment epithelial (RPE) cells under oxidative stress. So, the primary human RPE cells were transfected with pre-miR-374a pLEX construct using polymeric carrier and were exposed to H 2 O 2 (200 μM) as an oxidant agent for induction of Fas expression. Fas expression at mRNA and protein level was evaluated by quantitative real-time PCR and Western blot analysis, respectively. These results revealed that miR-374a could prevent Fas upregulation under oxidative conditions. Moreover, Luciferase activity assay confirmed that Fas could be a direct target of miR-374a. The cell viability studies demonstrated that caspase-3 activity was negligible in miR-374a treated cells compared to the controls. Our data suggest miR-374a is a negative regulator of Fas death receptor which is able to enhance the cell survival and protect RPE cells against oxidative conditions. J. Cell. Biochem. 118: 4854-4861, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Extraction of retinal tacks from subjects implanted with an epiretinal visual prosthesis.

    Science.gov (United States)

    de Juan, Eugene; Spencer, Rand; Barale, Pierre-Olivier; da Cruz, Lyndon; Neysmith, Jordan

    2013-10-01

    Retinal tacks, first developed for the treatment of complex retinal detachments, have more recently been used for the fixation of epiretinal electrode arrays as part of implanted visual prostheses. Here, we report on the clinical experience of extracting four such tacks after chronic implantation. The ability to safely extract retinal tacks ensures that epiretinal devices can be repositioned or removed if necessary. Custom-built, titanium alloy retinal tacks were mechanically removed from the posterior coats after prolonged implantation (up to 19 months). The resulting wound was characterized by clinical evaluation, fundus photography, and fluorescein angiography while being monitored for stability over time. The wounds were also compared to earlier published reports of the healing response around retinal tacks in human subjects. Tack extraction was accomplished successfully, without complication, in all four subjects. The wound site was readily identified by pale scar tissue. No change in the wound size or appearance was noted over many months of post-operative observation (up to 22 months after explant). No adverse effects on overall ocular health were detected. Extraction of retinal tacks from subjects implanted with epiretinal prostheses can be performed without significant complication. The long-term healing response appears to be stable and localized in eyes afflicted with retinitis pigmentosa or choroideremia. There was also minimal, if any, impact on the local circulatory system. These cases suggest that the use of retinal tacks for anchoring epiretinal visual prostheses does not preclude safe repositioning or removal of the device more than a year after implant.

  9. In vivo imaging of the retinal pigment epithelial cells

    Science.gov (United States)

    Morgan, Jessica Ijams Wolfing

    The retinal pigment epithelial (RPE) cells form an important layer of the retina because they are responsible for providing metabolic support to the photoreceptors. Techniques to image the RPE layer include autofluorescence imaging with a scanning laser ophthalmoscope (SLO). However, previous studies were unable to resolve single RPE cells in vivo. This thesis describes the technique of combining autofluorescence, SLO, adaptive optics (AO), and dual-wavelength simultaneous imaging and registration to visualize the individual cells in the RPE mosaic in human and primate retina for the first time in vivo. After imaging the RPE mosaic non-invasively, the cell layer's structure and regularity were characterized using quantitative metrics of cell density, spacing, and nearest neighbor distances. The RPE mosaic was compared to the cone mosaic, and RPE imaging methods were confirmed using histology. The ability to image the RPE mosaic led to the discovery of a novel retinal change following light exposure; 568 nm exposures caused an immediate reduction in autofluorescence followed by either full recovery or permanent damage in the RPE layer. A safety study was conducted to determine the range of exposure irradiances that caused permanent damage or transient autofluorescence reductions. Additionally, the threshold exposure causing autofluorescence reduction was determined and reciprocity of radiant exposure was confirmed. Light exposures delivered by the AOSLO were not significantly different than those delivered by a uniform source. As all exposures tested were near or below the permissible light levels of safety standards, this thesis provides evidence that the current light safety standards need to be revised. Finally, with the retinal damage and autofluorescence reduction thresholds identified, the methods of RPE imaging were modified to allow successful imaging of the individual cells in the RPE mosaic while still ensuring retinal safety. This thesis has provided a

  10. Lessons Learned from resolving massive IPS database change for SPADES+

    International Nuclear Information System (INIS)

    Kim, Jin-Soo

    2016-01-01

    Safety Parameter Display and Evaluation System+ (SPADES+) was implemented to meet the requirements for Safety Parameter Display System (SPDS) which are related to TMI Action Plan requirements. SPADES+ monitors continuously the critical safety function during normal, abnormal, and emergency operation mode and generates the alarm output to the alarm server when the tolerance related to safety functions are not satisfied. The alarm algorithm for critical safety function is performed in the NSSS Application Software (NAPS) server of the Information Process System (IPS) and the calculation result will be displayed on the flat panel display (FPD) of the IPS. SPADES+ provides the critical variable to the control room operators to aid them in rapidly and reliable determining the safety status of the plant. Many database point ID names (518 points) were changed. POINT_ID is used in the programming source code, the related documents such as SDS and SRS, and Graphic database. To reduce human errors, computer program and office program’s Macro are used. Though the automatic methods are used for changing POINT_IDs, it takes lots of time to resolve for editing the change list except for making computerized solutions. In IPS, there are many more programs than SPADES+ and over 30,000 POINT_IDs are in IPS database. Changing POINT_IDs could be a burden to software engineers. In case of Ovation system database, there is the Alias field to prevent this kind of problem. The Alias is a kind of secondary key in database

  11. Retinal detachment following endophthalmitis.

    Science.gov (United States)

    Nelsen, P T; Marcus, D A; Bovino, J A

    1985-08-01

    Fifty-five consecutive patients with a clinical diagnosis of bacterial endophthalmitis were reviewed. All patients were treated with systemic, periocular, topical, and intravitreal antibiotics. In addition, 33 of the patients underwent a pars plana vitrectomy. Nine retinal detachments occurred within six months of initial diagnosis. The higher frequency of retinal detachment in the vitrectomy group (21%) as compared to those patients managed without vitrectomy (9%) may be explained by a combination of surgical complications and the increased severity of endophthalmitis in the vitrectomy group. The two patients who developed retinal detachment during vitrectomy surgery rapidly progressed to no light perception. Conversely, the repair of retinal detachments diagnosed postoperatively had a good prognosis.

  12. IP-10 measured by Dry Plasma Spots as biomarker for therapy responses in Mycobacterium Tuberculosis infection.

    Science.gov (United States)

    Tonby, Kristian; Ruhwald, Morten; Kvale, Dag; Dyrhol-Riise, Anne Ma

    2015-03-18

    Tuberculosis (TB) has huge impact on human morbidity and mortality and biomarkers to support rapid TB diagnosis and ensure treatment initiation and cure are needed, especially in regions with high prevalence of multi-drug resistant TB. Soluble interferon gamma inducible protein 10 (IP-10) analyzed from dry plasma spots (DPS) has potential as an immunodiagnostic marker in TB infection. We analyzed IP-10 levels in plasma directly and extracted from DPS in parallel by ELISA from 34 clinically well characterized patients with TB disease before and throughout 24 weeks of effective anti-TB chemotherapy. We detected a significant decline of IP-10 levels in both plasma and DPS already after two weeks of therapy with good correlation between the tests. This was observed both in pulmonary and extrapulmonary TB. In conclusion, plasma IP-10 may serve as an early biomarker for anti-TB chemotherapy responses and the IP-10 DPS method has potential to be developed into a point-of care test for use in resource-limited settings. Further studies must be performed to validate the use of IP-10 DPS in TB high endemic countries.

  13. δ- and γ-tocopherols inhibit phIP/DSS-induced colon carcinogenesis by protection against early cellular and DNA damages.

    Science.gov (United States)

    Chen, Jayson X; Liu, Anna; Lee, Mao-Jung; Wang, Hong; Yu, Siyuan; Chi, Eric; Reuhl, Kenneth; Suh, Nanjoo; Yang, Chung S

    2017-01-01

    Tocopherols, the major forms of vitamin E, are a family of fat-soluble compounds that exist in alpha (α-T), beta (β-T), gamma (γ-T), and delta (δ-T) variants. A cancer preventive effect of vitamin E is suggested by epidemiological studies. However, past animal studies and human intervention trials with α-T, the most active vitamin E form, have yielded disappointing results. A possible explanation is that the cancer preventive activity of α-T is weak compared to other tocopherol forms. In the present study, we investigated the effects of δ-T, γ-T, and α-T (0.2% in diet) in a novel colon cancer model induced by the meat-derived dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by dextran sodium sulfate (DSS)-induced colitis in CYP1A-humanized (hCYP1A) mice. PhIP/DSS treatments induced multiple polypoid tumors, mainly tubular adenocarcinomas, in the middle to distal colon of the hCYP1A mice after 10 wk. Dietary supplementation with δ-T and γ-T significantly reduced colon tumor formation and suppressed markers of oxidative and nitrosative stress (i.e., 8-oxo-dG and nitrotyrosine) as well as pro-inflammatory mediators (i.e., NF-κB p65 and p-STAT3) in tumors and adjacent tissues. By administering δ-T at different time periods, we obtained results suggesting that the inhibitory effect of δ-T against colon carcinogenesis is mainly due to protection against early cellular and DNA damages caused by PhIP. α-T was found to be ineffective in inhibiting colon tumors and less effective in attenuating the molecular changes. Altogether, we demonstrated strong cancer preventive effects of δ-T and γ-T in a physiologically relevant model of human colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues.

    Science.gov (United States)

    Eiraku, Mototsugu; Sasai, Yoshiki

    2011-12-15

    Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.

  15. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice.

    Science.gov (United States)

    Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker

    2016-12-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate

  16. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan.

    Directory of Open Access Journals (Sweden)

    San-Ni Chen

    Full Text Available This is an observational study of fluorescein angiography (FA in consecutive patients with rhegmatogenous retinal detachment (RRD in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL, and refraction status (RF recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8% in group 1, 3 eyes (4.1% in group 2, 40 eyes (54.8% in group 3 and 17 eyes (23.3% in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion.

  17. Mobile IP

    NARCIS (Netherlands)

    Heijenk, Geert; Sallent, S.; Pras, Aiko

    1999-01-01

    The Internet is growing exponentially, both in the amount of traffic carried, and in the amount of hosts connected. IP technology is becoming more and more important, in company networks (Intranets), and also in the core networks for the next generation mobile networks. Further, wireless access to

  18. Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction

    Science.gov (United States)

    Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.

    2016-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628

  19. Inference of hierarchical regulatory network of estrogen-dependent breast cancer through ChIP-based data

    Directory of Open Access Journals (Sweden)

    Parvin Jeffrey

    2010-12-01

    Full Text Available Abstract Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2 were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM. A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes and targeted TFs (25% of common TFs. The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to

  20. Spectroscopy and photometry of IP Peg in the near-infrared

    International Nuclear Information System (INIS)

    Martin, J.S.; Jones, D.H.P.; Smith, R.C.

    1987-01-01

    Time-resolved spectroscopy in the range lambdalambda7600-8300 A of the dwarf nova IP Peg has been used to derive a radial velocity curve for the secondary star, with semi-amplitude K=288.3+-4 km s -1 . The curve is slightly distorted, giving an orbit with an apparent eccentricity of 0.075+-0.024. The radial velocity curve gives a mass function for the primary of 0.394+-0.016 M(sun). From this constraints are derived on the possible masses of the components and on the inclination of the system. Photometry in a wavelength band around 9300 Angstroms shows the existence of a large ellipsoidal variation in the light from the secondary star. (author)

  1. Results of Automated Retinal Image Analysis for Detection of Diabetic Retinopathy from the Nakuru Study, Kenya.

    Science.gov (United States)

    Hansen, Morten B; Abràmoff, Michael D; Folk, James C; Mathenge, Wanjiku; Bastawrous, Andrew; Peto, Tunde

    2015-01-01

    Digital retinal imaging is an established method of screening for diabetic retinopathy (DR). It has been established that currently about 1% of the world's blind or visually impaired is due to DR. However, the increasing prevalence of diabetes mellitus and DR is creating an increased workload on those with expertise in grading retinal images. Safe and reliable automated analysis of retinal images may support screening services worldwide. This study aimed to compare the Iowa Detection Program (IDP) ability to detect diabetic eye diseases (DED) to human grading carried out at Moorfields Reading Centre on the population of Nakuru Study from Kenya. Retinal images were taken from participants of the Nakuru Eye Disease Study in Kenya in 2007/08 (n = 4,381 participants [NW6 Topcon Digital Retinal Camera]). First, human grading was performed for the presence or absence of DR, and for those with DR this was sub-divided in to referable or non-referable DR. The automated IDP software was deployed to identify those with DR and also to categorize the severity of DR. The primary outcomes were sensitivity, specificity, and positive and negative predictive value of IDP versus the human grader as reference standard. Altogether 3,460 participants were included. 113 had DED, giving a prevalence of 3.3% (95% CI, 2.7-3.9%). Sensitivity of the IDP to detect DED as by the human grading was 91.0% (95% CI, 88.0-93.4%). The IDP ability to detect DED gave an AUC of 0.878 (95% CI 0.850-0.905). It showed a negative predictive value of 98%. The IDP missed no vision threatening retinopathy in any patients and none of the false negative cases met criteria for treatment. In this epidemiological sample, the IDP's grading was comparable to that of human graders'. It therefore might be feasible to consider inclusion into usual epidemiological grading.

  2. Age and diabetes related changes of the retinal capillaries: An ultrastructural and immunohistochemical study.

    Science.gov (United States)

    Bianchi, Enrica; Ripandelli, Guido; Taurone, Samanta; Feher, Janos; Plateroti, Rocco; Kovacs, Illes; Magliulo, Giuseppe; Orlando, Maria Patrizia; Micera, Alessandra; Battaglione, Ezio; Artico, Marco

    2016-03-01

    Normal human aging and diabetes are associated with a gradual decrease of cerebral flow in the brain with changes in vascular architecture. Thickening of the capillary basement membrane and microvascular fibrosis are evident in the central nervous system of elderly and diabetic patients. Current findings assign a primary role to endothelial dysfunction as a cause of basement membrane (BM) thickening, while retinal alterations are considered to be a secondary cause of either ischemia or exudation. The aim of this study was to reveal any initial retinal alterations and variations in the BM of retinal capillaries during diabetes and aging as compared to healthy controls. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in diabetic retina.Transmission electron microscopy (TEM) was performed on 46 enucleated human eyes with particular attention to alterations of the retinal capillary wall and Müller glial cells. Inflammatory cytokines expression in the retina was investigated by immunohistochemistry.Our electron microscopy findings demonstrated that thickening of the BM begins primarily at the level of the glial side of the retina during aging and diabetes. The Müller cells showed numerous cytoplasmic endosomes and highly electron-dense lysosomes which surrounded the retinal capillaries. Our study is the first to present morphological evidence that Müller cells start to deposit excessive BM material in retinal capillaries during aging and diabetes. Our results confirm the induction of pro-inflammatory cytokines TNF-α and IL-1β within the retina as a result of diabetes.These observations strongly suggest that inflammatory cytokines and changes in the metabolism of Müller glial cells rather than changes in of endothelial cells may play a primary role in the alteration of retinal capillaries BM during aging and diabetes. © The Author(s) 2015.

  3. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    Science.gov (United States)

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.

  4. Sector retinitis pigmentosa.

    Science.gov (United States)

    Van Woerkom, Craig; Ferrucci, Steven

    2005-05-01

    Retinitis pigmentosa (RP) is one of the most common hereditary retinal dystrophies and causes of visual impairment affecting all age groups. The reported incidence varies, but is considered to be between 1 in 3,000 to 1 in 7,000. Sector retinitis pigmentosa is an atypical form of RP that is characterized by regionalized areas of bone spicule pigmentation, usually in the inferior quadrants of the retina. A 57-year-old Hispanic man with a history of previously diagnosed retinitis pigmentosa came to the clinic with a longstanding symptom of decreased vision at night. Bone spicule pigmentation was found in the nasal and inferior quadrants in each eye. He demonstrated superior and temporal visual-field loss corresponding to the areas of the affected retina. Clinical measurements of visual-field loss, best-corrected visual acuity, and ophthalmoscopic appearance have remained stable during the five years the patient has been followed. Sector retinitis pigmentosa is an atypical form of RP that is characterized by bilateral pigmentary retinopathy, usually isolated to the inferior quadrants. The remainder of the retina appears clinically normal, although studies have found functional abnormalities in these areas as well. Sector RP is generally considered a stationary to slowly progressive disease, with subnormal electro-retinogram findings and visual-field defects corresponding to the involved retinal sectors. Management of RP is very difficult because there are no proven methods of treatment. Studies have shown 15,000 IU of vitamin A palmitate per day may slow the progression, though this result is controversial. Low vision rehabilitation, long wavelength pass filters, and pedigree counseling remain the mainstay of management.

  5. Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration.

    Science.gov (United States)

    Jones, Melissa K; Lu, Bin; Saghizadeh, Mehrnoosh; Wang, Shaomei

    2016-01-01

    Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell-based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell-based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. RNA-seq data of retinas from RCS rats injected with hNPCs (RCS(hNPCs)) were compared to sham surgery in RCS (RCS(sham)) and wild-type Long Evans (LE(sham)) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCS(sham) and LE(sham) samples. Additionally, 283 genes were differentially expressed between the RCS(hNPCs) and RCS(sham) samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCS(sham). Pathway analysis of the differential expression gene sets identified three affected pathways in RCS(hNPCs), which all play roles in phagocytosis signaling. Immunofluorescent staining

  6. Continuously Connected With Mobile IP

    Science.gov (United States)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  7. Cone dysfunctions in retinitis pigmentosa with retinal nerve fiber layer thickening.

    Science.gov (United States)

    Sobacı, Güngör; Ozge, Gökhan; Gündoğan, Fatih Ç

    2012-01-01

    To investigate whether or not thicker retinal nerve fiber layer (RNFL) in retinitis pigmentosa (RP) patients relates to functional abnormalities of the photoreceptors. Optical coherence tomography-based RNFL thickness was measured by Stratus-3™ (Zeiss, Basel, Switzerland) optical coherence tomography and electroretinogram (ERG) recordings made using the RETI-port(®) system (Roland, Wiesbaden, Germany) in 27 patients with retinitis pigmentosa and in 30 healthy subjects. Photopic ERG b-wave amplitude, cone ERG b-wave latency, 30 Hz flicker amplitude, and 30 Hz flicker latency had significant correlations to the RNFL-temporal (r = -0.55, P = 0.004, r = 0.68, P = 0.001, r = -0.65, P = 0.001, and r = -0.52, P = 0.007, respectively). Eyes with thicker RNFL (ten eyes) differed significantly from those with thinner RNFL (eight eyes) regarding cone ERG b-wave latency values only (P = 0.001). Thicker RNFL in patients with retinitis pigmentosa may be associated with functional abnormality of the cone system.

  8. Progressive outer retinal necrosis (PORN) in AIDS patients: a different appearance of varicella-zoster retinitis.

    Science.gov (United States)

    Pavesio, C E; Mitchell, S M; Barton, K; Schwartz, S D; Towler, H M; Lightman, S

    1995-01-01

    Retinal infections caused by the varicella-zoster virus (VZV) have been reported in immunocompetent and immunocompromised individuals. Two cases of a VZV-related retinitis are described with the characteristic features of the recently described progressive outer retinal necrosis (PORN) syndrome. Both patients suffered from the acquired immunodeficiency syndrome (AIDS) with greatly reduced peripheral blood CD4+ T lymphocyte counts, and presented with macular retinitis without vitritis. The disease was bilateral in one case and unilateral in the other. The clinical course was rapidly progressive with widespread retinal involvement and the development of rhegmatogenous retinal detachment with complete loss of vision in the affected eyes despite intensive intravenous antiviral therapy. VZV DNA was identified in vitreous biopsies, by molecular techniques based on the polymerase chain reaction (PCR), in both patients. At present, the use of very high-dose intravenous acyclovir may be the best therapeutic option in these patients for whom the visual prognosis is poor. Intravitreal antiviral drugs could also contribute to the management of these cases.

  9. 75 FR 13235 - IP-Enabled Services

    Science.gov (United States)

    2010-03-19

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 63 [WC Docket No. 04-36; FCC 09-40] IP-Enabled Services AGENCY: Federal Communications Commission ACTION: Final rule; announcement of effective date... Internet Protocol (VoIP) service the discontinuance obligations that apply to domestic non-dominant...

  10. EYS Mutations Causing Autosomal Recessive Retinitis Pigmentosa: Changes of Retinal Structure and Function with Disease Progression

    Directory of Open Access Journals (Sweden)

    David B. McGuigan

    2017-07-01

    Full Text Available Mutations in the EYS (eyes shut homolog gene are a common cause of autosomal recessive (ar retinitis pigmentosa (RP. Without a mammalian model of human EYS disease, there is limited understanding of details of disease expression and rates of progression of the retinal degeneration. We studied clinically and with chromatic static perimetry, spectral-domain optical coherence tomography (OCT, and en face autofluoresence imaging, a cohort of 15 patients (ages 12–51 at first visit, some of whom had longitudinal data of function and structure. Rod sensitivity was able to be measured by chromatic perimetry in most patients at their earliest visits and some patients retained patchy rod function into the fifth decade of life. As expected from RP, cone sensitivity persisted after rod function was no longer measurable. The photoreceptor nuclear layer of the central retina was abnormal except at the fovea in most patients at first visit. Perifoveal disease measured over a period of years indicated that photoreceptor structural loss was followed by dysmorphology of the inner retina and loss of retinal pigment epithelial integrity. Although there could be variability in severity, preliminary analyses of the rates of vision loss suggested that EYS is a more rapidly progressive disease than other ciliopathies causing arRP, such as USH2A and MAK.

  11. Treatment of Laser-Induced Retinal Injury and Visual Loss Using Sustained Release of Intra-Vitreal Neurotrophic Growth Factors. Addendum

    Science.gov (United States)

    2011-11-01

    phagocytosed melanine granules. Significant microglial infiltration was present in different retinal layers (arrow heads in red boxes). 2 Figure...photoreceptor density, corresponds to human macula), c) set of linear scans through inferior/non-tapetal fundus (these scans were aligned vertically...degree of retinal pigmentation affects the degree of laser damage and recovery with treatment, analogous to humans with differing eye pigmentation

  12. Agency IP Data

    Data.gov (United States)

    National Aeronautics and Space Administration — Public data set for NASA Agency Intellectual Property (IP). The distribution contains both Patent information as well as General Release of Open Source Software.

  13. Retinal images in the human eye with implanted intraocular lens

    Science.gov (United States)

    Zając, Marek; Siedlecki, Damian; Nowak, Jerzy

    2007-04-01

    A typical proceeding in cataract is based on the removal of opaque crystalline lens and inserting in its place the artificial intraocular lens (IOL). The quality of retinal image after such procedure depends, among others, on the parameters of the IOL, so the design of the implanted lens is of great importance. An appropriate choice of the IOL material, especially in relation to its biocompatibility, is often considered. However the parameter, which is often omitted during the IOL design is its chromatic aberration. In particular lack of its adequacy to the chromatic aberration of a crystalline lens may cause problems. In order to fit better chromatic aberration of the eye with implanted IOL to that of the healthy eye we propose a hybrid - refractive-diffractive IOL. It can be designed in such way that the total longitudinal chromatic aberration of an eye with implanted IOL equals the total longitudinal chromatic aberration of a healthy eye. In this study we compare the retinal image quality calculated numerically on the basis of the well known Liou-Brennan eye model with typical IOL implanted with that obtained if the IOL is done as hybrid (refractive-diffractive) design.

  14. The prevalence of Usher syndrome and other retinal dystrophy-hearing impairment associations.

    Science.gov (United States)

    Rosenberg, T; Haim, M; Hauch, A M; Parving, A

    1997-05-01

    The study was undertaken to procure population-based prevalence data on the various types of Usher syndrome and other retinal dystrophy-hearing impairment associations. The medical files on 646 patients with a panretinal pigmentary dystrophy aged 20-49 years derived from the Danish Retinitis Pigmentosa (RP) register were scrutinised. The data were supplemented by a prior investigation on hearing ability in a part of the study population. After exclusion of patients with possibly extrinsic causes of hearing impairments, 118 patients, including 89 cases of Usher syndrome were allocated to one of five clinically defined groups. We calculated the following prevalence rates: Usher syndrome type I: 1.5/100,000, Usher syndrome type II: 2.2/100,000, and Usher syndrome type III: 0.1/100,000 corresponding to a 2:3 ratio between Usher syndrome type I and II. The overall prevalence rate of Usher syndrome was estimated to 5/100,000 in the Danish population, devoid of genetic isolates. The material comprised 11 cases with retinal dystrophy, hearing impairment, and additional syndromic features. Finally, 18 subjects with various retinal dystrophy-hearing impairment associations without syndromic features were identified, corresponding to a prevalence rate of 0.8/100,000. This group had a significant overrepresentation of X-linked RP, including two persons harboring a mutation in the retinitis pigmentosa GTP-ase regulator (RPGR) gene.

  15. Research of future network with multi-layer IP address

    Science.gov (United States)

    Li, Guoling; Long, Zhaohua; Wei, Ziqiang

    2018-04-01

    The shortage of IP addresses and the scalability of routing systems [1] are challenges for the Internet. The idea of dividing existing IP addresses between identities and locations is one of the important research directions. This paper proposed a new decimal network architecture based on IPv9 [11], and decimal network IP address from E.164 principle of traditional telecommunication network, the IP address level, which helps to achieve separation and identification and location of IP address, IP address form a multilayer network structure, routing scalability problem in remission at the same time, to solve the problem of IPv4 address depletion. On the basis of IPv9, a new decimal network architecture is proposed, and the IP address of the decimal network draws on the E.164 principle of the traditional telecommunication network, and the IP addresses are hierarchically divided, which helps to realize the identification and location separation of IP addresses, the formation of multi-layer IP address network structure, while easing the scalability of the routing system to find a way out of IPv4 address exhausted. In addition to modifying DNS [10] simply and adding the function of digital domain, a DDNS [12] is formed. At the same time, a gateway device is added, that is, IPV9 gateway. The original backbone network and user network are unchanged.

  16. IP Address Management Principles and Practice

    CERN Document Server

    Rooney, Timothy

    2010-01-01

    This book will be the first covering the subject of IP address management (IPAM). The practice of IPAM includes the application of network management disciplines to IP address space and associated network services, namely DHCP (Dynamic Host Configuration Protocol) and DNS (Domain Name System). The consequence of inaccurately configuring DHCP is that end users may not be able to obtain IP addresses to access the network. Without proper DNS configuration, usability of the network will greatly suffer as the name-to-address lookup process may fail. Imagine having to navigate to a website or send a

  17. Retinal Detachment

    Directory of Open Access Journals (Sweden)

    Adnan Riaz, MD

    2018-04-01

    Full Text Available History of present illness: A 58-year-old female presented to the emergency department reporting six days of progressive, atraumatic left eye vision loss. Her symptoms started with the appearance of dark spots and “spider webs,” and then progressed to darkening of vision in her left eye. She reports mild pain since yesterday. Her review of symptoms was otherwise negative. Ocular physical examination revealed normal external appearance, intact extraocular movements, and visual acuities of 20/25 OD and light/dark sensitivity OS. Fluorescein uptake was negative and slit lamp exam was unremarkable. Significant findings: Bedside ocular ultrasound revealed a serpentine, hyperechoic membrane that appeared tethered to the optic disc posteriorly with hyperechoic material underneath. These findings are consistent with retinal detachment (RD and associated retinal hemorrhage. Discussion: The retina is a layer of organized neurons that line the posterior portion of the posterior chamber of the eye. RD occurs when this layer separates from the underlying epithelium, resulting in ischemia and progressive photoreceptor degeneration, with potentially rapid and permanent vision loss if left untreated.1 Risk factors include advanced age, male sex (60%, race (Asians and Jews, and myopia and lattice degeneration.2 Bedside ultrasound (US performed by emergency physicians provides a valuable tool that has been used by ophthalmologists for decades to evaluate intraocular disease.1,3 Findings on bedside ultrasound consistent with RD include a hyperechoic membrane floating in the posterior chamber. RD usuallyremain tethered to the optic disc posteriorly and do not cross midline, a feature distinguishing them from posterior vitreous detachments. Associated retinal hemorrhage, seen as hyperechoic material under the retinal flap, can often be seen.1,2 US can also distinguish between “mac-on” and “mac-off” detachments. If the retina is still attached to the

  18. Peripapillary retinal thermal coagulation following electrical injury

    Directory of Open Access Journals (Sweden)

    Manjari Tandon

    2013-01-01

    Full Text Available In this study, we have presented the case report of a 20 year old boy who suffered an electric injury shock, following which he showed peripapillary retinal opacification and increased retinal thickening that subsequently progressed to retinal atrophy. The fluorescein angiogram revealed normal retinal circulation, thus indicating thermal damage to retina without any compromise to retinal circulation.

  19. Automatic detection and classification of malarial retinopathy- associated retinal whitening in digital retinal images

    International Nuclear Information System (INIS)

    Akram, M.U.; Alvi, A.B.N.; Khan, S.A.

    2017-01-01

    Malarial retinopathy addresses diseases that are characterized by abnormalities in retinal fundus imaging. Macular whitening is one of the distinct signs of cerebral malaria but has hardly been explored as a critical bio-marker. The paper proposes a computerized detection and classification method for malarial retinopathy using retinal whitening as a bio-marker. The paper combines various statistical and color based features to form a sound feature set for accurate detection of retinal whitening. All features are extracted at image level and feature selection is performed to detect most discriminate features. A new method for macula location is also presented. The detected macula location is further used for grading of whitening as macular or peripheral whitening. Support vector machine along with radial basis function is used for classification of normal and malarial retinopathy patients. The evaluation is performed using a locally gathered dataset from malarial patients and it achieves an accuracy of 95% for detection of retinal whitening and 100% accuracy for grading of retinal whitening as macular or non-macular. One of the major contributions of proposed method is grading of retinal whitening into macular or peripheral whitening. (author)

  20. Evolution of Outer Retinal Folds Occurring after Vitrectomy for Retinal Detachment Repair

    NARCIS (Netherlands)

    Dell'Omo, Roberto; Tan, H. Stevie; Schlingemann, Reinier O.; Bijl, Heico M.; Lesnik Oberstein, Sarit Y.; Barca, Francesco; Mura, Marco

    2012-01-01

    PURPOSE. To assess the evolution of outer retinal folds (ORFs) occurring after repair of rhegmatogenous retinal detachment (RRD) using spectral domain-optical coherence tomography (sd-OCT) and fundus autofluorescence (FAF), and to discuss their pathogenesis. METHODS. Twenty patients were operated on