WorldWideScience

Sample records for human intestinal model

  1. A Revised Model for Dosimetry in the Human Small Intestine

    International Nuclear Information System (INIS)

    John Poston; Bhuiyan, Nasir U.; Redd, R. Alex; Neil Parham; Jennifer Watson

    2005-01-01

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents

  2. A Revised Model for Dosimetry in the Human Small Intestine

    Energy Technology Data Exchange (ETDEWEB)

    John Poston; Nasir U. Bhuiyan; R. Alex Redd; Neil Parham; Jennifer Watson

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  3. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Directory of Open Access Journals (Sweden)

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  4. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    NARCIS (Netherlands)

    J. Foulke-Abel (Jennifer); J. In (Julie); Yin, J. (Jianyi); N.C. Zachos (Nicholas C.); O. Kovbasnjuk (Olga); M.K. Estes (Mary K.); H.R. de Jonge (Hugo); M. Donowitz (Mark)

    2016-01-01

    textabstractBackground & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion

  5. In Silico Modelling of the Human Intestinal Microflora

    NARCIS (Netherlands)

    Kamerman, Derk Jan; Wilkinson, Michael H.F.

    2002-01-01

    The ecology of the human intestinal microflora and its interaction with the host are poorly understood. Though more and more data are being acquired, in part using modern molecular methods, development of a quantitative theory has not kept pace with this development. This is in part due to the

  6. Microfluidic Organ-on-a-Chip Models of Human IntestineSummary

    Directory of Open Access Journals (Sweden)

    Amir Bein

    Full Text Available Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine. Keywords: Organs-on-Chips, Gut-on-a-Chip, Intestine-on-a-Chip, Microfluidic

  7. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    Science.gov (United States)

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  8. Human organoids: a model system for intestinal diseases

    OpenAIRE

    Wiegerinck, C.L.

    2015-01-01

    You are what you eat. A common saying that indicates that your physical or mental state can be influenced by your choice of food. Unfortunately, not all people have the luxury to choose what to eat; this can be related to place of birth, social, economic state, or the physical inability of the diseased intestine to take up certain food. A cell layer, the epithelium, covers the intestine, and harbors the main functions of the intestine: uptake, digestion of food, and a barrier against unwanted...

  9. Consensus hologram QSAR modeling for the prediction of human intestinal absorption.

    Science.gov (United States)

    Moda, Tiago L; Andricopulo, Adriano D

    2012-04-15

    Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Human Intestinal Spirochaetosis

    NARCIS (Netherlands)

    Westerman, L.J.

    2013-01-01

    Human intestinal spirochaetosis is a condition of the colon that is characterized by the presence of spirochaetes attached to the mucosal cells of the colon. These spirochaetes belong to the family Brachyspiraceae and two species are known to occur in humans: Brachyspira aalborgi and Brachyspira

  11. Biorelevant media resistant co-culture model mimicking permeability of human intestine.

    Science.gov (United States)

    Antoine, Delphine; Pellequer, Yann; Tempesta, Camille; Lorscheidt, Stefan; Kettel, Bernadette; Tamaddon, Lana; Jannin, Vincent; Demarne, Frédéric; Lamprecht, Alf; Béduneau, Arnaud

    2015-03-15

    Cell culture models are currently used to predict absorption pattern of new compounds and formulations in the human gastro-intestinal tract (GIT). One major drawback is the lack of relevant apical incubation fluids allowing mimicking luminal conditions in the GIT. Here, we suggest a culture model compatible with biorelevant media, namely Fasted State Simulated Intestinal Fluid (FaSSIF) and Fed State Simulated Intestinal Fluid (FeSSIF). Co-culture was set up from Caco-2 and mucus-secreting HT29-MTX cells using an original seeding procedure. Viability and cytotoxicity assays were performed following incubation of FeSSIF and FaSSIF with co-culture. Influence of biorelevant fluids on paracellular permeability or transporter proteins were also evaluated. Results were compared with Caco-2 and HT29-MTX monocultures. While Caco-2 viability was strongly affected with FeSSIF, no toxic effect was detected for the co-cultures in terms of viability and lactate dehydrogenase release. The addition of FeSSIF to the basolateral compartment of the co-culture induced cytotoxic effects which suggested the apical mucus barrier being cell protective. In contrast to FeSSIF, FaSSIF induced a slight increase of the paracellular transport and both tested media inhibited partially the P-gp-mediated efflux in the co-culture. Additionally, the absorptive transport of propranolol hydrochloride, a lipophilic β-blocker, was strongly affected by biorelevant fluids. This study demonstrated the compatibility of the Caco-2/HT29-MTX model with some of the current biorelevant media. Combining biorelevant intestinal fluids with features such as mucus secretion, adjustable paracellular and P-gp mediated transports, is a step forward to more realistic in-vitro models of the human intestine. Copyright © 2015. Published by Elsevier B.V.

  12. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    Science.gov (United States)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  13. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  14. Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing

    NARCIS (Netherlands)

    Egert, M.; Graaf, A.A. de; Maathuis, A.; Waard, P. de; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, W.M. de; Venema, K.

    2007-01-01

    16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract

  15. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    Science.gov (United States)

    2016-08-01

    intestine epithelial response is built into the Radiation- Induced Performance Decrement (RIPD) model (Anno et al., 1989, Anno et al., 1991). RIPD, a...compartments, simulating dose response with a multitarget single -hit model (Joiner, 2009). This theory proposes that one hit of radiation in n different... single -hit model was implemented to represent dose response. The dose response parameters (D0 and n) were chosen to match experimental data approximated

  16. Evaluation of an FDA approved library against laboratory models of human intestinal nematode infections.

    Science.gov (United States)

    Keiser, Jennifer; Panic, Gordana; Adelfio, Roberto; Cowan, Noemi; Vargas, Mireille; Scandale, Ivan

    2016-07-01

    Treatment options for infections with soil-transmitted helminths (STH) - Ascaris lumbricoides, Trichuris trichiura and the two hookworm species, Ancylostoma duodenale and Necator americanus - are limited despite their considerable global health burden. The aim of the present study was to test the activity of an openly available FDA library against laboratory models of human intestinal nematode infections. All 1,600 drugs were first screened against Ancylostoma ceylanicum third-stage larvae (L3). Active compounds were scrutinized and toxic compounds, drugs indicated solely for topical use, and already well-studied anthelmintics were excluded. The remaining hit compounds were tested in parallel against Trichuris muris first-stage larvae (L1), Heligmosomoides polygyrus third-stage larvae (L3), and adult stages of the three species in vitro. In vivo studies were performed in the H. polygyrus and T. muris mice models. Fifty-four of the 1,600 compounds tested revealed an activity of > 60 % against A. ceylanicum L3 (hit rate of 3.4 %), following incubation at 200 μM for 72 h. Twelve compounds progressed into further screens. Adult A. ceylanicum were the least affected (1/12 compounds active at 50 μM), while eight of the 12 test compounds revealed activity against T. muris L1 (100 μM) and adults (50 μM), and H. polygyrus L3 (200 μM). Trichlorfon was the only compound active against all stages of A. ceylanicum, H. polygyrus and T. muris. In addition, trichlorfon achieved high worm burden reductions of 80.1 and 98.9 %, following a single oral dose of 200 mg/kg in the T. muris and H. polygyrus mouse model, respectively. Drug screening on the larval stages of intestinal parasitic nematodes is feasible using small libraries and important given the empty drug discovery and development pipeline for STH infections. Differences and commonalities in drug activities across the different STH species and stages were confirmed. Hits identified might serve as a

  17. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin

    to enable real-time detection of cell responses, adjustment of cellular stimulation etc. leading to establishment of conditional experiments. In this project, microfluidic systems engineering was leveraged to develop an eight chamber multi-layer microchip for intestinal barrier studies. Sandwiched between...... the layers was a modified Teflon porous membrane for cell culture. The novelty lies in modifying the surface of the porous Teflon support membrane using thiol-ene ‘click’ chemistry, thus allowing the modified Teflon membrane to be bonded between the chip layers to form an enclosed microchip. Successful...... application of the multi-layer microchip was demonstrated by integrating the microchip to an existing cell culture fluidic system to culture the human intestinal epithelial cells, Caco-2, for long term studies. Under the continuous low flow conditions, the cells differentiated into columnar cells displaying...

  18. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  19. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Nicholas Lahar

    Full Text Available The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.

  20. Similar uptake profiles of microcystin-LR and -RR in an in vitro human intestinal model

    International Nuclear Information System (INIS)

    Zeller, P.; Clement, M.; Fessard, V.

    2011-01-01

    Highlights: → First description of in vitro cellular uptake of MCs into intestinal cells. → OATP 3A1 and OATP 4A1 are expressed in Caco-2 cell membranes. → MC-LR and MC-RR show similar uptake in Caco-2 cells. → MCs are probably excreted from Caco-2 cells by an active mechanism. -- Abstract: Microcystins (MCs) are cyclic hepatotoxins produced by various species of cyanobacteria. Their structure includes two variable amino acids (AA) leading to more than 80 MC variants. In this study, we focused on the most common variant, microcystin-LR (MC-LR), and microcystin-RR (MC-RR), a variant differing by only one AA. Despite their structural similarity, MC-LR elicits higher liver toxicity than MC-RR partly due to a discrepancy in their uptake by hepatic organic anion transporters (OATP 1B1 and 1B3). However, even though ingestion is the major pathway of human exposure to MCs, intestinal absorption of MCs has been poorly addressed. Consequently, we investigated the cellular uptake of the two MC variants in the human intestinal cell line Caco-2 by immunolocalization using an anti-MC antibody. Caco-2 cells were treated for 30 min to 24 h with several concentrations (1-50 μM) of both variants. We first confirmed the localization of OATP 3A1 and 4A1 at the cell membrane of Caco-2 cells. Our study also revealed a rapid uptake of both variants in less than 1 h. The uptake profiles of the two variants did not differ in our immunostaining study neither with respect to concentration nor the time of exposure. Furthermore, we have demonstrated for the first time the nuclear localization of MC-RR and confirmed that of MC-LR. Finally, our results suggest a facilitated uptake and an active excretion of MC-LR and MC-RR in Caco-2 cells. Further investigation on the role of OATP 3A1 and 4A1 in MC uptake should be useful to clarify the mechanism of intestinal absorption of MCs and contribute in risk assessment of cyanotoxin exposure.

  1. Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine.

    Science.gov (United States)

    Guerra, Aurélie; Denis, Sylvain; le Goff, Olivier; Sicardi, Vincent; François, Olivier; Yao, Anne-Françoise; Garrait, Ghislain; Manzi, Aimé Pacifique; Beyssac, Eric; Alric, Monique; Blanquet-Diot, Stéphanie

    2016-06-01

    For ethical, regulatory, and economic reasons, in vitro human digestion models are increasingly used as an alternative to in vivo assays. This study aims to present the new Engineered Stomach and small INtestine (ESIN) model and its validation for pharmaceutical applications. This dynamic computer-controlled system reproduces, according to in vivo data, the complex physiology of the human stomach and small intestine, including pH, transit times, chyme mixing, digestive secretions, and passive absorption of digestion products. Its innovative design allows a progressive meal intake and the differential gastric emptying of solids and liquids. The pharmaceutical behavior of two model drugs (paracetamol immediate release form and theophylline sustained release tablet) was studied in ESIN during liquid digestion. The results were compared to those found with a classical compendial method (paddle apparatus) and in human volunteers. Paracetamol and theophylline tablets showed similar absorption profiles in ESIN and in healthy subjects. For theophylline, a level A in vitro-in vivo correlation could be established between the results obtained in ESIN and in humans. Interestingly, using a pharmaceutical basket, the swelling and erosion of the theophylline sustained release form was followed during transit throughout ESIN. ESIN emerges as a relevant tool for pharmaceutical studies but once further validated may find many other applications in nutritional, toxicological, and microbiological fields. Biotechnol. Bioeng. 2016;113: 1325-1335. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model.

    Science.gov (United States)

    Krul, Cyrille; Humblot, Christèle; Philippe, Catherine; Vermeulen, Martijn; van Nuenen, Marleen; Havenaar, Robert; Rabot, Sylvie

    2002-06-01

    Cruciferous vegetables, such as Brassica, which contain substantial quantities of glucosinolates, have been suggested to possess anticarcinogenic activity. Cutting and chewing of cruciferous vegetables releases the thioglucosidase enzyme myrosinase, which degrades glucosinolates to isothiocyanates and other minor metabolites. Cooking of cruciferous vegetables inactivates the myrosinase enzyme, allowing intact glucosinolates to reach the large intestine, where they can be degraded by the indigenous microflora into isothiocyanates. This local release of isothiocyanates may explain the protective effect of cruciferous vegetables on the colon epithelium. However, little is known about the amounts and identities of glucosinolate metabolites produced by the human microflora. The production of allyl isothiocyanate from sinigrin was investigated in a dynamic in vitro large-intestinal model, after inoculation with a complex microflora of human origin. Sinigrin and allyl isothiocyanate concentrations were analysed in the lumen and dialysis fluid of the model. Peak levels of allyl isothiocyanate were observed between 9 and 12 h after the addition of sinigrin. The model was first set up with a pooled and cultured human microflora, in which 1 and 4% of, respectively, 1 and 15 mM sinigrin, was converted into AITC. However, the conversion rate was remarkably higher if different individual human microflora were used. Between 10% and 30% (mean 19%) of the sinigrin was converted into allyl isothiocyanate. The results of this study suggest that allyl isothiocyanate is converted further into other, yet unknown, metabolites.

  3. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  4. The effect of storage time of human red cells on intestinal microcirculatory oxygenation in a rat isovolemic exchange model

    NARCIS (Netherlands)

    Raat, N. J.; Verhoeven, A. J.; Mik, E. G.; Gouwerok, C. W.; Verhaar, R.; Goedhart, P. T.; de Korte, D.; Ince, C.

    2005-01-01

    Objective: To determine whether the storage time of human leukodepleted red blood cell concentrates compromises intestinal microvascular oxygen concentration oxygen (muPo(2)) during isovolemic exchange transfusion at low hematocrit. Design: Prospective, randomized, controlled study. Setting:

  5. Human intestinal absorption of imidacloprid with Caco-2 cells as enterocyte model

    International Nuclear Information System (INIS)

    Brunet, Jean-Luc; Maresca, Marc; Fantini, Jacques; Belzunces, Luc P.

    2004-01-01

    In order to assess the risk to mammals of a chronic exposure to imidacloprid (IMI), we investigated its absorption with the human intestinal Caco-2 cell line. Measurements of transepithelial transport revealed an apparent permeability coefficient of 21.6 x 10 -6 ± 3.2 x 10 -6 cm/s reflecting a 100% absorption. The comparison of apical to basal (A-B) and basal to apical (B-A) transports showed that the monolayer presents a basal to apical polarized transport. Studies of apical uptake demonstrated that the transport was concentration-dependent and not saturable from 5 to 200 μM. Arrhenius plot analysis revealed two apparent activation energies, E a(4-12deg . C) = 63.8 kJ/mol and E a(12-37deg. C) 18.2 kJ/mol, suggesting two temperature-dependent processes. IMI uptake was equivalent when it was performed at pH 6.0 or 7.4. Depletion of Na + from the transport buffer did not affect the uptake, indicating that a sodium-dependent transporter was not involved. Decrease of uptake with sodium-azide or after cell surface trypsin (Ti) treatment suggested the involvement of a trypsin-sensitive ATP-dependent transporter. Investigations on apical efflux demonstrated that initial velocities paralleled the increase of loading concentrations. A cell surface trypsin treatment did not affect the apical efflux. The lack of effect when the efflux was performed against an IMI concentration gradient suggested that an energy-dependent transporter was involved. However, the inhibition of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRP) by taxol, vincristine, and daunorubicine had no effect on IMI intracellular accumulation suggesting the involvement of transporters distinct from classical ATP binding cassette transport (ABC-transport) systems. All results suggest that IMI is strongly absorbed in vivo by inward and outward active transporters

  6. Pig models on intestinal development and therapeutics.

    Science.gov (United States)

    Yin, Lanmei; Yang, Huansheng; Li, Jianzhong; Li, Yali; Ding, Xueqing; Wu, Guoyao; Yin, Yulong

    2017-12-01

    The gastrointestinal tract plays a vital role in nutrient supply, digestion, and absorption, and has a crucial impact on the entire organism. Much attention is being paid to utilize animal models to study the pathogenesis of gastrointestinal diseases in response to intestinal development and health. The piglet has a body size similar to that of the human and is an omnivorous animal with comparable anatomy, nutritional requirements, and digestive and associated inflammatory processes, and displays similarities to the human intestinal microbial ecosystem, which make piglets more appropriate as an animal model for human than other non-primate animals. Therefore, the objective of this review is to summarize key attributes of the piglet model with which to study human intestinal development and intestinal health through probing into the etiology of several gastrointestinal diseases, thus providing a theoretical and hopefully practical, basis for further studies on mammalian nutrition, health, and disease, and therapeutics. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young piglets and humans, the piglet has been used as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Because of similarities in anatomy and physiology between pigs and mankind, more emphasises are put on how to use the piglet model for human organ transplantation research.

  7. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    DEFF Research Database (Denmark)

    Larsen, U L; Hyldahl Olesen, L; Nyvold, Charlotte Guldborg

    2007-01-01

    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (MDR...

  8. Linking Spatial Structure and Community-Level Biotic Interactions through Cooccurrence and Time Series Modeling of the Human Intestinal Microbiota.

    Science.gov (United States)

    de Muinck, Eric J; Lundin, Knut E A; Trosvik, Pål

    2017-01-01

    The gastrointestinal (GI) microbiome is a densely populated ecosystem where dynamics are determined by interactions between microbial community members, as well as host factors. The spatial organization of this system is thought to be important in human health, yet this aspect of our resident microbiome is still poorly understood. In this study, we report significant spatial structure of the GI microbiota, and we identify general categories of spatial patterning in the distribution of microbial taxa along a healthy human GI tract. We further estimate the biotic interaction structure in the GI microbiota, both through time series and cooccurrence modeling of microbial community data derived from a large number of sequentially collected fecal samples. Comparison of these two approaches showed that species pairs involved in significant negative interactions had strong positive contemporaneous correlations and vice versa, while for species pairs without significant interactions, contemporaneous correlations were distributed around zero. We observed similar patterns when comparing these models to the spatial correlations between taxa identified in the adherent microbiota. This suggests that colocalization of microbial taxon pairs, and thus the spatial organization of the GI microbiota, is driven, at least in part, by direct or indirect biotic interactions. Thus, our study can provide a basis for an ecological interpretation of the biogeography of the human gut. IMPORTANCE The human gut microbiome is the subject of intense study due to its importance in health and disease. The majority of these studies have been based on the analysis of feces. However, little is known about how the microbial composition in fecal samples relates to the spatial distribution of microbial taxa along the gastrointestinal tract. By characterizing the microbial content both in intestinal tissue samples and in fecal samples obtained daily, we provide a conceptual framework for how the spatial

  9. Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.

    Directory of Open Access Journals (Sweden)

    Nicole J W de Wit

    Full Text Available Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP technique to study the effect of food compounds. In vitro digested yellow (YOd and white onion extracts (WOd were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.

  10. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  11. Faecalibacterium prausnitzii and human intestinal health

    NARCIS (Netherlands)

    Miquel, S.; Martin, R.; Rossi, O.; Bermudez-Humaran, L.G.; Chatel, J.M.; Sokol, H.; Thomas, M.; Wells, J.M.; Langella, P.

    2013-01-01

    Faecalibacterium prausnitzii is the most abundant bacterium in the human intestinal microbiota of healthy adults, representing more than 5% of the total bacterial population. Over the past five years, an increasing number of studies have clearly described the importance of this highly metabolically

  12. Cholesterol esterase activity of human intestinal mucosa

    International Nuclear Information System (INIS)

    Ponz de Leon, M.; Carubbi, F.; Di Donato, P.; Carulli, N.

    1985-01-01

    It has been suggested that cholesterol absorption in humans is dependent on bile acid pool composition and that expansion of the cholic acid pool size is followed by an increase of the absorption values. Similar observations were reported in rats. In the present study, therefore, the authors investigated some general properties of human intestinal cholesterol esterase, with particular emphasis on the effect of bile acids on this enzymatic activity. Twenty-nine segments of small intestine were taken during operations; the enzymatic activity was studied by using mucosal homogenate as a source of enzyme and oleic acid, cholesterol, and 14 C-labeled cholesterol as substrates. The time-activity relationship was linear within the first two hours; optimal pH for esterification ranged between 5 and 6.2. There was little difference between the esterifying activity of the jejunal and ileal mucosa. Esterification of cholesterol was observed with all the investigated fatty acids but was maximal with oleic acid. Bile acids did not affect cholesterol esterase activity when present in the incubation mixture at 0.1 and 1.0 mM; the enzymatic activity, however, was significantly inhibited when bile acids were added at 20 mM. In conclusion, this study has shown that the human intestinal mucosa possesses a cholesterol esterase activity; at variance with the rat, however, the human enzyme does not seem to be stimulated by trihydroxy bile acids

  13. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    Science.gov (United States)

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-02

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.

  14. Compartmentalization of Aquaporins in the Human Intestine

    Directory of Open Access Journals (Sweden)

    Rajendram V. Rajnarayanan

    2008-06-01

    Full Text Available Improper localization of water channel proteins called aquaporins (AQP induce mucosal injury which is implicated in Crohn’s disease and ulcerative colitis. The amino acid sequences of AQP3 and AQP10 are 79% similar and belong to the mammalian aquaglyceroporin subfamily. AQP10 is localized on the apical compartment of the intestinal epithelium called the glycocalyx while AQP3 is selectively targeted to the basolateral membrane. Despite the high sequence similarity and evolutionary relatedness, the molecular mechanism involved in the polarity, selective targeting and function of AQP3 and AQP10 in the intestine is largely unknown. Our hypothesis is that the differential polarity and selective targeting of AQP3 and AQP10 in the intestinal epithelial cells is influenced by amino acid signal motifs. We performed sequence and structural alignments to determine differences in signals for localization and posttranslational glycosylation. The basolateral sorting motif “YRLL” is present in AQP3 but absent in AQP10; while Nglycosylation signals are present in AQP10 but absent in AQP3. Furthermore, the C-terminal region of AQP3 is longer compared to AQP10. The sequence and structural differences between AQP3 and AQP10 provide insights into the differential compartmentalization and function of these two aquaporins commonly expressed in human intestines.

  15. Quantification of Salmonella Survival and Infection in an In vitro Model of the Human Intestinal Tract as Proxy for Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Lucas M. Wijnands

    2017-06-01

    Full Text Available Different techniques are available for assessing differences in virulence of bacterial foodborne pathogens. The use of animal models or human volunteers is not expedient for various reasons; the use of epidemiological data is often hampered by lack of crucial data. In this paper, we describe a static, sequential gastrointestinal tract (GIT model system in which foodborne pathogens are exposed to simulated gastric and intestinal contents of the human digestive tract, including the interaction of pathogens with the intestinal epithelium. The system can be employed with any foodborne bacterial pathogens. Five strains of Salmonella Heidelberg and one strain of Salmonella Typhimurium were used to assess the robustness of the system. Four S. Heidelberg strains originated from an outbreak, the fifth S. Heidelberg strain and the S. Typhimurium strain originated from routine meat inspections. Data from plate counts, collected for determining the numbers of surviving bacteria in each stage, were used to quantify both the experimental uncertainty and biological variability of pathogen survival throughout the system. For this, a hierarchical Bayesian framework using Markov chain Monte Carlo (MCMC was employed. The model system is able to distinguish serovars/strains for in vitro infectivity when accounting for within strain biological variability and experimental uncertainty.

  16. Diversity of human small intestinal Streptococcus and Veillonella populations

    NARCIS (Netherlands)

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed

  17. Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis

    NARCIS (Netherlands)

    Rajilic-Stojanovic, M.; Maathuis, A.; Heilig, G.H.J.; Venema, K.; Vos, de W.M.; Smidt, H.

    2010-01-01

    A high-density phylogenetic microarray targeting small subunit rRNA (SSU rRNA) sequences of over 1000 microbial phylotypes of the human gastrointestinal tract, the HITChip, was used to assess the impact of faecal inoculum preparation and operation conditions on an in vitro model of the human large

  18. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    Science.gov (United States)

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  19. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity.

    Science.gov (United States)

    Tomankova, Veronika; Liskova, Barbora; Skalova, Lenka; Bartikova, Hana; Bousova, Iva; Jourova, Lenka; Anzenbacher, Pavel; Ulrichova, Jitka; Anzenbacherova, Eva

    2015-07-15

    Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane). Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices

    NARCIS (Netherlands)

    Westerhout, J.; Steeg, E. van de; Grossouw, D.; Zeijdner, E.E.; Krul, C.A.M.; Verwei, M.; Wortelboer, H.M.

    2014-01-01

    A reliable prediction of the oral bioavailability in humans is crucial and of high interest for pharmaceutical and food industry. The predictive value of currently used in silico methods, in vitro cell lines, ex vivo intestinal tissue and/or in vivo animal studies for human intestinal absorption,

  1. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    -moieties for benzyl alcohol have been shown to maintain affinity for hPepT1. The primary aim of the present study was to investigate if modifications of the benzyl alcohol model drug influence the corresponding D-Glu-Ala and D-Asp-Ala model prodrugs' affinity for hPepT1 in Caco-2 cells. A second aim...... was to investigate the transepithelial transport and hydrolysis parameters for D-Asp(BnO)-Ala and D-Glu(BnO)-Ala across Caco-2 cell monolayers. In the present study, all investigated D-Asp-Ala and D-Glu-Ala model prodrugs retained various degrees of affinity for hPepT1 in Caco-2 cells. These affinities are used....... Transepithelial transport studies performed using Caco-2 cells of D-Asp(BnO)-Ala and D-Glu(BnO)-Ala showed that the K(m) for transepithelial transport was not significantly different for the two compounds. The maximal transport rate of the carrier-mediated flux component does not differ between the two model...

  2. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    International Nuclear Information System (INIS)

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois

    2006-01-01

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells

  3. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration.

    Science.gov (United States)

    Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C

    2015-08-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. Copyright © 2015 the American Physiological Society.

  4. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    Science.gov (United States)

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5 + intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  5. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Directory of Open Access Journals (Sweden)

    Julie Reygner

    2016-11-01

    Full Text Available The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil of the pesticide chlorpyrifos (CPF on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract. The last three reactors (representing the colon were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses; (ii the changes are “SHIME®-compartment” specific; and (iii the changes are associated with minor alterations in the production of short-chain fatty acids and lactate.

  6. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Science.gov (United States)

    Reygner, Julie; Joly Condette, Claire; Bruneau, Aurélia; Delanaud, Stéphane; Rhazi, Larbi; Depeint, Flore; Abdennebi-Najar, Latifa; Bach, Veronique; Mayeur, Camille; Khorsi-Cauet, Hafida

    2016-01-01

    The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil) of the pesticide chlorpyrifos (CPF) on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract). The last three reactors (representing the colon) were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts) and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i) CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses); (ii) the changes are “SHIME®-compartment” specific; and (iii) the changes are associated with minor alterations in the production of short-chain fatty acids and lactate. PMID:27827942

  7. Quantitation of small intestinal permeability during normal human drug absorption

    OpenAIRE

    Levitt, David G

    2013-01-01

    Background Understanding the quantitative relationship between a drug?s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorpti...

  8. In vitro and in vivo efficacy of Monepantel (AAD 1566 against laboratory models of human intestinal nematode infections.

    Directory of Open Access Journals (Sweden)

    Lucienne Tritten

    2011-12-01

    Full Text Available BACKGROUND: Few effective drugs are available for soil-transmitted helminthiases and drug resistance is of concern. In the present work, we tested the efficacy of the veterinary drug monepantel, a potential drug development candidate compared to standard drugs in vitro and in parasite-rodent models of relevance to human soil-transmitted helminthiases. METHODOLOGY: A motility assay was used to assess the efficacy of monepantel, albendazole, levamisole, and pyrantel pamoate in vitro on third-stage larvae (L3 and adult worms of Ancylostoma ceylanicum, Necator americanus and Trichuris muris. Ancylostoma ceylanicum- or N. americanus-infected hamsters, T. muris- or Ascaris suum-infected mice, and Strongyloides ratti-infected rats were treated with single oral doses of monepantel or with one of the reference drugs. PRINCIPAL FINDINGS: Monepantel showed excellent activity on A. ceylanicum adults (IC(50 = 1.7 µg/ml, a moderate effect on T. muris L3 (IC(50 = 78.7 µg/ml, whereas no effect was observed on A. ceylanicum L3, T. muris adults, and both stages of N. americanus. Of the standard drugs, levamisole showed the highest potency in vitro (IC(50 = 1.6 and 33.1 µg/ml on A. ceylanicum and T. muris L3, respectively. Complete elimination of worms was observed with monepantel (10 mg/kg and albendazole (2.5 mg/kg in A. ceylanicum-infected hamsters. In the N. americanus hamster model single 10 mg/kg oral doses of monepantel and albendazole resulted in worm burden reductions of 58.3% and 100%, respectively. Trichuris muris, S. ratti and A. suum were not affected by treatment with monepantel in vivo (following doses of 600 mg/kg, 32 mg/kg and 600 mg/kg, respectively. In contrast, worm burden reductions of 95.9% and 76.6% were observed following treatment of T. muris- and A. suum infected mice with levamisole (200 mg/kg and albendazole (600 mg/kg, respectively. CONCLUSIONS/SIGNIFICANCE: Monepantel reveals low or no activities against N. americanus

  9. Intestinal Stem Cell Dynamics: A Story of Mice and Humans.

    Science.gov (United States)

    Hodder, Michael C; Flanagan, Dustin J; Sansom, Owen J

    2018-06-01

    Stem cell dynamics define the probability of accumulating mutations within the intestinal epithelium. In this issue of Cell Stem Cell, Nicholson et al. (2018) report that human intestinal stem cell dynamics differ significantly from those of mice and establish that oncogenic mutations are more likely to expand; therefore, "normal" epithelium may carry multiple mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Sequential cancer mutations in cultured human intestinal stem cells

    NARCIS (Netherlands)

    Drost, Jarno; van Jaarsveld, Richard H.; Ponsioen, Bas; Zimberlin, Cheryl; van Boxtel, Ruben; Buijs, Arjan; Sachs, Norman; Overmeer, René M.; Offerhaus, G. Johan; Begthel, Harry; Korving, Jeroen; van de Wetering, Marc; Schwank, Gerald; Logtenberg, Meike; Cuppen, Edwin; Snippert, Hugo J.; Medema, Jan Paul; Kops, Geert J. P. L.; Clevers, Hans

    2015-01-01

    Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain

  11. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    Science.gov (United States)

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Enteral nutrients potentiate glucagon-like peptide-2 action and reduce dependence on parenteral nutrition in a rat model of human intestinal failure

    Science.gov (United States)

    Brinkman, Adam S.; Murali, Sangita G.; Hitt, Stacy; Solverson, Patrick M.; Holst, Jens J.

    2012-01-01

    Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that shows promise for the treatment of short bowel syndrome (SBS). Our objective was to investigate how combination GLP-2 + enteral nutrients (EN) affects intestinal adaption in a rat model that mimics severe human SBS and requires parenteral nutrition (PN). Male Sprague-Dawley rats were assigned to one of five groups and maintained with PN for 18 days: total parenteral nutrition (TPN) alone, TPN + GLP-2 (100 μg·kg−1·day−1), PN + EN + GLP-2(7 days), PN + EN + GLP-2(18 days), and a nonsurgical oral reference group. Animals underwent massive distal bowel resection followed by jejunocolic anastomosis and placement of jugular catheters. Starting on postoperative day 4, rats in the EN groups were allowed ad libitum access to EN. Groups provided PN + EN + GLP-2 had their rate of PN reduced by 0.25 ml/day starting on postoperative day 6. Groups provided PN + EN + GLP-2 demonstrated significantly greater body weight gain with similar energy intake and a safe 80% reduction in PN compared with TPN ± GLP-2. Groups provided PN + EN + GLP-2 for 7 or 18 days showed similar body weight gain, residual jejunal length, and digestive capacity. Groups provided PN + EN + GLP-2 showed increased jejunal GLP-2 receptor (GLP-2R), insulin-like growth factor-I (IGF-I), and IGF-binding protein-5 (IGFBP-5) expression. Treatment with TPN + GLP-2 demonstrated increased jejunal expression of epidermal growth factor. Cessation of GLP-2 after 7 days with continued EN sustained the majority of intestinal adaption and significantly increased expression of colonic proglucagon compared with PN + EN + GLP-2 for 18 days, and increased plasma GLP-2 concentrations compared with TPN alone. In summary, EN potentiate the intestinotrophic actions of GLP-2 by improving body weight gain allowing for a safe 80% reduction in PN with increased jejunal expression of GLP-2R, IGF-I, and IGFBP-5 following distal bowel

  13. Absorption of l-methionine from the human small intestine

    Science.gov (United States)

    Schedl, Harold P.; Pierce, Charles E.; Rider, Alan; Clifton, James A.

    1968-01-01

    Absorption of L-methionine was measured in all parts of the human small intestine using transintestinal intubation and perfusion. In four normal subjects, adsorption was higher in the proximal than in the distal intestine. In two patients with nontropical sprue in relapse, there was a proximal zone of low absorption with higher absorption distally. In all parts of the small intestine, absorption showed rate-limiting kinetics as methionine concentration was increased. In normal subjects, the proximal Km (Michaelis constant) was more than 3 times higher than the distal, which suggests a difference in transport mechanisms between the two segments. PMID:12066784

  14. Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract.

    Science.gov (United States)

    García-Villalba, Rocío; Vissenaekens, Hanne; Pitart, Judit; Romo-Vaquero, María; Espín, Juan C; Grootaert, Charlotte; Selma, María V; Raes, Katleen; Smagghe, Guy; Possemiers, Sam; Van Camp, John; Tomas-Barberan, Francisco A

    2017-07-12

    A TWIN-SHIME system was used to compare the metabolism of pomegranate polyphenols by the gut microbiota from two individuals with different urolithin metabotypes. Gut microbiota, ellagitannin metabolism, short-chain fatty acids (SCFA), transport of metabolites, and phase II metabolism using Caco-2 cells were explored. The simulation reproduced the in vivo metabolic profiles for each metabotype. The study shows for the first time that microbial composition, metabolism of ellagitannins, and SCFA differ between metabotypes and along the large intestine. The assay also showed that pomegranate phenolics preserved intestinal cell integrity. Pomegranate polyphenols enhanced urolithin and propionate production, as well as Akkermansia and Gordonibacter prevalence with the highest effect in the descending colon. The system provides an insight into the mechanisms of pomegranate polyphenol gut microbiota metabolism and absorption through intestinal cells. The results obtained by the combined SHIME/Caco-2 cell system are consistent with previous human and animal studies and show that although urolithin metabolites are present along the gastrointestinal tract due to enterohepatic circulation, they are predominantly produced in the distal colon region.

  15. Statistical modelling coupled with LC-MS analysis to predict human upper intestinal absorption of phytochemical mixtures.

    Science.gov (United States)

    Selby-Pham, Sophie N B; Howell, Kate S; Dunshea, Frank R; Ludbey, Joel; Lutz, Adrian; Bennett, Louise

    2018-04-15

    A diet rich in phytochemicals confers benefits for health by reducing the risk of chronic diseases via regulation of oxidative stress and inflammation (OSI). For optimal protective bio-efficacy, the time required for phytochemicals and their metabolites to reach maximal plasma concentrations (T max ) should be synchronised with the time of increased OSI. A statistical model has been reported to predict T max of individual phytochemicals based on molecular mass and lipophilicity. We report the application of the model for predicting the absorption profile of an uncharacterised phytochemical mixture, herein referred to as the 'functional fingerprint'. First, chemical profiles of phytochemical extracts were acquired using liquid chromatography mass spectrometry (LC-MS), then the molecular features for respective components were used to predict their plasma absorption maximum, based on molecular mass and lipophilicity. This method of 'functional fingerprinting' of plant extracts represents a novel tool for understanding and optimising the health efficacy of plant extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota

    NARCIS (Netherlands)

    Bogert, van den B.; Meijerink, M.; Zoetendal, E.G.; Wells, J.M.; Kleerebezem, M.

    2014-01-01

    The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains

  17. Human zonulin, a potential modulator of intestinal tight junctions.

    Science.gov (United States)

    Wang, W; Uzzau, S; Goldblum, S E; Fasano, A

    2000-12-01

    Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight junction permeability. We postulated that this toxin may mimic the effect of a functionally and immunologically related endogenous modulator of intestinal tight junctions. Affinity-purified anti-zonula occludens toxin antibodies and the Ussing chamber assay were used to screen for one or more mammalian zonula occludens toxin analogues in both fetal and adult human intestine. A novel protein, zonulin, was identified that induces tight junction disassembly in non-human primate intestinal epithelia mounted in Ussing chambers. Comparison of amino acids in the active zonula occludens toxin fragment and zonulin permitted the identification of the putative receptor binding domain within the N-terminal region of the two proteins. Zonulin likely plays a pivotal role in tight junction regulation during developmental, physiological, and pathological processes, including tissue morphogenesis, movement of fluid, macromolecules and leukocytes between the intestinal lumen and the interstitium, and inflammatory/autoimmune disorders.

  18. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection

    OpenAIRE

    Saxena, Kapil; Simon, Lukas M.; Zeng, Xi-Lei; Blutt, Sarah E.; Crawford, Sue E.; Sastri, Narayan P.; Karandikar, Umesh C.; Ajami, Nadim J.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E.; Shaw, Chad A.; Estes, Mary K.

    2017-01-01

    Understanding host?enteric virus interactions has been limited by the inability to culture nontransformed small intestinal epithelial cells and to infect animal models with human viruses. We report epithelial responses in human small intestinal enteroid cultures from different individuals following infection with human rotavirus (HRV), a model enteric pathogen. RNA-sequencing and functional assays revealed type III IFN as the dominant transcriptional response that activates interferon-stimula...

  19. Gintonin absorption in intestinal model systems

    Directory of Open Access Journals (Sweden)

    Byung-Hwan Lee

    2018-01-01

    Conclusion: The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.

  20. Human intestinal mucus proteins isolated by transanal irrigation and proctosigmoidoscopy

    Directory of Open Access Journals (Sweden)

    Paola Andrea Gómez Buitrago

    2014-10-01

    Full Text Available Human intestinal mucus essentially consists of a network of Mucin2 glycoproteins embedded in many lower molecular weight proteins. This paper contributes to the proteomic study of human intestinal mucus by comparing two sample collection methods (transanal irrigation and brush cytology during proctosigmoidoscopy and analysis techniques (electrophoresis and digestion in solution. The entire sample collection and treatment process is explained, including protein extraction, digestion and desalination and peptide characterisation using a nanoAcquity UPLC chromatograph coupled to an HDMS spectrometer equipped with a nanoESI source. Collecting mucus via transanal irrigation provided a larger sample volume and protein concentration from a single patient. The proctosigmoidoscopy sample could be analysed via digestion in solution after depleting albumin. The analysis indicates that a simple mucus lysis method can evaluate the electrophoresis and digestion in solution techniques. Studying human intestinal mucus complexes is important because they perform two essential survival functions for humans as the first biochemical and physical defences for the gastrointestinal tract and a habitat for intestinal microbiota, which are primarily hosted in the colon and exceeds the human genetic information and cell number 100- and 10-fold (1.

  1. Models of antimicrobial pressure on intestinal bacteria of the treated host populations.

    Science.gov (United States)

    Volkova, V V; Cazer, C L; Gröhn, Y T

    2017-07-01

    Antimicrobial drugs are used to treat pathogenic bacterial infections in animals and humans. The by-stander enteric bacteria of the treated host's intestine can become exposed to the drug or its metabolites reaching the intestine in antimicrobially active form. We consider which processes and variables need to be accounted for to project the antimicrobial concentrations in the host's intestine. Those include: the drug's fraction (inclusive of any active metabolites) excreted in bile; the drug's fractions and intestinal segments of excretion via other mechanisms; the rates and intestinal segments of the drug's absorption and re-absorption; the rates and intestinal segments of the drug's abiotic and biotic degradation in the intestine; the digesta passage time through the intestinal segments; the rates, mechanisms, and reversibility of the drug's sorption to the digesta and enteric microbiome; and the volume of luminal contents in the intestinal segments. For certain antimicrobials, the antimicrobial activity can further depend on the aeration and chemical conditions in the intestine. Model forms that incorporate the inter-individual variation in those relevant variables can support projections of the intestinal antimicrobial concentrations in populations of treated host, such as food animals. To illustrate the proposed modeling framework, we develop two examples of treatments of bovine respiratory disease in beef steers by oral chlortetracycline and injectable third-generation cephalosporin ceftiofur. The host's diet influences the digesta passage time, volume, and digesta and microbiome composition, and may influence the antimicrobial loss due to degradation and sorption in the intestine. We consider two diet compositions in the illustrative simulations. The examples highlight the extent of current ignorance and need for empirical data on the variables influencing the selective pressures imposed by antimicrobial treatments on the host's intestinal bacteria.

  2. Congruent strain specific intestinal persistence of Lactobacillus plantarum in an intestine-mimicking in vitro system and in human volunteers.

    Directory of Open Access Journals (Sweden)

    Hermien van Bokhorst-van de Veen

    Full Text Available BACKGROUND: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species. However, data on the in situ persistence characteristics of individual or mixtures of strains of the same species in the gastrointestinal tract of healthy human volunteers have not been reported to date. METHODOLOGY/PRINCIPAL FINDINGS: The GI-tract survival of individual L. plantarum strains was determined using an intestine mimicking model system, revealing substantial inter-strain differences. The obtained data were correlated to genomic diversity of the strains using comparative genome hybridization (CGH datasets, but this approach failed to discover specific genetic loci that explain the observed differences between the strains. Moreover, we developed a next-generation sequencing-based method that targets a variable intergenic region, and employed this method to assess the in vivo GI-tract persistence of different L. plantarum strains when administered in mixtures to healthy human volunteers. Remarkable consistency of the strain-specific persistence curves were observed between individual volunteers, which also correlated significantly with the GI-tract survival predicted on basis of the in vitro assay. CONCLUSION: The survival of individual L. plantarum strains in the GI-tract could not be correlated to the absence or presence of specific genes compared to the reference strain L. plantarum WCFS1. Nevertheless, in vivo persistence analysis in the human GI-tract confirmed the strain-specific persistence, which appeared to be remarkably similar in different healthy volunteers. Moreover, the relative strain-specific persistence in vivo appeared to be accurately and significantly predicted by their relative survival in the intestine-mimicking in vitro

  3. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  4. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.

    Science.gov (United States)

    Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V

    2012-09-01

    Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.

  5. The growth pattern of the human intestine and its mesentery

    NARCIS (Netherlands)

    Soffers, Jelly H. M.; Hikspoors, Jill P. J. M.; Mekonen, Hayelom K.; Koehler, S. Eleonore; Lamers, Wouter H.

    2015-01-01

    It remains unclear to what extent midgut rotation determines human intestinal topography and pathology. We reinvestigated the midgut during its looping and herniation phases of development, using novel 3D visualization techniques. We distinguished 3 generations of midgut loops. The topography of

  6. Long-term monitoring of the human intestinal microbiota composition

    NARCIS (Netherlands)

    Rajilic-Stojanovic, M.; Heilig, G.H.J.; Tims, S.; Zoetendal, E.G.; Vos, de W.M.

    2013-01-01

    The microbiota that colonizes the human intestinal tract is complex and its structure is specific for each of us. In this study we expand the knowledge about the stability of the subject-specific microbiota and show that this ecosystem is stable in short-term intervals (¿10 years). The faecal

  7. Biotransformation of Food Dyes by Human Intestinal Bacteria ...

    African Journals Online (AJOL)

    Biotransformation of food dyes (Tartrazine and Quinoline yellow) by Streptococcus faecalis and Escherichia coli isolated from human intestinal microflora was investigated. Decolourisation of the media containing the dyes was used as an index of biotransformation. Biotransformation was higher under aerobic than under ...

  8. Metabolism of gentiopicroside (gentiopicrin) by human intestinal bacteria.

    Science.gov (United States)

    el-Sedawy, A I; Hattori, M; Kobashi, K; Namba, T

    1989-09-01

    As a part of our studies on the metabolism of crude drug components by intestinal bacteria, gentiopicroside (a secoiridoid glucoside isolated from Gentiana lutea), was anaerobically incubated with various defined strains of human intestinal bacteria. Many species had ability to transform it to a series of metabolites. Among them, Veillonella parvula ss parvula produced five metabolites, which were identified as erythrocentaurin, gentiopicral, 5-hydroxymethylisochroman-1-one,5-hydroxymethylisochromen-1- one and trans-5,6-dihydro-5-hydroxymethyl-6-methyl-1H,3H-pyrano[3,4-c]pyra n-1-one.

  9. Neural influences on human intestinal epithelium in vitro.

    Science.gov (United States)

    Krueger, Dagmar; Michel, Klaus; Zeller, Florian; Demir, Ihsan E; Ceyhan, Güralp O; Slotta-Huspenina, Julia; Schemann, Michael

    2016-01-15

    We present the first systematic and, up to now, most comprehensive evaluation of the basic features of epithelial functions, such as basal and nerve-evoked secretion, as well as tissue resistance, in over 2200 surgical specimens of human small and large intestine. We found no evidence for impaired nerve-evoked epithelial secretion or tissue resistance with age or disease pathologies (stomach, pancreas or colon cancer, polyps, diverticulitis, stoma reversal). This indicates the validity of future studies on epithelial secretion or resistance that are based on data from a variety of surgical specimens. ACh mainly mediated nerve-evoked and basal secretion in the small intestine, whereas vasoactive intestinal peptide and nitric oxide were the primary pro-secretory transmitters in the large intestine. The results of the present study revealed novel insights into regional differences in nerve-mediated secretion in the human intestine and comprise the basis by which to more specifically target impaired epithelial functions in the diseased gut. Knowledge on basic features of epithelial functions in the human intestine is scarce. We used Ussing chamber techniques to record basal tissue resistance (R-basal) and short circuit currents (ISC; secretion) under basal conditions (ISC-basal) and after electrical field stimulation (ISC-EFS) of nerves in 2221 resectates from 435 patients. ISC-EFS was TTX-sensitive and of comparable magnitude in the small and large intestine. ISC-EFS or R-basal were not influenced by the patients' age, sex or disease pathologies (cancer, polyps, diverticulitis). Ion substitution, bumetanide or adenylate cyclase inhibition studies suggested that ISC-EFS depended on epithelial cAMP-driven chloride and bicarbonate secretion but not on amiloride-sensitive sodium absorption. Although atropine-sensitive cholinergic components prevailed for ISC-EFS of the duodenum, jejunum and ileum, PG97-269-sensitive [vasoactive intestinal peptide (VIP) receptor 1

  10. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  11. Species and prevalence determination of Human Intestinal ...

    African Journals Online (AJOL)

    ADOWIE PERE

    harm to some extent by the association or may cause death. Human ... Center and Specialist Hospital Yola, Adamawa state. MATERIALS ..... of animal dungs as manure could aid in transfer of cysts. .... American Journal of Tropical. Medicine ...

  12. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine

    Directory of Open Access Journals (Sweden)

    Rehman Ateequr

    2012-03-01

    Full Text Available Abstract Background Antibiotic associated diarrhea and Clostridium difficile infection are frequent complications of broad spectrum antibiotic therapy. Probiotic bacteria are used as therapeutic and preventive agents in these disorders, but the exact functional mechanisms and the mode of action are poorly understood. The effects of clindamycin and the probiotic mixture VSL#3 (containing the 8 bacterial strains Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii subsp. Bulgaricus consecutively or in combination were investigated and compared to controls without therapy using a standardized human fecal microbiota in a computer-controlled in vitro model of large intestine. Microbial metabolites (short chain fatty acids, lactate, branched chain fatty acids, and ammonia and the intestinal microbiota were analyzed. Results Compared to controls and combination therapy, short chain fatty acids and lactate, but also ammonia and branched chain fatty acids, were increased under probiotic therapy. The metabolic pattern under combined therapy with antibiotics and probiotics had the most beneficial and consistent effect on intestinal metabolic profiles. The intestinal microbiota showed a decrease in several indigenous bacterial groups under antibiotic therapy, there was no significant recovery of these groups when the antibiotic therapy was followed by administration of probiotics. Simultaneous application of anti- and probiotics had a stabilizing effect on the intestinal microbiota with increased bifidobacteria and lactobacilli. Conclusions Administration of VSL#3 parallel with the clindamycin therapy had a beneficial and stabilizing effect on the intestinal metabolic homeostasis by decreasing toxic metabolites and protecting the endogenic microbiota from destruction. Probiotics could be a reasonable

  13. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  14. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids

    DEFF Research Database (Denmark)

    Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim

    2016-01-01

    Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification...... System class II/IV drugs) because of their drug-solubilizing ability. The characterization of these potential drug-solubilizing compartments is a prerequisite for further studies of the mechanistic interplays between drug molecules and colloidal structures within HIFs. The aim of the present study...... and HIF indicate that the simulated intestinal fluids (FaSSIF-V1 and FeSSIF-V1) represent rather simplified models of the real human intestinal environment in terms of coexisting colloidal particles. It is hypothesized that the different supramolecular assemblies detected differ in their lipid composition...

  15. Are Human Intestinal Eukaryotes Beneficial or Commensals?

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Stensvold, C.R.; Jirků-Pomajbíková, Kateřina; Parfrey, L.W.

    2015-01-01

    Roč. 11, č. 8 (2015), e1005039 E-ISSN 1553-7374 R&D Projects: GA ČR GAP305/12/2261 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : human gut microbiota * Blastocystis * infection * diversity * parasites * impact Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.003, year: 2015

  16. Development of the human infant intestinal microbiota.

    Science.gov (United States)

    Palmer, Chana; Bik, Elisabeth M; DiGiulio, Daniel B; Relman, David A; Brown, Patrick O

    2007-07-01

    Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA) gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  17. Development of the human infant intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Chana Palmer

    2007-07-01

    Full Text Available Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  18. The growth pattern of the human intestine and its mesentery.

    Science.gov (United States)

    Soffers, Jelly H M; Hikspoors, Jill P J M; Mekonen, Hayelom K; Koehler, S Eleonore; Lamers, Wouter H

    2015-08-22

    It remains unclear to what extent midgut rotation determines human intestinal topography and pathology. We reinvestigated the midgut during its looping and herniation phases of development, using novel 3D visualization techniques. We distinguished 3 generations of midgut loops. The topography of primary and secondary loops was constant, but that of tertiary loops not. The orientation of the primary loop changed from sagittal to transverse due to the descent of ventral structures in a body with a still helical body axis. The 1st secondary loop (duodenum, proximal jejunum) developed intraabdominally towards a left-sided position. The 2nd secondary loop (distal jejunum) assumed a left-sided position inside the hernia before returning, while the 3rd and 4th secondary loops retained near-midline positions. Intestinal return into the abdomen resembled a backward sliding movement. Only after return, the 4th secondary loop (distal ileum, cecum) rapidly "slid" into the right lower abdomen. The seemingly random position of the tertiary small-intestinal loops may have a biomechanical origin. The interpretation of "intestinal rotation" as a mechanistic rather than a descriptive concept underlies much of the confusion accompanying the physiological herniation. We argue, instead, that the concept of "en-bloc rotation" of the developing midgut is a fallacy of schematic drawings. Primary, secondary and tertiary loops arise in a hierarchical fashion. The predictable position and growth of secondary loops is pre-patterned and determines adult intestinal topography. We hypothesize based on published accounts that malrotations result from stunted development of secondary loops.

  19. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models

    NARCIS (Netherlands)

    Islam, M.A.; Punt, A.; Spenkelink, A.; Murk, A.J.; Leeuwen, F.X.R.; Rietjens, I.

    2014-01-01

    ScopeThis study compares conversion of three major soy isoflavone glucosides and their aglycones in a series of in vitro intestinal models. Methods and resultsIn an in vitro human digestion model isoflavone glucosides were not deconjugated, whereas studies in a Caco-2 transwell model confirmed that

  20. Esterification of xanthophylls by human intestinal Caco-2 cells.

    Science.gov (United States)

    Sugawara, Tatsuya; Yamashita, Kyoko; Asai, Akira; Nagao, Akihiko; Shiraishi, Tomotaka; Imai, Ichiro; Hirata, Takashi

    2009-03-15

    We recently found that peridinin, which is uniquely present in dinoflagellates, reduced cell viability by inducing apoptosis in human colon cancer cells. Peridinin is also found in edible clams and oysters because the major food sources of those shellfish are phytoplanktons such as dinoflagellates. Little is known, however, about the fate of dietary peridinin and its biological activities in mammals. The aim of the present study was to investigate the enzymatic esterification of xanthophylls, especially peridinin which is uniquely present in dinoflagellates, using differentiated cultures of Caco-2 human intestinal cells. We found that peridinin is converted to peridininol and its fatty acid esters in differentiated Caco-2 cells treated with 5mumol/L peridinin solubilized with mixed micelles. The cell homogenate was also able to deacetylate peridinin and to esterify peridininol. Other xanthophylls, such as fucoxanthin, astaxanthin and zeaxanthin, were also esterified, but at relatively lower rates than peridinin. In this study, we found the enzymatic esterification of xanthophylls in mammalian intestinal cells for the first time. Our results suggest that the esterification of xanthophylls in intestinal cells is dependent on their polarity.

  1. Congruent Strain Specific Intestinal Persistence of Lactobacillus plantarum in an Intestine-Mimicking In Vitro System and in Human Volunteers.

    NARCIS (Netherlands)

    Bokhorst-van de Veen, H. van; Swam, I. van; Wels, M.W.; Bron, P.A.; Kleerebezem, M

    2012-01-01

    BACKGROUND: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species.

  2. Congruent Strain Specific Intestinal Persistence of Lactobacillus plantarum in an Intestine-Mimicking In Vitro System and in Human Volunteers

    NARCIS (Netherlands)

    Bokhorst-van de Veen, van H.; Swam, van I.; Wels, M.; Bron, P.A.; Kleerebezem, M.

    2012-01-01

    BACKGROUND: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species.

  3. Precision cut intestinal slices are an appropriate ex vivo model to study NSAID-induced intestinal toxicity in rats

    NARCIS (Netherlands)

    Niu, Xiaoyu; de Graaf, Inge A. M.; van der Bij, Hendrik A.; Groothuis, Geny M. M.

    2014-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used therapeutic agents, however, they are associated with a high prevalence of intestinal side effects. In this investigation, rat precision cut intestinal slices (PCIS) were evaluated as an ex vivo model to study NSAID-induced intestinal

  4. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues.

    Science.gov (United States)

    Lundquist, P; Artursson, P

    2016-11-15

    In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Quantification of Salmonella Survival and Infection in an In vitro Model of the Human Intestinal Tract as Proxy for Foodborne Pathogens.

    NARCIS (Netherlands)

    Wijnands, Lucas M; Teunis, Peter F M; Kuijpers, Angelina F A; Delfgou-Van Asch, Ellen H M; Pielaat, Annemarie

    2017-01-01

    Different techniques are available for assessing differences in virulence of bacterial foodborne pathogens. The use of animal models or human volunteers is not expedient for various reasons; the use of epidemiological data is often hampered by lack of crucial data. In this paper, we describe a

  6. Transformation of trollioside and isoquercetin by human intestinal flora in vitro.

    Science.gov (United States)

    Yuan, Ming; Shi, Duo-Zhi; Wang, Teng-Yu; Zheng, Shi-Qi; Liu, Li-Jia; Sun, Zhen-Xiao; Wang, Ru-Feng; Ding, Yi

    2016-03-01

    The present study was designed to determine the intestinal bacterial metabolites of trollioside and isoquercetin and their antibacterial activities. A systematic in vitro biotransformation investigation on trollioside and isoquercetin, including metabolite identification, metabolic pathway deduction, and time course, was accomplished using a human intestinal bacterial model. The metabolites were analyzed and identified by HPLC and HPLC-MS. The antibacterial activities of trollioside, isoquercetin, and their metabolites were evaluated using the broth microdilution method with berberine as a positive control, and their potency was measured as minimal inhibitory concentration (MIC). Our results indicated that trollioside and isoquercetin were metabolized by human intestinal flora through O-deglycosylation, yielding aglycones proglobeflowery acid and quercetin, respectively The antibacterial activities of both metabolites were more potent than that of their parent compounds. In conclusion, trollioside and isoquercetin are totally and rapidly transformed by human intestinal bacteria in vitro and the transformation favors the improvement of the antibacterial activities of the parent compounds. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  8. Diversity of human small intestinal Streptococcus and Veillonella populations.

    Science.gov (United States)

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J; Zoetendal, Erwin G; Kleerebezem, Michiel

    2013-08-01

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Human Milk Hyaluronan Enhances Innate Defense of the Intestinal Epithelium*

    Science.gov (United States)

    Hill, David R.; Rho, Hyunjin K.; Kessler, Sean P.; Amin, Ripal; Homer, Craig R.; McDonald, Christine; Cowman, Mary K.; de la Motte, Carol A.

    2013-01-01

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179

  10. The human intestinal IgA response; burning questions.

    Directory of Open Access Journals (Sweden)

    Jo eSpencer

    2012-05-01

    Full Text Available Understanding the cellular and molecular mechanisms that generate the human intestinal IgA response is fundamentally important if effective mucosal vaccination is to be successful and broadly applied. There have been several major advances in this field recently that have allowed us to feel optimistic that this will be achieved. However, there are still many unanswered questions. These questions have been used as a scaffold for this review that considers findings at the current leading edge alongside the many uncertainties in this field.

  11. Methylation of mercuric chloride by human intestinal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, I R; Grasso, P; Davies, M J

    1975-01-01

    There is now evidence that ingested mercuric chloride (HgCl/sub 2/) may be methylated, in vivo, in the rat intestine and, in vitro, by human feces. However, one cannot infer from these experiments that the microbial flora of the intestine is responsible for the methylation reaction, since the gut contents contain several sources of metabolic activity other than bacteria. Data are presented on the ability of pure cultures of bacteria and yeasts, isolated from human feces, to convert HgCl/sub 2/ to methylmercury. Strains of Escherichia coli, streptococci, staphylococci, bacteriodes and bifidobacteria were inoculated into a medium containing 0.1 M potassium phosphate buffer, pH 7.0, Bacto-tryptone, yeast extract and D-glucose, each at 0.5% (w/v). Results indicate that most strains of staphylococci, streptococci, yeasts and E. coli isolated from human feces, could synthesize methylmercury compounds. In contrast, few strains of obligate anaerobes could do so. Up to 6 ng methylmercury/ml were formed in 44 h from 2 ..mu..g mercuric chloride.

  12. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alistair eWalsham

    2016-03-01

    Full Text Available Enteropathogenic E. coli (EPEC is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC A/E lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.

  13. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium.

    Science.gov (United States)

    Walsham, Alistair D S; MacKenzie, Donald A; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.

  14. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Directory of Open Access Journals (Sweden)

    James A Cotton

    Full Text Available Giardia duodenalis (syn. G. intestinalis, G. lamblia is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time

  15. Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases

    International Nuclear Information System (INIS)

    Crow, J. Allen; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.

    2007-01-01

    Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrin are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are ∼ 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts (∼ 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be detected

  16. Intestinal mucus protects Giardia lamblia from killing by human milk.

    Science.gov (United States)

    Zenian, A J; Gillin, F D

    1987-02-01

    We have previously shown that nonimmune human milk kills Giardia lamblia trophozoites in vitro. Killing requires a bile salt and the activity of the milk bile salt-stimulated lipase. We now show that human small-intestinal mucus protects trophozoites from killing by milk. Parasite survival increased with mucus concentration, but protection was overcome during longer incubation times or with greater milk concentrations. Trophozoites preincubated with mucus and then washed were not protected. Protective activity was associated with non-mucin CsCl density gradient fractions. Moreover, it was heat-stable, non-dialyzable, and non-lipid. Whereas whole mucus inhibited milk lipolytic activity, protective mucus fractions did not inhibit the enzyme. Furthermore, mucus partially protected G. lamblia trophozoites against the toxicity of oleic acid, a fatty acid which is released from milk triglycerides by lipase. These studies show that mucus protects G. lamblia both by inhibiting lipase activity and by decreasing the toxicity of products of lipolysis. The ability of mucus to protect G. lamblia from toxic lipolytic products may help to promote intestinal colonization by this parasite.

  17. First report of human intestinal sarcocystosis in Cambodia.

    Science.gov (United States)

    Khieu, Virak; Marti, Hanspeter; Chhay, Saomony; Char, Meng Chuor; Muth, Sinuon; Odermatt, Peter

    2017-10-01

    Human intestinal sarcocystosis (HIS), caused by Sarcocystis species, is acquired by eating undercooked meat from sarcocyst-containing cattle (S. hominis, S. heydorni) and pigs (S. suihominis). We report on the detection of human intestinal Sarcocystis infections in a cross-sectional survey of Strongyloides stercoralis in early 2014, in Rovieng District, Preah Vihear Province, northern Cambodia. Among 1081 participants, 108 (10.0%) were diagnosed with Sarcocystis spp. oocysts in stool samples. Males had a significantly higher risk of infection than females (OR: 1.9, 95% CI: 1.3-2.9, p=0.001). None of the reported symptoms (abdominal discomfort, diarrhea, muscle pain and itching skin) occurring in the two weeks preceding the examinations were associated with a Sarcocystis infection. Many Sarcocystis cases were found among those who had participated in a wedding celebration and Chinese New Year festivities, where they had consumed raw or insufficiently cooked beef (83.3%) and pork (38.9%) based dishes. This report documents the first HIS cases in Cambodia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Diagnosis of edema and inflammation in human intestines using ultrawideband radar

    Science.gov (United States)

    Smith, Sonny; Narayanan, Ram M.; Messaris, Evangelos

    2015-05-01

    Human intestines are vital organs, which are often subjected to chronic issues. In particular, Crohn's disease is a bowel aliment resulting in inflammation along the lining of one's digestive tract. Moreover, such an inflammatory condition causes changes in the thickness of the intestines; and we posit induce changes in the dielectric properties detectable by radar. This detection hinges on the increase in fluid content in the afflicted area, which is described by effective medium approximations (EMA). In this paper, we consider one of the constitutive parameters (i.e. relative permittivity) of different human tissues and introduce a simple numerical, electromagnetic multilayer model. We observe how the increase in water content in one layer can be approximated to predict the effective permittivity of that layer. Moreover, we note trends in how such an accumulation can influence the total effective reflection coefficient of the multiple layers.

  19. The Effect of DA-6034 on Intestinal Permeability in an Indomethacin-Induced Small Intestinal Injury Model.

    Science.gov (United States)

    Kwak, Dong Shin; Lee, Oh Young; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon

    2016-05-23

    DA-6034 has anti-inflammatory activities and exhibits cytoprotective effects in acute gastric injury models. However, explanations for the protective effects of DA-6034 on intestinal permeability are limited. This study sought to investigate the effect of DA-6034 on intestinal permeability in an indomethacin-induced small intestinal injury model and its protective effect against small intestinal injury. Rats in the treatment group received DA-6034 from days 0 to 2 and indomethacin from days 1 to 2. Rats in the control group received indomethacin from days 1 to 2. On the fourth day, the small intestines were examined to compare the severity of inflammation. Intestinal permeability was evaluated by using fluorescein isothiocyanate-labeled dextran. Western blotting was performed to confirm the association between DA-6034 and the extracellular signal-regulated kinase (ERK) pathway. The inflammation scores in the treatment group were lower than those in the control group, but the difference was statistically insignificant. Hemorrhagic lesions in the treatment group were broader than those in the control group, but the difference was statistically insignificant. Intestinal permeability was lower in the treatment group than in the control group. DA-6034 enhanced extracellular signal-regulated kinase expression, and intestinal permeability was negatively correlated with ERK expression. DA-6034 may decrease intestinal permeability in an indomethacin-induced intestinal injury model via the ERK pathway.

  20. Primary human polarized small intestinal epithelial barriers respond differently to a hazardous and an innocuous protein.

    Science.gov (United States)

    Eaton, A D; Zimmermann, C; Delaney, B; Hurley, B P

    2017-08-01

    An experimental platform employing human derived intestinal epithelial cell (IEC) line monolayers grown on permeable Transwell ® filters was previously investigated to differentiate between hazardous and innocuous proteins. This approach was effective at distinguishing these types of proteins and perturbation of monolayer integrity, particularly transepithelial electrical resistance (TEER), was the most sensitive indicator. In the current report, in vitro indicators of monolayer integrity, cytotoxicity, and inflammation were evaluated using primary (non-transformed) human polarized small intestinal epithelial barriers cultured on Transwell ® filters to compare effects of a hazardous protein (Clostridium difficile Toxin A [ToxA]) and an innocuous protein (bovine serum albumin [BSA]). ToxA exerted a reproducible decrease on barrier integrity at doses comparable to those producing effects observed from cell line-derived IEC monolayers, with TEER being the most sensitive indicator. In contrast, BSA, tested at concentrations substantially higher than ToxA, did not cause changes in any of the tested variables. These results demonstrate a similarity in response to certain proteins between cell line-derived polarized IEC models and a primary human polarized small intestinal epithelial barrier model, thereby reinforcing the potential usefulness of cell line-derived polarized IECs as a valid experimental platform to differentiate between hazardous and non-hazardous proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells

    International Nuclear Information System (INIS)

    Artursson, P.; Karlsson, J.

    1991-01-01

    Monolayers of a well differentiated human intestinal epithelial cell line, Caco-2, were used as a model to study passive drug absorption across the intestinal epithelium. Absorption rate constants (expressed as apparent permeability coefficients) were determined for 20 drugs and peptides with different structural properties. The permeability coefficients ranged from approximately 5 x 10 - 8 to 5 x 10 - 5 cm/s. A good correlation was obtained between data on oral absorption in humans and the results in the Caco-2 model. Drugs that are completely absorbed in humans had permeability coefficients greater than 1 x 10 - 6 cm/s. Drugs that are absorbed to greater than 1% but less than 100% had permeability coefficients of 0.1-1.0 x 10 - 6 cm/s while drugs and peptides that are absorbed to less than 1% had permeability coefficients of less than or equal to 1 x 10 - 7 cm/s. The results indicate that Caco-2 monolayers can be used as a model for studies on intestinal drug absorption

  2. INTESTINAL VIROME AND NORMAL MICROFLORA OF HUMAN: FEATURES OF INTERACTION

    Directory of Open Access Journals (Sweden)

    Bobyr V.V.

    2015-05-01

    Full Text Available Summary: Intestinal bacteria defend the host organism and narrow pathogenic bacterial colonization. However, the microbiome effect to enteric viruses is unexplored largely as well as role of microbiota in the pathogenesis of viral infections in general. This review focuses on precisely these issues. Keywords: microbiome, virome, normal microflora, enteric viruses, contagiousness. In this review article, facts about viral persistence in the human gut are summarized. It is described the role of viral populations during health and diseases. After analyzing of the literary facts it was concluded that the gastrointestinal tract is an environment for one from the most complex microbial ecosystems, which requires of more deeper study of its composition, role in physiological processes, as well as the dynamics of changes under influence of the environment. Normal microflora performs a different important functions providing the physiological homeostasis of the human body, including, in particular, an important role in the human metabolic processes, supporting of homeostasis, limiting of colonization by infectious bacteria. The multifactorial significance of the normal gastrointestinal microflora can be divided into immunological, structural and metabolic functions. At the same time, interaction between intestinal microflora and enteric viruses has not been studied largely. In recent years, much attention is paid to study of viruses-bacteria associations, and it is possible, obtained results should change our understanding of microbiota role in the systematic pathogenesis of the diseases with viral etiology. In contrast to the well-known benefits of normal microflora to the host, the viruses can use intestinal microflora as a trigger for replication at the optimal region. Recent studies give a reason for assumption that depletion of normal microflora with antibiotics can determining the antiviral effect. Thus, the role of commensal bacteria in viral

  3. Metabolism of aspartame by human and pig intestinal microvillar peptidases.

    Science.gov (United States)

    Hooper, N M; Hesp, R J; Tieku, S

    1994-01-01

    The artificial sweetener aspartame (N-L-alpha-aspartyl-L-phenyl-alanine-1-methyl ester; Nutrasweet), its decomposition product alpha Asp-Phe and the related peptide alpha Asp-PheNH2 were rapidly hydrolysed by microvillar membranes prepared from human duodenum, jejunum and ileum, and from pig duodenum and kidney. The metabolism of aspartame by the human and pig intestinal microvillar membrane preparations was inhibited significantly (> 78%) by amastatin or 1,10-phenanthroline, and partially (> 38%) by actinonin or bestatin, and was activated 2.9-4.5-fold by CaCl2. The inhibition by amastatin and 1,10-phenanthroline, and the activation by CaCl2 are characteristic of the cell-surface ectoenzyme aminopeptidase A (EC 3.4.11.7) and a purified preparation of this enzyme hydrolysed aspartame with a Km of 0.25 mM and a Vmax of 126 mumol/min per mg. A purified preparation of aminopeptidase W (EC 3.4.11.16) also hydrolysed aspartame but with a Km of 4.96 mM and a Vmax of 110 mumol/min per mg. However, rentiapril, an inhibitor of aminopeptidase W, caused only slight inhibition (maximally 19%) of the hydrolysis of aspartame by the microvillar membrane preparations. Similar patterns of inhibition and kinetic parameters were observed for alpha Asp-Phe and alpha Asp-PheNH2. Two other decomposition products of aspartame, beta Asp-PheMe and cyclo-Asp-Phe, were essentially resistant to hydrolysis by both the human and pig intestinal microvillar membrane preparations and the purified preparations of aminopeptidases A and W. Although the relatively selective inhibitor of aminopeptidase N (EC 3.4.11.2), actinonin, partially inhibited the metabolism of aspartame, alpha Asp-Phe and alpha Asp-PheNH2 by the human and pig intestinal microvillar membrane preparations, these peptides were not hydrolysed by a purified preparation of aminopeptidase N. Membrane dipeptidase (EC 3.4.13.19) only hydrolysed the unblocked dipeptide, alpha Asp-Phe, but the selective inhibitor of this enzyme, cilastatin

  4. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    OpenAIRE

    Liu, Z.; Zhang, P.; Zhou, Y.; Qin, H.; Shen, T.

    2010-01-01

    Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithel...

  5. [Microbial "friend-foe" identification in human intestine microsymbiocenosis].

    Science.gov (United States)

    Bukharin, O V; Petrunova, N B

    2011-01-01

    Development of methodical approach of evaluation of microbial "friend-foe" identification in human intestine microsymbiocenosis. 9 bifidobacteria cultures (dominants) and 18 opportunistic microorganism strains (associants) isolated from patients during examination for intestine dysbiosis and identified by conventional methods were used. Evaluation of microbial "friend-foe" identification in microsymbiocenosis was performed by author developed technique that is based on determination of growth factors (GF), anti-lysozyme activity (ALA) and formation of biofilms (BFF) of associants co-incubated with exometabolites of dominants. GF, ALA, BFF were studied photometrically (Bukharin O.V., 1999, 2009; O'Toole G.A., 2000). The data were statistically analyzed by Fisher-Student criteria. The detected opposite (increase/reduction) phenomenon of the "dominant-associant" pair allowed realization of the "friend-foe" identification in microsymbiocenosis. Associants (E. coli and Enterococcus faecium) were "friend" species, in which bifidobacteria exometabolites did not change growth properties and stimulated ALA (by 17,5--32%) and BFF (by 25 - 39%). Associants (Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Candida albicans) were "foe" microsymbiont species, in which bifidoflora exometabolites decreased GF (by 20,7--68%), ALA (by 22,7--54%) and BFF (by 22,5 --39%). Indigenous microflora during microsymbiocenosis formation can participate in "friend-foe" identification, the basis of which is determined by microsymbiont exometabolites. The data obtained open a perspective of understanding mechanisms of intramicrobial interactions and can be used for both diagnostics and optimal selection of "candidates" during creation of new probiotics and synbiotics.

  6. Common occurrence of antibacterial agents in human intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Fatima eDrissi

    2015-05-01

    Full Text Available Laboratory experiments have revealed many active mechanisms by which bacteria can inhibit the growth of other organisms. Bacteriocins are a diverse group of natural ribosomally-synthesized antimicrobial peptides produced by a wide range of bacteria and which seem to play an important role in mediating competition within bacterial communities. In this study, we have identified and established the structural classification of putative bacteriocins encoded by 317 microbial genomes in the human intestine. On the basis of homologies to available bacteriocin sequences, mainly from lactic acid bacteria, we report the widespread occurrence of bacteriocins across the gut microbiota: 175 bacteriocins were found to be encoded in Firmicutes, 79 in Proteobacteria, 34 in Bacteroidetes and 25 in Actinobacteria. Bacteriocins from gut bacteria displayed wide differences among phyla with regard to class distribution, net positive charge, hydrophobicity and secondary structure, but the α-helix was the most abundant structure. The peptide structures and physiochemical properties of bacteriocins produced by the most abundant bacteria in the gut, the Firmicutes and the Bacteroidetes, seem to ensure low antibiotic activity and participate in permanent intestinal host defence against the proliferation of harmful bacteria. Meanwhile, the potentially harmful bacteria, including the Proteobacteria, displayed highly effective bacteriocins, probably supporting the virulent character of diseases. These findings highlight the eventual role played by bacteriocins in gut microbial competition and their potential place in antibiotic therapy.

  7. Community and genomic analysis of the human small intestine microbiota

    NARCIS (Netherlands)

    Bogert, van den B.

    2013-01-01

    Our intestinal tract is densely populated by different microbes, collectively called microbiota, of which the majority are bacteria. Research focusing on the intestinal microbiota often use fecal samples as a representative of the bacteria that inhabit the end of the large intestine.

  8. Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis

    NARCIS (Netherlands)

    Nikkilä, J.; Vos, de W.M.

    2010-01-01

    GOALS: We describe advanced approaches for the computational meta-analysis of a collection of independent studies, including over 1000 phylogenetic array datasets, as a means to characterize the variability of human intestinal microbiota. BACKGROUND: The human intestinal microbiota is a complex

  9. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    Science.gov (United States)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  10. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  11. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

    Science.gov (United States)

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  12. Characterization of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme of human small intestine.

    Science.gov (United States)

    Hiramine, Yasushi; Tanabe, Toshizumi

    2011-06-01

    Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.

  13. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. The Ussing Chamber Assay to Study Drug Metabolism and Transport in the Human Intestine.

    Science.gov (United States)

    Kisser, Beatrice; Mangelsen, Eva; Wingolf, Caroline; Partecke, Lars Ivo; Heidecke, Claus-Dieter; Tannergren, Christer; Oswald, Stefan; Keiser, Markus

    2017-06-22

    The Ussing chamber is an old but still powerful technique originally designed to study the vectorial transport of ions through frog skin. This technique is also used to investigate the transport of chemical agents through the intestinal barrier as well as drug metabolism in enterocytes, both of which are key determinants for the bioavailability of orally administered drugs. More contemporary model systems, such as Caco-2 cell monolayers or stably transfected cells, are more limited in their use compared to the Ussing chamber because of differences in expression rates of transporter proteins and/or metabolizing enzymes. While there are limitations to the Ussing chamber assay, the use of human intestinal tissue remains the best laboratory test for characterizing the transport and metabolism of compounds following oral administration. Detailed in this unit is a step-by-step protocol for preparing human intestinal tissue, for designing Ussing chamber experiments, and for analyzing and interpreting the findings. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  15. [Intestinal lengthening techniques: an experimental model in dogs].

    Science.gov (United States)

    Garibay González, Francisco; Díaz Martínez, Daniel Alberto; Valencia Flores, Alejandro; González Hernández, Miguel Angel

    2005-01-01

    To compare two intestinal lengthening procedures in an experimental dog model. Intestinal lengthening is one of the methods for gastrointestinal reconstruction used for treatment of short bowel syndrome. The modification to the Bianchi's technique is an alternative. The modified technique decreases the number of anastomoses to a single one, thus reducing the risk of leaks and strictures. To our knowledge there is not any clinical or experimental report that studied both techniques, so we realized the present report. Twelve creole dogs were operated with the Bianchi technique for intestinal lengthening (group A) and other 12 creole dogs from the same race and weight were operated by the modified technique (Group B). Both groups were compared in relation to operating time, difficulties in technique, cost, intestinal lengthening and anastomoses diameter. There were no statistical difference in the anastomoses diameter (A = 9.0 mm vs. B = 8.5 mm, p = 0.3846). Operating time (142 min vs. 63 min) cost and technique difficulties were lower in group B (p anastomoses (of Group B) and intestinal segments had good blood supply and were patent along their full length. Bianchi technique and the modified technique offer two good reliable alternatives for the treatment of short bowel syndrome. The modified technique improved operating time, cost and technical issues.

  16. Innovative methods to study human intestinal drug metabolism in vitro : Precision-cut slices compared with Ussing chamber preparations

    NARCIS (Netherlands)

    van de Kerkhof, Esther G.; Ungell, Anna-Lena B.; Sjoberg, Asa K.; de Jager, Marina H.; Hilgendorf, Constanze; de Graaf, Inge A. M.; Groothuis, Geny M. M.

    2006-01-01

    Predictive in vitro methods to investigate drug metabolism in the human intestine using intact tissue are of high importance. Therefore, we studied the metabolic activity of human small intestinal and colon slices and compared it with the metabolic activity of the same human intestinal segments

  17. A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens)

    DEFF Research Database (Denmark)

    Hildebrand, Falk; Ebersbach, Tine; Nielsen, Henrik Bjørn

    2012-01-01

    Background: Guinea pig (Cavia porcellus) is an important model for human intestinal research. We have characterized the faecal microbiota of 60 guinea pigs using Illumina shotgun metagenomics, and used this data to compile a gene catalogue of its prevalent microbiota. Subsequently, we compared th...

  18. Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands.

    Science.gov (United States)

    Seifert, P; Spitznas, M

    1999-06-01

    This study was conducted to obtain morphological proof of innervating nerve fibres in the glands of the human eyelid (accessory lacrimal glands of Wolfring, meibomian glands, goblet cells, glands of Zeis, glands of Moll, sweat glands, glands of lanugo hair follicles) and identification of the secretomotorically active neuropeptide vasoactive intestinal polypeptide (VIP) as a common transmitter. Epoxy-embedded ultrathin sections of tissue samples from human eyelids were studied using electron microscopy. Paraffin sections fixed in Bouin-Hollande solution were immunostained with rabbit antiserum against VIP. With the electron microscope we were able to identify nerves in the glandular stroma of all the glands examined with the exception of goblet cells. Intraepithelial single axons were only seen in the parenchyma of Wolfring glands. The morphological findings corresponded with the immunological finding of VIP-positive, nerve-like structures in the same locations, with the exception of lanugo hair follicle glands, and goblet cells. Our findings indicate that the glands of the eyelids and main lacrimal gland represent a functional unit with VIP as a possible common stimulating factor. Copyright 1999 Academic Press.

  19. The effect of reducing numbers of Campylobacter in broiler intestines on human health risk

    DEFF Research Database (Denmark)

    Nauta, Maarten; Johannessen, Gro; Laureano Adame, Laura

    2016-01-01

    in concentration on the meat and a reduction in the human health risk of campylobacteriosis. In this study, two methods are presented and compared. The first is a linear regression model, based on count data from caecal contents and skin sample data, obtained after processing from the same flocks. Alternatively....... However, it is not possible to derive a generic rule that can be used to relate a reduction in concentration in broiler intestines into a reduction in human health risk. Regression models based on different data sets predict different relationships between bacterial count data from caeca and skins......, a previously published risk assessment model is used, that describes the dynamics of transfer and survival of Campylobacter during broiler processing at the slaughterhouse. Data from five European countries are used as inputs for the models. For both approaches the analyses show that a one to two log reduction...

  20. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research.

    Science.gov (United States)

    Li, Ming; de Graaf, Inge A M; Groothuis, Geny M M

    2016-01-01

    The absorption, distribution, metabolism, excretion and toxicity (ADME-tox) processes of drugs are of importance and require preclinical investigation intestine in addition to the liver. Various models have been developed for prediction of ADME-tox in the intestine. In this review, precision-cut intestinal slices (PCIS) are discussed and highlighted as model for ADME-tox studies. This review provides an overview of the applications and an update of the most recent research on PCIS as an ex vivo model to study the transport, metabolism and toxicology of drugs and other xenobiotics. The unique features of PCIS and the differences with other models as well as the translational aspects are also discussed. PCIS are a simple, fast, and reliable ex vivo model for drug ADME-tox research. Therefore, PCIS are expected to become an indispensable link in the in vitro-ex vivo-in vivo extrapolation, and a bridge in translation of animal data to the human situation. In the future, this model may be helpful to study the effects of interorgan interactions, intestinal bacteria, excipients and drug formulations on the ADME-tox properties of drugs. The optimization of culture medium and the development of a (cryo)preservation technique require more research.

  1. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  2. Conformational restrictions in ligand binding to the human intestinal di-/tripeptide transporter

    DEFF Research Database (Denmark)

    Våbenø, Jon; Nielsen, Carsten Uhd; Steffansen, Bente

    2005-01-01

    The aim of the present study was to develop a computational method aiding the design of dipeptidomimetic pro-moieties targeting the human intestinal di-/tripeptide transporter hPEPT1. First, the conformation in which substrates bind to hPEPT1 (the bioactive conformation) was identified...... to change the peptide backbone conformation (DeltaE(bbone)) from the global energy minimum conformation to the identified bioactive conformation was calculated for 20 hPEPT1 targeted model prodrugs with known K(i) values. Quantitatively, an inverse linear relationship (r(2)=0.81, q(2)=0.80) was obtained...

  3. Anti-inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In vitro Models

    Directory of Open Access Journals (Sweden)

    Dominik Schreiber

    2017-08-01

    Full Text Available Inflammatory bowel diseases (IBD, which include Crohn's disease and ulcerative colitis, are chronic inflammatory disorders that can affect the whole gastrointestinal tract or the colonic mucosal layer. Current therapies aiming to suppress the exaggerated immune response in IBD largely rely on compounds with non-satisfying effects or side-effects. Therefore, new therapeutical options are needed. In the present study, we investigated the anti-inflammatory effects of the fungal metabolites, galiellalactone, and dehydrocurvularin in both an in vitro intestinal inflammation model, as well as in isolated myenteric plexus and enterocyte cells. Administration of a pro-inflammatory cytokine mix through the mesenteric artery of intestinal segments caused an up-regulation of inflammatory marker genes. Treatment of the murine intestinal segments with galiellalactone or dehydrocurvularin by application through the mesenteric artery significantly prevented the expression of pro-inflammatory marker genes on the mRNA and the protein level. Comparable to the results in the perfused intestine model, treatment of primary enteric nervous system (ENS cells from the murine intestine with the fungal compounds reduced expression of cytokines such as IL-6, TNF-α, IL-1β, and inflammatory enzymes such as COX-2 and iNOS on mRNA and protein levels. Similar anti-inflammatory effects of the fungal metabolites were observed in the human colorectal adenocarcinoma cell line DLD-1 after stimulation with IFN-γ (10 ng/ml, TNF-α (10 ng/ml, and IL-1β (5 ng/ml. Our results show that the mesenterially perfused intestine model provides a reliable tool for the screening of new therapeutics with limited amounts of test compounds. Furthermore, we could characterize the anti-inflammatory effects of two novel active compounds, galiellalactone, and dehydrocurvularin which are interesting candidates for studies with chronic animal models of IBD.

  4. Enteral nutrients potentiate glucagon-like peptide-2 action and reduce dependence on parenteral nutrition in a rat model of human intestinal failure

    DEFF Research Database (Denmark)

    Brinkman, Adam S; Murali, Sangita G; Hitt, Stacy

    2012-01-01

    human SBS and requires parenteral nutrition (PN). Male Sprague-Dawley rats were assigned to one of five groups and maintained with PN for 18 days: total parenteral nutrition (TPN) alone, TPN + GLP-2 (100 μg·kg(-1)·day(-1)), PN + EN + GLP-2(7 days), PN + EN + GLP-2(18 days), and a nonsurgical oral...

  5. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    Science.gov (United States)

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (Pcultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (Pculture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites

    NARCIS (Netherlands)

    Niu, Xiaoyu; de Graaf, Inge A. M.; Langelaar-Makkinje, Miriam; Horvatovich, Peter; Groothuis, Geny M. M.

    The use of diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is associated with a high prevalence of gastrointestinal side effects. In vivo studies in rodents suggested that reactive metabolites of DCF produced by the liver or the intestine might be responsible for this toxicity. In the

  7. Model prodrugs for the intestinal peptide transporter. a synthetic approach for coupling of hydroxy-containing compounds to dieptides

    DEFF Research Database (Denmark)

    Friedrichsen, G; Nielsen, Carsten Uhd; Steffansen, Bente

    2001-01-01

    The human peptide transporter, hPepT1, situated in the small intestine, may be exploited to increase absorption of drugs or model drugs by attaching them to a dipeptide, which is recognised by hPepT1. A synthetic protocol for this kind of model prodrugs was developed, in which model drugs...

  8. Development of a QSAR model for binding of tripeptides and tripeptidomimetics to the human intestinal di-/tripeptide transporter hPEPT1

    DEFF Research Database (Denmark)

    Andersen, Rikke; Jørgensen, Flemming Steen; Olsen, Lars

    2006-01-01

    The aim of this study was to develop a three-dimensional quantitative structure-activity relationship (QSAR) model for binding of tripeptides and tripeptidomimetics to hPEPT1 based on a series of 25 diverse tripeptides....

  9. Intestine-Specific Mttp Deletion Decreases Mortality and Prevents Sepsis-Induced Intestinal Injury in a Murine Model of Pseudomonas aeruginosa Pneumonia

    Science.gov (United States)

    Dominguez, Jessica A.; Xie, Yan; Dunne, W. Michael; Yoseph, Benyam P.; Burd, Eileen M.; Coopersmith, Craig M.; Davidson, Nicholas O.

    2012-01-01

    Background The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the “motor” of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO), which exhibit a block in chylomicron assembly together with lipid malabsorption. Methodology/Principal Findings Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0%) dying compared to 5/17 (29%) control mice (p<0.05). This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL) levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice. Conclusions/Significance These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by

  10. Intestine-specific Mttp deletion decreases mortality and prevents sepsis-induced intestinal injury in a murine model of Pseudomonas aeruginosa pneumonia.

    Directory of Open Access Journals (Sweden)

    Jessica A Dominguez

    Full Text Available The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the "motor" of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO, which exhibit a block in chylomicron assembly together with lipid malabsorption.Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0% dying compared to 5/17 (29% control mice (p<0.05. This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice.These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by metabolic and physiological adaptations in both intestinal and

  11. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Quaranta

    Full Text Available The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.

  12. Comparison of Mass Transfer Models for Determination of the Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    P Zakeri-Milani

    2008-09-01

    Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.

  13. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier.

    Science.gov (United States)

    Ulluwishewa, Dulantha; Anderson, Rachel C; Young, Wayne; McNabb, Warren C; van Baarlen, Peter; Moughan, Paul J; Wells, Jerry M; Roy, Nicole C

    2015-02-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co-culture of live obligate anaerobes with the human intestinal cell line Caco-2, was developed. Caco-2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco-2 cells had adapted to survive in an oxygen-reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)-killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco-2 cells exposed to live F. prausnitzii than UV-killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti-inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co-culture system that allows obligate anaerobic bacteria to remain viable. © 2014 John Wiley & Sons Ltd.

  14. The role of metabolism in diclofenac-induced intestinal toxicity in rat and human in vitro

    NARCIS (Netherlands)

    Niu, Xiaoyu; Makkinje, Miriam; de Graaf, Inge; Groothuis, Genoveva

    The use of Diclofenac (DCF), a non-steroidal anti-inflammatory drug is associated with severe gastro-intestinal side-effects. The mechanisms of drug-induced intestinal toxicity are largely unknown due to the lack of in vitro models. In vivo rat studies suggested that reactive metabolites of DCF

  15. Electrocautery effect on intestinal vascularisation in a murine model.

    Science.gov (United States)

    Tremblay, Jean-François; Sideris, Lucas; Leblond, François A; Trépanier, Jean-Sébastien; Badrudin, David; Drolet, Pierre; Mitchell, Andrew; Dubé, Pierre

    2016-09-01

    The use of electrocautery devices is associated with complications such as perforation or fistulisation when used near intestinal structures. This is likely due to its effect on vascularisation of the bowel wall. To test this hypothesis we established a murine model to quantify the effect of electrocautery injury on the intestinal microvascularisation. Sprague-Dawley rats were subjected to five electrocautery injuries on the small bowel in coagulation mode (30 W intensity) and in cut mode (40 W, 80 W and 200 W intensities) for durations of 1, 2 and 5 s. 5 mg/kg of fluorescein was injected intravenously, the injured bowel segments harvested and the rat sacrificed. The segments were analysed to measure the fluorescence of injured bowel compared to adjacent unharmed tissue. A significant decrease in bowel wall microvascularisation occurred with increasing intensity (coag 30 W/cut 40 W versus cut 200 W 1 s: p electrocautery injury (cut 40 W 1/2 s versus 5 s: p electrocautery injury, a significantly greater microvascularisation decrease was observed in jejunum compared to ileum (p electrocautery use. Unsurprisingly, the decrease in microvascularisation is greater with higher intensity and duration of electrocautery and is associated with more perforations in the experimental model. The jejunum seems more vulnerable to electrocautery injury than the ileum. These observations support caution when using electrocautery devices near intestinal structures.

  16. Rapid reversal of human intestinal ischemia-reperfusion induced damage by shedding of injured enterocytes and reepithelialisation.

    Directory of Open Access Journals (Sweden)

    Joep P M Derikx

    Full Text Available BACKGROUND: Intestinal ischemia-reperfusion (IR is a phenomenon related to physiological conditions (e.g. exercise, stress and to pathophysiological events (e.g. acute mesenteric ischemia, aortic surgery. Although intestinal IR has been studied extensively in animals, results remain inconclusive and data on human intestinal IR are scarce. Therefore, an experimental harmless model for human intestinal IR was developed, enabling us to clarify the sequelae of human intestinal IR for the first time. METHODS AND FINDINGS: In 30 patients undergoing pancreatico-duodenectomy we took advantage of the fact that in this procedure a variable length of jejunum is removed. Isolated jejunum (5 cm was subjected to 30 minutes ischemia followed by reperfusion. Intestinal Fatty Acid Binding Protein (I-FABP arteriovenous concentration differences across the bowel segment were measured before and after ischemia to assess epithelial cell damage. Tissue sections were collected after ischemia and at 25, 60 and 120 minutes reperfusion and stained with H&E, and for I-FABP and the apoptosis marker M30. Bonferroni's test was used to compare I-FABP differences. Mean (SEM arteriovenous concentration gradients of I-FABP across the jejunum revealed rapidly developing epithelial cell damage. I-FABP release significantly increased from 290 (46 pg/ml before ischemia towards 3,997 (554 pg/ml immediately after ischemia (p<0.001 and declined gradually to 1,143 (237 pg/ml within 1 hour reperfusion (p<0.001. Directly after ischemia the intestinal epithelial lining was microscopically normal, while subepithelial spaces appeared at the villus tip. However, after 25 minutes reperfusion, enterocyte M30 immunostaining was observed at the villus tip accompanied by shedding of mature enterocytes into the lumen and loss of I-FABP staining. Interestingly, within 60 minutes reperfusion the epithelial barrier resealed, while debris of apoptotic, shedded epithelial cells was observed in the lumen

  17. Impact of Diet on Human Intestinal Microbiota and Health

    NARCIS (Netherlands)

    Salonen, A.; Vos, de W.M.

    2014-01-01

    Our intestinal microbiota is involved in the breakdown and bioconversion of dietary and host components that are not degraded and taken up by our own digestive system. The end products generated by our microbiota fuel our enterocytes and support growth but also have signaling functions that generate

  18. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.

    Science.gov (United States)

    Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa

    2017-06-06

    The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.

  19. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates

    DEFF Research Database (Denmark)

    Zoetendal, Erwin G; Raes, Jeroen; van den Bogert, Bartholomeus

    2012-01-01

    in parallel. Comparative functional analysis with fecal metagenomes identified functions that are overrepresented in the small intestine, including simple carbohydrate transport phosphotransferase systems (PTS), central metabolism and biotin production. Moreover, metatranscriptome analysis supported high...... level in-situ expression of PTS and carbohydrate metabolic genes, especially those belonging to Streptococcus sp. Overall, our findings suggest that rapid uptake and fermentation of available carbohydrates contribute to maintaining the microbiota in the human small intestine....

  20. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models.

    Science.gov (United States)

    Liu, Yulan; Wang, Xiuying; Hou, Yongqing; Yin, Yulong; Qiu, Yinsheng; Wu, Guoyao; Hu, Chien-An Andy

    2017-08-01

    Animal models are needed to study and understand a human complex disease. Because of their similarities in anatomy, structure, physiology, and pathophysiology, the pig has proven its usefulness in studying human gastrointestinal diseases, such as inflammatory bowel disease, ischemia/reperfusion injury, diarrhea, and cancer. To understand the pathogenesis of these diseases, a number of experimental models generated in pigs are available, for example, through surgical manipulation, chemical induction, microbial infection, and genetic engineering. Our interests have been using amino acids as therapeutics in pig and human disease models. Amino acids not only play an important role in protein biosynthesis, but also exert significant physiological effects in regulating immunity, anti-oxidation, redox regulation, energy metabolism, signal transduction, and animal behavior. Recent studies in pigs have shown that specific dietary amino acids can improve intestinal integrity and function under normal and pathological conditions that protect the host from different diseases. In this review, we summarize several pig models in intestinal diseases and how amino acids can be used as therapeutics in treating pig and human diseases.

  1. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    Science.gov (United States)

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-08-29

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  2. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    Directory of Open Access Journals (Sweden)

    Cui Zhu

    2016-08-01

    Full Text Available Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11 have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes, goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  3. Diversity of human intestinal helminthiasis in Lao PDR.

    Science.gov (United States)

    Sayasone, Somphou; Vonghajack, Youthanavane; Vanmany, Monely; Rasphone, Oroth; Tesana, Smarn; Utzinger, Jürg; Akkhavong, Kongsap; Odermatt, Peter

    2009-03-01

    Food-borne trematodiasis is an emerging public health problem, including in Lao PDR. We investigated the diversity of intestinal helminthes and polyparasitism in patients with hepatobiliary or intestinal symptoms in hospital and community-based surveys. Stool samples from 232 individuals aged >or=15 years were examined by the Kato-Katz method (three samples) and a formalin ethyl-acetate concentration technique (one sample). Opisthorchis viverrini and minute intestinal flukes (MIF) were common, with prevalences of 86.2% and 62.9%, respectively. Hookworm was the predominant soil-transmitted helminth (65.9%). The prevalences of Taenia spp., Strongyloides stercoralis and Trichuris trichiura were 22.8%, 10.3% and 8.6%, respectively. Additionally, 97 individuals were purged; O. viverrini and Haplorchis taichui were found in 95 and 76 participants, respectively. Other trematodes included Phaneropsolus bonnei (22.7%), Prosthodendrium molenkampi (14.4%), Haplorchis pumilio (5.2%), Haplorchis yokogawai (3.1%) and Echinochasmus japonicus (3.1%). Co-infection with O. viverrini and MIFs was rampant (81.4%). Polytrematode infection is highly prevalent in Lao PDR and hence requires urgent attention.

  4. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    NARCIS (Netherlands)

    Gigliucci, Federica; von Meijenfeldt, F A Bastiaan; Knijn, Arnold; Michelacci, Valeria; Scavia, Gaia; Minelli, Fabio; Dutilh, Bas E|info:eu-repo/dai/nl/304546313; Ahmad, Hamideh M; Raangs, Gerwin C; Friedrich, Alex W; Rossen, John W A; Morabito, Stefano

    2018-01-01

    The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic

  5. Intestinal microbiota in human health and disease: the impact of probiotics

    NARCIS (Netherlands)

    Gerritsen, J.; Smidt, H.; Rijkers, G.T.; Vos, de W.M.

    2011-01-01

    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the

  6. Analyzing the functionality of the human intestinal microbiota by stable isotope probing

    NARCIS (Netherlands)

    Kovatcheva, P.P.

    2010-01-01

    Key words: gut bacteria, dietary carbohydrates, digestion, RNA-SIP, TIM-2, HITChip, human trial

    The human gastro-intestinal (GI) tract comprises a series of complex and dynamic organs ranging from the stomach to the distal colon, which harbor immense microbial assemblages, with

  7. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Postmortem microbiological examinations are performed in forensic and medical pathology for defining uncertain causes of deaths and for screening of deceased tissue donors. Interpretation of bacteriological data, however, is hampered by false-positive results due to agonal spread of microorganisms, postmortem bacterial translocation, and environmental contamination. METHODOLOGY/PRINCIPAL FINDINGS: We performed a kinetic survey of naturally occurring postmortem gut flora changes in the small and large intestines of conventional and gnotobiotic mice associated with a human microbiota (hfa applying cultural and molecular methods. Sacrificed mice were kept under ambient conditions for up to 72 hours postmortem. Intestinal microbiota changes were most pronounced in the ileal lumen where enterobacteria and enterococci increased by 3-5 orders of magnitude in conventional and hfa mice. Interestingly, comparable intestinal overgrowth was shown in acute and chronic intestinal inflammation in mice and men. In hfa mice, ileal overgrowth with enterococci and enterobacteria started 3 and 24 hours postmortem, respectively. Strikingly, intestinal bacteria translocated to extra-intestinal compartments such as mesenteric lymphnodes, spleen, liver, kidney, and cardiac blood as early as 5 min after death. Furthermore, intestinal tissue destruction was characterized by increased numbers of apoptotic cells and neutrophils within 3 hours postmortem, whereas counts of proliferative cells as well as T- and B-lymphocytes and regulatory T-cells decreased between 3 and 12 hours postmortem. CONCLUSIONS/SIGNIFICANCE: We conclude that kinetics of ileal overgrowth with enterobacteria and enterococci in hfa mice can be used as an indicator for compromized intestinal functionality and for more precisely defining the time point of death under defined ambient conditions. The rapid translocation of intestinal bacteria starting within a few minutes after death will help

  8. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries.

    Science.gov (United States)

    Mueller, Dolores; Jung, Kathrin; Winter, Manuel; Rogoll, Dorothee; Melcher, Ralph; Richling, Elke

    2017-09-15

    We investigated the importance of the large intestine on the bioavailability of anthocyanins from bilberries in humans with/without a colon. Low bioavailability of anthocyanins in plasma and urine was observed in the frame of this study. Anthocyanins reached the circulation mainly as glucuronides. Analysis of ileal effluents (at end of small intestine) demonstrated that 30% of ingested anthocyanins were stable during 8h passage through the upper intestine. Only 20% degradants were formed and mostly intact anthocyanins were absorbed from the small intestine. Higher amounts of degradants than anthocyanins reached the circulation after bilberry extract consumption in both groups of subjects. Comparison of the bioavailability of anthocyanins in healthy subjects versus ileostomists revealed substantially higher amounts of anthocyanins and degradants in the plasma/urine of subjects with an intact gut. The results suggested that the colon is a significant site for absorption of bioactive components such as anthocyanins and their degradation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nutrient Fortification of Human Donor Milk Affects Intestinal Function and Protein Metabolism in Preterm Pigs

    DEFF Research Database (Denmark)

    Sun, Jing; Li, Yanqi; Nguyen, Duc Ninh

    2018-01-01

    (BC) may be an alternative nutrient fortifier, considering its high content of protein and milk bioactive factors. Objective: We investigated whether BC was superior to an FF product based on processed bovine milk and vegetable oil to fortify donor human milk (DHM) for preterm pigs, used as a model......) and DHM with or without FF or BC fortification (+4.6 g protein ⋅ kg-1 ⋅ d-1). Results: DPM-fed pigs showed higher growth (10-fold), protein synthesis (+15-30%), villus heights, lactase and peptidase activities (+30%), and reduced intestinal cytokines (-50%) relative to DHM pigs (all P ....05). Fortification increased protein synthesis (+20-30%), but with higher weight gain and lower urea and cortisol concentrations for DHM+BC compared with DHM+FF pigs (2- to 3-fold differences, all P ≤ 0.06). DHM+FF pigs showed more diarrhea and reduced lactase and peptidase activities, hexose uptake, and villus...

  10. Research on measurement and modeling of the gastro intestine's frictional characteristics

    International Nuclear Information System (INIS)

    Wang, Kun Dong; Yan, Guo Zheng

    2009-01-01

    The frictional characteristics of an intestine are required basically for the development of a noninvasive endoscope for the human intestine. The frictional force is tested by measuring the current of the motor hauling the frictional coupons at an even speed. A multifunction data acquisition device with model NI-6008 USB is used and the data process is performed on the Labview software. Two kinds of materials with aluminum and copper are used. The surfaces are designed as triangle, rectangular, cylindrical and plane forms. The tested results indicate that the frictional resistance force includes the nominal frictional force and the visco-adhesive force. When the surface contour changes from the triangle to the rectangular, to the cylindrical and finally to the plane, the nominal frictional coefficients will decrease and the visco-adhesive force will increase. The nominal frictional force is related to the elastic restoring force, the real frictional force and the contact angle. The cohesive force is determined by the contact area and the contact angle. This research will provide some preliminary references to the design and the parameter selection of locomotion devices in the human gastro-intestine

  11. Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors

    Directory of Open Access Journals (Sweden)

    Jeng-Wei Lu

    2017-09-01

    Full Text Available Colorectal cancer (CRC is one of the world’s most common cancers and is the second leading cause of cancer deaths, causing more than 50,000 estimated deaths each year. Several risk factors are highly associated with CRC, including being overweight, eating a diet high in red meat and over-processed meat, having a history of inflammatory bowel disease, and smoking. Previous zebrafish studies have demonstrated that multiple oncogenes and tumor suppressor genes can be regulated through genetic or epigenetic alterations. Zebrafish research has also revealed that the activation of carcinogenesis-associated signal pathways plays an important role in CRC. The biology of cancer, intestinal disorders caused by carcinogens, and the morphological patterns of tumors have been found to be highly similar between zebrafish and humans. Therefore, the zebrafish has become an important animal model for translational medical research. Several zebrafish models have been developed to elucidate the characteristics of gastrointestinal diseases. This review article focuses on zebrafish models that have been used to study human intestinal disorders and tumors, including models involving mutant and transgenic fish. We also report on xenograft models and chemically-induced enterocolitis. This review demonstrates that excellent zebrafish models can provide novel insights into the pathogenesis of gastrointestinal diseases and help facilitate the evaluation of novel anti-tumor drugs.

  12. A Refined Culture System for Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Organoids

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    2018-01-01

    Full Text Available Gut epithelial organoids are routinely used to investigate intestinal biology; however, current culture methods are not amenable to genetic manipulation, and it is difficult to generate sufficient numbers for high-throughput studies. Here, we present an improved culture system of human induced pluripotent stem cell (iPSC-derived intestinal organoids involving four methodological advances. (1 We adopted a lentiviral vector to readily establish and optimize conditioned medium for human intestinal organoid culture. (2 We obtained intestinal organoids from human iPSCs more efficiently by supplementing WNT3A and fibroblast growth factor 2 to induce differentiation into definitive endoderm. (3 Using 2D culture, followed by re-establishment of organoids, we achieved an efficient transduction of exogenous genes in organoids. (4 We investigated suspension organoid culture without scaffolds for easier harvesting and assays. These techniques enable us to develop, maintain, and expand intestinal organoids readily and quickly at low cost, facilitating high-throughput screening of pathogenic factors and candidate treatments for gastrointestinal diseases.

  13. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH.

    Science.gov (United States)

    Biedermann, Luc; Brülisauer, Karin; Zeitz, Jonas; Frei, Pascal; Scharl, Michael; Vavricka, Stephan R; Fried, Michael; Loessner, Martin J; Rogler, Gerhard; Schuppler, Markus

    2014-09-01

    There has been a dramatic increase in investigations on the potential mechanistic role of the intestinal microbiota in various diseases and factors modulating intestinal microbial composition. We recently reported on intestinal microbial shifts after smoking cessation in humans. In this study, we aimed to conduct further microbial analyses and verify our previous results obtained by pyrosequencing using a direct quantitative microbial approach. Stool samples of healthy smoking human subjects undergoing controlled smoking cessation during a 9-week observational period were analyzed and compared with 2 control groups, ongoing smoking and nonsmoking subjects. Fluorescence in situ hybridization was applied to quantify specific bacterial groups. Intestinal microbiota composition was substantially altered after smoking cessation as characterized by an increase in key representatives from the phyla of Firmicutes (Clostridium coccoides, Eubacterium rectale, and Clostridium leptum subgroup) and Actinobacteria (HGC bacteria and Bifidobacteria) as well as a decrease in Bacteroidetes (Prevotella spp. and Bacteroides spp.) and Proteobacteria (β- and γ-subgroup of Proteobacteria). As determined by fluorescence in situ hybridization, an independent direct quantitative microbial approach, we could confirm that intestinal microbiota composition in humans is influenced by smoking. The characteristics of observed microbial shifts suggest a potential mechanistic association to alterations in body weight subsequent to smoking cessation. More importantly, regarding previously described microbial hallmarks of dysbiosis in inflammatory bowel diseases, a variety of observed microbial alterations after smoking cessation deserve further consideration in view of the divergent effect of smoking on the clinical course of Crohn's disease and ulcerative colitis.

  14. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; Young, W.; McNabb, W.C.; Baarlen, van P.; Moughan, P.J.; Wells, J.M.; Roy, N.C.

    2015-01-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique

  15. Impact of food grade and nano-TiO2 particles on a human intestinal community.

    Science.gov (United States)

    Dudefoi, William; Moniz, Kristy; Allen-Vercoe, Emma; Ropers, Marie-Hélène; Walker, Virginia K

    2017-08-01

    Titanium dioxide (TiO 2 ) nanoparticles (NPs) are used as an additive (E171 or INS171) in foods such as gum, candy and puddings. To address concerns about the potential hazardous effects of ingested NPs, the toxicity of these food-grade NPs was investigated with a defined model intestinal bacterial community. Each titania preparation (food-grade TiO 2 formulations, E171-1 and E171-6a) was tested at concentrations equivalent to those found in the human intestine after sampling 1-2 pieces of gum or candy (100-250 ppm). At the low concentrations used, neither the TiO 2 food additives nor control TiO 2 NPs had an impact on gas production and only a minor effect on fatty acids profiles (C16:00, C18:00, 15:1 w5c, 18:1 w9c and 18:1 w9c, p < 0.05). DNA profiles and phylogenetic distributions confirmed limited effects on the bacterial community, with a modest decrease in the relative abundance of the dominant Bacteroides ovatus in favor of Clostridium cocleatum (-13% and +14% respectively, p < 0.05). Such minor shifts in the treated consortia suggest that food grade and nano-TiO 2 particles do not have a major effect on human gut microbiota when tested in vitro at relevant low concentrations. However, the cumulative effects of chronic TiO 2 NP ingestion remain to be tested. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Activation of AMPK inhibits cholera toxin stimulated chloride secretion in human and murine intestine.

    Directory of Open Access Journals (Sweden)

    Ailín C Rogers

    Full Text Available Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR, is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK, can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK. In order to substantiate our findings on the whole tissue level, short-circuit current (SCC was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.

  17. Salmonella Typhi Colonization Provokes Extensive Transcriptional Changes Aimed at Evading Host Mucosal Immune Defense During Early Infection of Human Intestinal Tissue

    Directory of Open Access Journals (Sweden)

    K.P. Nickerson

    2018-05-01

    Full Text Available Commensal microorganisms influence a variety of host functions in the gut, including immune response, glucose homeostasis, metabolic pathways and oxidative stress, among others. This study describes how Salmonella Typhi, the pathogen responsible for typhoid fever, uses similar strategies to escape immune defense responses and survive within its human host. To elucidate the early mechanisms of typhoid fever, we performed studies using healthy human intestinal tissue samples and “mini-guts,” organoids grown from intestinal tissue taken from biopsy specimens. We analyzed gene expression changes in human intestinal specimens and bacterial cells both separately and after colonization. Our results showed mechanistic strategies that S. Typhi uses to rearrange the cellular machinery of the host cytoskeleton to successfully invade the intestinal epithelium, promote polarized cytokine release and evade immune system activation by downregulating genes involved in antigen sampling and presentation during infection. This work adds novel information regarding S. Typhi infection pathogenesis in humans, by replicating work shown in traditional cell models, and providing new data that can be applied to future vaccine development strategies. Keywords: Typhoid fever, Salmonella, Snapwell™ system, Human tissue, Terminal ileum, Immune system, Innate immunity, Immune evasion, Host-pathogen interaction, Vaccine development, Intestinal organoids, Organoid monolayer

  18. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA

    DEFF Research Database (Denmark)

    Cowell, G M; Kønigshøfer, E; Danielsen, E M

    1988-01-01

    The complete primary structure (967 amino acids) of an intestinal human aminopeptidase N (EC 3.4.11.2) was deduced from the sequence of a cDNA clone. Aminopeptidase N is anchored to the microvillar membrane via an uncleaved signal for membrane insertion. A domain constituting amino acid 250...

  19. Microbial Eco-Physiology of the human intestinal tract: a flow cytometric approach

    NARCIS (Netherlands)

    Amor, Ben K.

    2004-01-01

    This thesis describes a multifaceted approach to further enhance our view of the complex human intestinal microbial ecosystem. This approach combines me advantages of flow cyrometry (FCM), a single cell and high-throughput technology, and molecular techniques that have proven themselves to be

  20. In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans.

    Science.gov (United States)

    Chedik, Lisa; Mias-Lucquin, Dominique; Bruyere, Arnaud; Fardel, Olivier

    2017-06-30

    Intestinal absorption and brain permeation constitute key parameters of toxicokinetics for pesticides, conditioning their toxicity, including neurotoxicity. However, they remain poorly characterized in humans. The present study was therefore designed to evaluate human intestine and brain permeation for a large set of pesticides ( n = 338) belonging to various chemical classes, using an in silico graphical BOILED-Egg/SwissADME online method based on lipophilicity and polarity that was initially developed for drugs. A high percentage of the pesticides (81.4%) was predicted to exhibit high intestinal absorption, with a high accuracy (96%), whereas a lower, but substantial, percentage (38.5%) displayed brain permeation. Among the pesticide classes, organochlorines ( n = 30) constitute the class with the lowest percentage of intestine-permeant members (40%), whereas that of the organophosphorus compounds ( n = 99) has the lowest percentage of brain-permeant chemicals (9%). The predictions of the permeations for the pesticides were additionally shown to be significantly associated with various molecular descriptors well-known to discriminate between permeant and non-permeant drugs. Overall, our in silico data suggest that human exposure to pesticides through the oral way is likely to result in an intake of these dietary contaminants for most of them and brain permeation for some of them, thus supporting the idea that they have toxic effects on human health, including neurotoxic effects.

  1. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR

    DEFF Research Database (Denmark)

    O'Brien Andersen, L.; Karim, A. B.; Roager, Henrik Munch

    2016-01-01

    Several studies have shown associations between groups of intestinal bacterial or specific ratios between bacterial groups and various disease traits. Meanwhile, little is known about interactions and associations between eukaryotic and prokaryotic microorganisms in the human gut. In this work, we...

  2. The predominant cholecystokinin in human plasma and intestine is cholecystokinin-33

    DEFF Research Database (Denmark)

    Rehfeld, J F; Sun, G; Christensen, T

    2001-01-01

    Cholecystokinin (CCK) occurs in multiple molecular forms; the major ones are CCK-58, -33, -22, and -8. Their relative abundance in human plasma and intestine, however, is debated. To settle the issue, extracts of intestinal biopsies and plasma from 10 human subjects have been examined by chromato......Cholecystokinin (CCK) occurs in multiple molecular forms; the major ones are CCK-58, -33, -22, and -8. Their relative abundance in human plasma and intestine, however, is debated. To settle the issue, extracts of intestinal biopsies and plasma from 10 human subjects have been examined...... by chromatography, enzyme cleavages, and measurements using a library of sequence-specific RIAs. Plasma samples were drawn in the fasting state and at intervals after a meal. The abundance of the larger forms varied with the 8 C-terminal assays in the library, as 2 assays overestimated and 3 underestimated...... the amounts present. One assay, however, measured carboxyamidated and O:-sulfated CCKs with equimolar potency before and after tryptic cleavage. This assay showed that the predominant plasma form is CCK-33, both in the fasting state ( approximately 51%) and postprandially ( approximately 57%), whereas CCK-22...

  3. Precision-cut intestinal slices as an in vitro model to predict NSAID induced intestinal toxicity

    NARCIS (Netherlands)

    Niu, Xiaoyu; van der Bijl, Henk; Groothuis, Geny; de Graaf, Inge

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are associated with high prevalence of gastro-intestinal side-effects. In vivo studies suggest that uncoupling of oxidative phosphorylation is an important cause of the toxicity and that the toxicity is aggravated by enterohepatic circulation.

  4. Using human intestinal biopsies to study the pathogenesis of irritable bowel syndrome.

    Science.gov (United States)

    Nasser, Y; Boeckxstaens, G E; Wouters, M M; Schemann, M; Vanner, S

    2014-04-01

    Although animal models of the irritable bowel syndrome (IBS) have provided important insights, there are no models that fully express the features of this complex condition. One alternative approach is the use of human intestinal biopsies obtained during endoscopic procedures to examine peripheral mechanisms in this disorder. These studies have served to confirm the existence of peripheral pathways in humans with IBS and have provided many new mechanistic insights. Two general approaches have been employed; one approach has been to examine the biological activity of mediators within the mucosal tissue of IBS patients and the other has been to examine changes in the structural properties of key signaling pathways contained within the biopsies. Using these approaches, important changes have been discovered involving the enteric nervous system and the extrinsic sensory pathway (dorsal root ganglia neurons), the immune system, and epithelial signaling in IBS patients compared to healthy subjects. This review will systematically explore these mechanistic pathways, highlight the implications of these novel findings and discuss some of the important limitations of this approach. © 2014 John Wiley & Sons Ltd.

  5. Complete sequences of glucagon-like peptide-1 from human and pig small intestine

    DEFF Research Database (Denmark)

    Orskov, C; Bersani, M; Johnsen, A H

    1989-01-01

    intestine of the proglucagon precursor were determined by pairs of basic amino acid residues flanking the two peptides. Earlier studies have shown that synthetic glucagon-like peptide-1 (GLP-1) synthesized according to the proposed structure (proglucagon 71-108 or because residue 108 is Gly, 72-107 amide......) had no physiological effects, whereas a truncated from of GLP-1, corresponding to proglucagon 78-107 amide, strongly stimulated insulin secretion and depressed glucagon secretion. To determine the amino acid sequence of the naturally occurring peptide we isolated GLP-1 from human small intestine...

  6. The fate of epithelial cells in the human large intestine.

    Science.gov (United States)

    Barkla, D H; Gibson, P R

    1999-08-01

    One hundred and forty biopsies of the colon and rectum, collected during routine colonoscopies of 51 patients aged 19 to 74 years, were examined using light microscopy and transmission and scanning electron microscopy. The results indicated that surface epithelial cells undergo apoptosis, passing through fenestrations in the basement membrane to where they enter the lamina propria and are taken up by macrophages; and it is hypothesized that apoptotic cells are carried through the fenestrations on a current of fluid. The study also found that epithelial cells positioned over the crypts are better attached and more robust than those more distant from the crypt opening; and it is further hypothesized that, after reaching the top of the crypts, some goblet cells cease secreting mucus and pass onto the surface compartment of absorptive cells. An unexpected finding was that the lower regions of the crypts commonly contain isolated necrotic colonocytes. Apoptotic cells were rarely observed in the crypt epithelium. The findings of this study support the "recycling" model of epithelial cell death in the surface compartment of the human colon.

  7. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation.

    Science.gov (United States)

    Liu, Yuying; Fatheree, Nicole Y; Mangalat, Nisha; Rhoads, Jon Marc

    2010-11-01

    Lactobacillus reuteri (L. reuteri) is a probiotic that inhibits the severity of enteric infections and modulates the immune system. Human-derived L. reuteri strains DSM17938, ATCC PTA4659, ATCC PTA 5289, and ATCC PTA 6475 have demonstrated strain-specific immunomodulation in cultured monocytoid cells, but information about how these strains affect inflammation in intestinal epithelium is limited. We determined the effects of the four different L. reuteri strains on lipopolysaccharide (LPS)-induced inflammation in small intestinal epithelial cells and in the ileum of newborn rats. IPEC-J2 cells (derived from the jejunal epithelium of a neonatal piglet) and IEC-6 cells (derived from the rat crypt) were treated with L. reuteri. Newborn rat pups were gavaged cow milk formula supplemented with L. reuteri strains in the presence or absence of LPS. Protein and mRNA levels of cytokines and histological changes were measured. We demonstrate that even though one L. reuteri strain (DSM 17938) did not inhibit LPS-induced IL-8 production in cultured intestinal cells, all strains significantly reduced intestinal mucosal levels of KC/GRO (∼IL-8) and IFN-γ when newborn rat pups were fed formula containing LPS ± L. reuteri. Intestinal histological damage produced by LPS plus cow milk formula was also significantly reduced by all four strains. Cow milk formula feeding (without LPS) produced mild gut inflammation, evidenced by elevated mucosal IFN-γ and IL-13 levels, a process that could be suppressed by strain 17938. Other cytokines and chemokines were variably affected by the different strains, and there was no toxic effect of L. reuteri on intestinal cells or mucosa. In conclusion, L. reuteri strains differentially modulate LPS-induced inflammation. Probiotic interactions with both epithelial and nonepithelial cells in vivo must be instrumental in modulating intrinsic anti-inflammatory effects in the intestine. We suggest that the terms anti- and proinflammatory be used only

  8. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    DEFF Research Database (Denmark)

    Machado, Ana Manuel; Sommer, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems...... to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co...... of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut....

  9. Digestion of starch in a dynamic small intestinal model.

    Science.gov (United States)

    Jaime-Fonseca, M R; Gouseti, O; Fryer, P J; Wickham, M S J; Bakalis, S

    2016-12-01

    The rate and extent of starch digestion have been linked with important health aspects, such as control of obesity and type-2 diabetes. In vitro techniques are often used to study digestion and simulated nutrient absorption; however, the effect of gut motility is often disregarded. The present work aims at studying fundamentals of starch digestion, e.g. the effect of viscosity on digestibility, taking into account both biochemical and engineering (gut motility) parameters. New small intestinal model (SIM) that realistically mimics gut motility (segmentation) was used to study digestibility and simulated oligosaccharide bio accessibility of (a) model starch solutions; (b) bread formulations. First, the model was compared with the rigorously mixed stirred tank reactor (STR). Then the effects of enzyme concentration/flow rate, starch concentration, and digesta viscosity (addition of guar gum) were evaluated. Compared to the STR, the SIM showed presence of lag phase when no digestive processes could be detected. The effects of enzyme concentration and flow rate appeared to be marginal in the region of mass transfer limited reactions. Addition of guar gum reduced simulated glucose absorption by up to 45 % in model starch solutions and by 35 % in bread formulations, indicating the importance of chyme rheology on nutrient bioaccessibility. Overall, the work highlights the significance of gut motility in digestive processes and offers a powerful tool in nutritional studies that, additionally to biochemical, considers engineering aspects of digestion. The potential to modulate food digestibility and nutrient bioaccessibility by altering food formulation is indicated.

  10. Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR.

    Science.gov (United States)

    Tang, Zhou-Rui; Li, Kai; Zhou, Yu-Xun; Xiao, Zhen-Xian; Xiao, Jun-Hua; Huang, Rui; Gu, Guo-Hao

    2012-01-21

    To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested. cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex. The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well.

  11. Effect of the Novel Polysaccharide PolyGlycopleX® on Short-Chain Fatty Acid Production in a Computer-Controlled in Vitro Model of the Human Large Intestine

    Directory of Open Access Journals (Sweden)

    Raylene A. Reimer

    2014-03-01

    Full Text Available Many of the health benefits associated with dietary fiber are attributed to their fermentation by microbiota and production of short chain fatty acids (SCFA. The aim of this study was to investigate the fermentability of the functional fiber PolyGlyopleX® (PGX® in vitro. A validated dynamic, computer-controlled in vitro system simulating the conditions in the proximal large intestine (TIM-2 was used. Sodium hydroxide (NaOH consumption in the system was used as an indicator of fermentability and SCFA and branched chain fatty acids (BCFA production was determined. NaOH consumption was significantly higher for Fructooligosaccharide (FOS than PGX, which was higher than cellulose (p = 0.002. At 32, 48 and 72 h, acetate and butyrate production were higher for FOS and PGX versus cellulose. Propionate production was higher for PGX than cellulose at 32, 48, 56 and 72 h and higher than FOS at 72 h (p = 0.014. Total BCFA production was lower for FOS compared to cellulose, whereas production with PGX was lower than for cellulose at 72 h. In conclusion, PGX is fermented by the colonic microbiota which appeared to adapt to the substrate over time. The greater propionate production for PGX may explain part of the cholesterol-lowering properties of PGX seen in rodents and humans.

  12. Diversity of halophilic archaea in fermented foods and human intestines and their application.

    Science.gov (United States)

    Lee, Han-Seung

    2013-12-01

    Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are being isolated and identified from high salt-fermented foods consumed by humans, and it has been found that various types of halophilic archaea exist in food products by culture-independent molecular biological methods. In addition, even if the numbers are not quite high, DNAs of various halophilic archaea are being detected in human intestines and much interest is given to their possible roles. This review aims to summarize the types and characteristics of halophilic archaea reported to be present in foods and human intestines and to discuss their application as well.

  13. Human Intestinal Fluid Layer Separation: The Effect On Colloidal Structures & Solubility Of Lipophilic Compounds.

    Science.gov (United States)

    Danny, Riethorst; Amitava, Mitra; Filippos, Kesisoglou; Wei, Xu; Jan, Tack; Joachim, Brouwers; Patrick, Augustijns

    2018-05-23

    In addition to individual intestinal fluid components, colloidal structures are responsible for enhancing the solubility of lipophilic compounds. The present study investigated the link between as well as the variability in the ultrastructure of fed state human intestinal fluids (FeHIF) and their solubilizing capacity for lipophilic compounds. For this purpose, FeHIF samples from 10 healthy volunteers with known composition and ultrastructure were used to determine the solubility of four lipophilic compounds. In light of the focus on solubility and ultrastructure, the study carefully considered the methodology of solubility determination in relation to colloid composition and solubilizing capacity of FeHIF. To determine the solubilizing capacity of human and simulated intestinal fluids, the samples were saturated with the compound of interest, shaken for 24 h, and centrifuged. When using FeHIF, solubilities were determined in the micellar layer of FeHIF, i.e. after removing the upper (lipid) layer (standard procedure), as well as in 'full' FeHIF (without removal of the upper layer). Compound concentrations were determined using HPLC-UV/fluorescence. To link the solubilizing capacity with the ultrastructure, all human and simulated fluids were imaged using transmission electron microscopy (TEM) before and after centrifugation and top layer (lipid) removal. Comparing the ultrastructure and solubilizing capacity of individual FeHIF samples demonstrated a high intersubject variability in postprandial intestinal conditions. Imaging of FeHIF after removal of the upper layer clearly showed that only micellar structures remain in the lower layer. This observation suggests that larger colloids such as vesicles and lipid droplets are contained in the upper, lipid layer. The solubilizing capacity of most FeHIF samples substantially increased with inclusion of this lipid layer. The relative increase in solubilizing capacity upon inclusion of the lipid layer was most pronounced

  14. Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.

    Science.gov (United States)

    Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars

    2006-02-17

    Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.

  15. Human Breast Milk and Infant Formulas Differentially Modify the Intestinal Microbiota in Human Infants and Host Physiology in Rats.

    Science.gov (United States)

    Liu, Zhenmin; Roy, Nicole C; Guo, Yanhong; Jia, Hongxin; Ryan, Leigh; Samuelsson, Linda; Thomas, Ancy; Plowman, Jeff; Clerens, Stefan; Day, Li; Young, Wayne

    2016-02-01

    In the absence of human breast milk, infant and follow-on formulas can still promote efficient growth and development. However, infant formulas can differ in their nutritional value. The objective of this study was to compare the effects of human milk (HM) and infant formulas in human infants and a weanling rat model. In a 3 wk clinical randomized controlled trial, babies (7- to 90-d-old, male-to-female ratio 1:1) were exclusively breastfed (BF), exclusively fed Synlait Pure Canterbury Stage 1 infant formula (SPCF), or fed assorted standard formulas (SFs) purchased by their parents. We also compared feeding HM or SPCF in weanling male Sprague-Dawley rats for 28 d. We examined the effects of HM and infant formulas on fecal short chain fatty acids (SCFAs) and bacterial composition in human infants, and intestinal SCFAs, the microbiota, and host physiology in weanling rats. Fecal Bifidobacterium concentrations (mean log copy number ± SEM) were higher (P = 0.003) in BF (8.17 ± 0.3) and SPCF-fed infants (8.29 ± 0.3) compared with those fed the SFs (6.94 ± 0.3). Fecal acetic acid (mean ± SEM) was also higher (P = 0.007) in the BF (5.5 ± 0.2 mg/g) and SPCF (5.3 ± 2.4 mg/g) groups compared with SF-fed babies (4.3 ± 0.2 mg/g). Colonic SCFAs did not differ between HM- and SPCF-fed rats. However, cecal acetic acid concentrations were higher (P = 0.001) in rats fed HM (42.6 ± 2.6 mg/g) than in those fed SPCF (30.6 ± 0.8 mg/g). Cecal transcriptome, proteome, and plasma metabolite analyses indicated that the growth and maturation of intestinal tissue was more highly promoted by HM than SPCF. Fecal bacterial composition and SCFA concentrations were similar in babies fed SPCF or HM. However, results from the rat study showed substantial differences in host physiology between rats fed HM and SPCF. This trial was registered at Shanghai Jiào tong University School of Medicine as XHEC-C-2012-024. © 2016 American Society for Nutrition.

  16. Differentiation-dependent activation of the human intestinal alkaline phosphatase promoter by HNF-4 in intestinal cells

    DEFF Research Database (Denmark)

    Olsen, Line; Bressendorff, Simon; Troelsen, Jesper T

    2005-01-01

    The intestinal alkaline phosphatase gene (ALPI) encodes a digestive brush-border enzyme, which is highly upregulated during small intestinal epithelial cell differentiation. To identify new putative promoter motifs responsible for the regulation of ALPI expression during differentiation of the en...

  17. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine

    DEFF Research Database (Denmark)

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman

    2004-01-01

    Several disorders of the small intestine are associated with disturbances in villus architecture. Thus, an understanding of the molecular mechanisms associated with the differentiation of villi represents an important step in the improvement of the understanding of small intestinal pathology......-CoA synthetase 5 pattern correlate with conversion of intestinal epithelial cells to a gastric phenotype. These results suggest that deranged acyl-CoA synthetase 5 expression, synthesis, and activity are closely related to the state of villus architecture and epithelial homeostasis in human small intestine....

  18. Epidemiology of infections with intestinal parasites and human immunodeficiency virus (HIV) among sugar-estate residents in Ethiopia

    NARCIS (Netherlands)

    Fontanet, A. L.; Sahlu, T.; Rinke de Wit, T.; Messele, T.; Masho, W.; Woldemichael, T.; Yeneneh, H.; Coutinho, R. A.

    2000-01-01

    Intestinal parasitic infections could play an important role in the progression of infection with human immunodeficiency virus (HIV), by further disturbing the immune system whilst it is already engaged in the fight against HIV. HIV and intestinal parasitic infections were investigated in 1239,

  19. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    NARCIS (Netherlands)

    Bogert, van den B.; Boekhorst, te J.; Herrmann, R.; Smid, E.J.; Zoetendal, E.G.; Kleerebezem, M.

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus

  20. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection.

    Science.gov (United States)

    Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya

    2017-09-15

    Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.

  1. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection

    Directory of Open Access Journals (Sweden)

    Yuka Matsumoto

    2017-09-01

    Full Text Available Ileocecal resection (ICR, one of several types of intestinal resection that results in short bowel syndrome (SBS, causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans.

  2. Assessment of adhesion properties of novel probiotic strains to human intestinal mucus.

    Science.gov (United States)

    Ouwehand, A C; Tuomola, E M; Tölkkö, S; Salminen, S

    2001-02-28

    Potential new probiotic strains Lactobacillus brevis PELI, L. reuteri ING1, L. rhamnosus VTT E-800 and L. rhamnosus LC-705 were assessed for their adhesion properties using the human intestinal mucus model. The effect on the adhesion of exposure to acid and pepsin and to milk were tested to simulate gastric and food processing conditions, and the effect of different growth media on adhesion was tested. The properties of the four strains were compared to the well-investigated probiotic L. rhamnosus strain GG. Three of the tested strains showed significant adhesion properties in the mucus model, while L. brevis PELI had intermediate adhesion and L. rhamnosus LC-705 adhered poorly. Pretreatment with different milks decreased the adhesion and low pH and pepsin treatment reduced the adhesion of all tested strains except L. rhamnosus LC-705. No competitive exclusion of pathogenic Salmonella typhimurium or Escherichia coli SfaII was observed. The results indicate that major differences exist between tested proposed probiotic strains. The growth media and the food matrix significantly affect the adhesive ability of the tested strains. This has previously not been taken into account when selecting novel probiotic strains.

  3. Human milk oligosaccharide effects on intestinal function and inflammation after preterm birth in pigs

    DEFF Research Database (Denmark)

    Rasmussen, Stine O.; Martin, Lena; Østergaard, Mette V.

    2017-01-01

    (IF) improves intestinal function, bacterial colonization and NEC resistance immediately after preterm birth, as tested in a preterm pig model. Mixtures of HMOs were investigated in intestinal epithelial cells and in preterm pigs (n=112) fed IF supplemented without (CON) or with a mixture of four HMOs...... (4-HMO) or >25 HMOs (25-HMO, 5-10 g/L given for 5 or 11 days). The 25-HMO blend decreased cell proliferation and both HMO blends decreased lipopolysaccharide-induced interleukin-8 secretion in IPEC-J2 cells, relative to control (P

  4. Extensive diversity of intestinal trichomonads of non-human primates

    Czech Academy of Sciences Publication Activity Database

    Smejkalová, P.; Petrželková, Klára Judita; Pomajbíková, K.; Modrý, David; Čepička, I.

    2012-01-01

    Roč. 139, č. 1 (2012), s. 92-102 ISSN 0031-1820 R&D Projects: GA ČR GA206/09/0927 Institutional research plan: CEZ:AV0Z60930519; CEZ:AV0Z60220518 Keywords : trichomonads * Parabasalia * non-human primates * diversity * host specificity Subject RIV: EG - Zoology Impact factor: 2.355, year: 2012

  5. Similarity of hydrolyzing activity of human and rat small intestinal disaccharidases

    Directory of Open Access Journals (Sweden)

    Oku T

    2011-06-01

    Full Text Available Tsuneyuki Oku¹, Kenichi Tanabe¹, Shigeharu Ogawa², Naoki Sadamori¹, Sadako Nakamura¹¹Graduate School of Human Health Science, University of Nagasaki, Siebold, Nagayo, Japan; ²Juzenkai Hospital, Kagomachi, Nagasaki, JapanBackground: The purpose of this study was to clarify whether it is possible to extrapolate results from studies of the hydrolyzing activity of disaccharidases from rats to humans.Materials and methods: We measured disaccharidase activity in humans and rats using identical preparation and assay methods, and investigated the similarity in hydrolyzing activity. Small intestinal samples without malignancy were donated by five patients who had undergone bladder tumor surgery, and homogenates were prepared to measure disaccharidase activity. Adult rat homogenates were prepared using small intestine.Results: Maltase activity was the highest among the five disaccharidases, followed by sucrase and then palatinase in humans and rats. Trehalase activity was slightly lower than that of palatinase in humans and was similar to that of sucrase in rats. Lactase activity was the lowest in humans, but was similar to that of palatinase in rats. Thus, the hydrolyzing activity of five disaccharidases was generally similar in humans and rats. The relative activity of sucrose and palatinase versus maltase was generally similar between humans and rats. The ratio of rat to human hydrolyzing activity of maltase, sucrase, and palatinase was 1.9–3.1, but this was not a significant difference. Leaf extract from Morus alba strongly inhibited the activity of maltase, sucrase, and palatinase, but not trehalase and lactase, and the degree of inhibition was similar in humans and rats. L-arabinose mildly inhibited sucrase activity, but hardly inhibited the activity of maltase, palatinase, trehalase and lactase in humans and rats. The digestibility of 1-kestose, galactosylsucrose, and panose by small intestinal enzymes was very similar between humans and

  6. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    Science.gov (United States)

    Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196

  7. Ultrastructure of interstitial cells of Cajal associated with deep muscular plexus of human small intestine

    DEFF Research Database (Denmark)

    Rumessen, J J; Mikkelsen, H B; Thuneberg, L

    1992-01-01

    Evidence showing that interstitial cells of Cajal have important regulatory functions in the gut musculature is accumulating. In the current study, the ultrastructure of the deep muscular plexus and associated interstial cells of Cajal in human small intestine were studied to provide a reference...... a continuous basal lamina, caveolae, intermediate filaments, dense bodies, dense bands, and a well-developed subsurface smooth endoplasmic reticulum), but the arrangement of organelles was clearly different, and cisternae of granular endoplasmic reticulum were abundant. Interstitial cells of Cajal were......, and only few gap junctions with other interstitial cells of Cajal or with the musculature were observed. Compared with interstitial cells of Cajal from other mammals, those associated with the deep muscular plexus in the human small intestine more closely resemble smooth muscle cells...

  8. Autoradiographic quantification of vasoactive intestinal peptide binding sites in sections from human blood mononuclear cell pellets

    Energy Technology Data Exchange (ETDEWEB)

    Gutkind, J.S.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1988-09-01

    Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +/- 60 pmol/L; Bmax = 93 +/- 11 fmol/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and it has the potential for wide applications in studies of neuropeptide, biogenic amine, and drug binding in clinical samples.

  9. Autoradiographic quantification of vasoactive intestinal peptide binding sites in sections from human blood mononuclear cell pellets

    International Nuclear Information System (INIS)

    Gutkind, J.S.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1988-01-01

    Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +/- 60 pmol/L; Bmax = 93 +/- 11 fmol/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and it has the potential for wide applications in studies of neuropeptide, biogenic amine, and drug binding in clinical samples

  10. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    Science.gov (United States)

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures. Copyright © 2015. Published by Elsevier B.V.

  11. Administration of Protein kinase D1 induce an immunomodulatory effect on lipopolysaccharide-induced intestinal inflammation in a co-culture model of intestinal epithelial Caco-2 cells and RAW 264.7 macrophage cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, Vibeke

    2017-01-01

    the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF......-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10–100 ng/ml) following induction...

  12. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine

    NARCIS (Netherlands)

    Claesson, M.J.; O'Sullivan, O.; Wang, Q.; Nikkilä, J.; Marchesi, J.R.; Smidt, H.; Vos, de W.M.; Ross, R.P.; O'Toole, P.W.

    2009-01-01

    BACKGROUND: Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. High-throughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such

  13. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    Science.gov (United States)

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-01-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly. Images PMID:2202258

  14. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    Science.gov (United States)

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-07-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly.

  15. Mechanical Elongation of the Small Intestine: Evaluation of Techniques for Optimal Screw Placement in a Rodent Model

    Directory of Open Access Journals (Sweden)

    P. A. Hausbrandt

    2013-01-01

    Full Text Available Introduction. The aim of this study was to evaluate techniques and establish an optimal method for mechanical elongation of small intestine (MESI using screws in a rodent model in order to develop a potential therapy for short bowel syndrome (SBS. Material and Methods. Adult female Sprague Dawley rats (n=24 with body weight from 250 to 300 g (Σ=283 were evaluated using 5 different groups in which the basic denominator for the technique involved the fixation of a blind loop of the intestine on the abdominal wall with the placement of a screw in the lumen secured to the abdominal wall. Results. In all groups with accessible screws, the rodents removed the implants despite the use of washers or suits to prevent removal. Subcutaneous placement of the screw combined with antibiotic treatment and dietary modifications was finally successful. In two animals autologous transplantation of the lengthened intestinal segment was successful. Discussion. While the rodent model may provide useful basic information on mechanical intestinal lengthening, further investigations should be performed in larger animals to make use of the translational nature of MESI in human SBS treatment.

  16. Long chain poly-unsaturated fatty acids attenuate the IL-1?-induced pro-inflammatory response in human fetal intestinal epithelial cells

    OpenAIRE

    Wijendran, Vasuki; Brenna, JT; Wang, Dong Hao; Zhu, Weishu; Meng, Di; Ganguli, Kriston; Kothapalli, Kumar SD; Requena, Pilar; Innis, Sheila; Walker, WA

    2015-01-01

    Background Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture. Methods Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate wit...

  17. Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine

    NARCIS (Netherlands)

    Gänzle, M.G.; Hertel, C.; Vossen, J.M.B.M. van der; Hammes, W.P.

    1999-01-01

    The survival of Lactobacillus curvatus LTH 1174 (bac+) and (bac-) in combination with Escherichia coli LTH 1600 or Listeria innocua DSM20649 during transit through a dynamic model of the human stomach and small intestine (GIT model) was studied. Furthermore, we determined the digestion of curvacin A

  18. Radioprotection of the intestinal crypts of mice by recombinant human interleukin-1 alpha

    International Nuclear Information System (INIS)

    Wu, S.G.; Miyamoto, T.

    1990-01-01

    Recombinant human interleukin-1 alpha (rHIL-1 alpha or IL-1) protected the intestinal crypt cells of mice against X-ray-induced damage. The survival of crypt cells measured in terms of their ability to form colonies of regenerating duodenal epithelium in situ was increased when IL-1 was given either before or after irradiation. The maximum degree of radioprotection was seen when the drug was given between 13 and 25 h before irradiation. The IL-1 dose producing maximum protection was about 6.3 micrograms/kg. This is the first report indicating that the cytokine IL-1 has a radioprotective effect in the intestine. The finding suggests that IL-1 may be of potential value in preventing radiation injury to the gut in the clinic

  19. Effects of synbiotics on intestinal mucosal barrier in rat model

    Directory of Open Access Journals (Sweden)

    Zhigang Xue

    2017-06-01

    Conclusions: Probiotics can improve the concentration of colonic probiotics, while synbiotics can improve probiotics concentration and mucosa thickness in colon, decrease L/M ratio and bacterial translocation. Synbiotics shows more protective effects on intestinal mucosal barrier in rats after cecectomy and gastrostomy and the intervention of specific antibiotics.

  20. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  1. Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats.

    Science.gov (United States)

    Lay, Christophe; Sutren, Malène; Lepercq, Pascale; Juste, Catherine; Rigottier-Gois, Lionel; Lhoste, Evelyne; Lemée, Riwanon; Le Ruyet, Pascale; Doré, Joël; Andrieux, Claude

    2004-09-01

    The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism.

  2. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model.

    Science.gov (United States)

    Zhang, Yu-Sheng; Li, Ye; Wang, Yan; Sun, Shi-Yue; Jiang, Tao; Li, Cong; Cui, Shu-Xiang; Qu, Xian-Jun

    2016-05-01

    Naringin is a natural dietary flavonoid compound. We aimed to evaluate the effects of naringin on intestinal tumorigenesis in the adenomatous polyposis coli multiple intestinal neoplasia (Apc (Min/+)) mouse model. Apc (Min/+) mice were given either naringin (150 mg/kg) or vehicle by p.o. gavage daily for 12 consecutive weeks. Mice were killed with ether, and blood samples were collected to assess the concentrations of IL-6 and PGE2. Total intestines were removed, and the number of polyps was examined. Tissue samples of intestinal polyps were subjected to the assays of histopathology, immunohistochemical analysis and Western blotting analysis. Apc (Min/+) mice fed with naringin developed less and smaller polyps in total intestines. Naringin prevented intestinal tumorigenesis without adverse effects. Histopathologic analysis revealed the reduction of dysplastic cells and dysplasia in the adenomatous polyps. The treatments' effects might arise from its anti-proliferation, induction of apoptosis and modulation of GSK-3β and APC/β-catenin signaling pathways. Naringin also exerted its effects on tumorigenesis through anti-chronic inflammation. Naringin prevented intestinal tumorigenesis likely through a collection of activities including anti-proliferation, induction of apoptosis, modulation of GSK-3β and APC/β-catenin pathways and anti-inflammation. Naringin is a potential chemopreventive agent for reducing the risk of colonic cancers.

  3. Bioaccessibility, Cellular Uptake, and Transport of Astaxanthin Isomers and their Antioxidative Effects in Human Intestinal Epithelial Caco-2 Cells.

    Science.gov (United States)

    Yang, Cheng; Zhang, Hua; Liu, Ronghua; Zhu, Honghui; Zhang, Lianfu; Tsao, Rong

    2017-11-29

    The bioaccessibility, bioavailability, and antioxidative activities of three astaxanthin geometric isomers were investigated using an in vitro digestion model and human intestinal Caco-2 cells. This study demonstrated that the trans-cis isomerization of all-E-astaxanthin and the cis-trans isomerization of Z-astaxanthins could happen both during in vitro gastrointestinal digestion and cellular uptake processes. 13Z-Astaxanthin showed higher bioaccessibility than 9Z- and all-E-astaxanthins during in vitro digestion, and 9Z-astaxanthin exhibited higher transport efficiency than all-E- and 13Z-astaxanthins. These might explain why 13Z- and 9Z-astaxanthins are found at higher concentrations in human plasma than all-E-astaxanthin in reported studies. All three astaxanthin isomers were effective in maintaining cellular redox homeostasis as seen in the antioxidant enzyme (CAT, SOD) activities ; 9Z- and 13Z- astaxanthins exhibited a higher protective effect than all-E-astaxanthin against oxidative stress as demonstrated by the lower cellular uptake of Z-astaxanthins and lower secretion and gene expression of the pro-inflammatory cytokine IL-8 in Caco-2 cells treated with H 2 O 2 . We conclude, for the first time, that Z-astaxanthin isomers may play a more important role in preventing oxidative stress induced intestinal diseases.

  4. Artificial neural network models for prediction of intestinal permeability of oligopeptides

    Directory of Open Access Journals (Sweden)

    Kim Min-Kook

    2007-07-01

    Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.

  5. Poliovirus mutants excreted by a chronically infected hypogammaglobulinemic patient establish persistent infections in human intestinal cells

    International Nuclear Information System (INIS)

    Labadie, Karine; Pelletier, Isabelle; Saulnier, Aure; Martin, Javier; Colbere-Garapin, Florence

    2004-01-01

    Immunodeficient patients whose gut is chronically infected by vaccine-derived poliovirus (VDPV) may excrete large amounts of virus for years. To investigate how poliovirus (PV) establishes chronic infections in the gut, we tested whether it is possible to establish persistent VDPV infections in human intestinal Caco-2 cells. Four type 3 VDPV mutants, representative of the viral evolution in the gut of a hypogammaglobulinemic patient over almost 2 years [J. Virol. 74 (2000) 3001], were used to infect both undifferentiated, dividing cells, and differentiated, polarized enterocytes. A VDPV mutant excreted 36 days postvaccination by the patient was lytic in both types of intestinal cell cultures, like the parental Sabin 3 (S3) strain. In contrast, three VDPVs excreted 136, 442, and 637 days postvaccination, established persistent infections both in undifferentiated cells and in enterocytes. Thus, viral determinants selected between day 36 and 136 conferred on VDPV mutants the capacity to infect intestinal cells persistently. The percentage of persistently VDPV-infected cultures was higher in enterocytes than in undifferentiated cells, implicating cellular determinants involved in the differentiation of enterocytes in persistent VDPV infections. The establishment of persistent infections in enterocytes was not due to poor replication of VDPVs in these cells, but was associated with reduced viral adsorption to the cell surface

  6. Intestinal Parasitic Infections in Human Immunodeficiency Virus-Infected and Noninfected Persons in a High Human Immunodeficiency Virus Prevalence Region of Cameroon.

    Science.gov (United States)

    Nkenfou, Céline Nguefeu; Tchameni, Sandrine Mboula; Nkenfou, Carine Nguefeu; Djataou, Patrice; Simo, Ulrich Florian; Nkoum, Alexandre Benjamin; Estrin, William

    2017-09-01

    The problem of intestinal parasitic infection in human immunodeficiency virus (HIV)-infected people requires careful consideration in the developing world where poor nutrition is associated with poor hygiene and several coinfecting diseases. Studies have addressed this issue in Cameroon, especially in the low HIV prevalence area. The current study was conducted to determine the prevalence of intestinal parasitosis in people living with HIV (PLHIV) in Adamaoua and to identify associated risk factors. Stool and blood specimens from study participants were screened for intestinal parasites and anti-HIV antibodies, respectively. Of 235 participants, 68 (28.9%) were HIV positive, 38 of them on antiretroviral treatment (ART). The overall prevalence of intestinal parasites was 32.3%. Of 68 PLHIV, 32.3% (22/68) were infected with intestinal parasites, compared with 32.3% (54/167) of the HIV-negative patients. Univariate analysis showed no difference between the prevalence of intestinal parasites among PLHIV and HIV-negative patients ( P = 0.69). ART was not associated with the prevalence of intestinal parasites. Multivariate analysis showed that the quality of water and the personal hygiene were the major risk factors associated to intestinal parasitosis. The level of education was associated with HIV serostatus: the higher the level of education, the lower the risk of being infected with HIV ( P = 0.00). PLHIV and the general population should be screened routinely for intestinal parasites and treated if infected.

  7. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    Science.gov (United States)

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  8. Culturing human intestinal stem cells for regenerative applications in the treatment of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eo; Seidelin, Jakob B; Yin, Xiaolei

    2017-01-01

    models suggests that intestinal stem cell transplantation could constitute a novel treatment strategy to re-establish mucosal barrier function in patients with severe disease. Intestinal stem cells can be grownin vitroin organoid structures, though only a fraction of the cells contained are stem cells...... with regenerative capabilities. Hence, techniques to enrich stem cell populations are being pursued through the development of multiple two-dimensional and three-dimensional culture protocols, as well as co-culture techniques and multiple growth medium compositions. Moreover, research in support matrices allowing...... for efficient clinical application is in progress.In vitroculture is accomplished by modulating the signaling pathways fundamental for the stem cell niche with a suitable culture matrix to provide additional contact-dependent stimuli and structural support. The aim of this review was to discuss medium...

  9. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis.

    Science.gov (United States)

    Kim, Bong-Soo; Kim, Jong Nam; Yoon, Seok-Hwan; Chun, Jongsik; Cerniglia, Carl E

    2012-06-01

    The indigenous human intestinal microbiota could be disrupted by residues of antibiotics in foods as well as therapeutically administered antibiotics to humans. These disruptions may lead to adverse health outcomes. To observe the possible impact of residues of antibiotics at concentrations below therapeutic levels on human intestinal microbiota, we performed studies using in vitro cultures of fecal suspensions from three individuals with 10 different concentrations (0, 0.1, 0.5, 1, 5, 10, 15, 25, 50 and 150 μg/ml) of the fluoroquinolone, enrofloxacin. The bacterial communities of the control and enrofloxacin dosed fecal samples were analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. In addition, changes of functional gene expression were analyzed by a pyrosequencing-based random whole-community mRNA sequencing method. Although each individual had a unique microbial composition, the communities of all individuals were affected by enrofloxacin. The proportions of two phyla, namely, Bacteroidetes and Proteobacteria, were significantly reduced with increasing concentrations of enrofloxacin exposure, while the proportion of Firmicutes increased. Principal Coordinate Analysis (PCoA) using the Fast UniFrac indicated that the community structures of intestinal microbiota were shifted by enrofloxacin. Most of the mRNA transcripts and the anti-microbial drug resistance genes increased with increasing concentrations of enrofloxacin. 16S rRNA gene pyrosequencing of control and enrofloxacin treated fecal suspensions provided valuable information of affected bacterial taxa down to the species level, and the community transcriptomic analyses using mRNA revealed the functional gene expression responses of the changed bacterial communities by enrofloxacin. Published by Elsevier Ltd.

  10. Intestinal Stem Cell Niche Insights Gathered from Both In Vivo and Novel In Vitro Models

    Directory of Open Access Journals (Sweden)

    Nikolce Gjorevski

    2017-01-01

    Full Text Available Intestinal stem cells are located at the base of the crypts and are surrounded by a complex structure called niche. This environment is composed mainly of epithelial cells and stroma which provides signals that govern cell maintenance, proliferation, and differentiation. Understanding how the niche regulates stem cell fate by controlling developmental signaling pathways will help us to define how stem cells choose between self-renewal and differentiation and how they maintain their undifferentiated state. Tractable in vitro assay systems, which reflect the complexity of the in vivo situation but provide higher level of control, would likely be crucial in identifying new players and mechanisms controlling stem cell function. Knowledge of the intestinal stem cell niche gathered from both in vivo and novel in vitro models may help us improve therapies for tumorigenesis and intestinal damage and make autologous intestinal transplants a feasible clinical practice.

  11. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells.

    Science.gov (United States)

    Jung, Kwang Bo; Lee, Hana; Son, Ye Seul; Lee, Ji Hye; Cho, Hyun-Soo; Lee, Mi-Ok; Oh, Jung-Hwa; Lee, Jaemin; Kim, Seokho; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young

    2018-01-01

    Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5 mCherry ) and intestine-specific homeobox enhanced green fluorescence protein (ISX eGFP ). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells. © FASEB.

  12. Intestinal tumorigenesis is not affected by progesterone signaling in rodent models.

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    Full Text Available Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO to the Apc(Min/+ mouse, a model for spontaneous intestinal polyposis. PRKO-Apc(Min/+ mice exhibited no change in polyp number, size or localization compared to Apc(Min/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis.

  13. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans.

    Directory of Open Access Journals (Sweden)

    Luc Biedermann

    Full Text Available BACKGROUND: The human intestinal microbiota is a crucial factor in the pathogenesis of various diseases, such as metabolic syndrome or inflammatory bowel disease (IBD. Yet, knowledge about the role of environmental factors such as smoking (which is known to influence theses aforementioned disease states on the complex microbial composition is sparse. We aimed to investigate the role of smoking cessation on intestinal microbial composition in 10 healthy smoking subjects undergoing controlled smoking cessation. METHODS: During the observational period of 9 weeks repetitive stool samples were collected. Based on abundance of 16S rRNA genes bacterial composition was analysed and compared to 10 control subjects (5 continuing smokers and 5 non-smokers by means of Terminal Restriction Fragment Length Polymorphism analysis and high-throughput sequencing. RESULTS: Profound shifts in the microbial composition after smoking cessation were observed with an increase of Firmicutes and Actinobacteria and a lower proportion of Bacteroidetes and Proteobacteria on the phylum level. In addition, after smoking cessation there was an increase in microbial diversity. CONCLUSIONS: These results indicate that smoking is an environmental factor modulating the composition of human gut microbiota. The observed changes after smoking cessation revealed to be similar to the previously reported differences in obese compared to lean humans and mice respectively, suggesting a potential pathogenetic link between weight gain and smoking cessation. In addition they give rise to a potential association of smoking status and the course of IBD.

  14. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    Directory of Open Access Journals (Sweden)

    Benjamin B. Williams

    2015-08-01

    Full Text Available The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD and colitis-associated cancer (CAC. Glycoprotein A33 (GPA33 is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms

  15. Plasma endocannabinoid levels in lean, overweight and obese humans: relationships with intestinal permeability markers, inflammation and incretin secretion.

    Science.gov (United States)

    Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L

    2018-02-13

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (Plean (Plean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.

  16. Staphylococcus aureus induces IL-8 expression through its lipoproteins in the human intestinal epithelial cell, Caco-2.

    Science.gov (United States)

    Kang, Seok-Seong; Noh, Su Young; Park, Ok-Jin; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    Staphylococcus aureus can cause the intestinal inflammatory diseases. However, little is known about the molecular mechanism of S. aureus infection in the intestine. In the present study, we investigated whether S. aureus could stimulate human intestinal epithelial cells triggering inflammation. When the human intestinal epithelial cell-line, Caco-2, and the primary colon cells were stimulated with ethanol-inactivated S. aureus, IL-8 expression was induced in a dose-dependent manner. The inactivated S. aureus preferentially stimulated Toll-like receptor (TLR) 2 rather than TLR4. Lipoproteins, lipoteichoic acid (LTA), and peptidoglycan (PGN) are considered as potential TLR2 ligands of S. aureus. Interestingly, S aureus lipoproteins and Pam2CSK4 mimicking Gram-positive bacterial lipoproteins, but not LTA and PGN of S. aureus, significantly induced IL-8 expression in Caco-2 cells. Furthermore, lipoprotein-deficient S. aureus mutant strain failed to induce IL-8 production. Collectively, these results suggest that S. aureus stimulates the human intestinal epithelial cells to induce the chemokine IL-8 production through its lipoproteins, potentially contributing the development of intestinal inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  18. Novel Polyfermentor intestinal model (PolyFermS for controlled ecological studies: validation and effect of pH.

    Directory of Open Access Journals (Sweden)

    Annina Zihler Berner

    Full Text Available In vitro gut fermentation modeling offers a useful platform for ecological studies of the intestinal microbiota. In this study we describe a novel Polyfermentor Intestinal Model (PolyFermS designed to compare the effects of different treatments on the same complex gut microbiota. The model operated in conditions of the proximal colon is composed of a first reactor containing fecal microbiota immobilized in gel beads, and used to continuously inoculate a set of parallel second-stage reactors. The PolyFermS model was validated with three independent intestinal fermentations conducted for 38 days with immobilized human fecal microbiota obtained from three child donors. The microbial diversity of reactor effluents was compared to donor feces using the HITChip, a high-density phylogenetic microarray targeting small subunit rRNA sequences of over 1100 phylotypes of the human gastrointestinal tract. Furthermore, the metabolic response to a decrease of pH from 5.7 to 5.5, applied to balance the high fermentative activity in inoculum reactors, was studied. We observed a reproducible development of stable intestinal communities representing major taxonomic bacterial groups at ratios similar to these in feces of healthy donors, a high similarity of microbiota composition produced in second-stage reactors within a model, and a high time stability of microbiota composition and metabolic activity over 38 day culture. For all tested models, the pH-drop of 0.2 units in inoculum reactors enhanced butyrate production at the expense of acetate, but was accompanied by a donor-specific reorganization of the reactor community, suggesting a concerted metabolic adaptation and trigger of community-specific lactate or acetate cross-feeding pathways in response to varying pH. Our data showed that the PolyFermS model allows the stable cultivation of complex intestinal microbiota akin to the fecal donor and can be developed for the direct comparison of different

  19. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage.

    Science.gov (United States)

    Shaban, Lamyaa; Chen, Ying; Fasciano, Alyssa C; Lin, Yinan; Kaplan, David L; Kumamoto, Carol A; Mecsas, Joan

    2018-04-01

    Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O 2 conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    Directory of Open Access Journals (Sweden)

    Federica Gigliucci

    2018-02-01

    Full Text Available The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic approaches, based on mapping of the reads onto databases and on the reconstruction of putative draft genomes, to investigate possible changes in the composition of the intestinal microbiota in samples from patients with Shiga Toxin-producing E. coli (STEC infection compared to healthy and healed controls, collected during an outbreak caused by a STEC O26:H11 infection. Both the bioinformatic procedures used, produced similar result with a good resolution of the taxonomic profiles of the specimens. The stool samples collected from the STEC infected patients showed a lower abundance of the members of Bifidobacteriales and Clostridiales orders in comparison to controls where those microorganisms predominated. These differences seemed to correlate with the STEC infection although a flexion in the relative abundance of the Bifidobacterium genus, part of the Bifidobacteriales order, was observed also in samples from Crohn's disease patients, displaying a STEC-unrelated dysbiosis. The metagenomics also allowed to identify in the STEC positive samples, all the virulence traits present in the genomes of the STEC O26 that caused the outbreak as assessed through isolation of the epidemic strain and whole genome sequencing. The results shown represent a first evidence of the changes occurring in the intestinal microbiota of children in the course of STEC infection and indicate that metagenomics may be a promising tool for the culture-independent clinical diagnosis of the infection.

  1. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    Science.gov (United States)

    Gigliucci, Federica; von Meijenfeldt, F. A. Bastiaan; Knijn, Arnold; Michelacci, Valeria; Scavia, Gaia; Minelli, Fabio; Dutilh, Bas E.; Ahmad, Hamideh M.; Raangs, Gerwin C.; Friedrich, Alex W.; Rossen, John W. A.; Morabito, Stefano

    2018-01-01

    The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic approaches, based on mapping of the reads onto databases and on the reconstruction of putative draft genomes, to investigate possible changes in the composition of the intestinal microbiota in samples from patients with Shiga Toxin-producing E. coli (STEC) infection compared to healthy and healed controls, collected during an outbreak caused by a STEC O26:H11 infection. Both the bioinformatic procedures used, produced similar result with a good resolution of the taxonomic profiles of the specimens. The stool samples collected from the STEC infected patients showed a lower abundance of the members of Bifidobacteriales and Clostridiales orders in comparison to controls where those microorganisms predominated. These differences seemed to correlate with the STEC infection although a flexion in the relative abundance of the Bifidobacterium genus, part of the Bifidobacteriales order, was observed also in samples from Crohn's disease patients, displaying a STEC-unrelated dysbiosis. The metagenomics also allowed to identify in the STEC positive samples, all the virulence traits present in the genomes of the STEC O26 that caused the outbreak as assessed through isolation of the epidemic strain and whole genome sequencing. The results shown represent a first evidence of the changes occurring in the intestinal microbiota of children in the course of STEC infection and indicate that metagenomics may be a promising tool for the culture-independent clinical diagnosis of the infection. PMID:29468143

  2. Early establishment of epithelial apoptosis in the developing human small intestine.

    Science.gov (United States)

    Vachon, P H; Cardin, E; Harnois, C; Reed, J C; Vézina, A

    2000-12-01

    In the adult small intestine, the dynamic renewal of the epithelium is characterized by a sequence of cell production in the crypts, cell maturation and cell migration to the tip of villi, where apoptosis is undertaken. Little is known about enterocytic apoptosis during development. In man, intestinal architectural features and functions are acquired largely by mid-gestation (18-20 wks); the question whether the establishment of enterocytic apoptotic processes parallels or not the acquisition of other intestinal functional features remains open. In the present study, we approached this question by examining enterocytic apoptosis during development of the human jejunum (9-20 wks gestation), using the ISEL (in situ terminal uridine deoxynucleotidyl nick-end labelling) method. Between 9 and 17 wks, apoptotic enterocytes were not evidenced. However, beginning at the 18 wks stage, ISEL-positive enterocytes were regularly observed at the tip of villi. Since the Bcl-2 family of proteins constitutes a critical checkpoint in apoptosis, acting upstream of the apoptotic machinery, we investigated the expression of six Bcl-2 homologs (Bcl-2, Bcl-X(L), Mcl-1, Bax, Bak, Bad) and one non-homologous associated molecule (Bag-1). By immunofluorescence, we found that all homologs analyzed were expressed by enterocytes between 9 and 20 wks. However, Bcl-2 homologs underwent a gradual compartmentalization of epithelial expression along the maturing crypt-villus axis, to establish gradients of expression by 18-20 wks. Western blot analyses indicated that the expression levels of Bcl-2 homologs were modulated during morphogenesis of the crypt-villus axis, in parallel to their gradual compartmentalization of expression. Altogether, these data suggest that regulatory mechanisms of human enterocytic apoptosis become established by mid-gestation (18-20 wks) and coincide with the maturation of the crypt-villus axis of cell proliferation, differentiation and renewal.

  3. The food processing contaminant glyoxal promotes tumour growth in the multiple intestinal neoplasia (Min) mouse model.

    Science.gov (United States)

    Svendsen, Camilla; Høie, Anja Hortemo; Alexander, Jan; Murkovic, Michael; Husøy, Trine

    2016-08-01

    Glyoxal is formed endogenously and at a higher rate in the case of hyperglycemia. Glyoxal is also a food processing contaminant and has been shown to be mutagenic and genotoxic in vitro. The tumourigenic potential of glyoxal was investigated using the multiple intestinal neoplasia (Min) mouse model, which spontaneously develops intestinal tumours and is susceptible to intestinal carcinogens. C57BL/6J females were mated with Min males. Four days after mating and throughout gestation and lactation, the pregnant dams were exposed to glyoxal through drinking water (0.0125%, 0.025%, 0.05%, 0.1%) or regular tap water. Female and male offspring were housed separately from PND21 and continued with the same treatment. One group were only exposed to 0.1% glyoxal from postnatal day (PND) 21. There was no difference in the number of intestinal tumours between control and treatment groups. However, exposure to 0.1% glyoxal starting in utero and at PND21 caused a significant increase in tumour size in the small intestine for male and female mice in comparison with respective control groups. This study suggests that glyoxal has tumour growth promoting properties in the small intestine in Min mice. Copyright © 2016 Norwegian Institute of Public Health. Published by Elsevier Ltd.. All rights reserved.

  4. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village

    DEFF Research Database (Denmark)

    Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J.

    2014-01-01

    In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong vi...

  5. Models of human operators

    International Nuclear Information System (INIS)

    Knee, H.E.; Schryver, J.C.

    1991-01-01

    Models of human behavior and cognition (HB and C) are necessary for understanding the total response of complex systems. Many such models have come available over the past thirty years for various applications. Unfortunately, many potential model users remain skeptical about their practicality, acceptability, and usefulness. Such hesitancy stems in part to disbelief in the ability to model complex cognitive processes, and a belief that relevant human behavior can be adequately accounted for through the use of commonsense heuristics. This paper will highlight several models of HB and C and identify existing and potential applications in attempt to dispel such notions. (author)

  6. Cockroaches as carriers of human intestinal parasites in two localities in Ethiopia.

    Science.gov (United States)

    Kinfu, Addisu; Erko, Berhanu

    2008-11-01

    A study was undertaken to assess the role of cockroaches as potential carriers of human intestinal parasites in Addis Ababa and Ziway, Ethiopia. A total of 6480 cockroaches were trapped from the two localities from October 2006 to March 2007. All the cockroaches trapped in Addis Ababa (n=2240) and almost 50% (2100/4240) of those trapped in Ziway were identified as Blattella germanica. The rest of the cockroaches trapped in Ziway were identified as Periplaneta brunnea (24.52%), Pycnoscelus surinamensis (16.03%) and Supella longipalpa (9.90%). Microscopic examination of the external body washes of pooled cockroaches and individual gut contents revealed that cockroaches are carriers of Entamoeba coli and Entamoeba histolytica/dispar cysts as well as Enterobius vermicularis, Trichuris trichiura, Taenia spp. and Ascaris lumbricoides ova. Besides their role as a nuisance, the present study further confirms that cockroaches serve as carriers of human intestinal parasites. The possible association of cockroaches with allergic conditions such as asthma is also discussed. Hence, appropriate control measures should be taken particularly to make hotels and residential areas free of cockroaches as they represent a health risk.

  7. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Directory of Open Access Journals (Sweden)

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  8. The Bacterial Species Campylobacter jejuni Induce Diverse Innate Immune Responses in Human and Avian Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Daniel A. John

    2017-09-01

    Full Text Available Campylobacter remain the major cause of human gastroenteritis in the Developed World causing a significant burden to health services. Campylobacter are pathogens in humans and chickens, although differences in mechanistic understanding are incomplete, in part because phenotypic strain diversity creates inconsistent findings. Here, we took Campylobacter jejuni isolates (n = 100 from multi-locus sequence typed collections to assess their pathogenic diversity, through their inflammatory, cytotoxicity, adhesion, invasion and signaling responses in a high-throughput model using avian and human intestinal epithelial cells. C. jejuni induced IL-8 and CXCLi1/2 in human and avian epithelial cells, respectively, in a MAP kinase-dependent manner. In contrast, IL-10 responses in both cell types were PI 3-kinase/Akt-dependent. C. jejuni strains showed diverse levels of invasion with high invasion dependent on MAP kinase signaling in both cell lines. C. jejuni induced diverse cytotoxic responses in both cell lines with cdt-positive isolates showing significantly higher toxicity. Blockade of endocytic pathways suggested that invasion by C. jejuni was clathrin- and dynamin-dependent but caveolae- independent in both cells. In contrast, IL-8 (and CXCLi1/2 production was dependent on clathrin, dynamin, and caveolae. This study is important because of its scale, and the data produced, suggesting that avian and human epithelial cells use similar innate immune pathways where the magnitude of the response is determined by the phenotypic diversity of the Campylobacter species.

  9. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome

    Science.gov (United States)

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-01-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258

  10. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-06-01

    Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.

  11. Pasteurization Procedures for Donor Human Milk Affect Body Growth, Intestinal Structure, and Resistance against Bacterial Infections in Preterm Pigs.

    Science.gov (United States)

    Li, Yanqi; Nguyen, Duc Ninh; de Waard, Marita; Christensen, Lars; Zhou, Ping; Jiang, Pingping; Sun, Jing; Bojesen, Anders Miki; Lauridsen, Charlotte; Lykkesfeldt, Jens; Dalsgaard, Trine Kastrup; Bering, Stine Brandt; Sangild, Per Torp

    2017-06-01

    Background: Holder pasteurization (HP) destroys multiple bioactive factors in donor human milk (DM), and UV-C irradiation (UVC) is potentially a gentler method for pasteurizing DM for preterm infants. Objective: We investigated whether UVC-treated DM improves gut maturation and resistance toward bacterial infections relative to HP-treated DM. Methods: Bacteria, selected bioactive components, and markers of antioxidant capacity were measured in unpasteurized donor milk (UP), HP-treated milk, and UVC-treated milk (all from the same DM pool). Fifty-seven cesarean-delivered preterm pigs (91% gestation; ratio of males to females, 30:27) received decreasing volumes of parental nutrition (average 69 mL · kg -1 · d -1 ) and increasing volumes of the 3 DM diets ( n = 19 each, average 89 mL · kg -1 · d -1 ) for 8-9 d. Body growth, gut structure and function, and systemic bacterial infection were evaluated. Results: A high bacterial load in the UP (6×10 5 colony forming units/mL) was eliminated similarly by HP and UVC treatments. Relative to HP-treated milk, both UVC-treated milk and UP showed greater activities of lipase and alkaline phosphatase and concentrations of lactoferrin, secretory immunoglobulin A, xanthine dehydrogenase, and some antioxidant markers (all P < 0.05). The pigs fed UVC-treated milk and pigs fed UP showed higher relative weight gain than pigs fed HP-treated milk (5.4% and 3.5%), and fewer pigs fed UVC-treated milk had positive bacterial cultures in the bone marrow (28%) than pigs fed HP-treated milk (68%) ( P < 0.05). Intestinal health was also improved in pigs fed UVC-treated milk compared with those fed HP-treated milk as indicated by a higher plasma citrulline concentration (36%) and villus height (38%) ( P < 0.05) and a tendency for higher aminopeptidase N (48%) and claudin-4 (26%) concentrations in the distal intestine ( P < 0.08). The gut microbiota composition was similar among groups except for greater proportions of Enterococcus in pigs

  12. Evaluation of Fetal Intestinal Cell Growth and Antimicrobial Biofunctionalities of Donor Human Milk After Preparative Processes.

    Science.gov (United States)

    Kanaprach, Pasinee; Pongsakul, Nutkridta; Apiwattanakul, Nopporn; Muanprasat, Chatchai; Supapannachart, Sarayut; Nuntnarumit, Pracha; Chutipongtanate, Somchai

    2018-04-01

    Donor human milk is considered the next best nutrition following mother's own milk to prevent neonatal infection and necrotizing enterocolitis in preterm infants who are admitted at neonatal intensive care unit. However, donor milk biofunctionalities after preparative processes have rarely been documented. To evaluate biofunctionalities preserved in donor milk after preparative processes by cell-based assays. Ten pools of donor milk were produced from 40 independent specimens. After preparative processes, including bacterial elimination methods (holder pasteurization and cold-sterilization microfiltration) and storage conditions (-20°C freezing storage and lyophilization) with varied duration of storage (0, 3, and 6, months), donor milk biofunctionalities were examined by fetal intestinal cell growth and antimicrobial assays. At baseline, raw donor milk exhibited 193.1% ± 12.3% of fetal intestinal cell growth and 42.4% ± 11.8% of antimicrobial activities against Escherichia coli. After bacteria eliminating processes, growth promoting activity was better preserved in pasteurized donor milk than microfiltrated donor milk (169.5% ± 14.3% versus 146.0% ± 11.8%, respectively; p pasteurized donor milk was further examined for the effects of storage conditions at 3 and 6 months. Freezing storage, but not lyophilization, could preserve higher growth-promoting activity during 6 months of storage (163.0% ± 9.4% versus 72.8% ± 6.2%, respectively; p < 0.005). Nonetheless, antimicrobial activity was lost at 6 months, regardless of the storage methods. This study revealed that fetal intestinal cell growth and antimicrobial assays could be applied to measure donor milk biofunctionalities and support the utilization of donor milk within 3 months after preparative processes.

  13. Defining new criteria for selection of cell-based intestinal models using publicly available databases

    Directory of Open Access Journals (Sweden)

    Christensen Jon

    2012-06-01

    Full Text Available Abstract Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models

  14. Free Total Rhubarb Anthraquinones Protect Intestinal Injury via Regulation of the Intestinal Immune Response in a Rat Model of Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yuxia Xiong

    2018-02-01

    Full Text Available Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP. Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg or normal saline (control immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET, interleukin 1β (IL-1β, tumor necrosis factor α (TNF-α, nitric oxide (NO, myeloperoxidase (MPO, capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3, apoptosis-associated speck-like protein containing a CARD domain (ASC, casepase-1, secretary immunoglobulin A (SIgA, regulatory T cells (Tregs, and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while

  15. Digital Human Modeling

    Science.gov (United States)

    Dischinger, H. Charles, Jr.

    2017-01-01

    The development of models to represent human characteristics and behaviors in human factors is broad and general. The term "model" can refer to any metaphor to represent any aspect of the human; it is generally used in research to mean a mathematical tool for the simulation (often in software, which makes the simulation digital) of some aspect of human performance and for the prediction of future outcomes. This section is restricted to the application of human models in physical design, e.g., in human factors engineering. This design effort is typically human interface design, and the digital models used are anthropometric. That is, they are visual models that are the physical shape of humans and that have the capabilities and constraints of humans of a selected population. They are distinct from the avatars used in the entertainment industry (movies, video games, and the like) in precisely that regard: as models, they are created through the application of data on humans, and they are used to predict human response; body stresses workspaces. DHM enable iterative evaluation of a large number of concepts and support rapid analysis, as compared with use of physical mockups. They can be used to evaluate feasibility of escape of a suited astronaut from a damaged vehicle, before launch or after an abort (England, et al., 2012). Throughout most of human spaceflight, little attention has been paid to worksite design for ground workers. As a result of repeated damage to the Space Shuttle which adversely affected flight safety, DHM analyses of ground assembly and maintenance have been developed over the last five years for the design of new flight systems (Stambolian, 2012, Dischinger and Dunn Jackson, 2014). The intent of these analyses is to assure the design supports the work of the ground crew personnel and thereby protect the launch vehicle. They help the analyst address basic human factors engineering questions: can a worker reach the task site from the work platform

  16. Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms.

    Science.gov (United States)

    Brill, Shirley S; Furimsky, Anna M; Ho, Mark N; Furniss, Michael J; Li, Yi; Green, Adam G; Bradford, Wallace W; Green, Carol E; Kapetanovic, Izet M; Iyer, Lalitha V

    2006-04-01

    Resveratrol (trans-resveratrol, trans-3,5,4'-trihydroxystilbene) is a naturally occurring stilbene analogue found in high concentrations in red wine. There is considerable research interest to determine the therapeutic potential of resveratrol, as it has been shown to have tumour inhibitory and antioxidant properties. This study was performed to investigate the glucuronidation of resveratrol and possible drug interactions via glucuronidation. Two glucuronide conjugates, resveratrol 3-O-glucuronide and resveratrol 4'-O-glucuronide, were formed by human liver and intestinal microsomes. UGT1A1 and UGT1A9 were predominantly responsible for the formation of the 3-O-glucuronide (Km = 149 microM) and 4'-O-glucuronide (Km = 365 microM), respectively. The glucuronide conjugates were formed at higher levels (up to 10-fold) by intestinal rather than liver microsomes. Resveratrol was co-incubated with substrates of UGT1A1 (bilirubin and 7-ethyl-10-hydroxycamptothecin (SN-38)) and UGT1A9 (7-hydroxytrifluoromethyl coumarin (7-HFC)). No major changes were noted in bilirubin glucuronidation in the presence of resveratrol. Resveratrol significantly inhibited the glucuronidation of SN-38 (Ki = 6.2 +/- 2.1 microM) and 7-HFC (Ki = 0.6 +/- 0.2 microM). Hence, resveratrol has the potential to inhibit the glucuronidation of concomitantly administered therapeutic drugs or dietary components that are substrates of UGT1A1 and UGT1A9.

  17. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  18. Intestinal short chain fatty acids and their link with diet and human health

    Directory of Open Access Journals (Sweden)

    David eRios-Covian

    2016-02-01

    Full Text Available The colon is inhabited by a dense population of microorganisms, the so-called gut microbiota, able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA. These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signalling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health

  19. Human intestinal parasites in the past: new findings and a review

    Directory of Open Access Journals (Sweden)

    Marcelo Luiz Carvalho Gonçalves

    2003-01-01

    Full Text Available Almost all known human specific parasites have been found in ancient feces. A review of the paleoparasitological helminth and intestinal protozoa findings available in the literature is presented. We also report the new paleoparasitologic findings from the examination performed in samples collected in New and Old World archaeological sites. New finds of ancylostomid, Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis, Trichostrongylus spp., Diphyllobothrium latum, Hymenolepis nana and Acantocephalan eggs are reported. According to the findings, it is probable that A. lumbricoides was originally a human parasite. Human ancylostomids, A. lumbricoides and T. trichiura, found in the New World in pre-Columbian times, have not been introduced into the Americas by land via Beringia. These parasites could not supported the cold climate of the region. Nomadic prehistoric humans that have crossed the Bering Land Bridge from Asia to the Americas in the last glaciation, probably during generations, would have lost these parasites, which life cycles need warm temperatures in the soil to be transmitted from host to host. Alternative routes are discussed for human parasite introduction into the Americas.

  20. Localization and role of NPC1L1 in cholesterol absorption in human intestine.

    Science.gov (United States)

    Sané, Alain Théophile; Sinnett, Daniel; Delvin, Edgard; Bendayan, Moise; Marcil, Valérie; Ménard, Daniel; Beaulieu, Jean-François; Levy, Emile

    2006-10-01

    Recent studies have documented the presence of Niemann-Pick C1-Like 1 (NPC1L1) in the small intestine and its capacity to transport cholesterol in mice and rats. The current investigation was undertaken to explore the localization and function of NPC1L1 in human enterocytes. Cell fractionation experiments revealed an NPC1L1 association with apical membrane of the enterocyte in human jejunum. Signal was also detected in lysosomes, endosomes, and mitochondria. Confirmation of cellular NPC1L1 distribution was obtained by immunocytochemistry. Knockdown of NPC1L1 caused a decline in the ability of Caco-2 cells to capture micellar [(14)C]free cholesterol. Furthermore, this NPC1L1 suppression resulted in increased and decreased mRNA levels and activity of HMG-CoA reductase, the rate-limiting step in cholesterol synthesis, and of ACAT, the key enzyme in cholesterol esterification, respectively. An increase was also noted in the transcriptional factor sterol-regulatory element binding protein that modulates cholesterol homeostasis. Efforts were devoted to define the impact of NPC1L1 knockdown on other mediators of cholesterol uptake. RT-PCR evidence is presented to show the significant decrease in the levels of scavenger receptor class B type I (SR-BI) with no changes in ABCA1, ABCG5, and cluster determinant 36 in NPC1L1-deficient Caco-2 cells. Together, our data suggest that NPC1L1 contributes to intestinal cholesterol homeostasis and possibly cooperates with SR-BI to mediate cholesterol absorption in humans.

  1. Starved Guts: Morphologic and Functional Intestinal Changes in Malnutrition.

    Science.gov (United States)

    Attia, Suzanna; Feenstra, Marjon; Swain, Nathan; Cuesta, Melina; Bandsma, Robert H J

    2017-11-01

    Malnutrition contributes significantly to death and illness worldwide and especially to the deaths of children younger than 5 years. The relation between intestinal changes in malnutrition and morbidity and mortality has not been well characterized; however, recent research indicates that the functional and morphologic changes of the intestine secondary to malnutrition itself contribute significantly to these negative clinical outcomes and may be potent targets of intervention. The aim of this review was to summarize current knowledge of experimental and clinically observed changes in the intestine from malnutrition preclinical models and human studies. Limited clinical studies have shown villous blunting, intestinal inflammation, and changes in the intestinal microbiome of malnourished children. In addition to these findings, experimental data using various animal models of malnutrition have found evidence of increased intestinal permeability, upregulated intestinal inflammation, and loss of goblet cells. More mechanistic studies are urgently needed to improve our understanding of malnutrition-related intestinal dysfunction and to identify potential novel targets for intervention.

  2. The small intestine and irritable bowel syndrome (IBS): a batch process model.

    Science.gov (United States)

    Dobson, Brian C

    2008-11-01

    Faults in a batch process model of the small intestine create the symptoms of all types of irritable bowel syndrome. The model has three sequential processing sections corresponding to the natural divisions of the intestine. It is governed by a brain controller that is divided into four sub-controllers, each with a unique neurotransmitter. Each section has a sub-controller to manage transport. Sensors in the walls of the intestine provide input and output goes to the muscles lining the walls of the intestine. The output controls the speed of the food soup, moves it in both directions, mixes it, controls absorption, and transfers it to the next section at the correct speed (slow). The fourth sub-controller manages the addition of chemicals. It obtains input from the first section of the process via the signalling hormone Cholecystokinin and sends output to the muscles that empty the gall bladder and pancreas. The correct amounts of bile salts and enzymes are then added to the first section. The sub-controllers produce output only when input is received. When output is missing the enteric nervous system applies a default condition. This default condition normally happens when no food is in the intestine. If food is in the intestine and a transport sub-controller fails to provide output then the default condition moves the food soup to the end of that section. The movement is in one direction only (forward), at a speed dependent on the amount and type of fibre present. Cereal, bean and vegetable fibre causes high speeds. This default high speed transport causes irritable bowel syndrome. A barrier is created when a section moving fast at the default speed, precedes a section controlled by a transport sub-controller. Then the sub-controller constricts the intestine to stop the fast flow. The barrier causes constipation, cramping, and bloating. Diarrhoea results when the section terminating the process moves at the fast default speed. Two problems can occur to prevent

  3. Functional characterization of folic acid transport in the intestine of the laying hen using the everted intestinal sac model.

    Science.gov (United States)

    Tactacan, G B; Rodriguez-Lecompte, J C; Karmin, O; House, J D

    2011-01-01

    Absorption at the level of the intestine is likely a primary regulatory mechanism for the deposition of dietary supplemented folic acid into the chicken egg. Therefore, factors affecting the intestinal transport of folic acid in the laying hen may influence the level of egg folate concentrations. To this end, a series of experiments using intestinal everted sacs were conducted to characterize intestinal folic acid absorption processes in laying hens. Effects of naturally occurring folate derivatives (5-methyl and 10-formyltetrahydrofolate) as well as heme on folic acid absorption were also investigated. Folic acid absorption was measured based on the rate of uptake of (3)H-labeled folic acid in the everted sac from various segments of the small and large intestines. Folic acid concentration, incubation length, and pH condition were optimized before the performance of uptake experiments. The distribution profile of folic acid transport along the intestine was highest in the upper half of the small intestine. Maximum uptake rate (nmol·100 g tissue(-1)·min(-1)) was observed in the duodenum (20.6 ± 1.9) and jejunum (22.3 ± 2.0) and decreased significantly in the ileum (15.3 ± 1.1) and cecum (9.3 ± 0.9). Transport increased proportionately (P methyl and 10-formyltetrahydrofolate as well as heme impeded folic acid uptake, reducing intestinal folic acid absorption when added at concentrations ranging from 0 to 100 µM. Overall, these data indicated the presence of a folic acid transport system in the entire intestine of the laying hen. Uptake of folic acid in the cecum raises the likelihood of absorption of bacterial-derived folate.

  4. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers

    DEFF Research Database (Denmark)

    Rumessen, J J; Thuneberg, L

    1991-01-01

    with elastin fibers. The organization shown in this study strongly supports the concept of interstitial cells of Cajal as important regulatory cells also in the human small intestine. The characteristic cytology and organization of interstitial cells of Cajal may provide a basis for future morphological......Previous morphological and electrophysiological studies have supported the hypothesis that interstitial cells of Cajal have important regulatory (pacemaker) functions in the gut. In the current study, interstitial cells of Cajal associated with Auerbach's plexus in human small intestine were...... studied. Freshly resected intestine was examined by light and electron microscopy. The interstitial cells of Cajal resembled modified smooth muscle cells. They had caveolae and dense bodies, an incomplete basal lamina, a very well-developed smooth endoplasmic reticulum, and abundant intermediate (10 nm...

  5. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection

    Science.gov (United States)

    Saxena, Kapil; Simon, Lukas M.; Zeng, Xi-Lei; Blutt, Sarah E.; Crawford, Sue E.; Sastri, Narayan P.; Karandikar, Umesh C.; Ajami, Nadim J.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E.; Shaw, Chad A.; Estes, Mary K.

    2017-01-01

    The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine. PMID:28069942

  6. Intestinal inflammation in TNBS sensitized rats as a model of chronic inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    N. Selve

    1992-01-01

    Full Text Available An enteritis, based on a delayed-type hypersensitivity reaction, was induced in TNBS (2,4,4-trinitrobenzenesulphonic acid sensitized rats by multiple intrajejunal challenge with TNBS via an implanted catheter. This treatment induced chronic inflammation of the distal small intestine characterized by intense hyperaemia, oedema and gut wall thickening as assessed by macroscopic scoring and weighing a defined part of the dissected intestine. Histologically, the inflammatory response included mucosal and submucosal cell infiltration by lymphocytes and histiocytes, transmural granulomatous inflammation with multinucleated cells and activated mesenteric lymph nodes. Ex vivo stimulated release of the inflammatory mediator LTB4 in the dissected part of the intestine was increased following TNBS treatment. Drug treatment with sulphasalazine or 5-aminosalicylic acid improved the enteritis score and attenuated TNBS induced oedema formation and LTB4 production. The applicability and relevance of this new model are discussed with respect to drug development and basic research of inflammatory bowel diseases.

  7. The Influence of Different Apple Based Supplements on the Intestinal Microbiota of Humans

    DEFF Research Database (Denmark)

    Bergström, Anders; Wilcks, Andrea; Ravn-Haren, Gitte

    2010-01-01

    Background and objective: The present project is part of the large ISAFRUIT project, where one of the objectives is to identify effects of apple and apple product on parameters related to gut health. In a previous rat study we observed changes in the intestinal microbiota of rats fed whole apples......, pomace or apple pectin ([1], and we were interested in finding out if the same effect can be observed in humans. Method: The study was conducted as a randomized, controlled 5 x 28 days cross-over study with 24 healthy persons of both genders. The persons were following a pectin- and polyphenol free......-free), 3) cloudy juice (apple juice with pulp), and 4) pomace (press cake from the cloudy juice production process). Fecal samples were taken before and after each diet period. After DNA extraction, Denaturing Gradient Gel Electrophoresis (DGGE) with universal primers and specific primers...

  8. Vasoactive intestinal polypeptide and peptide histidine methionine. Presence in human follicular fluid and effects on DNA synthesis and steroid secretion in cultured human granulosa/lutein cells

    DEFF Research Database (Denmark)

    Gräs, S; Ovesen, Per Glud; Andersen, A N

    1994-01-01

    Vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) originate from the same precursor molecule, prepro VIP. In the present study we examined the concentrations of VIP and PHM in human follicular fluid and their effects on cultured human granulosa/lutein cells. Follicula...

  9. The Nucleotide Synthesis Enzyme CAD Inhibits NOD2 Antibacterial Function in Human Intestinal Epithelial Cells

    Science.gov (United States)

    Richmond, Amy L.; Kabi, Amrita; Homer, Craig R.; García, Noemí Marina; Nickerson, Kourtney P.; NesvizhskiI, Alexey I.; Sreekumar, Arun; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine

    2013-01-01

    BACKGROUND & AIMS Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn’s disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD therapies. METHODS Carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD) is an enzyme required for de novo pyrimidine nucleotide synthesis; it was identified as a NOD2-interacting protein by immunoprecipitation-coupled mass spectrometry. CAD expression was assessed in colon tissues from individuals with and without inflammatory bowel disease by immunohistochemistry. The interaction between CAD and NOD2 was assessed in human HCT116 intestinal epithelial cells by immunoprecipitation, immunoblot, reporter gene, and gentamicin protection assays. We also analyzed human cell lines that express variants of NOD2 and the effects of RNA interference, overexpression and CAD inhibitors. RESULTS CAD was identified as a NOD2-interacting protein expressed at increased levels in the intestinal epithelium of patients with CD compared with controls. Overexpression of CAD inhibited NOD2-dependent activation of nuclear factor κB and p38 mitogen-activated protein kinase, as well as intracellular killing of Salmonella. Reduction of CAD expression or administration of CAD inhibitors increased NOD2-dependent signaling and antibacterial functions of NOD2 variants that are and are not associated with CD. CONCLUSIONS The nucleotide synthesis enzyme CAD is a negative regulator of NOD2. The antibacterial function of NOD2 variants that have been associated with CD increased in response to pharmacologic inhibition of CAD. CAD is a potential therapeutic target for CD. PMID:22387394

  10. Specific binding of lactoferrin to Escherichia coli isolated from human intestinal infections

    International Nuclear Information System (INIS)

    Naidu, S.S.; Erdei, J.; Forsgren, A.; Naidu, A.S.; Czirok, E.; Gado, I.; Kalfas, S.; Thoren, A.

    1991-01-01

    The degrees of human lactoferrin (HLf) and bovine lactoferrin (BLf) binding in 169 Escherichia coli strains isolated from human intestinal infections, and in an additional 68 strains isolated from healthy individuals, were examined in a 125 I-labelled protein binding assay. The binding was expressed as a percentage calculated from the total labelled ligand added to bacteria. The HLf and BLf binding to E. coli was in the range 3.7 to 73.4% and 4.8 to 61.6%, respectively. Enterotoxigenic strains demonstrated a significantly higher HLf binding (median = 19%) than enteropathogenic, enteroinvasive, enterohaemorrhagic strains or normal intestinal E. coli isolates (medians 6 to 9). Enteropathogenic strains belonging to serotypes O44 and O127 demonstrated significantly higher HLf binding compared to O26, O55, O111, O119 and O126. No significant differences in the degree of HLf or BLf binding were found between aerobactin-producing and non-producing strains. The interaction was further characterized in a high Lf-binging EPEC strain, E34663 (serotype O127). The binding was stable in the pH range 4.0 to 7.5, did not dissociate in the presence of 2M NaCl or 2M urea, and reached saturation within two h. Unlabelled HLf and BLf displaced the 125 I-HLf binding to E34663 in a dose-dependent manner. Apo- and iron-saturated forms of Lf demonstrated similar binding to E34663. Among various unlabelled subephithelial matrix proteins and carbohydrates tested (in 10 4 -fold excess) only fibronectin and fibrinogen caused a moderate inhibition of 125 I-HLf binding. According to Scatchard plot analysis, 5,400 HLf-binding sites/cell, with an affinity constant (K a ) of 1.4 x 10 -7 M, were estimated in strain E34663. These data establish the presence of a specific Lf-binding mechanism in E. coli. (au)

  11. Effects of nonpathogenic bacteria on cytokine secretion by human intestinal mucosa.

    Science.gov (United States)

    Borruel, Natalia; Casellas, Francesc; Antolín, María; Llopis, Marta; Carol, Monica; Espíin, Eloy; Naval, Javier; Guarner, Francisco; Malagelada, Juan R

    2003-04-01

    The human intestine harbors a complex microbial ecosystem, and the mucosa is the interface between the immune system and the luminal environment. The aim of this study was to elucidate whether host-bacteria interactions influence mucosal cytokine production. Macroscopically normal colonic specimens were obtained at surgery from eight patients with neoplasm, and inflamed ileal specimens were obtained from two patients with Crohn's disease. Mucosal explants were cultured for 24 h with either nonpathogenic Escherichia coli ECOR-26, Lactobacillus casei DN-114 001, L. casei DN-114 056, L. casei ATCC-334, or Lactobacillus bulgaricus LB-10. Each study included blank wells with no bacteria. Tissue and bacteria viability were confirmed by LDH release and culture. Concentration of tumor necrosis factor (TNF)alpha, transforming growth factor beta1, interleukin (IL)-8, and IL-10 was measured in supernatants. In parallel experiments, neutralizing anti-TNFalpha antibody was added to the culture. Co-culture of mucosa with bacteria did not modify LDH release. Co-culture with L. casei strains significantly reduced TNFalpha release, whereas E. coli increased it. These effects were observed both in normal and inflamed mucosa. In combination studies, L. casei DN-114 001 prevented TNFalpha stimulation by E. coli. L. casei DN-114 001 also reduced IL-8 release via a TNFalpha-independent pathway. L. casei DN-114 056 or E. coli increased IL-10 release in the presence of neutralizing anti-TNFalpha. Nonpathogenic bacteria interact with human intestinal mucosa and can induce changes in cytokine production that are strain specific.

  12. Mathematical modelling of the death rate dynamics in mammals with intestinal form of radiation sicleness

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1990-01-01

    A mathematical models has been developed to describe the death rate dynamics in irradiated mammals. The model links statistical biometric functions with statistical and dynamic characteristics of the organism's 'critical' system. There is an agreement between the results of modelling and experiments with respect to death rate dynamics of small laboratory animals subjected to acute and chronic irradiation with doses and dose-rates at which small intestine epithelium is 'ctitical'

  13. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli

    DEFF Research Database (Denmark)

    Putaala, H; Barrangou, R; Leyer, G J

    2010-01-01

    a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33...

  14. Humanized mouse models: Application to human diseases.

    Science.gov (United States)

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  15. Effects of hemin and nitrite on intestinal tumorigenesis in the A/J Min/+ mouse model.

    Directory of Open Access Journals (Sweden)

    Marianne Sødring

    Full Text Available Red and processed meats are considered risk factors for colorectal cancer (CRC; however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat, and hemin in combination with nitrite (a model of processed meat on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.

  16. Impact of lactic Acid bacteria on dendritic cells from allergic patients in an experimental model of intestinal epithelium.

    Science.gov (United States)

    Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël

    2007-01-01

    Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  17. Impact of Lactic Acid Bacteria on Dendritic Cells from Allergic Patients in an Experimental Model of Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Céline Ratajczak

    2007-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393 on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase and increased their interleukin (IL-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  18. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines.

    Science.gov (United States)

    Paget, V; Sergent, J A; Grall, R; Altmeyer-Morel, S; Girard, H A; Petit, T; Gesset, C; Mermoux, M; Bergonzo, P; Arnault, J C; Chevillard, S

    2014-08-01

    Although nanodiamonds (NDs) appear as one of the most promising nanocarbon materials available so far for biomedical applications, their risk for human health remains unknown. Our work was aimed at defining the cytotoxicity and genotoxicity of two sets of commercial carboxylated NDs with diameters below 20 and 100 nm, on six human cell lines chosen as representative of potential target organs: HepG2 and Hep3B (liver), Caki-1 and Hek-293 (kidney), HT29 (intestine) and A549 (lung). Cytotoxicity of NDs was assessed by measuring cell impedance (xCELLigence® system) and cell survival/death by flow cytometry while genotoxicity was assessed by γ-H2Ax foci detection, which is considered the most sensitive technique for studying DNA double-strand breaks. To validate and check the sensitivity of the techniques, aminated polystyrene nanobeads were used as positive control in all assays. Cell incorporation of NDs was also studied by flow cytometry and luminescent N-V center photoluminescence (confirmed by Raman microscopy), to ensure that nanoparticles entered the cells. Overall, we show that NDs effectively entered the cells but NDs do not induce any significant cytotoxic or genotoxic effects on the six cell lines up to an exposure dose of 250 µg/mL. Taken together these results strongly support the huge potential of NDs for human nanomedicine but also their potential as negative control in nanotoxicology studies.

  19. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus.

    Science.gov (United States)

    Collado, M C; Meriluoto, J; Salminen, S

    2007-10-01

    The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.

  20. Alteration of a human intestinal microbiota under extreme life environment in the Antarctica.

    Science.gov (United States)

    Jin, Jong-Sik; Touyama, Mutsumi; Yamada, Shin; Yamazaki, Takashi; Benno, Yoshimi

    2014-01-01

    The human intestinal microbiota (HIM) settles from birth and continues to change phenotype by some factors (e.g. host's diet) throughout life. However, the effect of extreme life environment on human HIM composition is not well known. To understand HIM fluctuation under extreme life environment in humans, fecal samples were collected from six Japanese men on a long Antarctic expedition. They explored Antarctica for 3 months and collected their fecal samples at once-monthly intervals. Using terminal restriction fragment length polymorphism (T-RFLP) and real time polymerase chain reaction (PCR) analysis, the composition of HIM in six subjects was investigated. Three subjects presented restoration of HIM after the expedition compared versus before and during the expedition. Two thirds samples collected during the expedition belonged to the same cluster in dendrogram. However, all through the expedition, T-RFLP patterns showed interindividual variability. Especially, Bifidobacterium spp. showed a tendency to decrease during and restore after the expedition. A reduction of Bifidobacterium spp. was observed in five subjects the first 1 month of the expedition. Bacteroides thetaiotaomicron, which is thought to proliferate during emotional stress, significantly decreased in one subject, indicating that other factors in addition to emotional stress may affect the composition of HIM in this study. These findings could be helpful to understand the effect of extreme life environment on HIM.

  1. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity

    NARCIS (Netherlands)

    Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Tromp, P.; Helsper, J.P.F.G.; Zande, M. van der; Rietjens, I.M.C.M.; Bouwmeester, H.

    2015-01-01

    Intestinal translocation is a key factor for determining bioavailability of nanoparticles (NPs) after oral uptake. Therefore, we evaluated three in vitro intestinal cell models of increasing complexity which might affect the translocation of NPs: a mono-culture (Caco-2 cells), a co-culture with

  2. Effect of intravenous infusion of glyceryl trinitrate on gastric and small intestinal motor function in healthy humans

    DEFF Research Database (Denmark)

    Madsen, Jan Lysgård; Fuglsang, Stefan; Graff, J

    2006-01-01

    of glyceryl trinitrate 1 microg/kg x min or saline. A gamma camera technique was used to measure gastric emptying and small intestinal transit after a 1600-kJ mixed liquid and solid meal. Furthermore, duodenal motility was assessed by manometry. RESULTS: Glyceryl trinitrate did not change gastric mean......BACKGROUND: Glyceryl trinitrate is a donor of nitric oxide that relaxes smooth muscle cells of the gastrointestinal tract. Little is known about the effect of glyceryl trinitrate on gastric emptying and no data exist on the possible effect of glyceryl trinitrate on small intestinal transit. AIM......: To examine the effect of intravenous infusion of glyceryl trinitrate on gastric and small intestinal motor function after a meal in healthy humans. METHODS: Nine healthy volunteers participated in a placebo-controlled, double-blind, crossover study. Each volunteer was examined during intravenous infusion...

  3. Biotransformation of 1-nitropyrene to 1-aminopyrene and N-formyl-1-aminopyrene by the human intestinal microbiota

    International Nuclear Information System (INIS)

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    1986-01-01

    The nitropolycyclic aromatic hydrocarbon 1-nitropyrene (1-NP) is an environmental pollutant, a potent bacterial and mammalian mutagen, and a carcinogen. The metabolism of 1-NP by the human intestinal microbiota was studied using a semicontinuous culture system that simulates the colonic lumen. [ 3 H]-1-Nitropyrene was metabolized by the intestinal microbiota to 1-aminopyrene (1-AP) and N-formyl-1-aminopyrene (FAP) as determined by high-performance liquid chromatography (HPLC) and mass spectrometry. Twenty-four hours after the addition of [ 3 H]-1-NP, the formylated compound and 1-AP accounted for 20 and 80% of the total metabolism respectively. This percentage increased to 66% for FAP after 24 h following 10 d of chronic exposure to unlabeled 1-NP, suggesting metabolic adaptation to 1-NP by the microbiota. Both 1-AP and FAP have been shown to be nonmutagenic towards Salmonella typhimurium TA98, which indicates that the intestinal microflora may potentially detoxify 1-NP

  4. Effect of intravenous infusion of glyceryl trinitrate on gastric and small intestinal motor function in healthy humans

    DEFF Research Database (Denmark)

    Madsen, Jan Lysgård; Fuglsang, Stefan; Graff, J

    2006-01-01

    : To examine the effect of intravenous infusion of glyceryl trinitrate on gastric and small intestinal motor function after a meal in healthy humans. METHODS: Nine healthy volunteers participated in a placebo-controlled, double-blind, crossover study. Each volunteer was examined during intravenous infusion...... of glyceryl trinitrate 1 microg/kg x min or saline. A gamma camera technique was used to measure gastric emptying and small intestinal transit after a 1600-kJ mixed liquid and solid meal. Furthermore, duodenal motility was assessed by manometry. RESULTS: Glyceryl trinitrate did not change gastric mean...... emptying time, gastric half emptying time, gastric retention at 15 min or small intestinal mean transit time. Glyceryl trinitrate did not influence the frequency of duodenal contractions, the amplitude of duodenal contractions or the duodenal motility index. CONCLUSIONS: Intravenous infusion of glyceryl...

  5. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  6. Epidemiology of human fascioliasis and intestinal parasitosis among schoolchildren in Lake Tana Basin, northwest Ethiopia.

    Science.gov (United States)

    Fentie, Tsegaw; Erqou, Sebhat; Gedefaw, Molla; Desta, Almaw

    2013-08-01

    Parasitic diseases are the second most frequent cause of outpatient morbidity in Ethiopia. A cross-sectional study was conducted in Lake Tana Basin, northwest Ethiopia, from November 2007 to February 2008, to assess the magnitude and associated risk factors for parasitic diseases, including human fascioliasis. We examined 520 stool samples from randomly selected schoolchildren in six schools by microscopy. Rapid sedimentation and Kato-Katz techniques were used to detect and count Fasciola and Schistosoma eggs. The formol-ether concentration method was used for the identification of other helminth eggs, larvae and cysts of protozoan parasites. The overall prevalence of intestinal parasitic infections was 71.3% (95% CI 67.3-75.1%). Hookworm was the predominant intestinal parasite (23.5%, 95% CI 19.8-27.1%), followed by Ascaris lumbricoides (18.5%, 95% CI 15.2-21.9%) and Schistosoma mansoni (16.7%, 95% CI 13.5-19.9%). One hundred and sixty-three (31.4%) children had multiple parasitic infections. The most relevant finding was a prevalence of Fasciola spp. of 3.3% in an area where only sporadic cases have been reported previously. The risk of Fasciola spp. infection was significantly associated with raw vegetable consumption, use of unsafe drinking water sources, irrigation practices and sheep and/or cattle ownership. Irrigation practices, male gender, raw vegetable consumption and use of unsafe drinking water sources were risk factors for S. mansoni infection. A high prevalence of parasitic infections among children in the region was found, including a relatively high prevalence of Fasciola spp. infection. Epidemiological studies on the magnitude of parasitic infections in different regions will enable high-risk communities to be identified and allow for planning of appropriate interventions.

  7. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    International Nuclear Information System (INIS)

    Zhang Fengli; Luecke, Christian; Baier, Leslie J.; Sacchettini, James C.; Hamilton, James A.

    1997-01-01

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel β-strands which form two nearly orthogonal β-sheets of five strands each, and two short α-helices that connect the β-strands A and B. The interior of the protein consists of a water-filled cavity between the two β-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand

  8. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fengli [Boston University School of Medicine, Department of Biophysics (United States); Luecke, Christian [Johann Wolfgang Goethe-Universitaet (Germany); Baier, Leslie J. [NIDDK, NIH, Phoenix Epidemiology and Clinical Research Branch (United States); Sacchettini, James C. [Texas A and M University, Department of Biochemistry and Biophysics (United States); Hamilton, James A. [Boston University School of Medicine, Department of Biophysics (United States)

    1997-04-15

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel {beta}-strands which form two nearly orthogonal {beta}-sheets of five strands each, and two short {alpha}-helices that connect the {beta}-strands A and B. The interior of the protein consists of a water-filled cavity between the two {beta}-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand.

  9. Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro.

    Science.gov (United States)

    Vashisht, Monika; Rani, Payal; Onteru, Suneel Kumar; Singh, Dheer

    2017-11-01

    Exosomes, the extracellular secretary nano-vesicles, act as carriers of biomolecules to the target cells. They exhibit several attributes of an efficient drug delivery system. Curcumin, despite having numerous bioactive and therapeutic properties, has limited pharmaceutical use due to its poor water solubility, stability, and low systemic bioavailability. Hence, this study aims to enhance the therapeutic potential of curcumin, a model hydrophobic drug, by its encapsulation into milk exosomes. In the present study, we investigated the stability of free curcumin and exosomal curcumin in PBS and in vitro digestive processes. Additionally, their uptake and trans-epithelial transport were studied on Caco-2 cells. Curcumin in milk exosomes had higher stability in PBS, sustained harsh digestive processes, and crossed the intestinal barrier than free curcumin. In conclusion, the encapsulation of curcumin into the exosomes enhances its stability, solubility, and bioavailability. Therefore, the present study demonstrated that milk exosomes act as stable oral drug delivery vehicles.

  10. Studying the Mammalian Intestinal Microbiome Using Animal Models

    NARCIS (Netherlands)

    Hugenholtz, F.; Zhang, J.; O'Toole, P.W.; Smidt, H.

    2016-01-01

    The gastrointestinal (GI) tract of humans and animals is colonized by microorganisms immediately after birth. The composition of the GI tract microbiota undergoes remarkable alterations during early age, reaches a relative stable status in adulthood, and is driven by external factors such as

  11. Two-dimensional gel proteome reference map of human small intestine

    Directory of Open Access Journals (Sweden)

    Canzonieri Vincenzo

    2009-03-01

    Full Text Available Abstract Background The small intestine is an important human organ that plays a central role in many physiological functions including digestion, absorption, secretion and defense. Duodenal pathologies include, for instance, the ulcer associated to Helicobacter Pylori infection, adenoma and, in genetically predisposed individuals, celiac disease. Alterations in the bowel reduce its capability to absorb nutrients, minerals and fat-soluble vitamins. Anemia and osteopenia or osteoporosis may develop as a consequence of vitamins malabsorption. Adenoma is a benign tumor that has the potential to become cancerous. Adult celiac disease patients present an overall risk of cancer that is almost twice than that found in the general population. These disease processes are not completely known. To date, a two dimensional (2D reference map of proteins expressed in human duodenal tissue is not yet available: the aim of our study was to characterize the 2D protein map, and to identify proteins of duodenal mucosa of adult individuals without duodenal illness, to create a protein database. This approach, may be useful for comparing similar protein samples in different laboratories and for the molecular characterization of intestinal pathologies without recurring to the use of surgical material. Results The enrolled population comprised five selected samples (3 males and 2 females, aged 19 to 42, taken from 20 adult subjects, on their first visit at the gastroenterology unit for a suspected celiac disease, who did not turn to be affected by any duodenal pathology after gastrointestinal and histological evaluations. Proteins extracted from the five duodenal mucosal specimens were singly separated by 2D gel electrophoresis. After image analysis of each 2D gel, 179 protein spots, representing 145 unique proteins, from 218 spots tested, were successfully identified by MALDI-TOF ms analysis. Normalized volumes, for each protein, have been reported for every gel

  12. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1β effect and increase in the transepithelial passage of commensal bacteria

    International Nuclear Information System (INIS)

    Maresca, Marc; Yahi, Nouara; Younes-Sakr, Lama; Boyron, Marilyn; Caporiccio, Bertrand; Fantini, Jacques

    2008-01-01

    Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier and transport activities have been extensively characterized, the mechanisms responsible for their pro-inflammatory effect are still poorly understood. Here we investigated if mycotoxin-induced intestinal inflammation results from a direct and/or indirect pro-inflammatory activity of these mycotoxins on human intestinal epithelial cells, using differentiated Caco-2 cells as model and interleukin 8 (IL-8) as an indicator of intestinal inflammation. Deoxynivalenol was the only mycotoxin able to directly increase IL-8 secretion (10- to 15-fold increase). We also investigated if these mycotoxins could indirectly stimulate IL-8 secretion through: (i) a modulation of the action of pro-inflammatory molecules such as the interleukin-1beta (IL-1β), and/or (ii) an increase in the transepithelial passage of non-invasive commensal Escherichia coli. We found that deoxynivalenol, ochratoxin A and patulin all potentiated the effect of IL-1β on IL-8 secretion (ranging from 35% to 138% increase) and increased the transepithelial passage of commensal bacteria (ranging from 12- to 1544-fold increase). In addition to potentially exacerbate established intestinal inflammation, these mycotoxins may thus participate in the induction of sepsis and intestinal inflammation in vivo. Taken together, our results suggest that the pro-inflammatory activity of enteropathogenic mycotoxins is mediated by both direct and indirect effects

  13. Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro.

    Science.gov (United States)

    Zhang, Justina Su; Guri, Anilda; Corredig, Milena; Morales-Rayas, Rocio; Hassan, Ashraf; Griffiths, Mansel; LaPointe, Gisèle

    2016-12-01

    Lactococcus lactis subsp. cremoris JFR1 has been studied in reduced fat cheese due to its ability to produce exopolysaccharides (EPS) in situ, contributing to improved textural and organoleptic properties. In this study, the effect of strain JFR1 on virulence gene expression and attachment of Salmonella to HT-29 human colon carcinoma cells was investigated. Overnight cultures of L. lactis subsp. cremoris JFR1 containing EPS, grown in M17 media with 0.5% glucose supplementation, decreased attachment as well as down regulated virulence gene expression in Salmonella enterica subsp. enterica when tested on HT-29 cells. However, EPS isolated from milk fermented with L. lactis subsp. cremoris JFR1 did not affect Salmonella virulence gene expression or attachment to HT-29 cells. These results suggest that EPS does not contribute to the attachment of Salmonella to human intestinal cells. However, the possibility that the isolation process may have affected the structural features of EPS cannot be ruled out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa.

    Science.gov (United States)

    Réquilé, Marina; Gonzàlez Alvarez, Dubàn O; Delanaud, Stéphane; Rhazi, Larbi; Bach, Véronique; Depeint, Flore; Khorsi-Cauet, Hafida

    2018-05-28

    Dietary exposure to the organophosphorothionate pesticide chlorpyrifos (CPF) has been linked to dysbiosis of the gut microbiota. We therefore sought to investigate whether (i) CPF's impact extends to the intestinal barrier and (ii) the prebiotic inulin could prevent such an effect. In vitro models mimicking the intestinal environment (the SHIME®) and the intestinal mucosa (Caco-2/TC7 cells) were exposed to CPF. After the SHIME® had been exposed to CPF and/or inulin, we assessed the system's bacterial and metabolic profiles. Extracts from the SHIME®'s colon reactors were then transferred to Caco-2/TC7 cultures, and epithelial barrier integrity and function were assessed. We found that inulin co-treatment partially reversed CPF-induced dysbiosis and increased short-chain fatty acid production in the SHIME®. Furthermore, co-treatment impacted tight junction gene expression and inhibited pro-inflammatory signaling in the Caco-2/TC7 intestinal cell line. Whereas, an isolated in vitro assessment of CPF and inulin effects provides useful information on the mechanism of dysbiosis, combining two in vitro models increases the in vivo relevance.

  15. Gluten-degrading bacteria are present in the human small intestine of healthy volunteers and celiac patients.

    Science.gov (United States)

    Herrán, Alexandra R; Pérez-Andrés, Jénifer; Caminero, Alberto; Nistal, Esther; Vivas, Santiago; Ruiz de Morales, José María; Casqueiro, Javier

    2017-09-01

    Gluten is the only known environmental factor that triggers celiac disease. Several studies have described an imbalance between the intestinal microbiota of different individuals based on diagnoses. Moreover, recent studies have suggested that human bacteria may play an important role in gluten hydrolysis. However, there has been no research focusing on the small intestine. This study aimed to characterize the adult small intestine microbiota possibly implicated in gluten hydrolysis. Duodenal biopsies from different diagnosed individuals were cultured in a gluten-containing medium, and the grown microbiota was analyzed by culture dependent/independent methods. Results showed that gluten-degrading bacteria can be found in the human small intestine. Indeed, 114 bacterial strains belonging to 32 species were isolated; 85 strains were able to grow in a medium containing gluten as the sole nitrogen source, 31 strains showed extracellular proteolytic activity against gluten protein and 27 strains showed peptidolytic activity towards the 33 mer peptide, an immunogenic peptide for celiac disease patients. We found that there are no differences based on the diagnosis, but each individual has its own population of gluten-hydrolyzing bacteria. These bacteria or their gluten-degrading enzymes could help to improve the quality of life of celiac disease patients'. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Vibrio cholerae cytolysin causes an inflammatory response in human intestinal epithelial cells that is modulated by the PrtV protease.

    Directory of Open Access Journals (Sweden)

    Gangwei Ou

    Full Text Available BACKGROUND: Vibrio cholerae is the causal intestinal pathogen of the diarrheal disease cholera. It secretes the protease PrtV, which protects the bacterium from invertebrate predators but reduces the ability of Vibrio-secreted factor(s to induce interleukin-8 (IL-8 production by human intestinal epithelial cells. The aim was to identify the secreted component(s of V. cholerae that induces an epithelial inflammatory response and to define whether it is a substrate for PrtV. METHODOLOGY/PRINCIPAL FINDINGS: Culture supernatants of wild type V. cholerae O1 strain C6706, its derivatives and pure V. cholerae cytolysin (VCC were analyzed for the capacity to induce changes in cytokine mRNA expression levels, IL-8 and tumor necrosis factor-alpha (TNF-alpha secretion, permeability and cell viability when added to the apical side of polarized tight monolayer T84 cells used as an in vitro model for human intestinal epithelium. Culture supernatants were also analyzed for hemolytic activity and for the presence of PrtV and VCC by immunoblot analysis. CONCLUSIONS/SIGNIFICANCE: We suggest that VCC is capable of causing an inflammatory response characterized by increased permeability and production of IL-8 and TNF-alpha in tight monolayers. Pure VCC at a concentration of 160 ng/ml caused an inflammatory response that reached the magnitude of that caused by Vibrio-secreted factors, while higher concentrations caused epithelial cell death. The inflammatory response was totally abolished by treatment with PrtV. The findings suggest that low doses of VCC initiate a local immune defense reaction while high doses lead to intestinal epithelial lesions. Furthermore, VCC is indeed a substrate for PrtV and PrtV seems to execute an environment-dependent modulation of the activity of VCC that may be the cause of V. cholerae reactogenicity.

  17. Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy.

    Directory of Open Access Journals (Sweden)

    Benjamin Krämer

    2017-05-01

    Full Text Available Innate lymphocyte cells (ILCs, a novel family of innate immune cells are considered to function as key orchestrators of immune defences at mucosal surfaces and to be crucial for maintaining an intact intestinal barrier. Accordingly, first data suggest depletion of ILCs to be involved in human immunodeficiency virus (HIV-associated damage of the intestinal mucosa and subsequent microbial translocation. However, although ILCs are preferentially localized at mucosal surfaces, only little is known regarding distribution and function of ILCs in the human gastrointestinal tract. Here, we show that in HIV(- individuals composition and functional capacity of intestinal ILCs is compartment-specific with group 1 ILCs representing the major fraction in the upper gastrointestinal (GI tract, whereas ILC3 are the predominant population in ileum and colon, respectively. In addition, we present first data indicating that local cytokine concentrations, especially that of IL-7, might modulate composition of gut ILCs. Distribution of intestinal ILCs was significantly altered in HIV patients, who displayed decreased frequency of total ILCs in ileum and colon owing to reduced numbers of both CD127(+ILC1 and ILC3. Of note, frequency of colonic ILC3 was inversely correlated with serum levels of I-FABP and sCD14, surrogate markers for loss of gut barrier integrity and microbial translocation, respectively. Both expression of the IL-7 receptor CD127 on ILCs as well as mucosal IL-7 mRNA levels were decreased in HIV(+ patients, especially in those parts of the GI tract with reduced ILC frequencies, suggesting that impaired IL-7 responses of ILCs might contribute to incomplete reconstitution of ILCs under effective anti-retroviral therapy. This is the first report comparing distribution and function of ILCs along the intestinal mucosa of the entire human gastrointestinal tract in HIV(+ and HIV(- individuals.

  18. Protective effect of lactobacillus acidophilus and isomaltooligosaccharide on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea

    International Nuclear Information System (INIS)

    Du Dan; Fang Lichao; Chen Bingbo; Wei Hong

    2008-01-01

    Objective: To investigate the protective effect of synbiotics combined lactobacillus acidophilus and iso-malto-oligosaccharide (IMO) on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea(AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 5 days. The synbiotics was orally administered to the AAD rats daily at three different strengths for 7 days. The intestinal flora and intestinal mucus SIgA levels were determined on d6, d9 and d13. The histopathological changes of ileal mucosa were studied on d13. Results: In the prepared AAD model rats (on d6) there were lower intestinal mucus SIgA levels and intestinal flora disorders were demonstrated. The intestinal floras of the rats administering synbiotics were readjusted to the similar pattern of healthy rats with bacterial translocation corrected on d13 and the levels of SIgA were not significantly different from of the control (P>0.05). The histopathological picture was basically normal in the treated models on d13. Conclusion: The synbiotics combined lactobacillus acidophilus and isomaltooligosaccharide possessed good protective effect on the intestinal mucosal barrier in lincomycin induced rat models of AAD. (authors)

  19. The role of metabolism in Diclofenac-induced intestinal toxicity in human ex vivo

    NARCIS (Netherlands)

    Niu, Xiaoyu; Makkinje, Miriam; de Graaf, Inge; Groothuis, Genoveva

    2012-01-01

    The use of Diclofenac (DCF: 2-(2,6-dichloranilino) phenyl acetic acid ), a non-steroidal anti-inflammatory drug is associated with severe gastro-intestinal side-effects. In vivo rat studies suggest that reactive metabolites of DCF, produced by the liver, play an important role in the intestinal

  20. Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans

    Science.gov (United States)

    Proctor, Deborah M.; Suh, Mina; Haws, Laurie C.; Kirman, Christopher R.; Harris, Mark A.

    2013-01-01

    Chronic exposure to high concentrations of hexavalent chromium (Cr(VI)) in drinking water causes intestinal adenomas and carcinomas in mice, but not in rats. Cr(VI) causes damage to intestinal villi and crypt hyperplasia in mice after only one week of exposure. After two years of exposure, intestinal damage and crypt hyperplasia are evident in mice (but not rats), as are intestinal tumors. Although Cr(VI) has genotoxic properties, these findings suggest that intestinal tumors in mice arise as a result of chronic mucosal injury. To better understand the mode of action (MOA) of Cr(VI) in the intestine, a 90-day drinking water study was conducted to collect histological, biochemical, toxicogenomic and pharmacokinetic data in intestinal tissues. Using MOA analyses and human relevance frameworks proposed by national and international regulatory agencies, the weight of evidence supports a cytotoxic MOA with the following key events: (a) absorption of Cr(VI) from the intestinal lumen, (b) toxicity to intestinal villi, (c) crypt regenerative hyperplasia and (d) clonal expansion of mutations within the crypt stem cells, resulting in late onset tumorigenesis. This article summarizes the data supporting each key event in the MOA, as well as data that argue against a mutagenic MOA for Cr(VI)-induced intestinal tumors. PMID:23445218

  1. Endurance Exercise Increases Intestinal Uptake of the Peanut Allergen Ara h 6 after Peanut Consumption in Humans

    Directory of Open Access Journals (Sweden)

    Lonneke M. JanssenDuijghuijsen

    2017-01-01

    Full Text Available Controlled studies on the effect of exercise on intestinal uptake of protein are scarce and underlying mechanisms largely unclear. We studied the uptake of the major allergen Ara h 6 following peanut consumption in an exercise model and compared this with changes in markers of intestinal permeability and integrity. Ten overnight-fasted healthy non-allergic men (n = 4 and women (n = 6 (23 ± 4 years ingested 100 g of peanuts together with a lactulose/rhamnose (L/R solution, followed by rest or by 60 min cycling at 70% of their maximal workload. Significantly higher, though variable, levels of Ara h 6 in serum were found during exercise compared to rest (Peak p = 0.03; area under the curve p = 0.006, with individual fold changes ranging from no increase to an increase of over 150-fold in the uptake of Ara h 6. Similarly, uptake of lactulose (2–18 fold change, p = 0.0009 and L/R ratios (0.4–7.9 fold change, p = 0.04 were significantly increased which indicates an increase in intestinal permeability. Intestinal permeability and uptake of Ara h 6 were strongly correlated (r = 0.77, p < 0.0001 for lactulose and Ara h 6. Endurance exercise after consumption may lead to increased paracellular intestinal uptake of food proteins.

  2. Human modeling in nuclear engineering

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Furuta, Kazuo.

    1994-01-01

    Review on progress of research and development on human modeling methods is made from the viewpoint of its importance on total man-machine system reliability surrounding nuclear power plant operation. Basic notions on three different approaches of human modeling (behavioristics, cognitives and sociologistics) are firstly introduced, followed by the explanation of fundamental scheme to understand human cognitives at man-machine interface and the mechanisms of human error and its classification. Then, general methodologies on human cognitive model by AI are explained with the brief summary of various R and D activities now prevailing in the human modeling communities around the world. A new method of dealing with group human reliability is also introduced which is based on sociologistic mathematical model. Lastly, problems on human model validation are discussed, followed by the introduction of new experimental method to estimate human cognitive state by psycho-physiological measurement, which is a new methodology plausible for human model validation. (author)

  3. Intestinal fibrosis is reduced by early elimination of inflammation in a mouse model of IBD: impact of a "Top-Down" approach to intestinal fibrosis in mice.

    Science.gov (United States)

    Johnson, Laura A; Luke, Amy; Sauder, Kay; Moons, David S; Horowitz, Jeffrey C; Higgins, Peter D R

    2012-03-01

    The natural history of Crohn's disease follows a path of progression from an inflammatory to a fibrostenosing disease, with most patients requiring surgical resection of fibrotic strictures. Potent antiinflammatory therapies reduce inflammation but do not appear to alter the natural history of intestinal fibrosis. The aim of this study was to determine the relationship between intestinal inflammation and fibrogenesis and the impact of a very early "top-down" interventional approach on fibrosis in vivo. In this study we removed the inflammatory stimulus from the Salmonella typhimurium mouse model of intestinal fibrosis by eradicating the S. typhimurium infection with levofloxacin at sequential timepoints during the infection. We evaluated the effect of this elimination of the inflammatory stimulus on the natural history of inflammation and fibrosis as determined by gross pathology, histopathology, mRNA expression, and protein expression. Fibrogenesis is preceded by inflammation. Delayed eradication of the inflammatory stimulus by antibiotic treatment represses inflammation without preventing fibrosis. Early intervention significantly ameliorates but does not completely prevent subsequent fibrosis. This study demonstrates that intestinal fibrosis develops despite removal of an inflammatory stimulus and elimination of inflammation. Early intervention ameliorates but does not abolish subsequent fibrosis, suggesting that fibrosis, once initiated, is self-propagating, suggesting that a very early top-down interventional approach may have the most impact on fibrostenosing disease. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  4. Protective effect of NSA on intestinal epithelial cells in a necroptosis model.

    Science.gov (United States)

    Dong, Wei; Zhang, Min; Zhu, Yaxi; Chen, Yuanhan; Zhao, Xingchen; Li, Ruizhao; Zhang, Li; Ye, Zhiming; Liang, Xingling

    2017-10-17

    This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF- α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF- α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF- α and Z-VAD-fmk. NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD.

  5. Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells

    NARCIS (Netherlands)

    Forster, Ryan; Chiba, Kunitoshi; Schaeffer, Lorian; Regalado, Samuel G; Lai, Christine S; Gao, Qing; Kiani, Samira; Farin, Henner F; Clevers, Hans; Cost, Gregory J; Chan, Andy; Rebar, Edward J; Urnov, Fyodor D; Gregory, Philip D; Pachter, Lior; Jaenisch, Rudolf; Hockemeyer, Dirk

    2014-01-01

    Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many applications are limited due to the lack of robust differentiation paradigms that allow for the

  6. Effect of Da-Cheng-Qi Decoction on Pancreatitis-Associated Intestinal Dysmotility in Patients and in Rat Models

    Directory of Open Access Journals (Sweden)

    Jianlei Zhao

    2015-01-01

    Full Text Available The impairment of intestinal motility and related infectious complications are the predominant clinical phenomenon in patients with severe acute pancreatitis (SAP. We aimed to investigate the effects of Da-Cheng-Qi decoction (DCQD on the gastrointestinal injury in SAP patients and the potential mechanism involved in rats. DCQD was enema administered to 70 patients for 7 days in West China Hospital. Mortality and organ failure during admission were observed and blood samples for laboratory analysis were collected. We also experimentally examined plasma inflammatory cytokines in rat serum and carried the morphometric studies of the gut. Intestinal propulsion index and serum and tissue vasoactive intestinal peptide (VIP were also detected. Though DCQD did not affect the overall incidence of organ failure, it shortened the average time of paralytic intestinal obstruction and decreased the morbidity of infectious complications in patients with SAP. Compared with untreated rats, the DCQD lowered the levels of proinflammatory cytokine and decreased the mean pathological intestinal lesion scores. The VIP level in intestinal tissue or serum in DCQD group was obviously lowered and intestinal propulsion index was significantly improved. In conclusion, DCQD has good effect on pancreatitis-associated intestinal dysmotility in patients and in rat models.

  7. Modulation of chromatin remodelling induced by the freshwater cyanotoxin cylindrospermopsin in human intestinal caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Antoine Huguet

    Full Text Available Cylindrospermopsin (CYN is a cyanotoxin that has been recognised as an emerging potential public health risk. Although CYN toxicity has been demonstrated, the mechanisms involved have not been fully characterised. To identify some key pathways related to this toxicity, we studied the transcriptomic profile of human intestinal Caco-2 cells exposed to a sub-toxic concentration of CYN (1.6 µM for 24hrs using a non-targeted approach. CYN was shown to modulate different biological functions which were related to growth arrest (with down-regulation of cdkn1a and uhrf1 genes, and DNA recombination and repair (with up-regulation of aptx and pms2 genes. Our main results reported an increased expression of some histone-modifying enzymes (histone acetyl and methyltransferases MYST1, KAT5 and EHMT2 involved in chromatin remodelling, which is essential for initiating transcription. We also detected greater levels of acetylated histone H2A (Lys5 and dimethylated histone H3 (Lys4, two products of these enzymes. In conclusion, CYN overexpressed proteins involved in DNA damage repair and transcription, including modifications of nucleosomal histones. Our results highlighted some new cell processes induced by CYN.

  8. Human intestinal parasites in crusader Acre: Evidence for migration with disease in the medieval period.

    Science.gov (United States)

    Mitchell, Piers D; Anastasiou, Evilena; Syon, Danny

    2011-12-01

    The aim of this research is to highlight the role of ancient parasites as evidence for human migration in past populations. The material analysed was soil sediment from the excavation of a medieval cesspool in the city of Acre, in Israel. Archaeological stratigraphy and radiocarbon dating of a fragment of animal bone from the cesspool confirm its use in the 13th century CE, during the crusader period. At that time Acre was located in the Frankish Kingdom of Jerusalem. Soil samples from the cesspool were analysed and eggs of the roundworm (Ascaris lumbricoides) and fish tapeworm (Diphyllobothrium latum) were identified. The fish tapeworm has only been found in the mainland Near East once before, in a latrine of the crusader Order of St. John (Knights Hospitaller). It has been absent in all earlier cesspools, latrines and coprolites so far studied in the region. In contrast to its rarity in the Levant, the fish tapeworm was common in northern Europe during the medieval period. The presence of fish tapeworm eggs in a crusader period cesspool in Acre suggests its use by crusaders or pilgrims from northern Europe who travelled to the Levant carrying these parasites in their intestines. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Assessment of the prebiotic effect of quinoa and amaranth in the human intestinal ecosystem.

    Science.gov (United States)

    Gullón, Beatriz; Gullón, Patricia; Tavaria, Freni K; Yáñez, Remedios

    2016-09-14

    Quinoa and amaranth belong to the group of the so called "superfoods" and have a nutritional composition that confers multiple benefits. In this work, we explored the possibility of these foods exhibiting a prebiotic effect. These pseudocereals were subjected to an in vitro digestion and used as carbon sources in batch cultures with faecal human inocula. The effects on the microbiota composition and their metabolic products were determined by assessment of variations in pH, short-chain fatty acid (SCFA) production and changes in the dynamic bacterial populations by fluorescence in situ hybridization (FISH). After 48 h of incubation, the total SCFAs were 106.5 mM for quinoa and 108.83 mM for amaranth, in line with the decrease in pH. Considerable differences (p spp., Lactobacillus-Enterococcus, Atopobium, Bacteroides-Prevotella, Clostridium coccoides-Eubacterium rectale, Faecalibacterium prausnitzii and Roseburia intestinalis. Our research suggests that these pseudocereals can have the prebiotic potential and that their intake may improve dysbiosis or maintain the gastrointestinal health through a balanced intestinal microbiota, although additional studies are necessary.

  10. Actinidin enhances protein digestion in the small intestine as assessed using an in vitro digestion model.

    Science.gov (United States)

    Kaur, Lovedeep; Rutherfurd, Shane M; Moughan, Paul J; Drummond, Lynley; Boland, Mike J

    2010-04-28

    This paper describes an in vitro study that tests the proposition that actinidin from green kiwifruit influences the digestion of proteins in the small intestine. Different food proteins, from sources including soy, meat, milk, and cereals, were incubated in the presence or absence of green kiwifruit extract (containing actinidin) using a two-stage in vitro digestion system consisting of an incubation with pepsin at stomach pH (simulating gastric digestion) and then with added pancreatin at small intestinal pH, simulating upper tract digestion in humans. The digests from the small intestinal stage (following the gastric digestion phase) were subjected to gel electrophoresis (SDS-PAGE) to assess loss of intact protein and development of large peptides during the in vitro simulated digestion. Kiwifruit extract influenced the digestion patterns of all of the proteins to various extents. For some proteins, actinidin had little impact on digestion. However, for other proteins, the presence of kiwifruit extract resulted in a substantially greater loss of intact protein and different peptide patterns from those seen after digestion with pepsin and pancreatin alone. In particular, enhanced digestion of whey protein isolate, zein, gluten, and gliadin was observed. In addition, reverse-phase HPLC (RP-HPLC) analysis showed that a 2.5 h incubation of sodium caseinate with kiwifruit extract alone resulted in approximately 45% loss of intact protein.

  11. Absorption and metabolism of the food contaminant 3-chloro-1,2-propanediol (3-MCPD) and its fatty acid esters by human intestinal Caco-2 cells.

    Science.gov (United States)

    Buhrke, Thorsten; Weisshaar, Rüdiger; Lampen, Alfonso

    2011-10-01

    3-Chloro-1,2-propanediol (3-MCPD) fatty acid esters are formed upon thermal processing of fat-containing foods in the presence of chloride ions. Upon hydrolytic cleavage, these substances could release free 3-MCPD. This compound is toxicologically well characterised and displayed cancerogenic potential in rodent models. Recently, serious contaminations of different food products with 3-MCPD fatty acid esters have been reported. In regard to a risk assessment, the key question is to which degree these 3-MCPD fatty acid esters are hydrolysed in the human gut. Therefore, the aim of the present project was to examine the hydrolysis of 3-MCPD fatty acid esters and the resulting release of free 3-MCPD by using differentiated Caco-2 cells, a cellular in vitro model for the human intestinal barrier. Here, we show that 3-MCPD fatty acid esters at a concentration of 100 μM were neither absorbed by the cells nor the esters were transported via a Caco-2 monolayer. 3-MCPD-1-monoesters were hydrolysed in the presence of Caco-2 cells. In contrast, a 3-MCPD-1,2-diester used in this study was obviously absorbed and metabolised by the cells. Free 3-MCPD was not absorbed by the cells, but the substance migrated through a Caco-2 monolayer by paracellular diffusion. From these in vitro studies, we conclude that 3-MCPD-1-monoesters are likely to be hydrolysed in the human intestine, thereby increasing the burden with free 3-MCPD. In contrast, intestinal cells seem to have the capacity to metabolise 3-MCPD diesters, thereby detoxifying the 3-MCPD moiety.

  12. Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome.

    Science.gov (United States)

    Lemas, Dominick J; Young, Bridget E; Baker, Peter R; Tomczik, Angela C; Soderborg, Taylor K; Hernandez, Teri L; de la Houssaye, Becky A; Robertson, Charles E; Rudolph, Michael C; Ir, Diana; Patinkin, Zachary W; Krebs, Nancy F; Santorico, Stephanie A; Weir, Tiffany; Barbour, Linda A; Frank, Daniel N; Friedman, Jacob E

    2016-05-01

    Increased maternal body mass index (BMI) is a robust risk factor for later pediatric obesity. Accumulating evidence suggests that human milk (HM) may attenuate the transfer of obesity from mother to offspring, potentially through its effects on early development of the infant microbiome. Our objective was to identify early differences in intestinal microbiota in a cohort of breastfeeding infants born to obese compared with normal-weight (NW) mothers. We also investigated relations between HM hormones (leptin and insulin) and both the taxonomic and functional potentials of the infant microbiome. Clinical data and infant stool and fasting HM samples were collected from 18 NW [prepregnancy BMI (in kg/m(2)) obese (prepregnancy BMI >30.0) mothers and their exclusively breastfed infants at 2 wk postpartum. Infant body composition at 2 wk was determined by air-displacement plethysmography. Infant gastrointestinal microbes were estimated by using 16S amplicon and whole-genome sequencing. HM insulin and leptin were determined by ELISA; short-chain fatty acids (SCFAs) were measured in stool samples by using gas chromatography. Power was set at 80%. Infants born to obese mothers were exposed to 2-fold higher HM insulin and leptin concentrations (P obesity may adversely affect the early infant intestinal microbiome, HM insulin and leptin are independently associated with beneficial microbial metabolic pathways predicted to increase intestinal barrier function and reduce intestinal inflammation. This trial was registered at clinicaltrials.gov as NCT01693406. © 2016 American Society for Nutrition.

  13. Calcium Imaging of Nerve-Mast Cell Signaling in the Human Intestine

    Directory of Open Access Journals (Sweden)

    Sabine Buhner

    2017-11-01

    Full Text Available Introduction: It is suggested that an altered microenvironment in the gut wall alters communication along a mast cell nerve axis. We aimed to record for the first time signaling between mast cells and neurons in intact human submucous preparations.Methods: We used the Ca2+ sensitive dye Fluo-4 AM to simultaneously image changes in intracellular calcium [Ca+2]i (%ΔF/F in neurons and mast cells. Data are presented as median with interquartile ranges (25/75%.Results: We recorded nerve responses in 29 samples upon selective activation of 223 mast cells by IgE receptor cross linking with the antibody mAb22E7. Mast cells responded to mAb22E7 with a median [Ca+2]i increase of 20% (11/39 peaking 90 s (64/144 after the application. Only very few neurons responded and the median percentage of responding neuronal area was 0% (0/5.9. Mast cell activation remained in the presence of the fast sodium channel blocker tetrodotoxin. Specific neuronal activation by transmural electrical field stimulation (EFS in 34 samples evoked instantaneously [Ca+2]i signals in submucous neurons. This was followed by a [Ca+2]i peak response of 8%ΔF/F (4/15 in 33% of 168 mast cells in the field of view. The mast cell response was abolished by the nerve blocker tetrododoxin, reduced by the Calcitonin Gene-Related Peptide receptor 1 antagonist BIBN-4096 and the Vasoactive Intestinal Peptide receptor antagonist PG97-269, but not by blockade of the neurokinin receptors 1–3.Conclusion: The findings revealed bidirectional signaling between mast cells and submucous neurons in human gut. In our macroscopically normal preparations a nerve to mast cell signaling was very prominent whereas a mast cell to nerve signaling was rather rare.

  14. Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine

    Directory of Open Access Journals (Sweden)

    Sohail Nadeem

    2012-01-01

    Full Text Available Mathematical model for the peristaltic flow of chyme in small intestine along with inserted endoscope is considered. Here, chyme is treated as Williamson fluid, and the flow is considered between the annular region formed by two concentric tubes (i.e., outer tube as small intestine and inner tube as endoscope. Flow is induced by two sinusoidal peristaltic waves of different wave lengths, traveling down the intestinal wall with the same speed. The governing equations of Williamson fluid in cylindrical coordinates have been modeled. The resulting nonlinear momentum equations are simplified using long wavelength and low Reynolds number approximations. The resulting problem is solved using regular perturbation method in terms of a variant of Weissenberg number We. The numerical solution of the problem is also computed by using shooting method, and comparison of results of both solutions for velocity field is presented. The expressions for axial velocity, frictional force, pressure rise, stream function, and axial pressure gradient are obtained, and the effects of various emerging parameters on the flow characteristics are illustrated graphically. Furthermore, the streamlines pattern is plotted, and it is observed that trapping occurs, and the size of the trapped bolus varies with varying embedded flow parameters.

  15. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Qingchao Zhu

    Full Text Available Recent reports have suggested that multiple factors such as host genetics, environment and diet can promote the progression of healthy mucosa towards sporadic colorectal carcinoma. Accumulating evidence has additionally associated intestinal bacteria with disease initiation and progression. In order to examine and analyze the composition of gut microbiota in the absence of confounding influences, we have established an animal model of 1, 2-dimethylhydrazine (DMH-induced colon cancer. Using this model, we have performed pyrosequencing of the V3 region of the 16S rRNA genes in this study to determine the diversity and breadth of the intestinal microbial species. Our findings indicate that the microbial composition of the intestinal lumen differs significantly between control and tumor groups. The abundance of Firmicutes was elevated whereas the abundance of Bacteroidetes and Spirochetes was reduced in the lumen of CRC rats. Fusobacteria was not detected in any of the healthy rats and there was no significant difference in observed Proteobacteria species when comparing the bacterial communities between our two groups. Interestingly, the abundance of Proteobacteria was higher in CRC rats. At the genus level, Bacteroides exhibited a relatively higher abundance in CRC rats compared to controls (14.92% vs. 9.22%, p<0.001. Meanwhile, Prevotella (55.22% vs. 26.19%, Lactobacillus (3.71% vs. 2.32% and Treponema (3.04% vs. 2.43%, were found to be significantly more abundant in healthy rats than CRC rats (p<0.001, respectively. We also demonstrate a significant reduction of butyrate-producing bacteria such as Roseburia and Eubacterium in the gut microbiota of CRC rats. Furthermore, a significant increase in Desulfovibrio, Erysipelotrichaceae and Fusobacterium was also observed in the tumor group. A decrease in probiotic species such as Ruminococcus and Lactobacillus was likewise observed in the tumor group. Collectively, we can conclude that a significant

  16. Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy.

    Directory of Open Access Journals (Sweden)

    Shannon R M Kinney

    Full Text Available IgE antibodies and mast cells play critical roles in the establishment of allergic responses to food antigens. Curcumin, the active ingredient of the curry spice turmeric, has anti-inflammatory properties, and thus may have the capacity to regulate Th2 cells and mucosal mast cell function during allergic responses. We assessed whether curcumin ingestion during oral allergen exposure can modulate the development of food allergy using a murine model of ovalbumin (OVA-induced intestinal anaphylaxis. Herein, we demonstrate that frequent ingestion of curcumin during oral OVA exposure inhibits the development of mastocytosis and intestinal anaphylaxis in OVA-challenged allergic mice. Intragastric (i.g. exposure to OVA in sensitized BALB/c mice induced a robust IgE-mediated response accompanied by enhanced OVA-IgE levels, intestinal mastocytosis, elevated serum mMCP-1, and acute diarrhea. In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation. Furthermore, allergic diarrhea, mast cell activation and expansion, and Th2 responses were also suppressed in mice exposed to curcumin during the OVA-challenge phase alone, despite the presence of elevated levels of OVA-IgE, suggesting that curcumin may have a direct suppressive effect on intestinal mast cell activation and reverse food allergy symptoms in allergen-sensitized individuals. This was confirmed by observations that curcumin attenuated the expansion of both adoptively transferred bone marrow-derived mast cells (BMMCs, and inhibited their survival and activation during cell culture. Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs. In

  17. Identification of glucose-fermenting bacteria present in an in-vitro model of the human inetstine by RNA-stable isotope probing

    NARCIS (Netherlands)

    Egert, M.G.G.; Graaf, de A.A.; Maathuis, A.; Waard, de P.; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, de W.M.; Venema, K.

    2007-01-01

    16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract

  18. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models

    DEFF Research Database (Denmark)

    Plum, Jakob Munk; Nøhr, Martha Kampp; Hansen, Steen H

    2014-01-01

    , such evidence does not preclude the involvement of other transporters. The aim of the present study was, therefore, to investigate if vigabatrin interacts with taurine transport. The uptake of taurine was measured in intestinal human Caco-2 and canine MDCK cell monolayers in the absence or presence of amino...... acids such as GABA and vigabatrin. Vigabatrin inhibits the uptake of taurine in Caco-2 and MDCK cells to 34±3 and 53±2%, respectively, at a concentration of 30mM. In Caco-2 cells the uptake of vigabatrin under neutral pH conditions is concentration-dependent and saturable with a Km-value of 27mM (log......Km is 1.43±0.09). In conclusion, the present study shows that vigabatrin was able to inhibit the uptake of taurine in intestinal and renal cell culture models. Furthermore, uptake of vigabatrin in Caco-2 cells under neutral pH conditions was concentration-dependent and saturable and suggesting...

  19. A breakdown in communication? Understanding the effects of aging on the human small intestine epithelium

    OpenAIRE

    Mabbott, Neil A.

    2015-01-01

    In the intestine, a single layer of epithelial cells sealed together at their apical surfaces by tight junctions helps to prevent the luminal commensal and pathogenic micro-organisms and their toxins from entering host tissues. The intestinal epithelium also helps to maintain homoeostasis in the mucosal immune system by expressing anti-inflammatory cytokines in the steady state and inflammatory cytokines in response to pathogens. Although the function of the mucosal immune system is impaired ...

  20. Modeling Human Leukemia Immunotherapy in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Jinxing Xia

    2016-08-01

    Full Text Available The currently available human tumor xenograft models permit modeling of human cancers in vivo, but in immunocompromised hosts. Here we report a humanized mouse (hu-mouse model made by transplantation of human fetal thymic tissue plus hematopoietic stem cells transduced with a leukemia-associated fusion gene MLL-AF9. In addition to normal human lymphohematopoietic reconstitution as seen in non-leukemic hu-mice, these hu-mice showed spontaneous development of B-cell acute lymphoblastic leukemia (B-ALL, which was transplantable to secondary recipients with an autologous human immune system. Using this model, we show that lymphopenia markedly improves the antitumor efficacy of recipient leukocyte infusion (RLI, a GVHD-free immunotherapy that induces antitumor responses in association with rejection of donor chimerism in mixed allogeneic chimeras. Our data demonstrate the potential of this leukemic hu-mouse model in modeling leukemia immunotherapy, and suggest that RLI may offer a safe treatment option for leukemia patients with severe lymphopenia.

  1. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells.

    Science.gov (United States)

    Tong, Zhixiang; Martyn, Keir; Yang, Andy; Yin, Xiaolei; Mead, Benjamin E; Joshi, Nitin; Sherman, Nicholas E; Langer, Robert S; Karp, Jeffrey M

    2018-02-01

    Current ISC culture systems face significant challenges such as animal-derived or undefined matrix compositions, batch-to-batch variability (e.g. Matrigel-based organoid culture), and complexity of assaying cell aggregates such as organoids which renders the research and clinical translation of ISCs challenging. Here, through screening for suitable ECM components, we report a defined, collagen based monolayer culture system that supports the growth of mouse and human intestinal epithelial cells (IECs) enriched for an Lgr5 + population comparable or higher to the levels found in a standard Matrigel-based organoid culture. The system, referred to as the Bolstering Lgr5 Transformational (BLT) Sandwich culture, comprises a collagen IV-coated porous substrate and a collagen I gel overlay which sandwich an IEC monolayer in between. The distinct collagen cues synergistically regulate IEC attachment, proliferation, and Lgr5 expression through maximizing the engagement of distinct cell surface adhesion receptors (i.e. integrin α2β1, integrin β4) and cell polarity. Further, we apply our BLT Sandwich system to identify that the addition of a bone morphogenetic protein (BMP) receptor inhibitor (LDN-193189) improves the expansion of Lgr5-GFP + cells from mouse small intestinal crypts by nearly 2.5-fold. Notably, the BLT Sandwich culture is capable of expanding human-derived IECs with higher LGR5 mRNA levels than conventional Matrigel culture, providing superior expansion of human LGR5 + ISCs. Considering the key roles Lgr5 + ISCs play in intestinal epithelial homeostasis and regeneration, we envision that our BLT Sandwich culture system holds great potential for understanding and manipulating ISC biology in vitro (e.g. for modeling ISC-mediated gut diseases) or for expanding a large number of ISCs for clinical utility (e.g. for stem cell therapy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Human organoids: a model system for intestinal diseases

    NARCIS (Netherlands)

    Wiegerinck, C.L.

    2015-01-01

    You are what you eat. A common saying that indicates that your physical or mental state can be influenced by your choice of food. Unfortunately, not all people have the luxury to choose what to eat; this can be related to place of birth, social, economic state, or the physical inability of the

  3. Computational Studies of Drug Release, Transport and Absorption in the Human Intestines

    Science.gov (United States)

    Behafarid, Farhad; Brasseur, J. G.; Vijayakumar, G.; Jayaraman, B.; Wang, Y.

    2016-11-01

    Following disintegration of a drug tablet, a cloud of particles 10-200 μm in diameter enters the small intestine where drug molecules are absorbed into the blood. Drug release rate depends on particle size, solubility and hydrodynamic enhancements driven by gut motility. To quantify the interrelationships among dissolution, transport and wall permeability, we apply lattice Boltzmann method to simulate the drug concentration field in the 3D gut released from polydisperse distributions of drug particles in the "fasting" vs. "fed" motility states. Generalized boundary conditions allow for both solubility and gut wall permeability to be systematically varied. We apply a local 'quasi-steady state' approximation for drug dissolution using a mathematical model generalized for hydrodynamic enhancements and heterogeneity in drug release rate. We observe fundamental differences resulting from the interplay among release, transport and absorption in relationship to particle size distribution, luminal volume, motility, solubility and permeability. For example, whereas smaller volume encourages higher bulk concentrations and reduced release rate, it also encourages higher absorption rate, making it difficult to generalize predictions. Supported by FDA.

  4. [Morphologic study of the intestine in an experimental model of amnioinfusion in fetal rabbits with gastroschisis].

    Science.gov (United States)

    Muñoz, M E; Albert, A; Juliá, V; Sancho, M A; Grande, C; Martínez, A; Morales, L

    2002-10-01

    An experimental model of serial amnioinfusion has been developed in fetal rabbits with gastroschisis, using an intraamniotic catheter connected to a subcutaneous port. Fetuses of 4 groups were compared 7 days after surgery: group A: gastroschisis and daily amnioinfusion through an implanted catheter; group C: gastroschisis and blind amniotic catheter; group G: gastroschisis without catheter; group O: nonoperated fetuses. Survival rate, fetal body weight, lung weight, intestinal weight and length were determined. Computer aided morphometric analysis was performed, in which intestinal diameter, thickness and villi length were measured. Amniotic fluid samples were recovered along the experimental period. Intestinal length was significantly shorter and had a significantly thicker wall than nonoperated fetuses; we found no other morphometric differences between gastroschisis treated with amnioinfusion (group A) and the other gastroschisis groups (C and G). Amnioinfusion did not affect fetal survival rate; the amniotic catheter alone did not cause pulmonary hypoplasia due to significant amniotic leak. The physiological decrease in amniotic volume towards the end of gestation has not been modified by this regime of amnioinfusion.

  5. The effect of ozone and naringin on intestinal ischemia/reperfusion injury in an experimental model.

    Science.gov (United States)

    Isik, Arda; Peker, Kemal; Gursul, Cebrail; Sayar, Ilyas; Firat, Deniz; Yilmaz, Ismayil; Demiryilmaz, Ismail

    2015-09-01

    The aim of the study was to evaulate the effect of ozone and naringin on the intestine after intestinal ischemia-reperfusion(II/R) injury. Thirty five rats divided into 5 groups of 7 animals: control, II/R, ozone, naringin and naringin + ozone. Only laparotomy and exploration of the superior mesenteric artery (SMA) were done in control group. In the experimental groups, SAM was occluded for 1 h and reperfused for 1 h. 15 min after ischemia, ozone (25 μg/ml, 0.5 mg/kg), naringin (80 mg/kg) and naringin + ozone(80 mg/kg + 25 μg/ml, 0.5 mg/kg) were infused intraperitoneally to each groups. Ileum tissues were harvested to determine intestinal mucosal injury and oxidative stress markers. For SMA occlusion, different than literature, silk suture binding was used. Oxidative stress markers were significantly low in experimental groups compared with II/R group (p < 0.05). Histopathologically, the injury score was significantly low at experimental groups compared with II/R group (p < 0.05). The lowest injury score was encountered at naringine + ozone group. Ozone alone or combined with naringin has a protective effect for mesenteric ischemia. Instead of using instruments such as clamps in the II/R rat model, silk binding may be used safely. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  6. Optical modeling toward optimizing monitoring of intestinal perfusion in trauma patients

    Science.gov (United States)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. N.; Coté, Gerard L.

    2013-02-01

    Trauma is the number one cause of death for people between the ages 1 and 44 years in the United States. In addition, according to the Centers of Disease Control and Prevention, injury results in over 31 million emergency department visits annually. Minimizing the resuscitation period in major abdominal injuries increases survival rates by correcting impaired tissue oxygen delivery. Optimization of resuscitation requires a monitoring method to determine sufficient tissue oxygenation. Oxygenation can be assessed by determining the adequacy of tissue perfusion. In this work, we present the design of a wireless perfusion and oxygenation sensor based on photoplethysmography. Through optical modeling, the benefit of using the visible wavelengths 470, 525 and 590nm (around the 525nm hemoglobin isobestic point) for intestinal perfusion monitoring is compared to the typical near infrared (NIR) wavelengths (805nm isobestic point) used in such sensors. Specifically, NIR wavelengths penetrate through the thin intestinal wall ( 4mm) leading to high background signals. However, these visible wavelengths have two times shorter penetration depth that the NIR wavelengths. Monte-Carlo simulations show that the transmittance of the three selected wavelengths is lower by 5 orders of magnitude depending on the perfusion state. Due to the high absorbance of hemoglobin in the visible range, the perfusion signal carried by diffusely reflected light is also enhanced by an order of magnitude while oxygenation signal levels are maintained. In addition, short source-detector separations proved to be beneficial for limiting the probing depth to the thickness of the intestinal wall.

  7. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2017-08-01

    Full Text Available Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4–induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4–induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor–BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process.

  8. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response.

    Science.gov (United States)

    Jayakumar, Asha; Bothwell, Alfred L M

    2017-08-01

    Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4-induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs) cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4-induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor-BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis.

    Science.gov (United States)

    Scarminio, Viviane; Fruet, Andrea C; Witaicenis, Aline; Rall, Vera L M; Di Stasi, Luiz C

    2012-03-01

    Dietary products are among the therapeutic approaches used to modify intestinal microflora and to promote protective effects during the intestinal inflammatory process. Because the banana plant is rich in resistant starch, which is used by colonic microbiota for the anaerobic production of the short-chain fatty acids that serve as a major fuel source for colonocytes: first, green dwarf banana flour produces protective effects on the intestinal inflammation acting as a prebiotic and, second, combination of this dietary supplementation with prednisolone presents synergistic effects. For this, we used the trinitrobenzenesulphonic acid (TNBS) model of rat colitis. Our results revealed that the protective effect produced by a combination of 10% green dwarf banana flour with prednisolone was more pronounced than those promoted by a single administration of prednisolone or a diet containing 10% or 20% banana flour. This beneficial effect was associated with an improvement in the colonic oxidative status because the banana flour diet prevented the glutathione depletion and inhibited myeloperoxidase activity and lipid peroxidation. In addition, the intestinal anti-inflammatory activity was associated with an inhibition of alkaline phosphatase activity, a reduction in macroscopic and microscopic scores, and an extension of the lesions. In conclusion, the dietary use of the green dwarf banana flour constitutes an important dietary supplement and complementary medicine product to prevention and treatment of human inflammatory bowel disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria

    Directory of Open Access Journals (Sweden)

    Ma Miao

    2010-04-01

    Full Text Available Abstract Background The effects of enterolignans, e.g., enterodiol (END and particularly its oxidation product, enterolactone (ENL, on prevention of hormone-dependent diseases, such as osteoporosis, cardiovascular diseases, hyperlipemia, breast cancer, colon cancer, prostate cancer and menopausal syndrome, have attracted much attention. To date, the main way to obtain END and ENL is chemical synthesis, which is expensive and inevitably leads to environmental pollution. To explore a more economic and eco-friendly production method, we explored biotransformation of enterolignans from precursors contained in defatted flaxseeds by human intestinal bacteria. Results We cultured fecal specimens from healthy young adults in media containing defatted flaxseeds and detected END from the culture supernatant. Following selection through successive subcultures of the fecal microbiota with defatted flaxseeds as the only carbon source, we obtained a bacterial consortium, designated as END-49, which contained the smallest number of bacterial types still capable of metabolizing defatted flaxseeds to produce END. Based on analysis with pulsed field gel electrophoresis, END-49 was found to consist of five genomically distinct bacterial lineages, designated Group I-V, with Group I strains dominating the culture. None of the individual Group I-V strains produced END, demonstrating that the biotransformation of substrates in defatted flaxseeds into END is a joint work by different members of the END-49 bacterial consortium. Interestingly, Group I strains produced secoisolariciresinol, an important intermediate of END production; 16S rRNA analysis of one Group I strain established its close relatedness with Klebsiella. Genomic analysis is under way to identify all members in END-49 involved in the biotransformation and the actual pathway leading to END-production. Conclusion Biotransformation is a very economic, efficient and environmentally friendly way of mass

  11. Anatomical study on The Arm Greater Yang Small Intestine Meridian Muscle in Human

    Directory of Open Access Journals (Sweden)

    Kyoung-Sik, Park

    2004-06-01

    Full Text Available This study was carried to identify the component of Small Intestine Meridian Muscle in human, dividing the regional muscle group into outer, middle, and inner layer. the inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Small Intestine Meridian Muscle. We obtained the results as follows; 1. Small Intestine Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows ; 1 Muscle ; Abd. digiti minimi muscle(SI-2, 3, 4, pisometacarpal lig.(SI-4, ext. retinaculum. ext. carpi ulnaris m. tendon.(SI-5, 6, ulnar collateral lig.(SI-5, ext. digiti minimi m. tendon(SI-6, ext. carpi ulnaris(SI-7, triceps brachii(SI-9, teres major(SI-9, deltoid(SI-10, infraspinatus(SI-10, 11, trapezius(Sl-12, 13, 14, 15, supraspinatus(SI-12, 13, lesser rhomboid(SI-14, erector spinae(SI-14, 15, levator scapular(SI-15, sternocleidomastoid(SI-16, 17, splenius capitis(SI-16, semispinalis capitis(SI-16, digasuicus(SI-17, zygomaticus major(Il-18, masseter(SI-18, auriculoris anterior(SI-19 2 Nerve ; Dorsal branch of ulnar nerve(SI-1, 2, 3, 4, 5, 6, br. of mod. antebrachial cutaneous n.(SI-6, 7, br. of post. antebrachial cutaneous n.(SI-6,7, br. of radial n.(SI-7, ulnar n.(SI-8, br. of axillary n.(SI-9, radial n.(SI-9, subscapular n. br.(SI-9, cutaneous n. br. from C7, 8(SI-10, 14, suprascapular n.(SI-10, 11, 12, 13, intercostal n. br. from T2(SI-11, lat. supraclavicular n. br.(SI-12, intercostal n. br. from C8, T1(SI-12, accessory n. br.(SI-12, 13, 14, 15, 16, 17, intercostal n. br. from T1,2(SI-13, dorsal scapular n.(SI-14, 15, cutaneous n. br. from C6, C7(SI-15, transverse cervical n.(SI-16, lesser occipital n. & great auricular n. from

  12. Hepatic and intestinal glucuronidation of mono(2-ethylhexyl) phthalate, an active metabolite of di(2-ethylhexyl) phthalate, in humans, dogs, rats, and mice: an in vitro analysis using microsomal fractions.

    Science.gov (United States)

    Hanioka, Nobumitsu; Isobe, Takashi; Kinashi, Yu; Tanaka-Kagawa, Toshiko; Jinno, Hideto

    2016-07-01

    Mono(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di(2-ethylhexyl) phthalate (DEHP) and has endocrine-disrupting effects. MEHP is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the hepatic and intestinal glucuronidation of MEHP in humans, dogs, rats, and mice was examined in an in vitro system using microsomal fractions. The kinetics of MEHP glucuronidation by liver microsomes followed the Michaelis-Menten model for humans and dogs, and the biphasic model for rats and mice. The K m and V max values of human liver microsomes were 110 µM and 5.8 nmol/min/mg protein, respectively. The kinetics of intestinal microsomes followed the biphasic model for humans, dogs, and mice, and the Michaelis-Menten model for rats. The K m and V max values of human intestinal microsomes were 5.6 µM and 0.40 nmol/min/mg protein, respectively, for the high-affinity phase, and 430 µM and 0.70 nmol/min/mg protein, respectively, for the low-affinity phase. The relative levels of V max estimated by Eadie-Hofstee plots were dogs (2.0) > mice (1.4) > rats (1.0) ≈ humans (1.0) for liver microsomes, and mice (8.5) > dogs (4.1) > rats (3.1) > humans (1.0) for intestinal microsomes. The percentages of the V max values of intestinal microsomes to liver microsomes were mice (120 %) > rats (57 %) > dogs (39 %) > humans (19 %). These results suggest that the metabolic abilities of UGT enzymes expressed in the liver and intestine toward MEHP markedly differed among species, and imply that these species differences are strongly associated with the toxicity of DEHP.

  13. Suppressive effect of nobiletin and epicatechin gallate on fructose uptake in human intestinal epithelial Caco-2 cells.

    Science.gov (United States)

    Satsu, Hideo; Awara, Sohei; Unno, Tomonori; Shimizu, Makoto

    2018-04-01

    Inhibition of excessive fructose intake in the small intestine could alleviate fructose-induced diseases such as hypertension and non-alcoholic fatty liver disease. We examined the effect of phytochemicals on fructose uptake using human intestinal epithelial-like Caco-2 cells which express the fructose transporter, GLUT5. Among 35 phytochemicals tested, five, including nobiletin and epicatechin gallate (ECg), markedly inhibited fructose uptake. Nobiletin and ECg also inhibited the uptake of glucose but not of L-leucine or Gly-Sar, suggesting an inhibitory effect specific to monosaccharide transporters. Kinetic analysis further suggested that this reduction in fructose uptake was associated with a decrease in the apparent number of cell-surface GLUT5 molecules, and not with a change in the affinity of GLUT5 for fructose. Lastly, nobiletin and ECg suppressed the permeation of fructose across Caco-2 cell monolayers. These findings suggest that nobiletin and ECg are good candidates for preventing diseases caused by excessive fructose intake.

  14. Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.

    Science.gov (United States)

    Greig, Chasen J; Cowles, Robert A

    2017-07-01

    Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.

  15. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Thuneberg, Lars

    1991-01-01

    Anatomy, interstitial cells of Cajal, small intestine, gut motility, pacemaker cells, smooth muscle......Anatomy, interstitial cells of Cajal, small intestine, gut motility, pacemaker cells, smooth muscle...

  16. Epidermal growth factor inhibits glycyl sarcosine transport and hPepT1 expression in a human intestinal cell line

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Amstrup, Jan; Steffansen, Bente

    2001-01-01

    Intestinal oligopeptide transporter, growth factor, immunocytochemistry, laser scanning confocal microscopy......Intestinal oligopeptide transporter, growth factor, immunocytochemistry, laser scanning confocal microscopy...

  17. CYP1A1 induction and CYP3A4 inhibition by the fungicide imazalil in the human intestinal Caco-2 cells-comparison with other conazole pesticides.

    Science.gov (United States)

    Sergent, Thérèse; Dupont, Isabelle; Jassogne, Coralie; Ribonnet, Laurence; van der Heiden, Edwige; Scippo, Marie-Louise; Muller, Marc; McAlister, Dan; Pussemier, Luc; Larondelle, Yvan; Schneider, Yves-Jacques

    2009-02-10

    Imazalil (IMA) is a widely used imidazole-antifungal pesticide and, therefore, a food contaminant. This compound is also used as a drug (enilconazole). As intestine is the first site of exposure to ingested drugs and pollutants, we have investigated the effects of IMA, at realistic intestinal concentrations, on xenobiotic-metabolizing enzymes and efflux pumps by using Caco-2 cells, as a validated in vitro model of the human intestinal absorptive epithelium. For comparison, other conazole fungicides, i.e. ketoconazole, propiconazole and tebuconazole, were also studied. IMA induced cytochrome P450 (CYP) 1A1 activity to the same extent as benzo(a)pyrene (B(a)P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in a dose- and time-dependent manner. Cell-free aryl hydrocarbon receptor (AhR) binding assay and reporter gene assay suggested that IMA is not an AhR-ligand, implying that IMA-mediated induction should involve an AhR-independent pathway. Moreover, IMA strongly inhibited the CYP3A4 activity in 1,25-vitamin D(3)-induced Caco-2 cells. The other fungicides had weak or nil effects on CYP activities. Study of the apical efflux pump activities revealed that ketoconazole inhibited both P-glycoprotein (Pgp) and multidrug resistance-associated protein 2 (MRP-2) or breast cancer resistance protein (BCRP), whereas IMA and other fungicides did not. Our results imply that coingestion of IMA-contaminated food and CYP3A4- or CYP1A1-metabolizable drugs or chemicals could lead to drug bioavailability modulation or toxicological interactions, with possible adverse effects for human health.

  18. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Trier, Sofie; Rahbek, Ulrik L

    2018-01-01

    with platinum wires, enabling parallel real-time monitoring of barrier integrity for the eight chambers. Additionally, the translucent porous Teflon membrane enabled optical monitoring of cell monolayers. The device was developed and tested with the Caco-2 intestinal model, and compared to the conventional...... through permeability studies of mannitol, dextran and insulin, alone or in combination with the absorption enhancer tetradecylmaltoside (TDM). The thiol-ene-based microchip material and electrodes were highly compatible with cell growth. In fact, Caco-2 cells cultured in the device displayed...

  19. Bioengineered 2'-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines.

    Science.gov (United States)

    Weichert, Stefan; Jennewein, Stefan; Hüfner, Eric; Weiss, Christel; Borkowski, Julia; Putze, Johannes; Schroten, Horst

    2013-10-01

    Human milk oligosaccharides help to prevent infectious diseases in breastfed infants. Larger scale testing, particularly in animal models and human clinical studies, is still limited due to shortened availability of more complex oligosaccharides. The purpose of this study was to evaluate 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL) synthesized by whole-cell biocatalysis for their biological activity in vitro. Therefore, we have tested these oligosaccharides for their inhibitory potential of pathogen adhesion in two different human epithelial cell lines. 2'-FL could inhibit adhesion of Campylobacter jejuni, enteropathogenic Escherichia coli, Salmonella enterica serovar fyris, and Pseudomonas aeruginosa to the intestinal human cell line Caco-2 (reduction of 26%, 18%, 12%, and 17%, respectively), as could be shown for 3-FL (enteropathogenic E coli 29%, P aeruginosa 26%). Furthermore, adherence of P aeruginosa to the human respiratory epithelial cell line A549 was significantly inhibited by 2'-FL and 3-FL (reduction of 24% and 23%, respectively). These results confirm the biological and functional activity of biotechnologically synthesized human milk oligosaccharides. Mass-tailored human milk oligosaccharides could be used in the future to supplement infant formula ingredients or as preventatives to reduce the impact of infectious diseases. © 2013 Elsevier Inc. All rights reserved.

  20. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  1. Non-biting cyclorrhaphan flies (Diptera) as carriers of intestinal human parasites in slum areas of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Getachew, Sisay; Gebre-Michael, Teshome; Erko, Berhanu; Balkew, Meshesha; Medhin, Girmay

    2007-09-01

    A study was conducted to determine the role of non-biting cyclorrhaphan flies as carriers of intestinal parasites in slum areas of Addis Ababa from January 2004 to June 2004. A total of 9550 flies, comprising of at least seven species were collected from four selected sites and examined for human intestinal parasites using the formol-ether concentration method. The dominant fly species was Chrysomya rufifacies (34.9%) followed by Musca domestica (31%), Musca sorbens (20.5.%), Lucina cuprina (6.8%), Sarcophaga sp. (2.8%), Calliphora vicina (2.2%) and Wohlfahrtia sp. (1.8%). Six intestinal helminths (Ascaris lumbricoides, Trichuris trichiura, hookworms, Hymenolepis nana, Taenia spp. and Strongyloides stercoralis) and at least four protozoan parasites (Entamoeba histolytica/dispar, Entamoeba coli, Giardia lamblia and Cryptosporidium sp.) were isolated from both the external and gut contents of the flies. A. lumbricoides and T. trichiura among the helminths and E. histolytica/dispar and E. coli among the protozoans were the dominant parasites detected both on the external and in the gut contents of the flies, but occurring more in the latter. Among the flies, C. rufifacies and M. sorbens were the highest carriers of the helminth and protozoan parasites, respectively. The public health significance of these findings is highlighted.

  2. SURVEY OF HOUSE RAT INTESTINAL PARASITES FROM SURABAYA DISTRICT, EAST JAVA, INDONESIA THAT CAN CAUSE OPPORTUNISTIC INFECTIONS IN HUMANS.

    Science.gov (United States)

    Prasetyo, R H

    2016-03-01

    The purpose of this study was to investigate the prevalence of house rat zoonotic intestinal parasites from Surabaya District, East Java, Indonesia that have the potential to cause opportunistic infection in humans. House rat fecal samples were collected from an area of Surabaya District with a dense rat population during May 2015. Intestinal parasites were detected microscopically using direct smear of feces stained with Lugol's iodine and modified Ziehl-Neelsen stains. The fecal samples were also cultured for Strongyloides stercoralis. Ninety-eight house rat fecal samples were examined. The potential opportunistic infection parasite densities found in those samples were Strongyloides stercoralis in 53%, Hymenolepis nana in 42%, Cryptosporidium spp in 33%, and Blastocystis spp in 6%. This is the first report of this kind in Surabaya District. Measures need to be taken to control the house rat population in the study area to reduce the risk of the public health problem. Keywords: zoonotic intestinal parasites, opportunistic infection, house rat, densely populated area, Indonesia

  3. CfaE tip mutations in enterotoxigenic Escherichia coli CFA/I fimbriae define critical human intestinal binding sites.

    Science.gov (United States)

    Baker, K K; Levine, M M; Morison, J; Phillips, A; Barry, E M

    2009-05-01

    Enterotoxigenic Escherichia coli (ETEC) use colonization factors to attach to the human intestinal mucosa, followed by enterotoxin expression that induces net secretion and diarrhoeal illness. ETEC strain H10407 expresses CFA/I fimbriae, which are composed of multiple CfaB structural subunits and a CfaE tip subunit. Currently, the contribution of these individual fimbrial subunits in intestinal binding remains incompletely defined. To identify the role of CfaE in attachment in the native ETEC background, an R181A single-amino-acid substitution was introduced by recombination into the H10407 genome. The substitution of R181A eliminated haemagglutination and binding of intestinal mucosa biopsies in in vitro organ culture assays, without loss of CFA/I fimbriae expression. Wild-type in trans plasmid-expressed cfaE restored the binding phenotype. In contrast, in trans expression of cfaE containing amino acid 181 substitutions with similar amino acids, lysine, methionine and glutamine did not restore the binding phenotype, indicating that the loss of the binding phenotype was due to localized areas of epitope disruption. R181 appears to have an irreplaceable role in the formation of a receptor-binding feature on CFA/I fimbriae. The results specifically indicate that the CfaE tip protein is a required binding factor in CFA/I-mediated ETEC colonization, making it a potentially important vaccine antigen. © 2009 Blackwell Publishing Ltd.

  4. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Pawin Pongkorpsakol

    2017-06-01

    Full Text Available Intestinal Cl− secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl− secretion in human intestinal epithelial (T84 cells. FFA inhibited cAMP-dependent Cl− secretion in T84 cell monolayers with IC50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl− channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K+ channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca2+-dependent Cl− secretion with IC50 of ∼10 μM. FFA inhibited activities of Ca2+-activated Cl− channels and KCa3.1, a Ca2+-activated basolateral K+ channels, but had no effect on activities of Na+–K+–Cl− cotransporters and Na+–K+ ATPases. These results indicate that FFA inhibits both cAMP and Ca2+-dependent Cl− secretion by suppressing activities of both apical Cl− channels and basolateral K+ channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas.

  5. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Science.gov (United States)

    Stein, Richard R; Bucci, Vanni; Toussaint, Nora C; Buffie, Charlie G; Rätsch, Gunnar; Pamer, Eric G; Sander, Chris; Xavier, João B

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  6. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    Full Text Available The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  7. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21

    Directory of Open Access Journals (Sweden)

    Schneider Yves-Jacques

    2006-05-01

    Full Text Available Abstract Background The absorptive and goblet cells are the main cellular types encountered in the intestine epithelium. The cell lineage Caco-2 is a model commonly used to reproduce the features of the bowel epithelium. However, there is a strong debate regarding the value of Caco-2 cell culture to mimick in vivo situation. Indeed, some authors report in Caco-2 a low paracellular permeability and an ease of access of highly diffusible small molecules to the microvilli, due to an almost complete lack of mucus. The HT29-5M21 intestinal cell lineage is a mucin-secreting cellular population. A co-culture system carried out in a serum-free medium and comprising both Caco-2 and HT29-5M21 cells was developed. The systematic use of a co-culture system requires the characterization of the monolayer under a given experimental procedure. Results In this study, we investigated the activity and localization of the alkaline phosphatase and the expression of IAP and MUC5AC genes to determine a correlation between these markers and the cellular composition of a differentiated monolayer obtained from a mixture of Caco-2 and HT29-5M21 cells. We observed that the culture conditions used (serum-free medium did not change the phenotype of each cell type, and produced a reproducible model. The alkaline phosphatase expression characterizing Caco-2 cells was influenced by the presence of HT29-5M21 cells. Conclusion The culture formed by 75% Caco-2 and 25% HT29-5M21 produce a monolayer containing the two main cell types of human intestinal epithelium and characterized by a reduced permeability to macromolecules.

  8. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21)

    Science.gov (United States)

    Nollevaux, Géraldine; Devillé, Christelle; El Moualij, Benaïssa; Zorzi, Willy; Deloyer, Patricia; Schneider, Yves-Jacques; Peulen, Olivier; Dandrifosse, Guy

    2006-01-01

    Background The absorptive and goblet cells are the main cellular types encountered in the intestine epithelium. The cell lineage Caco-2 is a model commonly used to reproduce the features of the bowel epithelium. However, there is a strong debate regarding the value of Caco-2 cell culture to mimick in vivo situation. Indeed, some authors report in Caco-2 a low paracellular permeability and an ease of access of highly diffusible small molecules to the microvilli, due to an almost complete lack of mucus. The HT29-5M21 intestinal cell lineage is a mucin-secreting cellular population. A co-culture system carried out in a serum-free medium and comprising both Caco-2 and HT29-5M21 cells was developed. The systematic use of a co-culture system requires the characterization of the monolayer under a given experimental procedure. Results In this study, we investigated the activity and localization of the alkaline phosphatase and the expression of IAP and MUC5AC genes to determine a correlation between these markers and the cellular composition of a differentiated monolayer obtained from a mixture of Caco-2 and HT29-5M21 cells. We observed that the culture conditions used (serum-free medium) did not change the phenotype of each cell type, and produced a reproducible model. The alkaline phosphatase expression characterizing Caco-2 cells was influenced by the presence of HT29-5M21 cells. Conclusion The culture formed by 75% Caco-2 and 25% HT29-5M21 produce a monolayer containing the two main cell types of human intestinal epithelium and characterized by a reduced permeability to macromolecules. PMID:16670004

  9. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; van der Heide, S.; van den Wijngaard, R. M.; de Jonge, W. J.; Boeckxstaens, G. E.

    2008-01-01

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  10. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus

    NARCIS (Netherlands)

    The, F. O.; Bennink, R. J.; Ankum, W. M.; Buist, M. R.; Busch, O. R. C.; Gouma, D. J.; Van der Heide, S.; van den Wijngaard, R. M.; Boeckxstaens, G. E.; de Jonge, Wouter J.

    Background: Murine postoperative ileus results from intestinal inflammation triggered by manipulation-induced mast cell activation. As its extent depends on the degree of handling and subsequent inflammation, it is hypothesised that the faster recovery after minimal invasive surgery results from

  11. SURVIVAL OF MICROORGANISMS FROM MODERN PROBIOTICS IN MODEL CONDITIONS OF THE INTESTINE

    Directory of Open Access Journals (Sweden)

    Kabluchko TV

    2017-03-01

    Full Text Available Introduction. The staye of intestinal microflora affects the work of the whole organism. When composition of normal ibtestine microflora changes, its restoration is required. In our days a wide variety of probiotic drugs are available on the market which can be used to solve this problem. Most bacteria having probiotic properties represent the families Lactobacillus and Bifidobacterium, which have poor resistance to acidic content of the stomach and toxic effects of bile salts. Various studies have clearly shown that in a person with normal acidic and bile secretion, the lactobacilli and bifidobacteria are not detected after the passage through the duodenum, i.e., they perish before reaching the small intestines. In this study we compared the survival of different microorganisms which are contained in 9 probiotic drugs in a model of gastric and intestinal environments. Material and methods. In the laboratory of SI: “Mechnikov Institute Microbiology and Immunology, National Ukrainian Academy Medical Sciences" the in vitro experiments have been evaluated to test the ability of different probiotic bacteria which were contained in 9 probiotic drugs to survive the impact of the model environment of the stomach and duodenum. Bacillus coagulans persistence was evaluated under impact of simulated environment of the stomach and duodenum, it also was assessed by the quantity of CFU by incubation on culture medium. The following were studied: Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus bulgaricus, Bifidobacterium bifidum, Bifidobacterium longum , Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium animalis subsp. Lactis BB-12, Saccharomyces boulardii, Bacillus coagulans, Bacillus clausii, Enterococcus faecium. Microorganisms were incubated for 3 hours in a model environment of the stomach (pepsin 3 g / l, hydrochloric acid of 160 mmol / l, pH 2

  12. Modeling human color categorization

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Th.E.; Kisters, P.M.F.

    A unique color space segmentation method is introduced. It is founded on features of human cognition, where 11 color categories are used in processing color. In two experiments, human subjects were asked to categorize color stimuli into these 11 color categories, which resulted in markers for a

  13. Human migraine models

    DEFF Research Database (Denmark)

    Iversen, Helle Klingenberg

    2001-01-01

    , which is a human experience. A set-up for investigations of experimental headache and migraine in humans, has been evaluated and headache mechanisms explored by using nitroglycerin and other headache-inducing agents. Nitric oxide (NO) or other parts of the NO activated cascade seems to be responsible...

  14. VESGEN Mapping of Bioactive Protection against Intestinal Inflammation: Application to Human Spaceflight and ISS Experiments

    Science.gov (United States)

    Parsons-Wingerter, P. A.; Chen, X.; Kelly, C. P.; Reinecker, H. C.

    2011-01-01

    Challenges to successful space exploration and colonization include adverse physiological reactions to micro gravity and space radiation factors. Constant remodeling of the microvasculature is critical for tissue preservation, wound healing, and recovery after ischemia. Regulation of the vascular system in the intestine is particularly important to enable nutrient absorption while maintaining barrier function and mucosal defense against micro biota. Although tremendous progress has been made in understanding the molecular circuits regulating neovascularization, our knowledge of the adaptations of the vascular system to environmental challenges in the intestine remains incomplete. This is in part because of the lack of methods to observe and quantify the complex processes associated with vascular responses in vivo. Developed by GRC as a mature beta version, pre-release research software, VESsel GENeration Analysis (VESGEN) maps and quantifies the fractal-based complexity of vascular branching for novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and microvascular remodeling. Here we demonstrate that VESGEN can be used to characterize the dynamic vascular responses to acute intestinal inflammation and mucosal recovery from in vivo confocal microscopic 3D image series. We induced transient intestinal inflammation in mice by DSS treatment and investigated whether the ability of the pro biotic yeast Saccharomyces boulardii (Sb) to protect against intestinal inflammation was due to regulation of vascular remodeling. A primary characteristic of inflammation is excessive neovascularization (angiogenesis) resulting in fragile vessels prone to bleeding. Morphological parameters for triplicate specimens revealed that Sb treatment greatly reduced the inflammatory response of vascular networks by an average of 78%. This resulted from Sb inhibition of vascular endothelial growth factor receptor signaling, a major

  15. Transport of sennosides and sennidines from Cassia angustifolia and Cassia senna across Caco-2 monolayers--an in vitro model for intestinal absorption.

    Science.gov (United States)

    Waltenberger, B; Avula, B; Ganzera, M; Khan, I A; Stuppner, H; Khan, S I

    2008-05-01

    Laxative effects of Senna preparations are mainly mediated by rheinanthrone, a metabolite formed in the intestinal flora from dianthrones. Nevertheless, it was not clear whether dianthrones are bioavailable at all and contribute to the overall effects of this important medicinal plant. Using the Caco-2 human colonic cell line as an in vitro model of the human intestinal mucosal barrier, the bioavailability of dianthrones was studied in apical to basolateral (absorptive) and basolateral to apical (secretive) direction. Permeability coefficients (P(c)) and percent transport were calculated based on quantitations by HPLC. From the data obtained it was concluded that sennosides A and B, as well as their aglycones sennidine A and B are transported through the Caco-2 monolayers in a concentration-dependent manner and their transport was linear with time. The absorption in apical to basolateral direction was poor and P(c) values were comparable to mannitol. The transport was higher in the secretory direction, indicating a significant efflux (e.g. by efflux pumps) of the (poorly) absorbed compounds in the intestinal lumen again. Our findings support the general understanding that the laxative effects of Senna are explainable mainly by metabolites and not by the natively present dianthrones.

  16. Cox2 and β-Catenin/T-cell Factor Signaling Intestinalize Human Esophageal Keratinocytes When Cultured under Organotypic Conditions

    Directory of Open Access Journals (Sweden)

    Jianping Kong

    2011-09-01

    Full Text Available The incidence of esophageal adenocarcinoma (EAC is rising in the United States. An important risk factor for EAC is the presence of Barrett esophagus (BE. BE is the replacement of normal squamous esophageal epithelium with a specialized columnar epithelium in response to chronic acid and bile reflux. However, the emergence of BE from squamous keratinocytes has not yet been demonstrated. Our research has focused on this. Wnt and cyclooxygenase 2 (Cox2 are two pathways whose activation has been associated with BE and progression to EAC, but their role has not been tested experimentally. To explore their contribution, we engineered a human esophageal keratinocyte cell line to express either a dominant-active Wnt effector CatCLef or a Cox2 complementary DNA. In a two-dimensional culture environment, Cox2 expression increases cell proliferation and migration, but neither transgene induces known BE markers. In contrast, when these cells were placed into three-dimensional organotypic culture conditions, we observed more profound effects. CatCLef-expressing cells were more proliferative, developed a thicker epithelium, and upregulated Notch signaling and several BE markers including NHE2. Cox2 expression also increased cell proliferation and induced a thicker epithelium. More importantly, we observed cysts form within the epithelium, filled with intestinal mucins including Muc5B and Muc17. This suggests that Cox2 expression in a three-dimensional culture environment induces a lineage of mucin-secreting cells and supports an important causal role for Cox2 in BE pathogenesis. We conclude that in vitro modeling of BE pathogenesis can be improved by enhancing Wnt signaling and Cox2 activity and using three-dimensional organotypic culture conditions.

  17. Anti-inflammatory and antioxidant effects of infliximab in a rat model of intestinal ischemia/reperfusion injury.

    Science.gov (United States)

    Pergel, Ahmet; Kanter, Mehmet; Yucel, Ahmet Fikret; Aydin, Ibrahim; Erboga, Mustafa; Guzel, Ahmet

    2012-11-01

    The aim of this study was to investigate the possible protective effects of infliximab on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group comprised 10 animals. Sham group animals underwent laparotomy without I/R injury. I/R groups after undergoing laparotomy, 1 hour of superior mesenteric artery ligation occurred, which was followed by 1 hour of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered intravenously. All animals were killed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no biochemical and histopathological changes have been reported regarding intestinal I/R injury in rats due to infliximab treatment. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased reduced superoxide dismutase and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions, inflammatory cell infiltration, necrosis, hemorrhage, and villous congestion. Infliximab treatment significantly attenuated the severity of intestinal I/R injury, inhibiting I/R-induced apoptosis, and cell proliferation. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects on the experimental intestinal I/R model of rats.

  18. Orazipone, a locally acting immunomodulator, ameliorates intestinal radiation injury: A preclinical study in a novel rat model

    International Nuclear Information System (INIS)

    Boerma, Marjan; Wang, Junru; Richter, Konrad K.; Hauer-Jensen, Martin

    2006-01-01

    Purpose: Intestinal radiation injury (radiation enteropathy) is relevant to cancer treatment, as well as to radiation accidents and radiation terrorism scenarios. This study assessed the protective efficacy of orazipone, a locally-acting small molecule immunomodulator. Methods and Materials: Male rats were orchiectomized, a 4-cm segment of small bowel was sutured to the inside of the scrotum, a proximal anteperistaltic ileostomy was created for intraluminal drug administration, and intestinal continuity was re-established by end-to-side anastomosis. After three weeks postoperative recovery, the intestine in the 'scrotal hernia' was exposed locally to single-dose or fractionated X-radiation. Orazipone (30 mg/kg/day) or vehicle was administered daily through the ileostomy, either during and after irradiation, or only after irradiation. Structural, cellular, and molecular aspects of intestinal radiation toxicity were assessed two weeks after irradiation. Results: Orazipone significantly ameliorated histologic injury and transforming growth factor-β immunoreactivity levels, both after single-dose and fractionated irradiation. Intestinal wall thickness was significantly reduced after single-dose and nonsignificantly after fractionated irradiation. Mucosal surface area and numbers of mast cells were partially restored by orazipone after single-dose irradiation. Conclusions: This work (1) demonstrates the utility of the ileostomy rat model for intraluminal administration of response modifiers in single-dose and fractionated radiation studies; (2) shows that mucosal immunomodulation during and/or after irradiation ameliorates intestinal toxicity; and (3) highlights important differences between single-dose and fractionated radiation regimens

  19. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans.

    Science.gov (United States)

    Bongers, Gerold; Muniz, Luciana R; Pacer, Michelle E; Iuga, Alina C; Thirunarayanan, Nanthakumar; Slinger, Erik; Smit, Martine J; Reddy, E Premkumar; Mayer, Lloyd; Furtado, Glaucia C; Harpaz, Noam; Lira, Sergio A

    2012-09-01

    Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas

  20. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation.

    Science.gov (United States)

    Franek, F; Jarlfors, A; Larsen, F; Holm, P; Steffansen, B

    2015-09-18

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq(®), an extended release formulation (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp(®)) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions of desvenlafaxine pharmacokinetics after IRF and ERF administration were compared with published clinical data from 14 trials. Desvenlafaxine in vivo dissolution from the IRF and ERF was predicted from in vitro solubility studies and biorelevant dissolution studies (using the USP3 dissolution apparatus), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol-water partition coefficients (Do:w) were determined experimentally. Due to predicted rapid dissolution after IRF administration, desvenlafaxine was predicted to be available for permeation in the duodenum. Desvenlafaxine Do:w and Papp increased approximately 13-fold when increasing apical pH from 5.5 to 7.4. Desvenlafaxine Peff thus increased with pH down the small intestine. Consequently, desvenlafaxine absorption from an IRF appears rate-limited by low Peff in the upper small intestine, which "delays" the predicted

  1. Transcriptional regulation of the human Na+/H+ exchanger NHE3 by serotonin in intestinal epithelial cells

    International Nuclear Information System (INIS)

    Amin, Md Ruhul; Ghannad, Leda; Othman, Ahmad; Gill, Ravinder K.; Dudeja, Pradeep K.; Ramaswamy, Krishnamurthy; Malakooti, Jaleh

    2009-01-01

    Serotonin (5-HT) decreases NHE2 and NHE3 activities under acute conditions in human intestinal epithelial cells. Here, we have investigated the effects of 5-HT on expression of the human NHE3 gene and the mechanisms underlying its transcriptional regulation in differentiated C2BBe1 cells. Treatment of the human intestinal epithelial cell line, C2BBe1, with 5-HT (20 μM) resulted in a significant decrease in NHE3 mRNA and protein expression. In transient transfection studies, 5-HT repressed the NHE3 promoter activity by ∼55%. The repression of the NHE3 promoter activity in response to 5-HT was accompanied by reduced DNA-binding activity of transcription factors Sp1 and Sp3 to the NHE3 promoter without alteration in their nuclear levels. Pharmacological inhibitors of protein kinase C reversed the inhibitory effect of 5-HT on the promoter activity. Our data indicate that 5-HT suppresses the transcriptional activity of the NHE3 promoter and this effect may be mediated by PKCα and modulation of DNA-binding affinities of Sp1 and Sp3.

  2. Integrated Environmental Modelling: Human decisions, human challenges

    Science.gov (United States)

    Glynn, Pierre D.

    2015-01-01

    Integrated Environmental Modelling (IEM) is an invaluable tool for understanding the complex, dynamic ecosystems that house our natural resources and control our environments. Human behaviour affects the ways in which the science of IEM is assembled and used for meaningful societal applications. In particular, human biases and heuristics reflect adaptation and experiential learning to issues with frequent, sharply distinguished, feedbacks. Unfortunately, human behaviour is not adapted to the more diffusely experienced problems that IEM typically seeks to address. Twelve biases are identified that affect IEM (and science in general). These biases are supported by personal observations and by the findings of behavioural scientists. A process for critical analysis is proposed that addresses some human challenges of IEM and solicits explicit description of (1) represented processes and information, (2) unrepresented processes and information, and (3) accounting for, and cognizance of, potential human biases. Several other suggestions are also made that generally complement maintaining attitudes of watchful humility, open-mindedness, honesty and transparent accountability. These suggestions include (1) creating a new area of study in the behavioural biogeosciences, (2) using structured processes for engaging the modelling and stakeholder communities in IEM, and (3) using ‘red teams’ to increase resilience of IEM constructs and use.

  3. Vasoactive intestinal polypeptide and peptide histidine methionine. Presence in human follicular fluid and effects on DNA synthesis and steroid secretion in cultured human granulosa/lutein cells

    DEFF Research Database (Denmark)

    Gräs, S; Ovesen, P; Andersen, A N

    1994-01-01

    Vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) originate from the same precursor molecule, prepro VIP. In the present study we examined the concentrations of VIP and PHM in human follicular fluid and their effects on cultured human granulosa/lutein cells. Follicular....../l, respectively. VIP at a concentration of 10 nmol/l caused a significant increase in [3H]thymidine incorporation, and at 1000 nmol/l a significant increase in oestradiol secretion was observed. VIP had no effect on progesterone secretion. PHM at the concentrations tested did not influence any of the activities...

  4. Identification of interstitial cells of Cajal. Significance for studies of human small intestine and colon

    DEFF Research Database (Denmark)

    Rumessen, J J

    1994-01-01

    Interstitial cells of Cajal (ICC) were described a century ago by Ramón y Cajal a.o. as primitive neurons in the intestines. In the period 1900-1960 a large number of light microscopical studies of ICC were published, in which ICC were identified by heir characteristic morphology. After 1960...... electron microscopical studies emphasized similarities between ICC and fibroblasts. In our early studies of ICC in the external musculature of mouse small intestine, we identified ICC by their characteristic morphology and topography, and we analyzed the relation between ICC, autonomic nerves and smooth...... muscle. These studies strongly suggested that ICC were fundamental regulators of external muscle function. These hypotheses have since been supported by independent morphological and electrophysiological evidence, strongly suggesting a pacemaker role of some ICC populations as well as other regulatory...

  5. Comparison of partial and complete arterial occlusion models for studying intestinal ischemia

    International Nuclear Information System (INIS)

    Parks, D.A.; Grogaard, B.; Granger, D.N.

    1982-01-01

    Mucosal albumin clearance was measured in jejunal segments of dogs under control conditions and following complete or partial arterial occlusion of varying durations (1, 2, 3, or 4 hours). The rate of albumin clearance was estimated from the luminal perfusion rate and the activity of protein bound 125 I in the perfusate and plasma. Partial and total arterial occlusions of 60 minutes to 4 hours' duration produced significant increases in mucosal albumin clearance. The magnitude of the rise in albumin clearance was directly related to the duration of ischemia in both total and partial arterial occlusion models. However, the magnitude of the increase in albumin clearance was significantly greater with total arterial occlusion for any given duration of ischemia. The albumin clearance results obtained in the present study compare favorably with previously reported morphologic changes in the intestinal mucosa produced by both total and partial occlusion of the superior mesenteric artery. The agreement between morphologic and physiologic measurements indicates that mucosal albumin clearance may be a useful tool for studying the pathophysiology of intestinal ischemia

  6. Treatment-time-dependence models of early and delayed radiation injury in rat small intestine

    International Nuclear Information System (INIS)

    Denham, James W.; Hauer-Jensen, Martin; Kron, Tomas; Langberg, Carl W.

    2000-01-01

    Background: The present study modeled data from a large series of experiments originally designed to investigate the influence of time, dose, and fractionation on early and late pathologic endpoints in rat small intestine after localized irradiation. The objective was to obtain satisfactory descriptions of the regenerative response to injury together with the possible relationships between early and late endpoints. Methods: Two- and 26-week pathologic radiation injury data in groups of Sprague-Dawley rats irradiated with 27 different fractionation schedules were modeled using the incomplete repair (IR) version of the linear-quadratic model with or without various time correction models. The following time correction models were tested: (1) No time correction; (2) A simple exponential (SE) regenerative response beginning at an arbitrary time after starting treatment; and (3) A bi-exponential response with its commencement linked to accumulated cellular depletion and fraction size (the 'intelligent response model' [INTR]). Goodness of fit of the various models was assessed by correlating the predicted biological effective dose for each dose group with the observed radiation injury score. Results: (1) The incomplete repair model without time correction did not provide a satisfactory description of either the 2- or 26-week data. (2) The models using SE time correction performed better, providing modest descriptions of the data. (3) The INTR model provided reasonable descriptions of both the 2- and 26-week data, confirming a treatment time dependence of both early and late pathological endpoints. (4) The most satisfactory descriptions of the data by the INTR model were obtained when the regenerative response was assumed to cease 2 weeks after irradiation rather than at the end of irradiation. A fraction-size-dependent delay of the regenerative response was also suggested in the best fitting models. (5) Late endpoints were associated with low-fractionation sensitivity

  7. Relationship between postprandial motor activity in the human small intestine and the gastrointestinal transit of food

    Energy Technology Data Exchange (ETDEWEB)

    Read, N.W.; Al-Janabi, M.N.; Edwards, C.A.; Barber, D.C.

    1984-04-01

    Profiles for gastric emptying and colonic filling were determined in 20 normal volunteers by means of a gamma camera and dedicated minicomputer after ingestion of a radiolabeled solid meal. These were compared with intraluminal pressure activity, recorded simultaneously from three sites (each separated by 50 cm) in the small intestine by infusion manometry. Recordings were continued for at least 8 h or until all the radioactivity appeared in the colon. Colonic filling was approximately linear, occurring at an average rate of 16% of the meal residues per hour. There were significant inverse correlations (p less than 0.01) between the pressure activity in the proximal jejunum during the first 3 h after ingestion and the times taken for 50% and 80% of the meal residues to enter the colon, and direct correlations between total small intestinal pressure activity and the half-time for gastric emptying. Phase III of the interdigestive migrating motor complex appeared between 3 and 9 h after ingestion (when between 15% and 80% of the meal remained in the small intestine), but did not necessarily migrate to the next recording site until much later. The time of appearance of phase III in the proximal jejunum was directly correlated with the half-time for gastric emptying (p less than 0.05) and with the intraluminal pressure activity recorded at that site during the first 3 h after food ingestion (p less than 0.01). The time at which 80% of the meal residues had entered the colon was significantly shorter in 6 subjects, in whom a postprandial activity front appeared to migrate throughout the small bowel, compared with 13 subjects, in whom this did not occur (5.0 +/- 0.5 h vs. 7.0 +/- 0.4 h, p less than 0.01). These studies have shown that gastrointestinal transit of a solid meal is related to both fed and fasted intraluminal pressure activity in the small intestine.

  8. Changes of E-cadherin and á-catenin in human and mouse intestinal tumours

    Czech Academy of Sciences Publication Activity Database

    Šloncová, Eva; Frič, P.; Kučerová, Dana; Lojda, Z.; Tuháčková, Zdena; Sovová, Vlasta

    2001-01-01

    Roč. 33, č. 1 (2001), s. 13-17 ISSN 0018-2214 R&D Projects: GA ČR GV312/96/K205; GA ČR GA301/00/0269; GA MZd IZ4217 Institutional research plan: CEZ:AV0Z5052915 Keywords : E-cadherin * beta-catenin * intestinal tumours Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.169, year: 2001

  9. A model to study intestinal and hepatic metabolism of propranolol in the dog.

    Science.gov (United States)

    Mills, P C; Siebert, G A; Roberts, M S

    2004-02-01

    A model to investigate hepatic drug uptake and metabolism in the dog was developed for this study. Catheters were placed in the portal and hepatic veins during exploratory laparotomy to collect pre- and posthepatic blood samples at defined intervals. Drug concentrations in the portal vein were taken to reflect intestinal uptake and metabolism of an p.o. administered drug (propranolol), while differences in drug and metabolite concentrations between portal and hepatic veins reflected hepatic uptake and metabolism. A significant difference in propranolol concentration between hepatic and portal veins confirmed a high hepatic extraction of this therapeutic agent in the dog. This technically uncomplicated model may be used experimentally or clinically to determine hepatic function and metabolism of drugs that may be administered during anaesthesia and surgery.

  10. Prevalence and Risk Factors of Human Intestinal Parasites in Roudehen, Tehran Province, Iran.

    Science.gov (United States)

    Hemmati, Nasrin; Razmjou, Elham; Hashemi-Hafshejani, Saeideh; Motevalian, Abbas; Akhlaghi, Lameh; Meamar, Ahmad Reza

    2017-01-01

    Intestinal parasitic infections are among the most common infections and health problems worldwide. Due to the lack of epidemiologic information of such infections, the prevalence of, and the risk factors for, enteric parasites were investigated in residents of Roudehen, Tehran Province, Iran. In this cross-sectional study, 561 triple fecal samples were collected through a two-stage cluster-sampling protocol from Jun to Dec 2014. The samples were examined by formalin-ether concentration, culture, and with molecular methods. The prevalence of enteric parasites was 32.7% (95% CI 27.3-38). Blastocystis sp. was the most common intestinal protozoan (28.4%; 95% CI 23.7-33.0). The formalin-ether concentration and culture methods detected Blastocystis sp., Entamoeba coli , Giardia intestinalis , Dientamoeba fragilis , Iodamoeba butschlii , Entamoeba complex cysts or trophozoite , Chilomastix mesnilii , and Enterobius vermicularis . Single-round PCR assay for Entamoeba complex were identified Entamoeba dispar and E. moshkovskii . E. histolytica was not observed in any specimen. Multivariate analysis showed a significant association of parasites with water source and close animal contact. There was no correlation between infections and gender, age, occupation, education, or travel history. Protozoan infections were more common than helminth infections. This study revealed a high prevalence of enteric protozoan parasite infection among citizens of Rodehen. As most of the species detected are transmitted through a water-resistant cyst, public and individual education on personal hygiene should be considered to reduce transmission of intestinal parasites in the population.

  11. Polarity of fatty acid uptake and metabolism in a human intestinal cell line (CACO-2)

    International Nuclear Information System (INIS)

    Trotter, P.J.; Storch, J.

    1990-01-01

    Free fatty acids (ffa) can enter the intestinal cell via the apical (AP) or basolateral (BL) membrane. The authors are using the Caco-2 intestinal cell line to examine the polarity of ffa uptake and metabolism in the enterocyte. Cells are grown on permeable polycarbonate Transwell filters in order to obtain access to both AP and BL compartments. Differentiated Caco-2 cells form tight polarized monolayers which express small intestine-specific enzymes and are impermeable to the fluid phase marker Lucifer Yellow. Submicellar concentrations of 3 H-palmitic acid (2uM) were added to AP or BL sides of Caco-2 monolayers at 37 degrees C and cells were incubated for various times between 2 and 120 minutes. Total AP and BL uptake is similar; however, when relative membrane surface areas are accounted for, AP uptake is about 2-fold higher. The metabolism of AP and BL ffa is not significantly different: triacylglycerol and phosphatidylcholine account for most of the metabolites (32±4 and 24±2% respectively at 5 minutes). Little ffa oxidation is observed. Preincubation with albumin-bound 2-monoolein (100uM) and palmitate (50uM) increases the level of TG metabolites. The results suggest that in this cell line the uptake of AP ffa may be greater than BL ffa, but that AP (dietary) ffa and BL (plasma) ffa are metabolized similarly

  12. Study on human intestinal bacterium Blautia sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin.

    Science.gov (United States)

    Liu, Ming-Yue; Li, Meng; Wang, Xiu-Ling; Liu, Peng; Hao, Qing-Hong; Yu, Xiu-Mei

    2013-12-11

    Arctium lappa L. (A. lappa) is a popularly used vegetable as well as herbal medicine. Human intestinal microflora was reported to convert arctiin, the lignan compound with highest content in the dried fruits of Arctium lappa, to a series of metabolites. However, the specific bacterium responsible for the formation of 3'-desmethylarctigenin (3'-DMAG), the most predominant metabolite of arctiin by rat or human intestinal microflora, has not been isolated yet. In the present study, we isolated one single bacterium, which we named Blautia sp. AUH-JLD56, capable of solely biotransforming arctiin or arctigenin to (-)-3'-DMAG. The structure of the metabolite 3'-DMAG was elucidated by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance spectroscopy. The biotransforming kinetics and maximum biotransforming capacity of strain AUH-JLD56 was investigated. In addition, the metabolite 3'-DMAG showed significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than that of the substrate arctigenin at the concentrations tested.

  13. Occurrence of FSH, inhibin and other hypothalamic-pituitary-intestinal hormones in normal fertility, subfertility, and tumors of human testes.

    Science.gov (United States)

    Mehta, M K; Garde, S V; Sheth, A R

    1995-01-01

    To compare the distribution of peptide hormones in presumably normal human testicular tissues and specimens exhibiting any of five pathologies. Biopsies from patients having testicular malfunctions were prepared as sections and specifically immunohistochemically stained for inhibin, FSH, serotonin, AUP, and oxytocin. Immunocytochemical studies revealed the presence of various hypophysial-pituitary-intestinal hormones, viz., FSH, inhibin, arginine vasopressin (AVP), calcitonin, serotonin, oxytocin, adrenocorticotropin (ACTH), gastrin, secretin, and somatostatin in human testicular biopsies exhibiting normal spermatogenesis, Sertoli-cell-only syndrome, spermatogenic arrest, Leydig cell hyperplasia, Leydig cell tumor, and seminoma. Intensity of immunostaining for all peptides except FSH was stronger in cases of subfertile as compared to normal testis. Intensity of immunostaining with inhibin was maximum in Leydig cell tumor. These regulatory peptides may be involved in the pathophysiology of the testes.

  14. Ascaris Suum Infection Downregulates Inflammatory Pathways in the Pig Intestine In Vivo and in Human Dendritic Cells In Vitro

    DEFF Research Database (Denmark)

    Midttun, Helene L. E.; Acevedo, Nathalie; Skallerup, Per

    2018-01-01

    similar transcriptional pathways in human dendritic cells (DCs) in vitro. DCs exposed to ABF secreted minimal amounts of cytokines and had impaired production of cyclooxygengase-2, altered glucose metabolism, and reduced capacity to induce interferon-gamma production in T cells. Our in vivo and in vitro......Ascaris suum is a helminth parasite of pigs closely related to its human counterpart, A. lumbricoides, which infects almost 1 billion people. Ascaris is thought to modulate host immune and inflammatory responses, which may drive immune hyporesponsiveness during chronic infections. Using...... transcriptomic analysis, we show here that pigs with a chronic A. suum infection have a substantial suppression of inflammatory pathways in the intestinal mucosa, with a broad downregulation of genes encoding cytokines and antigen-processing and costimulatory molecules. A. suum body fluid (ABF) suppressed...

  15. Antibiotic selection of Escherichia coli sequence type 131 in a mouse intestinal colonization model

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius; Løbner-Olesen, Anders; Frimodt-Møller, Niels

    2014-01-01

    The ability of different antibiotics to select for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli remains a topic of discussion. In a mouse intestinal colonization model, we evaluated the selective abilities of nine common antimicrobials (cefotaxime, cefuroxime, dicloxacillin...... day, antibiotic treatment was initiated and given subcutaneously once a day for three consecutive days. CFU of E. coli ST131, Bacteroides, and Gram-positive aerobic bacteria in fecal samples were studied, with intervals, until day 8. Bacteroides was used as an indicator organism for impact on the Gram......, clindamycin, penicillin, ampicillin, meropenem, ciprofloxacin, and amdinocillin) against a CTX-M-15-producing E. coli sequence type 131 (ST131) isolate with a fluoroquinolone resistance phenotype. Mice (8 per group) were orogastrically administered 0.25 ml saline with 10(8) CFU/ml E. coli ST131. On that same...

  16. Probiotic Bifidobacterium species stimulate human SLC26A3 gene function and expression in intestinal epithelial cells

    Science.gov (United States)

    Kumar, Anoop; Hecht, Cameron; Priyamvada, Shubha; Anbazhagan, Arivarasu N.; Alakkam, Anas; Borthakur, Alip; Alrefai, Waddah A.; Gill, Ravinder K.

    2014-01-01

    SLC26A3, or downregulated in adenoma (DRA), plays a major role in mediating Cl− absorption in the mammalian intestine. Disturbances in DRA function and expression have been implicated in intestinal disorders such as congenital Cl− diarrhea and gut inflammation. We previously showed that an increase in DRA function and expression by Lactobacillus acidophilus and its culture supernatant (CS) might underlie antidiarrheal effects of this probiotic strain. However, the effects of Bifidobacterium species, important inhabitants of the human colon, on intestinal Cl−/HCO3− exchange activity are not known. Our current results demonstrate that CS derived from Bifidobacterium breve, Bifidobacterium infantis, and Bifidobacterium bifidum increased anion exchange activity in Caco-2 cells (∼1.8- to 2.4-fold). Consistent with the increase in DRA function, CS also increased the protein, as well as the mRNA, level of DRA (but not putative anion transporter 1). CS of all three Bifidobacterium sp. increased DRA promoter activity (−1,183/+114 bp) in Caco-2 cells (1.5- to 1.8-fold). Furthermore, the increase in DRA mRNA expression by CS of B. breve and B. infantis was blocked in the presence of the transcription inhibitor actinomycin D (5 μM) and the ERK1/2 MAPK pathway inhibitor U0126 (10 μM). Administration of live B. breve, B. infantis, and B. bifidum by oral gavage to mice for 24 h increased DRA mRNA and protein levels in the colon. These data demonstrate an upregulation of DRA via activation of the ERK1/2 pathway that may underlie potential antidiarrheal effects of Bifidobacterium sp. PMID:25143346

  17. Prevalence and Risk Factors of Human Intestinal Parasites in Roudehen, Tehran Province, Iran

    Directory of Open Access Journals (Sweden)

    Nasrin HEMMATI

    2017-09-01

    Full Text Available Background: Intestinal parasitic infections are among the most common infections and health problems worldwide. Due to the lack of epidemiologic information of such infections, the prevalence of, and the risk factors for, enteric parasites were investigated in residents of Roudehen, Tehran Province, Iran.Methods: In this cross-sectional study, 561 triple fecal samples were collected through a two-stage cluster-sampling protocol from Jun to Dec 2014. The samples were examined by formalin-ether concentration, culture, and with molecular methods.Results: The prevalence of enteric parasites was 32.7% (95% CI 27.3–38. Blastocystis sp. was the most common intestinal protozoan (28.4%; 95% CI 23.7–33.0. The formalin-ether concentration and culture methods detected Blastocystis sp., Entamoeba coli, Giardia intestinalis, Dientamoeba fragilis, Iodamoeba butschlii, Entamoeba complex cysts or trophozoite, Chilomastix mesnilii, and Enterobius vermicularis. Single-round PCR assay for Entamoeba complex were identified Entamoeba dispar and E. moshkovskii. E. histolytica was not observed in any specimen. Multivariate analysis showed a significant association of parasites with water source and close animal contact. There was no correlation between infections and gender, age, occupation, education, or travel history. Protozoan infections were more common than helminth infections.Conclusion: This study revealed a high prevalence of enteric protozoan parasite infection among citizens of Rodehen. As most of the species detected are transmitted through a water-resistant cyst, public and individual education on personal hygiene should be considered to reduce transmission of intestinal parasites in the population. 

  18. Maternal administration of cannabidiol promotes an anti-inflammatory effect on the intestinal wall in a gastroschisis rat model

    Directory of Open Access Journals (Sweden)

    G.H. Callejas

    2018-03-01

    Full Text Available Gastroschisis (GS is an abdominal wall defect that results in histological and morphological changes leading to intestinal motility perturbation and impaired absorption of nutrients. Due to its anti-inflammatory, antioxidant, and neuroprotective effects, cannabidiol (CBD has been used as a therapeutic agent in many diseases. Our aim was to test the effect of maternal CBD in the intestine of an experimental model of GS. Pregnant rats were treated over 3 days with CBD (30 mg/kg after the surgical induction of GS (day 18.5 of gestation and compared to controls. Fetuses were divided into 4 groups: 1 control (C; 2 C+CBD (CCBD; 3 gastroschisis (G, and 4 G+CBD (GCBD. On day 21.5 of gestation, the fetuses were harvested and evaluated for: a body weight (BW, intestinal weight (IW, and IW/BW ratio; b histometric analysis of the intestinal wall; c immunohistochemically analysis of inflammation (iNOS and nitrite/nitrate level. BW: GCBD was lower than CCBD (P<0.005, IW and IW/BW ratio: GCBD was smaller than G (P<0.005, GCBD presented lower thickness in all parameters compared to G (P<0.005, iNOS and nitrite/nitrate were lower concentration in GCBD than to G (P<0.005. Maternal use of CBD had a beneficial effect on the intestinal loops of GS with decreased nitrite/nitrate and iNOS expression.

  19. Fractional intestinal absorption and retention of calcium measured by whole-body counting. Application of a power function model

    International Nuclear Information System (INIS)

    Pors Nielsen, S.; Baerenholdt, O.; Munck, O.

    1975-01-01

    By application of a power function model, fractional intestinal calcium absorption was investigated with a new technique involving whole-body counting after successive oral and intravenous administration of standard doses of 47 Ca. The fractional calcium retention 7 days after the oral load of 47 Ca was also measured. Fractional calcium retention averaged 30.3% in normal subjects and 11.5% in 11 patients with intestinal malabsorption. In the same groups fractional calcium absorption averaged 46.6% and 16.4%, respectively. Fractional calcium retention and intestinal calcium absorption were significantly correlated to body surface area, and there was a well-defined relation between fractional retention and absorption of calcium. These studies demonstrate that measurements of fractional retention and fractional intestinal absorption of calcium can be combined by the use of a whole-body counter, that fractional retention and intestinal absorption are proportional to total body surface area and therefore probably also to the total bone mass, and that fractional retention and absorption are so closely interrelated that frational absorption can be estimated from fractional retention with reasonable accuracy in normal subjects. (auth.)

  20. Demonstration of Brachyspira aalborgi lineages 2 and 3 in human colonic biopsies with intestinal spirochaetosis by specific fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Teglbjærg, Peter S.; Lindboe, Christian F.

    2004-01-01

    of these organisms in human intestinal spirochaetosis. Seventeen human colonic biopsies from Norway and Denmark with intestinal spirochaetosis caused by Brachyspira-like organisms different from the type strain of B. aalborgi (lineage 1) were examined. Application of the probe gave a positive signal in two Norwegian...... biopsies, whereas the 15 other biopsies were hybridization-negative. The positive reaction visualized the spirochaetes as a fluorescent, 3-5 mum-high fringe on the surface epithelium, extending into the crypts. The study verified the presence of B. aalborgi lineages 2 and 3 and identified the bacteria...

  1. Intestinal Colonization Dynamics of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-05-01

    Full Text Available To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms.

  2. [Establishment and comparison of stoma and stoma-free heterotopic small intestine transplantation models in mice].

    Science.gov (United States)

    Meng, Ning; Pan, Zhijian; Liu, Yadong; Xu, Xin; Shen, Jiliang; Shen, Bo

    2016-03-01

    To establish stoma and stoma-free murine models of heterotopic small intestine transplantation in order to choose a more effective and reliable model. A total of 140 male 8-10 weeks age C57BL/6(B6) mice weighted 25-30 g were enrolled in the experiment. Syngeneic heterotopic small intestine transplantation was performed between C57BL/6 mice, and recipient mice were divided into either stoma or stoma-free group. Heterotopic small intestine transplantation was performed in 70 mice, with 35 mice in each group. After closing the proximal end of the graft by ligation, the distal end of graft was exteriorized as a stoma then secured to the skin of the abdominal wall in stoma group. In stoma-free group, the distal end of graft was anastomosed end-to-side to the recipient ileum. Successful rate of operation, two-week survival rate, operation time, associated complications, postoperative care time and body weight change were recorded and compared between two groups. The successful rate of stoma group was 65.7%, while it was 80.0% of stoma-free group (χ(2)=1.806, P=0.179). The operation time of donor in stoma group was (48.1±6.6) minutes, while it was (47.2±5.9) minutes in stoma-free group (t=0.598, P=0.552). The operation time of recipient in stoma group was (77.9±9.1) minutes, while it was (76.4±8.3) minutes in stoma-free group (t=0.683, P=0.497). The cold ischemic time of graft in stoma group was (34.7±4.0) minutes, while it was (33.9±4.6) minutes in stoma-free group(t=0.667, P=0.507). The two-week survival rate of stoma group was 45.7%, and it was 77.1% of stoma-free group(χ(2)=7.295, P=0.007). The stoma group had more complications[54.3%(19/35) vs. 22.9%(8/35), χ(2)=7.295, P=0.007], which needed more postoperative care time(191 min vs. 35 min). The weight loss in stoma group in the third day after operation was more significant [(81.52±5.20)% vs. (85.46±4.65)%, t=2.856, P=0.006]. By 2 weeks after operation, the weight of mice in both groups retruned to 95% of

  3. The effect of bovine colostrum products on intestinal dysfunction and inflammation in a preterm pig model of necrotizing enterocolitis

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal

    Necrotizing enterocolitis (NEC), primarily seen in preterm infants, is associated with high morbidity and mortality. The pathogenesis is not fully understood but risk factors include prematurity, enteral feeding (especially with milk formula), and the intestinal microbiota. Mother’s milk, rich...... in bioactive factors, has a protective effect against NEC, but not all preterm infants are able to receive mother’s milk. The overall aim of this thesis was to investigate if bovine colostrum (BC), also rich in bioactive factors, could serve as an alternative to mother’s milk. A preterm pig model of NEC...... formula. All three BC products maintained trophic and anti-inflammatory effects on the immature pig intestine. A simple and standardized system was required to investigate the effects of milk formula versus BC on intestinal epithelial cells. In Study III, the IPEC-J2 cell line was evaluated as an in vitro...

  4. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice

    NARCIS (Netherlands)

    D. Halim (Danny); M.P. Wilson (Michael P.); D. Oliver (Daniel); E. Brosens (Erwin); J.B. Verheij (Joke); Y. Han (Yu); V. Nanda (Vivek); Q. Lyu (Qing); M. Doukas (Michael); H.A. Stoop (Hans A.); R.W.W. Brouwer (Rutger); W.F.J. van IJcken (Wilfred); O.J. Slivano (Orazio J.); A.J. Burns (Alan); C.K. Christie (Christine K.); K.L. De Mesy Bentley (Karen L.); A.S. Brooks (Alice); D. Tibboel (Dick); S. Xu (Suowen); Z.G. Jin (Zheng Gen); T. Djuwantono (Tono); W. Yan (Wei); M.M. Alves (Maria); R.M.W. Hofstra (Robert); J.M. Miano (Joseph M.)

    2017-01-01

    textabstractMegacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in

  5. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human.

    Science.gov (United States)

    Akazawa, Takanori; Uchida, Yasuo; Miyauchi, Eisuke; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2018-01-02

    Cynomolgus monkeys have been widely used for the prediction of drug absorption in humans. The purpose of this study was to clarify the regional protein expression levels of cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UGTs), and transporters in small intestine of cynomolgus monkey using liquid chromatography-tandem mass spectrometry, and to compare them with the corresponding levels in human. UGT1A1 in jejunum and ileum were >4.57- and >3.11-fold and UGT1A6 in jejunum and ileum were >16.1- and >8.57-fold, respectively, more highly expressed in monkey than in human. Also, jejunal expression of monkey CYP3A8 (homologue of human CYP3A4) was >3.34-fold higher than that of human CYP3A4. Among apical drug efflux transporters, BCRP showed the most abundant expression in monkey and human, and the expression levels of BCRP in monkey and human were >1.74- and >1.25-fold greater than those of P-gp and >2.76- and >4.50-fold greater than those of MRP2, respectively. These findings should be helpful to understand species differences of the functions of CYPs, UGTs, and transporters between monkey and human. The UGT1A1/1A6 data would be especially important because it is difficult to identify isoforms responsible for species differences of intestinal glucuronidation by means of functional studies due to overlapping substrate specificity.

  6. An update discussion on the current assessment of the safety of veterinary antimicrobial drug residues in food with regard to their impact on the human intestinal microbiome.

    Science.gov (United States)

    Cerniglia, Carl E; Pineiro, Silvia A; Kotarski, Susan F

    2016-05-01

    The human gastrointestinal tract ecosystem consists of complex and diverse microbial communities that have now been collectively termed the intestinal microbiome. Recent scientific breakthroughs and research endeavours have increased our understanding of the important role the intestinal microbiome plays in human health and disease. The use of antimicrobial new animal drugs in food-producing animals may result in the presence of low levels of drug residues in edible foodstuffs. There is concern that antimicrobial new animal drugs in or on animal-derived food products at residue-level concentrations could disrupt the colonization barrier and/or modify the antimicrobial resistance profile of human intestinal bacteria. Therapeutic doses of antimicrobial drugs have been shown to promote shifts in the intestinal microbiome, and these disruptions promote the emergence of antimicrobial-resistant bacteria. To assess the effects of antimicrobial new animal drug residues in food on human intestinal bacteria, many national regulatory agencies and international committees follow a harmonized process, VICH GL36(R), which was issued by a trilateral organization of the European Union, the USA, and Japan called the International Cooperation on Harmonization of Technical Requirements for Veterinary Medicinal Products (VICH). The guidance describes a general approach currently used by national regulatory agencies and international committees to assess the effects of antimicrobial new animal drug residues in animal-derived food on human intestinal bacteria. The purpose of this review is to provide an overview of this current approach as part of the antimicrobial new animal drug approval process in participating countries, give insights on the microbiological endpoints used in this safety evaluation, and discuss the availability of new information. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Octreotide in Intestinal Lymphangiectasia: Lack of a Clinical Response and Failure to Alter Lymphatic Function in a Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    S Makhija

    2004-01-01

    Full Text Available Intestinal lymphangiectasia, which can be classified as primary or secondary, is an unusual cause of protein-losing enteropathy. The main clinical features include edema, fat malabsorption, lymphopenia and hypoalbuminemia. Clinical management generally includes a low-fat diet and supplementation with medium chain triglycerides. A small number of recent reports advocate the use of octreotide in intestinal lymphangiectasia. It is unclear why octreotide was used in these studies; although octreotide can alter splanchnic blood flow and intestinal motility, its actions on lymphatic function has never been investigated. A case of a patient with intestinal lymphangiectasia who required a shunt procedure after failing medium chain triglycerides and octreotide therapy is presented. During the management of this case, all existing literature on intestinal lymphangiectasia and all the known actions of octreotide were reviewed. Because some of the case reports suggested that octreotide may improve the clinical course of intestinal lymphangiectasia by altering lymphatic function, a series of experiments were undertaken to assess this. In an established guinea pig model, the role of octreotide in lymphatic function was examined. In this model system, the mesenteric lymphatic vessels responded to 5-hydroxytryptamine with a decrease in constriction frequency, while histamine administration markedly increased lymphatic constriction frequency. Octreotide failed to produce any change in lymphatic function when a wide range of concentrations were applied to the mesenteric lymphatic vessel preparation. In conclusion, in this case, octreotide failed to induce a clinical response and laboratory studies showed that octreotide did not alter lymphatic function. Thus, the mechanisms by which octreotide induced clinical responses in the cases reported elsewhere in the literature remain unclear, but the present study suggests that it does not appear to act via increasing

  8. Effects of Marine Oils, Digested with Human Fluids, on Cellular Viability and Stress Protein Expression in Human Intestinal Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Cecilia Tullberg

    2017-11-01

    Full Text Available In vitro digestion of marine oils has been reported to promote lipid oxidation, including the formation of reactive aldehydes (e.g., malondialdehyde (MDA and 4-hydroxy-2-hexenal (HHE. We aimed to investigate if human in vitro digestion of supplemental levels of oils from algae, cod liver, and krill, in addition to pure MDA and HHE, affect intestinal Caco-2 cell survival and oxidative stress. Cell viability was not significantly affected by the digests of marine oils or by pure MDA and HHE (0–90 μM. Cellular levels of HSP-70, a chaperone involved in the prevention of stress-induced protein unfolding was significantly decreased (14%, 28%, and 14% of control for algae, cod and krill oil, respectively; p ≤ 0.05. The oxidoreductase thioredoxin-1 (Trx-1 involved in reducing oxidative stress was also lower after incubation with the digested oils (26%, 53%, and 22% of control for algae, cod, and krill oil, respectively; p ≤ 0.001. The aldehydes MDA and HHE did not affect HSP-70 or Trx-1 at low levels (8.3 and 1.4 μM, respectively, whilst a mixture of MDA and HHE lowered Trx-1 at high levels (45 μM, indicating less exposure to oxidative stress. We conclude that human digests of the investigated marine oils and their content of MDA and HHE did not cause a stress response in human intestinal Caco-2 cells.

  9. Structural Stability of Human Fibroblast Growth Factor-1 Is Essential for Protective Effects Against Radiation-Induced Intestinal Damage

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Fumiaki, E-mail: f_naka@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Umeda, Sachiko [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Yasuda, Takeshi [Department of Radiation Emergency Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba (Japan); Asada, Masahiro; Motomura, Kaori; Suzuki, Masashi [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Zakrzewska, Malgorzata [Faculty of Biotechnology, University of Wroclaw (Poland); Imamura, Toru [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Imai, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2013-02-01

    Purpose: Human fibroblast growth factor-1 (FGF1) has radioprotective effects on the intestine, although its structural instability limits its potential for practical use. Several stable FGF1 mutants were created increasing stability in the order, wild-type FGF1, single mutants (Q40P, S47I, and H93G), Q40P/S47I, and Q40P/S47I/H93G. This study evaluated the contribution of the structural stability of FGF1 to its radioprotective effect. Methods and Materials: Each FGF1 mutant was administered intraperitoneally to BALB/c mice in the absence of heparin 24 h before or after total body irradiation (TBI) with {gamma}-rays at 8-12 Gy. Several radioprotective effects were examined in the jejunum. Results: Q40P/S47I/H93G could activate all subtypes of FGF receptors in vitro much more strongly than the wild-type without endogenous or exogenous heparin. Preirradiation treatment with Q40P/S47I/H93G significantly increased crypt survival more than wild-type FGF1 after TBI at 10 or 12 Gy, and postirradiation treatment with Q40P/S47I/H93G was effective in promoting crypt survival after TBI at 10, 11, or 12 Gy. In addition, crypt cell proliferation, crypt depth, and epithelial differentiation were significantly promoted by postirradiation treatment with Q40P/S47I/H93G. The level of stability of FGF1 mutants correlated with their mitogenic activities in vitro in the absence of heparin; however, preirradiation treatment with the mutants increased the crypt number to almost the same level as Q40P/S47I/H93G. When given 24 h after TBI at 10 Gy, all FGF1 mutants increased crypt survival more than wild-type FGF1, and Q40P/S47I/H93G had the strongest mitogenic effects in intestinal epithelial cells after radiation damage. Moreover, Q40P/S47I/H93G prolonged mouse survival after TBI because of the repair of intestinal damage. Conclusion: These findings suggest that the structural stability of FGF1 can contribute to the enhancement of protective effects against radiation-induced intestinal

  10. Dynamics of absorption, metabolism, and excretion of 5-aminolevulinic acid in human intestinal Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Kei Saito

    2017-09-01

    Full Text Available 5-Aminolevulinic acid (ALA is a precursor for the biosynthesis of porphyrins and heme. Although the oral administration of ALA has been widely applied in clinical settings, the dynamics of its absorption, metabolism, and excretion within enterocytes remain unknown. In this study, after enterocytic differentiation, Caco-2 cells were incubated with 200 µM ALA and/or 100 µM sodium ferrous citrate (SFC for up to 72 h. Both ALA and the combination of ALA and SFC promoted the synthesis of heme, without affecting the expression of genes involved in intestinal iron transport, such as DMT1 and FPN. The enhanced heme synthesis in Caco-2 cells was more pronounced under the effect of the combination of ALA and SFC than under the effect of ALA alone, as reflected by the induced expression of heme oxygenase 1 (HO-1, as well as a reduced protein level of the transcriptional corepressor Bach1. Chromatin immunoprecipitation analysis confirmed Bach1 chromatin occupancy at the enhancer regions of HO-1, which were significantly decreased by the addition of ALA and SFC. Finally, Transwell culture of Caco-2 cells suggested that the administered ALA to the intestinal lumen was partially transported into vasolateral space. These findings enhance our understanding of the absorption and metabolism of ALA in enterocytes, which could aid in the development of a treatment strategy for various conditions such as anemia.

  11. Heparin modulates human intestinal smooth muscle (HISM) cell proliferation and matrix production

    International Nuclear Information System (INIS)

    Graham, M.; Perr, H.; Drucker, D.E.; Diegelmann, R.F.

    1986-01-01

    (HISM) cell proliferation and collagen production may play a role in the pathogenesis of intestinal stricture in Crohn's disease. The present studies were performed to evaluate the effects of heparin, a known modulator of vascular smooth muscle cells, on HISM cell proliferation and collagen production. Heparin (100 μg/ml) was added daily to HISM cell cultures for cell proliferation studies and for 24 hours at various time points during culture for collagen synthesis studies. Collagen synthesis was determined by the uptake of 3 H proline into collagenase-sensitive protein. Heparin completely inhibited cell proliferation for 7 days, after which cell numbers increased but at a slower rate than controls. Cells released from heparin inhibition demonstrated catch-up growth to control levels. Collagen production was significantly inhibited by 24 hours exposure to heparin but only at those times during culture when collagen synthesis was maximal (8 to 12 days). Non-collagen protein synthesis was inhibited by heparin at all time points during culture. Heparin through its modulation of HISM cells may play an important role in the control of the extracellular matrix of the intestinal wall

  12. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4α

    International Nuclear Information System (INIS)

    Klapper, Maja; Boehme, Mike; Nitz, Inke; Doering, Frank

    2007-01-01

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4α (HNF-4α), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4α binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4α by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4α, that are both candidate genes for diabetes type 2, may be a powerful approach

  13. Interleukin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S [Children' s Hospital, Mucosal Immunology Laboratory, University of Bonn, Bonn (Germany); Beaulieu, J F [Department of Cell Biology/Anatomy, University of Sherbrooke, Sherbrooke (Canada); Ruemmele, F M [Children' s Hospital, Mucosal Immunology Laboratory, University of Bonn, Bonn (Germany) and INSERM EMI0212, Faculte de Medecine Necker, University Paris V, Paediatric Gastroenterology Unit, Department of Paediatrics, Hopital Necker-Enfants Malades, Assistance-Publique-Hopitaux de Paris, Paris (France)

    2005-11-18

    Upregulation of the T-cell derived cytokine interleukin (IL-17) was reported in the inflamed intestinal mucosa of patients with inflammatory bowel disorders. In this study, we analyzed the effect of IL-17 on human intestinal epithelial cell (HIEC) turnover and functions. Proliferation and apoptosis in response to IL-17 was monitored in HIEC (cell counts, [{sup 3}H]thymidine incorporation method, and annexinV-PI-apoptosis assay). Signalling pathways were analyzed by Western blots, electromobility shift assay, and immunofluorescence studies. IL-17 proved to be a potent inhibitor of HIEC proliferation without any pro-apoptotic/necrotic effect. The growth inhibitory effect of IL-17 was mediated via the p38 stress kinase. Consequently, the p38-SAPkinase-inhibitor SB203580 abrogated this anti-mitotic effect. In parallel, IL-17 provoked the degradation of I{kappa}B{alpha}, allowing nuclear translocation of the p65 NF-{kappa}B subunit and induction of the NF-{kappa}B-controlled genes IL-6 and -8. IL-17 potently blocks epithelial cell turnover while at the same time amplifying an inflammatory response in a positive feedback manner.

  14. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Klapper, Maja [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Boehme, Mike [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Nitz, Inke [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Doering, Frank [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany)

    2007-04-27

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4{alpha} (HNF-4{alpha}), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4{alpha} binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4{alpha} by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4{alpha}, that are both candidate genes for diabetes type 2, may be a powerful approach.

  15. Association between the human herpesvirus 8 and the diffuse nodular lymphoid hyperplasia of the small intestine in common variable immunodeficiency

    International Nuclear Information System (INIS)

    Kokuina, Elena; Dominguez Alvarez, Carlos; Noa Pedroso, Guillermo; Martinez Rodriguez Pedro Ariel

    2009-01-01

    The common variable immunodeficiency (CVID) is the more frequent primary immunodeficiency in clinical field and its presentation forms are very variable. We describe the case of a women presenting with adult CVID with chronic diarrhea syndrome, weight loss and diffuse lymphadenopathies, where the more marked immunologic features were a deep hypogammaglobulinemia of the three major kinds of immunoglobulins and numerical decrease of B cells (CD19 +) and NK cells (CD3 -C D56 +) in peripheral blood. Biopsy of small intestine obtained by video-assisted panendoscope, showed the presence of a multinodular lymphoid hyperplasia with partial atrophy of hairinesses. Immunohistochemistry showed that nodules were high germinal centers with distribution of B cells (CD20 +) and T cells (CD3 +) , similar to that of normal follicle. There was not differential expression of the K and λ light chains. The real time polymerase chain reaction (QRT-PCR) method detected many copies from the genome of type 8 human herpesvirus (VHH-8) (133 copies/μL of DNA) in biopsy of intestinal nodule DNA. VHH-8 infection may to be a significant factor in pathogenesis of lymphoproliferative disorders in patients presenting with CVID

  16. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    Science.gov (United States)

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  17. Interaction of PHM, PHI and 24-glutamine PHI with human VIP receptors from colonic epithelium: comparison with rat intestinal receptors

    International Nuclear Information System (INIS)

    Laburthe, M.; Couvineau, A.; Rouyer-Fessard, C.; Moroder, L.

    1985-01-01

    PHM, the human counterpart of porcine Peptide Histidine Isoleucine amide (PHI), is shown to be a VIP agonist with low potency on human VIP receptors located in colonic epithelial cell membranes. Its potency is identical to that of PHI but by 3 orders of magnitude lower than that of VIP itself in inhibiting 125 I-VIP binding and in stimulating adenylate cyclase activity. This contrasts markedly with the behavior of PHI on rat VIP receptors located in intestinal epithelial cell membranes where PHI is a potent agonist with a potency that is 1/5 that of VIP. In another connection, the authors show that 24-glutamine PHI has the same affinity as 24-glutamic acid PHI (the natural peptide) for rat or human VIP receptors. These results indicate that while PHI may exert some physiological function through its interaction with VIP receptors in rodents, its human counterpart PHM is a very poor agonist of VIP in human. Furthermore, they show that the drastic change in position 24 of PHI (neutral versus acid residue) does not affect the activity of PHI, at least on VIP receptors. 21 references, 1 figure

  18. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Tatsuro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Okamoto, Ryuichi, E-mail: rokamoto.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Tsuchiya, Kiichiro; Nakamura, Tetsuya [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan)

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  19. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine.

    Directory of Open Access Journals (Sweden)

    Marcus J Claesson

    Full Text Available BACKGROUND: Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. High-throughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such methods, pyrosequencing and a phylogenetic array, and evaluate classifications based on two variable 16S rRNA gene regions. METHODS AND FINDINGS: Over 1.75 million amplicon sequences were generated from the V4 and V6 regions of 16S rRNA genes in bacterial DNA extracted from four fecal samples of elderly individuals. The phylotype richness, for individual samples, was 1,400-1,800 for V4 reads and 12,500 for V6 reads, and 5,200 unique phylotypes when combining V4 reads from all samples. The RDP-classifier was more efficient for the V4 than for the far less conserved and shorter V6 region, but differences in community structure also affected efficiency. Even when analyzing only 20% of the reads, the majority of the microbial diversity was captured in two samples tested. DNA from the four samples was hybridized against the Human Intestinal Tract (HIT Chip, a phylogenetic microarray for community profiling. Comparison of clustering of genus counts from pyrosequencing and HITChip data revealed highly similar profiles. Furthermore, correlations of sequence abundance and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due to ambiguous taxonomic groupings. CONCLUSIONS: The RDP-classifier consistently assigned most V4 sequences from human intestinal samples down to genus-level with good accuracy and speed. This is the deepest sequencing of single gastrointestinal samples reported to date, but microbial richness levels have still not leveled out. A majority of these diversities can also be captured with five times lower sampling-depth. HITChip hybridizations and resulting community profiles correlate

  20. Investigation of Microbiota Alterations and Intestinal Inflammation Post-Spinal Cord Injury in Rat Model.

    Science.gov (United States)

    O'Connor, Gregory; Jeffrey, Elisabeth; Madorma, Derik; Marcillo, Alexander; Abreu, Maria T; Deo, Sapna K; Dietrich, W Dalton; Daunert, Sylvia

    2018-03-23

    Although there has been a significant amount of research focused on the pathophysiology of Spinal Cord Injury (SCI), there is limited information on the consequences of SCI on remote organs. SCI can produce significant effects on a variety of organ systems, including the gastrointestinal tract. Patients with SCI often suffer from severe, debilitating bowel dysfunction in addition to their physical disabilities, which is of major concern for these individuals due to the adverse impact on their quality of life. Herein, we report on our investigation into the effects of SCI and subsequent antibiotic treatment on the intestinal tissue and microbiota. For that, we employed a thoracic SCI rat model and investigated changes to the microbiota, pro-inflammatory cytokine levels, and bacterial communication molecule levels post injury and gentamicin treatment for seven days. We discovered significant changes, the most interesting being the differences in the gut microbiota beta diversity of 8-week SCI animals compared to control animals at the family, genus, and species level. Specifically, 35 Operational Taxonomic Units (OTUs) were enriched in the SCI animal group and 3 were identified at species level; Lactobacillus intestinalis, Clostridium disporicum, and Bifidobacterium choerinum. In contrast, Clostridium saccharogumia was identified as depleted in the SCI animal group. Pro-inflammatory cytokines IL-12, MIP-2, and TNF-α, were found to be significantly elevated in intestinal tissue homogenate 4-weeks post-SCI compared to 8-weeks post-injury. Further, levels of IL-1β, IL-12, and MIP-2 significantly correlated with changes in beta diversity 8-weeks post-SCI. Our data provide a greater understanding of the early effects of SCI on the microbiota and gastrointestinal tract, highlighting the need for further investigation to elucidate the mechanism underlying these effects.

  1. Amebiasis intestinal Intestinal amebiasis

    Directory of Open Access Journals (Sweden)

    JULIO CÉSAR GÓMEZ

    2007-03-01

    Full Text Available Entamoeba histolytica es el patógeno intestinal más frecuente en nuestro medio -después de Giardia lamblia-, una de las principales causas de diarrea en menores de cinco años y la cuarta causa de muerte en el mundo debida a infección por protozoarios. Posee mecanismos patogénicos complejos que le permiten invadir la mucosa intestinal y causar colitis amebiana. El examen microscópico es el método más usado para su identificación pero la existencia de dos especies morfológicamente iguales, una patógena ( E. histolytica y una no patógena ( Entamoeba dispar, ha llevado al desarrollo de otros métodos de diagnóstico. El acceso al agua potable y los servicios sanitarios adecuados, un tratamiento médico oportuno y el desarrollo de una vacuna, son los ejes para disminuir la incidencia y mortalidad de esta entidad.Entamoeba histolytica is the most frequent intestinal pathogen seen in our country, after Giardia lamblia, being one of the main causes of diarrhea in children younger than five years of age, and the fourth leading cause of death due to infection for protozoa in the world. It possesses complex pathogenic mechanisms that allow it to invade the intestinal mucosa, causing amoebic colitis. Microscopy is the most used method for its identification, but the existence of two species morphologically identical, the pathogen one ( E. histolytica, and the non pathogen one ( E. dispar, have taken to the development of other methods of diagnosis. The access to drinkable water and appropriate sanitary services, an opportune medical treatment, and the development of a vaccine are the axes to diminish the incidence and mortality of this entity.

  2. Preservation of intestinal microvascular Po2 during normovolemic hemodilution in a rat model

    NARCIS (Netherlands)

    van Bommel, J.; Siegemund, M.; Henny, C. P.; van den Heuvel, D. A.; Trouwborst, A.; Ince, C.

    2000-01-01

    The effect of hemodilution on the intestinal microcirculatory oxygenation is not clear. The aim of this study was to determine the effect of moderate normovolemic hemodilution on intestinal microvascular partial oxygen pressure (Po2) and its relation to the mesenteric venous Po2 (Pmvo2).

  3. Human mobility: Models and applications

    Science.gov (United States)

    Barbosa, Hugo; Barthelemy, Marc; Ghoshal, Gourab; James, Charlotte R.; Lenormand, Maxime; Louail, Thomas; Menezes, Ronaldo; Ramasco, José J.; Simini, Filippo; Tomasini, Marcello

    2018-03-01

    Recent years have witnessed an explosion of extensive geolocated datasets related to human movement, enabling scientists to quantitatively study individual and collective mobility patterns, and to generate models that can capture and reproduce the spatiotemporal structures and regularities in human trajectories. The study of human mobility is especially important for applications such as estimating migratory flows, traffic forecasting, urban planning, and epidemic modeling. In this survey, we review the approaches developed to reproduce various mobility patterns, with the main focus on recent developments. This review can be used both as an introduction to the fundamental modeling principles of human mobility, and as a collection of technical methods applicable to specific mobility-related problems. The review organizes the subject by differentiating between individual and population mobility and also between short-range and long-range mobility. Throughout the text the description of the theory is intertwined with real-world applications.

  4. Deciphering the porcine intestinal microRNA transcriptome

    Directory of Open Access Journals (Sweden)

    Keller Andreas

    2010-04-01

    Full Text Available Abstract Background While more than 700 microRNAs (miRNAs are known in human, a comparably low number has been identified in swine. Because of the close phylogenetic distance to humans, pigs serve as a suitable model for studying e.g. intestinal development or disease. Recent studies indicate that miRNAs are key regulators of intestinal development and their aberrant expression leads to intestinal malignancy. Results Here, we present the identification of hundreds of apparently novel miRNAs in the porcine intestine. MiRNAs were first identified by means of deep sequencing followed by miRNA precursor prediction using the miRDeep algorithm as well as searching for conserved miRNAs. Second, the porcine miRNAome along the entire intestine (duodenum, proximal and distal jejunum, ileum, ascending and transverse colon was unraveled using customized miRNA microarrays based on the identified sequences as well as known porcine and human ones. In total, the expression of 332 intestinal miRNAs was discovered, of which 201 represented assumed novel porcine miRNAs. The identified hairpin forming precursors were in part organized in genomic clusters, and most of the precursors were located on chromosomes 3 and 1, respectively. Hierarchical clustering of the expression data revealed subsets of miRNAs that are specific to distinct parts of the intestine pointing to their impact on cellular signaling networks. Conclusions In this study, we have applied a straight forward approach to decipher the porcine intestinal miRNAome for the first time in mammals using a piglet model. The high number of identified novel miRNAs in the porcine intestine points out their crucial role in intestinal function as shown by pathway analysis. On the other hand, the reported miRNAs may share orthologs in other mammals such as human still to be discovered.

  5. The magnitude and risk factors of intestinal parasitic infection in relation to Human Immunodeficiency Virus infection and immune status, at ALERT Hospital, Addis Ababa, Ethiopia.

    Science.gov (United States)

    Taye, Biruhalem; Desta, Kassu; Ejigu, Selamawit; Dori, Geme Urge

    2014-06-01

    Human Immunodeficiency Virus (HIV) and intestinal parasitic infections are among the main health problems in developing countries like Ethiopia. Particularly, co-infections of these diseases would worsen the progression of HIV to Acquired Immunodeficiency Syndrome (AIDS). The purpose of this study was to determine the magnitude and risk factors for intestinal parasites in relation to HIV infection and immune status. The study was conducted in (1) HIV positive on antiretroviral therapy (ART) and (2) ART naïve HIV positive patients, and (3) HIV-negative individuals, at All African Leprosy and Tuberculosis (TB) Eradication and Rehabilitation Training Center (ALERT) hospital in Addis Ababa, Ethiopia. Study participants were interviewed using structured questionnaires to obtain socio-demographic characteristics and assess risk factors associated with intestinal parasitic infection. Intestinal parasites were identified from fecal samples by direct wet mount, formol ether concentration, and modified Ziehl-Neelsen staining techniques. The immune status was assessed by measuring whole blood CD4 T-cell count. The overall magnitude of intestinal parasite was 35.08%. This proportion was different among study groups with 39.2% (69/176), 38.83% (40/103) and 27.14% (38/140) in ART naïve HIV positives patients, in HIV negatives, and in HIV positive on ART patients respectively. HIV positive patients on ART had significantly lower magnitude of intestinal parasitic infection compared to HIV negative individuals. Intestinal helminths were significantly lower in HIV positive on ART and ART naïve patients than HIV negatives. Low monthly income, and being married, divorced or widowed were among the socio-demographic characteristics associated with intestinal parasitic infection. No association was observed between the magnitude of intestinal parasites and CD4 T-cell count. However, Cryptosporidium parvum, and Isospora belli were exclusively identified in individuals with CD4 T

  6. A natural human hand model

    NARCIS (Netherlands)

    Van Nierop, O.A.; Van der Helm, A.; Overbeeke, K.J.; Djajadiningrat, T.J.P.

    2007-01-01

    We present a skeletal linked model of the human hand that has natural motion. We show how this can be achieved by introducing a new biology-based joint axis that simulates natural joint motion and a set of constraints that reduce an estimated 150 possible motions to twelve. The model is based on

  7. Enteric Neuron Imbalance and Proximal Dysmotility in Ganglionated Intestine of the Sox10Dom/+ Hirschsprung Mouse ModelSummary

    Directory of Open Access Journals (Sweden)

    Melissa A. Musser

    2015-01-01

    Full Text Available Background & Aims: In Hirschsprung disease (HSCR, neural crest-derived progenitors (NCPs fail to completely colonize the intestine so that the enteric nervous system is absent from distal bowel. Despite removal of the aganglionic region, many HSCR patients suffer from residual intestinal dysmotility. To test the hypothesis that inappropriate lineage segregation of NCPs in proximal ganglionated regions of the bowel could contribute to such postoperative disease, we investigated neural crest (NC-derived lineages and motility in ganglionated, postnatal intestine of the Sox10Dom/+ HSCR mouse model. Methods: Cre-mediated fate-mapping was applied to evaluate relative proportions of NC-derived cell types. Motility assays were performed to assess gastric emptying and small intestine motility while colonic inflammation was assessed by histopathology for Sox10Dom/+ mutants relative to wild-type controls. Results: Sox10Dom/+ mice showed regional alterations in neuron and glia proportions as well as calretinin+ and neuronal nitric oxide synthase (nNOS+ neuronal subtypes. In the colon, imbalance of enteric NC derivatives correlated with the extent of aganglionosis. All Sox10Dom/+ mice exhibited reduced small intestinal transit at 4 weeks of age; at 6 weeks of age, Sox10Dom/+ males had increased gastric emptying rates. Sox10Dom/+ mice surviving to 6 weeks of age had little or no colonic inflammation when compared with wild-type littermates, suggesting that these changes in gastrointestinal motility are neurally mediated. Conclusions: The Sox10Dom mutation disrupts the balance of NC-derived lineages and affects gastrointestinal motility in the proximal, ganglionated intestine of adult animals. This is the first report identifying alterations in enteric neuronal classes in Sox10Dom/+ mutants, which suggests a previously unrecognized role for Sox10 in neuronal subtype specification. Keywords: Aganglionosis, Enteric Nervous System, Neural Crest

  8. Intestinal Lymphangiectasia

    Science.gov (United States)

    ... Overview of Crohn Disease Additional Content Medical News Intestinal Lymphangiectasia (Idiopathic Hypoproteinemia) By Atenodoro R. Ruiz, Jr., MD, ... Overview of Malabsorption Bacterial Overgrowth Syndrome Celiac Disease Intestinal ... Intolerance Short Bowel Syndrome Tropical Sprue Whipple ...

  9. Intestinal Obstruction

    Science.gov (United States)

    ... Colostomy ) is required to relieve an obstruction. Understanding Colostomy In a colostomy, the large intestine (colon) is cut. The part ... 1 What Causes Intestinal Strangulation? Figure 2 Understanding Colostomy Gastrointestinal Emergencies Overview of Gastrointestinal Emergencies Abdominal Abscesses ...

  10. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Tiziana Angrisano

    Full Text Available Bacterial lipopolysaccharide (LPS induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3, methylation (H3K4, H3K9, H3K27 and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene.

  11. Binding of Candida albicans to Human CEACAM1 and CEACAM6 Modulates the Inflammatory Response of Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Esther Klaile

    2017-03-01

    Full Text Available Candida albicans colonizes human mucosa, including the gastrointestinal tract, as a commensal. In immunocompromised patients, C. albicans can breach the intestinal epithelial barrier and cause fatal invasive infections. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1; CD66a, CEACAM5 (CEA, and CEACAM6 (CD66c are immunomodulatory receptors expressed on human mucosa and are recruited by bacterial and viral pathogens. Here we show for the first time that a fungal pathogen (i.e., C. albicans also binds directly to the extracellular domain of human CEACAM1, CEACAM3, CEACAM5, and CEACAM6. Binding was specific for human CEACAMs and mediated by the N-terminal IgV-like domain. In enterocytic C2BBe1 cells, C. albicans caused a transient tyrosine phosphorylation of CEACAM1 and induced higher expression of membrane-bound CEACAM1 and soluble CEACAM6. Lack of the CEACAM1 receptor after short hairpin RNA (shRNA knockdown abolished CXCL8 (interleukin-8 secretion by C2BBe1 cells in response to C. albicans. In CEACAM1-competent cells, the addition of recombinant soluble CEACAM6 reduced the C. albicans-induced CXCL8 secretion.

  12. Detection of Puumala hantavirus antigen in human intestine during acute hantavirus infection.

    Directory of Open Access Journals (Sweden)

    Joerg Latus

    Full Text Available BACKGROUND: Puumala virus (PUUV is the most important hantavirus species in Central Europe. Nephropathia epidemica (NE, caused by PUUV, is characterized by acute renal injury (AKI with thrombocytopenia and frequently gastrointestinal symptoms. METHODS: 456 patients with serologically and clinically confirmed NE were investigated at time of follow-up in a single clinic. The course of the NE was investigated using medical reports. We identified patients who had endoscopy with intestinal biopsy during acute phase of NE. Histopathological, immunohistochemical and molecular analyses of the biopsies were performed. RESULTS: Thirteen patients underwent colonoscopy or gastroscopy for abdominal pain, diarrhea, nausea and vomiting during acute phase of NE. Immunohistochemistry (IHC revealed PUUV nucleocapsid antigen in 11 biopsies from 8 patients; 14 biopsies from 5 patients were negative for PUUV nucleocapsid antigen. IHC localized PUUV nucleocapsid antigen in endothelial cells of capillaries or larger vessels in the lamina propria. Rate of AKI was not higher and severity of AKI was not different in the PUUV-positive compared to the PUUV-negative group. All IHC positive biopsies were positive for PUUV RNA using RT-PCR. Phylogenetic reconstruction revealed clustering of all PUUV strains from this study with viruses previously detected from the South-West of Germany. Long-term outcome was favorable in both groups. CONCLUSIONS: In patients with NE, PUUV nucleocapsid antigen and PUUV RNA was detected frequently in the intestine. This finding could explain frequent GI-symptoms in NE patients, thus demonstration of a more generalized PUUV infection. The RT-PCR was an effective and sensitive method to detect PUUV RNA in FFPE tissues. Therefore, it can be used as a diagnostic and phylogenetic approach also for archival materials. AKI was not more often present in patients with PUUV-positive IHC. This last finding should be investigated in larger numbers of

  13. Rapid appraisal of human intestinal helminth infections among schoolchildren in Osh oblast, Kyrgyzstan.

    Science.gov (United States)

    Steinmann, Peter; Usubalieva, Jumagul; Imanalieva, Cholpon; Minbaeva, Gulnara; Stefiuk, Kayte; Jeandron, Aurelie; Utzinger, Jürg

    2010-12-01

    A population-representative lot quality assurance sampling (LQAS) survey was conducted in 2009 to determine the prevalence of intestinal helminth infections among schoolchildren across Osh oblast, Kyrgyzstan. The diagnostic approach consisted of duplicate Kato-Katz thick smears from a single stool sample and an adhesive tape test. A questionnaire was administered to identify risk factors for infections. A total of 1262 schoolchildren aged 6-15 years were recruited; 41% of them harboured at least one of the eight identified helminth species. The two most prevalent helminths were Ascaris lumbricoides (23.1%) and Enterobius vermicularis (19.3%). Lower prevalences were found for Hymenolepis nana (4.4%), Fasciola hepatica (1.9%) and Dicrocoelium dendriticum (1.8%). Washing raw vegetables was a protective factor with regard to A. lumbricoides infection (odds ratio (OR)=0.69, p=0.022); tap water was borderline protective (OR=0.56, p=0.057). Children of the richest families were at a lower risk of E. vermicularis infection than the poorest ones (OR=0.41, p=0.011). Sharing the bed with more than one person was a risk factor for E. vermicularis infection (OR=2.0, p=0.002). The results call for targeted interventions against intestinal helminths in Osh oblast. In a first stage, annual deworming of schoolchildren and other high-risk groups with albendazole or mebendazole should be implemented, and reliable diagnosis and additional anthelminthic drugs should be made available. Subsequently, transmission control including locally-adapted health education, improved water supply and adequate sanitation should become the central features. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. PVA gel as a potential adhesion barrier: a safety study in a large animal model of intestinal surgery.

    Science.gov (United States)

    Renz, Bernhard W; Leitner, Kurt; Odermatt, Erich; Worthley, Daniel L; Angele, Martin K; Jauch, Karl-Walter; Lang, Reinhold A

    2014-03-01

    Intra-abdominal adhesions following surgery are a major source of morbidity and mortality including abdominal pain and small bowel obstruction. This study evaluated the safety of PVA gel (polyvinyl alcohol and carboxymethylated cellulose gel) on intestinal anastomoses and its potential effectiveness in preventing adhesions in a clinically relevant large animal model. Experiments were performed in a pig model with median laparotomy and intestinal anastomosis following small bowel resection. The primary endpoint was the safety of PVA on small intestinal anastomoses. We also measured the incidence of postoperative adhesions in PVA vs. control groups: group A (eight pigs): stapled anastomosis with PVA gel compared to group B (eight pigs), which had no PVA gel; group C (eight pigs): hand-sewn anastomosis with PVA gel compared to group B (eight pigs), which had no anti-adhesive barrier. Animals were sacrificed 14 days after surgery and analyzed. All anastomoses had a patent lumen without any stenosis. No anastomoses leaked at an intraluminal pressure of 40 cmH2O. Thus, anastomoses healed very well in both groups, regardless of whether PVA was administered. PVA-treated animals, however, had significantly fewer adhesions in the area of stapled anastomoses. The hand-sewn PVA group also had weaker adhesions and trended towards fewer adhesions to adjacent organs. These results suggest that PVA gel does not jeopardize the integrity of intestinal anastomoses. However, larger trials are needed to investigate the potential of PVA gel to prevent adhesions in gastrointestinal surgery.

  15. Development and application of a low volume, increased throughput in vitro model simulating the passage through small intestine

    DEFF Research Database (Denmark)

    Cieplak, Tomasz Maciej

    are unevenly distributed along the GIT, ranging from 101-103 cells/g in the stomach, through 103-108 cells/g in the small intestine and up to 1012 cells/g in the colon. In the last decade, numerous studies have been conducted focussing on the faecal microbiota composition and its impact on the host health...... conditions (fed, fasted) and the presence of small intestine microbiota influence intestine persistence of probiotic bacteria. In the same manuscript, we described for the first time the fully functional in vitro model prototype called “The Smallest Intestine (TSI)”. The model proved to be a cost...... and naked cells in the small intestine was investigated in both fed and fasted conditions in the TSI model. Results indicated a protective effect of xanthan/gellan gum for L. plantarum and decreased viability of coated A. muciniphila due to the desiccation effect of coating, which probably caused leakage...

  16. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model

    DEFF Research Database (Denmark)

    Taqi, Esmaeel; Wallace, Laurie E; de Heuvel, Elaine

    2010-01-01

    The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions......, and systemic enteric hormones on intestinal adaptation in short bowel syndrome....

  17. Protective effects of ID331 Triticum monococcum gliadin on in vitro models of the intestinal epithelium.

    Science.gov (United States)

    Iacomino, Giuseppe; Di Stasio, Luigia; Fierro, Olga; Picariello, Gianluca; Venezia, Antonella; Gazza, Laura; Ferranti, Pasquale; Mamone, Gianfranco

    2016-12-01

    A growing interest in developing new strategies for preventing coeliac disease has motivated efforts to identify cereals with null or reduced toxicity. In the current study, we investigate the biological effects of ID331 Triticum monococcum gliadin-derived peptides in human Caco-2 intestinal epithelial cells. Triticum aestivum gliadin derived peptides were employed as a positive control. The effects on epithelial permeability, zonulin release, viability, and cytoskeleton reorganization were investigated. Our findings confirmed that ID331 gliadin did not enhance permeability and did not induce zonulin release, cytotoxicity or cytoskeleton reorganization of Caco-2 cell monolayers. We also demonstrated that ID331 ω-gliadin and its derived peptide ω(105-123) exerted a protective action, mitigating the injury of Triticum aestivum gliadin on cell viability and cytoskeleton reorganization. These results may represent a new opportunity for the future development of innovative strategies to reduce gluten toxicity in the diet of patients with gluten intolerance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dialectical Model of Human Nature

    OpenAIRE

    Cachat, Jonathan

    2013-01-01

    The DMoHN is a graphical representation of my current understanding and conceptualization of human nature, in addition to embodying the guiding ethos of social neuroscience. The dialectic is a logic, or way of thinking that joins opposite elements together in a uniting fashion to create emergent attributes not present in the elements alone. The dialectical structure of this model explicitly links Culture and Biology within the human brain in order to convey the symbiotic and dynamic interacti...

  19. Novel polyfucosylated N-linked glycopeptides with blood group A, H, X and Y determinants from human small intestinal epithelial cells

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Finne, J.; Breimer, M.E.; Hansson, G.C.; Karlsson, K.-A.; Leffler, H.; Halbeek, H. van

    1989-01-01

    A novel type of N-linked glycopeptides representing a major part of the glycans in human small intestinal epithelial cells from blood group A and O individuals were isolated by gel filtrations and affinity chromatography on concanavalin A-Sepharose and Bandeiraea simplicifolia lectin I-Sepharose.

  20. Fate and effect of ingested Bacillus cereus spores and vegetative cells in the intestinal tract of human-flora-associated rats

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Hansen, Bjarne Munk; Hendriksen, Niels Bohse

    2006-01-01

    The fate and effect of Bacillus cereus F4433/73R in the intestine of human-flora-associated rats was studied using bacteriological culturing techniques and PCR-denaturing gradient gel electrophoresis in combination with cell assays and immunoassays for detection of enterotoxins. In faecal samples...

  1. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    Science.gov (United States)

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  2. Evaluation of dual-phase multi-detector-row CT for detection of intestinal bleeding using an experimental bowel model

    International Nuclear Information System (INIS)

    Dobritz, Martin; Engels, Heinz-Peter; Wieder, Hinrich; Rummeny, Ernst J.; Stollfuss, Jens C.; Schneider, Armin; Feussner, Hubertus

    2009-01-01

    To evaluate dual-phase multi-detector-row computed tomography (MDCT) in the detection of intestinal bleeding using an experimental bowel model and varying bleeding velocities. The model consisted of a high pressure injector tube with a single perforation (1 mm) placed in 10-m-long small bowel of a pig. The bowel was filled with water/contrast solution of 30-40 HU and was incorporated in a phantom model containing vegetable oil to simulate mesenteric fat. Intestinal bleeding in different locations and bleeding velocities varying from zero to 1 ml/min (0.05 ml/min increments, constant bleeding duration of 20 s) was simulated. Nineteen complete datasets in arterial and portal-venous phase using increasing bleeding velocities, and seven negative controls were measured using a 64 MDCT (3-mm slice thickness, 1.5-mm reconstruction increment). Three radiologists blinded to the experimental settings evaluated the datasets in a random order. The likelihood for intestinal bleeding was assessed using a 5-point scale with subsequent ROC analysis. The sensitivity to detect bleeding was 0.44 for a bleeding velocity of 0.10-0.50 ml/min and 0.97 for 0.55-1.00 ml/min. The specificity was 1.00. The area under the curve was calculated to be 0.73, 0.88 and 0.89 for reader 1, 2 and 3, respectively. Dual-phase MDCT provides high sensitivity and specificity in the detection of intestinal bleeding with bleeding velocities of 0.5-1.0 ml/min. Therefore, MDCT should be considered as a primary diagnostic technique in the management of patients with suspected intestinal bleeding. (orig.)

  3. Dyslipidaemia--hepatic and intestinal cross-talk.

    LENUS (Irish Health Repository)

    Tomkin, Gerald H

    2010-06-01

    Cholesterol metabolism is tightly regulated with the majority of de novo cholesterol synthesis occurring in the liver and intestine. 3 Hydroxy-3-methylglutaryl coenzyme A reductase, a major enzyme involved in cholesterol synthesis, is raised in both liver and intestine in diabetic animals. Niemann PickC1-like1 protein regulates cholesterol absorption in the intestine and facilitates cholesterol transport through the liver. There is evidence to suggest that the effect of inhibition of Niemann PickC1-like1 lowers cholesterol through its effect not only in the intestine but also in the liver. ATP binding cassette proteins G5\\/G8 regulate cholesterol re-excretion in the intestine and in the liver, cholesterol excretion into the bile. Diabetes is associated with reduced ATP binding cassette protein G5\\/G8 expression in both the liver and intestine in animal models. Microsomal triglyceride transfer protein is central to the formation of the chylomicron in the intestine and VLDL in the liver. Microsomal triglyceride transfer protein mRNA is increased in diabetes in both the intestine and liver. Cross-talk between the intestine and liver is poorly documented in humans due to the difficulty in obtaining liver biopsies but animal studies are fairly consistent in showing relationships that explain in part mechanisms involved in cholesterol homeostasis.

  4. Human Modeling for Ground Processing Human Factors Engineering Analysis

    Science.gov (United States)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  5. Microstructure-based constitutive modeling for the large intestine validated by histological observations.

    Science.gov (United States)

    Sokolis, Dimitrios P; Sassani, Sofia G

    2013-05-01

    Other than its transport role, the large bowel performs numerous sophisticated functions, e.g. water, electrolyte, and vitamin absorption, optimized by its contractile properties and passive recoil capacity, but these properties have attracted limited attention than has been the case for other parts of the gastrointestinal tract. Accordingly, we investigated in vitro the pseudo-elastic properties of tubular specimens from the ascending, mid, and descending colon, and the rectum of healthy Wistar rats under passive quasi-static conditions and a physiologic range of pressures/axial stretches. A neo-Hookean and five-fiber family model was chosen as a microstructure-based material model for its efficiency in producing accurate representations of the three-dimensional inflation/extension data in relation to the underlying microstructure. Guided by our optical microscopy observations, this model took account of isotropic elastin properties and multi-directional collagen organization, but suffered from parameter covariance. Moreover, the contributions to the total model of the neo-Hookean and circumferential-fiber family were negligible, given the tiny amounts of elastin and circumferentially-arranged collagen fibers that were disclosed histologically, and the contributions of the diagonal and radial-fiber families to data representation were similar. The multiaxial response of the intestinal wall was fit equally accurately but without over-parameterization problems by the neo-Hookean and three-fiber (diagonal and axial) family model. The preferred alignment of collagen fibers towards the axial direction bestowed increased axial stiffness to the tissue. The mid colon was the stiffest region by virtue of its greatest material parameters, as validated by its higher collagen content than that of the distal regions. The present findings generate a more cohesive understanding of the large bowel in histomechanical terms, with potential for clinical and biomedical applications

  6. Connexin 26-mediated gap junctional intercellular communication suppresses paracellular permeability of human intestinal epithelial cell monolayers

    International Nuclear Information System (INIS)

    Morita, Hidekazu; Katsuno, Tatsuro; Hoshimoto, Aihiro; Hirano, Noriaki; Saito, Yasushi; Suzuki, Yasuo

    2004-01-01

    In some cell types, gap junctional intercellular communication (GJIC) is associated with tight junctions. The present study was performed to determine the roles of GJIC in regulation of the barrier function of tight junctions. Caco-2 human colonic cells were used as a monolayer model, and barrier function was monitored by measuring mannitol permeability and transepithelial electrical resistance (TER). The monolayers were chemically disrupted by treatment with oleic acid and taurocholic acid. Western blotting analyses were performed to evaluate the protein levels of connexins, which are components of gap junctional intercellular channels. Cx26 expression was detected in preconfluent Caco-2 cells, and its level increased gradually after the monolayer reached confluency. These results prompted us to examine whether overexpression of Cx26 affects barrier function. Monolayers of Caco-2 cells stably expressing Cx26 showed significantly lower mannitol permeability and higher TER than mock transfectants when the monolayers were chemically disrupted. The levels of claudin-4, an important component of tight junctions, were significantly increased in the stable Cx26 transfectant. These results suggest that Cx26-mediated GJIC may play a crucial role in enhancing the barrier function of Caco-2 cell monolayers

  7. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village.

    Science.gov (United States)

    Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J; Khieu, Virak; Dalsgaard, Anders; Chimnoi, Wissanuwat; Chhoun, Chamnan; Sok, Daream; Marti, Hanspeter; Muth, Sinuon; Odermatt, Peter

    2014-08-01

    In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong village, Preah Vihear province, Cambodia. Faecal samples were examined microscopically using sodium nitrate and zinc sulphate flotation methods, the Baermann method, Koga Agar plate culture, formalin-ether concentration technique and Kato Katz technique. PCR was used to confirm hookworm, Ascaris spp., Giardia spp. and Blastocystis spp. Major gastrointestinal parasitic infections found in humans included hookworms (63.3%), Entamoeba spp. (27.1%) and Strongyloides stercoralis (24.3%). In dogs, hookworm (80.8%), Spirometra spp. (21.3%) and Strongyloides spp. (14.9%) were most commonly detected and in pigs Isospora suis (75.0%), Oesophagostomum spp. (73.7%) and Entamoeba spp. (31.6%) were found. Eleven parasite species were detected in dogs (eight helminths and three protozoa), seven of which have zoonotic potential, including hookworm, Strongyloides spp., Trichuris spp., Toxocara canis, Echinostoma spp., Giardia duodenalis and Entamoeba spp. Five of the parasite species detected in pigs also have zoonotic potential, including Ascaris spp., Trichuris spp., Capillaria spp., Balantidium coli and Entamoeba spp. Further molecular epidemiological studies will aid characterisation of parasite species and genotypes and allow further insight into the potential for zoonotic cross transmission of parasites in this community. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Impact of probiotic drugs, based on Enterobacter faecium autostrains, on human intestinal microflora in confined habitat

    Science.gov (United States)

    Viacheslav, Ilyin; Batov, Alexey; Usanova, Nonna

    The aim of research: Investigation of influence of probiotic drugs based on autostrains of Enter-obacter faecium, selected from the crew in long term isolation experiment in confined habitat. It is known that during long-term presence in confined habitat the risk of infectious diseases increases. One of the main infectious risk occurs during first 20 days of isolation as a result of exchange of strains and stress-mediated disbacterioses. Therefore it is necessary to evaluate activities of probiotics to avoid this risk. Furthermore, in case of super long term autonomous flight there should be possibilities of application of autochthonous microflora strains as pro-biotics to strengthen colonial resistance of crews. Materials and methods: In the experiment there were used probiotic drugs based on autostrains of E. faecium, selected from the crew before the experiment. Probiotic drugs were consumed during 30 days since the beginning of the experiment with the break of consumption between 10th to 19th day. Results: Comparing the state of intestinal microflora of the crew on the baseline and 14th day of experiment re-vealed remarkable changes of microflora: the increasing of concentration of bifidobacteria and E. faecium (approximately 10 times), elimination of hemolytic streptococcus, yeasts, reduction of the rate of S.aureus, hemolytic gramnegative non-fermenting rods, lactobacilli and normal E.coli. On the 45th day of isolation, 15 days after finishing of auto-strains administration, there fere signs of restoration of disbacteriosis: the quantitative decreasing lactobacilli, bifidobacteria and normal E.coli, increasing of the rate of S.aureus, hemolytic gramnegative nonfermentive rods. Conclusion: Thus we managed to avoid risk of pathogenicity potential growth in first 2 decades of isolation. Application of probiotic, based on the autostrains of E. faecium leads to insignificant changes of concentration of lactobacteries, bifidobacteries, normal E. coli and to

  9. The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes

    Directory of Open Access Journals (Sweden)

    Ruijter Jan M

    2008-11-01

    Full Text Available Abstract Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS, ornithine aminotransferase (OAT, argininosuccinate synthetase (ASS, arginase-1 (ARG1, arginase-2 (ARG2, and nitric-oxide synthase (NOS were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.

  10. Changes in Enteric Neurons of Small Intestine in a Rat Model of Irritable Bowel Syndrome with Diarrhea.

    Science.gov (United States)

    Li, Shan; Fei, Guijun; Fang, Xiucai; Yang, Xilin; Sun, Xiaohong; Qian, Jiaming; Wood, Jackie D; Ke, Meiyun

    2016-04-30

    Physical and/or emotional stresses are important factors in the exacerbation of symptoms in irritable bowel syndrome (IBS). Several lines of evidence support that a major impact of stress on the gastrointestinal tract occurs via the enteric nervous system. We aimed to evaluate histological changes in the submucosal plexus (SMP) and myenteric plexus (MP) of the distal ileum in concert with the intestinal motor function in a rat model of IBS with diarrhea. The rat model was induced by heterotypic chronic and acute stress (CAS). The intestinal transit was measured by administering powdered carbon by gastric gavage. Double immunohistochemical fluorescence staining with whole-mount preparations of SMP and MP of enteric nervous system was used to assess changes in expression of choline acetyltransferase, vasoactive intestinal peptide, or nitric oxide synthase in relation to the pan neuronal marker, anti-Hu. The intestinal transit ratio increased significantly from control values of 50.8% to 60.6% in the CAS group. The numbers of enteric ganglia and neurons in the SMP were increased in the CAS group. The proportions of choline acetyltransferase- and vasoactive intestinal peptide-immunoreactive neurons in the SMP were increased (82.1 ± 4.3% vs. 76.0 ± 5.0%, P = 0.021; 40.5 ± 5.9% vs 28.9 ± 3.7%, P = 0.001), while nitric oxide synthase-immunoreactive neurons in the MP were decreased compared with controls (23.3 ± 4.5% vs 32.4 ± 4.5%, P = 0.002). These morphological changes in enteric neurons to CAS might contribute to the dysfunction in motility and secretion in IBS with diarrhea.

  11. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    Science.gov (United States)

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid

  12. Circadian disorganization alters intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Robin M Voigt

    Full Text Available Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.

  13. Effect of absorbable and nonabsorbable sugars on intestinal calcium absorption in humans

    International Nuclear Information System (INIS)

    Griessen, M.; Speich, P.V.; Infante, F.; Bartholdi, P.; Cochet, B.; Donath, A.; Courvoisier, B.; Bonjour, J.P.

    1989-01-01

    The effects of glucose, galactose, and lactitol on intestinal calcium absorption and gastric emptying were studied in 9, 8, and 20 healthy subjects, respectively. Calcium absorption was measured by using a double-isotope technique and the kinetic parameters were obtained by a deconvolution method. The gastric emptying rate was determined with /sup 99m/Tc-diethylenetriaminepentaacetic acid and was expressed as the half-time of the emptying curve. Each subject was studied under two conditions: (a) with calcium alone and (b) with calcium plus sugar. Glucose and galactose increased the calcium mean transit time and improved the total fractional calcium absorption by 30% (p less than 0.02). Lactitol decreased the mean rate of absorption (p less than 0.001) and reduced the total fractional calcium absorption by 15% (p less than 0.001). The gastric emptying rate did not appear to influence directly the kinetic parameters of calcium absorption. These results show that both glucose and galactose exert the same stimulatory effect as lactose on calcium absorption in subjects with normal lactase whereas lactitol mimics the effects of lactose in lactase-deficient patients. Thus the absorbability of sugars determines their effect on calcium absorption

  14. Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism.

    Science.gov (United States)

    Jernberg, Cecilia; Sullivan, Asa; Edlund, Charlotta; Jansson, Janet K

    2005-01-01

    Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic.

  15. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  16. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model.

    Directory of Open Access Journals (Sweden)

    Marjorie Buttet

    Full Text Available The metabolic syndrome (MetS greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD. By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP and blood clearance (ApoC2. These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG, while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the

  17. Standardisation of digital human models.

    Science.gov (United States)

    Paul, Gunther; Wischniewski, Sascha

    2012-01-01

    Digital human models (DHM) have evolved as useful tools for ergonomic workplace design and product development, and found in various industries and education. DHM systems which dominate the market were developed for specific purposes and differ significantly, which is not only reflected in non-compatible results of DHM simulations, but also provoking misunderstanding of how DHM simulations relate to real world problems. While DHM developers are restricted by uncertainty about the user need and lack of model data related standards, users are confined to one specific product and cannot exchange results, or upgrade to another DHM system, as their previous results would be rendered worthless. Furthermore, origin and validity of anthropometric and biomechanical data is not transparent to the user. The lack of standardisation in DHM systems has become a major roadblock in further system development, affecting all stakeholders in the DHM industry. Evidently, a framework for standardising digital human models is necessary to overcome current obstructions. Practitioner Summary: This short communication addresses a standardisation issue for digital human models, which has been addressed at the International Ergonomics Association Technical Committee for Human Simulation and Virtual Environments. It is the outcome of a workshop at the DHM 2011 symposium in Lyon, which concluded steps towards DHM standardisation that need to be taken.

  18. Modelling biased human trust dynamics

    NARCIS (Netherlands)

    Hoogendoorn, M.; Jaffry, S.W.; Maanen, P.P. van; Treur, J.

    2013-01-01

    Abstract. Within human trust related behaviour, according to the literature from the domains of Psychology and Social Sciences often non-rational behaviour can be observed. Current trust models that have been developed typically do not incorporate non-rational elements in the trust formation

  19. Naturally occurring products of proglucagon 111-160 in the porcine and human small intestine

    DEFF Research Database (Denmark)

    Buhl, T; Thim, L; Kofod, Hans

    1988-01-01

    to release proglucagon 111-123 (designated spacer peptide 2), which, like proglucagon 126-158 must be considered a potential hormonal entity. By isocratic high pressure liquid chromatography human spacer peptide 2 was indistinguishable from synthetic proglucagon 111-122 amide, suggesting...... that this is the structure of the naturally occurring human peptide....

  20. Intestinal Transportations of Main Chemical Compositions of Polygoni Multiflori Radix in Caco-2 Cell Model

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2014-01-01

    Full Text Available Context. Polygoni Multiflori Radix (PMR is originated from the root of Polygonum multiflorum Thunb. and used in oriental countries for centuries. However, little researches pay close attention to the absorption of its major constituents. Objective. Transepithelial transport of TSG, RL, PL, and four anthraquinones is carried out. Materials and Methods. Caco-2 cell monolayer, which represented a well-established model for the study of intestinal transport of nutrients and xenobiotics, was used in this paper. Results. The apparent permeability coefficients (Papp in the Caco-2 cell monolayers were TSG (2.372 × 10−9 < EG (2.391 × 10−9 < EN (2.483 × 10−9 < PL (4.917 × 10−9 < RN (1.707 × 10−8 < RL (1.778 × 10−8 < AE (1.952 × 10−8. Thus, RN, RL, and AE were considered partly absorbed, while other constituents were hardly absorbed. Discussion and Conclusion. Glycosides showed poor permeabilities than aglycones. In the meantime, TSG and EN gave out poor recovery rates in this assay, which indicated that TSG and EN may accumulate or metabolise in the Caco-2 cells. In silico prediction indicated that Gibbs energy (r=0.751, p<0.05 and heat of form (r=0.701, p<0.05 were strongly positively correlated with Papp.

  1. In vivo perfusion assessment of an anastomosis surgery on porcine intestinal model (Conference Presentation)

    Science.gov (United States)

    Le, Hanh N. D.; Opferman, Justin; Decker, Ryan; Cheon, Gyeong W.; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2016-04-01

    Anastomosis, the connection of two structures, is a critical procedure for reconstructive surgery with over 1 million cases/year for visceral indication alone. However, complication rates such as strictures and leakage affect up to 19% of cases for colorectal anastomoses and up to 30% for visceral transplantation anastomoses. Local ischemia plays a critical role in anastomotic complications, making blood perfusion an important indicator for tissue health and predictor for healing following anastomosis. In this work, we apply a real time multispectral imaging technique to monitor impact on tissue perfusion due to varying interrupted suture spacing and suture tensions. Multispectral tissue images at 470, 540, 560, 580, 670 and 760 nm are analyzed in conjunction with an empirical model based on diffuse reflectance process to quantify the hemoglobin oxygen saturation within the suture site. The investigated tissues for anastomoses include porcine small (jejunum and ileum) and large (transverse colon) intestines. Two experiments using interrupted suturing with suture spacing of 1, 2, and 3 mm and tension levels from 0 N to 2.5 N are conducted. Tissue perfusion at 5, 10, 20 and 30 min after suturing are recorded and compared with the initial normal state. The result indicates the contrast between healthy and ischemic tissue areas and assists the determination of suturing spacing and tension. Therefore, the assessment of tissue perfusion will permit the development and intra-surgical monitoring of an optimal suture protocol during anastomosis with less complications and improved functional outcome.

  2. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  3. Exploration of Serum Proteomic Profiling and Diagnostic Model That Differentiate Crohn's Disease and Intestinal Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Fenming Zhang

    Full Text Available To explore the diagnostic models of Crohn's disease (CD, Intestinal tuberculosis (ITB and the differential diagnostic model between CD and ITB by analyzing serum proteome profiles.Serum proteome profiles from 30 CD patients, 21 ITB patients and 30 healthy controls (HCs were analyzed by using weak cationic magnetic beads combined with MALDI-TOF-MS technique to detect the differentially expressed proteins of serum samples. Three groups were made and compared accordingly: group of CD patients and HCs, group of ITB patients and HCs, group of CD patients and ITB patients. Wilcoxon rank sum test was used to screen the ten most differentiated protein peaks (P < 0.05. Genetic algorithm combining with support vector machine (SVM was utilized to establish the optimal diagnostic models for CD, ITB and the optimal differential diagnostic model between CD and ITB. The predictive effects of these models were evaluated by Leave one out (LOO cross validation method.There were 236 protein peaks differently expressed between group of CD patients and HCs, 305 protein peaks differently expressed between group of ITB patients and HCs, 332 protein peaks differently expressed between group of CD patients and ITB patients. Ten most differentially expressed peaks were screened out between three groups respectively (P < 0.05 to establish diagnostic models and differential diagnostic model. A diagnostic model comprising of four protein peaks (M/Z 4964, 3029, 2833, 2900 can well distinguish CD patients and HCs, with a specificity and sensitivity of 96.7% and 96.7% respectively. A diagnostic model comprising four protein peaks (M/Z 3030, 2105, 2545, 4210 can well distinguish ITB patients and HCs, with a specificity and sensitivity of 93.3% and 95.2% respectively. A differential diagnostic model comprising three potential biomarkers protein peaks (M/Z 4267, 4223, 1541 can well distinguish CD patients and ITB patients, with a specificity and sensitivity of 76.2% and 80

  4. Modeling the growth dynamics of multiple Escherichia coli strains in the pig intestine following intramuscular ampicillin treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    using a mathematical model to simulate the competitive growth of E. coli strains in a pig intestine under specified plasma concentration profiles of ampicillin. Results : In vitro growth results demonstrated that the resistant strains did not carry a fitness cost for their resistance, and that the most...... with ampicillin resistance in E. coli. Besides dosing factors, epidemiological factors (such as number of competing strains and bacterial excretion) influenced resistance development and need to be considered further in relation to optimal treatment strategies. The modeling approach used in the study is generic......Background : This study evaluated how dosing regimen for intramuscularly-administered ampicillin, composition of Escherichia coli strains with regard to ampicillin susceptibility, and excretion of bacteria from the intestine affected the level of resistance among Escherichia coli strains...

  5. The Adhesion of Lactobacillus salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins.

    Science.gov (United States)

    Wang, Ran; Jiang, Lun; Zhang, Ming; Zhao, Liang; Hao, Yanling; Guo, Huiyuan; Sang, Yue; Zhang, Hao; Ren, Fazheng

    2017-03-10

    Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of L. salivarius REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a cbpA deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of L. salivarius REN to colonize the human gut.

  6. Bioactive Milk for Intestinal Maturation in Preterm Neonates

    DEFF Research Database (Denmark)

    Li, Yanqi

    The fetal small intestine grows dramatically fast during the second and third trimester of human pregnancy. Many intestinal functions are therefore affected by preterm birth, including gastrointestinal motility, digestive and absorptive function, mucosal barrier function, and the intestinal...

  7. Age-dependent metabolic model of radionuclides in Human body

    International Nuclear Information System (INIS)

    Ye Changqing

    1986-01-01

    Age-dependent metabolic model of radionuclides in human body was introduced briefly. These data are necessary in setting up the secondary dose limit of internal exposure of the general public. For the gastro-intestinal tract model, it was shown that the dose of various sections of GI tract caused by unsoluble radioactive materials were influenced by the mass of section and mean residence time, both of which are age-dependent, but the absorption fraction f 1 through gastro-intestinal tract should be corrected only for the infant less than 1 year of age. For the lung model, it was indicated that the fraction of deposition or clearance of particles in the different compartments of lung were related to age. The doses of tracheobronchial and pulmonary compartment of adult for 222 Rn or 220 Rn with their decay products were one third of that of 6-years old child who received the maximum dose in comparison with other ages. The age-dependent metabolic models in organ and/or body of Tritium, Iodine-131, Caesium-137, radioactive Strontium, Radium and Plutonium were reported. A generalized approach for estimating the effect of age on deposition fractions and retention half-time were presented. Calculated results indicated that younger ages were characterized by increased deposition fraction and decreased half-time for retention. Representative examples were provided for 21 elements of current interest in health physics

  8. Inhibition of human pancreatic and biliary output but not intestinal motility by physiological intraileal lipid loads

    DEFF Research Database (Denmark)

    Keller, Jutta; Holst, Jens Juul; Layer, Peter

    2005-01-01

    Lipid perfusion into the distal ileal lumen at supraphysiological loads inhibits pancreatic exocrine secretion and gastrointestinal motility in humans. In the present study, we sought to determine the effects of physiological postprandial intraileal lipid concentrations on endogenously stimulated...

  9. Consumption of Camembert cheese stimulates commensal enterococci in healthy human intestinal microbiota.

    Science.gov (United States)

    Firmesse, Olivier; Rabot, Sylvie; Bermúdez-Humarán, Luis G; Corthier, Gérard; Furet, Jean-Pierre

    2007-11-01

    Enterococci are natural inhabitants of the human gastrointestinal tract and the main Gram-positive and facultative anaerobic cocci recovered in human faeces. They are also present in a variety of fermented dairy and meat products, and some rare isolates are responsible for severe infections such as endocarditis and meningitis. The aim of the present study was to evaluate the effect of Camembert cheese consumption by healthy human volunteers on the faecal enterococcal population. A highly specific real-time quantitative PCR approach was designed and used to type enterococcal species in human faeces. Two species were found, Enterococcus faecalis and Enterococcus faecium, and only the Enterococcus faecalis population was significantly enhanced after Camembert cheese consumption, whereas Escherichia coli population and the dominant microbiota remained unaffected throughout the trial.

  10. The intestinal absorption of dietary cholesterol by hypercholesterolemic (type II) and normocholesterolemic humans.

    Science.gov (United States)

    Connor, W E; Lin, D S

    1974-04-01

    The incomplete absorption of dietary cholesterol may represent an adaptive intestinal barrier that prevents hypercholesterolemia. To explore this mechanism, we compared cholesterol absorption in 15 normocholesterolemic and 6 hypercholesterolemic (type II) subjects fed background cholesterol-free formula diets with 40% of calories as fat. Each test meal consisted of a breakfast into which was incorporated scrambled egg yolk containing 300-500 mg of cholesterol and [4-(14)C]cholesterol (3-22 muCi), either naturally incorporated into the yolk cholesterol by previous isotope injection into the laying hen or added in peanut oil to the yolk of the test breakfast. In some instances [1alpha-(3)H]cholesterol was the radioactive marker. The radioactivity of the fecal neutral sterol fraction was determined in daily stool samples for the next 7 days to provide an estimate of unabsorbed dietary cholesterol. The amount of absorbed and reexcreted labeled cholesterol proved negligible. Most unabsorbed dietary cholesterol appeared in the stool on the second or third day after the meal, and 95% or more was recovered in the stool by 6 days. Plasma specific activity curves were usually maximal at 48 h. Normal subjects absorbed 44.5+/-9.3 (SD) of the administered cholesterol (range 25.9-60.3). Hypercholesterolemics absorbed the same percentage of cholesterol as normals: 47.6+/-12.6% (range 29.3-67.3). Absorption was similar whether the radiolabeled cholesterol was added to egg yolk or naturally incorporated in it (42.1+/-9.3 vs. 48.9+/-9.8%). Six normal subjects were fed a cholesterol-free formula for 4 wk, and then different amounts of cholesterol (110-610 mg/day) were added for another 4 wk. At the end of each period, single test meals containing either 110, 310, or 610 mg of cholesterol and [1alpha-(3)H]cholesterol were administered. Cholesterol absorption was 42.3+/-6.0% and 45.4+/-8.3% for the two dietary periods, respectively. The absolute cholesterol absorption was linearly

  11. Contribution of H. pylori and smoking trends to US incidence of intestinal-type noncardia gastric adenocarcinoma: a microsimulation model.

    Directory of Open Access Journals (Sweden)

    Jennifer M Yeh

    Full Text Available Although gastric cancer has declined dramatically in the US, the disease remains the second leading cause of cancer mortality worldwide. A better understanding of reasons for the decline can provide important insights into effective preventive strategies. We sought to estimate the contribution of risk factor trends on past and future intestinal-type noncardia gastric adenocarcinoma (NCGA incidence.We developed a population-based microsimulation model of intestinal-type NCGA and calibrated it to US epidemiologic data on precancerous lesions and cancer. The model explicitly incorporated the impact of Helicobacter pylori and smoking on disease natural history, for which birth cohort-specific trends were derived from the National Health and Nutrition Examination Survey (NHANES and National Health Interview Survey (NHIS. Between 1978 and 2008, the model estimated that intestinal-type NCGA incidence declined 60% from 11.0 to 4.4 per 100,000 men, <3% discrepancy from national statistics. H. pylori and smoking trends combined accounted for 47% (range = 30%-58% of the observed decline. With no tobacco control, incidence would have declined only 56%, suggesting that lower smoking initiation and higher cessation rates observed after the 1960s accelerated the relative decline in cancer incidence by 7% (range = 0%-21%. With continued risk factor trends, incidence is projected to decline an additional 47% between 2008 and 2040, the majority of which will be attributable to H. pylori and smoking (81%; range = 61%-100%. Limitations include assuming all other risk factors influenced gastric carcinogenesis as one factor and restricting the analysis to men.Trends in modifiable risk factors explain a significant proportion of the decline of intestinal-type NCGA incidence in the US, and are projected to continue. Although past tobacco control efforts have hastened the decline, full benefits will take decades to be realized, and further discouragement of smoking and

  12. Contribution of H. pylori and smoking trends to US incidence of intestinal-type noncardia gastric adenocarcinoma: a microsimulation model.

    Science.gov (United States)

    Yeh, Jennifer M; Hur, Chin; Schrag, Deb; Kuntz, Karen M; Ezzati, Majid; Stout, Natasha; Ward, Zachary; Goldie, Sue J

    2013-01-01

    Although gastric cancer has declined dramatically in the US, the disease remains the second leading cause of cancer mortality worldwide. A better understanding of reasons for the decline can provide important insights into effective preventive strategies. We sought to estimate the contribution of risk factor trends on past and future intestinal-type noncardia gastric adenocarcinoma (NCGA) incidence. We developed a population-based microsimulation model of intestinal-type NCGA and calibrated it to US epidemiologic data on precancerous lesions and cancer. The model explicitly incorporated the impact of Helicobacter pylori and smoking on disease natural history, for which birth cohort-specific trends were derived from the National Health and Nutrition Examination Survey (NHANES) and National Health Interview Survey (NHIS). Between 1978 and 2008, the model estimated that intestinal-type NCGA incidence declined 60% from 11.0 to 4.4 per 100,000 men, <3% discrepancy from national statistics. H. pylori and smoking trends combined accounted for 47% (range = 30%-58%) of the observed decline. With no tobacco control, incidence would have declined only 56%, suggesting that lower smoking initiation and higher cessation rates observed after the 1960s accelerated the relative decline in cancer incidence by 7% (range = 0%-21%). With continued risk factor trends, incidence is projected to decline an additional 47% between 2008 and 2040, the majority of which will be attributable to H. pylori and smoking (81%; range = 61%-100%). Limitations include assuming all other risk factors influenced gastric carcinogenesis as one factor and restricting the analysis to men. Trends in modifiable risk factors explain a significant proportion of the decline of intestinal-type NCGA incidence in the US, and are projected to continue. Although past tobacco control efforts have hastened the decline, full benefits will take decades to be realized, and further discouragement of smoking and reduction of

  13. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice

    NARCIS (Netherlands)

    Halim, Danny; Wilson, Michael P.; Oliver, Daniel; Brosens, Erwin; Verheij, Joke B. G. M.; Han, Yu; Nanda, Vivek; Lyu, Qing; Doukas, Michael; Stoop, Hans; Brouwer, Rutger W. W.; van IJcken, Wilfred F. J.; Slivano, Orazio J.; Burns, Alan J.; Christie, Christine K.; Bentley, Karen L. de Mesy; Brooks, Alice S.; Tibboel, Dick; Xu, Suowen; Jin, Zheng Gen; Djuwantono, Tono; Yan, Wei; Alves, Maria M.; Hofstra, Robert M. W.; Miano, Joseph M.

    2017-01-01

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2

  14. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications.

    Science.gov (United States)

    Pohl, Calvin S; Medland, Julia E; Moeser, Adam J

    2015-12-15

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. Copyright © 2015 the American Physiological Society.

  15. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications

    Science.gov (United States)

    Pohl, Calvin S.; Medland, Julia E.

    2015-01-01

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. PMID:26451004

  16. Intestinal Surgery.

    Science.gov (United States)

    Desrochers, André; Anderson, David E

    2016-11-01

    A wide variety of disorders affecting the intestinal tract in cattle may require surgery. Among those disorders the more common are: intestinal volvulus, jejunal hemorrhage syndrome and more recently the duodenal sigmoid flexure volvulus. Although general principles of intestinal surgery can be applied, cattle has anatomical and behavior particularities that must be known before invading the abdomen. This article focuses on surgical techniques used to optimize outcomes and discusses specific disorders of small intestine. Diagnoses and surgical techniques presented can be applied in field conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Fermentation of D-Tagatose by Human Intestinal Bacteria and Dairy Lactic Acid Bacteria

    OpenAIRE

    Bertelsen, Hans; Andersen, Hans; Tvede, Michael

    2011-01-01

    A number of 174 normal or pathogenic human enteric bacteria and dairy lactic acid bacteria were screened for D-tagatose fermentation by incubation for 48 hours. Selection criteria for fermentation employed included a drop in pH below 5.5 and a distance to controls of more than 0.5. Only a few of the normal occurring enteric human bacteria were able to ferment D-tagatose, among those Enterococcus faecalis, Enterococcus faecium and Lactobacillus strains. D-Tagatose fermentation seems to be comm...

  18. Gastric and intestinal myiasis due to Ornidia obesa (Diptera: Syrphidae in humans. First report in colombia

    Directory of Open Access Journals (Sweden)

    Gustavo López V

    2017-01-01

    Full Text Available Myasis are parasitic infestations of animals and humans tissues and is caused by fly larvae. This kind of infestation has Public Health importance. In the Colombian biomedical literature the reports about myiasis in humans are scarce. In this paper, we report two cases of patients with gastrointestinal myiasis where the etiologic agents involved were Ornidia obesa and Ornidia sp (Diptera: Syrphidae. The taxonomic identification of the larvae was done at the Colombian Institute of Tropical Medicine and taxonomic confirmation was done at the laboratory of medicine veterinary and Zoology of Sao Pablo University. These two cases of myiasis are of first report in Colombia

  19. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency

    DEFF Research Database (Denmark)

    Jackson, Robert S; Creemers, John W M; Farooqi, I Sadaf

    2003-01-01

    . The differences in the nature and severity of presentation between the two cases cannot readily be explained on the basis of allelic heterogeneity, as the nonsense and missense mutations from both subjects had comparably severe effects on the catalytic activity of PC1. Despite Subject A's negligible PC1 activity......We have previously described the only reported case of human proprotein convertase 1 (PC1) deficiency, in a female (Subject A) with obesity, hypogonadism, hypoadrenalism, and reactive hypoglycemia. We now report the second case of human PC1 deficiency (Subject B), also due to compound...

  20. Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets

    Science.gov (United States)

    Liu, Hongbin; Hou, Chengli; Wang, Gang; Jia, Hongmin; Yu, Haitao; Zeng, Xiangfang; Thacker, Philip A.; Zhang, Guolong; Qiao, Shiyan

    2017-01-01

    Modulation of the synthesis of endogenous host defense peptides (HDPs) by probiotics represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections in human and animals. However, the extent of HDP modulation by probiotics is species dependent and strain specific. In the present study, The porcine small intestinal epithelial cell line (IPEC-J2) cells and neonatal piglets were used as in-vitro and in-vivo models to test whether Lactobacillus reuteri I5007 could modulate intestinal HDP expression. Gene expressions of HDPs, toll-like receptors, and fatty acid receptors were determined, as well as colonic short chain fatty acid concentrations and microbiota. Exposure to 108 colony forming units (CFU)/mL of L. reuteri I5007 for 6 h significantly increased the expression of porcine β-Defensin2 (PBD2), pBD3, pBD114, pBD129, and protegrins (PG) 1-5 in IPEC-J2 cells. Similarly, L. reuteri I5007 administration significantly increased the expression of jejunal pBD2 as well as colonic pBD2, pBD3, pBD114, and pBD129 in neonatal piglets (p reuteri I5007 in the piglets did not affect the colonic microbiota structure. Our findings suggested that L. reuteri I5007 could modulate intestinal HDP expression and improve the gut health of neonatal piglets, probably through the increase in colonic butyric acid concentration and the up-regulation of the downstream molecules of butyric acid, PPAR-γ and GPR41, but not through modifying gut microbiota structure. PMID:28561758

  1. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason

    1995-01-01

    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  2. The dose-response relation in human volunteers for gastro-intestinal pathogens

    NARCIS (Netherlands)

    Teunis PFM; Heijden OG van der; Giessen JWB van der; Havelaar AH; MGB

    1996-01-01

    Published data on infection of human hosts with various protozoa, bacteria, and viruses causing gastro-enteritis are used to establish a quantitative relationship between ingested dose and the risk of infection. For all data sets analysed, this relationship is determined by fitting either an

  3. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.

    Science.gov (United States)

    Louis, Petra; Flint, Harry J

    2009-05-01

    Butyrate-producing bacteria play a key role in colonic health in humans. This review provides an overview of the current knowledge of the diversity, metabolism and microbial ecology of this functionally important group of bacteria. Human colonic butyrate producers are Gram-positive firmicutes, but are phylogenetically diverse, with the two most abundant groups related to Eubacterium rectale/Roseburia spp. and to Faecalibacterium prausnitzii. Five different arrangements have been identified for the genes of the central pathway involved in butyrate synthesis, while in most cases butyryl-CoA : acetate CoA-transferase, rather than butyrate kinase, appears to perform the final step in butyrate synthesis. Mechanisms have been proposed recently in non-gut Clostridium spp. whereby butyrate synthesis can result in energy generation via both substrate-level phosphorylation and proton gradients. Here we suggest that these mechanisms also apply to the majority of butyrate producers from the human colon. The roles of these bacteria in the gut community and their influence on health are now being uncovered, taking advantage of the availability of cultured isolates and molecular methodologies. Populations of F. prausnitzii are reported to be decreased in Crohn's disease, for example, while populations of Roseburia relatives appear to be particularly sensitive to the diet composition in human volunteer studies.

  4. Development of a finite element model of the human abdomen.

    Science.gov (United States)

    Lee, J B; Yang, K H

    2001-11-01

    Currently, three-dimensional finite element models of the human body have been developed for frequently injured anatomical regions such as the brain, chest, extremities and pelvis. While a few models of the human body include the abdomen, these models have tended to oversimplify the complexity of the abdominal region. As the first step in understanding abdominal injuries via numerical methods, a 3D finite element model of a 50(th) percentile male human abdomen (WSUHAM) has been developed and validated against experimental data obtained from two sets of side impact tests and a series of frontal impact tests. The model includes a detailed representation of the liver, spleen, kidneys, spine, skin and major blood vessels. Hollow organs, such as the esophagus, stomach, small and large intestines, gallbladder, bile ducts, ureters, rectum and adrenal glands are grouped into three bodybags in order to provide realistic inertial properties and to maintain the position of the solid organs in their appropriate locations. Using direct connections, the model was joined superiorly to a partial model of the human thorax, and inferiorly to models of the human pelvis and the lower extremities that have been previously developed. Material properties for various tissues of the abdomen were derived from the literature. Data obtained in a series of cadaveric pendulum impact tests conducted at Wayne State University (WSU), a series of lateral drop tests conducted at Association Peugeot-Renault (APR) and a series of cadaveric lower abdomen frontal impact tests conducted at WSU were used to validate the model. Results predicted by the model match these experimental data for various impact speeds, impactor masses and drop heights. Further study is still needed in order to fully validate WSUHAM before it can be used to assess various impact loading conditions associated with vehicular crashes.

  5. FETAL METABOLIC PROGRAMMING OF THE SMALL INTESTINE IN A COPENHAGEN SHEEP MODEL

    DEFF Research Database (Denmark)

    Axel, Anne Marie Dixen; Khanal, Prabhat; Kongsted, Anna Hauntoft

    for diabetes development. Twin-pregnant ewes where fed a Normal, a Low or a High diet during the last 6 weeks of gestation and the twin lambs where fed either a Conventional or a High fat, High carbohydrate (HCHF) diet during the first 6 months of life. Feeding challenge tests were performed on all lambs...... have shown unexpected involvement of the small intestine in diabetes pathophysiology as it in most cases result in a complete resolution of the diabetes before weight loss. Therefore we hypothesize that the small intestine is a subject of metabolic programming and that this programming can predispose...

  6. Intestinal microdialysis--applicability, reproducibility and local tissue response in a pig model

    DEFF Research Database (Denmark)

    Emmertsen, K J; Wara, P; Sørensen, Flemming Brandt

    2005-01-01

    BACKGROUND AND AIMS: Microdialysis has been applied to the intestinal wall for the purpose of monitoring local ischemia. The aim of this study was to investigate the applicability, reproducibility and local response to microdialysis in the intestinal wall. MATERIALS AND METHODS: In 12 pigs two...... the probes were processed for histological examination. RESULTS: Large intra- and inter-group differences in the relative recovery were found between all locations. Absolute values of metabolites showed no significant changes during the study period. The lactate in blood was 25-30% of the intra-tissue values...

  7. Efeitos hemodinâmicos e metabólicos iniciais da perfusão hipotérmica intestinal in situ.: avaliação de um novo modelo canino de autotransplante intestinal Initial hemodynamic and metabolic effects of intestinal hypothermic perfusion in situ: an alternative model of canine intestinal autotransplantation

    Directory of Open Access Journals (Sweden)

    Ruy Jorge Cruz Junior

    2004-08-01

    , hemoglobina assim como na temperatura central. CONCLUSÃO: O modelo de autotransplante intestinal é extremamente útil e de fácil execução, para a avaliação inicial de soluções de preservação e/ou drogas antioxidantes, comumente utilizadas no transplante de intestino.Intestinal transplantation is an acceptable therapy for children and adults with short bowel syndrome. The great majority of large animal experimental models of intestinal transplantation are complex and take a lot of time to be performed. In this study, we developed an alternative model of intestinal autotransplantation and evaluate the initial impact of isolated hypothermic intestinal perfusion with Ringer’s lactate solution on hemodynamic and metabolic parameters. METHODS: Six pentobarbital anesthetized mongrel dogs were used in this study (22,8±1,4 Kg. Systemic hemodynamic were evaluated through a Swan-Ganz and arterial catheters; while gastrointestinal tract perfusion by superior mesenteric vein blood flow (SMVBF, ultrasonic flowprobe and intestinal mucosal pCO2 (pCO2-int and pCO2-gap, gas tonometry. Initially, the proximal jejunum and distal ileum were transected; at the basis of the mesentery excepting the superior mesenteric artery and vein. The small bowel was then perfused in situ with cold (4ºC Ringer’s lactate solution for 30 minutes, with an automatic pump. The animals where observed for 120 minutes after reperfusion. Blood samples were collected from thoracic aorta for gas blood analysis. RESULTS: Hypothermic intestinal perfusion induced a partial reduction on SMVBF, only in the first 30 min of reperfusion (398±102,8 to 587±70,9 ml/min and an increase on pCO2-gap (2±2,7 to 29,8±6 mmHg. During the experimental protocol, we did not observe significant alterations on systemic hemodynamic or metabolic parameters (MAP, CO, pH, base excess and hemoglobin levels as well as on central core temperature. CONCLUSION: The model of intestinal transplantation is very useful to test different

  8. Resveratrol efficiently improves pulmonary function via stabilizing mast cells in a rat intestinal injury model.

    Science.gov (United States)

    Huang, Xiaolei; Zhao, Weicheng; Hu, Dan; Han, Xue; Wang, Hanbin; Yang, Jianyu; Xu, Yang; Li, Yuantao; Yao, Weifeng; Chen, Chaojin

    2017-09-15

    Intestinal ischemia/reperfusion (IIR) leads to acute lung injury (ALI) distally by aggravating pulmonary oxidative stress. Resveratrol is effective in attenuating ALI through its antioxidant capacity. This study aimed to determine the effects of resveratrol on IIR-induced ALI and to explore the role of mast cells (MCs) activation in a rat model of IIR. Adult Sprague-Dawley rats were subjected to IIR by occluding the superior mesenteric artery for 60min followed by 4-hour reperfusion. Resveratrol was intraperitoneally injected at a dose of 15mg/kg for 5days before IIR. MCs stabilizer/inhibitor cromolyn sodium and degranulator compound 48/80 were used to explore the interaction between resveratrol and MCs. Lung tissues were collected for pathological detection and MCs staining. Pulmonary protein expression of surfactant protein-C (SP-C), tryptase, p47 phox and gp91 phox (two NADPH oxidase subunits), ICAM-1(intercellular adhesion molecule-1) and P-selectin were detected. The levels of oxidative stress markers (SOD, MDA, H 2 O 2 and MPO) and β-hexosaminidase were also measured. At the end of IIR, lung injury was significantly increased and was associated with decreased expression of SP-C and increased lung oxidative stress. Increased inflammation as well as activation of MCs was also observed in the lungs after IIR. All these changes were prevented or reversed by resveratrol pretreatment or MCs inhibition with cromolyn sodium. However, these protective effects of resveratrol or cromolyn sodium were reduced by MCs degranulator compound 48/80. These findings reveal that resveratrol attenuates IIR-induced ALI by reducing NADPH oxidase protein expression and inflammation through stabilizing MCs. Copyright © 2017. Published by Elsevier Inc.

  9. Endoscopic intestinal bypass creation by using self-assembling magnets in a porcine model.

    Science.gov (United States)

    Ryou, Marvin; Agoston, A Tony; Thompson, Christopher C

    2016-04-01

    A purely endoluminal method of GI bypass would be desirable for the treatment of obstruction, obesity, or metabolic syndrome. We have developed a technology based on miniature self-assembling magnets that create large-caliber anastomoses (Incisionless Anastomosis System [IAS]). The aim of this study was to evaluate procedural characteristics of IAS deployment and long-term anastomotic integrity and patency. We performed a 3-month survival study of Yorkshire pigs (5 interventions, 3 controls). Intervention pigs underwent simultaneous enteroscopy/colonoscopy performed with the animals under intravenous sedation. The IAS magnets were deployed and coupled with reciprocal magnets under fluoroscopy. Every 3 to 6 days pigs underwent endoscopy until jejunocolonic anastomosis (dual-path bypass) creation and magnet expulsion. Necropsies and histological evaluation were performed. The primary endpoints were technical success; secondary endpoints of anastomosis integrity, patency, and histological characteristics were weight trends. Under intravenous sedation, endoscopic bypass creation by using IAS magnets was successfully performed in 5 of 5 pigs (100%). Given porcine anatomy, the easiest dual-path bypass to create was between the proximal jejunum and colon. The mean procedure time was 14.7 minutes. Patent, leak-free anastomoses formed by day 4. All IAS magnets were expelled by day 12. All anastomoses were fully patent at 3 months with a mean diameter of 3.5 cm. The mean 3-month weight was 45 kg in bypass pigs and 78 kg in controls (P = .01). At necropsy, adhesions were absent. Histology showed full re-epithelialization across the anastomosis without fibrosis or inflammation. Large-caliber, leak-free, foreign body-free endoscopic intestinal bypass by using IAS magnets can be safely and rapidly performed in the porcine by model using only intravenous sedation. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  10. Profound Chemopreventative Effects of a Hydrogen Sulfide-Releasing NSAID in the APCMin/+ Mouse Model of Intestinal Tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Mark Paul-Clark

    Full Text Available Nonsteroidal anti-inflammatory drugs have been shown to reduce the incidence of gastrointestinal cancers, but the propensity of these drugs to cause ulcers and bleeding limits their use. H2S has been shown to be a powerful cytoprotective and anti-inflammatory substance in the digestive system. This study explored the possibility that a H2S-releasing nonsteroidal anti-inflammatory drug (ATB-346 would be effective in a murine model of hereditary intestinal cancer (APCMin+ mouse and investigated potential mechanisms of action via transcriptomics analysis. Daily treatment with ATB-346 was significantly more effective at preventing intestinal polyp formation than naproxen. Significant beneficial effects were seen with a treatment period of only 3-7 days, and reversal of existing polyps was observed in the colon. ATB-346, but not naproxen, significantly decreased expression of intestinal cancer-associated signaling molecules (cMyc, β-catenin. Transcriptomic analysis identified 20 genes that were up-regulated in APCMin+ mice, 18 of which were reduced to wild-type levels by one week of treatment with ATB-346. ATB-346 is a novel, gastrointestinal-sparing anti-inflammatory drug that potently and rapidly prevents and reverses the development of pre-cancerous lesions in a mouse model of hereditary intestinal tumorigenesis. These effects may be related to the combined effects of suppression of cyclooxygenase and release of H2S, and correction of most of the APCMin+-associated alterations in the transcriptome. ATB-346 may represent a promising agent for chemoprevention of tumorigenesis in the GI tract and elsewhere.

  11. Reprodaetion of an animal model of multiple intestinal injuries mimicking "lethal triad" caused by severe penetrating abdominal trauma

    Directory of Open Access Journals (Sweden)

    Peng-fei WANG

    2011-03-01

    Full Text Available Objective To reproduce an animal model of multi-intestinal injuries with "lethal triad" characterized by low body temperature,acidosis and coagulopathy.Methods Six female domestic outbred pigs were anesthetized,and the carotid artery and jugular vein were cannulated for monitoring the blood pressure and heart rate and for infusion of fluid.The animals were shot with a gun to create a severe penetrating abdominal trauma.Immediately after the shooting,50% of total blood volume(35ml/kg hemorrhage was drawn from the carotid artery in 20min.After a 40min shock period,4h of pre-hospital phase was mimicked by normal saline(NS resuscitation to maintain systolic blood pressure(SBP > 80mmHg or mean arterial pressure(MAP > 60mmHg.When SBP > 80mmHg or MAP > 60mmHg,no fluid infusion or additional bleeding was given.Hemodynamic parameters were recorded,and pathology of myocardium,lung,small intestine and liver was observed.Results There were multiple intestinal perforations(8-10 site injuries/pig leading to intra-abdominal contamination,mesenteric injury(1-2 site injuries/pig resulted in partial intestinal ischemia and intra-abdominal hemorrhage,and no large colon and mesenteric vascular injury.One pig died before the completion of the model establishment(at the end of pre-hospital resuscitation.The typical symptoms of trauma-induced hemorrhagic shock were observed in survival animals.Low temperature(33.3±0.5℃,acidosis(pH=7.242±0.064,and coagulopathy(protrombin time and activated partial thromboplasting time prolonged were observed after pre-hospital resuscitation.Pathology showed that myocardium,lung,small intestine and liver were severely injured.Conclusions A new model,simulating three stages of "traumatic hemorrhagic shock,pre-hospital recovery and hospital treatment" and inducing the "lethal triad" accompanied with abdominal pollution,has been successfully established.This model has good stability and high reproducibility.The survival animals can be

  12. Towards the establishment of a porcine model to study human amebiasis.

    Directory of Open Access Journals (Sweden)

    Fabienne Girard-Misguich

    Full Text Available BACKGROUND: Entamoeba histolytica is an important parasite of the human intestine. Its life cycle is monoxenous with two stages: (i the trophozoite, growing in the intestine and (ii the cyst corresponding to the dissemination stage. The trophozoite in the intestine can live as a commensal leading to asymptomatic infection or as a tissue invasive form producing mucosal ulcers and liver abscesses. There is no animal model mimicking the whole disease cycle. Most of the biological information on E. histolytica has been obtained from trophozoite adapted to axenic culture. The reproduction of intestinal amebiasis in an animal model is difficult while for liver amebiasis there are well-described rodent models. During this study, we worked on the assessment of pigs as a new potential model to study amebiasis. METHODOLOGY/PRINCIPAL FINDINGS: We first co-cultured trophozoites of E. histolytica with porcine colonic fragments and observed a disruption of the mucosal architecture. Then, we showed that outbred pigs can be used to reproduce some lesions associated with human amebiasis. A detailed analysis was performed using a washed closed-jejunal loops model. In loops inoculated with virulent amebas a severe acute ulcerative jejunitis was observed with large hemorrhagic lesions 14 days post-inoculation associated with the presence of the trophozoites in the depth of the mucosa in two out four animals. Furthermore, typical large sized hepatic abscesses were observed in the liver of one animal 7 days post-injection in the portal vein and the liver parenchyma. CONCLUSIONS: The pig model could help with simultaneously studying intestinal and extraintestinal lesion development.

  13. No midterm advantages in the middle term using small intestinal submucosa and human amniotic membrane in Achilles tendon transverse tenotomy.

    Science.gov (United States)

    Liu, Yushu; Peng, Yinbo; Fang, Yong; Yao, Min; Redmond, Robert W; Ni, Tao

    2016-11-24

    The study was aimed to compare the effects of small intestinal submucosa (SIS) and human amniotic membrane (HAM) on Achilles tendon healing. A total of 48 New Zealand white rabbits were divided into two groups. A full-thickness transverse tenotomy was made at the right leg of the rabbits. Then, the laceration site was wrapped with HAM (P/A group) or SIS (P/S group). The ultimate stress (US) and Young's modulus (E) of the tendons were detected for biomechanical analysis. Histological evaluation was performed using hematoxylin and eosin, immunohistochemical, and immunofluorescent stain. Expression of collagen I was detected by western blot analysis, and levels of inflammatory cytokines IL-1β, IL-6, and TNF-α were measured. Finally, adhesion formation was evaluated. There were no significant differences in filamentous adhesion, cross-sectional areas of the laceration sites, levels of inflammatory response, and collagen type I expression between the P/A and P/S groups (p > 0.05). Compared with the P/A group, the US and E values were significantly higher in the P/S group at day 7 (p Achilles tendon injury in the early stage of healing.

  14. Effect of carrageenans alone and in combination with casein or lipopolysaccharide on human epithelial intestinal HT-29 cells.

    Science.gov (United States)

    Sokolova, E V; Kuz'mich, A S; Byankina, A O; Yermak, I M

    2017-10-01

    The research described here was focused on the effect on human intestinal epithelial cell monolayers of sulfated red algal polysaccharides (κ-, λ-, and κ/β-carrageenans) alone and in combination with casein or lipopolysaccharide (LPS). HT-29 cells were investigated under normal and stress conditions; stress was induced by exposure to ethanol. Cell viability was monitored with a real-time system. The change in binding properties of negatively sulfated red algal polysaccharides assessed by the measurement of free carrageenans in mixtures with casein or McCoy's 5 A culture medium by means of toluidine blue O. Low sulfate content and the presence of 3,6-anhydogalactose are prerequisites for the recovery of ethanol-exposed HT-29 cells by carrageenans. Analysis of carrageenan binding ability confirmed that casein and LPS should affect carrageenan activity. Whether the combined action of the mucin-containing layer and carrageenans or the action of carrageenans alone was responsible for enhanced cell viability under stress conditions induced by ethanol is a subject for further research. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2843-2850, 2017. © 2017 Wiley Periodicals, Inc.

  15. The prevention of radiation-induced DNA damage and apoptosis in human intestinal epithelial cells by salvianic acid A

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    2014-07-01

    Full Text Available The topic of radiation always provokes public debate, and the uses of radiation for therapeutic and other purposes have always been associated with some anxiety. Salvia miltiorrhiza Bunge has been widely used for the treatment of various diseases including cerebrovascular diseases, coronary artery diseases, and myocardial infarction. Salvianolic acid A (SAA d (+-(3,4-dihydroxyphenyl lactic acid is the principal effective, watersoluble constituent of Salvia miltiorrhiza Bunge. In our present study, radiation-induced DNA damage and apoptosis in human intestinal epithelial cells (HIEC in the presence and absence of SAA were examined. We investigated the effects of SAA on ROS formation and the activity of enzymatic antioxidants (SOD, the lipid peroxidative index and the levels of non-enzymatic antioxidant (GSH. Finally, we investigated whether the reduction of radiation-induced cell death caused by SAA might be related to mitochondria-dependent apoptosis. Present findings indicate that SAA is a promising radioprotective agent with a strong antioxidant activity. SAA exerted its protective action on the proliferative activity of HIEC cells as evidenced by decreased cytotoxicity after exposure to γ-radiation. It is possible that SAA achieved its radioprotective action, at least in part, by enhancing DNA repair and the activity of antioxidant enzymes, by scavenging ROS and by inhibiting the mitochondria-dependent apoptotic pathway.

  16. Isolation of a human intestinal anaerobe, Bifidobacterium sp. strain SEN, capable of hydrolyzing sennosides to sennidins.

    OpenAIRE

    Akao, T; Che, Q M; Kobashi, K; Yang, L; Hattori, M; Namba, T

    1994-01-01

    A strictly anaerobic bacterium capable of metabolizing sennosides was isolated from human feces and identified as Bifidobacterium sp., named strain SEN. The bacterium hydrolyzed sennosides A and B to sennidins A and B via sennidin A and B 8-monoglucosides, respectively. Among nine species of Bifidobacterium having beta-glucosidase activity, only Bifidobacterium dentium and B. adolescentis metabolized sennoside B to sennidin B, suggesting that the sennoside-metabolizing bacteria produce a nove...

  17. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment.

    Directory of Open Access Journals (Sweden)

    Julia Fukuyama

    2017-08-01

    Full Text Available Our work focuses on the stability, resilience, and response to perturbation of the bacterial communities in the human gut. Informative flash flood-like disturbances that eliminate most gastrointestinal biomass can be induced using a clinically-relevant iso-osmotic agent. We designed and executed such a disturbance in human volunteers using a dense longitudinal sampling scheme extending before and after induced diarrhea. This experiment has enabled a careful multidomain analysis of a controlled perturbation of the human gut microbiota with a new level of resolution. These new longitudinal multidomain data were analyzed using recently developed statistical methods that demonstrate improvements over current practices. By imposing sparsity constraints we have enhanced the interpretability of the analyses and by employing a new adaptive generalized principal components analysis, incorporated modulated phylogenetic information and enhanced interpretation through scoring of the portions of the tree most influenced by the perturbation. Our analyses leverage the taxa-sample duality in the data to show how the gut microbiota recovers following this perturbation. Through a holistic approach that integrates phylogenetic, metagenomic and abundance information, we elucidate patterns of taxonomic and functional change that characterize the community recovery process across individuals. We provide complete code and illustrations of new sparse statistical methods for high-dimensional, longitudinal multidomain data that provide greater interpretability than existing methods.

  18. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment.

    Science.gov (United States)

    Fukuyama, Julia; Rumker, Laurie; Sankaran, Kris; Jeganathan, Pratheepa; Dethlefsen, Les; Relman, David A; Holmes, Susan P

    2017-08-01

    Our work focuses on the stability, resilience, and response to perturbation of the bacterial communities in the human gut. Informative flash flood-like disturbances that eliminate most gastrointestinal biomass can be induced using a clinically-relevant iso-osmotic agent. We designed and executed such a disturbance in human volunteers using a dense longitudinal sampling scheme extending before and after induced diarrhea. This experiment has enabled a careful multidomain analysis of a controlled perturbation of the human gut microbiota with a new level of resolution. These new longitudinal multidomain data were analyzed using recently developed statistical methods that demonstrate improvements over current practices. By imposing sparsity constraints we have enhanced the interpretability of the analyses and by employing a new adaptive generalized principal components analysis, incorporated modulated phylogenetic information and enhanced interpretation through scoring of the portions of the tree most influenced by the perturbation. Our analyses leverage the taxa-sample duality in the data to show how the gut microbiota recovers following this perturbation. Through a holistic approach that integrates phylogenetic, metagenomic and abundance information, we elucidate patterns of taxonomic and functional change that characterize the community recovery process across individuals. We provide complete code and illustrations of new sparse statistical methods for high-dimensional, longitudinal multidomain data that provide greater interpretability than existing methods.

  19. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells

    Science.gov (United States)

    Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris

    2016-09-01

    The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority.

  20. Intestine transplantation

    Directory of Open Access Journals (Sweden)

    Tadeja Pintar

    2011-02-01

    Conclusion: Intestine transplantation is reserved for patients with irreversible intestinal failure due to short gut syndrome requiring total paranteral nutrition with no possibility of discontinuation and loss of venous access for patient maintenance. In these patients complications of underlying disease and long-term total parenteral nutrition are present.

  1. Rice Bran and Probiotics Alter the Porcine Large Intestine and Serum Metabolomes for Protection against Human Rotavirus Diarrhea

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Ryan

    2017-04-01

    Full Text Available Human rotavirus (HRV is a leading cause of severe childhood diarrhea, and there is limited vaccine efficacy in the developing world. Neonatal gnotobiotic pigs consuming a prophylactic synbiotic combination of probiotics and rice bran (Pro+RB did not exhibit HRV diarrhea after challenge. Multiple immune, gut barrier protective, and anti-diarrheal mechanisms contributed to the prophylactic efficacy of Pro+RB when compared to probiotics (Pro alone. In order to understand the molecular signature associated with diarrheal protection by Pro+RB, a global non-targeted metabolomics approach was applied to investigate the large intestinal contents and serum of neonatal gnotobiotic pigs. The ultra-high performance liquid chromatography-tandem mass spectrometry platform revealed significantly different metabolites (293 in LIC and 84 in serum in the pigs fed Pro+RB compared to Pro, and many of these metabolites were lipids and amino acid/peptides. Lipid metabolites included 2-oleoylglycerol (increased 293.40-fold in LIC of Pro+RB, p = 3.04E-10, which can modulate gastric emptying, andhyodeoxycholate (decreased 0.054-fold in the LIC of Pro+RB, p = 0.0040 that can increase colonic mucus production to improve intestinal barrier function. Amino acid metabolites included cysteine (decreased 0.40-fold in LIC, p = 0.033, and 0.62-fold in serum, p = 0.014 of Pro+RB, which has been found to reduce inflammation, lower oxidative stress and modulate mucosal immunity, and histamine (decreased 0.18-fold in LIC, p = 0.00030, of Pro+RB and 1.57-fold in serum, p = 0.043, which modulates local and systemic inflammatory responses as well as influences the enteric nervous system. Alterations to entire LIC and serum metabolic pathways further contributed to the anti-diarrheal and anti-viral activities of Pro+RB such as sphingolipid, mono/diacylglycerol, fatty acid, secondary bile acid, and polyamine metabolism. Sphingolipid and long chain fatty acid profiles influenced the

  2. Of Mice and Mucins: Models for studying the role of mucins in the intestine

    NARCIS (Netherlands)

    M. van der Sluis (Maria)

    2006-01-01

    textabstractThe small intestine is the major organ for the absorption of nutrients and also secretes enzymes to complete the digestive processes started in the stomach1-5. A 30- 50% loss (remaining length, <75 cm in children and <200 cm in adults) often leads to malabsorption, with resultant severe

  3. Intestinal capacity to digest and absorb carbohydrates is maintained in a rat model of cholestasis

    NARCIS (Netherlands)

    Los, E. Leonie; Wolters, Henk; Stellaard, Frans; Kuipers, Folkert; Verkade, Henkjan J.; Rings, Edmond H. H. M.

    Cholestasis is associated with systemic accumulation of bile salts and with deficiency of bile in the intestinal lumen. During the past years bile salts have been identified as signaling molecules that regulate lipid, glucose, and energy metabolism. Bile salts have also been shown to activate

  4. Gene therapy for barrett's esophagus: adenoviral gene transfer in different intestinal models

    NARCIS (Netherlands)

    Marsman, Willem A.; Buskens, Christianne J.; Wesseling, John G.; van Lanschot, J. Jan B.; Bosma, Piter J.

    2005-01-01

    Adenoviral gene therapy could potentially be used for treatment of patients with a Barrett's esophagus. In order to study the feasibility of this approach it is important to study adenoviral intestinal transduction both in vitro and in vivo. In the present study, we used differentiating Caco-2

  5. Impact of a High-Fat or High-Fiber Diet on Intestinal Microbiota and Metabolic Markers in a Pig Model

    Directory of Open Access Journals (Sweden)

    Sonja N. Heinritz

    2016-05-01

    Full Text Available To further elaborate interactions between nutrition, gut microbiota and host health, an animal model to simulate changes in microbial composition and activity due to dietary changes similar to those in humans is needed. Therefore, the impact of two different diets on cecal and colonic microbial gene copies and metabolic activity, organ development and biochemical parameters in blood serum was investigated using a pig model. Four pigs were either fed a low-fat/high-fiber (LF, or a high-fat/low-fiber (HF diet for seven weeks, with both diets being isocaloric. A hypotrophic effect of the HF diet on digestive organs could be observed compared to the LF diet (p < 0.05. Higher gene copy numbers of Bacteroides (p < 0.05 and Enterobacteriaceae (p < 0.001 were present in intestinal contents of HF pigs, bifidobacteria were more abundant in LF pigs (p < 0.05. Concentrations of acetate and butyrate were higher in LF pigs (p < 0.05. Glucose was higher in HF pigs, while glutamic pyruvic transaminase (GPT showed higher concentrations upon feeding the LF diet (p < 0.001. However, C-reactive protein (CRP decreased with time in LF pigs (p < 0.05. In part, these findings correspond to those in humans, and are in support of the concept of using the pig as human model.

  6. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet.

    Directory of Open Access Journals (Sweden)

    Sonja N Heinritz

    Full Text Available The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host's health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF, or a high-fat/low-fiber (HF diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P0.05. Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05, while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions. Data are available via ProteomeXchange with identifier PXD003447.

  7. Modeling the growth dynamics of multiple Escherichia coli strains in the pig intestine following intramuscular ampicillin treatment.

    Science.gov (United States)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo; Græsbøll, Kaare; Toft, Nils; Matthews, Louise; Nielsen, Søren Saxmose; Olsen, John Elmerdahl

    2016-09-06

    This study evaluated how dosing regimen for intramuscularly-administered ampicillin, composition of Escherichia coli strains with regard to ampicillin susceptibility, and excretion of bacteria from the intestine affected the level of resistance among Escherichia coli strains in the intestine of nursery pigs. It also examined the dynamics of the composition of bacterial strains during and after the treatment. The growth responses of strains to ampicillin concentrations were determined using in vitro growth curves. Using these results as input data, growth predictions were generated using a mathematical model to simulate the competitive growth of E. coli strains in a pig intestine under specified plasma concentration profiles of ampicillin. In vitro growth results demonstrated that the resistant strains did not carry a fitness cost for their resistance, and that the most susceptible strains were more affected by increasing concentrations of antibiotics that the rest of the strains. The modeling revealed that short treatment duration resulted in lower levels of resistance and that dosing frequency did not substantially influence the growth of resistant strains. Resistance levels were found to be sensitive to the number of competing strains, and this effect was enhanced by longer duration of treatment. High excretion of bacteria from the intestine favored resistant strains over sensitive strains, but at the same time it resulted in a faster return to pre-treatment levels after the treatment ended. When the duration of high excretion was set to be limited to the treatment time (i.e. the treatment was assumed to result in a cure of diarrhea) resistant strains required longer time to reach the previous level. No fitness cost was found to be associated with ampicillin resistance in E. coli. Besides dosing factors, epidemiological factors (such as number of competing strains and bacterial excretion) influenced resistance development and need to be considered further in

  8. Effect of adenine on bacterial translocation using technetium-99m labeled E. coli in an intestinal obstruction model in rats

    International Nuclear Information System (INIS)

    Ugur Oflaz; Fatma Yurt Lambrecht; Osman Yilmaz; Cetin Pekcetin

    2013-01-01

    This study aims to investigate effects of adenine on bacterial translocation (BT) using 99m Tc-labeled E. coli in an intestinal obstruction rat model. In the study twenty-one rats were used. The rats were divided into three groups according to different feeding patterns. The control group (CG) was fed with a standard chow diet for 7 days. Group A1 and group A2 were fed with adenine supplemented chow diet for 7 days. At the end of the feeding period, after all groups was submitted intestinal obstruction. 99m Tc-E. coli was injected into the rats' terminal ileum under anesthetic. The rats were sacrificed under aseptic conditions at 24th h after the surgery. The uptake of 99m Tc-E. coli was determined in organs such as the liver, mesenteric lymph nodes, spleen and ileum. Group A1 and group A2 results show that the uptake of 99m Tc-E. coli decreased in the blood and organs comparing to the CG. As a result, it was observed that adenine reduced the level of BT when compared with CG. The beneficial effect of adenine on BT in intestinal obstruction was observed. However, further studies are needed to more clearly assess how this benefit can be achieved. (author)

  9. Isolation of a human intestinal anaerobe, Bifidobacterium sp. strain SEN, capable of hydrolyzing sennosides to sennidins.

    Science.gov (United States)

    Akao, T; Che, Q M; Kobashi, K; Yang, L; Hattori, M; Namba, T

    1994-01-01

    A strictly anaerobic bacterium capable of metabolizing sennosides was isolated from human feces and identified as Bifidobacterium sp., named strain SEN. The bacterium hydrolyzed sennosides A and B to sennidins A and B via sennidin A and B 8-monoglucosides, respectively. Among nine species of Bifidobacterium having beta-glucosidase activity, only Bifidobacterium dentium and B. adolescentis metabolized sennoside B to sennidin B, suggesting that the sennoside-metabolizing bacteria produce a novel type of beta-glucosidase capable of hydrolyzing sennosides to sennidins. PMID:8161172

  10. Cytotoxic and apoptotic effect of mycotoxins in human small intestinal cells

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Sørensen, Izel Fourie; Sørensen, Jens Laurids

    2016-01-01

    Contamination of foods and feeds with mycotoxins is of significant concern due to their adverse effects on pig productivity and on animal and human health. Development of scientifically sound in vitro systems for toxicological screening for mycotoxins is important for improvement of food safety...... with mycotoxins for 72 h, and viability was measured by AlamarBlue reduction. For apoptosis studies, cells were treated with mycotoxins for 24 h, and apoptosis was measured by caspase 3/7 activation. The half maximal inhibitory concentration (IC50) of mycotoxins was calculated from sigmoidal dose-response plots...

  11. Mathematical models of human behavior

    DEFF Research Database (Denmark)

    Møllgaard, Anders Edsberg

    at the Technical University of Denmark. The data set includes face-to-face interaction (Bluetooth), communication (calls and texts), mobility (GPS), social network (Facebook), and general background information including a psychological profile (questionnaire). This thesis presents my work on the Social Fabric...... data set, along with work on other behavioral data. The overall goal is to contribute to a quantitative understanding of human behavior using big data and mathematical models. Central to the thesis is the determination of the predictability of different human activities. Upper limits are derived....... Evidence is provided, which implies that the asymmetry is caused by a self-enhancement in the initiation dynamics. These results have implications for the formation of social networks and the dynamics of the links. It is shown that the Big Five Inventory (BFI) representing a psychological profile only...

  12. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models.

    Science.gov (United States)

    Zhang, Yuanyuan; LaCerte, Carl; Kansra, Sanjay; Jackson, Jonathan P; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-12-01

    Obeticholic acid (OCA) is a semisynthetic farnesoid X receptor (FXR) agonist, an analogue of chenodeoxycholic acid (CDCA) which is indicated for the treatment of primary biliary cholangitis (PBC) in combination with ursodeoxycholic acid (UDCA). OCA efficiently inhibits bile acid synthesis and promotes bile acid efflux via activating FXR-mediated mechanisms in a physiologically relevant in vitro cell system, Sandwich-cultured Transporter Certified ™ human primary hepatocytes (SCHH). The study herein evaluated the effects of UDCA alone or in combination with OCA in SCHH. UDCA (≤100 μmol/L) alone did not inhibit CYP7A1 mRNA, and thus, no reduction in the endogenous bile acid pool observed. UDCA ≤100 μmol/L concomitantly administered with 0.1 μmol/L OCA had no effect on bile acid synthesis beyond what was observed with OCA alone. Furthermore, this study evaluated human Caco-2 cells (clone C2BBe1) as in vitro intestinal models. Glycine conjugate of OCA increased mRNA levels of FXR target genes in Caco-2 cells, FGF-19, SHP, OSTα/β, and IBABP, but not ASBT, in a concentration-dependent manner, while glycine conjugate of UDCA had no effect on the expression of these genes. The results suggested that UDCA ≤100 μmol/L did not activate FXR in human primary hepatocytes or intestinal cell line Caco-2. Thus, co-administration of UDCA with OCA did not affect OCA-dependent pharmacological effects. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  13. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  14. Intestinal alkaline phosphatase administration in newborns decreases systemic inflammatory cytokine expression in a neonatal necrotizing enterocolitis rat model.

    Science.gov (United States)

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Welak, Scott R; Pritchard, Kirkwood A; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2012-10-01

    Supplementation of intestinal alkaline phosphatase (IAP), an endogenous protein expressed in the intestines, decreases the severity of necrotizing enterocolitis (NEC)-associated intestinal injury and permeability. We hypothesized that IAP administration is protective in a dose-dependent manner of the inflammatory response in a neonatal rat model. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day of life 3. Control pups were vaginally delivered and dam fed. Preterm pups were delivered via cesarean section and exposed to intermittent hypoxia and formula feeds containing lipopolysaccharide (NEC) with and without IAP. Three different standardized doses were administered to a group of pups treated with 40, 4, and 0.4U/kg of bovine IAP (NEC+IAP40, IAP4, or IAP0.4U). Reverse transcription-real-time polymerase chain reaction (RT-PCR) for inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α on liver and lung tissues and serum cytokine analysis for interleukin (IL)-1β, IL-6, IL-10, and TNF-α were performed. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests, expressed as mean±standard error of the mean and P≤0.05 considered significant. Levels of cytokines IL-1β, IL-6, and TNF-α increased significantly in NEC versus control, returning to control levels with increasing doses of supplemental enteral IAP. Hepatic and pulmonary TNF-α and iNOS messenger ribonucleic acid expressions increased in NEC, and the remaining elevated despite IAP supplementation. Proinflammatory cytokine expression is increased systemically with intestinal NEC injury. Administration of IAP significantly reduces systemic proinflammatory cytokine expression in a dose-dependent manner. Early supplemental enteral IAP may reduce NEC-related injury and be useful for reducing effects caused by a proinflammatory cascade. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junru; Kulkarni, Ashwini [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Chintala, Madhu [Schering-Plough Research Institute, Kenilworth, New Jersey (United States); Fink, Louis M. [Nevada Cancer Institute, Las Vegas, Nevada (United States); Hauer-Jensen, Martin, E-mail: mhjensen@life.uams.edu [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgery Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States)

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  16. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    Science.gov (United States)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2012-01-01

    Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.

  17. Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine.

    Science.gov (United States)

    Schwiertz, A; Lehmann, U; Jacobasch, G; Blaut, M

    2002-01-01

    The genus Eubacterium, which is the second most common genus in the human intestine, includes several known butyrate producers. We hypothesized that Eubacterium species play a role in the intestinal butyrate production and ar