WorldWideScience

Sample records for human interface technology

  1. Interactive displays natural human-interface technologies

    CERN Document Server

    Bhowmik, Achintya K

    2014-01-01

    One of the first books to provide an in-depth discussion of the technologies, applications and trends in the rapidly emerging field of interactive displays (touch, gesture & voice) The book will cover the technologies, applications and trends in the field of interactive displays, namely interfaces based on touch, gesture and voice and those using a combination of these technologies. The book will be split into 4 main parts with each being dedicated to a specific user interface. Part 1 ''Touch Interfaces'' will provide a review of the currently deployed touch-screen technologies and applications. It will also cover the recent developments towards achieving thinner, lightweight and cost-reduced touch screen panels in the future via integration of touch functionalities. Part 2 ''Gesture Interfaces'' will examine techniques and applications in stereoscopic 3D computer vision, structured-light 3D computer vision and time-of-flight 3D computer vision in gesture interfaces. Part 3 ''Voice Interfaces'' will revie...

  2. Human-Robot Interface: Issues in Operator Performance, Interface Design, and Technologies

    Science.gov (United States)

    2006-07-01

    conduction and throat microphones, and tactile systems. 15. SUBJECT TERMS auditory control and display, haptic display, human-robot interface, human...for Tactile Display Design ..............................................................54 3.6.4 Haptic Display Conclusions and Recommendations...phantom robot” reacts to the teleoperator’s commands in real time (Kheddar, Chellali, & Coiffet, 2002). Various techniques such as augmented reality

  3. A Cognitive Systems Engineering Approach to Developing Human Machine Interface Requirements for New Technologies

    Science.gov (United States)

    Fern, Lisa Carolynn

    This dissertation examines the challenges inherent in designing and regulating to support human-automation interaction for new technologies that will be deployed into complex systems. A key question for new technologies with increasingly capable automation, is how work will be accomplished by human and machine agents. This question has traditionally been framed as how functions should be allocated between humans and machines. Such framing misses the coordination and synchronization that is needed for the different human and machine roles in the system to accomplish their goals. Coordination and synchronization demands are driven by the underlying human-automation architecture of the new technology, which are typically not specified explicitly by designers. The human machine interface (HMI), which is intended to facilitate human-machine interaction and cooperation, typically is defined explicitly and therefore serves as a proxy for human-automation cooperation requirements with respect to technical standards for technologies. Unfortunately, mismatches between the HMI and the coordination and synchronization demands of the underlying human-automation architecture can lead to system breakdowns. A methodology is needed that both designers and regulators can utilize to evaluate the predicted performance of a new technology given potential human-automation architectures. Three experiments were conducted to inform the minimum HMI requirements for a detect and avoid (DAA) system for unmanned aircraft systems (UAS). The results of the experiments provided empirical input to specific minimum operational performance standards that UAS manufacturers will have to meet in order to operate UAS in the National Airspace System (NAS). These studies represent a success story for how to objectively and systematically evaluate prototype technologies as part of the process for developing regulatory requirements. They also provide an opportunity to reflect on the lessons learned in order

  4. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  5. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general

    Science.gov (United States)

    Zander, Thorsten O.; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  6. Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL; O' Hara, John [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates; Miller, Don W. [Ohio State University

    2009-01-01

    Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system

  7. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Command, Control, and Communications (C3)

    Science.gov (United States)

    2005-01-01

    The document provides the Human System Integration(HSI) high-level functional C3 HSI requirements for the interface to the pilot. Description includes (1) the information required by the pilot to have knowledge C3 system status, and (2) the control capability needed by the pilot to obtain C3 information. Fundamentally, these requirements provide the candidate C3 technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how C3 operations and functions should interface with the pilot to provide the necessary C3 functionality to the UA-pilot system. Requirements and guidelines for C3 are partitioned into three categories: (1) Pilot-Air Traffic Control (ATC) Voice Communications (2) Pilot-ATC Data Communications, and (3) command and control of the unmanned aircraft (UA). Each requirement is stated and is supported with a rationale and associated reference(s).

  8. Design and implementation of a user-oriented speech recognition interface: the synergy of technology and human factors

    NARCIS (Netherlands)

    Kloosterman, Sietse H.

    1994-01-01

    The design and implementation of a user-oriented speech recognition interface are described. The interface enables the use of speech recognition in so-called interactive voice response systems which can be accessed via a telephone connection. In the design of the interface a synergy of technology

  9. DESIGN AND IMPLEMENTATION OF A USER-ORIENTED SPEECH RECOGNITION INTERFACE - THE SYNERGY OF TECHNOLOGY AND HUMAN-FACTORS

    NARCIS (Netherlands)

    KLOOSTERMAN, SH

    The design and implementation of a user-oriented speech recognition interface are described. The interface enables the use of speech recognition in so-called interactive voice response systems which can be accessed via a telephone connection. In the design of the interface a synergy of technology

  10. Proceedings Foundations for Interface Technologies

    CERN Document Server

    Legay, Axel; 10.4204/EPTCS.46

    2011-01-01

    FIT stands for Foundations of Interface Technologies. Component-based design is widely considered as a major approach to developing systems in a time and cost effective way. Central in this approach is the notion of an interface. Interfaces summarize the externally visible properties of a component and are seen as a key to achieving component interoperability and to predict global system behavior based on the component behavior. To capture the intricacy of complex software products, rich interfaces have been proposed. These interfaces do not only specify syntactic properties, such as the signatures of methods and operations, but also take into account behavioral and extra-functional properties, such as quality of service, security and dependability. Rich interfaces have been proposed for describing, e.g., the legal sequences of messages or method calls accepted by components, or the resource and timing constraints in embedded software. The development of a rigorous framework for the specification and analysis...

  11. The Human-Technological Interface: An Analysis of a Satellite Communication Learning Environment.

    Science.gov (United States)

    Collins, Valerie A. C.; Murphy, Peter J.

    1987-01-01

    The effectiveness of distance education methods that involve direct interaction between the student and communications satellite technology is discussed, drawing on experiences in British Columbia adult distance education programs using interactive instructional television and other modern technologies. (MSE)

  12. Human-computer interface design

    Energy Technology Data Exchange (ETDEWEB)

    Bowser, S.E.

    1995-04-01

    Modern military forces assume that computer-based information is reliable, timely, available, usable, and shared. The importance of computer-based information is based on the assumption that {open_quotes}shared situation awareness, coupled with the ability to conduct continuous operations, will allow information age armies to observe, decide, and act faster, more correctly and more precisely than their enemies.{close_quotes} (Sullivan and Dubik 1994). Human-Computer Interface (HCI) design standardization is critical to the realization of the previously stated assumptions. Given that a key factor of a high-performance, high-reliability system is an easy-to-use, effective design of the interface between the hardware, software, and the user, it follows logically that the interface between the computer and the military user is critical to the success of the information-age military. The proliferation of computer technology has resulted in the development of an extensive variety of computer-based systems and the implementation of varying HCI styles on these systems. To accommodate the continued growth in computer-based systems, minimize HCI diversity, and improve system performance and reliability, the U.S. Department of Defense (DoD) is continuing to adopt interface standards for developing computer-based systems.

  13. Human Reliability Analysis for Digital Human-Machine Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2014-06-01

    This paper addresses the fact that existing human reliability analysis (HRA) methods do not provide guidance on digital human-machine interfaces (HMIs). Digital HMIs are becoming ubiquitous in nuclear power operations, whether through control room modernization or new-build control rooms. Legacy analog technologies like instrumentation and control (I&C) systems are costly to support, and vendors no longer develop or support analog technology, which is considered technologically obsolete. Yet, despite the inevitability of digital HMI, no current HRA method provides guidance on how to treat human reliability considerations for digital technologies.

  14. LTE-advanced air interface technology

    CERN Document Server

    Zhang, Xincheng

    2012-01-01

    Opportunities are at hand for professionals eager to learn and apply the latest theories and practices in air interface technologies. Written by experienced researchers and professionals, LTE-Advanced Air Interface Technology thoroughly covers the performance targets and technology components studied by 3GPP for LTE-Advanced. Besides being an explanatory text about LTE-Advanced air interface technology, this book exploits the technical details in the 3GPP specification, and explains the motivation and implication behind the specifications.After a general description of wireless cellular techno

  15. Gloved Human-Machine Interface

    Science.gov (United States)

    Adams, Richard (Inventor); Olowin, Aaron (Inventor); Hannaford, Blake (Inventor)

    2015-01-01

    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.

  16. Through the Interface - a human activity approach to user interfaces

    DEFF Research Database (Denmark)

    Bødker, Susanne

    In providing a theoretical framework for understanding human- computer interaction as well as design of user interfaces, this book combines elements of anthropology, psychology, cognitive science, software engineering, and computer science. The framework examines the everyday work practices...

  17. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    . As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  18. Electronic control/display interface technology

    Science.gov (United States)

    Parrish, R. V.; Busquets, A. M.; Murray, R. F.; Hatfield, J. J.

    1985-01-01

    An effort to produce a representative workstation for the Space Station Data Management Test Bed that provides man/machine interface design options for consolidating, automating, and integrating the space station work station, and hardware/software technology demonstrations of space station applications is discussed. The workstation will emphasize the technologies of advanced graphics engines, advanced display/control medias, image management techniques, multifunction controls, and video disk utilizations.

  19. Human Technology and Human Affects

    DEFF Research Database (Denmark)

    Fausing, Bent

    2009-01-01

    Human Technology and Human Affects  This year Samsung introduced a mobile phone with "Soul". It was made with a human touch and included itself a magical touch. Which function does technology and affects get in everyday aesthetics like this, its images and interactions included this presentation ...... often mentioned post-human condition....

  20. Haptic interfaces: Hardware, software and human performance

    Science.gov (United States)

    Srinivasan, Mandayam A.

    1995-01-01

    Virtual environments are computer-generated synthetic environments with which a human user can interact to perform a wide variety of perceptual and motor tasks. At present, most of the virtual environment systems engage only the visual and auditory senses, and not the haptic sensorimotor system that conveys the sense of touch and feel of objects in the environment. Computer keyboards, mice, and trackballs constitute relatively simple haptic interfaces. Gloves and exoskeletons that track hand postures have more interaction capabilities and are available in the market. Although desktop and wearable force-reflecting devices have been built and implemented in research laboratories, the current capabilities of such devices are quite limited. To realize the full promise of virtual environments and teleoperation of remote systems, further developments of haptic interfaces are critical. In this paper, the status and research needs in human haptics, technology development and interactions between the two are described. In particular, the excellent performance characteristics of Phantom, a haptic interface recently developed at MIT, are highlighted. Realistic sensations of single point of contact interactions with objects of variable geometry (e.g., smooth, textured, polyhedral) and material properties (e.g., friction, impedance) in the context of a variety of tasks (e.g., needle biopsy, switch panels) achieved through this device are described and the associated issues in haptic rendering are discussed.

  1. Open Technology Approaches to Geospatial Interface Design

    Science.gov (United States)

    Crevensten, B.; Simmons, D.; Alaska Satellite Facility

    2011-12-01

    What problems do you not want your software developers to be solving? Choosing open technologies across the entire stack of software development-from low-level shared libraries to high-level user interaction implementations-is a way to help ensure that customized software yields innovative and valuable tools for Earth Scientists. This demonstration will review developments in web application technologies and the recurring patterns of interaction design regarding exploration and discovery of geospatial data through the Vertex: ASF's Dataportal interface, a project utilizing current open web application standards and technologies including HTML5, jQueryUI, Backbone.js and the Jasmine unit testing framework.

  2. User Interface Technology for Formal Specification Development

    Science.gov (United States)

    Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Formal specification development and modification are an essential component of the knowledge-based software life cycle. User interface technology is needed to empower end-users to create their own formal specifications. This paper describes the advanced user interface for AMPHION1 a knowledge-based software engineering system that targets scientific subroutine libraries. AMPHION is a generic, domain-independent architecture that is specialized to an application domain through a declarative domain theory. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that provides semantic guidance in creating diagrams denoting formal specifications in an application domain. The diagrams also serve to document the specifications. Automatic deductive program synthesis ensures that end-user specifications are correctly implemented. The tables that drive AMPHION's user interface are automatically compiled from a domain theory; portions of the interface can be customized by the end-user. The user interface facilitates formal specification development by hiding syntactic details, such as logical notation. It also turns some of the barriers for end-user specification development associated with strongly typed formal languages into active sources of guidance, without restricting advanced users. The interface is especially suited for specification modification. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development.

  3. A human activity approach to User Interfaces

    DEFF Research Database (Denmark)

    Bødker, Susanne

    1989-01-01

    How can we understand why a bank teller has different needs for a user interface than those of casual users of a machine teller, or why a graphic designer needs a different user interface than a secretary? This article presents a framework for the design of user interfaces that originates from...... the work situations in which computer-based artifacts are used: The framework deals with the role of the user interface in purposeful human work. Human activity theory is used in this analysis. The purpose of this article is to make the reader curious and hopefully open his or her eyes to a somewhat...... different way of thinking about the user interface. The article applies examples of real-life interfaces to support this process, but it does not include a systematic presentation of empirical results. I focus on the role of the computer application in use. Thus, it is necessary to consider human...

  4. The Human Technology

    DEFF Research Database (Denmark)

    Fausing, Bent

    with fundamental human values like intuition, vision and sensing; all the qualities the technology, the industrialisation and rationalisation, or in short modernity, has been criticized for having taken away from human existence. What technology has taken away now comes back through new technology as an aid...

  5. Fiber distributed data interface [FDDI] technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. Fiber Distributed Data Interface [FDDI] is the American National Standard Institute's proposed standard for a 100 Mbps token-passing ring using an optical fibre medium. The FDDI standard has become a focal point for optical technology application in the LAN environment. The market place is filling with products in every category from complete systems to optical transceivers. The 1990s see FDDI as the predominant high speed LAN and backbone. The latest edition of this report is thoroughly updated and gives a complete overview of FDDI technol

  6. Human Computer Interface Design Criteria. Volume 1. User Interface Requirements

    Science.gov (United States)

    2010-03-19

    2 entitled Human Computer Interface ( HCI )Design Criteria Volume 1: User Interlace Requirements which contains the following major changes from...MISSILE SYSTEMS CENTER Air Force Space Command 483 N. Aviation Blvd. El Segundo, CA 90245 4. This standard has been approved for use on all Space and...and efficient model of how the system works and can generalize this knowledge to other systems. According to Mayhew in Principles and Guidelines in

  7. Brain-Computer Interfaces and Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney; Nijholt, Anton; Tan, Desney S.; Nijholt, Anton

    2010-01-01

    Advances in cognitive neuroscience and brain imaging technologies have started to provide us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that can monitor some of the physical processes that occur within the brain that correspo

  8. Brain-Computer Interfaces and Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney; Tan, Desney S.; Nijholt, Antinus

    2010-01-01

    Advances in cognitive neuroscience and brain imaging technologies have started to provide us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that can monitor some of the physical processes that occur within the brain that

  9. Designing Human Technologies

    DEFF Research Database (Denmark)

    Simonsen, Jesper

    and the design process, in ethical and society-related concerns, and in evaluating how designs fulfill needs and solve problems. Designing Human Technologies subscribes to a broad technology concept including information and communication, mobile, environmental/sustainable and energy technologies......, the Humanities, and Social Science. The initiative broadens the perspective of IS and recognize reflections on aesthetics, ethics, values, connections to politics, and strategies for enabling a better future as legitimate parts of the research agenda. Designing Human Technologies is a design-oriented Strategic...... a shared interdisciplinary research and educational collaboration. As a creative research initiative it focuses on change and innovative thinking. The innovativeness is a result of the strongly interdisciplinary perspective which is at the heart of Designing Human Technologies. Designing Human Technologies...

  10. TRANSLATOR OF FINITE STATE MACHINE MODEL PARAMETERS FROM MATLAB ENVIRONMENT INTO HUMAN-MACHINE INTERFACE APPLICATION

    OpenAIRE

    2012-01-01

    Technology and means for automatic translation of FSM model parameters from Matlab application to human-machine interface application is proposed. The example of technology application to the electric apparatus model is described.

  11. Developing human technology curriculum

    Directory of Open Access Journals (Sweden)

    Teija Vainio

    2012-10-01

    Full Text Available During the past ten years expertise in human-computer interaction has shifted from humans interacting with desktop computers to individual human beings or groups of human beings interacting with embedded or mobile technology. Thus, humans are not only interacting with computers but with technology. Obviously, this shift should be reflected in how we educate human-technology interaction (HTI experts today and in the future. We tackle this educational challenge first by analysing current Master’s-level education in collaboration with two universities and second, discussing postgraduate education in the international context. As a result, we identified core studies that should be included in the HTI curriculum. Furthermore, we discuss some practical challenges and new directions for international HTI education.

  12. Biosleeve Human-Machine Interface

    Science.gov (United States)

    Assad, Christopher (Inventor)

    2016-01-01

    Systems and methods for sensing human muscle action and gestures in order to control machines or robotic devices are disclosed. One exemplary system employs a tight fitting sleeve worn on a user arm and including a plurality of electromyography (EMG) sensors and at least one inertial measurement unit (IMU). Power, signal processing, and communications electronics may be built into the sleeve and control data may be transmitted wirelessly to the controlled machine or robotic device.

  13. Designing Human Technologies

    DEFF Research Database (Denmark)

    Simonsen, Jesper

    and the design process, in ethical and society-related concerns, and in evaluating how designs fulfill needs and solve problems. Designing Human Technologies subscribes to a broad technology concept including information and communication, mobile, environmental/sustainable and energy technologies......, the Humanities, and Social Science. The initiative broadens the perspective of IS and recognize reflections on aesthetics, ethics, values, connections to politics, and strategies for enabling a better future as legitimate parts of the research agenda. Designing Human Technologies is a design-oriented Strategic...... and technologies relating to performances and experiences, urban design, climate adaptation, etc. The research takes a process-oriented and participatory approach and involves interaction between different user interests and designs. It is based on empirical, typical case- and action research-oriented studies...

  14. Will Technology Humanize Us?

    Science.gov (United States)

    Snider, Robert C.

    1972-01-01

    The author considers the question of whether technology will cause humanization or dehumanization in the schools. He concludes that we can not stop tecchnology; we can only give it direction and purpose. (Author/MS)

  15. FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN

    Science.gov (United States)

    Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando

    2014-06-01

    The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets "native". Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.

  16. Human-System Interfaces (HSIs) in Small Modular Reactors (SMRs)

    Energy Technology Data Exchange (ETDEWEB)

    Jacques V Hugo

    2014-10-01

    This book chapter describes the considerations for the selection of advanced human–system interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 10–15 years and how this will affect design choices for the nuclear industry.

  17. Safety and Security Interface Technology Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael A. Lehto; Kevin J. Carroll; Dr. Robert Lowrie

    2007-05-01

    Safety and Security Interface Technology Initiative Mr. Kevin J. Carroll Dr. Robert Lowrie, Dr. Micheal Lehto BWXT Y12 NSC Oak Ridge, TN 37831 865-576-2289/865-241-2772 carrollkj@y12.doe.gov Work Objective. Earlier this year, the Energy Facility Contractors Group (EFCOG) was asked to assist in developing options related to acceleration deployment of new security-related technologies to assist meeting design base threat (DBT) needs while also addressing the requirements of 10 CFR 830. NNSA NA-70, one of the working group participants, designated this effort the Safety and Security Interface Technology Initiative (SSIT). Relationship to Workshop Theme. “Supporting Excellence in Operations Through Safety Analysis,” (workshop theme) includes security and safety personnel working together to ensure effective and efficient operations. One of the specific workshop elements listed in the call for papers is “Safeguards/Security Integration with Safety.” This paper speaks directly to this theme. Description of Work. The EFCOG Safety Analysis Working Group (SAWG) and the EFCOG Security Working Group formed a core team to develop an integrated process involving both safety basis and security needs allowing achievement of the DBT objectives while ensuring safety is appropriately considered. This effort garnered significant interest, starting with a two day breakout session of 30 experts at the 2006 Safety Basis Workshop. A core team was formed, and a series of meetings were held to develop that process, including safety and security professionals, both contractor and federal personnel. A pilot exercise held at Idaho National Laboratory (INL) in mid-July 2006 was conducted as a feasibility of concept review. Work Results. The SSIT efforts resulted in a topical report transmitted from EFCOG to DOE/NNSA in August 2006. Elements of the report included: Drivers and Endstate, Control Selections Alternative Analysis Process, Terminology Crosswalk, Safety Basis

  18. Reviews of computing technology: Fiber distributed data interface

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.J.

    1992-04-01

    This technology report describes Fiber Distributed Data Interface (FDDI) as a technology, looks at the applications of this technology, examines the current economics of using it, and describe activities and plans by the Information Resource Management Department to implement this technology at the Savannah River Site.

  19. Reviews of computing technology: Fiber distributed data interface. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.J.

    1992-04-01

    This technology report describes Fiber Distributed Data Interface (FDDI) as a technology, looks at the applications of this technology, examines the current economics of using it, and describe activities and plans by the Information Resource Management Department to implement this technology at the Savannah River Site.

  20. 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies, San Francisco, CA, USA, June 11–15, 2017

    Energy Technology Data Exchange (ETDEWEB)

    Rashdan, Ahmad Al; Oxstrand, Johanna; Agarwal, Vivek

    2017-02-01

    As part of the ongoing efforts at the U.S. Department of Energy’s Light Water Reactor Sustainability Program, Idaho National Laboratory is conducting several pilot projects in collaboration with the nuclear industry to improve the reliability, safety, and economics of the nuclear power industry, especially as the nuclear power plants extend their operating licenses to 80 years. One of these pilot projects is the automated work package (AWP) pilot project. An AWP is an electronic intelligent and interactive work package. It uses plant condition, resources status, and user progress to adaptively drive the work process in a manner that increases efficiency while reducing human error. To achieve this mission, the AWP acquires information from various systems of a nuclear power plant’s and incorporates several advanced instrumentation and control technologies along with modern human factors techniques. With the current rapid technological advancement, it is possible to envision several available or soon-to-be-available capabilities that can play a significant role in improving the work package process. As a pilot project, the AWP project develops a prototype of an expanding set of capabilities and evaluates them in an industrial environment. While some of the proposed capabilities are based on using technological advances in other applications, others are conceptual; thus, require significant research and development to be applicable in an AWP. The scope of this paper is to introduce a set of envisioned capabilities, their need for the industry, and the industry difficulties they resolve.

  1. Human-Centric Interfaces for Ambient Intelligence

    CERN Document Server

    Aghajan, Hamid; Delgado, Ramon Lopez-Cozar

    2009-01-01

    To create truly effective human-centric ambient intelligence systems both engineering and computing methods are needed. This is the first book to bridge data processing and intelligent reasoning methods for the creation of human-centered ambient intelligence systems. Interdisciplinary in nature, the book covers topics such as multi-modal interfaces, human-computer interaction, smart environments and pervasive computing, addressing principles, paradigms, methods and applications. This book will be an ideal reference for university researchers, R&D engineers, computer engineers, and graduate s

  2. A Conceptual Architecture for Adaptive Human-Computer Interface of a PT Operation Platform Based on Context-Awareness

    Directory of Open Access Journals (Sweden)

    Qing Xue

    2014-01-01

    Full Text Available We present a conceptual architecture for adaptive human-computer interface of a PT operation platform based on context-awareness. This architecture will form the basis of design for such an interface. This paper describes components, key technologies, and working principles of the architecture. The critical contents covered context information modeling, processing, relationship establishing between contexts and interface design knowledge by use of adaptive knowledge reasoning, and visualization implementing of adaptive interface with the aid of interface tools technology.

  3. Human-Manipulator Interface Using Particle Filter

    Directory of Open Access Journals (Sweden)

    Guanglong Du

    2014-01-01

    Full Text Available This paper utilizes a human-robot interface system which incorporates particle filter (PF and adaptive multispace transformation (AMT to track the pose of the human hand for controlling the robot manipulator. This system employs a 3D camera (Kinect to determine the orientation and the translation of the human hand. We use Camshift algorithm to track the hand. PF is used to estimate the translation of the human hand. Although a PF is used for estimating the translation, the translation error increases in a short period of time when the sensors fail to detect the hand motion. Therefore, a methodology to correct the translation error is required. What is more, to be subject to the perceptive limitations and the motor limitations, human operator is hard to carry out the high precision operation. This paper proposes an adaptive multispace transformation (AMT method to assist the operator to improve the accuracy and reliability in determining the pose of the robot. The human-robot interface system was experimentally tested in a lab environment, and the results indicate that such a system can successfully control a robot manipulator.

  4. Human-manipulator interface using particle filter.

    Science.gov (United States)

    Du, Guanglong; Zhang, Ping; Wang, Xueqian

    2014-01-01

    This paper utilizes a human-robot interface system which incorporates particle filter (PF) and adaptive multispace transformation (AMT) to track the pose of the human hand for controlling the robot manipulator. This system employs a 3D camera (Kinect) to determine the orientation and the translation of the human hand. We use Camshift algorithm to track the hand. PF is used to estimate the translation of the human hand. Although a PF is used for estimating the translation, the translation error increases in a short period of time when the sensors fail to detect the hand motion. Therefore, a methodology to correct the translation error is required. What is more, to be subject to the perceptive limitations and the motor limitations, human operator is hard to carry out the high precision operation. This paper proposes an adaptive multispace transformation (AMT) method to assist the operator to improve the accuracy and reliability in determining the pose of the robot. The human-robot interface system was experimentally tested in a lab environment, and the results indicate that such a system can successfully control a robot manipulator.

  5. Natural User Interface Sensors for Human Body Measurement

    Science.gov (United States)

    Boehm, J.

    2012-08-01

    The recent push for natural user interfaces (NUI) in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  6. Brain-machine interfaces for space applications-research, technological development, and opportunities.

    Science.gov (United States)

    Summerer, Leopold; Izzo, Dario; Rossini, Luca

    2009-01-01

    Recent advances in brain research and brain-machine interfaces suggest these devices could play a central role in future generation computer interfaces. Successes in the use of brain machine interfaces for patients affected by motor paralysis, as well as first developments of games and gadgets based on this technology have matured the field and brought brain-machine interfaces to the brink of more general usability and eventually of opening new markets. In human space flight, astronauts are the most precious "payload" and astronaut time is extremely valuable. Astronauts operate under difficult and unusual conditions since the absence of gravity renders some of the very simple tasks tedious and cumbersome. Therefore, computer interfaces are generally designed for safety and functionality. All improvements and technical aids to enhance their functionality and efficiency, while not compromising safety or overall mass requirements, are therefore of great interest. Brain machine interfaces show some interesting properties in this respect. It is however not obvious that devices developed for functioning on-ground can be used as hands-free interfaces for astronauts. This chapter intends to highlight the research directions of brain machine interfaces with the perceived highest potential impact on future space applications, and to present an overview of the long-term plans with respect to human space flight. We conclude by suggesting research and development steps considered necessary to include brain-machine interface technology in future architectures for human space flight.

  7. A Distributed Tactile Sensor for Intuitive Human-Robot Interfacing

    Directory of Open Access Journals (Sweden)

    Andrea Cirillo

    2017-01-01

    Full Text Available Safety of human-robot physical interaction is enabled not only by suitable robot control strategies but also by suitable sensing technologies. For example, if distributed tactile sensors were available on the robot, they could be used not only to detect unintentional collisions, but also as human-machine interface by enabling a new mode of social interaction with the machine. Starting from their previous works, the authors developed a conformable distributed tactile sensor that can be easily conformed to the different parts of the robot body. Its ability to estimate contact force components and to provide a tactile map with an accurate spatial resolution enables the robot to handle both unintentional collisions in safe human-robot collaboration tasks and intentional touches where the sensor is used as human-machine interface. In this paper, the authors present the characterization of the proposed tactile sensor and they show how it can be also exploited to recognize haptic tactile gestures, by tailoring recognition algorithms, well known in the image processing field, to the case of tactile images. In particular, a set of haptic gestures has been defined to test three recognition algorithms on a group of 20 users. The paper demonstrates how the same sensor originally designed to manage unintentional collisions can be successfully used also as human-machine interface.

  8. Human-system Interfaces for Automatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    OHara, J.M.; Higgins,J. (BNL); Fleger, S.; Barnes V. (NRC)

    2010-11-07

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, our study identified several topics for additional research.

  9. Review of Virtual Environment Interface Technology.

    Science.gov (United States)

    1996-03-01

    Cybernet Systems Corporation Figure 84. PER-Force Handcontroller The PER-Force Handcontroller is controlled by the PER-Force Universal Robot Motion...PER-Force Universal Robot Motion Controllers, are custom-made and no general price information is available. Cybernet is currently developing an...Forcer supports various control modes and is driven by a PER-Force Universal Robot Motion Controller interfaced to a serial port on any MS-DOS, VME, or

  10. Natural User Interface Sensors For Human Body Measurement

    OpenAIRE

    Boehm, J.

    2012-01-01

    The recent push for natural user interfaces (NUI) in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and obser...

  11. Does this interface make my sensor look bad? Basic principles for designing usable, useful interfaces for sensor technology operators

    Science.gov (United States)

    McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura

    2017-05-01

    Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.

  12. Human Machine Interface Programming and Testing

    Science.gov (United States)

    Foster, Thomas Garrison

    2013-01-01

    Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.

  13. Human multimedia display interface based on human activity recognition

    Science.gov (United States)

    Shang, Yiting; Lee, Eung-Joo

    2011-06-01

    In this paper, we will propose a Human Multimedia Display Interface. The interface uses the tracking of human hand movements to control the IP-TV. This paper presents an improved CAMSHIFT algorithm to control an IP-TV system. The CAMSHIFT algorithm (Continuously Adaptive MeanShift) is a method of using color information[1]. It can do tracking with a specific color of the target. In some typical environmental constraints, it can obtain good tracking performance. However, as the question of noise, large area similar to the color interference and so on, only by CAM-SHIFT algorithm it is not competent. Against these issues we propose an improved CAMSHIFT algorithm[2].

  14. Unmanned Surface Vehicle Human-Computer Interface for Amphibious Operations

    Science.gov (United States)

    2013-08-01

    FIGURES Figure 1. MOCU Baseline HCI using Both Aerial Photo and Digital Nautical Chart ( DNC ) Maps to Control and Monitor Land, Sea, and Air...Action DNC Digital Nautical Chart FNC Future Naval Capability HCI Human-Computer Interface HRI Human-Robot Interface HSI Human-Systems Integration...Digital Nautical Chart ( DNC ) Maps to Control and Monitor Land, Sea, and Air Vehicles. 3.2 BASELINE MOCU HCI The Baseline MOCU interface is a tiled

  15. The Human Blood Metabolome-Transcriptome Interface.

    Directory of Open Access Journals (Sweden)

    Jörg Bartel

    2015-06-01

    Full Text Available Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the 'human blood metabolome-transcriptome interface' (BMTI. Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease.

  16. EVALUATING THREE INTERFACE TECHNOLOGIES IN ASSISTING PEDESTRIANS' SPATIAL KNOWLEDGE ACQUISITION

    Directory of Open Access Journals (Sweden)

    H. Huang

    2012-07-01

    Full Text Available Recent years have seen raising interests in mobile pedestrian navigation systems. Different interface technologies can be used to communicate/convey route directions to pedestrians, such as mobile maps, voices, and augmented reality (AR. Many field experiments have been conducted to study the effectiveness of different interface technologies in guiding pedestrians to their destinations. In contrast to other field studies, this article aims at investigating the influence of different interface technologies on spatial knowledge acquisition (spatial learning. With sufficient spatial knowledge about an environment, people can still find their way when navigation systems fail (e.g. out of battery. The goal of this article is to empirically evaluate three GPS-based navigation prototypes (implementing mobile map-based, AR-based, and voice-based guidance respectively in supporting spatial knowledge acquisition. The field test showed that in terms of spatial knowledge acquisition, the three interface technologies led to comparable poor results, which were also not significantly different from each other. This article concludes with some implications for designing mobile pedestrian navigation systems.

  17. Suggestion: Human Factor Based User Interface Design Tool

    OpenAIRE

    S.Q. Abbas,; Rizwan Beg; Shahnaz Fatima

    2011-01-01

    In this paper, we introduce HFBUIT, Human Factor based user interface tool that enables designers and engineers to create human factor based user interface. This tool will help the designer to utilize the knowledge about the user to configure the interface for different users, i.e. each user may have different skills, level of experience, or cognitive and physical disabilities. The tool makes it easy to knowhuman factors & to reduce the number of usability problems. HFBUIT can be used in real...

  18. The Visual Web User Interface Design in Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Chouyin Hsu

    2013-03-01

    Full Text Available Upon the popularity of 3C devices, the visual creatures are all around us, such the online game, touch pad, video and animation. Therefore, the text-based web page will no longer satisfy users. With the popularity of webcam, digital camera, stereoscopic glasses, or head-mounted display, the user interface becomes more visual and multi-dimensional. For the consideration of 3D and visual display in the research of web user interface design, Augmented Reality technology providing the convenient tools and impressive effects becomes the hot topic. Augmented Reality effect enables users to represent parts of the digital objects on top of the physical surroundings. The easy operation with webcam greatly improving the visual representation of web pages becomes the interest of our research. Therefore, we apply Augmented Reality technology for developing a city tour web site to collect the opinions of users. Therefore, the website stickiness is an important measurement. The major tasks of the work include the exploration of Augmented Reality technology and the evaluation of the outputs of Augmented Reality. The feedback opinions of users are valuable references for improving AR application in the work. As a result, the AR increasing the visual and interactive effects of web page encourages users to stay longer and more than 80% of users are willing to return for visiting the website soon. Moreover, several valuable conclusions about Augmented Reality technology in web user interface design are also provided for further practical references.

  19. Dual technology: making incompatible radio interface standards coexist

    Science.gov (United States)

    Fiore, Dennis J.

    1996-01-01

    Existing cellular networks handle voice traffic by using narrowband, single-technology equipment. More recently-developed radio interface standards such as TDMA and CDMA use different technology and equipment and are incompatible with the existing cellular infrastructure. The needs of wireless customers are also changing dramatically. Typical users will soon expect to be able to transmit data as well as voice. In the immediate future, users will demand advanced features such as one phone number, called ID, location ID, all of which require new technology and radio standards. To meet the need for transporting data, cellular network providers are adding equipment to transport data over existing cellular networks via CDPD. With the advent of dual technology, network providers will be able to satisfy customers' needs and increase their revenue--without installing additional data equipment. Dual technology will provide simultaneous support for incompatible standards and also supply a migration path to the advanced features of future digital phones.

  20. Implementing MEMS technology for soft, (bio)electronics interfaces

    Science.gov (United States)

    Romeo, Alessia; Hofmeister, Yannick; Lacour, Stéphanie P.

    2014-06-01

    Soft, bioelectronics interfaces are broadly defined as microfabricated devices with mechanical properties suited to comply with biological tissues. There are many challenges associated with the development of such technology platforms. Simultaneously one must achieve reliable electronic performance, thermal and environmental stability, mechanical compliance, and biocompatibility. Materials and system architecture must be designed such that mechanical integrity and electrical functionality is preserved during fabrication, implementation and use of the interface. Depositing and patterning conventional device materials, ranging from inorganic to organic thin films as well as nanomaterials, directly onto soft elastomeric substrates enable electronic devices with enhanced mechanical flexibility. Success in fabrication also relies on a careful design of the mechanical architecture of the soft interface to minimize mechanical stresses in the most fragile materials.

  1. A Human Machine Interface for EVA

    Science.gov (United States)

    Hartmann, L.

    EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit

  2. The Properties of Intelligent Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Alexander Alfimtsev

    2012-04-01

    Full Text Available Intelligent human-machine interfaces based on multimodal interaction are developed separately in different application areas. No unified opinion exists about the issue of what properties should these interfaces have to provide an intuitive and natural interaction. Having carried out an analytical survey of the papers that deal with intelligent interfaces a set of properties are presented, which are necessary for intelligent interface between an information system and a human: absolute response, justification, training, personification, adaptiveness, collectivity, security, hidden persistence, portability, filtering.

  3. Design and Evaluation of Human System Interfaces (HSIs)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the safe operation of nuclear power plants and other complex process industries the performance of the control room crews plays an important role. In this respect a well-functioning and well-designed Human-System Interface (HSI) is crucial for safe and efficient operation of the plant. It is therefore essential that the design, development and evaluation of both control rooms and HSI-solutions are conducted in a well-structured way, applying sound human factors principles and guidelines in all phases of the HSI development process. Many nuclear power plants around the world are currently facing major modernisation of their control rooms. In this process computerised, screen-based HSIs replace old conventional operator interfaces. In new control rooms, both in the nuclear field and in other process industries, fully digital, screen-based control rooms are becoming the standard. It is therefore of particular importance to address the design and evaluation of screen-based HSIs in a systematic and consistent way in order to arrive at solutions which take proper advantage of the possibilities for improving operator support through the use of digital, screen-based HSIs, at the same time avoiding pitfalls and problems in the use of this technology. The Halden Reactor Project, in cooperation with the OECD Nuclear Energy Agency, organised an International Summer School on ''Design and Evaluation of Human-System Interfaces (HSIs)'' in Halden, Norway in the period August 25th - 29th, 2003. The Summer School addressed the different steps in design, development and evaluation of HSIs, and the human factors principles, standards and guidelines which should be followed in this process. The lectures comprised both theoretical background, as well as examples of good and bad HSI design, thereby providing practical advice in design and evaluation of operator interfaces and control room solutions to the participants in the Summer School. This CD contains the

  4. Human Translator and Translation Technology

    Institute of Scientific and Technical Information of China (English)

    李辰

    2016-01-01

    With the great development of technology, translation technology exerts great influence on human translators because during their translation process, they may use many computer-aided translation tools, such as TRADOS, Snowman, WordFisher and etc. However, they always misunderstand the concept of computer-aided translation, so this thesis managed to providedetails about some translation technology and human translators' strengths so as to help them improve the productivity and the quality of theirtranslation works effectively and efficiently.

  5. HFBUIT: Design Aid Tools For A Human Factor Based User Interface Design

    OpenAIRE

    Prof. S.Qamar Abbas; Shahnaz Fatima

    2010-01-01

    Exploring user interface design and development problems is the core of current HCI research. Although there have been considerableadvancements in computer technology, human factors considerations are still lacking. This results in the user frequently becoming confused or frustrated when trying to interact with the software. Designers should utilize the knowledge about the user to configure the interface for different users, i.e. each user may have different skills, level of experience, or co...

  6. New Heuristics for Interfacing Human Motor System using Brain Waves

    Directory of Open Access Journals (Sweden)

    Mohammed El-Dosuky

    2012-09-01

    Full Text Available There are many new forms of interfacing human users to machines. We persevere here electric-mechanical form of interaction between human and machine. The emergence of brain-computer interface allows mind-to-movement systems. The story of the Pied Piper inspired us to devise some new heuristics for interfacing human motor system using brain waves, by combining head helmet and LumbarMotionMonitor. For the simulation we use java GridGain. Brain responses of classified subjects during training indicates that Probe can be the best stimulus to rely on in distinguishing between knowledgeable and not knowledgeable

  7. A Literature Review on Operator Interface Technologies for Network Enabled Operational Environments Using Complex System Analysis

    Science.gov (United States)

    2009-05-30

    results were summarized with pros and cons of different technologies for interface design purposes. 2 Résumé Une analyse documentaire a été...Enabled Operational Environments Using Complex System Analysis (U) Une analyse documentaire sur les technologies d’interface opérateur pour les...different technologies for interface design purposes. (U) Une analyse documentaire a été menée pour examiner les technologies d’interface de pointe

  8. Easily usable human-device interface for microwave therapy apparatus

    Directory of Open Access Journals (Sweden)

    Vasile Surducan

    2015-01-01

    Full Text Available In this paper we investigate the possibility of using a large dot matrix LCD (Liquid Crystal Display as the essential part of a low cost, user friendly human-device interface which is driving a microwave diathermy medical apparatus. The human-device interface uses only four buttons with multiple functionalities, an analog encoder and the said dot matrix LCD. The interface is a part of the embedded system that drives the entire unit, as a stand alone hardware and complex firmware program. This interface can handle the medical treatment parameters in an ergonomic and simple way. The human-device interface has been designed in agreement with the EN60601-1 and EN60601-1-4 requirements using “the simple to complex” writing and validation algorithm. The interface has been manufactured as prototype and tested on our own proprietary microwave hyperthermia and diathermy device and proves to be intuitive and easy to use. The human-device interface firmware is portable to other scientific apparatus as well; however, a reconfiguration of all displayed information is necessary, depending on the purpose of the served equipment. Compared with a colour graphic LCD equipped with touch screen, the interface presented here is definitely less expensive, can be implemented faster and uses  less hardware resources.

  9. Acoustic user interfaces for ambient-assisted living technologies.

    Science.gov (United States)

    Goetze, Stefan; Moritz, Niko; Appell, Jens-E; Meis, Markus; Bartsch, Christian; Bitzer, Jörg

    2010-01-01

    This contribution discusses technologies for acoustic user interaction in ambient-assisted living (AAL) scenarios. Acoustic user interfaces allow for a natural and convenient way to interact with technical systems e.g. via sound or speech presentation or via speech input by means of automatic speech recognition (ASR) as well as by detection and classification of acoustic events. Older persons targeted by AAL technologies especially need more easy-to-use methods to interact with inherently complex supporting technology. As an example we designed and evaluated an application for acoustic user interaction with a multi-media reminder and calendar system. For this purpose, mainly older participants were involved in user studies to continuously evaluate and support the development strictly following a user-centred design process. The results suggest a wide acceptance of acoustic user interfaces by older users either for controlling inherently complex AAL systems by using robust ASR technologies or as a natural and ambient way of presenting information to the user. However, further research is needed to increase the robustness of ASR systems when using hands-free equipment, i.e. to provide a real ambient way of interaction, and to introduce personalised speech and sound presentation schemes accounting for the individual hearing capabilities and sound preferences.

  10. Electric Wheelchair Controlled by Human Body Motion Interface

    Science.gov (United States)

    Yokota, Sho; Hashimoto, Hiroshi; Ohyama, Yasuhiro; She, Jin-Hua

    This research studies the possibility of an intuitive interface for an electric wheelchair by using human body except hands. For this purpose, we focused on the human body motion which has relation to actions or behavior. This motion comes from the human stabilization function for holding expectable collapsing caused by voluntary motion. Thus this motion is considered as a kind of characteristics of human motion, and is linked to intentions unconsciously. Therefore, the interface which does not require conscious and complex motion is realized by applying this human body motion to the interface of electric wheelchair. In this paper, first, we did experiment to search a part which vividly shows the pressure change on the seat. As a result, it was confirmed that pressure change of the seat back vividly shows the human body motion. Next, we designed the prototype based on this evidence. Finally, experiment was conducted by using 10 subjects and SD method to evaluate feeling of operation. For this result, it was turned out that all subjects feel that proposed interface was intuitive, or to control at their direction. Therefore it was confirmed that human body motion interface has a possibility to be used for an interface of electric wheelchair.

  11. Technology and trend management at the interface of technology push and market pull

    DEFF Research Database (Denmark)

    Maier, Maximilian; Hofmann, Maximilian; Brem, Alexander

    2016-01-01

    Technology push and market pull innovation strategies are playing an important role for the effective management of ideas, technologies, and trends. The coexistence of these two approaches led to many debates and the focus switched several times from putting more effort into technology push aspects...... to fostering market pull approaches in the last decades. Still, there is no in-depth exploration of the interface of technology push and market pull and only few conceptual models are dealing with the connection between technology push and market pull in particular. Therefore, this study puts an exploratory...... focus on the innovation management processes of a global outdoor manufacturer with a special emphasis on the interface between technology push and market pull. From the case findings and our literature we conceptualise a non-linear innovation model that systematically integrates market pull...

  12. User Interface Aspects of a Human-Hand Simulation System

    Directory of Open Access Journals (Sweden)

    Beifang Yi

    2005-10-01

    Full Text Available This paper describes the user interface design for a human-hand simulation system, a virtual environment that produces ground truth data (life-like human hand gestures and animations and provides visualization support for experiments on computer vision-based hand pose estimation and tracking. The system allows users to save time in data generation and easily create any hand gestures. We have designed and implemented this user interface with the consideration of usability goals and software engineering issues.

  13. User Interface Aspects of a Human-Hand Simulation System

    Directory of Open Access Journals (Sweden)

    Beifang Yi

    2005-10-01

    Full Text Available This paper describes the user interface design for a human-hand simulation system, a virtual environment that produces ground truth data (life-like human hand gestures and animations and provides visualization support for experiments on computer vision-based hand pose estimation and tracking. The system allows users to save time in data generation and easily create any hand gestures. We have designed and implemented this user interface with the consideration of usability goals and software engineering issues.

  14. BODY PRESSURE DISTRIBUTION OF AUTOMOBILE DRIVING HUMAN MACHINE CONTACT INTERFACE

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; HONG Jun; ZHANG E; LIANG Jian; LU Bingheng

    2007-01-01

    Aiming at the fatigue and comfort issues of human-machine contact Interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic Indexes are mapped to biomechanical Indexes like muscle stress-strain, the compression deformation of Wood vessels and nerves etc.from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive lest platform for sitting comfort of 3D adjustable contact Interface is constructed. The lest of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical Indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface.

  15. The Berlin Brain-Computer Interface: Non-Medical Uses of BCI Technology

    Directory of Open Access Journals (Sweden)

    Benjamin Blankertz

    2010-12-01

    Full Text Available Brain-Computer Interfacing (BCI is a steadily growing area ofresearch. While initially BCI research was focused on applicationsfor paralyzed patients, increasingly more alternative applications inhealthy human subjects are proposed and investigated. In particular,monitoring of mental states and decoding of covert user states haveseen a strong rise of interest. Here, we present some examples ofsuch novel applications which provide evidence for the promisingpotential of BCI technology for non-medical uses. Furthermore, wediscuss distinct methodological improvements required to bringnon-medical applications of BCI technology to a diversity of laypersontarget groups, e.g., ease of use, minimal training, general usability,short control latencies.

  16. Advanced Technology Development: Solid-Liquid Interface Characterization Hardware

    Science.gov (United States)

    2003-01-01

    Characterizing the solid-liquid interface during directional solidification is key to understanding and improving material properties. The goal of this Advanced Technology Development (ATD) has been to develop hardware, which will enable real-time characterization of practical materials, such as aluminum (Al) alloys, to unprecedented levels. Required measurements include furnace and sample temperature gradients, undercooling at the growing interface, interface shape, or morphology, and furnace translation and sample growth rates (related). These and other parameters are correlated with each other and time. A major challenge was to design and develop all of the necessary hardware to measure the characteristics, nearly simultaneously, in a smaller integral furnace compatible with existing X-ray Transmission Microscopes, XTMs. Most of the desired goals have been accomplished through three generations of Seebeck furnace brassboards, several varieties of film thermocouple arrays, heaters, thermal modeling of the furnaces, and data acquisition and control (DAC) software. Presentations and publications have resulted from these activities, and proposals to use this hardware for further materials studies have been submitted as sequels to this last year of the ATD.

  17. The Programming Language as Human Interface

    NARCIS (Netherlands)

    Pemberton, S.

    2014-01-01

    Programming languages are mostly not designed for humans, but for computers. As a result, programming time is increased by the necessity for programmers to translate problem description into a step-wise method of solving the problem. This demonstration shows a step towards producing more human-orien

  18. 空间遥操作任务中显控界面关键技术研究进展%Progress of the Key Technologies in Human-Computer Interface in Space Teleoperation

    Institute of Scientific and Technical Information of China (English)

    薛书骐; 姜国华; 田志强; 蒋婷

    2014-01-01

    To improve the human performance of space teleoperation such as space station robotic arm operation task , it is an important technical method to improve the operators'telepresence level . Therefore, ergonomic design of human-computer interface ( HCI) should be carried out .According to the research development of related fields , several key factors including real scene visual inter-face , virtual and augmented reality interface , control strategies against time delay , verbal and haptic interaction, were summarized.Furthermore, a few items of underlying research directions were also discussed .%为提高空间站机械臂等空间遥操作任务的操作表现,提升操作者的临场感是一项重要的技术途径。为此,须开展显控界面的工效学设计。结合目前国内外研究文献,分别就视觉实景界面,增强现实界面,对抗时延的操作策略,语音、力觉交互以及预警机制等几项关键技术进行了梳理和讨论,并提出了几项空间遥操作人机界面可以深入展开的研究方向。

  19. [Wireless human body communication technology].

    Science.gov (United States)

    Sun, Lei; Zhang, Xiaojuan

    2014-12-01

    The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference.

  20. Interdisciplinarity at the Human-Environment Interface

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Arler, Finn

    2010-01-01

    discussed, including Geography, Human Ecology, Environmental Studies, Environmental Management, Ecological Economics, Sustainability Science and Earth System Science. Key problems of carrying out interdisciplinary research are identified, including differences of both ontological, epistemological...

  1. Human health monitoring technology

    Science.gov (United States)

    Kim, Byung-Hyun; Yook, Jong-Gwan

    2017-05-01

    Monitoring vital signs from human body is very important to healthcare and medical diagnosis, because they contain valuable information about arterial occlusions, arrhythmia, atherosclerosis, autonomous nervous system pathologies, stress level, and obstructive sleep apnea. Existing methods, such as electrocardiogram (ECG) sensor and photoplethysmogram (PPG) sensor, requires direct contact to the skin and it can causes skin irritation and the inconvenience of long-term wearing. For reducing the inconvenience in the conventional sensors, microwave and millimeter-wave sensors have been proposed since 1970s using micro-Doppler effect from one's cardiopulmonary activity. The Doppler radar sensor can remotely detect the respiration and heartbeat up to few meters away from the subject, but they have a multiple subject issue and are not suitable for an ambulatory subject. As a compromise, a noncontact proximity vital sign sensor has been recently proposed and developed. The purpose of this paper is to review the noncontact proximity vital sign sensors for detection of respiration, heartbeat rate, and/or wrist pulse. This sensor basically employs near-field perturbation of radio-frequency (RF) planar resonator due to the proximity of the one's chest or radial artery at the wrist. Various sensing systems based on the SAW filter, phase-locked loop (PLL) synthesizer, reflectometer, and interferometer have been proposed. These self-sustained systems can measure the nearfield perturbation and transform it into DC voltage variation. Consequently, they can detect the respiration and heartbeat rate near the chest of subject and pulse from radial artery at the wrist.

  2. Intelligent Human Machine Interface Design for Advanced Product Life Cycle Management Systems

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    Designing and implementing an intelligent and user friendly human machine interface for any kind of software or hardware oriented application is always be a challenging task for the designers and developers because it is very difficult to understand the psychology of the user, nature of the work and best suit of the environment. This research paper is basically about to propose an intelligent, flexible and user friendly machine interface for Product Life Cycle Management products or PDM Systems since studies show that usability and human computer interaction issues are a major cause of acceptance problems introducing or using such systems. Going into details of the proposition, we present prototype implementations about theme based on design requirements, designed designs and technologies involved for the development of human machine interface.

  3. Integrating Human Performance and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ronald K. Farris; Heather Medema

    2012-05-01

    Human error is a significant factor in the cause and/or complication of events that occur in the commercial nuclear industry. In recent years, great gains have been made using Human Performance (HU) tools focused on targeting individual behaviors. However, the cost of improving HU is growing and resistance to add yet another HU tool certainly exists, particularly for those tools that increase the paperwork for operations. Improvements in HU that are the result of leveraging existing technology, such as hand-held mobile technologies, have the potential to reduce human error in controlling system configurations, safety tag-outs, and other verifications. Operator rounds, valve line-up verifications, containment closure verifications, safety & equipment protection, and system tagging can be supported by field-deployable wireless technologies. These devices can also support the availability of critical component data in the main control room and other locations. This research pilot project reviewing wireless hand-held technology is part of the Light Water Reactor Sustainability Program (LWRSP), a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE). The project is being performed in close collaboration with industry R&D programs to provide the technical foundations for licensing, and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRSP vision is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current nuclear reactor fleet.

  4. Guidance for human interface with artificial intelligence systems

    Science.gov (United States)

    Potter, Scott S.; Woods, David D.

    1991-01-01

    The beginning of a research effort to collect and integrate existing research findings about how to combine computer power and people is discussed, including problems and pitfalls as well as desirable features. The goal of the research is to develop guidance for the design of human interfaces with intelligent systems. Fault management tasks in NASA domains are the focus of the investigation. Research is being conducted to support the development of guidance for designers that will enable them to make human interface considerations into account during the creation of intelligent systems.

  5. Harmonisation of Technology and Humanism

    Directory of Open Access Journals (Sweden)

    Getashvili Irina

    2013-06-01

    Full Text Available The article is devoted to information and communication technologies and the principles of humanism in education village. Humanist and modern communications systems, communications and information opens up new possibilities in the formation of children's talents. This had a positive effect on the state of affairs of the village, the region and the country. Improve the quality, effectiveness of education

  6. Human performance measures for interactive haptic-audio-visual interfaces.

    Science.gov (United States)

    Jia, Dawei; Bhatti, Asim; Nahavandi, Saeid; Horan, Ben

    2013-01-01

    Virtual reality and simulation are becoming increasingly important in modern society and it is essential to improve our understanding of system usability and efficacy from the users' perspective. This paper introduces a novel evaluation method designed to assess human user capability when undertaking technical and procedural training using virtual training systems. The evaluation method falls under the user-centered design and evaluation paradigm and draws on theories of cognitive, skill-based and affective learning outcomes. The method focuses on user interaction with haptic-audio-visual interfaces and the complexities related to variability in users' performance, and the adoption and acceptance of the technologies. A large scale user study focusing on object assembly training tasks involving selecting, rotating, releasing, inserting, and manipulating three-dimensional objects was performed. The study demonstrated the advantages of the method in obtaining valuable multimodal information for accurate and comprehensive evaluation of virtual training system efficacy. The study investigated how well users learn, perform, adapt to, and perceive the virtual training. The results of the study revealed valuable aspects of the design and evaluation of virtual training systems contributing to an improved understanding of more usable virtual training systems.

  7. Flexible dielectric elastomer actuators for wearable human-machine interfaces

    Science.gov (United States)

    Bolzmacher, Christian; Biggs, James; Srinivasan, Mandayam

    2006-03-01

    Wearable dielectric elastomer actuators have the potential to enable new technologies, such as tactile feedback gloves for virtual reality, and to improve existing devices, such as automatic blood pressure cuffs. They are potentially lighter, quieter, thinner, simpler, and cheaper than pneumatic and hydraulic systems now used to make compliant, actuated interfaces with the human body. Achieving good performance without using a rigid frame to prestrain the actuator is a fundamental challenge in using these actuators on body. To answer this challenge, a new type of fiber-prestrained composite actuator was developed. Equations that facilitate design of the actuator are presented, along with FE analysis, material tests, and experimental results from prototypes. Bending stiffness of the actuator material was found to be comparable to textiles used in clothing, confirming wearability. Two roll-to-roll machines are also presented that permit manufacture of this material in bulk as a modular, compact, prestressed composite that can be cut, stacked, and staggered, in order to build up actuators for a range of desired forces and displacements. The electromechanical properties of single- layered actuators manufactured by this method were measured (N=5). At non-damaging voltages, blocking force ranged from 3,7-5,0 gram per centimeter of actuator width, with linear strains of 20,0-30%. Driving the actuators to breakdown produced maximum force of 8,3-10 gram/cm, and actuation strain in excess 30%. Using this actuator, a prototype tactile display was constructed and demonstrated.

  8. Animation, embodiment, and digital media human experience of technological liveliness

    CERN Document Server

    Chow, K

    2013-01-01

    Animation, Embodiment and Digital Media articulates the human experience of technology-mediated animated phenomena in terms of sensory perception, bodily action and imaginative interpretation, suggesting a new theoretical framework with analyses of exemplary user interfaces, video games and interactive artworks.

  9. Human-computer interface incorporating personal and application domains

    Science.gov (United States)

    Anderson, Thomas G.

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  10. The development and evaluation of guidelines for the review of advanced human-system interfaces

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M. [Brookhaven National Lab., Upton, NY (US); Wachtel, J. [Nuclear Regulatory Commission, Washington, DC (US). Office of Nuclear Regulatory Research

    1992-12-31

    Advanced control rooms for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes a general approach to advanced human-system interface review, development of human factors guidelines to support NRC safety reviews of advanced systems, and the results of a guideline test and evaluation program.

  11. Intuitive engineering, human factors, and the design of future interfaces (Invited Paper)

    Science.gov (United States)

    Sampson, James B.

    2005-05-01

    Human factors engineering (HFE) professionals complain that they are often called in after-the-fact to help correct human interface problems. They believe many design flaws can be avoided if design teams involve them early on. However, in the case of innovative technology, such post hoc human factors may not be avoidable unless the inventor is also a human factors engineer or the prospective user. In rare cases an inventor of a new technology has an intuitive understanding of human engineering principles and knows well the capabilities and limitations of operators. This paper outlines the importance of focusing on the user-system interface and encouraging engineers to develop their own intuitive sense of users through mental imagery. If design engineers start with a clear mental picture of a specific user and task rather than generalities of use, fewer interface problems are likely to be encountered later in development. Successful technology innovators often use a visual thinking approach in the development of new concepts. Examples are presented to illustrate the successful application of intuitive design. An approach is offered on how designers can improve their non-verbal thinking skills. The author shares the view that the mission of HFE should not be to make system developers dependent on the small community of HF experts but rather to help them learn the value of applying user-centered design techniques.

  12. Technology and trend management at the interface of technology push and market pull

    DEFF Research Database (Denmark)

    Maier, Maximilian; Hofmann, Maximilian; Brem, Alexander

    2016-01-01

    Technology push and market pull innovation strategies are playing an important role for the effective management of ideas, technologies, and trends. The coexistence of these two approaches led to many debates and the focus switched several times from putting more effort into technology push aspects...... focus on the innovation management processes of a global outdoor manufacturer with a special emphasis on the interface between technology push and market pull. From the case findings and our literature we conceptualise a non-linear innovation model that systematically integrates market pull...... and technology push activities. The model was tested for its practical applicability by reflecting it against the case company's organisational capabilities. Further research implications are discussed as well as implications for the management of the innovation process in practice, which highlights especially...

  13. The Human Blood Metabolome-Transcriptome Interface

    Science.gov (United States)

    Schramm, Katharina; Adamski, Jerzy; Gieger, Christian; Herder, Christian; Carstensen, Maren; Peters, Annette; Rathmann, Wolfgang; Roden, Michael; Strauch, Konstantin; Suhre, Karsten; Kastenmüller, Gabi; Prokisch, Holger; Theis, Fabian J.

    2015-01-01

    Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the ‘human blood metabolome-transcriptome interface’ (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease. PMID:26086077

  14. Infrared stereo camera for human machine interface

    Science.gov (United States)

    Edmondson, Richard; Vaden, Justin; Chenault, David

    2012-06-01

    Improved situational awareness results not only from improved performance of imaging hardware, but also when the operator and human factors are considered. Situational awareness for IR imaging systems frequently depends on the contrast available. A significant improvement in effective contrast for the operator can result when depth perception is added to the display of IR scenes. Depth perception through flat panel 3D displays are now possible due to the number of 3D displays entering the consumer market. Such displays require appropriate and human friendly stereo IR video input in order to be effective in the dynamic military environment. We report on a stereo IR camera that has been developed for integration on to an unmanned ground vehicle (UGV). The camera has auto-convergence capability that significantly reduces ill effects due to image doubling, minimizes focus-convergence mismatch, and eliminates the need for the operator to manually adjust camera properties. Discussion of the size, weight, and power requirements as well as integration onto the robot platform will be given along with description of the stand alone operation.

  15. Human Anthrax Transmission at the Urban?Rural Interface, Georgia

    OpenAIRE

    Kracalik, Ian; Malania, Lile; Imnadze, Paata; Blackburn, Jason K.

    2015-01-01

    Human anthrax has increased dramatically in Georgia and was recently linked to the sale of meat in an urban market. We assessed epidemiological trends and risk factors for human anthrax at the urban?rural interface. We reviewed epidemiologic records (2000?2012) that included the place of residence (classified as urban, peri-urban, or rural), age, gender, and self-reported source of infection (handling or processing animal by-products and slaughtering or butchering livestock). To estimate risk...

  16. Inhalation devices and patient interface: human factors.

    Science.gov (United States)

    Leiner, Stefan; Parkins, David; Lastow, Orest

    2015-03-01

    The development of any inhalation product that does not consider the patient needs will fail. The needs of the patients must be identified and aligned with engineering options and physical laws to achieve a robust and intuitive-to-use inhaler. A close interaction between development disciplines and real-use evaluations in clinical studies or in human factor studies is suggested. The same holds true when a marketed product needs to be changed. Caution is warranted if an inhaler change leads to a change in the way the patient handles the device. Finally, the article points out potential problems if many inhaler designs are available. Do they confuse the patients? Can patients recall the correct handling of each inhaler they use? How large is the risk that different inhaler designs pose to the public health? The presentations were given at the Orlando Inhalation Conference: Approaches in International Regulation co-organised by the University of Florida and the International Pharmaceutical Aerosol Consortium on Regulation & Science (IPAC-RS) in March 2014.

  17. Consider neuromusculoskeletal redundancy and extended proprioception when designing smart structures to interface with humans

    Science.gov (United States)

    Winters, Jack M.

    1996-05-01

    Despite many well-intentioned attempts to utilize state-of-the-art advanced control systems technology to design contact devices such as powered orthoses, there have been more failures than successes. In part this is due to our limited understanding of neuromechanical function, and of how to optimally design human-technology interfaces. This paper develops a theoretical foundation for mechanical impedance and postural stability for large-scale human systems, and for the analysis and design of human-technology contact interfaces. We start with four basic presuppositions: redundancy is a fundamental feature of biosystem design, muscle actuators possess intrinsic nonlinear stiffness which can be modulated, mechanical interaction between the human and an environment is fundamentally bicausal, and objects with certain properties can become almost a natural extension of the human body. We then develop the key concepts of intimate contact and extended proprioception, and provide examples of how these principles can be applied to practical problems in orthotics, focusing on posture-assist technologies. Finally, suggestions are put forward for applying smart materials and structures to innovative orthotic design.

  18. A HUMAN FACTORS ENGINEERING PROCESS TO SUPPORT HUMAN-SYSTEM INTERFACE DESIGN IN CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, C.; Joe, J.; Boring, R.

    2017-05-01

    The primary objective of the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to sustain operation of the existing commercial nuclear power plants (NPPs) through a multi-pathway approach in conducting research and development (R&D). The Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway conducts targeted R&D to address aging and reliability concerns with legacy instrumentation and control (I&C) and other information systems in existing U.S. NPPs. Control room modernization is an important part following this pathway, and human factors experts at Idaho National Laboratory (INL) have been involved in conducting R&D to support migration of new digital main control room (MCR) technologies from legacy analog and legacy digital I&C. This paper describes a human factors engineering (HFE) process that supports human-system interface (HSI) design in MCR modernization activities, particularly with migration of old digital to new digital I&C. The process described in this work is an expansion from the LWRS Report INL/EXT-16-38576, and is a requirements-driven approach that aligns with NUREG-0711 requirements. The work described builds upon the existing literature by adding more detail around key tasks and decisions to make when transitioning from HSI Design into Verification and Validation (V&V). The overall objective of this process is to inform HSI design and elicit specific, measurable, and achievable human factors criteria for new digital technologies. Upon following this process, utilities should have greater confidence with transitioning from HSI design into V&V.

  19. Integrated Human Factors Design Guidelines for Sound Interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Hee; Oh, In Seok; Lee, Hyun Chul [KAERI, Daejeon (Korea, Republic of); Cha, Woo Chang [Kumoh National Univ. of Technology, Gumi (Korea, Republic of)

    2004-05-15

    Digital MMI, such as CRT, LCD etc., has been used increasingly in the design of main control room of the Korean standard nuclear power plants following the YGN units 3 and 4. The utilization of digital MMI may introduce various kind of sound interface into the control room design. In this project, for five top-level guideline items, including Sound Formats, Alarms, Sound Controls, Communications, and Environments, a total of 147 detail guidelines were developed and a database system for these guidelines was developed. The integrated human factors design guidelines for sound interface and the database system developed in this project will be useful for the design of sound interface of digital MMI in Korean NPPs.

  20. Neurological rehabilitation of stroke patients via motor imaginary-based brain-computer interface technology

    Institute of Scientific and Technical Information of China (English)

    Hongyu Sun; Yang Xiang; Mingdao Yang

    2011-01-01

    The present study utilized motor imaginary-based brain-computer interface technology combined with rehabilitation training in 20 stroke patients. Results from the Berg Balance Scale and the Holden Walking Classification were significantly greater at 4 weeks after treatment (P < 0.01), which suggested that motor imaginary-based brain-computer interface technology improved balance and walking in stroke patients.

  1. Developing a Prototype ALHAT Human System Interface for Landing

    Science.gov (United States)

    Hirsh, Robert L.; Chua, Zarrin K.; Heino, Todd A.; Strahan, Al; Major, Laura; Duda, Kevin

    2011-01-01

    The goal of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is to safely execute a precision landing anytime/anywhere on the moon. This means the system must operate in any lighting conditions, operate in the presence of any thruster generated regolith clouds, and operate without the help of redeployed navigational aids or prepared landing site at the landing site. In order to reach this ambitious goal, computer aided technologies such as ALHAT will be needed in order to permit these landings to be done safely. Although there will be advanced autonomous capabilities onboard future landers, humans will still be involved (either onboard as astronauts or remotely from mission control) in any mission to the moon or other planetary body. Because many time critical decisions must be made quickly and effectively during the landing sequence, the Descent and Landing displays need to be designed to be as effective as possible at presenting the pertinent information to the operator, and allow the operators decisions to be implemented as quickly as possible. The ALHAT project has established the Human System Interface (HSI) team to lead in the development of these displays and to study the best way to provide operators enhanced situational awareness during landing activities. These displays are prototypes that were developed based on multiple design and feedback sessions with the astronaut office at NASA/ Johnson Space Center. By working with the astronauts in a series of plan/build/evaluate cycles, the HSI team has obtained astronaut feedback from the very beginning of the design process. In addition to developing prototype displays, the HSI team has also worked to provide realistic lunar terrain (and shading) to simulate a "out the window" view that can be adjusted to various lighting conditions (based on a desired date/time) to allow the same terrain to be viewed under varying lighting terrain. This capability will be critical to determining the

  2. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges

    Directory of Open Access Journals (Sweden)

    José del R. Millán

    2010-09-01

    Full Text Available In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT. In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication & Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI to improve BCI usability, and the development of novel BCI technology including better EEG devices.

  3. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges.

    Science.gov (United States)

    Millán, J D R; Rupp, R; Müller-Putz, G R; Murray-Smith, R; Giugliemma, C; Tangermann, M; Vidaurre, C; Cincotti, F; Kübler, A; Leeb, R; Neuper, C; Müller, K-R; Mattia, D

    2010-01-01

    In recent years, new research has brought the field of electroencephalogram (EEG)-based brain-computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely, "Communication and Control", "Motor Substitution", "Entertainment", and "Motor Recovery". We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users' mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices.

  4. The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology

    Science.gov (United States)

    Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Fazli, Siamac; Sannelli, Claudia; Haufe, Stefan; Maeder, Cecilia; Ramsey, Lenny; Sturm, Irene; Curio, Gabriel; Müller, Klaus-Robert

    2010-01-01

    Brain–computer interfacing (BCI) is a steadily growing area of research. While initially BCI research was focused on applications for paralyzed patients, increasingly more alternative applications in healthy human subjects are proposed and investigated. In particular, monitoring of mental states and decoding of covert user states have seen a strong rise of interest. Here, we present some examples of such novel applications which provide evidence for the promising potential of BCI technology for non-medical uses. Furthermore, we discuss distinct methodological improvements required to bring non-medical applications of BCI technology to a diversity of layperson target groups, e.g., ease of use, minimal training, general usability, short control latencies. PMID:21165175

  5. Human interface, automatic planning, and control of a humanoid robot

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Y.K. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)]|[Sandia National Labs., Albuquerque, NM (United States); Kang, S.C.; Lee, S.; Cho, K.R.; Kim, H.S.; Lee, C.W. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); Park, S.M. [Jeonju Technical Coll. (Korea, Republic of)

    1998-11-01

    This paper presents an integrated robotic system consisting of human interfaces, motion- and grasp-planning algorithms, a controller, a graphical simulator, and a humanoid robot with over 60 joints. All of these subsystems are integrated in a coordinated fashion to enable the robot to perform a commanded task with as much autonomy as possible. The highest level of the system is the human interfaces, which enable a user to specify tasks conveniently and efficiently. At the mid-level, several planning algorithms generate motions of the robot body, arms, and hands automatically. At the lowest level, the motor controllers are equipped with both a position controller and a compliant motion controller to execute gross motions and contact motions, respectively. The main contributions of the work are the large-scale integration and the development of the motion planners for a humanoid robot. A hierarchical integration scheme that preserves the modularities of the human interfaces, the motion planners, and the controller has been the key for the successful integration. The set of motion planners is developed systematically so as to coordinate the motions of the body, arms, and hands to perform a large variety of tasks.

  6. Investigation of human-robot interface performance in household environments

    Science.gov (United States)

    Cremer, Sven; Mirza, Fahad; Tuladhar, Yathartha; Alonzo, Rommel; Hingeley, Anthony; Popa, Dan O.

    2016-05-01

    Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several household tasks. Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile manipulation experiments were performed with a sensorized KUKA youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involved navigation and manipulation of objects in household environments. Performance metrics included time for task completion and position accuracy.

  7. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    Science.gov (United States)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  8. Human -Computer Interface using Gestures based on Neural Network

    Directory of Open Access Journals (Sweden)

    Aarti Malik

    2014-10-01

    Full Text Available - Gestures are powerful tools for non-verbal communication. Human computer interface (HCI is a growing field which reduces the complexity of interaction between human and machine in which gestures are used for conveying information or controlling the machine. In the present paper, static hand gestures are utilized for this purpose. The paper presents a novel technique of recognizing hand gestures i.e. A-Z alphabets, 0-9 numbers and 6 additional control signals (for keyboard and mouse control by extracting various features of hand ,creating a feature vector table and training a neural network. The proposed work has a recognition rate of 99%. .

  9. Preface (to: Brain-Computer Interfaces. Applying our Minds to Human-Computer Interaction)

    NARCIS (Netherlands)

    Tan, Desney; Tan, Desney S.; Nijholt, Antinus

    2010-01-01

    The advances in cognitive neuroscience and brain imaging technologies provide us with the increasing ability to interface directly with activity in the brain. Researchers have begun to use these technologies to build brain-computer interfaces. Originally, these interfaces were meant to allow

  10. Brain-Computer Interfaces Applying Our Minds to Human-computer Interaction

    CERN Document Server

    Tan, Desney S

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person's mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical p

  11. Development of a Service Quality Scale for Multiple Technology Interfaces in Commercial Banking

    Directory of Open Access Journals (Sweden)

    JAYA SANGEETHA

    2012-12-01

    Full Text Available The objective of this paper is to develop a service quality scale by identifying the dimensions affecting the service quality across various technology interfaces in retail banking. The paper examines the literature involving the various technology interfaces and aims to propose a conceptual model involving dimensions that affect the perceptions of service quality of the technology interfaces used in banks. The paper also seeks to establish the psychometric properties of the scale thus arrived. The literature review reveals that the models currently available to measure the service quality of the technology interfaces are limited in their focus, encompassing mostly one electronic channel – the internet – and few others studying the ATM and telephone banking cha nnels. However, there is a gap with regard to the study of other technology interfaces like call centers and queue systems used in the branches. In this study, an attempt is being made to explore the influence of the various technology interfaces on banks’ service quality like the ATM, telephone banking, call center services, queue systems in the branches etc. which the customers use in combination and thereby to develop a scale to measure technology interface service quality (TISQ.

  12. Applying Spatial Audio to Human Interfaces: 25 Years of NASA Experience

    Science.gov (United States)

    Begault, Durand R.; Wenzel, Elizabeth M.; Godfrey, Martine; Miller, Joel D.; Anderson, Mark R.

    2010-01-01

    From the perspective of human factors engineering, the inclusion of spatial audio within a human-machine interface is advantageous from several perspectives. Demonstrated benefits include the ability to monitor multiple streams of speech and non-speech warning tones using a cocktail party advantage, and for aurally-guided visual search. Other potential benefits include the spatial coordination and interaction of multimodal events, and evaluation of new communication technologies and alerting systems using virtual simulation. Many of these technologies were developed at NASA Ames Research Center, beginning in 1985. This paper reviews examples and describes the advantages of spatial sound in NASA-related technologies, including space operations, aeronautics, and search and rescue. The work has involved hardware and software development as well as basic and applied research.

  13. Open|SpeedShop Graphical User Interface Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to create a new graphical user interface (GUI) for an existing parallel application performance and profiling tool, Open|SpeedShop. The current GUI has...

  14. Space Station Human Factors: Designing a Human-Robot Interface

    Science.gov (United States)

    Rochlis, Jennifer L.; Clarke, John Paul; Goza, S. Michael

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort and focus on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multifunctional telerobot. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot called Robonaut. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The experiments presented here took an integrated approach to describing teleoperator performance and assessed how subjects operating a full-immersion telerobot perform during fine position and gross position tasks. In addition, a Robonaut simulation was also developed as part of this research effort, and experimentally tested against Robonaut itself to determine its utility. Results show that subject performance of teleoperated tasks using both Robonaut and the simulation are virtually identical, with no significant difference between the two. These results indicate that the simulation can be utilized as both a Robonaut training tool, and as a powerful design platform for telepresence displays and aids.

  15. Human-computer interface glove using flexible piezoelectric sensors

    Science.gov (United States)

    Cha, Youngsu; Seo, Jeonggyu; Kim, Jun-Sik; Park, Jung-Min

    2017-05-01

    In this note, we propose a human-computer interface glove based on flexible piezoelectric sensors. We select polyvinylidene fluoride as the piezoelectric material for the sensors because of advantages such as a steady piezoelectric characteristic and good flexibility. The sensors are installed in a fabric glove by means of pockets and Velcro bands. We detect changes in the angles of the finger joints from the outputs of the sensors, and use them for controlling a virtual hand that is utilized in virtual object manipulation. To assess the sensing ability of the piezoelectric sensors, we compare the processed angles from the sensor outputs with the real angles from a camera recoding. With good agreement between the processed and real angles, we successfully demonstrate the user interaction system with the virtual hand and interface glove based on the flexible piezoelectric sensors, for four hand motions: fist clenching, pinching, touching, and grasping.

  16. An Embedded System for Tracking Human Motion and Humanoid Interfaces

    Directory of Open Access Journals (Sweden)

    Ming-June Tsai

    2012-12-01

    Full Text Available The aim of this research is using embedded CPU to develop a human motion tracking system and construct a motion replication interface for a humanoid robot. In the motion tracking system, we use a CPLD (Complex Programmable Logic Device which is built in a central control unit (CCU to generate synchronous signals for all the periphery devices and control the data flow from CCD boards to a PC via a USB chip. An embedded DSP on the CCD board is adopted to control the CCD exposure and conduct image processing. The peak position of exposure was computed by the on-board DSP within sub-pixel accuracy. In the construction of a motion replication interface, the same CCU is used to generate the PWM signals to drive the motors of the humanoid robot. All of the respective firmware coding methods are discussed in this article.

  17. Advanced chemistry of monolayers at interfaces trends in methodology and technology

    CERN Document Server

    Imae, Toyoko

    2007-01-01

    Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses.Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic tech

  18. Hacking the brain: Brain-computer interfacing technology and the ethics of neurosecurity

    NARCIS (Netherlands)

    Ienca, M.; Haselager, W.F.G.

    2016-01-01

    Brain-computer interfacing technologies are used as assistive technologies for patients as well as healthy subjects to control devices solely by brain activity. Yet the risks associated with the misuse of these technologies remain largely unexplored. Recent findings have shown that BCIs are potentia

  19. Hacking the brain: Brain-computer interfacing technology and the ethics of neurosecurity

    NARCIS (Netherlands)

    Ienca, M.; Haselager, W.F.G.

    2016-01-01

    Brain-computer interfacing technologies are used as assistive technologies for patients as well as healthy subjects to control devices solely by brain activity. Yet the risks associated with the misuse of these technologies remain largely unexplored. Recent findings have shown that BCIs are potentia

  20. Hacking the brain: Brain-computer interfacing technology and the ethics of neurosecurity

    NARCIS (Netherlands)

    Ienca, M.; Haselager, W.F.G.

    2016-01-01

    Brain-computer interfacing technologies are used as assistive technologies for patients as well as healthy subjects to control devices solely by brain activity. Yet the risks associated with the misuse of these technologies remain largely unexplored. Recent findings have shown that BCIs are

  1. Web interface humanization design analysis%网页界面人性化设计探析

    Institute of Scientific and Technical Information of China (English)

    徐夕人

    2014-01-01

    Network information era of rapid development of science and technology,Webpage interface design has been paid more attention to.Webpage interface become mediated interaction between the user and the computer, gets depends mainly on the Webpage interface information transmit visual information obtained from perception people outside information. Based on the Webpage interface design clarity, artistic, fluency, the rationality of the analysis and the discussion, think Webpage interface design must be humanized.%科技飞速发展的网络信息时代,网页界面设计日益得到重视。网页界面成为了用户与电脑之间互动的介体,人们对外界信息的获取主要靠网页界面信息的视觉信息传递获得感知。本文通过对网页界面设计的准确性、艺术性、流畅性、合理性进行了分析与探讨,认为网页界面设计必须人性化。

  2. Engineering and commercialization of human-device interfaces, from bone to brain.

    Science.gov (United States)

    Knothe Tate, Melissa L; Detamore, Michael; Capadona, Jeffrey R; Woolley, Andrew; Knothe, Ulf

    2016-07-01

    Cutting edge developments in engineering of tissues, implants and devices allow for guidance and control of specific physiological structure-function relationships. Yet the engineering of functionally appropriate human-device interfaces represents an intractable challenge in the field. This leading opinion review outlines a set of current approaches as well as hurdles to design of interfaces that modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic paths, between endogenous and engineered body parts or tissues. The compendium is designed to bridge across currently separated disciplines by highlighting specific commonalities between seemingly disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems share common paradigms which can be harnessed to inspire innovative interface design solutions. Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients for interfaces between endogenous and engineered tissues as well as between electrodes that physically and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of newly developed technologies into products, protocols, and treatments that benefit the patients who need them most, regulatory and technical challenges and opportunities are addressed on hand from an example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to bone. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Guidance for Human-system Interfaces to Automatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; Higgins, J.; Stephen Fleger; Valerie Barnes

    2010-09-27

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions, including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: Levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration.

  4. EXPERIMENTAL AND THEORETICAL FOUNDATIONS AND PRACTICAL IMPLEMENTATION OF TECHNOLOGY BRAIN-COMPUTER INTERFACE

    National Research Council Canada - National Science Library

    A. Ya. Kaplan; A. G. Kochetova; S. L. Shishkin; I. A. Basyul; I. P. Ganin; A. N. Vasilev; S. P. Liburkina

    2013-01-01

    Technology brain-computer interface (BCI) allow saperson to learn how to control external devices via thevoluntary regulation of own EEG directly from the brain without the involvement in the process of nerves and muscles...

  5. A Classification of Human-to-Human Communication during the Use of Immersive Teleoperation Interfaces

    DEFF Research Database (Denmark)

    Kraus, Martin; Kibsgaard, Martin

    2015-01-01

    We propose a new classification of the human-to-human communication during the use of immersive teleoperation interfaces based on real-life examples. While a large body of research is concerned with communication in collaborative virtual environments (CVEs), less research focuses on cases where...

  6. Interface

    DEFF Research Database (Denmark)

    Computerens interface eller grænseflade har spredt sig overalt. Mobiltelefoner, spilkonsoller, pc'er og storskærme indeholder computere – men computere indbygges også i tøj og andre hverdagslige genstande, så vi konstant har adgang til digitale data. Interface retter fokus mod, hvordan den digita...

  7. Interface design and human factors considerations for model-based tight glycemic control in critical care.

    Science.gov (United States)

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.

  8. DARPA-funded efforts in the development of novel brain-computer interface technologies.

    Science.gov (United States)

    Miranda, Robbin A; Casebeer, William D; Hein, Amy M; Judy, Jack W; Krotkov, Eric P; Laabs, Tracy L; Manzo, Justin E; Pankratz, Kent G; Pratt, Gill A; Sanchez, Justin C; Weber, Douglas J; Wheeler, Tracey L; Ling, Geoffrey S F

    2015-04-15

    The Defense Advanced Research Projects Agency (DARPA) has funded innovative scientific research and technology developments in the field of brain-computer interfaces (BCI) since the 1970s. This review highlights some of DARPA's major advances in the field of BCI, particularly those made in recent years. Two broad categories of DARPA programs are presented with respect to the ultimate goals of supporting the nation's warfighters: (1) BCI efforts aimed at restoring neural and/or behavioral function, and (2) BCI efforts aimed at improving human training and performance. The programs discussed are synergistic and complementary to one another, and, moreover, promote interdisciplinary collaborations among researchers, engineers, and clinicians. Finally, this review includes a summary of some of the remaining challenges for the field of BCI, as well as the goals of new DARPA efforts in this domain.

  9. Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy

    Science.gov (United States)

    Stecklein, Jonette M.

    2013-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology

  10. Development of an evaluation technique for human-machine interface

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dae Hwan; Koo, Sang Hui; Ahn, Won Yeong; Ryu, Yeong Shin [Korea Univ., Seoul (Korea, Republic of)

    1997-07-15

    The purpose of this study is two-fold : firstly to establish an evaluation technique for HMI(Human Machine Interface) in NPPs(Nuclear Power Plants) and secondly to develop an architecture of a support system which can be used for the evaluation of HMI. In order to establish an evaluation technique, this study conducted literature review on basic theories of cognitive science studies and summarized the cognitive characteristics of humans. This study also surveyed evaluation techniques of HMI in general, and reviewed studies on the evaluation of HMI in NPPs. On the basis of this survey, the study established a procedure for the evaluation of HMI in NPPs in Korea and laid a foundation for empirical verification.

  11. EOG-sEMG Human Interface for Communication

    Directory of Open Access Journals (Sweden)

    Hiroki Tamura

    2016-01-01

    Full Text Available The aim of this study is to present electrooculogram (EOG and surface electromyogram (sEMG signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as “dual-modality” for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion of EOG and two classes (left blink and right blink of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

  12. EOG-sEMG Human Interface for Communication.

    Science.gov (United States)

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as "dual-modality" for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

  13. Human facial neural activities and gesture recognition for machine-interfacing applications.

    Science.gov (United States)

    Hamedi, M; Salleh, Sh-Hussain; Tan, T S; Ismail, K; Ali, J; Dee-Uam, C; Pavaganun, C; Yupapin, P P

    2011-01-01

    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.

  14. Human facial neural activities and gesture recognition for machine-interfacing applications

    Directory of Open Access Journals (Sweden)

    Hamedi M

    2011-12-01

    Full Text Available M Hamedi1, Sh-Hussain Salleh2, TS Tan2, K Ismail2, J Ali3, C Dee-Uam4, C Pavaganun4, PP Yupapin51Faculty of Biomedical and Health Science Engineering, Department of Biomedical Instrumentation and Signal Processing, University of Technology Malaysia, Skudai, 2Centre for Biomedical Engineering Transportation Research Alliance, 3Institute of Advanced Photonics Science, Nanotechnology Research Alliance, University of Technology Malaysia (UTM, Johor Bahru, Malaysia; 4College of Innovative Management, Valaya Alongkorn Rajabhat University, Pathum Thani, 5Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, ThailandAbstract: The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human–machine interface (HMI technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2–11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy

  15. Interface

    DEFF Research Database (Denmark)

    Computerens interface eller grænseflade har spredt sig overalt. Mobiltelefoner, spilkonsoller, pc'er og storskærme indeholder computere – men computere indbygges også i tøj og andre hverdagslige genstande, så vi konstant har adgang til digitale data. Interface retter fokus mod, hvordan den digitale...... kunst og kultur skabes, spredes og opleves igennem interfaces. Forfatterne undersøger og diskuterer interfacets æstetik, ideologi og kultur – og analyserer aktuel interfacekunst på tværs af musik, kunst, litteratur og film. Bogen belyser interfacets oprindelse i den kolde krigs laboratorier og dets...

  16. Collection of Information Directly from Patients through an Adaptive Human-computer Interface

    Science.gov (United States)

    Lobach, David F.; Arbanas, Jennifer M.; Mishra, Dharani D.; Wildemuth, Barbara; Campbell, Marci

    2002-01-01

    Clinical information collected directly from patients is critical to the practice of medicine. Past efforts to collect this information using computers have had limited utility because these efforts required users to be facile with the information collecting system. This poster describes the development and function of a computer system that uses technology to overcome the limitations of previous computer-based data collection tools by adapting the human-computer interface to fit the skills of the user. The system has been successfully used at two diverse clinical sites.

  17. Embedded human control of robots using myoelectric interfaces.

    Science.gov (United States)

    Antuvan, Chris Wilson; Ison, Mark; Artemiadis, Panagiotis

    2014-07-01

    Myoelectric controlled interfaces have become a research interest for use in advanced prostheses, exoskeletons, and robot teleoperation. Current research focuses on improving a user's initial performance, either by training a decoding function for a specific user or implementing "intuitive" mapping functions as decoders. However, both approaches are limiting, with the former being subject specific, and the latter task specific. This paper proposes a paradigm shift on myoelectric interfaces by embedding the human as controller of the system to be operated. Using abstract mapping functions between myoelectric activity and control actions for a task, this study shows that human subjects are able to control an artificial system with increasing efficiency by just learning how to control it. The method efficacy is tested by using two different control tasks and four different abstract mappings relating upper limb muscle activity to control actions for those tasks. The results show that all subjects were able to learn the mappings and improve their performance over time. More interestingly, a chronological evaluation across trials reveals that the learning curves transfer across subsequent trials having the same mapping, independent of the tasks to be executed. This implies that new muscle synergies are developed and refined relative to the mapping used by the control task, suggesting that maximal performance may be achieved by learning a constant, arbitrary mapping function rather than dynamic subject- or task-specific functions. Moreover, the results indicate that the method may extend to the neural control of any device or robot, without limitations for anthropomorphism or human-related counterparts.

  18. Hand Gesture and Neural Network Based Human Computer Interface

    Directory of Open Access Journals (Sweden)

    Aekta Patel

    2014-06-01

    Full Text Available Computer is used by every people either at their work or at home. Our aim is to make computers that can understand human language and can develop a user friendly human computer interfaces (HCI. Human gestures are perceived by vision. The research is for determining human gestures to create an HCI. Coding of these gestures into machine language demands a complex programming algorithm. In this project, We have first detected, recognized and pre-processing the hand gestures by using General Method of recognition. Then We have found the recognized image’s properties and using this, mouse movement, click and VLC Media player controlling are done. After that we have done all these functions thing using neural network technique and compared with General recognition method. From this we can conclude that neural network technique is better than General Method of recognition. In this, I have shown the results based on neural network technique and comparison between neural network method & general method.

  19. Young Children's Learning of Novel Digital Interfaces: How Technology Experience, Age, and Design Come into Play

    Science.gov (United States)

    Gilutz, Shuli

    2009-01-01

    This study looks at the relationship between age, technology experience, and design factors in determining young children's comprehension of novel digital interfaces. In Experiment 1, 35 preschoolers played three games that varied in complexity and familiarity. Parental questionnaires were used to assess children's previous technology experience.…

  20. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    Science.gov (United States)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  1. Human walking in virtual environments perception, technology, and applications

    CERN Document Server

    Visell, Yon; Campos, Jennifer; Lécuyer, Anatole

    2013-01-01

    This book presents a survey of past and recent developments on human walking in virtual environments with an emphasis on human self-motion perception, the multisensory nature of experiences of walking, conceptual design approaches, current technologies, and applications. The use of virtual reality and movement simulation systems is becoming increasingly popular and more accessible to a wide variety of research fields and applications. While, in the past, simulation technologies have focused on developing realistic, interactive visual environments, it is becoming increasingly obvious that our everyday interactions are highly multisensory. Therefore, investigators are beginning to understand the critical importance of developing and validating locomotor interfaces that can allow for realistic, natural behaviours. The book aims to present an overview of what is currently understood about human perception and performance when moving in virtual environments and to situate it relative to the broader scientific and ...

  2. Human factors assessments of innovative technologies: Robotics sector

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.B. [Operating Engineers National Hazmat Program, Beaver, WV (United States)

    1997-12-01

    The U.S. Department of Energy (DOE) has funded major environmental technology developments over the past several years. One area that received significant attention is robotics, which has resulted in the development of a wide range of unique robotic systems tailored to the many tasks unique to the DOE complex. These systems are often used in highly hazardous environments, which reduces or eliminates worker exposures. The DOE, concurrent with the technology development initiative, also established and funded a 5-yr cooperative agreement intended to interface with the technology development community-with specific attention to the occupational safety and health aspects associated with individual technologies through human factors and hazard assessments. This program is now in its third year.

  3. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  4. Solid-Liquid Interface Characterization Hardware: Advanced Technology Development (ATD)

    Science.gov (United States)

    Peters, Palmer N.; Sisk, R. C.; Sen, S.; Kaukler, W. F.; Curreri, Peter A.; Wang, F. C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    This ATD has the goal of enabling the integration of three separate measurement techniques to characterize the solid-liquid interface of directionally solidified materials in real-time. Arrays of film-based metal thermocouple elements are under development along with compact Seebeck furnaces suitable for interfacing with separately developed X-ray Transmission Microscopes. Results of applying film arrays to furnace profiling are shown, demonstrating their ability to identify a previously undetected hardware flaw in the development of a second-generation compact furnace. Results of real-time furnace profiling also confirmed that the compact furnace design effectively isolates the temperature profiles in two halves of the furnace, a necessary feature. This isolation had only been inferred previously from the characteristics of Seebeck data reported. Results from a 24-thermocouple array successfully monitoring heating and isothermal cooling of a tin sample are shown. The importance of non-intrusion by the arrays, as well as furnace design, on the profiling of temperature gradients is illustrated with example measurements. Further developments underway for effectively combining all three measurements are assessed in terms of improved x-ray transmission, increased magnification, integral arrays with minimum intrusion, integral scales for velocity measurements and other features being incorporated into the third generation Seebeck furnace under construction.

  5. The Human-Computer Interface and Information Literacy: Some Basics and Beyond.

    Science.gov (United States)

    Church, Gary M.

    1999-01-01

    Discusses human/computer interaction research, human/computer interface, and their relationships to information literacy. Highlights include communication models; cognitive perspectives; task analysis; theory of action; problem solving; instructional design considerations; and a suggestion that human/information interface may be a more appropriate…

  6. Philosophical inquiry of technology in humanism

    Directory of Open Access Journals (Sweden)

    Ирина Анатольевна Муратова

    2017-01-01

    Full Text Available Technology is overcome as a In the formation of a new humanism as a direct, i.e. human man's relationship to himself and humanity of his general state, self-fulfillment, technology overcomes as a means, as it is embodied, extinguished the intended goal, and brought into being the result given by a non-for-mean and by a goal. Humanism involves an end in itself of human life, freedom - arbitrariness of conscious goal-setting and goal-implementation

  7. Human Systems Interface and Plant Modernization Process: Technical Basis and Human Factors Review Guidance

    Science.gov (United States)

    2000-03-01

    NUREG /CR-6637 BNL- NUREG -52567 Human Systems Interface and Plant Modernization Process: Technical Basis and Human Factors Review Guidance Brookhaven...NOTICE Availability of Reference Materials Cited in NRC Publications NRC publications in the NUREG series, NRC regu- <http://www.nrc.gov>lations, and...sources: access NUREG -series publications and other NRCrecords in NRC’s Agencywide Document Access 1. The Superintendent of Documents and Management

  8. Attempt on construction of human friendly man-machine interface. Study and apply about human communication; Human friendly na man machine interface kochiku no kokoromi. Ningen no communication no kento to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuno, J. [Tokyo University of Agriculture, Tokyo (Japan); Kokubo, Y.; Matsumura, I.; Kobayashi, H. [Hosei University, Tokyo (Japan)

    1998-04-01

    This paper describes an attempt on a construction way of human friendly man-machine interface. At first, we do a simple experiment to find out the characteristic of human verbal communication. From the experimental results, we get some rules in case in human verbal communication. We construct the man-machine interface which is based on these rules. Through teaching process, we examine our verbal communication interface comparing with conventional interfaces. From this comparison, we recognize that the verbal communication interface is valid to construct the user-friendly man-machine interface. 12 refs., 9 figs., 2 tabs.

  9. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    Science.gov (United States)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  10. Human Anthrax Transmission at the Urban-Rural Interface, Georgia.

    Science.gov (United States)

    Kracalik, Ian; Malania, Lile; Imnadze, Paata; Blackburn, Jason K

    2015-12-01

    Human anthrax has increased dramatically in Georgia and was recently linked to the sale of meat in an urban market. We assessed epidemiological trends and risk factors for human anthrax at the urban-rural interface. We reviewed epidemiologic records (2000-2012) that included the place of residence (classified as urban, peri-urban, or rural), age, gender, and self-reported source of infection (handling or processing animal by-products and slaughtering or butchering livestock). To estimate risk, we used a negative binomial regression. The average incidence per 1 million population in peri-urban areas (24.5 cases) was > 2-fold higher compared with rural areas and > 3-fold higher compared with urban area. Risk from handling or purchasing meat was nearly 2-fold higher in urban areas and > 4-fold higher in peri-urban areas compared with rural area. Our findings suggest a high risk of anthrax in urban and peri-urban areas likely as a result of spillover from contaminated meat and animal by-products. Consumers should be warned to purchase meat only from licensed merchants.

  11. Human Anthrax Transmission at the Urban–Rural Interface, Georgia

    Science.gov (United States)

    Kracalik, Ian; Malania, Lile; Imnadze, Paata; Blackburn, Jason K.

    2015-01-01

    Human anthrax has increased dramatically in Georgia and was recently linked to the sale of meat in an urban market. We assessed epidemiological trends and risk factors for human anthrax at the urban–rural interface. We reviewed epidemiologic records (2000–2012) that included the place of residence (classified as urban, peri-urban, or rural), age, gender, and self-reported source of infection (handling or processing animal by-products and slaughtering or butchering livestock). To estimate risk, we used a negative binomial regression. The average incidence per 1 million population in peri-urban areas (24.5 cases) was > 2-fold higher compared with rural areas and > 3-fold higher compared with urban area. Risk from handling or purchasing meat was nearly 2-fold higher in urban areas and > 4-fold higher in peri-urban areas compared with rural area. Our findings suggest a high risk of anthrax in urban and peri-urban areas likely as a result of spillover from contaminated meat and animal by-products. Consumers should be warned to purchase meat only from licensed merchants. PMID:26438026

  12. Evaluation of Formal IDEs for Human-Machine Interface Design and Analysis: The Case of CIRCUS and PVSio-web

    Directory of Open Access Journals (Sweden)

    Camille Fayollas

    2017-01-01

    Full Text Available Critical human-machine interfaces are present in many systems including avionics systems and medical devices. Use error is a concern in these systems both in terms of hardware panels and input devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of buttons, knobs and displays is now a key element in the overall safety of the system. New integrated development environments (IDEs based on formal methods technologies have been developed by the research community to support the design and analysis of high-confidence human-machine interfaces. To date, little work has focused on the comparison of these particular types of formal IDEs. This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based development and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on the PVS theorem proving system.

  13. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities

    National Research Council Canada - National Science Library

    Nijboer, F

    2015-01-01

    .... Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed...

  14. interfaces

    Directory of Open Access Journals (Sweden)

    Dipayan Sanyal

    2005-01-01

    macroscopic conservation equations with an order parameter which can account for the solid, liquid, and the mushy zones with the help of a phase function defined on the basis of the liquid fraction, the Gibbs relation, and the phase diagram with local approximations. Using the above formalism for alloy solidification, the width of the diffuse interface (mushy zone was computed rather accurately for iron-carbon and ammonium chloride-water binary alloys and validated against experimental data from literature.

  15. Human-system interface design review guideline: The development of draft revision 1 to NUREG-0700

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.; Stubler, W.; Brown, W. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-03-01

    Advanced human-system interface (HSI) technologies are being developed in the commercial nuclear power industry. These HSIs may have significant implications for plant safety in that they will affect the ways in which the operator interacts with and supervises an increasingly complex system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of nuclear plants to ensure that operator performance and reliability are supported. The NRC is developing guidance to support its review of these advanced designs. The guidance consists of an evaluation methodology and an extensive set of human factors guidelines which are used in one aspect of the evaluation. The paper describes the guidance development of the evaluation methodology and the guidelines.

  16. Multi-modal human-machine interface of a telerobotic system for remote arc welding

    Institute of Scientific and Technical Information of China (English)

    Li Haichao; Gao Hongming; Wu Lin; Zhang Guangjun

    2008-01-01

    In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efftciency. This paper presents an architecture design of human-machine interface for welding telerobotic system: welding multi-modal human-machine interface. The human-machine interface integrated several control modes, which are namely shared control, teleteaching, supervisory control and local autonomous control. Space mouse, panoramic vision camera and graphics simulation system are also integrated into the human-machine interface for welding teleoperation. Finally, weld seam tracing and welding experiments of U-shape seam are performed by these control modes respectively. The results show that the system has better performance of human-machine interaction and complexity environment welding.

  17. South African human language technologies audit

    CSIR Research Space (South Africa)

    Grover, AS

    2010-05-01

    Full Text Available Human language technologies (HLT) can play a vital role in bridging the digital divide and thus the HLT field has been recognised as a priority area by the South African government. The authors present the work on conducting a technology audit...

  18. Human Performance Technology and HRD

    Science.gov (United States)

    Carliner, Saul

    2014-01-01

    Performance--the achievement of results--is central to definitions of HRD. Performance Technology (HPT) refers to a systematic methodology for developing performance in individuals and organizations. Through a systematic process, HPT explores issues at the organizational, unit, and individual level, and with skills and knowledge, resources, and…

  19. HTRDP evaluations on Chinese information processing and intelligent human-machine interface

    Institute of Scientific and Technical Information of China (English)

    LIU Qun; LIN Shouxun; QIAN Yueliang; WANG Xiangdong; LIU Hong; SUN Le; TANG Sheng; XIONG Deyi; HOU Hongxu; LV Yuanhua; LI Wenbo

    2007-01-01

    From 1991 to 2005,China's High Technology Research and Development Program (HTRDP)sponsored a series of technology evaluations on Chinese information processing and intelligent human-machine interface,which is called HTRDP evaluations,or "863" evaluations in brief.This paper introduces the HTRDP evaluations in detail.The general information of the HTRDP evaluation is presented first,including the history,the concerned technology categories,the organizer,the participants,and the procedure,etc.Then the evaluations on each technology are described in detail respectively,covering Chinese word segmentation,machine translation,acoustic speech recognition,text to speech,text summarization,text categorization,information retrieval,character recognition,and face detection and recognition.For the evaluations on each technology categories,the history,the evaluation tasks,the data,the evaluation method,etc.,are given.The last section concludes the paper and discusses possible future work.

  20. PC-based Human Machine Interface Control for Packaging System in Pharmaceutical Factory

    Directory of Open Access Journals (Sweden)

    Zin Mar Tun

    2014-12-01

    Full Text Available Moving from trend to tradition, more and more manufacturers are adding human machine interface (HMI to their manufacturing process. A good HMI will increase the productivity of the operator and machine, increase uptime and assist in providing consistent product quality. In this system, HMI is developed to monitor the whole process and control the functions of process. The system is designed and constructed to control and monitor drug bottle packaging operation in the pharmaceutical factory. PC is interfaced with hardware module using serial interfacing circuit. The monitoring and running conditions are shown by motors and sensors on the screen of computer using a group of program as Visual Basic.Net and Mikro C. The robotic arm used as packager is constructed using aluminum and the gripper is made by plastic. The control circuit is consisted of PIC, DC motors, motor drivers, LDR and limit switches. It is also used own programs using VB.NET instead of off-the-shelf software. . The software is designed of the real time monitoring for packaging process and included signal sensing, supervisory control using PIC, data acquisition and visualization programs. This research is studied to develop automation manufacturing technology in Myanmar industries and implement the software package to control the operations.

  1. Design Concept of Human Interface System for Risk Monitoring for Proactive Trouble Prevention

    DEFF Research Database (Denmark)

    Hidekazu, Yoshikawa; Ming, Yang; Zhijian, Zhang

    2011-01-01

    A new concept is first proposed of distributed human interface system to integrate both operation and maintenance of nuclear power plant. Then, a method of constructing human interface system is introduced by integrating the plant knowledge database system based on Multilevel Flow Model (MFM) wit...

  2. An Agent Driven Human-centric Interface for Autonomous Mobile Robots

    Science.gov (United States)

    2003-01-01

    An Agent Driven Human-centric Interface for Autonomous Mobile Robots Donald Sofge, Dennis Perzanowski, Magdalena Bugajska, William Adams...Human-centric, Multimodal, Dynamic Autonomy, CoABS Grid, Mobile Robots 1. INTRODUCTION One of the challenges in implementing dynamically...autonomous behaviors in mobile robots is achieving a truly human-centric interface so that human operators can interact with the robots as naturally as they

  3. Exploiting SCADA vulnerabilities using a Human Interface Device

    Directory of Open Access Journals (Sweden)

    Grigoris Tzokatziou

    2015-07-01

    Full Text Available SCADA (Supervisory Control and Data Acquisition systems are used to control and monitor critical national infras-tructure functions like electricity, gas, water and railways. Field devices such as PLC’s (Programmable Logic Controllers are one of the most critical components of a control system. Cyber-attacks usually target valuable infrastructures assets, taking advantage of architectural/technical vulnerabilities or even weaknesses in the defense systems. Even though novel intrusion detection systems are being implemented and used for defending cyber-attacks, certain vulnerabilities of SCADA systems can still be exploited. In this article we present an attack scenario based on a Human Interface Device (HID device which is used as a means of communication/exploitation tool to compromise SCADA systems. The attack, which is a normal series of commands that are sent from the HID to the PLC cannot be detected through current intrusion detection mechanisms. Finaly we provide possible counter measures and defense mechanisms against this kind of cyber attacks.

  4. Brain computer interface to enhance episodic memory in human participants

    Directory of Open Access Journals (Sweden)

    John F Burke

    2015-01-01

    Full Text Available Recent research has revealed that neural oscillations in the theta (4-8 Hz and alpha (9-14 Hz bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of prestimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding.

  5. Affective Man-Machine Interface: Unveiling Human Emotions through Biosignals

    Science.gov (United States)

    van den Broek, Egon L.; Lisý, Viliam; Janssen, Joris H.; Westerink, Joyce H. D. M.; Schut, Marleen H.; Tuinenbreijer, Kees

    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological proce-sses, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals.

  6. Thick-film technology for ultra high vacuum interfaces of micro-structured traps

    CERN Document Server

    Kaufmann, Delia; Baig, M Tanveer; Kaufmann, Peter; Asenwar, Eman; Johanning, Michael; Wunderlich, Christof

    2011-01-01

    We adopt thick-film technology to produce ultra high vacuum compatible interfaces for electrical signals. These interfaces permit voltages of hundreds of Volts and currents of several Amperes and allow for very compact vacuum setups, useful in quantum optics in general, and especially for quantum information and quantum simulations using miniaturized traps for ions or neutral atoms. Such printed circuits can also be useful as pure in-vacuum devices. We demonstrate a specific interface, which provides eleven current feedthroughs, more than 70 dc feedthroughs and a feedthrough for radio frequencies. We achieve a pressure in the low 1e-11mbar range and demonstrate the full functionality of the interface by trapping chains of cold ytterbium ions, which requires all of the signals mentioned above being present. In addition, a versatile multi-channel device for supplying precise time-dependent voltages has been developed.

  7. Human resource management and technological challenges

    CERN Document Server

    Davim, J

    2014-01-01

    This book focuses on the challenges and changes that new technologies bring to human resources (HR) of modern organizations. It examines the technological implications of the last changes taking place and how they affect the management and motivation of human resources belonging to these organizations. It looks for ways to understand and perceive how organizational HR, individually and as a team, conceptualize, invent, adapt, define and use organizational technology, as well as how they are constrained by features of it. The book provides discussion and the exchange of information on principles, strategies, models, techniques, methodologies and applications of human resources management and technological challenges and changes in the field of industry, commerce and services.

  8. Commercial applications of speech interface technology: an industry at the threshold.

    Science.gov (United States)

    Oberteuffer, J A

    1995-10-24

    Speech interface technology, which includes automatic speech recognition, synthetic speech, and natural language processing, is beginning to have a significant impact on business and personal computer use. Today, powerful and inexpensive microprocessors and improved algorithms are driving commercial applications in computer command, consumer, data entry, speech-to-text, telephone, and voice verification. Robust speaker-independent recognition systems for command and navigation in personal computers are now available; telephone-based transaction and database inquiry systems using both speech synthesis and recognition are coming into use. Large-vocabulary speech interface systems for document creation and read-aloud proofing are expanding beyond niche markets. Today's applications represent a small preview of a rich future for speech interface technology that will eventually replace keyboards with microphones and loud-speakers to give easy accessibility to increasingly intelligent machines.

  9. User participation in the development of the human/computer interface for control centers

    Science.gov (United States)

    Broome, Richard; Quick-Campbell, Marlene; Creegan, James; Dutilly, Robert

    1996-01-01

    Technological advances coupled with the requirements to reduce operations staffing costs led to the demand for efficient, technologically-sophisticated mission operations control centers. The control center under development for the earth observing system (EOS) is considered. The users are involved in the development of a control center in order to ensure that it is cost-efficient and flexible. A number of measures were implemented in the EOS program in order to encourage user involvement in the area of human-computer interface development. The following user participation exercises carried out in relation to the system analysis and design are described: the shadow participation of the programmers during a day of operations; the flight operations personnel interviews; and the analysis of the flight operations team tasks. The user participation in the interface prototype development, the prototype evaluation, and the system implementation are reported on. The involvement of the users early in the development process enables the requirements to be better understood and the cost to be reduced.

  10. Robot Companions: Technology for Humans

    CERN Document Server

    Kernbach, Serge

    2011-01-01

    Creation of devices and mechanisms which help people has a long history. Their inventors always targeted practical goals such as irrigation, harvesting, devices for construction sites, measurement, and, last but not least, military tasks for different mechanical and later mechatronic systems. Development of such assisting mechanisms counts back to Greek engineering, came through Middle Ages and led finally in XIX and XX centuries to autonomous devices, which we call today "Robots". This chapter provides overview of several robotic technologies, introduces bio-/chemo- hybrid and collective systems and discuss their applications in service areas.

  11. User interface issues in supporting human-computer integrated scheduling

    Science.gov (United States)

    Cooper, Lynne P.; Biefeld, Eric W.

    1991-09-01

    The topics are presented in view graph form and include the following: characteristics of Operations Mission Planner (OMP) schedule domain; OMP architecture; definition of a schedule; user interface dimensions; functional distribution; types of users; interpreting user interaction; dynamic overlays; reactive scheduling; and transitioning the interface.

  12. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies

    Science.gov (United States)

    Skegro, Darko; Stutz, Cian; Ollier, Romain; Svensson, Emelie; Wassmann, Paul; Bourquin, Florence; Monney, Thierry; Gn, Sunitha; Blein, Stanislas

    2017-01-01

    Bispecific antibodies (bsAbs) are of significant importance to the development of novel antibody-based therapies, and heavy chain (Hc) heterodimers represent a major class of bispecific drug candidates. Current technologies for the generation of Hc heterodimers are suboptimal and often suffer from contamination by homodimers posing purification challenges. Here, we introduce a new technology based on biomimicry wherein the protein-protein interfaces of two different immunoglobulin (Ig) constant domain pairs are exchanged in part or fully to design new heterodimeric domains. The method can be applied across Igs to design Fc heterodimers and bsAbs. We investigated interfaces from human IgA CH3, IgD CH3, IgG1 CH3, IgM CH4, T-cell receptor (TCR) α/β, and TCR γ/δ constant domain pairs, and we found that they successfully drive human IgG1 CH3 or IgM CH4 heterodimerization to levels similar to or above those of reference methods. A comprehensive interface exchange between the TCR α/β constant domain pair and the IgG1 CH3 homodimer was evidenced by X-ray crystallography and used to engineer examples of bsAbs for cancer therapy. Parental antibody pairs were rapidly reformatted into scalable bsAbs that were free of homodimer traces by combining interface exchange, asymmetric Protein A binding, and the scFv × Fab format. In summary, we successfully built several new CH3- or CH4-based heterodimers that may prove useful for designing new bsAb-based therapeutics, and we anticipate that our approach could be broadly implemented across the Ig constant domain family. To our knowledge, CH4-based heterodimers have not been previously reported. PMID:28450393

  13. Human factors evaluation of teletherapy: Human-system interfaces and procedures. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, R.D.; Henriksen, K.; Jones, R. [Hughes Training, Inc., Falls Church, VA (United States); Morisseau, D.S.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-07-01

    A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multidisciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. In addition, a panel of radiation oncologists, medical physicists, and radiation technologists served as subject matter experts. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The present report focuses on an evaluation of the human-system interfaces in relation to the treatment machines and supporting equipment (e.g., simulators, treatment planning computers, control consoles, patient charts) found in the teletherapy environment. The report also evaluates operating, maintenance and emergency procedures and practices involved in teletherapy. The evaluations are based on the function and task analysis and established human engineering guidelines, where applicable.

  14. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.

    Science.gov (United States)

    Hocraffer, Amy; Nam, Chang S

    2017-01-01

    A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field.

  15. Seating Considerations for Spaceflight: The Human to Machine Interface

    Science.gov (United States)

    Gohmert, D. M.

    2012-01-01

    Seating is one of the most critical components to be considered during design of a spacecraft. Since seats are the final interface between the occupant and the vehicle wherein all launch and landing operations are performed, significant effort must be spent to ensure proper integration of the human to the spacecraft. The importance of seating can be divided into two categories: seat layout and seat design. The layout of the seats drives the overall cabin configuration - from displays and controls, to windows, to stowage, to egress paths. Since the layout of the seats is such a critical design parameter within the crew compartment, it is one of the first design challenges that must be completed in the critical path of the spacecraft design. In consideration of seat layout in the vehicle, it is important for the designers to account for often intangible factors such as safety, operability, contingency performance, and crew rescue. Seat layout will lead to definition of the quantity, shape, and posture of the seats. The seats of the craft must restrain and protect the occupant in all seated phases of flight, while allowing for nominal mission performance. In design of a spacecraft seat, the general posture of the occupant and the landing loads to be encountered are the greatest drivers of overall design. Variances, such as upright versus recumbent postures will dictate fit of the seat to the occupant and drive the total envelope of the seat around the occupant. Seat design revolves around applying sound principles of seated occupant protection coupled with the unique environments driven by the seat layout, landing loads, and operational and emergency scenarios.

  16. EXPERIMENTAL AND THEORETICAL FOUNDATIONS AND PRACTICAL IMPLEMENTATION OF TECHNOLOGY BRAIN-COMPUTER INTERFACE

    Directory of Open Access Journals (Sweden)

    A. Ya. Kaplan

    2013-01-01

    Full Text Available Technology brain-computer interface (BCI allow saperson to learn how to control external devices via thevoluntary regulation of own EEG directly from the brain without the involvement in the process of nerves and muscles. At the beginning the main goal of BCI was to replace or restore motor function to people disabled by neuromuscular disorders. Currently, the task of designing the BCI increased significantly, more capturing different aspects of life a healthy person. This article discusses the theoretical, experimental and technological base of BCI development and systematized critical fields of real implementation of these technologies.

  17. Enhancing the Gaming Experience Using 3D Spatial User Interface Technologies.

    Science.gov (United States)

    Kulshreshth, Arun; Pfeil, Kevin; LaViola, Joseph J

    2017-01-01

    Three-dimensional (3D) spatial user interface technologies have the potential to make games more immersive and engaging and thus provide a better user experience. Although technologies such as stereoscopic 3D display, head tracking, and gesture-based control are available for games, it is still unclear how their use affects gameplay and if there are any user performance benefits. The authors have conducted several experiments on these technologies in game environments to understand how they affect gameplay and how we can use them to optimize the gameplay experience.

  18. Techniques and applications for binaural sound manipulation in human-machine interfaces

    Science.gov (United States)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1992-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  19. Advances in gene technology: Human genetic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  20. 单片机接口技术概述%Interface Technology Overview

    Institute of Scientific and Technical Information of China (English)

    徐丽媛

    2011-01-01

    本文首先介绍了单片机接口技术的特点,之后对PS/2鼠标接口单片机设备进行扩展,主要完成了串口转PS/2鼠标硬件和软件结构设计。%This paper describes the characteristics of the single-chip interface technology to be extended to complete the serial port to PS/2 mouse hardware and software architecture design,followed by the PS/2 mouse interface microcontroller devices.

  1. On Abstractions and Simplifications in the Design of Human-Automation Interfaces

    Science.gov (United States)

    Heymann, Michael; Degani, Asaf; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This report addresses the design of human-automation interaction from a formal perspective that focuses on the information content of the interface, rather than the design of the graphical user interface. It also addresses the issue of the information provided to the user (e.g., user-manuals, training material, and all other resources). In this report, we propose a formal procedure for generating interfaces and user-manuals. The procedure is guided by two criteria: First, the interface must be correct, that is, with the given interface the user will be able to perform the specified tasks correctly. Second, the interface should be succinct. The report discusses the underlying concepts and the formal methods for this approach. Two examples are used to illustrate the procedure. The algorithm for constructing interfaces can be automated, and a preliminary software system for its implementation has been developed.

  2. Human Capital, Technology, and Economic Growth

    Directory of Open Access Journals (Sweden)

    Chindo Sulaiman

    2015-11-01

    Full Text Available This article investigated the impact of human capital and technology on economic growth in Nigeria. We employed annual time series data for the period of 35 years (1975-2010 and applied autoregressive distributed lag approach to cointegration to examine the relationship between human capital, technology, and economic growth. Two proxies of human capital (secondary and tertiary school enrollments were used in two separate models. The cointegration result revealed that all the variables in the two separate models were cointegrated. Furthermore, the results of the two estimated models showed that human capital in form in secondary and tertiary school enrollments have had significant positive impact on economic growth. More so, technology also shows significant positive impact on economic growth. In a nutshell, both human capital and technology are important determinants of growth in Nigeria. Therefore, improvement of the educational sector and more funding for research and development (R&D to encourage innovations are needed to facilitate Nigeria’s sustained economic growth.

  3. Human Insulin from Recombinant DNA Technology

    Science.gov (United States)

    Johnson, Irving S.

    1983-02-01

    Human insulin produced by recombinant DNA technology is the first commercial health care product derived from this technology. Work on this product was initiated before there were federal guidelines for large-scale recombinant DNA work or commercial development of recombinant DNA products. The steps taken to facilitate acceptance of large-scale work and proof of the identity and safety of such a product are described. While basic studies in recombinant DNA technology will continue to have a profound impact on research in the life sciences, commercial applications may well be controlled by economic conditions and the availability of investment capital.

  4. Enabling technology for human collaboration.

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Tim Andrew (MindTel, LLC, Syracuse, NY); Jones, Wendell Bruce; Warner, David Jay (MindTel, LLC, Syracuse, NY); Doser, Adele Beatrice; Johnson, Curtis Martin; Merkle, Peter Benedict

    2003-11-01

    This report summarizes the results of a five-month LDRD late start project which explored the potential of enabling technology to improve the performance of small groups. The purpose was to investigate and develop new methods to assist groups working in high consequence, high stress, ambiguous and time critical situations, especially those for which it is impractical to adequately train or prepare. A testbed was constructed for exploratory analysis of a small group engaged in tasks with high cognitive and communication performance requirements. The system consisted of five computer stations, four with special devices equipped to collect physiologic, somatic, audio and video data. Test subjects were recruited and engaged in a cooperative video game. Each team member was provided with a sensor array for physiologic and somatic data collection while playing the video game. We explored the potential for real-time signal analysis to provide information that enables emergent and desirable group behavior and improved task performance. The data collected in this study included audio, video, game scores, physiological, somatic, keystroke, and mouse movement data. The use of self-organizing maps (SOMs) was explored to search for emergent trends in the physiological data as it correlated with the video, audio and game scores. This exploration resulted in the development of two approaches for analysis, to be used concurrently, an individual SOM and a group SOM. The individual SOM was trained using the unique data of each person, and was used to monitor the effectiveness and stress level of each member of the group. The group SOM was trained using the data of the entire group, and was used to monitor the group effectiveness and dynamics. Results suggested that both types of SOMs were required to adequately track evolutions and shifts in group effectiveness. Four subjects were used in the data collection and development of these tools. This report documents a proof of concept

  5. Systems and technologies for high-speed inter-office/datacenter interface

    Science.gov (United States)

    Sone, Y.; Nishizawa, H.; Yamamoto, S.; Fukutoku, M.; Yoshimatsu, T.

    2017-01-01

    Emerging requirements for inter-office/inter-datacenter short reach links for data center interconnects (DCI) and metro transport networks have led to various inter-office and inter-datacenter optical interface technologies. These technologies are bringing significant changes to systems and network architectures. In this paper, we present a system and ZR optical interface technologies for DCI and metro transport networks, then introduce the latest challenges facing the system framework. There are two trends in reach extension; one is to use Ethernet and the other is to use digital coherent technologies. The first approach achieves reach extension while using as many existing Ethernet components as possible. It offers low costs as reuses the cost-effective components created for the large Ethernet market. The second approach adopts low-cost and low power coherent DSPs that implement the minimal set long haul transmission functions. This paper introduces an architecture that integrates both trends. The architecture satisfies both datacom and telecom needs with a common control and management interface and automated configuration.

  6. [Technology and notion of human life].

    Science.gov (United States)

    Kakimoto, Yoshimi

    2013-12-01

    This article aims to examine the rules of robotics whose sense is modified in society and which change the notion of human body. Asimov proposed three rules of robotics in his novel of science fiction, which become the basis of the rules concerning the study of the development of robotics. These rules are created in order to avoid harming human beings and to mitigate the variant difficulties of being human being. As for latter, robotics has functioned as a meaning of extension of the physical faculty. Thus, technology develops in the direction of the enhancement of the capability of human body beyond the necessities of life. Robotics doesn't only suggest a rethinking of the notion of a human being but also changes our understanding of the human body.

  7. TOWARDS A PHILOSOPHY OF HUMAN TECHNOLOGY: Outlook on cognitive enhancements in Avatar/ Virtual Reality schizophrenia therapy

    OpenAIRE

    Gerner, Alexander

    2016-01-01

    This article hinges on a complex and interdisciplinary field of study named “Philosophy of Human Technology” in which a first non-exhaustive map of ethical, legal and social, technological issues is presented: Technologies constitute, magnify, amplify human experiences, but can also enslave or put human experience and life at risk for example what concerns the right to a “private Life”. The second part of this paper proposes to think three possible interfaces of the topic of Human Cognitive E...

  8. A Framework and Implementation of User Interface and Human-Computer Interaction Instruction

    Science.gov (United States)

    Peslak, Alan

    2005-01-01

    Researchers have suggested that up to 50 % of the effort in development of information systems is devoted to user interface development (Douglas, Tremaine, Leventhal, Wills, & Manaris, 2002; Myers & Rosson, 1992). Yet little study has been performed on the inclusion of important interface and human-computer interaction topics into a current…

  9. The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    J. Clark Powers

    2015-08-01

    Full Text Available Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use—i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1 alternative signal evocation methods within the oddball paradigm; (2 environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3 measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications.

  10. South African human language technology audit

    CSIR Research Space (South Africa)

    Grover, AS

    2011-06-01

    Full Text Available Human language technology (HLT) has been identified as a priority area by the South African government. However, despite efforts by government and the research and development (R&D) community, South Africa has not yet been able to maximise...

  11. Shifting Human Performance Technology to Management.

    Science.gov (United States)

    King, Stephen B.

    1998-01-01

    Describes the benefits and potential drawbacks of transferring HPT (human performance technology) skills from outside consultants to managers within organizations. Discusses HPT competence and control over work environment, the role of traditional HPT experts after the shift, and three approaches to implementing the change. (PEN)

  12. New Metacognitive Model for Human Performance Technology

    Science.gov (United States)

    Turner, John R.

    2011-01-01

    Addressing metacognitive functions has been shown to improve performance at the individual, team, group, and organizational levels. Metacognition is beginning to surface as an added cognate discipline for the field of human performance technology (HPT). Advances from research in the fields of cognition and metacognition offer a place for HPT to…

  13. Technology innovation, human resources and dysfunctional integration

    DEFF Research Database (Denmark)

    Madsen, Arne Stjernholm; Ulhøi, John Parm

    2005-01-01

    (Internet technology), which transcends the traditional business of the company in question. It illustrates what goes wrong when innovative human resources do not succeed in becoming integrated into the rest of the host organization and therefore may become trapped by their own passion in a position as self......-righteous missionaries. In closing, implications for research and management are addressed....

  14. Technology innovation, human resources and dysfunctional integration

    DEFF Research Database (Denmark)

    Madsen, Arne Stjernholm; Ulhøi, John Parm

    2005-01-01

    (Internet technology), which transcends the traditional business of the company in question. It illustrates what goes wrong when innovative human resources do not succeed in becoming integrated into the rest of the host organization and therefore may become trapped by their own passion in a position as self...

  15. New Metacognitive Model for Human Performance Technology

    Science.gov (United States)

    Turner, John R.

    2011-01-01

    Addressing metacognitive functions has been shown to improve performance at the individual, team, group, and organizational levels. Metacognition is beginning to surface as an added cognate discipline for the field of human performance technology (HPT). Advances from research in the fields of cognition and metacognition offer a place for HPT to…

  16. Human-Robot Interface over the Web Based Intelligent System

    Directory of Open Access Journals (Sweden)

    Desa Hazry

    2006-01-01

    Full Text Available This research extends the capability for the new technology platform by Remote Data Inspection System (RDIS server from Furukawa Co., Ltd. Enabling the integration of standard Hypertext Markup Language (HTML programming and RDIS tag programming to create a user-friendly “point-and-click” web-based control mechanism. The integration allows the users to send commands to mobile robot over the Internet. Web-based control enables human to extend his action and intelligence to remote locations. Three mechanisms for web-based controls are developed: Manual remote control, continuous operation event and autonomous navigational control. In the manual remote control the user is fully responsible for the robot action and the robot do not use any sophisticated algorithms. The continuous operation event is the extension of the basic movement of a manual remote control mechanism. In the autonomous navigation control, the user has more flexibility to tell the robot to carry out specific tasks. Using this method, mobile robot can be controlled via the web, from any places connected to the network without constructing specific infrastructures for communication.

  17. Naturalizing language: human appraisal and (quasi) technology

    DEFF Research Database (Denmark)

    Cowley, Stephen

    2013-01-01

    Using contemporary science, the paper builds on Wittgenstein’s views of human language. Rather than ascribing reality to inscription-like entities, it links embodiment with distributed cognition. The verbal or (quasi) technological aspect of language is traced to not action, but human specific...... the verbal aspect of language constrains action and thinking, we also develop customary ways of behaving. Humans extend embodiment by linking real-time activity to actions through which the collectivity imposes a variable degree of control over how individuals realise values....

  18. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  19. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  20. Educational Cognitive Technologies as Human Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Marja Nesterova

    2017-07-01

    Full Text Available Modernity is characterized by profound changes in all spheres of human life caused by the global transformations on macro and micro levels of social reality. These changes allow us to speak about the present as the era of civilizational transition in the mode of uncertainty. Therefore, this situation demands qualitative transformations of human adaptive strategies and educational technologies accordingly. The dominant role in the dynamics of pedagogics and andragogy’s landscape belongs to transformative learning. The transformative learning theory is considered as the relevant approach to education of the individual, which is able to become an autonomous communicative actor of the social complexity. The article considers the cognitive technologies of social cohesion development and perspectives of their implementation in the educational dimension. In addition to implementing the principles of inclusion, equity in education, an important factor for improving social cohesion, stability and unity of society is the development of cognitive educational technologies. The key factors and foundations for the cognitive educational technologies are transversal competencies. They create the conditions for civil, public dialogue, non-violent type of communication. These “21st century skills” are extremely important for better human adaptation. One of the aspects and roots of social adaptation is social cohesion. Mutual determinations and connections between social cohesion development and transversal competences have been shown. The perspective direction of further researches is to find a methodological base for the further development of cognitive education technologies and platform for realization of innovative services for educational programs. New educational paradigm offers the concept of human adaptation as cognitive effectiveness and how to reach it through educational technologies. The article includes topics of creative thinking, teambuilding

  1. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology.

  2. United Nations Human Space Technology Initiative (HSTI)

    CERN Document Server

    Ochiai, M; Steffens, H; Balogh, W; Haubold, H J; Othman, M; Doi, T

    2015-01-01

    The Human Space Technology Initiative was launched in 2010 within the framework of the United Nations Programme on Space Applications implemented by the Office for Outer Space Affairs of the United Nations. It aims to involve more countries in activities related to human spaceflight and space exploration and to increase the benefits from the outcome of such activities through international cooperation, to make space exploration a truly international effort. The role of the Initiative in these efforts is to provide a platform to exchange information, foster collaboration between partners from spacefaring and non-spacefaring countries, and encourage emerging and developing countries to take part in space research and benefit from space applications. The Initiative organizes expert meetings and workshops annually to raise awareness of the current status of space exploration activities as well as of the benefits of utilizing human space technology and its applications. The Initiative is also carrying out primary ...

  3. Energy Technology Investments: Maximizing Efficiency Through a Maritime Energy Portfolio Interface and Decision Aid

    Science.gov (United States)

    2012-02-09

    Schneck is a certified Lean Six Sigma Black Belt and a graduate of the Georgia Institute of Technology with Highest Honors and a degree in Industrial...Portfolio Interface and Decision Aid Kathleen Schneck Herren Associates Senior Engineering Consultant Lean Six Sigma Black Belt Glen Sturtevant...Navy a tvos - FYI6 Fundl09 (V1) _n_ . ... _lv_ ... ___ l ~ I ~ I 2010 I 2Qll I 20u r\\Mdio,g ($1𔃻) Belt • (SM) -~1ilestones and Decision Points

  4. Localization Technologies for Indoor Human Tracking

    CERN Document Server

    Zhang, Da; Yang, Zhuo; Yao, Lin; Zhao, Wenhong

    2010-01-01

    The proliferation of wireless localization technologies provides a promising future for serving human beings in indoor scenarios. Their applications include real-time tracking, activity recognition, health care, navigation, emergence detection, and target-of-interest monitoring, among others. Additionally, indoor localization technologies address the inefficiency of GPS (Global Positioning System) inside buildings. Since people spend most of their time in indoor environments, indoor tracking service is in great public demand. Based on this observation, this paper aims to provide a better understanding of state-of-the-art technologies and stimulate new research efforts in this field. For these purposes, existing localization technologies that can be used for tracking individuals in indoor environments are reviewed, along with some further discussions.

  5. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  6. Biophysical characterization of the dimer and tetramer interface interactions of the human cytosolic malic enzyme.

    Directory of Open Access Journals (Sweden)

    Sujithkumar Murugan

    Full Text Available The cytosolic NADP(+-dependent malic enzyme (c-NADP-ME has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8-10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A, the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A, the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.

  7. Designation and Implementation of Microcomputer Principle and Interface Technology Virtual Experimental Platform Website

    Science.gov (United States)

    Gao, JinYue; Tang, Yin

    This paper explicitly discusses the designation and implementation thought and method of Microcomputer Principle and Interface Technology virtual experimental platform website construction. The instructional design of this platform mainly follows with the students-oriented constructivism learning theory, and the overall structure is subject to the features of teaching aims, teaching contents and interactive methods. Virtual experiment platform production and development should fully take the characteristics of network operation into consideration and adopt relevant technologies to improve the effect and speed of network software application in internet.

  8. Advanced human-system interface design review guideline. Evaluation procedures and guidelines for human factors engineering reviews

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.; Brown, W.S. [Brookhaven National Lab., Upton, NY (United States); Baker, C.C.; Welch, D.L.; Granda, T.M.; Vingelis, P.J. [Carlow International Inc., Falls Church, VA (United States)

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support. NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  9. Playte, a tangible interface for engaging human-robot interaction

    DEFF Research Database (Denmark)

    Christensen, David Johan; Fogh, Rune; Lund, Henrik Hautop

    2014-01-01

    This paper describes a tangible interface, Playte, designed for children animating interactive robots. The system supports physical manipulation of behaviors represented by LEGO bricks and allows the user to record and train their own new behaviors. Our objective is to explore several modes of in...

  10. A brain-computer interface as input channel for a standard assistive technology software.

    Science.gov (United States)

    Zickler, Claudia; Riccio, Angela; Leotta, Francesco; Hillian-Tress, Sandra; Halder, Sebastian; Holz, Elisa; Staiger-Sälzer, Pit; Hoogerwerf, Evert-Jan; Desideri, Lorenzo; Mattia, Donatella; Kübler, Andrea

    2011-10-01

    Recently brain-computer interface (BCI) control was integrated into the commercial assistive technology product QualiWORLD (QualiLife Inc., Paradiso-Lugano, CH). Usability of the first prototype was evaluated in terms of effectiveness (accuracy), efficiency (information transfer rate and subjective workload/NASA Task Load Index) and user satisfaction (Quebec User Evaluation of Satisfaction with assistive Technology, QUEST 2.0) by four end-users with severe disabilities. Three assistive technology experts evaluated the device from a third person perspective. The results revealed high performance levels in communication and internet tasks. Users and assistive technology experts were quite satisfied with the device. However, none could imagine using the device in daily life without improvements. Main obstacles were the EEG-cap and low speed.

  11. Experiences in the application of human factors engineering to human-system interface modernization

    Energy Technology Data Exchange (ETDEWEB)

    Trueba Alonso, Pedro; Fernandez Illobre, Luis; Ortega Pascual, Fernando [Tecnatom S.A., San Sebastian de los Reyes (Spain). Simulation and Control Rooms Div.

    2015-07-15

    Almost all the existing Nuclear Power Plants (NPPs) include plans to modernize their existing Instrumentation and Control (I and C) systems and associated Human System Interfaces (HSIs), due to obsolescence problems. Tecnatom, S.A. has been participating in modernization programs in NPPs to help them to plan, specify, design and implement the modernization of control rooms and associated I and C and HSIs. The application of Human Factors Engineering (HFE) in modernization programs is nowadays unavoidable. This is because is becoming a regulatory requirement, and also because it is needed to ensure that any plant modification, involving the modernization of I and C and HSI, is well designed to improve overall plant operations, reliability, and safety. This paper shows some experiences obtained during the application of HFE to the modernization of these HSIs. The experience applying HFE in modernizations and design modifications show a positive effect, improving the associated HSIs, with the acceptability of the final user.

  12. Effects of interface pressure distribution on human sleep quality.

    Directory of Open Access Journals (Sweden)

    Zongyong Chen

    Full Text Available High sleep quality promotes efficient performance in the following day. Sleep quality is influenced by environmental factors, such as temperature, light, sound and smell. Here, we investigated whether differences in the interface pressure distribution on healthy individuals during sleep influenced sleep quality. We defined four types of pressure models by differences in the area distribution and the subjective feelings that occurred when participants slept on the mattresses. One type of model was showed "over-concentrated" distribution of pressure; one was displayed "over-evenly" distributed interface pressure while the other two models were displayed intermediate distribution of pressure. A polysomnography analysis demonstrated an increase in duration and proportion of non-rapid-eye-movement sleep stages 3 and 4, as well as decreased number of micro-arousals, in subjects sleeping on models with pressure intermediately distributed compared to models with over-concentrated or over-even distribution of pressure. Similarly, higher scores of self-reported sleep quality were obtained in subjects sleeping on the two models with intermediate pressure distribution. Thus, pressure distribution, at least to some degree, influences sleep quality and self-reported feelings of sleep-related events, though the underlying mechanisms remain unknown. The regulation of pressure models imposed by external sleep environment may be a new direction for improving sleep quality. Only an appropriate interface pressure distribution is beneficial for improving sleep quality, over-concentrated or -even distribution of pressure do not help for good sleep.

  13. Technological evaluation of gesture and speech interfaces for enabling dismounted soldier-robot dialogue

    Science.gov (United States)

    Kattoju, Ravi Kiran; Barber, Daniel J.; Abich, Julian; Harris, Jonathan

    2016-05-01

    With increasing necessity for intuitive Soldier-robot communication in military operations and advancements in interactive technologies, autonomous robots have transitioned from assistance tools to functional and operational teammates able to service an array of military operations. Despite improvements in gesture and speech recognition technologies, their effectiveness in supporting Soldier-robot communication is still uncertain. The purpose of the present study was to evaluate the performance of gesture and speech interface technologies to facilitate Soldier-robot communication during a spatial-navigation task with an autonomous robot. Gesture and speech semantically based spatial-navigation commands leveraged existing lexicons for visual and verbal communication from the U.S Army field manual for visual signaling and a previously established Squad Level Vocabulary (SLV). Speech commands were recorded by a Lapel microphone and Microsoft Kinect, and classified by commercial off-the-shelf automatic speech recognition (ASR) software. Visual signals were captured and classified using a custom wireless gesture glove and software. Participants in the experiment commanded a robot to complete a simulated ISR mission in a scaled down urban scenario by delivering a sequence of gesture and speech commands, both individually and simultaneously, to the robot. Performance and reliability of gesture and speech hardware interfaces and recognition tools were analyzed and reported. Analysis of experimental results demonstrated the employed gesture technology has significant potential for enabling bidirectional Soldier-robot team dialogue based on the high classification accuracy and minimal training required to perform gesture commands.

  14. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces

    Science.gov (United States)

    Liu, Yuhao; Norton, James J. S.; Qazi, Raza; Zou, Zhanan; Ammann, Kaitlyn R.; Liu, Hank; Yan, Lingqing; Tran, Phat L.; Jang, Kyung-In; Lee, Jung Woo; Zhang, Douglas; Kilian, Kristopher A.; Jung, Sung Hee; Bretl, Timothy; Xiao, Jianliang; Slepian, Marvin J.; Huang, Yonggang; Jeong, Jae-Woong; Rogers, John A.

    2016-01-01

    Physiological mechano-acoustic signals, often with frequencies and intensities that are beyond those associated with the audible range, provide information of great clinical utility. Stethoscopes and digital accelerometers in conventional packages can capture some relevant data, but neither is suitable for use in a continuous, wearable mode, and both have shortcomings associated with mechanical transduction of signals through the skin. We report a soft, conformal class of device configured specifically for mechano-acoustic recording from the skin, capable of being used on nearly any part of the body, in forms that maximize detectable signals and allow for multimodal operation, such as electrophysiological recording. Experimental and computational studies highlight the key roles of low effective modulus and low areal mass density for effective operation in this type of measurement mode on the skin. Demonstrations involving seismocardiography and heart murmur detection in a series of cardiac patients illustrate utility in advanced clinical diagnostics. Monitoring of pump thrombosis in ventricular assist devices provides an example in characterization of mechanical implants. Speech recognition and human-machine interfaces represent additional demonstrated applications. These and other possibilities suggest broad-ranging uses for soft, skin-integrated digital technologies that can capture human body acoustics. PMID:28138529

  15. Design Concept of Human Interface System for Risk Monitoring for Proactive Trouble Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Yang, Ming; Zhang, Zhijian; Hashim, Muhammad [Harbin Engineering University, Harbin (China); Lind, Morten [Technical University of Denmark, Kongens Lyngby (Djibouti); Tamayama, Kiyoshi; Okusa, Kyoichi [Japan Atomic Energy Agency, Tsuruga (Japan)

    2011-08-15

    A new concept is first proposed of distributed human interface system to integrate both operation and maintenance of nuclear power plant. Then, a method of constructing human interface system is introduced by integrating the plant knowledge database system based on Multilevel Flow Model (MFM) with the risk monitor to watch Defense-in Depth plant safety functions. The proposed concept is applied for a liquid metal fast reactor Monju and necessary R and D subjects are reviewed to realize human interface system for the maintenance work in Monju plant. Because of using high temperature liquid sodium as reactor coolant in Monju plant, the maintenance for Monju should utilize more automated equipment of remote control and robotics than that of light water reactor. It is necessary to design optimum task allocation between human and automated machine as the requisites for good communication design of human interface systems to support the collaboration work between workers at local workplace and the main control room. In this paper, the general issues are reviewed on how to configure the whole human interface system for helping proactive trouble prevention and risk evaluation on the basis of the presented target plant model before the concrete proposition of the hardware and software systems development to be used by both the staffs of operation and maintenance of NPP.

  16. An Architectural Experience for Interface Design

    Science.gov (United States)

    Gong, Susan P.

    2016-01-01

    The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…

  17. An Architectural Experience for Interface Design

    Science.gov (United States)

    Gong, Susan P.

    2016-01-01

    The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…

  18. A Real-Time Model-Based Human Motion Tracking and Analysis for Human-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Chung-Lin Huang

    2004-09-01

    Full Text Available This paper introduces a real-time model-based human motion tracking and analysis method for human computer interface (HCI. This method tracks and analyzes the human motion from two orthogonal views without using any markers. The motion parameters are estimated by pattern matching between the extracted human silhouette and the human model. First, the human silhouette is extracted and then the body definition parameters (BDPs can be obtained. Second, the body animation parameters (BAPs are estimated by a hierarchical tritree overlapping searching algorithm. To verify the performance of our method, we demonstrate different human posture sequences and use hidden Markov model (HMM for posture recognition testing.

  19. Contemporary post-humanism: technological and human singularity.

    Science.gov (United States)

    Colombetti, Elena

    2014-01-01

    Posthumanism entails the idea of transcendence of the human being achieved through technology. The article begins by distinguishing perfection and change (or growth). It also attempts to show the anthropological premises of posthumanism itself and suggests that we can identify two roots: the liberal humanistic subject (autonomous and unrelated that simply realizes herself/himself through her/his own project) and the interpretation of thought as a computable process. Starting from these premises, many authors call for the loosening of the clear boundaries of one's own subject in favour of blending with other beings. According to these theories, we should become post-human: if the human being is thought and thought is a computable process, whatever is able to process information broader and faster is better than the actual human being and has to be considered as the way towards the real completeness of the human being itself. The paper endeavours to discuss the adequacy of these premises highlighting the structural dependency of the human being, the role of the human body, the difference between thought and a computational process, the singularity of some useless and unexpected human acts. It also puts forward the need for axiological criteria to define growth as perfectionism.

  20. On the application of motivation theory to human factors/ergonomics: motivational design principles for human-technology interaction.

    Science.gov (United States)

    Szalma, James L

    2014-12-01

    Motivation is a driving force in human-technology interaction. This paper represents an effort to (a) describe a theoretical model of motivation in human technology interaction, (b) provide design principles and guidelines based on this theory, and (c) describe a sequence of steps for the. evaluation of motivational factors in human-technology interaction. Motivation theory has been relatively neglected in human factors/ergonomics (HF/E). In both research and practice, the (implicit) assumption has been that the operator is already motivated or that motivation is an organizational concern and beyond the purview of HF/E. However, technology can induce task-related boredom (e.g., automation) that can be stressful and also increase system vulnerability to performance failures. A theoretical model of motivation in human-technology interaction is proposed, based on extension of the self-determination theory of motivation to HF/E. This model provides the basis for both future research and for development of practical recommendations for design. General principles and guidelines for motivational design are described as well as a sequence of steps for the design process. Human motivation is an important concern for HF/E research and practice. Procedures in the design of both simple and complex technologies can, and should, include the evaluation of motivational characteristics of the task, interface, or system. In addition, researchers should investigate these factors in specific human-technology domains. The theory, principles, and guidelines described here can be incorporated into existing techniques for task analysis and for interface and system design.

  1. Proceeding of human exoskeleton technology and discussions on future research

    Science.gov (United States)

    Li, Zhiqiang; Xie, Hanxing; Li, Weilin; Yao, Zheng

    2014-05-01

    After more than half a century of intense efforts, the development of exoskeleton has seen major advances, and several remarkable achievements have been made. Reviews of developing history of exoskeleton are presented, both in active and passive categories. Major models are introduced, and typical technologies are commented on. Difficulties in control algorithm, driver system, power source, and man-machine interface are discussed. Current researching routes and major developing methods are mapped and critically analyzed, and in the process, some key problems are revealed. First, the exoskeleton is totally different from biped robot, and relative studies based on the robot technologies are considerably incorrect. Second, biomechanical studies are only used to track the motion of the human body, the interaction between human and machines are seldom studied. Third, the traditional developing ways which focused on servo-controlling have inborn deficiency from making portable systems. Research attention should be shifted to the human side of the coupling system, and the human ability to learn and adapt should play a more significant role in the control algorithms. Having summarized the major difficulties, possible future works are discussed. It is argued that, since a distinct boundary cannot be drawn in such strong-coupling human-exoskeleton system, the more complex the control system gets, the more difficult it is for the user to learn to use. It is suggested that the exoskeleton should be treated as a simple wearable tool, and downgrading its automatic level may be a change toward a brighter research outlook. This effort at simplification is definitely not easy, as it necessitates theoretical supports from fields such as biomechanics, ergonomics, and bionics.

  2. Design Concept of Human Interface System for Risk Monitoring for Proactive Trouble Prevention

    DEFF Research Database (Denmark)

    Hidekazu, Yoshikawa; Ming, Yang; Zhijian, Zhang

    2011-01-01

    as reactor coolant in Monju plant, the maintenance for Monju should utilize more automated equipments of remote control and robotics than that of light water reactor. It is necessary to design optimum task allocation between human and automated machine as the requisites for good communication design of human...... interface systems to support the collaboration work between workers at local workplace and the main control room. In this paper, the general issues are reviewed on how to configure the whole human interface system for helping proactive trouble prevention and risk evaluation on the basis of the presented...

  3. Situation awareness in process control; designing the human interface

    NARCIS (Netherlands)

    Passenier, P.O.; Delft, J.H. van

    1999-01-01

    Through the introduction of process automation, the supervision of multiple functions becomes more and more the role of a single human operator, the 'process manager', assisted by a process information and control system. Consequently, the level of direct involvement of the human operator with the a

  4. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface.

    Science.gov (United States)

    Oehler, Martin; Neumann, Peter; Becker, Matthias; Curio, Gabriel; Schilling, Meinhard

    2008-01-01

    The use of capacitive electrodes for measuring EEG eliminates the preparation procedure known from classical noninvasive EEG measurements. The insulated interface to the brain signals in combination with steady-state visual evoked potentials (SSVEP) enables a zero prep human machine interface triggered by brain signals. This paper presents a 28-channel EEG helmet system based on our capacitive electrodes measuring and analyzing SSVEPs even through scalp hair. Correlation analysis is employed to extract the stimulation frequency of the EEG signal. The system is characterized corresponding to the available detection time with different subjects. As demonstration of the use of capacitive electrodes for SSVEP measurements, preliminary online Brain-Computer Interface (BCI) results of the system are presented. Detection times lie about a factor of 3 higher than in galvanic EEG SSVEP measurements, but are low enough to establish a proper communication channel for Human Machine Interface (HMI).

  5. Coping with human errors through system design: Implications for ecological interface design

    DEFF Research Database (Denmark)

    Rasmussen, Jens; Vicente, Kim J.

    1989-01-01

    Research during recent years has revealed that human errors are not stochastic events which can be removed through improved training programs or optimal interface design. Rather, errors tend to reflect either systematic interference between various models, rules, and schemata, or the effects...... of the adaptive mechanisms involved in learning. In terms of design implications, these findings suggest that reliable human-system interaction will be achieved by designing interfaces which tend to minimize the potential for control interference and support recovery from errors. In other words, the focus should...... be on control of the effects of errors rather than on the elimination of errors per se. In this paper, we propose a theoretical framework for interface design that attempts to satisfy these objectives. The goal of our framework, called ecological interface design, is to develop a meaningful representation...

  6. Human perceptual deficits as factors in computer interface test and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bowser, S.E.

    1992-06-01

    Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The test and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.

  7. Interface design and contemporary: human creating new guidelines for high-tech products.

    Science.gov (United States)

    Pagnan, Andreia Salvan; Ribeiro, Giovana Freitas Rabelo; Gonçalves, Maria Goretti Souza; Câmara, Jairo José Drummond; Baptista, Sandra Motta

    2012-01-01

    Contemporary electronic industry offers a wide range of products. Usually touch sensitive and with few buttons and a lot of functions these products not always have a friendly interface. The human x design interface based on electronics' ergonomics is the focus of this research. An evolutionary analysis of the electronics industry design within a contemporary context clarifies this relation and proposes new guidelines for a more conscious design.

  8. The use of graphics in the design of the human-telerobot interface

    Science.gov (United States)

    Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.

  9. The United Nations Human Space Technology Initiative

    Science.gov (United States)

    Balogh, Werner; Miyoshi, Takanori

    2016-07-01

    The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed

  10. Transdisciplinary research in theatrical literature through technological integration and interfacing information

    Science.gov (United States)

    Pop, P. P.; Pop-Vădean, A.; Barz, C.; Latinovic, T.

    2016-08-01

    This paper aims to address more confident mathematical laws to explain a literary phenomenon. For this we studied the play "O scrisoare pierduta (Lost Letter)" written by Ion Luca Caragiale, in order to establish some connection between the characters but also to show certain aspects hidden by the author under the personality of the characters. We use transdisciplinary research to get from measurements and calculations results who will demonstrate objective of the proposed research. The challenge is to find those favorite characters by the author. Information and communications technology is a tool for research that will integrate this knowledge for modeling and interfacing.

  11. Pilot vehicle interface on the advanced fighter technology integration F-16

    Science.gov (United States)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  12. Speech and gesture interfaces for squad-level human-robot teaming

    Science.gov (United States)

    Harris, Jonathan; Barber, Daniel

    2014-06-01

    As the military increasingly adopts semi-autonomous unmanned systems for military operations, utilizing redundant and intuitive interfaces for communication between Soldiers and robots is vital to mission success. Currently, Soldiers use a common lexicon to verbally and visually communicate maneuvers between teammates. In order for robots to be seamlessly integrated within mixed-initiative teams, they must be able to understand this lexicon. Recent innovations in gaming platforms have led to advancements in speech and gesture recognition technologies, but the reliability of these technologies for enabling communication in human robot teaming is unclear. The purpose for the present study is to investigate the performance of Commercial-Off-The-Shelf (COTS) speech and gesture recognition tools in classifying a Squad Level Vocabulary (SLV) for a spatial navigation reconnaissance and surveillance task. The SLV for this study was based on findings from a survey conducted with Soldiers at Fort Benning, GA. The items of the survey focused on the communication between the Soldier and the robot, specifically in regards to verbally instructing them to execute reconnaissance and surveillance tasks. Resulting commands, identified from the survey, were then converted to equivalent arm and hand gestures, leveraging existing visual signals (e.g. U.S. Army Field Manual for Visual Signaling). A study was then run to test the ability of commercially available automated speech recognition technologies and a gesture recognition glove to classify these commands in a simulated intelligence, surveillance, and reconnaissance task. This paper presents classification accuracy of these devices for both speech and gesture modalities independently.

  13. Evolvable Work-practice Interfaces Between Humans and Agents Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Safe and effective interactions between humans and complex systems represent a requirement for practically all of NASA's missions. The first-of-a-kind nature of such...

  14. Modifications to Optimize the AH-1Z Human Machine Interface

    Science.gov (United States)

    2013-04-18

    The AH-1Z incorporates a Helmet Mounted System Display (HMSD). It consists of the Optimized TopOwl Version II ( OTO V2) helmet and helmet mounted...The OTO HMD display technology relies upon a monochromatic depiction of information in the display color schemes. Providing color to a heads up

  15. Human Handheld-Device Interaction: An Adaptive User Interface

    NARCIS (Netherlands)

    Fitrianie, S.

    2010-01-01

    The move to smaller, lighter and more powerful (mobile) handheld devices, whe-ther PDAs or smart-phones, looks like a trend that is building up speed. With numerous embedded technologies and wireless connectivity, the drift opens up unlimited opportunities in daily activities that are both more effi

  16. Development of intergrated accident management assessment technology; development of interface modules of risk-monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. K.; Park, S. K.; Seok, H.; Kim, D. K.; Han, J. K.; Park, B. R. [KOPEC, Taejeon (Korea)

    2002-03-01

    Based on the development of interface modules with FORTE.- DynaRM can quantify risk model very fast (Very frequent risk model quantification is needed for configuration risk management).- risk monitoring system technology transfer to foreign NPPs. Contribution to component failure and maintenance control automation with the development of Tagging control System. On-Line risk monitoring system development by joint team between Korea Atomic Energy Research Institute and KOPEC is a request by KEPCO. The softwares developed in this study is easily implemented at domestic NPPs without extra study or cost. Economic benefit and Software export to foreign NPPs are expected because of the development of technology related to risk monitoring system and its management. 6 refs., 3 figs., 1 tab. (Author)

  17. Future Cyborgs: Human-Machine Interface for Virtual Reality Applications

    Science.gov (United States)

    2007-04-01

    Technology: Wiley-IEEE Press, 1994. Clark, Andy. Natural-Born Cyborgs. New York: Oxford University Press, 2003. Clemens, Larry . "TSPG Advanced...physical illness and may be accompanied with vomiting .13 This sickness is a result of the current interfaces’ inability to overcome its physical...military members receive personal weapons training also. 8 Larry Clemens, "TSPG Advanced Planning Briefing to Industry," http://proceedings.ndia.org/61A0

  18. Review: Human Intracortical recording and neural decoding for brain-computer interfaces.

    Science.gov (United States)

    Brandman, David M; Cash, Sydney S; Hochberg, Leigh R

    2017-03-02

    Brain Computer Interfaces (BCIs) use neural information recorded from the brain for voluntary control of external devices. The development of BCI systems has largely focused on improving functional independence for individuals with severe motor impairments, including providing tools for communication and mobility. In this review, we describe recent advances in intracortical BCI technology and provide potential directions for further research.

  19. Toward affective brain-computer interfaces : exploring the neurophysiology of affect during human media interaction

    NARCIS (Netherlands)

    Mühl, Christian

    2012-01-01

    Affective Brain-Computer Interfaces (aBCI), the sensing of emotions from brain activity, seems a fantasy from the realm of science fiction. But unlike faster-than-light travel or teleportation, aBCI seems almost within reach due to novel sensor technologies, the advancement of neuroscience, and the

  20. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.

    Science.gov (United States)

    Yin, Yue H; Fan, Yuan J; Xu, Li D

    2012-07-01

    Although a lower extremity exoskeleton shows great prospect in the rehabilitation of the lower limb, it has not yet been widely applied to the clinical rehabilitation of the paralyzed. This is partly caused by insufficient information interactions between the paralyzed and existing exoskeleton that cannot meet the requirements of harmonious control. In this research, a bidirectional human-machine interface including a neurofuzzy controller and an extended physiological proprioception (EPP) feedback system is developed by imitating the biological closed-loop control system of human body. The neurofuzzy controller is built to decode human motion in advance by the fusion of the fuzzy electromyographic signals reflecting human motion intention and the precise proprioception providing joint angular feedback information. It transmits control information from human to exoskeleton, while the EPP feedback system based on haptic stimuli transmits motion information of the exoskeleton back to the human. Joint angle and torque information are transmitted in the form of air pressure to the human body. The real-time bidirectional human-machine interface can help a patient with lower limb paralysis to control the exoskeleton with his/her healthy side and simultaneously perceive motion on the paralyzed side by EPP. The interface rebuilds a closed-loop motion control system for paralyzed patients and realizes harmonious control of the human-machine system.

  1. VLSI circuit techniques and technologies for ultrahigh speed data conversion interfaces

    Science.gov (United States)

    Wooley, Bruce A.

    1991-04-01

    The performance of digital VLSI signal processing and communications systems is often limited by the data conversion interfaces between digital system-level components and the analog environment in which those components are embedded. The focus of this program has been research into the fundamental nature of such interfaces in systems that digitally process high-bandwidth signals for purposes such as radar imaging, high-resolution graphics, high-definition video, mobile and fiber-optic communications, and broadband instrumentation. Effort has been devoted to the study of both generic circuit functions, such as sampling and comparison, and architectural alternatives relevant to the implementation of high-speed data converters in present and emerging VLSI technologies. Specific results of the research include the design and realization of novel low-power CMOS and BiCMOS sampled-data comparators operating at rates as high as 200 MHz, the exploration of various design approaches to the implementation of high-speed sample-and-hold circuits in CMOS and BiCMOS technologies, and the design of a subranging CMOS analog-to-digital converter that provides 12-bit resolution at a conversion rate of 10 MHz.

  2. Affective Man-Machine Interface: Unveiling human emotions through biosignals

    NARCIS (Netherlands)

    van den Broek, Egon; Lisy, Viliam; Janssen, Joris H.; Westerink, Joyce H.D.M.; Schut, Marleen H.; Tuinenbreijer, Kees; Fred, A.; Filipe, J.; Gamboa, H.

    2010-01-01

    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and,

  3. Current challenges facing the translation of brain computer interfaces from preclinical trials to use in human patients

    Directory of Open Access Journals (Sweden)

    Maxwell D. Murphy

    2016-01-01

    Full Text Available Current research in brain computer interface (BCI technology is advancing beyond preclinical studies, with trials beginning in human patients. To date, these trials have been carried out with several different types of recording interfaces. The success of these devices has varied widely, but different factors such as the level of invasiveness, timescale of recorded information, and ability to maintain stable functionality of the device over a long period of time all must be considered in addition to accuracy in decoding intent when assessing the most practical type of device moving forward. Here, we discuss various approaches to BCIs, distinguishing between devices focusing on control of operations extrinsic to the subject (e.g., prosthetic limbs, computer cursors and those focusing on control of operations intrinsic to the brain (e.g. using stimulation or external feedback, including closed-loop or adaptive devices. In this discussion, we consider the current challenges facing the translation of various types of BCI technology to eventual human application.

  4. Current Challenges Facing the Translation of Brain Computer Interfaces from Preclinical Trials to Use in Human Patients.

    Science.gov (United States)

    Murphy, Maxwell D; Guggenmos, David J; Bundy, David T; Nudo, Randolph J

    2015-01-01

    Current research in brain computer interface (BCI) technology is advancing beyond preclinical studies, with trials beginning in human patients. To date, these trials have been carried out with several different types of recording interfaces. The success of these devices has varied widely, but different factors such as the level of invasiveness, timescale of recorded information, and ability to maintain stable functionality of the device over a long period of time all must be considered in addition to accuracy in decoding intent when assessing the most practical type of device moving forward. Here, we discuss various approaches to BCIs, distinguishing between devices focusing on control of operations extrinsic to the subject (e.g., prosthetic limbs, computer cursors) and those focusing on control of operations intrinsic to the brain (e.g., using stimulation or external feedback), including closed-loop or adaptive devices. In this discussion, we consider the current challenges facing the translation of various types of BCI technology to eventual human application.

  5. Non invasive Brain-Computer Interface system: towards its application as assistive technology

    Science.gov (United States)

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2010-01-01

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain Computer Interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI. PMID:18394526

  6. New Human-Computer Interface Concepts for Mission Operations

    Science.gov (United States)

    Fox, Jeffrey A.; Hoxie, Mary Sue; Gillen, Dave; Parkinson, Christopher; Breed, Julie; Nickens, Stephanie; Baitinger, Mick

    2000-01-01

    The current climate of budget cuts has forced the space mission operations community to reconsider how it does business. Gone are the days of building one-of-kind control centers with teams of controllers working in shifts 24 hours per day, 7 days per week. Increasingly, automation is used to significantly reduce staffing needs. In some cases, missions are moving towards lights-out operations where the ground system is run semi-autonomously. On-call operators are brought in only to resolve anomalies. Some operations concepts also call for smaller operations teams to manage an entire family of spacecraft. In the not too distant future, a skeleton crew of full-time general knowledge operators will oversee the operations of large constellations of small spacecraft, while geographically distributed specialists will be assigned to emergency response teams based on their expertise. As the operations paradigms change, so too must the tools to support the mission operations team's tasks. Tools need to be built not only to automate routine tasks, but also to communicate varying types of information to the part-time, generalist, or on-call operators and specialists more effectively. Thus, the proper design of a system's user-system interface (USI) becomes even more importance than before. Also, because the users will be accessing these systems from various locations (e.g., control center, home, on the road) via different devices with varying display capabilities (e.g., workstations, home PCs, PDAS, pagers) over connections with various bandwidths (e.g., dial-up 56k, wireless 9.6k), the same software must have different USIs to support the different types of users, their equipment, and their environments. In other words, the software must now adapt to the needs of the users! This paper will focus on the needs and the challenges of designing USIs for mission operations. After providing a general discussion of these challenges, the paper will focus on the current efforts of

  7. Workload-Adaptive Human Interface to Aid Robust Decision Making in Human-System Interface. Year 1 Report

    Science.gov (United States)

    2014-04-30

    and neutral signals were shown to each participant. The task involved a random presentation on a computer screen of three concentric circles with...The effects of signal salience and caffeine on performance, workload, and stress in an abbreviated vigilance task,” Human Factors: The Journal of the

  8. Crew interface analysis: Selected articles on space human factors research, 1987 - 1991

    Science.gov (United States)

    Bagian, Tandi (Compiler)

    1993-01-01

    As part of the Flight Crew Support Division at NASA, the Crew Interface Analysis Section is dedicated to the study of human factors in the manned space program. It assumes a specialized role that focuses on answering operational questions pertaining to NASA's Space Shuttle and Space Station Freedom Programs. One of the section's key contributions is to provide knowledge and information about human capabilities and limitations that promote optimal spacecraft and habitat design and use to enhance crew safety and productivity. The section provides human factors engineering for the ongoing missions as well as proposed missions that aim to put human settlements on the Moon and Mars. Research providing solutions to operational issues is the primary objective of the Crew Interface Analysis Section. The studies represent such subdisciplines as ergonomics, space habitability, man-computer interaction, and remote operator interaction.

  9. Quantitative evaluation of impedance perception characteristics of humans in the man-machine interface

    Energy Technology Data Exchange (ETDEWEB)

    Onish, Keiichi [Yamaha Motor Co., Shizuoka (Japan); Kim, Young Woo [Daegu Techno Park R and D Center, Seoul (Korea, Republic of); Obinata, Goro [Nagoya University, Nagoya (Japan); Hase, Kazunori [Tokyo Metropolitan University, Tokyo (Japan)

    2013-05-15

    We investigated impedance perception characteristics of humans in the man-machine interface. Sensibility or operational feel about physical properties of machine dynamics is obtained through perception process. We evaluated the impedance perception characteristics of humans who are operating a mechanical system, based on extended Scheffe's subjective evaluation method in full consideration of the influence of impedance level, impedance difference, experiment order, individual difference and so on. Constant method based quantitative evaluation was adopted to investigate the influence of motion frequency and change of the impedance on human impedance perception characteristics. Experimental results indicate that humans perceive impedance of mechanical systems based on comparison process of the dynamical characteristics of the systems. The proposed method can be applied to quantify the design requirement of man-machine interface. The effectiveness of the proposed method is verified through experimental results.

  10. Human-Computer Etiquette Cultural Expectations and the Design Implications They Place on Computers and Technology

    CERN Document Server

    Hayes, Caroline C

    2010-01-01

    Written by experts from various fields, this edited collection explores a wide range of issues pertaining to how computers evoke human social expectations. The book illustrates how socially acceptable conventions can strongly impact the effectiveness of human-computer interactions and how to consider such norms in the design of human-computer interfaces. Providing a complete introduction to the design of social responses to computers, the text emphasizes the value of social norms in the development of usable and enjoyable technology. It also describes the role of socially correct behavior in t

  11. Effects of human-machine interface design for intelligent speed adaptation on driving behavior and acceptance

    NARCIS (Netherlands)

    Rook, A.M.; Hogema, J.H.

    2005-01-01

    The effects of human-machine interface (HMI) design for intelligent speed adaptation (ISA) on driving behavior and acceptance were measured in a moving-base research driving simulator. Sixty-four experienced drivers participated in two simulator experiments (32 in each). During the simulated runs wi

  12. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    Science.gov (United States)

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface.

  13. Morpheus: Advancing Technologies for Human Exploration

    Science.gov (United States)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael

    2012-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional

  14. Distance education: the humanization of technology

    Science.gov (United States)

    Voelzke, Marcos Rincon; Rodrigues Ferreira, Orlando

    2015-08-01

    The Distance Education [DE] presents significant growth in graduates and postgraduates programs. Regarding this fact, new challenges arise and others must be considered, as the generation gap between digital immigrants and digital natives, the establishment of a population increasingly accustomed to Information and Communication Technologies [ICT] and teaching methodologies that should be used and developed. Vygotsky’s model of social interaction related to mediation can and should be used in DE, and concerning historical, social and cultural approaches affecting Brazilian reality, Paulo Freire is still up-to-date, integrating humanization into the use of ICT. This work only proceeds with analyses of these elements, being an excerpt of the master’s dissertation of one of the authors [Ferreira], under the guidance of another [Voelzke].

  15. Playful Interfaces: Introduction and History

    NARCIS (Netherlands)

    Nijholt, Anton; Nijholt, Anton

    2014-01-01

    In this short survey we have some historical notes about human-computer interface development with an emphasis on interface technology that has allowed us to design playful interactions with applications. The applications do not necessarily have to be entertainment applications. We can have playful

  16. A Kinect-based Gesture Recognition Approach for a Natural Human Robot Interface

    OpenAIRE

    Grazia Cicirelli; Carmela Attolico; Cataldo Guaragnella; Tiziana D'Orazio

    2015-01-01

    In this paper, we present a gesture recognition system for the development of a human-robot interaction (HRI) interface. Kinect cameras and the OpenNI framework are used to obtain real-time tracking of a human skeleton. Ten different gestures, performed by different persons, are defined. Quaternions of joint angles are first used as robust and significant features. Next, neural network (NN) classifiers are trained to recognize the different gestures. This work deals with different challenging...

  17. ESA New Generation Science Archives: New Technologies Applied to Graphical User Interface Creation

    Science.gov (United States)

    Fernandez, M.; Arviset, C.; Barbarisi, I.; Castellanos, J.; Cheek, N.; Costa, H.; Fajersztejn, N.; Gonzalez, J.; Laruelo, A.; Leon, I.; Ortiz, I.; Osuna, P.; Salgado, J.; Stebe, A.; Tapiador, D.

    2010-12-01

    The Science Archives and VO Team (SAT) has undertaken the effort to build state of the art sub-systems for its new generation of archives. At the time of writing this abstract, the new technology has already been applied to the creation of the SOHO and EXOSAT Science Archive s and will be used to re-engineer some of the already existing ESA Science Archives in the future. The Graphical User Interface sub-system has been designed and developed upon the premises of building a lightweight rich client application to query and retrieve scientific data quickly and efficiently; special attention has been paid to the usability and ergonomics of the interface. The system architecture relies on the Model View Controller pattern, which isolates logic from the graphical interface. Multiple window layout arrangements are possible using a docking windows framework with virtually no limitations (InfoNode). New graphical components have been developed to fulfill project-specific user requirements. For example video animations can be generated at runtime based on image data requests matching a specific search criteria. In addition, interoperability is achieved with other tools for data visualization purposes using internationally approved standards (c.f., IVOA SAMP), a messaging protocol already adopted by several analysis tools (ds9, Aladin, Gaia). In order to avoid the increasingly common network constraints affecting the end-user’s daily work the system has been designed to cope with possible restrictive firewall set up. Therefore, ESA New Generation archives are accessible from anyplace where standard basic port 80 HTTP connections are available.

  18. Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jennifer L. Collinger, PhD

    2013-04-01

    Full Text Available Spinal cord injury (SCI often affects a person’s ability to perform critical activities of daily living and can negatively affect his or her quality of life. Assistive technology aims to bridge this gap in order to augment function and increase independence. It is critical to involve consumers in the design and evaluation process as new technologies such as brain-­computer interfaces (BCIs are developed. In a survey study of 57 veterans with SCI participating in the 2010 National Veterans Wheelchair Games, we found that restoration of bladder and bowel control, walking, and arm and hand function (tetraplegia only were all high priorities for improving quality of life. Many of the participants had not used or heard of some currently available technologies designed to improve function or the ability to interact with their environment. The majority of participants in this study were interested in using a BCI, particularly for controlling functional electrical stimulation to restore lost function. Independent operation was considered to be the most important design criteria. Interestingly, many participants reported that they would consider surgery to implant a BCI even though noninvasiveness was a high-priority design requirement. This survey demonstrates the interest of individuals with SCI in receiving and contributing to the design of BCIs.

  19. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.

    Science.gov (United States)

    Han, Song-I; Han, Ki-Ho

    2013-01-01

    As lab-on-a-chips are developed for on-chip integrated microfluidic systems with multiple functions, the development of microfluidic interface (MFI) technology to enable integration of complex microfluidic systems becomes increasingly important and faces many technical difficulties. Such difficulties include the need for more complex structures, the possibility of biological or chemical cross-contamination between functional compartments, and the possible need for individual compartments fabricated from different substrate materials. This chapter introduces MFI technology, based on rapid stereolithography, for a glass-based miniaturized genetic sample preparation system, as an example of a complex lab-on-a-chip that could include functional elements such as; solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. To enable the integration of a complex lab-on-a-chip system in a single chip, MFI technology based on stereolithography provides a simple method for realizing complex arrangements of one-step plug-in microfluidic interconnects, integrated microvalves for microfluidic control, and optical windows for on-chip optical processes.

  20. Loving Machines: Theorizing Human and Sociable-Technology Interaction

    Science.gov (United States)

    Shaw-Garlock, Glenda

    Today, human and sociable-technology interaction is a contested site of inquiry. Some regard social robots as an innovative medium of communication that offer new avenues for expression, communication, and interaction. Other others question the moral veracity of human-robot relationships, suggesting that such associations risk psychological impoverishment. What seems clear is that the emergence of social robots in everyday life will alter the nature of social interaction, bringing with it a need for new theories to understand the shifting terrain between humans and machines. This work provides a historical context for human and sociable robot interaction. Current research related to human-sociable-technology interaction is considered in relation to arguments that confront a humanist view that confine 'technological things' to the nonhuman side of the human/nonhuman binary relation. Finally, it recommends a theoretical approach for the study of human and sociable-technology interaction that accommodates increasingly personal relations between human and nonhuman technologies.

  1. Study on the Microstructure of Human Articular Cartilage/Bone Interface

    Institute of Scientific and Technical Information of China (English)

    Yaxiong Liu; Qin Lian; Jiankang He; Jinna Zhao; Zhongmin Jin; Dichen Li

    2011-01-01

    For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.

  2. Gesture controlled human-computer interface for the disabled.

    Science.gov (United States)

    Szczepaniak, Oskar M; Sawicki, Dariusz J

    2017-02-28

    The possibility of using a computer by a disabled person is one of the difficult problems of the human-computer interaction (HCI), while the professional activity (employment) is one of the most important factors affecting the quality of life, especially for disabled people. The aim of the project has been to propose a new HCI system that would allow for resuming employment for people who have lost the possibility of a standard computer operation. The basic requirement was to replace all functions of a standard mouse without the need of performing precise hand movements and using fingers. The Microsoft's Kinect motion controller had been selected as a device which would recognize hand movements. Several tests were made in order to create optimal working environment with the new device. The new communication system consisted of the Kinect device and the proper software had been built. The proposed system was tested by means of the standard subjective evaluations and objective metrics according to the standard ISO 9241-411:2012. The overall rating of the new HCI system shows the acceptance of the solution. The objective tests show that although the new system is a bit slower, it may effectively replace the computer mouse. The new HCI system fulfilled its task for a specific disabled person. This resulted in the ability to return to work. Additionally, the project confirmed the possibility of effective but nonstandard use of the Kinect device. Med Pr 2017;68(1):1-21.

  3. The Science and Technology Challenges of the Plasma-Material Interface for Magnetic Fusion Energy

    Science.gov (United States)

    Whyte, Dennis

    2013-09-01

    The boundary plasma and plasma-material interactions of magnetic fusion devices are reviewed. The boundary of magnetic confinement devices, from the high-temperature, collisionless pedestal through to the surrounding surfaces and the nearby cold high-density collisional plasmas, encompasses an enormous range of plasma and material physics, and their integrated coupling. Due to fundamental limits of material response the boundary will largely define the viability of future large MFE experiments (ITER) and reactors (e.g. ARIES designs). The fusion community faces an enormous knowledge deficit in stepping from present devices, and even ITER, towards fusion devices typical of that required for efficient energy production. This deficit will be bridged by improving our fundamental science understanding of this complex interface region. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed, with a particular emphasis on establishing the use dimensionless parameters to understand this complex system. Proposed technology and science innovations towards solving the PMI/boundary challenges will be examined. Supported by US DOE award DE-SC00-02060 and cooperative agreement DE-FC02-99ER54512.

  4. Assessment of Application Technology of Natural User Interfaces in the Creation of a Virtual Chemical Laboratory

    Science.gov (United States)

    Jagodziński, Piotr; Wolski, Robert

    2015-02-01

    Natural User Interfaces (NUI) are now widely used in electronic devices such as smartphones, tablets and gaming consoles. We have tried to apply this technology in the teaching of chemistry in middle school and high school. A virtual chemical laboratory was developed in which students can simulate the performance of laboratory activities similar to those that they perform in a real laboratory. Kinect sensor was used for the detection and analysis of the student's hand movements, which is an example of NUI. The studies conducted found the effectiveness of educational virtual laboratory. The extent to which the use of a teaching aid increased the students' progress in learning chemistry was examined. The results indicate that the use of NUI creates opportunities to both enhance and improve the quality of the chemistry education. Working in a virtual laboratory using the Kinect interface results in greater emotional involvement and an increased sense of self-efficacy in the laboratory work among students. As a consequence, students are getting higher marks and are more interested in the subject of chemistry.

  5. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  6. Novel technology of electroless Ni-W-P on plastics and its interface behavior

    Institute of Scientific and Technical Information of China (English)

    WANG Tian-xu; HU Yong-jun; MENG Ji-long

    2004-01-01

    The electroless Ni-W-P coatings on polyoxymethylene(POM) were prepared. The POM was pretreated by hot spraying Al powder on it. Before the electroless Ni-W-P deposition, the POM with Al coating was flash plated in alkaline bath. The mechanism of Ni-W-P deposition was studied and the technology was optimized. The XRD analysis shows that the "as-deposited" Ni-W-P plating has mixed crystalline structure. The hardness value of deposits is more than HV700. The abrasion resistance of deposits is six times more than that of POM. Bending test was used to determine the cohesion between the deposits and the substrates. SEM was used to study the behavior of surface abrasion and interface bonding condition. The reason for the excellent cohesion was interpreted.

  7. Human Robotic Systems (HRS): Robonaut 2 Technologies Element

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the Robonaut 2 (R2) Technology Project Element within Human Robotic Systems (HRS) is to developed advanced technologies for infusion into the Robonaut 2...

  8. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2013-06-01

    Full Text Available Social robotics, brain machine interfaces and neuro and cognitive enhancement products are three emerging science and technology products with wide-reaching impact for disabled and non-disabled people. Acceptance of ideas and products depend on multiple parameters and many models have been developed to predict product acceptance. We investigated which frequently employed technology acceptance models (consumer theory, innovation diffusion model, theory of reasoned action, theory of planned behaviour, social cognitive theory, self-determination theory, technology of acceptance model, Unified Theory of Acceptance and Use of Technology UTAUT and UTAUT2 are employed in the social robotics, brain machine interfaces and neuro and cognitive enhancement product literature and which of the core measures used in the technology acceptance models are implicit or explicit engaged with in the literature.

  9. Overview of FY1997 human media technology R and D; 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu seido Shin energy Sangyo Gijutsu sogo Kaihatsu Kiko itaku jigyo. Human media no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper reports a summary of results in fiscal 1997 of research and development of human media technology. Fiscal 1997 launched design and trial fabrication of the following items: interface to improve efficiency and safety of plant operators, accommodation of multimedia contents to aid Kansei design, city development design aiding technologies using contents retrieval and presentation technologies and virtual reality, and empirical evaluation technologies for safety, comfort and convenience. Specific study assignments were extracted on a virtual media technology, a Kansei media technology and a knowledge media technology being three elementary technologies for human media to make clear the research and development approaches to be taken in the coming fiscal years. In addition, a human media technology committee, a research and development working group, and an investigation working group were established. Also launched were investigations on research trends in the human media technology, and investigative researches on contacts of information needs in industries with human media. 59 refs., 114 figs., 24 tabs.

  10. Parasitic zoonoses at the rodent-captive primate-human health interface.

    Science.gov (United States)

    Elsheikha, Hany M; Clayton, Samantha J; Morsy, Tosson A; Yon, Lisa K

    2009-08-01

    Parasitic diseases at the wildlife/primate/human interface are of particular importance in zoological gardens. Better understanding of the types of wildlife parasites that do persist in zoological gardens, and drives that lead to increases in prevalence or impacts, can point to new strategies for limiting the risk of human and captive primates' exposure in zoo centres. Also, it improves our understanding of the underlying mechanisms that influence the emergence of parasitic diseases. As wild animals and humans come into greater contact with each other, the risk posed by multi-host parasites for humans, captive primates, and wildlife populations increases. Despite strong public awareness of the fact that wildlife constitutes a large and often unknown reservoir of most emerging infectious diseases, animal-human interaction has not been addressed. Herein, the potential for cross-species parasite transmission between the wild rodents, captive primates and humans is considered using the current literature and medical records. Additionally, some aspects of the interface among wildlife, captive primates and humans and its impacts on human health are discussed. Finally, priorities for future research are identified, including identifying those parasites for which multi-host interaction is likely to have the greatest impact.

  11. Adapting the human-computer interface for reading literacy and computer skill to facilitate collection of information directly from patients.

    Science.gov (United States)

    Lobach, David F; Arbanas, Jennifer M; Mishra, Dharani D; Campbell, Marci; Wildemuth, Barbara M

    2004-01-01

    Clinical information collected directly from patients is critical to the practice of medicine. Past efforts to collect this information using computers have had limited utility because these efforts required users to be facile with the computerized information collecting system. In this paper we describe the design, development, and function of a computer system that uses recent technology to overcome the limitations of previous computer-based data collection tools by adapting the human-computer interface to the native language, reading literacy, and computer skills of the user. Specifically, our system uses a numerical representation of question content, multimedia, and touch screen technology to adapt the computer interface to the native language, reading literacy, and computer literacy of the user. In addition, the system supports health literacy needs throughout the data collection session and provides contextually relevant disease-specific education to users based on their responses to the questions. The system has been successfully used in an academically affiliated family medicine clinic and in an indigent adult medicine clinic.

  12. Criteria of Human-computer Interface Design for Computer Assisted Surgery Systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-guo; LIN Yan-ping; WANG Cheng-tao; LIU Zhi-hong; YANG Qing-ming

    2008-01-01

    In recent years, computer assisted surgery (CAS) systems become more and more common in clinical practices, but few specific design criteria have been proposed for human-computer interface (HCI) in CAS systems. This paper tried to give universal criteria of HCI design for CAS systems through introduction of demonstration application, which is total knee replacement (TKR) with a nonimage-based navigation system.A typical computer assisted process can be divided into four phases: the preoperative planning phase, the intraoperative registration phase, the intraoperative navigation phase and finally the postoperative assessment phase. The interface design for four steps is described respectively in the demonstration application. These criteria this paper summarized can be useful to software developers to achieve reliable and effective interfaces for new CAS systems more easily.

  13. The impact of technological era in human resource management

    OpenAIRE

    2016-01-01

    The Impact of the Technological Era in Human Resource Management This work project is a literature review, which covers current studies (theoretical and empirical) on electronic Human Resource Management, human resources analytics and telework, and discusses some implications of the adoption of technology in human resource management processes. The Work Project presents and discusses different and contradictory perspectives between empirical and theoretical studies, demonstrating that t...

  14. The impact of technological era in human resource management

    OpenAIRE

    Ritter, Andrea Fernandes Rodrigues

    2016-01-01

    The Impact of the Technological Era in Human Resource Management This work project is a literature review, which covers current studies (theoretical and empirical) on electronic Human Resource Management, human resources analytics and telework, and discusses some implications of the adoption of technology in human resource management processes. The Work Project presents and discusses different and contradictory perspectives between empirical and theoretical studies, demonstrating that t...

  15. Human-machine interface for a VR-based medical imaging environment

    Science.gov (United States)

    Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans

    1997-05-01

    Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.

  16. Surface Acoustic Wave (SAW) Technology For Clock Recovery In The Fiber Distributed Data Interface (FDDI)

    Science.gov (United States)

    Slawson, Michael R.

    1987-01-01

    This paper describes the use of Surface Acoustic Wave (SAW) technology for clock recovery, and the performance of this technology in the Fiber Distributed Data Interface (FDDI) draft standard. FDDI, because it operates at 125 MBd over the fiber optic media, requires tight control of the jitter accumulated in each point-to-point fiber link. The clock recovery function must be able to recover the clock and correctly sample the bit stream, given a relatively narrow "eye opening" at its input. Furthermore, the clock must be maintained during the FDDI "line states," which can have a very low transition density. This paper will first describe the particular implementation of SAW technology used for clock recovery, the SAW filter, and will define it purpose within the clock recovery function. Then, the jitter characteristics of the FDDI signal at the input to clock recovery, as well as the performance of the SAW-based clock recovery function under these input conditions, will be discussed. Experimental results obtained using a typical, Commercially available, SAW filter-based module will be presented. The various "detuning" sources of the SAW filter, which detract from the capability of the SAW-based module to perform accurate sampling, will be discussed. The performance of the module under FDDI line state conditions, particularly Master Line State (MLS) and Quit Line State (QLS), will be analyzed. The QLS, which indicated a disabled upstream transmitter or a cable break, contains no transitions and therefore no information for clock recovery. A circuit will be presented which uses the station's local oscillator and the "signal detect" function of the fiber optic receiver to derive the recovered clock in the event of QLS.

  17. User Interface Design, Standards & Guidelines for Web Applications Based on Human Personality Types

    Directory of Open Access Journals (Sweden)

    Kasthuri Subaramaniam

    2011-01-01

    Full Text Available This paper discusses the standards and guidelines of user interface features in web-based applications for the different personality types of people. An overview of human computer interaction and human  personality types is described. LEONARD, Let’s Explore our personality type based on Openness (O, Neutral (N, Analytical (A, Relational (R and Decisive (D is the model used to determine the different personality types for this study. The purpose is to define user personality profiles and to establish guidelines for the graphical user interface. The personality inventory and a user interface questionnaire were administered to university students. Interview sessions were also conducted and parts of the interviews with the university students were used to validate the results obtained from the questionnaires. The analysis of the students' personality types identified five main groups. The results suggest that users do have definable expectations concerning the features of web applications. This profile served as basis for the guidelines of web features for the graphical user interface design for the particular user groups.

  18. The use of analytical models in human-computer interface design

    Science.gov (United States)

    Gugerty, Leo

    1993-01-01

    Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.

  19. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.

    Science.gov (United States)

    Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís

    2010-01-01

    This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented.

  20. Design and development of data glove based on printed polymeric sensors and Zigbee networks for Human-Computer Interface.

    Science.gov (United States)

    Tongrod, Nattapong; Lokavee, Shongpun; Watthanawisuth, Natthapol; Tuantranont, Adisorn; Kerdcharoen, Teerakiat

    2013-03-01

    Current trends in Human-Computer Interface (HCI) have brought on a wave of new consumer devices that can track the motion of our hands. These devices have enabled more natural interfaces with computer applications. Data gloves are commonly used as input devices, equipped with sensors that detect the movements of hands and communication unit that interfaces those movements with a computer. Unfortunately, the high cost of sensor technology inevitably puts some burden to most general users. In this research, we have proposed a low-cost data glove concept based on printed polymeric sensor to make pressure and bending sensors fabricated by a consumer ink-jet printer. These sensors were realized using a conductive polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) [PEDOT:PSS]) thin film printed on glossy photo paper. Performance of these sensors can be enhanced by addition of dimethyl sulfoxide (DMSO) into the aqueous dispersion of PEDOT:PSS. The concept of surface resistance was successfully adopted for the design and fabrication of sensors. To demonstrate the printed sensors, we constructed a data glove using such sensors and developed software for real time hand tracking. Wireless networks based on low-cost Zigbee technology were used to transfer data from the glove to a computer. To our knowledge, this is the first report on low cost data glove based on paper pressure sensors. This low cost implementation of both sensors and communication network as proposed in this paper should pave the way toward a widespread implementation of data glove for real-time hand tracking applications.

  1. Nigerian Dental Technology Students and Human ...

    African Journals Online (AJOL)

    study of dental technology students of Federal School of Dental Therapy and Technology. Enugu .... to care for HIV-infected patients among this group of dental professionals in ... and upper class) and the expressed willingness to care for.

  2. Methods for studying medical device technology and practitioner cognition : The case of user-interface issues with infusion pumps

    NARCIS (Netherlands)

    Schraagen, J.M.C.; Verhoeven, F.

    2013-01-01

    Purpose : The aims of this study were to investigate how a variety of research methods is commonly employed to study technology and practitioner cognition. User-interface issues with infusion pumps were selected as a case because of its relevance to patient safety. Methods : Starting from a Cognitiv

  3. Methods for studying medical device technology and practitioner cognition: the case of user-interface issues with infusion pumps

    NARCIS (Netherlands)

    Schraagen, J.M.C.; Verhoeven, F.

    2013-01-01

    Purpose The aims of this study were to investigate how a variety of research methods is commonly employed to study technology and practitioner cognition. User-interface issues with infusion pumps were selected as a case because of its relevance to patient safety. Methods Starting from a Cognitive S

  4. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    Science.gov (United States)

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  5. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    Science.gov (United States)

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  6. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks

    OpenAIRE

    Gregor Wolbring; Lucy Diep; Sophya Yumakulov; Natalie Ball; Dean Yergens

    2013-01-01

    Social robotics, brain machine interfaces and neuro and cognitive enhancement products are three emerging science and technology products with wide-reaching impact for disabled and non-disabled people. Acceptance of ideas and products depend on multiple parameters and many models have been developed to predict product acceptance. We investigated which frequently employed technology acceptance models (consumer theory, innovation diffusion model, theory of reasoned action, theory of planned beh...

  7. Technology and Humanism--Are They Compatible?

    Science.gov (United States)

    Friedman, Edward A.

    Fears that the development of technology will lead to a rejection of humanistic values have prompted a number of critics to inveigh against further technological change. This document considers the differences between scientific investigation, which often occurs in the humanistic environment of the university, and technological "action," which…

  8. Eye-hand Hybrid Gesture Recognition System for Human Machine Interface

    Directory of Open Access Journals (Sweden)

    N. R. Raajan

    2013-04-01

    Full Text Available Gesture Recognition has become a way for computers to recognise and understand human body language. They bridge the gap between machines and human beings and make the primitive interfaces like keyboards and mice redundant. This paper suggests a hybrid gesture recognition system for computer interface and wireless robot control. The real-time eye-hand gesture recognition system can be used for computer drawing, navigating cursors and simulating mouse clicks, playing games, controlling a wireless robot with commands and more. The robot illustrated in this paper is controlled by RF module. Playing a PING-PONG game has also been demonstrated using the gestures. The Haar cascade classifiers and template matching are used to detect eye gestures and convex hull for finding the defects and counting the number of fingers in the given region.

  9. Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces

    Science.gov (United States)

    Ellman, Alvin; Carlton, Magdi

    1993-01-01

    The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.

  10. Cyborg intentionality : rethinking the phenomenology of human- technology relations

    NARCIS (Netherlands)

    Verbeek, Peter P.C.C.

    2008-01-01

    This article investigates the types of intentionality involved in human-technology relations. It aims to augment Don Ihde's analysis of the relations between human beings and technological artifacts, by analyzing a number of concrete examples at the limits of Ihde's analysis. The article

  11. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface.

    Science.gov (United States)

    Nelson, Martha I; Vincent, Amy L

    2015-03-01

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts.

  12. Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies

    Science.gov (United States)

    Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco

    2017-05-01

    Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.

  13. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  14. Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis

    Energy Technology Data Exchange (ETDEWEB)

    OHara, J.M.; Higgins, J.C.

    2010-01-31

    Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation. The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.

  15. Evaluasi Human Machine Interface Menggunakan Kriteria Usability Pada Sistem E-learning Perguruan Tinggi

    Directory of Open Access Journals (Sweden)

    Akhmad Qashlim

    2016-01-01

    Full Text Available Integration HMI with usability in user interface design process is a standart of the success of a website. The design process is done through the approach to the end user to find a problem solution of human machine interface phenomena. It can also generate the maximum level of satisfaction and success of implementation of the website. The purpose of this research is to evaluate HMI using usabilitycriteria to know the application of HMI concept in e-learning and provide proposals for improvements to the HMI. Questionnaire Data were processed using a descriptive analysis and methods of CFA to know the variables that are weakest and which indicators have an important role in shaping the research variables. Evaluation results indicate the application concept of HMI in the e-learning had been done but not the maximum. Data analysis of the results obtained that the main problem lies in the accessibility criteria in the meantime indicator latent variables from forming error prevention, learnability, memorability, visibility and accessibility of influential factor loading values indicated significantly (unidimensionalitas in shaping the criteria of latent variables in first-order CFA. The end result of this research is the proposal of improvement as a HMI solution in the form of principles and technicsuser interface design. This solution is focused on the development of standards for the quality of the interface in e-learning systems and not on the digital learning content presented on the e-learning system. Keywords: Descriptive analisis; Human machine interface; Usability; Confirmatory factor analisys; Elearning

  16. Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    Science.gov (United States)

    Kroemer, Karl H. E. (Editor); Snook, Stover H. (Editor); Meadows, Susan K. (Editor); Deutsch, Stanley (Editor)

    1988-01-01

    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.

  17. North House : developing intelligent building technology and user interface in energy independent domestic environments

    Energy Technology Data Exchange (ETDEWEB)

    Velikov, K. [Waterloo Univ., Cambridge, ON (Canada). School of Architecture; Bartram, L. [Simon Fraser Univ., Surrey, BC (Canada). School of Interactive Arts and Technology

    2009-07-01

    This paper reported on the construction of the North House, a prototype solar-powered dwelling developed by a Canadian team for the 2009 Solar Decathlon. The prototype aims to develop a strategy for solar powered residential design that addresses the issues of how to build and live in the demanding northern context, how to design buildings that are adaptive to climate extremes and how new technologies and alternative energies can be used to create a viable and sustainable architecture. The occupant-focused design is meant to empower the occupants with both knowledge and control so that they can make intelligent choices and transform their own habits to live more sustainably. The residential occupant needs to operate as both user and manager of a green dwelling, and therefore requires specific information as well as access to help the building work more efficiently. The domestic environment is different from a workplace environment and therefore requires a unique means of control, display and integration with user lifestyle. The Adaptive Living Interface System for North House is based on interactive technologies that help occupants to both control the systems of the house while providing feedback on the operation of the house. The objective is to support behavioural transformation for energy saving living patterns. Once the competition is over, the North House will be reinstalled in Canada to undergo a minimum of 2 years of post-occupancy evaluation (POE) and testing. Both quantitative and qualitative data will be collected on energy performance, user livability, comfort and user satisfaction. Results were be measured against performance simulation during the design phase and will be used to provide feedback on simulation software. 11 refs., 5 figs.

  18. Robust human machine interface based on head movements applied to assistive robotics.

    Science.gov (United States)

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.

  19. Robust Human Machine Interface Based on Head Movements Applied to Assistive Robotics

    Directory of Open Access Journals (Sweden)

    Elisa Perez

    2013-01-01

    Full Text Available This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user’s head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user’s head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.

  20. Dose-response relationships using brain-computer interface technology impact stroke rehabilitation.

    Science.gov (United States)

    Young, Brittany M; Nigogosyan, Zack; Walton, Léo M; Remsik, Alexander; Song, Jie; Nair, Veena A; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2015-01-01

    Brain-computer interfaces (BCIs) are an emerging novel technology for stroke rehabilitation. Little is known about how dose-response relationships for BCI therapies affect brain and behavior changes. We report preliminary results on stroke patients (n = 16, 11 M) with persistent upper extremity motor impairment who received therapy using a BCI system with functional electrical stimulation of the hand and tongue stimulation. We collected MRI scans and behavioral data using the Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) before, during, and after the therapy period. Using anatomical and functional MRI, we computed Laterality Index (LI) for brain activity in the motor network during impaired hand finger tapping. Changes from baseline LI and behavioral scores were assessed for relationships with dose, intensity, and frequency of BCI therapy. We found that gains in SIS Strength were directly responsive to BCI therapy: therapy dose and intensity correlated positively with increased SIS Strength (p ≤ 0.05), although no direct relationships were identified with ARAT or 9-HPT scores. We found behavioral measures that were not directly sensitive to differences in BCI therapy administration but were associated with concurrent brain changes correlated with BCI therapy administration parameters: therapy dose and intensity showed significant (p ≤ 0.05) or trending (0.05 stroke rehabilitation, therapy frequency may be less important than dose and intensity.

  1. The design of an intelligent human-computer interface for the test, control and monitor system

    Science.gov (United States)

    Shoaff, William D.

    1988-01-01

    The graphical intelligence and assistance capabilities of a human-computer interface for the Test, Control, and Monitor System at Kennedy Space Center are explored. The report focuses on how a particular commercial off-the-shelf graphical software package, Data Views, can be used to produce tools that build widgets such as menus, text panels, graphs, icons, windows, and ultimately complete interfaces for monitoring data from an application; controlling an application by providing input data to it; and testing an application by both monitoring and controlling it. A complete set of tools for building interfaces is described in a manual for the TCMS toolkit. Simple tools create primitive widgets such as lines, rectangles and text strings. Intermediate level tools create pictographs from primitive widgets, and connect processes to either text strings or pictographs. Other tools create input objects; Data Views supports output objects directly, thus output objects are not considered. Finally, a set of utilities for executing, monitoring use, editing, and displaying the content of interfaces is included in the toolkit.

  2. Development of a Compact Wireless Laplacian Electrode Module for Electromyograms and Its Human Interface Applications

    Directory of Open Access Journals (Sweden)

    Akira Ichikawa

    2013-02-01

    Full Text Available In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs. One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a the masseter, (b trapezius, (c anterior tibialis and (d flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module.

  3. Science, Technology, & Human Values. Issue No. 26.

    Science.gov (United States)

    Shelanski, Vivien B., Ed.; La Follette, Marcel C., Ed.

    This issue contains articles on the recombinant DNA controversy, the ethical principles of scientific institutions, and the effect of disaster novels on public opinion and technology assessment, as well as a guide to funding for science, technology and values projects, and a bibliography on professional ethics. In addition, 14 pages of news items…

  4. Language and Being Human in Technology

    Science.gov (United States)

    van der Laan, J. M.

    2012-01-01

    This essay considers the analysis Jacques Ellul carried out about the devaluation of language. This investigation also explores the consequences of that devaluation (or humiliation as Ellul called it) wrought by our orientation to technology. Our existence in technology transforms language and our use of it, shifting emphasis as well to the visual…

  5. Kansei Colour Concepts to Improve Effective Colour Selection in Designing Human Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Tharangie K G D

    2010-05-01

    Full Text Available Colours have a major impact on Human Computer Interaction. Although there is a very thin line between appropriate and inappropriate use of colours, if used properly, colours can be a powerful tool to improve the usefulness of a computer interface in a wide variety of areas. Many designers mostly consider the physical aspect of the colour and tend to forget that psychological aspect of colour exists. However the findings of this study confirm that the psychological aspect or the affective dimension of colour also plays an important role in colour Interface design towards user satisfaction. Using Kansei Engineering principles the study explores the affective variability of colours and how it can be manipulated to provide better design guidance and solutions. A group of twenty adults from Sri Lanka, age ranging from 30 to 40 took part in the study. Survey was conducted using a Kansei colour questionnaire in normal atmospheric conditions. The results reveal that the affective variability of colours plays an important role in human computer interaction as an influential factor in drawing the user towards or withdrawing from the Interface. Thereby improving or degrading the user satisfaction.

  6. Interface of data transmission for a transcutaneous communication system using the human body as transmission medium.

    Science.gov (United States)

    Okamoto, Eiji; Kato, Yoshikuni; Seino, Kazuyuki; Mitamura, Yoshinori

    2012-03-01

    We have been developing a new transcutaneous communication system (TCS) that uses the human body as an electrical conductive medium. We studied an interface circuit of the TCS in order to optimize the leading data current into the human body effectively. Two types of LC circuits were examined for the interface circuit, one was an LC series-parallel circuit, and the other was a parallel-connected LC circuit. The LC series-parallel circuit connected to the body could be tuned to a resonant frequency, and the frequency was determined by the values of an external inductor and an external capacitor. Permittivity of the body did not influence the electrical resonance. Connection of the LC series-parallel circuit to the body degraded the quality factor Q because of the conductivity of the body. However, the LC parallel-connected circuit when connected to the body did not indicate electrical resonance. The LC series-parallel circuit restricts a direct current and a low-frequency current to flow into the body; thus, it can prevent a patient from getting a shock. According to the above results, an LC series-parallel circuit is an optimum interface circuit between the TCS and the body for leading data current into the body effectively and safely.

  7. A Kinect-based Gesture Recognition Approach for a Natural Human Robot Interface

    Directory of Open Access Journals (Sweden)

    Grazia Cicirelli

    2015-03-01

    Full Text Available In this paper, we present a gesture recognition system for the development of a human-robot interaction (HRI interface. Kinect cameras and the OpenNI framework are used to obtain real-time tracking of a human skeleton. Ten different gestures, performed by different persons, are defined. Quaternions of joint angles are first used as robust and significant features. Next, neural network (NN classifiers are trained to recognize the different gestures. This work deals with different challenging tasks, such as the real-time implementation of a gesture recognition system and the temporal resolution of gestures. The HRI interface developed in this work includes three Kinect cameras placed at different locations in an indoor environment and an autonomous mobile robot that can be remotely controlled by one operator standing in front of one of the Kinects. Moreover, the system is supplied with a people reidentification module which guarantees that only one person at a time has control of the robot. The system’s performance is first validated offline, and then online experiments are carried out, proving the real-time operation of the system as required by a HRI interface.

  8. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.

    Science.gov (United States)

    Barszap, Alexander G; Skavhaug, Ida-Maria; Joshi, Sanjay S

    2016-10-01

    Electromyography-based human-computer interface development is an active field of research. However, knowledge on the effects of muscle fatigue for specific devices is limited. We have developed a novel myoelectric human-computer interface in which subjects continuously navigate a cursor to targets by manipulating a single surface electromyography (sEMG) signal. Two-dimensional control is achieved through simultaneous adjustments of power in two frequency bands through a series of dynamic low-level muscle contractions. Here, we investigate the potential effects of muscle fatigue during the use of our interface. In the first session, eight subjects completed 300 cursor-to-target trials without breaks; four using a wrist muscle and four using a head muscle. The wrist subjects returned for a second session in which a static fatiguing exercise took place at regular intervals in-between cursor-to-target trials. In the first session we observed no declines in performance as a function of use, even after the long period of use. In the second session, we observed clear changes in cursor trajectories, paired with a target-specific decrease in hit rates.

  9. A Thomistic appraisal of human enhancement technologies.

    Science.gov (United States)

    Eberl, Jason T

    2014-08-01

    Debate concerning human enhancement often revolves around the question of whether there is a common "nature" that all human beings share and which is unwarrantedly violated by enhancing one's capabilities beyond the "species-typical" norm. I explicate Thomas Aquinas's influential theory of human nature, noting certain key traits commonly shared among human beings that define each as a "person" who possesses inviolable moral status. Understanding the specific qualities that define the nature of human persons, which includes self-conscious awareness, capacity for intellective thought, and volitional autonomy, informs the ethical assessment of various forms of enhancement. Some forms of cognitive and physical enhancement may be desirable from the perspective of what constitutes the "flourishing" of human persons in our fundamental nature; while other forms of enhancement, such as emotive or so-called "moral" enhancement, run the risk of detracting from human flourishing when evaluated from the virtue-theoretic perspective Aquinas promotes.

  10. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  11. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Science.gov (United States)

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  12. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface.

    Science.gov (United States)

    Weisblum, Yiska; Panet, Amos; Zakay-Rones, Zichria; Vitenshtein, Alon; Haimov-Kochman, Ronit; Goldman-Wohl, Debra; Oiknine-Djian, Esther; Yamin, Rachel; Meir, Karen; Amsalem, Hagai; Imbar, Tal; Mandelboim, Ofer; Yagel, Simcha; Wolf, Dana G

    2015-11-01

    The initial interplay between human cytomegalovirus (HCMV) and innate tissue response in the human maternal-fetal interface, though crucial for determining the outcome of congenital HCMV infection, has remained unknown. We studied the innate response to HCMV within the milieu of the human decidua, the maternal aspect of the maternal-fetal interface, maintained ex vivo as an integral tissue. HCMV infection triggered a rapid and robust decidual-tissue innate immune response predominated by interferon (IFN)γ and IP-10 induction, dysregulating the decidual cytokine/chemokine environment in a distinctive fashion. The decidual-tissue response was already elicited during viral-tissue contact, and was not affected by neutralizing HCMV antibodies. Of note, IFNγ induction, reflecting immune-cell activation, was distinctive to the maternal decidua, and was not observed in concomitantly-infected placental (fetal) villi. Our studies in a clinically-relevant surrogate human model, provide a novel insight into the first-line decidual tissue response which could affect the outcome of congenital infection.

  13. A Wearable-based and Markerless Human-manipulator Interface with Feedback Mechanism and Kalman Filters

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2015-11-01

    Full Text Available The objective of this paper is to develop a novel human-manipulator interface which incorporates wearable-based and markerless tracking to interact with the continuous movements of a human operator’s hand. Unlike traditional approaches, which usually include contacting devices or physical markers to track the human-limb movements, this interface enables registration of natural movement through a wireless wearable watch and a leap motion sensor. Due to sensor error and tracking failure, the measurements are not made with sufficient accuracy. Two Kalman filters are employed to compensate the noisy and incomplete measurements in real time. Furthermore, due to perceptive limitations and abnormal state signals, the operator is unable to achieve high precision and efficiency in robot manipulation; an adaptive multispace transformation method (AMT is therefore introduced, which serves as a secondary treatment. In addition, in order to allow two-way human-robot interaction, the proposed method provides a vibration feedback mechanism triggered by the wearable watch to call the operator’s attention to robot collision incidents or moments where the operator’s hand is in a transboundary state. This improves teleoperation.

  14. Human-water interface in hydrological modelling: current status and future directions

    Science.gov (United States)

    Wada, Yoshihide; Bierkens, Marc F. P.; de Roo, Ad; Dirmeyer, Paul A.; Famiglietti, James S.; Hanasaki, Naota; Konar, Megan; Liu, Junguo; Müller Schmied, Hannes; Oki, Taikan; Pokhrel, Yadu; Sivapalan, Murugesu; Troy, Tara J.; van Dijk, Albert I. J. M.; van Emmerik, Tim; Van Huijgevoort, Marjolein H. J.; Van Lanen, Henny A. J.; Vörösmarty, Charles J.; Wanders, Niko; Wheater, Howard

    2017-08-01

    Over recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the representation of human activities in hydrological models remains challenging. In this paper we provide a synthesis of progress in the development and application of human impact modelling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human-water interface in hydrological models.

  15. 脑计算机接口技术与应用前景%Technology and Appl ication Prospect of Brain-Computer Interface

    Institute of Scientific and Technical Information of China (English)

    贾花萍; 赵俊龙

    2015-01-01

    Brain-Computer interface (BCI)technology is a communication system between human brain and computer or other electronic equipments,the system understands the people's thinking through the EEG signal record,then controls the computer,equipments,intelli-gent household or unmanned vehicles by thinking.The technology involves in neuroscience,psychology of cognitive science,rehabilitation engineering,biomedical engineering and computer science and so on.Currently,brain-computer interface system is becoming a hot re-search,the paper introduces the structure,working principle,problems and prospect of brain-computer interface system.%脑计算机接口(Brain-Computer Interface,BCI)技术是在人脑和计算机或其他电子设备之间建立通信系统,该系统通过记录人的脑电信号来了解人的思维,用思维来控制计算机,操纵设备、智能家居、无人驾驶交通工具等。该技术涉及神经科学、心理认知科学、康复工程、生物医学工程和计算机科学等多种学科。目前,脑计算机接口系统正在成为研究热点,本文介绍了脑计算机接口系统的结构、工作原理、存在问题及发展前景。

  16. Implementation of Human Machine Interface Control for Filling and Capping System

    Directory of Open Access Journals (Sweden)

    Su Yadanar

    2014-12-01

    Full Text Available This research is mainly aimed to perform the bottle filling and capping process simultaneously in the pharmaceutical factory by using the PC based human machine interface system. Filling and capping is carried out by the machine that packages the medical powder into the bottle and then filled bottle is capped. So, PC based HMI system is created for operator control on the work cell. By designing the programming of Visual Basic.Net and Mikro C, the monitoring and running conditions in the packaging system are shown on the screen of the computer. The entire system is more flexible and time saving. In this project, a prototype is implemented by using the DC motors, sensing devices, limit switches, peripheral interface controller and serial port communication. This PC based HMI control system is very flexible, cost effective, space efficient and reduce complexity and is used to monitor the process.

  17. Controlling a virtual forehand prosthesis using an adaptive and affective Human-Machine Interface.

    Science.gov (United States)

    Rezazadeh, I Mohammad; Firoozabadi, S M P; Golpayegani, S M R Hashemi; Hu, H

    2011-01-01

    This paper presents the design of an adaptable Human-Machine Interface (HMI) for controlling virtual forearm prosthesis. Direct physical performance measures (obtained score and completion time) for the requested tasks were calculated. Furthermore, bioelectric signals from the forehead were recorded using one pair of electrodes placed on the frontal region of the subject head to extract the mental (affective) measures while performing the tasks. By employing the proposed algorithm and above measures, the proposed HMI can adapt itself to the subject's mental states, thus improving the usability of the interface. The quantitative results from 15 subjects show that the proposed HMI achieved better physical performance measures in comparison to a conventional non-adaptive myoelectric controller (p < 0.001).

  18. Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    Science.gov (United States)

    Hay, Jason; Mullins, Carie; Graham, Rachael; Williams-Byrd, Julie; Reeves, John D.

    2011-01-01

    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies.

  19. Fiscal 1998 industrial science and technology R and D system. R and D report on human media / R and D on the advanced information system technology for oil refinery plants; 1998 nendo seika hokokusho. Human media no kenkyu kaihatsu, sekiyu plant kodo johoka system gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    As a part of R and D on human media, this report describes the fiscal 1998 result on development of the advanced information system for oil refinery plants. The R and D on human media have been promoted toward construction of a new information system around human beings by advanced integrated media technology since fiscal 1994. The whole concept is body sensation-, heart sensation- and knowledge- friendly media. For safe operation of oil refinery plants, this project develops (1) the intelligent monitoring of measuring instrument information and image information, (2) the display and guidance for facilitating collection of operation data by operator, (3) the modeling for efficient management of previous data and their effective use for current operations, and (4) the autonomous cooperative control technology. In fiscal 1998, the following subsystems were designed and prepared: The interface agent, virtual plant display interface, semantic representation interface, ontology, distributed cooperative processing technology, plant model and interface system. (NEDO)

  20. Human Robotic Systems (HRS): Rover Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In FY15, the HRS Rover Technologies will begin design of a prototype rover designed for the lunar surface, begin development of resource efficient navigation...

  1. Human spaceflight technology needs-a foundation for JSC's technology strategy

    Science.gov (United States)

    Stecklein, J. M.

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th

  2. Human monitoring, smart health and assisted living techniques and technologies

    CERN Document Server

    Longhi, Sauro; Freddi, Alessandro

    2017-01-01

    This book covers the three main scientific and technological areas critical for improving people's quality of life - namely human monitoring, smart health and assisted living - from both the research and development points of view.

  3. Innovative technologies in human resources management at the enterprise

    OpenAIRE

    Bilorus, T.

    2009-01-01

    The article focuses on the analysis of world tendencies in human resources management system development, namely, on high technology and staff development devices that influence the effectiveness of its application.

  4. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface.

    Science.gov (United States)

    De Rossi, Stefano Marco Maria; Vitiello, Nicola; Lenzi, Tommaso; Ronsse, Renaud; Koopman, Bram; Persichetti, Alessandro; Vecchi, Fabrizio; Ijspeert, Auke Jan; van der Kooij, Herman; Carrozza, Maria Chiara

    2011-01-01

    A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer's skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented.

  5. Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Maria Chiara Carrozza

    2010-12-01

    Full Text Available A sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer’s skin. Compared to state-of-the-art measures, the advantage of this approach is that it allows for a distributed measure of the interaction pressure, which could be useful for the assessment of safety and comfort of human-robot interaction. This paper presents the new sensor and its characterization, and the development of an interaction measurement apparatus, which is applied to a lower-limb rehabilitation robot. The system is calibrated, and an example its use during a prototypical gait training task is presented.

  6. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  7. The development and evaluation of human factors guidelines for the review of advanced human-system interfaces

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.

    1992-09-01

    Advanced control rooms for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are approximately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline.

  8. The development and evaluation of human factors guidelines for the review of advanced human-system interfaces

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.

    1992-01-01

    Advanced control rooms for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are approximately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline.

  9. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    Science.gov (United States)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  10. Implementation of Human Machine Interface Control for Filling and Capping System

    OpenAIRE

    Su Yadanar; Theingi; Nu Nu Win

    2014-01-01

    This research is mainly aimed to perform the bottle filling and capping process simultaneously in the pharmaceutical factory by using the PC based human machine interface system. Filling and capping is carried out by the machine that packages the medical powder into the bottle and then filled bottle is capped. So, PC based HMI system is created for operator control on the work cell. By designing the programming of Visual Basic.Net and Mikro C, the monitoring and running conditions in the pac...

  11. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    Science.gov (United States)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  12. Technology of ASP interface in website realization%网站实现中的ASP接口技术

    Institute of Scientific and Technical Information of China (English)

    张敏霞; 吕丽民

    2001-01-01

    针对如何提高网站的质量问题,在分析Web技术与B/S结构的特点后,给出相应的网站设计方案,并介绍其中关键的ASP接口技术。最后结合“比一比”网站建设实例说明本方案的有效性。%After analyzing Web technology and browser/server structure, thispaper gives a website design, and introduces the key technology of ASP interface. Finally "BEB" website as an applied instance proves this design profitable.

  13. Ambient Intelligence and Persuasive Technology: The Blurring Boundaries Between Human and Technology.

    Science.gov (United States)

    Verbeek, Peter-Paul

    2009-12-01

    The currently developing fields of Ambient Intelligence and Persuasive Technology bring about a convergence of information technology and cognitive science. Smart environments that are able to respond intelligently to what we do and that even aim to influence our behaviour challenge the basic frameworks we commonly use for understanding the relations and role divisions between human beings and technological artifacts. After discussing the promises and threats of these technologies, this article develops alternative conceptions of agency, freedom, and responsibility that make it possible to better understand and assess the social roles of Ambient Intelligence and Persuasive Technology. The central claim of the article is that these new technologies urge us to blur the boundaries between humans and technologies also at the level of our conceptual and moral frameworks.

  14. The Role of Humanities in Our Modern Technological Society.

    Science.gov (United States)

    Davis, Gregory H.

    This paper advocates that the humanities retain a place or have primary importance in the education system. It presents a history of philosophic and religious perspectives regarding science and technology, ranging from embracing technology to rejecting it. By juxtaposing the dominance of the Nazi regime in World War II and the increasing flood of…

  15. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    Science.gov (United States)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  16. TECHNOLOGY AND INNOVATION IN HUMAN ACTIVITY OF THE INFORMATION AGE: INFORMATION CHALLENGES AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Oleksandr Yu. Burov

    2015-10-01

    Full Text Available It is discussed the role of technology development, especially in connection with social transformation and transition of humanity to the era of information/knowledge, analyzed the trend accelerating technological change and its relation to civil and military changes in society. It is emphasized the fundamental novelty of the information age, namely the transition of mankind from the production of material products mainly to intangible (information, knowledge, human cognitive processes. It is emphasized that ICT gain not only growing importance, but become a driving force of human civilization. The basic features of education in the information age, including ICT educational purpose out technology for distance education are described.

  17. Audio Technology and Mobile Human Computer Interaction

    DEFF Research Database (Denmark)

    Chamberlain, Alan; Bødker, Mads; Hazzard, Adrian

    2017-01-01

    Audio-based mobile technology is opening up a range of new interactive possibilities. This paper brings some of those possibilities to light by offering a range of perspectives based in this area. It is not only the technical systems that are developing, but novel approaches to the design...

  18. Problems of information technologies integration into humanities

    Directory of Open Access Journals (Sweden)

    Tatiana F. Milova

    2011-05-01

    Full Text Available The author considers main transformations impacted by information technologies in humanitarian researches, discourse and education. Net resources, штащкьфешщт exchange, hypertext and interactive learn means are focused as key integration points.

  19. Tracking pathogen transmission at the human-wildlife interface: banded mongoose and Escherichia coli.

    Science.gov (United States)

    Pesapane, R; Ponder, M; Alexander, K A

    2013-06-01

    A primary challenge to managing emerging infectious disease is identifying pathways that allow pathogen transmission at the human-wildlife interface. Using Escherichia coli as a model organism, we evaluated fecal bacterial transmission between banded mongoose (Mungos mungo) and humans in northern Botswana. Fecal samples were collected from banded mongoose living in protected areas (n = 87, 3 troops) and surrounding villages (n = 92, 3 troops). Human fecal waste was collected from the same environment (n = 46). Isolates were evaluated for susceptibility to 10 antibiotics. Resistant E. coli isolates from mongoose were compared to human isolates using rep-PCR fingerprinting and MLST-PCR. Antimicrobial resistant isolates were identified in 57 % of the mongoose fecal samples tested (range 31-78% among troops). At least one individual mongoose fecal sample demonstrated resistance to each tested antibiotic, and multidrug resistance was highest in the protected areas (40.9%). E. coli isolated from mongoose and human sources in this study demonstrated an extremely high degree of genetic similarity on rep-PCR (AMOVA, F ST = 0.0027, p = 0.18) with a similar pattern identified on MLST-PCR. Human waste may be an important source of microbial exposure to wildlife. Evidence of high levels of antimicrobial resistance even within protected areas identifies an emerging health threat and highlights the need for improved waste management in these systems.

  20. Human-system interface design review guideline -- Process and guidelines: Final report. Revision 1, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant`s HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 1 consists of two major parts. Part 1 describes those aspects of the review process of the HSI design that are important to identifying and resolving human engineering discrepancies. Part 2 contains detailed guidelines for a human factors engineering review which identify criteria for assessing the implementation of an applicant`s or licensee`s HSI design.

  1. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    R. Fink, D. Hill, J. O' Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  2. IMPROVING THREE-DIMENSIONAL OBJECT VISUALIZATION USER INTERFACE WITH AUGMENTED REALITY TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kravtsov �. M.

    2014-06-01

    Full Text Available The article describes hardware and software specific issues of implementing augmented reality for improving user interface of visualization of a virtual object. It also defines possible future improvements of the subject

  3. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  4. Interface entre cidade e tecnologia: a experiência do espaço tecnológico Interface between city and technology: technological space experience

    Directory of Open Access Journals (Sweden)

    Polise Moreira de Marchi

    2011-09-01

    Full Text Available A experiência do espaço urbano tem sofrido alterações operadas por extensões, expansões e simulaçõesem virtude da incorporação do desenvolvimento tecnológico à própria constituição física e à linguagemda cidade. Entre cidade e experiência, a interface tecnológica se apresenta como possibilidade de reconhecimento,conhecimento e produção das relações espaciais reais e potenciais das cidades contemporâneas.Desde a concepção do mundo urbano, que, segundo Henri Lefebvre (1991, esteve relacionada diretamentecom o período industrial, a tecnologia tem delimitado e pontuado as diversas fases e consequentes camadasque formam a cidade, tanto em relação à dinâmica física do espaço, como em relação à sua representação.Se de fato a tecnologia sempre esteve vinculada diretamente à própria construção das cidades, por meio deiniciativas dos governos e de grandes empresas, é na sua condição atual que se potencializa como mediaçãoentre o indivíduo e o espaço urbano, este cada vez mais tecnologicamente hibridizado. Destarte, este artigotem por objetivo discutir de que modo a tecnologia tem estabelecido novas mediações e respectivas configuraçõesno espaço urbano das cidades contemporâneas, de modo a não ser mais possível dissociá-la destecontexto. Para tal propósito, tomam-se como referência projetos ou iniciativas de pesquisa que buscam nastecnologias de informação e comunicação (TICs novos meios de extensão da cidade, em interface com ambientesurbanos geolocalizados ou virtuais.

  5. Human-Robot Interaction Reconfigurable Test Environment: Optimizing the Human Interface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human-Robot Interaction Reconfigurable Test Environment (HRI-RTE) integrates a grid-based, reconfigurable test arena and an operator workstation with...

  6. Colloquium: Digital Technologies--Help or Hindrance for the Humanities?

    Science.gov (United States)

    Barker, Elton; Bissell, Chris; Hardwick, Lorna; Jones, Allan; Ridge, Mia; Wolffe, John

    2012-01-01

    This article offers reflections arising from a recent colloquium at the Open University on the implications of the development of digital humanities for research in arts disciplines, and also for their interactions with computing and technology. Particular issues explored include the ways in which the digital turn in humanities research is also a…

  7. A Cross-Cultural Investigation of Human Performance Technology Interventions

    Science.gov (United States)

    Vadivelu, Ramaswamy N.

    2010-01-01

    Human Performance Technology (HPT) is a field of practice that has evolved from advancements in organizational development, instructional design, strategic human resource management and cognitive psychology. As globalization and trends like outsourcing and off-shoring start to dominate the way organizations grow, HPT practitioners are managing the…

  8. Macaques in farms and folklore: exploring the human-nonhuman primate interface in Sulawesi, Indonesia.

    Science.gov (United States)

    Riley, Erin P; Priston, Nancy E C

    2010-09-01

    The island of Sulawesi is an ecologically diverse and anthropogenically complex region in the Indonesian archipelago; it is home to multiple macaque species and a key locus of human-nonhuman primate interconnections. Here, we review the ethnoprimatology of Sulawesi by exploring two primary domains of the human-macaque interface: overlapping resource use and cultural perceptions of macaques. Crop raiding is the primary form of overlapping resource use. While the raiding of cacao plantations predominates in Central and South Sulawesi, subsistence crops (e.g., sweet potato and maize) are most vulnerable on Buton, Southeast Sulawesi. Despite this overlap levels of conflict are generally low, with farmers showing considerable tolerance. This tolerance can be explained by positive perceptions of the macaques despite their crop raiding behavior, and the finding that in some areas macaques figure prominently in local folklore, hence affording them protection. These findings provide some hope for the future management and conservation of these endemic macaques.

  9. Virtual reality technology as a tool for human factors requirements evaluation in design of the nuclear reactors control desks

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Mol, Antonio C.A.; Carvalho, Paulo V.R.; Silva, Antonio C.F.; Ferreira, Francisco J.O.; Dutra, Marco A.M. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: grecco@ien.gov.br; luquetti@ien.gov.br; mol@ien.gov.br; paulov@ien.gov.br; tonico@ien.gov.br; fferreira@ien.gov.br; dutra@ien.gov.br

    2007-07-01

    The Virtual Reality (VR) is an advanced computer interface technology that allows the user to internet or to explore a three-dimensional environment through the computer, as was part of the virtual world. This technology presents great applicability in the most diverse areas of the human knowledge. This paper presents a study on the use of the VR as tool for human factors requirements evaluation in design of the nuclear reactors control desks. Moreover, this paper presents a case study: a virtual model of the control desk, developed using virtual reality technology to be used in the human factors requirements evaluation. This case study was developed in the Virtual Reality Laboratory at IEN, and understands the stereo visualization of the Argonauta research nuclear reactor control desk for a static ergonomic evaluation using check-lists, in accordance to the standards and human factors nuclear international guides (IEC 1771, NUREG-0700). (author)

  10. US Army Weapon Systems Human-Computer Interface (WSHCI) style guide, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.

    1996-09-30

    A stated goal of the U.S. Army has been the standardization of the human computer interfaces (HCIS) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of style guides. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4), in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide. This document, the U.S. Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide, represents the first version of that style guide. The purpose of this document is to provide HCI design guidance for RT/NRT Army systems across the weapon systems domains of ground, aviation, missile, and soldier systems. Each domain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their domains.

  11. Design of an interface peptide as new inhibitor of human glucose-6-phosphate dehydrogenase.

    Science.gov (United States)

    Obiol-Pardo, Cristian; Alcarraz-Vizán, Gema; Díaz-Moralli, Santiago; Cascante, Marta; Rubio-Martinez, Jaime

    2014-04-01

    Glucose-6-phosphate dehydrogenase (G6PDH) is an essential enzyme involved in the first reaction of the oxidative branch of the pentose phosphate pathway (PPP). Recently, G6PDH was suggested as a novel target protein for cancer therapy as one of the final products of the PPP, ribose-5-phosphate, is necessary for nucleic acid synthesis and tumor progression. After analyzing the protein-protein interface of the crystal structure of human G6PDH by means of molecular dynamics simulations, we designed six interface peptides based on the natural sequence of the protein. The three most promising peptides, as predicted by binding free energy calculations, were synthesized and one of them was confirmed as a novel inhibitor of human G6PDH in experimental assays. Together, the active peptide found and its suggested binding mode proposes a new strategy for inhibiting this enzyme and should aid the further design of novel, potent and non-peptidic G6PDH inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The science behind One Health: at the interface of humans, animals, and the environment.

    Science.gov (United States)

    Murtaugh, Michael P; Steer, Clifford J; Sreevatsan, Srinand; Patterson, Ned; Kennedy, Shaun; Sriramarao, P

    2017-05-01

    Humans face a grand quality-of-life challenge as growing demands for resources for an ever-expanding population threaten the existence of wildlife populations, degrade land, and pollute air and water. Public investment and policy decisions that will shape future interactions of humans, animals, and the environment need scientific input to help find common ground for durable and sustainable success. The Second International Conference on One Medicine One Science brought together a broad range of scientists, trainees, regulatory authorities, and health experts from 34 countries to inform and discuss the human impacts of air quality; the complexities of water quality, access, and conflicts; the opportunities and uncertainties in precision medicine; and the role of science communication in health policy formulation. Workshops focused on the roles and development of physician-scientists and multidisciplinary teams in complex problem solving, Big Data tools for analysis and visualization, international policy development processes, and health models that benefit animals and humans. Key realizations were that local and regional health challenges at the interface of humans, animals, and the environment are variations of the same overarching conflicts and that international gatherings provide new opportunities for investigation and policy development that are broadly applicable. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  13. Alternative Control Technologies: Human Factors Issues

    Science.gov (United States)

    1998-10-01

    vertical vibration to the 29,4, 1980, pp 462-466. head and shoulders of seated men", Royal Aircraft Lee, J. M.; Chartier , V. L.; Hartmann, D. P.; Lee, G...Suarez, P. F., Rogers , S., K., Ruck, D. W., for Effective Human-Computer Interaction", 2nd edition, Arndt, C., and Kabrisky, M., "A facial feature

  14. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  15. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  16. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  17. Human reproductive technologies and the law: a select committee report.

    Science.gov (United States)

    2005-05-01

    The House of Commons Science & Technology Committee has reviewed the Human Fertilisation and Embryology Act. It considered a) the balance between legislation, regulation and reproductive freedom; b) the role of Parliament in human reproductive technologies; and c) the foundation, adequacy and appropriateness of the ethical framework for legislation. It also considered the Act itself and the workings of the Human Fertilisation and Embryology Authority. Its report is written from a very liberal perspective, but is a very thorough overview of current issues and debate in the field. There follow, slightly abridged, the conclusions and recommendations of the 200-page report.

  18. Corporate sustainability: the environmental design and human resource management interface in healthcare settings.

    Science.gov (United States)

    Sadatsafavi, Hessam; Walewski, John

    2013-01-01

    Purpose of the Paper: The purpose of this study is to provide healthcare organizations with a new perspective for developing strategies to enrich their human resource capabilities and improve their performance outcomes. The focus of this study is on leveraging the synergy between organizational management strategies and environmental design interventions. This paper proposes a framework for linking the built environment with the human resource management system of healthcare organizations. The framework focuses on the impact of the built environment regarding job attitudes and behaviors of healthcare workers. Research from the disciplines of strategic human resource management, resource-based view of firms, evidence-based design, and green building are utilized to develop the framework. The positive influence of human resource practices on job attitudes and behaviors of employees is one mechanism to improve organizational performance outcomes. Organizational psychologists suggest that human resource practices are effective because they convey that the organization values employee contributions and cares about their well-being. Attention to employee socio-emotional needs can be reciprocated with higher levels of motivation and commitment toward the organization. In line with these findings, healthcare environmental studies imply that physical settings and features can have a positive influence on job attitudes and the behavior of caregivers by providing for their physical and socio-emotional needs. Adding the physical environment as a complementary resource to the array of human resource practices creates synergy in improving caregivers' job attitudes and behaviors and enhances the human capital of healthcare firms. Staff, evidence-based design, interdisciplinary, modeling, perceived organizational supportPreferred Citation: Sadatsafavi, H., & Walewski, J. (2013). Corporate sustainability: The environmental design and human resource management interface in

  19. Digital technology and human development: a charter for nature conservation.

    Science.gov (United States)

    Maffey, Georgina; Homans, Hilary; Banks, Ken; Arts, Koen

    2015-11-01

    The application of digital technology in conservation holds much potential for advancing the understanding of, and facilitating interaction with, the natural world. In other sectors, digital technology has long been used to engage communities and share information. Human development-which holds parallels with the nature conservation sector-has seen a proliferation of innovation in technological development. Throughout this Perspective, we consider what nature conservation can learn from the introduction of digital technology in human development. From this, we derive a charter to be used before and throughout project development, in order to help reduce replication and failure of digital innovation in nature conservation projects. We argue that the proposed charter will promote collaboration with the development of digital tools and ensure that nature conservation projects progress appropriately with the development of new digital technologies.

  20. Advanced Human Factors Engineering Tool Technologies.

    Science.gov (United States)

    1987-03-20

    the mail and telephone surveys. The authors would also like to extend a special thanks to Mr. David Rose of the Naval Air Development Center for his...ADVANCED NUNAN FACTORS ENGINEERING TOOL TECHNOLOGIES 3/3 (U) CARLON ASSOCIATES INC FAIRFAX Yff S A FLEGER ET AL. UNCLRS 20 NAR B? DARI5-BS-C-NO64 WIL...34" ".--: :’-...2,,. ,..:,.- ,’-"-’:"- "’-::"-,2 ., ..,," ,.- ..’.-.-.’.-,-. : .....v. _ *’--..., ...-- ,,. - -.; , :¢ 4., 5 5 lPeter laines Mr. David M. Ilarrah

  1. FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human-Animal Interface.

    Science.gov (United States)

    Anderson, Tara; Capua, Ilaria; Dauphin, Gwenaëlle; Donis, Ruben; Fouchier, Ron; Mumford, Elizabeth; Peiris, Malik; Swayne, David; Thiermann, Alex

    2010-05-01

    For the past 10 years, animal health experts and human health experts have been gaining experience in the technical aspects of avian influenza in mostly separate fora. More recently, in 2006, in a meeting of the small WHO Working Group on Influenza Research at the Human Animal Interface (Meeting report available from: http://www.who.int/csr/resources/publications/influenza/WHO_CDS_EPR_GIP_2006_3/en/index.html) in Geneva allowed influenza experts from the animal and public health sectors to discuss together the most recent avian influenza research. Ad hoc bilateral discussions on specific technical issues as well as formal meetings such as the Technical Meeting on HPAI and Human H5N1 Infection (Rome, June, 2007; information available from: http://www.fao.org/avianflu/en/conferences/june2007/index.html) have increasingly brought the sectors together and broadened the understanding of the topics of concern to each sector. The sectors have also recently come together at the broad global level, and have developed a joint strategy document for working together on zoonotic diseases (Joint strategy available from: ftp://ftp.fao.org/docrep/fao/011/ajl37e/ajl37e00.pdf). The 2008 FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human Animal Interface described here was the first opportunity for a large group of influenza experts from the animal and public health sectors to gather and discuss purely technical topics of joint interest that exist at the human-animal interface. During the consultation, three influenza-specific sessions aimed to (1) identify virological characteristics of avian influenza viruses (AIVs) important for zoonotic and pandemic disease, (2) evaluate the factors affecting evolution and emergence of a pandemic influenza strain and identify existing monitoring systems, and (3) identify modes of transmission and exposure sources for human zoonotic influenza infection (including discussion of specific exposure risks by affected countries). A

  2. Critical Technology Determination for Future Human Space Flight

    Science.gov (United States)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; Alfano, David D.; Kundrot, Craig E.; Davison, Stephen C.; Balint, Tibor S.

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  3. Welborix, a Novel Approach Towards User-Interface Technology in Well-Performance Simulation WELBORIX, une approche originale de l'interface utilisateur en simulation de tests de puits

    Directory of Open Access Journals (Sweden)

    Overboom G. R.

    2006-11-01

    -orientation, an excellent paradigm to support the flexibility such a system demands, was embraced during the design of the interface. Because a generic approach was followed, production-technology systems should benefit from the general-purpose user-interface components that were developed to represent objects relevant to the application domain. For efficiency reasons, WELBORIX was originally developed on a SUN/UNIX workstation using COMMON LISP (with object-oriented extensions and X-Windows. However, because it has demonstrated the excellent potential offered by knowledge-engineering techniques in combination with object orientation in the area of human-computer interfaces, it is currently being made operational using C++ and OSF/Motif. Shell Research a mis au point un outil intégré de simulation de performance de puits qui est largement employé au sein du Groupe Shell. Ses utilisateurs ne profitent cependant pas de toutes ses fonctionnalités avancées en raison de la difficulté qu'il y a à lui fournir certaines données. C'est pour remédier à cet inconvénient que le projet WELBORIX a été lancé : il s'agit de réaliser une interface homme-machine auto-adaptative pour un simulateur de puits. Le but principal de WELBORIX, maquette de recherche, était cependant d'identifier les besoins génériques d'un système conçu pour simplifier les interactions complexes entre l'utilisateur et la machine. Lorsqu'un utilisateur expérimenté du simulateur modélise un problème, il (ou elle s'appuie sur un vaste corpus de connaissance. La mise en oeuvre de techniques d'ingénierie de la connaissance, en se chargeant de gérer la complexité des données d'entrée, permet à un utilisateur moins expérimenté de travailler avec le simulateur. Une base de connaissance contient la description de la préparation d'un jeu de paramètres d'entrée, et un moteur d'inférence fonctionnant en chaînage arrière contrôle le processus d'interaction homme-machine. De plus, les faits

  4. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    Science.gov (United States)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near

  5. Human factors approach to evaluate the user interface of physiologic monitoring.

    Science.gov (United States)

    Fidler, Richard; Bond, Raymond; Finlay, Dewar; Guldenring, Daniel; Gallagher, Anthony; Pelter, Michele; Drew, Barbara; Hu, Xiao

    2015-01-01

    As technology infiltrates more of our personal and professional lives, user expectations for intuitive design have driven many consumer products, while medical equipment continues to have high training requirements. Not much is known about the usability and user experience associated with hospital monitoring equipment. This pilot project aimed to better understand and describe the user interface interaction and user experience with physiologic monitoring technology. This was a prospective, descriptive, mixed-methods quality improvement project to analyze perceptions and task analyses of physiologic monitors. Following a survey of practice patterns and perceived abilities to accomplish key tasks, 10 voluntary experienced physician and nurse subjects were asked to perform a series of tasks in 7 domains of monitor operations on GE Monitoring equipment in a single institution. For each task analysis, data were collected on time to complete the task, the number of button pushes or clicks required to accomplish the task, economy of motion, and observed errors. Although 60% of the participants reported incorporating monitoring data into patient care, 80% of participants preferred to receive monitoring data at the point of care (bedside). Average perceived central station usability is 5.3 out of 10 (ten is easiest). High variability exists in monitoring station interaction performance among those participating in this project. Alarms were almost universally silenced without cognitive recognition of the alarm state. Education related to monitoring operations appeared largely absent in this sample. Most users perceived the interface to not be intuitive, complaining of multiple layers and steps for data retrieval. These clinicians report real-time monitoring helpful for abrupt changes in condition like arrhythmias; however, reviewing alarms is not prioritized as valuable due to frequent false alarms. Participants requested exporting monitoring data to electronic medical

  6. Systems Factorial Technology Explained to Humans

    Directory of Open Access Journals (Sweden)

    Harding, Bradley

    2016-01-01

    Full Text Available The study of mental processes is at the forefront of research in cognitive psychology. However, the ability to identify the architectures responsible for specific behaviors is often quite difficult. To alleviate this difficulty, recent progress in mathematical psychology has brought forth Systems Factorial Technology (SFT; Townsend & Nozawa, 1995. Encompassing a series of analyses, SFT can diagnose and discriminate between five types of information processing architectures that possibly underlie a mental process. Despite the fact that SFT has led to new discoveries in cognitive psychology, the methodology itself remains far from intuitive to newcomers. This article therefore seeks to provide readers with a simple tutorial and a rudimentary introduction to SFT. This tutorial aims to encourage newcomers to read more about SFT and also to add it to their repertoire of analyses.

  7. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    Science.gov (United States)

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  8. Investigation on the design of human-system interface for advanced nuclear plant control room

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C. F.; Chou, H. P. [Dept. of Engineering and System Science, National Tsing Hua Univ., Hsinchu Taiwan (China)

    2006-07-01

    The Lungmen Nuclear Power Project (LMNPP), under construction in Taiwan, consists of two GE Advanced Boiling Water Reactor (ABWR) units, each with 1350 MW electrical output. Major Human-System Interfaces (HSIs) of LMNPP are different from traditional ones. Video display units (VDUs) are the main human-system interface for operators to manipulate and to know the status of the equipment and plant information. Based upon NUREG-0711, the applicable human factors engineering (HFE) guideline in the design of HSIs has been adopted. An important aspect of the Lungmen HFE program has been the direct involvement of the end user, Taiwan Power Company (TPC), throughout the design development and implementation to ensure not only that the process for the design is compliant with the HFE principles, but also that the necessary displays, control, and alarms are provided to support the identified personnel tasks. This paper reviews the applicable HFE principles and verification and validation (V and V) processes in the design of HSIs for the advanced LMNPP. This paper also presents three investigated topics of the LMNPP HSI design development and implementation process. From the perspective of licensing concern and experience feedback, the focus of this paper is on the topics of validation with simulator, alarm auto reset, and VDU operational configuration strategy. The objectives of investigating the latter topic were to ensure the VDU operational configuration strategy, after appropriate V and V, achieves its goals of reinforcing operation discipline and distributing operator crew task assignments and workload during typical operations, and to confirm the need for an intensive training program that addresses the knowledge and skill requirements of the operators to meet the task characteristics and the responses of the plant processes. The results to date and implications for going forward from this process are also presented. (authors)

  9. Calcium-dependent Dimerization of Human Soluble Calcium Activated Nucleotidase: Characterization of the Dimer Interface

    Energy Technology Data Exchange (ETDEWEB)

    Yang,M.; Horii, K.; Herr, A.; Kirley, T.

    2006-01-01

    Mammals express a protein homologous to soluble nucleotidases used by blood-sucking insects to inhibit host blood clotting. These vertebrate nucleotidases may play a role in protein glycosylation. The activity of this enzyme family is strictly dependent on calcium, which induces a conformational change in the secreted, soluble human nucleotidase. The crystal structure of this human enzyme was recently solved; however, the mechanism of calcium activation and the basis for the calcium-induced changes remain unclear. In this study, using analytical ultracentrifugation and chemical cross-linking, we show that calcium or strontium induce noncovalent dimerization of the soluble human enzyme. The location and nature of the dimer interface was elucidated using a combination of site-directed mutagenesis and chemical cross-linking, coupled with crystallographic analyses. Replacement of Ile{sup 170}, Ser{sup 172}, and Ser{sup 226} with cysteine residues resulted in calcium-dependent, sulfhydryl-specific intermolecular cross-linking, which was not observed after cysteine introduction at other surface locations. Analysis of a super-active mutant, E130Y, revealed that this mutant dimerized more readily than the wild-type enzyme. The crystal structure of the E130Y mutant revealed that the mutated residue is found in the dimer interface. In addition, expression of the full-length nucleotidase revealed that this membrane-bound form can also dimerize and that these dimers are stabilized by spontaneous oxidative cross-linking of Cys{sup 30}, located between the single transmembrane helix and the start of the soluble sequence. Thus, calcium-mediated dimerization may also represent a mechanism for regulation of the activity of this nucleotidase in the physiological setting of the endoplasmic reticulum or Golgi.

  10. Attuning speech-enabled interfaces to user and context for inclusive design: Technology, methodology and practice

    NARCIS (Netherlands)

    Neerincx, M.A.; Cremers, A.H.M.; Kessens, J.M.; Leeuwen, D.A. van; Truong, K.P.

    2009-01-01

    This paper presents a methodology to apply speech technology for compensating sensory, motor, cognitive and affective usage difficulties. It distinguishes (1) an analysis of accessibility and technological issues for the identification of context-dependent user needs and corresponding opportunities

  11. Attuning speech-enabled interfaces to user and context for inclusive design: Technology, methodology and practice

    NARCIS (Netherlands)

    Neerincx, M.A.; Cremers, A.H.M.; Kessens, J.M.; Leeuwen, D.A. van; Truong, K.P.

    2009-01-01

    This paper presents a methodology to apply speech technology for compensating sensory, motor, cognitive and affective usage difficulties. It distinguishes (1) an analysis of accessibility and technological issues for the identification of context-dependent user needs and corresponding opportunities

  12. Interfacing internet of things technologies of RFID, XMPP and Twitter to reduce inaccuracies in inventory management

    CSIR Research Space (South Africa)

    Mathaba, S

    2012-05-01

    Full Text Available such group of technologies is the internet of things (IoT). This research develops an architecture that uses IOT technologies as enablers for detecting expired products, counterfeit products, stock levels and misplaced products for inventory management...

  13. Personalized keystroke dynamics for self-powered human--machine interfacing.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin

    2015-01-27

    The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.

  14. A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Li

    Full Text Available Aberrant interactions between the host and the intestinal bacteria are thought to contribute to the pathogenesis of many digestive diseases. However, studying the complex ecosystem at the human mucosal-luminal interface (MLI is challenging and requires an integrative systems biology approach. Therefore, we developed a novel method integrating lavage sampling of the human mucosal surface, high-throughput proteomics, and a unique suite of bioinformatic and statistical analyses. Shotgun proteomic analysis of secreted proteins recovered from the MLI confirmed the presence of both human and bacterial components. To profile the MLI metaproteome, we collected 205 mucosal lavage samples from 38 healthy subjects, and subjected them to high-throughput proteomics. The spectral data were subjected to a rigorous data processing pipeline to optimize suitability for quantitation and analysis, and then were evaluated using a set of biostatistical tools. Compared to the mucosal transcriptome, the MLI metaproteome was enriched for extracellular proteins involved in response to stimulus and immune system processes. Analysis of the metaproteome revealed significant individual-related as well as anatomic region-related (biogeographic features. Quantitative shotgun proteomics established the identity and confirmed the biogeographic association of 49 proteins (including 3 functional protein networks demarcating the proximal and distal colon. This robust and integrated proteomic approach is thus effective for identifying functional features of the human mucosal ecosystem, and a fresh understanding of the basic biology and disease processes at the MLI.

  15. Functional Mobility Testing: A Novel Method to Establish Human System Interface Design Requirements

    Science.gov (United States)

    England, Scott A.; Benson, Elizabeth A.; Rajulu, Sudhakar

    2008-01-01

    Across all fields of human-system interface design it is vital to posses a sound methodology dictating the constraints on the system based on the capabilities of the human user. These limitations may be based on strength, mobility, dexterity, cognitive ability, etc. and combinations thereof. Data collected in an isolated environment to determine, for example, maximal strength or maximal range of motion would indeed be adequate for establishing not-to-exceed type design limitations, however these restraints on the system may be excessive over what is basally needed. Resources may potentially be saved by having a technique to determine the minimum measurements a system must accommodate. This paper specifically deals with the creation of a novel methodology for establishing mobility requirements for a new generation of space suit design concepts. Historically, the Space Shuttle and the International Space Station vehicle and space hardware design requirements documents such as the Man-Systems Integration Standards and International Space Station Flight Crew Integration Standard explicitly stated that the designers should strive to provide the maximum joint range of motion capabilities exhibited by a minimally clothed human subject. In the course of developing the Human-Systems Integration Requirements (HSIR) for the new space exploration initiative (Constellation), an effort was made to redefine the mobility requirements in the interest of safety and cost. Systems designed for manned space exploration can receive compounded gains from simplified designs that are both initially less expensive to produce and lighter, thereby, cheaper to launch.

  16. Impact of familiarity on information complexity in human-computer interfaces

    Directory of Open Access Journals (Sweden)

    Bakaev Maxim

    2016-01-01

    Full Text Available A quantitative measure of information complexity remains very much desirable in HCI field, since it may aid in optimization of user interfaces, especially in human-computer systems for controlling complex objects. Our paper is dedicated to exploration of subjective (subject-depended aspect of the complexity, conceptualized as information familiarity. Although research of familiarity in human cognition and behaviour is done in several fields, the accepted models in HCI, such as Human Processor or Hick-Hyman’s law do not generally consider this issue. In our experimental study the subjects performed search and selection of digits and letters, whose familiarity was conceptualized as frequency of occurrence in numbers and texts. The analysis showed significant effect of information familiarity on selection time and throughput in regression models, although the R2 values were somehow low. Still, we hope that our results might aid in quantification of information complexity and its further application for optimizing interaction in human-machine systems.

  17. Toward best practice in Human Machine Interface design for older drivers: A review of current design guidelines.

    Science.gov (United States)

    Young, K L; Koppel, S; Charlton, J L

    2017-09-01

    Older adults are the fastest growing segment of the driving population. While there is a strong emphasis for older people to maintain their mobility, the safety of older drivers is a serious community concern. Frailty and declines in a range of age-related sensory, cognitive, and physical impairments can place older drivers at an increased risk of crash-related injuries and death. A number of studies have indicated that in-vehicle technologies such as Advanced Driver Assistance Systems (ADAS) and In-Vehicle Information Systems (IVIS) may provide assistance to older drivers. However, these technologies will only benefit older drivers if their design is congruent with the complex needs and diverse abilities of this driving cohort. The design of ADAS and IVIS is largely informed by automotive Human Machine Interface (HMI) guidelines. However, it is unclear to what extent the declining sensory, cognitive and physical capabilities of older drivers are addressed in the current guidelines. This paper provides a review of key current design guidelines for IVIS and ADAS with respect to the extent they address age-related changes in functional capacities. The review revealed that most of the HMI guidelines do not address design issues related to older driver impairments. In fact, in many guidelines driver age and sensory cognitive and physical impairments are not mentioned at all and where reference is made, it is typically very broad. Prescriptive advice on how to actually design a system so that it addresses the needs and limitations of older drivers is not provided. In order for older drivers to reap the full benefits that in-vehicle technology can afford, it is critical that further work establish how older driver limitations and capabilities can be supported by the system design process, including their inclusion into HMI design guidelines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Technology Investment Agendas to Expand Human Space Futures

    Science.gov (United States)

    Sherwood, Brent

    2012-01-01

    The paper develops four alternative core-technology advancement specifications, one for each of the four strategic goal options for government investment in human space flight. Already discussed in the literature, these are: Explore Mars; Settle the Moon; accelerate commercial development of Space Passenger Travel; and enable industrial scale-up of Space Solar Power for Earth. In the case of the Explore Mars goal, the paper starts with the contemporary NASA accounting of ?55 Mars-enabling technologies. The analysis decomposes that technology agenda into technologies applicable only to the Explore Mars goal, versus those applicable more broadly to the other three options. Salient technology needs of all four options are then elaborated to a comparable level of detail. The comparison differentiates how technologies or major developments that may seem the same at the level of budget lines or headlines (e.g., heavy-lift Earth launch) would in fact diverge widely if developed in the service of one or another of the HSF goals. The paper concludes that the explicit choice of human space flight goal matters greatly; an expensive portfolio of challenging technologies would not only enable a particular option, it would foreclose the others. Technologies essential to enable human exploration of Mars cannot prepare interchangeably for alternative futures; they would not allow us to choose later to Settle the Moon, unleash robust growth of Space Passenger Travel industries, or help the transition to a post-petroleum future with Space Solar Power for Earth. The paper concludes that a decades-long decision in the U.S.--whether made consciously or by default--to focus technology investment toward achieving human exploration of Mars someday would effectively preclude the alternative goals in our lifetime.

  19. An operator interface design for a telerobotic inspection system

    Science.gov (United States)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  20. The Structural Interface between HIV-1 Vif and Human APOBEC3H.

    Science.gov (United States)

    Ooms, Marcel; Letko, Michael; Simon, Viviana

    2017-03-01

    Human APOBEC3H (A3H) is a cytidine deaminase that inhibits HIV-1 replication. To evade this restriction, the HIV-1 Vif protein binds A3H and mediates its proteasomal degradation. To date, little information on the Vif-A3H interface has been available. To decipher how both proteins interact, we first mapped the Vif-binding site on A3H by functionally testing a large set of A3H mutants in single-cycle infectivity and replication assays. Our data show that the two A3H α-helixes α3 and α4 represent the Vif-binding site of A3H. We next used viral adaptation and a set of Vif mutants to identify novel, reciprocal Vif variants that rescued viral infectivity in the presence of two Vif-resistant A3H mutants. These A3H-Vif interaction points were used to generate the first A3H-Vif structure model, which revealed that the A3H helixes α3 and α4 interact with the Vif β-sheet (β2-β5). This model is in good agreement with previously reported Vif and A3H amino acids important for interaction. Based on the predicted A3H-Vif interface, we tested additional points of contact, which validated our model. Moreover, these experiments showed that the A3H and A3G binding sites on HIV-1 Vif are largely distinct, with both host proteins interacting with Vif β-strand 2. Taken together, this virus-host interface model explains previously reported data and will help to identify novel drug targets to combat HIV-1 infection.IMPORTANCE HIV-1 needs to overcome several intracellular restriction factors in order to replicate efficiently. The human APOBEC3 locus encodes seven proteins, of which A3D, A3F, A3G, and A3H restrict HIV-1. HIV encodes the Vif protein, which binds to the APOBEC3 proteins and leads to their proteasomal degradation. No HIV-1 Vif-APOBEC3 costructure exists to date despite extensive research. We and others previously generated HIV-1 Vif costructure models with A3G and A3F by mapping specific contact points between both proteins. Here, we applied a similar approach to HIV

  1. 直接脑控机器人接口技术%Direct Brain-controlled Robot Interface Technology

    Institute of Scientific and Technical Information of China (English)

    伏云发; 王越超; 李洪谊; 徐保磊; 李永程

    2012-01-01

    直接脑控机器人接口(Brain-controlled robot interface,BCRI)是一种新型的人-机器人接口技术,是脑-机器接口/脑-计算机接口 (Brain-machine interface,BMI/Brain-computer interface,BCI)在机器人控制领域的重要应用和研究方向.研究者相继在Nature、Science和其他重要国际期刊上报道了相关的实验研究和开发,目前已成为国际前沿研究热点.本文主要围绕BCRI中的控制策略、BMI/BCI模块与机器人多层控制模块的适应和融合、BCRI中的脑信号自适应分类算法以及人、BMI/BCI模块和机器人控制系统的三边自适应展开论述,分析了目前的研究情况、存在的局限和面临的若干重要问题,指出进一步的研究思路和方向.%Direct brain-controlled robot interface (BCRI) is a new type human-robot interface which is an important research and development direction for brain-machine interface (BMI) / brain-computer interface (BCI) in the robot control field. Many experimental researches and developments for BCRI were reported by Nature, Science and other important international journals and it has become an international frontier research hotspot. The paper mainly discussed the control strategies for BCRI, the adaptation and fusion between BMI/BCI module and robot multilayer control architecture module, the adaptive classification algorithms for brain signal used in BCRI and the trilateral adaptation among human, BMI/BCI module and robot control system. The current situation and limitation for BCRI and some important problems faced by BCRI were analyzed and the further research ideas and directions were also pointed out.

  2. Leptospirosis in Rio Grande do Sul, Brazil: An Ecosystem Approach in the Animal-Human Interface

    Science.gov (United States)

    Schneider, Maria Cristina; Najera, Patricia; Pereira, Martha M.; Machado, Gustavo; dos Anjos, Celso B.; Rodrigues, Rogério O.; Cavagni, Gabriela M.; Muñoz-Zanzi, Claudia; Corbellini, Luis G.; Leone, Mariana; Buss, Daniel F.; Aldighieri, Sylvain; Espinal, Marcos A.

    2015-01-01

    Background Leptospirosis is an epidemic-prone neglected disease that affects humans and animals, mostly in vulnerable populations. The One Health approach is a recommended strategy to identify drivers of the disease and plan for its prevention and control. In that context, the aim of this study was to analyze the distribution of human cases of leptospirosis in the State of Rio Grande do Sul, Brazil, and to explore possible drivers. Additionally, it sought to provide further evidence to support interventions and to identify hypotheses for new research at the human-animal-ecosystem interface. Methodology and findings The risk for human infection was described in relation to environmental, socioeconomic, and livestock variables. This ecological study used aggregated data by municipality (all 496). Data were extracted from secondary, publicly available sources. Thematic maps were constructed and univariate analysis performed for all variables. Negative binomial regression was used for multivariable statistical analysis of leptospirosis cases. An annual average of 428 human cases of leptospirosis was reported in the state from 2008 to 2012. The cumulative incidence in rural populations was eight times higher than in urban populations. Variables significantly associated with leptospirosis cases in the final model were: Parana/Paraiba ecoregion (RR: 2.25; CI95%: 2.03–2.49); Neossolo Litolítico soil (RR: 1.93; CI95%: 1.26–2.96); and, to a lesser extent, the production of tobacco (RR: 1.10; CI95%: 1.09–1.11) and rice (RR: 1.003; CI95%: 1.002–1.04). Conclusion Urban cases were concentrated in the capital and rural cases in a specific ecoregion. The major drivers identified in this study were related to environmental and production processes that are permanent features of the state. This study contributes to the basic knowledge on leptospirosis distribution and drivers in the state and encourages a comprehensive approach to address the disease in the animal-human

  3. Human-machine interfaces based on EMG and EEG applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Sarcinelli-Filho Mario

    2008-03-01

    Full Text Available Abstract Background Two different Human-Machine Interfaces (HMIs were developed, both based on electro-biological signals. One is based on the EMG signal and the other is based on the EEG signal. Two major features of such interfaces are their relatively simple data acquisition and processing systems, which need just a few hardware and software resources, so that they are, computationally and financially speaking, low cost solutions. Both interfaces were applied to robotic systems, and their performances are analyzed here. The EMG-based HMI was tested in a mobile robot, while the EEG-based HMI was tested in a mobile robot and a robotic manipulator as well. Results Experiments using the EMG-based HMI were carried out by eight individuals, who were asked to accomplish ten eye blinks with each eye, in order to test the eye blink detection algorithm. An average rightness rate of about 95% reached by individuals with the ability to blink both eyes allowed to conclude that the system could be used to command devices. Experiments with EEG consisted of inviting 25 people (some of them had suffered cases of meningitis and epilepsy to test the system. All of them managed to deal with the HMI in only one training session. Most of them learnt how to use such HMI in less than 15 minutes. The minimum and maximum training times observed were 3 and 50 minutes, respectively. Conclusion Such works are the initial parts of a system to help people with neuromotor diseases, including those with severe dysfunctions. The next steps are to convert a commercial wheelchair in an autonomous mobile vehicle; to implement the HMI onboard the autonomous wheelchair thus obtained to assist people with motor diseases, and to explore the potentiality of EEG signals, making the EEG-based HMI more robust and faster, aiming at using it to help individuals with severe motor dysfunctions.

  4. Culturing of Human Nasal Epithelial Cells at the Air Liquid Interface

    Science.gov (United States)

    Müller, Loretta; Brighton, Luisa E.; Carson, Johnny L.; Fischer, William A.; Jaspers, Ilona

    2013-01-01

    In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial

  5. Culturing of human nasal epithelial cells at the air liquid interface.

    Science.gov (United States)

    Müller, Loretta; Brighton, Luisa E; Carson, Johnny L; Fischer, William A; Jaspers, Ilona

    2013-10-08

    In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial

  6. Interface Realisms

    DEFF Research Database (Denmark)

    Pold, Søren

    2005-01-01

    This article argues for seeing the interface as an important representational and aesthetic form with implications for postmodern culture and digital aesthetics. The interface emphasizes realism due in part to the desire for transparency in Human-Computer Interaction (HCI) and partly to the devel...

  7. Guidance from the Graphical User Interface (GUI) Experience: What GUI Teaches about Technology Access.

    Science.gov (United States)

    National Council on Disability, Washington, DC.

    This report investigates the use of the graphical user interface (GUI) in computer programs, the problems it creates for individuals with visual impairments or blindness, and advocacy efforts concerning this issue, which have been targeted primarily at Microsoft, producer of Windows. The report highlights the concerns of individuals with visual…

  8. Being human in a technological age : A study of the impacts of smart technology usage

    OpenAIRE

    Brulin, Sara

    2013-01-01

    Today humans are using a large amount of smart technology to support their daily activities, for instance smartphones, tablets and computers. The relationship towards technology is changing, and with the change comes questions. In this thesis a qualitative interview study was used to deepen the understanding of humans’ daily use of technology and its impacts on their daily life. The study has shown that humans’ technology usage has both positive and negative impacts on their daily life. For i...

  9. Identification of the HIV-1 Vif and Human APOBEC3G Protein Interface.

    Science.gov (United States)

    Letko, Michael; Booiman, Thijs; Kootstra, Neeltje; Simon, Viviana; Ooms, Marcel

    2015-12-01

    Human cells express natural antiviral proteins, such as APOBEC3G (A3G), that potently restrict HIV replication. As a counter-defense, HIV encodes the accessory protein Vif, which binds A3G and mediates its proteasomal degradation. Our structural knowledge on how Vif and A3G interact is limited, because a co-structure is not available. We identified specific points of contact between Vif and A3G by using functional assays with full-length A3G, patient-derived Vif variants, and HIV forced evolution. These anchor points were used to model and validate the Vif-A3G interface. The resultant co-structure model shows that the negatively charged β4-α4 A3G loop, which contains primate-specific variation, is the core Vif binding site and forms extensive interactions with a positively charged pocket in HIV Vif. Our data present a functional map of this viral-host interface and open avenues for targeted approaches to block HIV replication by obstructing the Vif-A3G interaction.

  10. Human-machine interface based on muscular and brain signals applied to a robotic wheelchair

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, A; Silva, R L; Celeste, W C; Filho, T F Bastos; Filho, M Sarcinelli [Electrical Engineering Department, Federal University of Espirito Santo (UFES), Av. Fernando Ferrari, 514, Vitoria, 29075-910 (Brazil)

    2007-11-15

    This paper presents a Human-Machine Interface (HMI) based on the signals generated by eye blinks or brain activity. The system structure and the signal acquisition and processing are shown. The signals used in this work are either the signal associated to the muscular movement corresponding to an eye blink or the brain signal corresponding to visual information processing. The variance is the feature extracted from such signals in order to detect the intention of the user. The classification is performed by a variance threshold which is experimentally determined for each user during the training stage. The command options, which are going to be sent to the commanded device, are presented to the user in the screen of a PDA (Personal Digital Assistant). In the experiments here reported, a robotic wheelchair is used as the device being commanded.

  11. The Ozone Widget Framework: towards modularity of C2 human interfaces

    Science.gov (United States)

    Hellar, David Benjamin; Vega, Laurian C.

    2012-05-01

    The Ozone Widget Framework (OWF) is a common webtop environment for distribution across the enterprise. A key mission driver for OWF is to enable rapid capability delivery by lowering time-to-market with lightweight components. OWF has been released as Government Open Source Software and has been deployed in a variety of C2 net-centric contexts ranging from real-time analytics, cyber-situational awareness, to strategic and operational planning. This paper discusses the current and future evolution of OWF including the availability of the OZONE Marketplace (OMP), useractivity driven metrics, and architecture enhancements for accessibility. Together, OWF is moving towards the rapid delivery of modular human interfaces supporting modern and future command and control contexts.

  12. Dissecting the interface between signaling and transcriptional regulation in human B cells

    DEFF Research Database (Denmark)

    Wang, Kai; Alvarez, Mariano J; Bisikirska, Brygida C

    2009-01-01

    A key role of signal transduction pathways is to control transcriptional programs in the nucleus as a function of signals received by the cell via complex post-translational modification cascades. This determines cell-context specific responses to environmental stimuli. Given the difficulty...... of quantitating protein concentration and post-translational modifications, signaling pathway studies are still for the most part conducted one interaction at the time. Thus, genome-wide, cell-context specific dissection of signaling pathways is still an open challenge in molecular systems biology....... In this manuscript we extend the MINDy algorithm for the identification of posttranslational modulators of transcription factor activity, to produce a first genome-wide map of the interface between signaling and transcriptional regulatory programs in human B cells. We show that the serine-threonine kinase STK38...

  13. Nuclear power plant human computer interface design incorporating console simulation, operations personnel, and formal evaluation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, C.; Edwards, R.M.; Goldberg, J.H.

    1993-12-31

    New CRT-based information displays which enhance the human machine interface are playing a very important role and are being increasingly used in control rooms since they present a higher degree of flexibility compared to conventional hardwired instrumentation. To prototype a new console configuration and information display system at the Experimental Breeder Reactor II (EBR-II), an iterative process of console simulation and evaluation involving operations personnel is being pursued. Entire panels including selector switches and information displays are simulated and driven by plant dynamical simulations with realistic responses that reproduce the actual cognitive and physical environment. Careful analysis and formal evaluation of operator interaction while using the simulated console will be conducted to determine underlying principles for effective control console design for this particular group of operation personnel. Additional iterations of design, simulation, and evaluation will then be conducted as necessary.

  14. Advanced design technique of human-machine interfaces for PLC control of complex systems

    Directory of Open Access Journals (Sweden)

    Árpád-István Sütő

    2008-05-01

    Full Text Available Touchscreen operator panels proved to be a convenient succesor for clasical operator panels for implementing human-machine interfaces (HMIs in programmable logic controllers (PLC systems. The paper introduces a new technique for HMIs design in such systems, based on the idea of touchscreens replication. This redundancy allow actions which are not possible within the menus and sub-menus of a single touchscreen. Its strenght is revealed especially in complex systems, where operators can easily be overwhelmed by the huge amount of process information. The technique was applied on a mill tube rolling installation. The results also proved an increase of system security and zero downtime for HMI maintenance activities.

  15. On Combining Language Models to Improve a Text-based Human-machine Interface

    Directory of Open Access Journals (Sweden)

    Daniel Cruz Cavalieri

    2015-12-01

    Full Text Available This paper concentrates on improving a text-based human-machine interface integrated into a robotic wheelchair. Since word prediction is one of the most common methods used in such systems, the goal of this work is to improve the results using this specific module. For this, an exponential interpolation language model (LM is considered. First, a model based on partial differential equations is proposed; with the appropriate initial conditions, we are able to design a interpolation language model that merges a word-based n-gram language model and a part-of-speech-based language model. Improvements in keystroke saving (KSS and perplexity (PP over the word-based ngram language model and two other traditional interpolation models are obtained, considering two different task domains and three different languages. The proposed interpolation model also provides additional improvements over the hit rate (HR parameter.

  16. On the role of individual human abilities in the design of adaptive user interfaces for scientific problem solving environments

    NARCIS (Netherlands)

    Zudilova-Seinstra, E.V.

    2007-01-01

    A scientific problem solving environment should be built in such a way that users (scientists) might exploit underlying technologies without a specialised knowledge about available tools and resources. An adaptive user interface can be considered as an opportunity in addressing this challenge. This

  17. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    Science.gov (United States)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  18. Dynamic management of multi-channel interfaces for human interactions with computer-based intelligent assistants

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, T.D. Jr.

    1989-01-01

    For complex man-machine tasks where multi-media interaction with computer-based assistants is appropriate, a portion of the assistant's intelligence must be devoted to managing its communication processes with the user. Since people often serve the role of assistants, the conventions of human communication provide a basis for designing the communication processes of the computer-based assistant. Human decision making for communication requires knowledge of the user's style, the task demands, and communication practices, and knowledge of the current situation. Decisions necessary for effective communication, when, how, and what to communicate, can be expressed using these knowledge sources. A system based on human communication rules was developed to manage the communication decisions of an intelligent assistant. The Dynamic Communication Management (DCM) system consists of four components, three models and a manager. The model of the user describes the user's communication preferences for different task situations. The model of the task is used to establish the user's current activity and to describe how communication should be conducted for this activity. The communication model provides the rules needed to make decisions: when to communicate the message, how to present the message to the user, and what information should be communicated. The Communication Manager controls and coordinates these models to conduct all communication with the user. Performance with DCM as the interface to a simulated Flexible Manufacturing System (FMS) control task was established to learn about the potential benefits of the concept.

  19. U.S. Army weapon systems human-computer interface style guide. Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.; Donohoo, D.T.

    1997-12-31

    A stated goal of the US Army has been the standardization of the human computer interfaces (HCIs) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of HCI design guidance documents. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4), in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA), now termed the Joint Technical Architecture-Army (JTA-A). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide, which resulted in the US Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide Version 1. Based on feedback from the user community, DISC4 further tasked PNNL to revise Version 1 and publish Version 2. The intent was to update some of the research and incorporate some enhancements. This document provides that revision. The purpose of this document is to provide HCI design guidance for the RT/NRT Army system domain across the weapon systems subdomains of ground, aviation, missile, and soldier systems. Each subdomain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their subdomains.

  20. On the applicability of brain reading for predictive human-machine interfaces in robotics.

    Directory of Open Access Journals (Sweden)

    Elsa Andrea Kirchner

    Full Text Available The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR, a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors.

  1. The interface between bioethics and cultural diversity under the Universal Declaration on Bioethics and Human Rights.

    Science.gov (United States)

    Lo, Chang-fa

    2008-06-01

    The Universal Declaration on Bioethics and Human Rights has made clear its aims to provide a universal framework of principles and procedures to guide States in the formulation of their legislation, policies or other instruments in the field ofbioethics and also to guide the actions of individuals, groups, communities, institutions and corporations so as to promote appreciation for human dignity and to protect human rights. It also sets up 15 principles to be applied. One of the principles in the Declaration is about the recognition of cultural diversity as an important element of bioethics. Thus it is clear that bioethics has its relativeness and is susceptible to different cultures. However, in order not to have the bioethics principles being defeated because of the cultural factor, the Declaration set forth conditions to limit the application of the cultural diversity element. This approach is called "qualified absoluteness" by the author. The paper discusses these conditions and the problems arising from their applications. Basically, there is a clear line drawn to limit the application of cultural diversity in setting up and in applying bioethical rules. The line drawn is based on the concept of human rights, the principles and concepts of which have not only been set forth in the Human Rights Convention, but have also been prescribed in other provisions in the Declaration. From conceptual viewpoint, the Declaration has listed a number of soft-law rules, which in turn also provide authorization for the government or private or public groups to take cultural diversity into account. Although the rules set forth in most of the parts in the Declaration are of soft but absolute mandates in nature, the requirement of paying due regard to cultural diversity is in fact providing governments as well as groups a possibility to enact or apply their bioethical rules to reflect their cultural uniqueness. The term "qualified absoluteness" is used in this paper to reflect

  2. [How to integrate humanization and technology in nursing training].

    Science.gov (United States)

    Meyer, Dagmar Estermann

    2002-01-01

    This paper discusses the current incorporation of the subject of humanization of care in the current context of Brazilian nursing. The relation between nursing and technology is approached, in this study, from a historical perspective. The study also develops the proposition of "human re-signification", having as reference the concept of Cyborg, considering the way this concept has been employed in the contemporary cultural and feminist theoretical framework.

  3. HEIDEGGER’S HUMAN DIMENSION UNDERSTANDING OF TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Uliana R. Vynnyk

    2013-12-01

    Full Text Available The aim of the research is to identify M. Heidegger's human dimension approach to the issue of technology .It is achieved by means of applying methods of analysis and synthesis in relation to philosopher’s philosophical and technical ideas. Scientific novelty. Philosopher’s important human dimension trends concerning technology are outlined in the research and are manifested in the concern for individuals to keep their humanity and dignity and make for the freedom eliminating everything that may adversely affect their essence.(немного поменяла слова и их порядок The term "individual measurability" involves a process of spiritual and intellectual development of a man and, in this context, through his development and humanity one should evaluate everything created by him; technical, social progress should be seen primarily from the point of view of a free man, humane, rationally and existentially independent from the artificially created world, who is able to play an advanced role in the process of his own development, social progress and technology. Techniques and technologies, in their turn, should progress, based primarily on human needs. Individuals, coexisting with technical means should take everything that is good for them and simultaneously use them for their spiritual and personal development. Conclusion. Having occupied a special position in relation to the tradition of European criticism, the philosopher considered technology, its essence and specificity, as well as features of technical activities in different historical periods to be a subject of a positive philosophical analysis. Heidegger broke with the tradition of European philosophy of technology, which focused its attention on the direct, "obvious" achievements of progress, having showed that the effects of intrusion of technology are diverse and difficult to be predicted in the long run. Technological dependence is hardly fatal to humans in the

  4. Interfacing Lab-on-a-Chip Embryo Technology with High-Definition Imaging Cytometry.

    Science.gov (United States)

    Zhu, Feng; Hall, Christopher J; Crosier, Philip S; Wlodkowic, Donald

    2015-08-01

    To spearhead deployment of zebrafish embryo biotests in large-scale drug discovery studies, automated platforms are needed to integrate embryo in-test positioning and immobilization (suitable for high-content imaging) with fluidic modules for continuous drug and medium delivery under microperfusion to developing embryos. In this work, we present an innovative design of a high-throughput three-dimensional (3D) microfluidic chip-based device for automated immobilization and culture and time-lapse imaging of developing zebrafish embryos under continuous microperfusion. The 3D Lab-on-a-Chip array was fabricated in poly(methyl methacrylate) (PMMA) transparent thermoplastic using infrared laser micromachining, while the off-chip interfaces were fabricated using additive manufacturing processes (fused deposition modelling and stereolithography). The system's design facilitated rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It was conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. Compared with the conventional Petri dish assays, the chip-based bioassay was much more convenient and efficient as only small amounts of drug solutions were required for the whole perfusion system running continuously over 72 h. Embryos were spatially separated in the traps that assisted tracing single embryos, preventing interembryo contamination and improving imaging accessibility.

  5. More than Just a Pretty Interface: Access, Content, and Relevance in Computer Technology.

    Science.gov (United States)

    Mitchell-Powell, Brenda

    1995-01-01

    Contends that, although technology offers communications options unavailable without an electronic superhighway, it is not a panacea for educators. Discusses technological change and the difficulty for schools to keep up with new developments. Includes recommended reading resources and a selected list of K-12 educational networks. (CFR)

  6. Music, Technology and Adolescents with Autism Spectrum Disorders: The Effectiveness of the Touch Screen Interface

    Science.gov (United States)

    Hillier, Ashleigh; Greher, Gena; Queenan, Alexa; Marshall, Savannah; Kopec, Justin

    2016-01-01

    The use of technology in music education is gaining momentum, although very little work has focused on students with disabilities. Our "SoundScape" programme addressed this gap through implementing a technology-based music programme for adolescents and young adults with autism spectrum disorders (ASD). Programme participants met on a…

  7. Music, Technology and Adolescents with Autism Spectrum Disorders: The Effectiveness of the Touch Screen Interface

    Science.gov (United States)

    Hillier, Ashleigh; Greher, Gena; Queenan, Alexa; Marshall, Savannah; Kopec, Justin

    2016-01-01

    The use of technology in music education is gaining momentum, although very little work has focused on students with disabilities. Our "SoundScape" programme addressed this gap through implementing a technology-based music programme for adolescents and young adults with autism spectrum disorders (ASD). Programme participants met on a…

  8. Antibody VH and VL recombination using phage and ribosome display technologies reveals distinct structural routes to affinity improvements with VH-VL interface residues providing important structural diversity.

    Science.gov (United States)

    Groves, Maria A T; Amanuel, Lily; Campbell, Jamie I; Rees, D Gareth; Sridharan, Sudharsan; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2014-01-01

    In vitro selection technologies are an important means of affinity maturing antibodies to generate the optimal therapeutic profile for a particular disease target. Here, we describe the isolation of a parent antibody, KENB061 using phage display and solution phase selections with soluble biotinylated human IL-1R1. KENB061 was affinity matured using phage display and targeted mutagenesis of VH and VL CDR3 using NNS randomization. Affinity matured VHCDR3 and VLCDR3 library blocks were recombined and selected using phage and ribosome display protocol. A direct comparison of the phage and ribosome display antibodies generated was made to determine their functional characteristics.In our analyses, we observed distinct differences in the pattern of beneficial mutations in antibodies derived from phage and ribosome display selections, and discovered the lead antibody Jedi067 had a ~3700-fold improvement in KD over the parent KENB061. We constructed a homology model of the Fv region of Jedi067 to map the specific positions where mutations occurred in the CDR3 loops. For VL CDR3, positions 94 to 97 carry greater diversity in the ribosome display variants compared with the phage display. The positions 95a, 95b and 96 of VLCDR3 form part of the interface with VH in this model. The model shows that positions 96, 98, 100e, 100f, 100 g, 100h, 100i and 101 of the VHCDR3 include residues at the VH and VL interface. Importantly, Leu96 and Tyr98 are conserved at the interface positions in both phage and ribosome display indicating their importance in maintaining the VH-VL interface. For antibodies derived from ribosome display, there is significant diversity at residues 100a to 100f of the VH CDR3 compared with phage display. A unique deletion of isoleucine at position 102 of the lead candidate, Jedi067, also occurs in the VHCDR3.As anticipated, recombining the mutations via ribosome display led to a greater structural diversity, particularly in the heavy chain CDR3, which in turn

  9. Combining two technologies for full genome sequencing of human.

    Science.gov (United States)

    Skryabin, K G; Prokhortchouk, E B; Mazur, A M; Boulygina, E S; Tsygankova, S V; Nedoluzhko, A V; Rastorguev, S M; Matveev, V B; Chekanov, N N; D A, Goranskaya; Teslyuk, A B; Gruzdeva, N M; Velikhov, V E; Zaridze, D G; Kovalchuk, M V

    2009-10-01

    At present, the new technologies of DNA sequencing are rapidly developing allowing quick and efficient characterisation of organisms at the level of the genome structure. In this study, the whole genome sequencing of a human (Russian man) was performed using two technologies currently present on the market - Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) (Applied Biosystems) and sequencing technologies of molecular clusters using fluorescently labeled precursors (Illumina). The total number of generated data resulted in 108.3 billion base pairs (60.2 billion from Illumina technology and 48.1 billion from SOLiD technology). Statistics performed on reads generated by GAII and SOLiD showed that they covered 75% and 96% of the genome respectively. Short polymorphic regions were detected with comparable accuracy however, the absolute amount of them revealed by SOLiD was several times less than by GAII. Optimal algorithm for using the latest methods of sequencing was established for the analysis of individual human genomes. The study is the first Russian effort towards whole human genome sequencing.

  10. Development of Life Support System Technologies for Human Lunar Missions

    Science.gov (United States)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  11. Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century.

    Science.gov (United States)

    Godfroid, J; Scholz, H C; Barbier, T; Nicolas, C; Wattiau, P; Fretin, D; Whatmore, A M; Cloeckaert, A; Blasco, J M; Moriyon, I; Saegerman, C; Muma, J B; Al Dahouk, S; Neubauer, H; Letesson, J-J

    2011-11-01

    Following the recent discovery of new Brucella strains from different animal species and from the environment, ten Brucella species are nowadays included in the genus Brucella. Although the intracellular trafficking of Brucella is well described, the strategies developed by Brucella to survive and multiply in phagocytic and non-phagocytic cells, particularly to access nutriments during its intracellular journey, are still largely unknown. Metabolism and virulence of Brucella are now considered to be two sides of the same coin. Mechanisms presiding to the colonization of the pregnant uterus in different animal species are not known. Vaccination is the cornerstone of control programs in livestock and although the S19, RB51 (both in cattle) and Rev 1 (in sheep and goats) vaccines have been successfully used worldwide, they have drawbacks and thus the ideal brucellosis vaccine is still very much awaited. There is no vaccine available for pigs and wildlife. Animal brucellosis control strategies differ in the developed and the developing world. Most emphasis is put on eradication and on risk analysis to avoid the re-introduction of Brucella in the developed world. Information related to the prevalence of brucellosis is still scarce in the developing world and control programs are rarely implemented. Since there is no vaccine available for humans, prevention of human brucellosis relies on its control in the animal reservoir. Brucella is also considered to be an agent to be used in bio- and agroterrorism attacks. At the animal/ecosystem/human interface it is critical to reduce opportunities for Brucella to jump host species as already seen in livestock, wildlife and humans. This task is a challenge for the future in terms of veterinary public health, as for wildlife and ecosystem managers and will need a "One Health" approach to be successful.

  12. [A new human machine interface in neurosurgery: The Leap Motion(®). Technical note regarding a new touchless interface].

    Science.gov (United States)

    Di Tommaso, L; Aubry, S; Godard, J; Katranji, H; Pauchot, J

    2016-06-01

    Currently, cross-sectional imaging viewing is used in routine practice whereas the surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). This type of contact results in a risk of lack of aseptic control and causes loss of time. The recent appearance of devices such as the Leap Motion(®) (Leap Motion society, San Francisco, USA) a sensor which enables to interact with the computer without any physical contact is of major interest in the field of surgery. However, its configuration and ergonomics produce key challenges in order to adapt to the practitioner's requirements, the imaging software as well as the surgical environment. This article aims to suggest an easy configuration of the Leap Motion(®) in neurosurgery on a PC for an optimized utilization with Carestream(®) Vue PACS v11.3.4 (Carestream Health, Inc., Rochester, USA) using a plug-in (to download at: https://drive.google.com/?usp=chrome_app#folders/0B_F4eBeBQc3ybElEeEhqME5DQkU) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk).

  13. Designer Babies? Teacher Views on Gene Technology and Human Medicine.

    Science.gov (United States)

    Schibeci, Renato

    1999-01-01

    Summarizes the views of a sample of primary and high school teachers on the application of gene technology to human medicine. In general, high school teachers are more positive about these developments than primary teachers, and both groups of teachers are more positive than interested lay publics. Highlights ways in which this topic can be…

  14. Synthesizing Soft Systems Methodology and Human Performance Technology

    Science.gov (United States)

    Scott, Glen; Winiecki, Donald J.

    2012-01-01

    Human performance technology (HPT), like other concepts, models, and frameworks that we use to describe the world in which we live and the way we organize ourselves to accomplish valuable activities, is built from paradigms that were fresh and relevant at the time it was conceived and from the fields of study from which it grew. However, when the…

  15. How Does Educational Technology Benefit Humanity? Five Years of Evidence

    Science.gov (United States)

    Hernandez-Ramos, Pedro

    2006-01-01

    This article presents a review of the 25 finalists (Laureates) in the Education category of the Technology Benefiting Humanity Awards, which started in 2001. Most of the applicants can be considered social entrepreneurs working to improve educational systems and the learning opportunities and experiences of their intended beneficiaries. While the…

  16. Application of Data Collection Techniques by Human Performance Technology Practitioners

    Science.gov (United States)

    Duan, Minjing

    2011-01-01

    By content-analyzing 22 published cases from a variety of professional and academic books and journals, this study examines the status quo of human performance technology (HPT) practitioners' application of five major data collection techniques in their everyday work: questionnaire, interview, focus group, observation, and document collection. The…

  17. Essential technologies for developing human and robot collaborative system

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Suzuki, Katsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    In this study, we aim to develop a concept of new robot system, i.e., `human and robot collaborative system`, for the patrol of nuclear power plants. This paper deals with the two essential technologies developed for the system. One is the autonomous navigation program with human intervention function which is indispensable for human and robot collaboration. The other is the position estimation method by using gyroscope and TV image to make the estimation accuracy much higher for safe navigation. Feasibility of the position estimation method is evaluated by experiment and numerical simulation. (author)

  18. Editorial: Technology for higher education, adult learning and human performance

    Directory of Open Access Journals (Sweden)

    Minhong Wang

    2013-09-01

    Full Text Available This special issue is dedicated to technology-enabled approaches for improving higher education, adult learning, and human performance. Improvement of learning and human development for sustainable development has been recognized as a key strategy for individuals, institutions, and organizations to strengthen their competitive advantages. It becomes crucial to help adult learners and knowledge workers to improve their self-directed and life-long learning capabilities. Meanwhile, advances in technology have been increasingly enabling and facilitating learning and knowledge-related initiatives.. They have largely extended learning opportunities through the provision of resource-rich and learner-centered environment, computer-based learning support, and expanded social interactions and networks. Papers in this special issue are representative of ongoing research on integration of technology with learning for innovation and sustainable development in higher education institutions and organizational and community environments.

  19. Telepresence: A ‘Real’ Component in a Model to Make Human-Computer Interface Factors Meaningful in the Virtual Learning Environment

    Directory of Open Access Journals (Sweden)

    Melissa E. Markaridian Selverian

    2009-01-01

    Full Text Available A thorough review of the research relating to Human-Computer Interface (HCI form and contentfactors in the education, communication and computer science disciplines reveals strongassociations of meaningful perceptual “illusions” with enhanced learning and satisfaction inthe evolving classroom. Specifically, associations emerge between spatial illusions (sensoryspace and low-level learning objectives, e.g., memorization; and social illusions (interactionand high-level learning objectives, e.g., evaluation. What are glaringly absent, however, aremeasures to define and associate the factors of the technologically advanced Virtual LearningEnvironment (VLE with the illusions and levels of learning. The researchers detail the factorsassociated with the communication concept “telepresence” (“presence” that is particularlyrelevant to the illusions in the VLE. Through a synthesis of the literatures and extensive researchat a N.Y. school, they create and test presence technology guidelines, measures, andlearning assessments to enhance illusions, learning and satisfaction in the VLE (Selverian,2005.

  20. Prevalence of brucellosis in the human, livestock and wildlife interface areas of Serengeti National Park, Tanzania

    Directory of Open Access Journals (Sweden)

    Gabriel M. Shirima

    2016-03-01

    Full Text Available Between 2005 and 2006, a cross-sectional survey was carried out in domestic ruminants in agropastoral communities of Serengeti district, Tanzania to determine the seroprevalence of brucellosis in domestic–wildlife interface villages. Both the Rose Bengal Plate Test (RBPT and Competitive Enzyme Linked-immunosorbent Assay (c-ELISA were used to analyse 82 human and 413 livestock sera from four randomly selected villages located along game reserve areas of Serengeti National Park. Although both cattle (288 and small ruminants (125 were screened, seropositivity was detected only in cattle. The overall seroprevalence based on c-ELISA as a confirmatory test was 5.6%. In cattle both age and sex were not statistically associated with brucellosis seropositivity (P = 0.63; 95% CI = 0.03, 0.8 and 0.33; 95% CI = 0.6, 3.7, respectively. Overall herd level seropositivity was 46.7% (n = 7, ranging from 25% to 66.7% (n = 4–10. Each village had at least one brucellosis seropositive herd. None of the 82 humans tested with both RBPT and c-ELISA were seropositive. Detecting Brucella infection in cattle in such areas warrants further investigation to establish the circulating strains for eventual appropriate control interventions in domestic animals.

  1. Prevalence of brucellosis in the human, livestock and wildlife interface areas of Serengeti National Park, Tanzania.

    Science.gov (United States)

    Shirima, Gabriel M; Kunda, John S

    2016-05-24

    Between 2005 and 2006, a cross-sectional survey was carried out in domestic ruminants in agropastoral communities of Serengeti district, Tanzania to determine the seroprevalence of brucellosis in domestic-wildlife interface villages. Both the Rose Bengal Plate Test (RBPT) and Competitive Enzyme Linked-immunosorbent Assay (c-ELISA) were used to analyse 82 human and 413 livestock sera from four randomly selected villages located along game reserve areas of Serengeti National Park. Although both cattle (288) and small ruminants (125) were screened, seropositivity was detected only in cattle. The overall seroprevalence based on c-ELISA as a confirmatory test was 5.6%. In cattle both age and sex were not statistically associated with brucellosis seropositivity (P = 0.63; 95% CI = 0.03, 0.8 and 0.33; 95% CI = 0.6, 3.7, respectively). Overall herd level seropositivity was 46.7% (n = 7), ranging from 25% to 66.7% (n = 4-10). Each village had at least one brucellosis seropositive herd. None of the 82 humans tested with both RBPT and c-ELISA were seropositive. Detecting Brucella infection in cattle in such areas warrants further investigation to establish the circulating strains for eventual appropriate control interventions in domestic animals.

  2. Using the electrocorticographic speech network to control a brain-computer interface in humans

    Science.gov (United States)

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2011-06-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68% and 91% within 15 min. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive.

  3. The human power amplifier technology at the University of California, Berkeley

    Science.gov (United States)

    Kazerooni, H.; Ellis, S. R. (Principal Investigator)

    1996-01-01

    A human's ability to perform physical tasks is limited by physical strength, not by intelligence. We define "extenders" as a class of robot manipulators worn by humans to augment human mechanical strength, while the wearer's intellect remains the central control system for manipulating the extender. Our research objective is to determine the ground rules for the design and control of robotic systems worn by humans through the design, construction, and control of several prototype experimental direct-drive/non-direct-drive multi-degree-of-freedom hydraulic/electric extenders. The design of extenders is different from the design of conventional robots because the extender interfaces with the human on a physical level. Two sets of force sensors measure the forces imposed on the extender by the human and by the environment (i.e., the load). The extender's compliances in response to such contact forces were designed by selecting appropriate force compensators. This paper gives a summary of some of the selected research efforts related to Extender Technology, carried out during 1980s. The references, at the end of this article, give detailed description of the research efforts.

  4. Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades

    Science.gov (United States)

    2012-05-13

    E. Wickenden, Member IEEE, Klaus Gramann, Tzyy-Ping Jung, Senior Member IEEE, Li-Wei Ko, Member IEEE, and Jyh-Yeong Chang, Member IEEE ABSTRACT | The...V. Chen, B.-C. Shyu, Z.-J. Lin, Y.-C. Chiang, F.-S. Jaw, Y.-Y. Chen, and C. Chang, BA new scenario for negative functional magnetic resonance imaging... BA general framework for brain computer interface design,[ IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, pp. 70–85, 2003. [21] R. Rao and R. Scherer

  5. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  6. The United Nations Human Space Technology Initiative (HSTI): Science Activities

    CERN Document Server

    Niu, A; Haubold, H J; Doi, T

    2012-01-01

    The United Nations Human Space Technology Initiative (HSTI) aims at promoting international cooperation in human spaceflight and space exploration-related activities; creating awareness among countries on the benefits of utilizing human space technology and its applications; and building capacity in microgravity education and research. HSTI has been conducting various scientific activities to promote microgravity education and research. The primary science activity is called 'Zero-gravity Instrument Distribution Project', in which one-axis clinostats will be distributed worldwide. The distribution project will provide unique opportunities for students and researchers to observe the growth of indigenous plants in their countries in a simulated microgravity condition and is expected to create a huge dataset of plant species with their responses to gravity.

  7. Manned systems technology discipline

    Science.gov (United States)

    Bretoi, Remus

    1990-01-01

    Viewgraphs on manned systems technology discipline for Space Station Freedom are presented. Topics covered include: crew-systems interfaces and interactions; crew training; on-board systems maintenance and support; habitability and environment; and computational human factors.

  8. A visual interface for augmented human olfactory perception in the context of monitoring air quality. - Issue 1.2.0

    NARCIS (Netherlands)

    Winterboer, A.; Evers, V.; Groen, F.; Pavlin, G.

    2011-01-01

    This report presents the experiments that were carried out to investigate ways in which an intelligent adaptive interface could support inhabitants in providing accurate smell descriptions. We investigated the effect of multi-modal odor cues on human smell identification performance to inform the de

  9. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    Science.gov (United States)

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  10. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    Science.gov (United States)

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  11. The mind-writing pupil : A human-computer interface based on decoding of covert attention through pupillometry

    NARCIS (Netherlands)

    Mathôt, Sebastiaan; Melmi, Jean Baptiste; Van Der Linden, Lotje; Van Der Stigchel, Stefan

    2016-01-01

    We present a new human-computer interface that is based on decoding of attention through pupillometry. Our method builds on the recent finding that covert visual attention affects the pupillary light response: Your pupil constricts when you covertly (without looking at it) attend to a bright, compar

  12. The Mind-Writing Pupil : A Human-Computer Interface Based on Decoding of Covert Attention through Pupillometry

    NARCIS (Netherlands)

    Mathot, Sebastiaan; Melmi, Jean-Baptiste; van der Linden, Lotje; van der Stigchel, Stefan

    2016-01-01

    We present a new human-computer interface that is based on decoding of attention through pupillometry. Our method builds on the recent finding that covert visual attention affects the pupillary light response: Your pupil constricts when you covertly (without looking at it) attend to a bright, compar

  13. Human machine interface to manually drive rhombic like vehicles such as transport casks in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pedro; Vale, Alberto [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo [Institute for Systems and Robotics, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-07-01

    The Cask and Plug Remote Handling System (CPRHS) and the respective Cask Transfer System (CTS) are designed to transport activated components between the reactor and the hot cell buildings of ITER during maintenance operations. In nominal operation, the CPRHS/CTS shall operate autonomously under human supervision. However, in some unexpected situations, the automatic mode must be overridden and the vehicle must be remotely guided by a human operator due to the harsh conditions of the environment. The CPRHS/CTS is a rhombic-like vehicle with two independent steerable and drivable wheels along its longitudinal axis, giving it omni-directional capabilities. During manual guidance, the human operator has to deal with four degrees of freedom, namely the orientations and speeds of two wheels. This work proposes a Human Machine Interface (HMI) to manage the degrees of freedom and to remotely guide the CPRHS/CTS in ITER taking the most advantages of rhombic like capabilities. Previous work was done to drive each wheel independently, i.e., control the orientation and speed of each wheel independently. The results have shown that the proposed solution is inefficient. The attention of the human operator becomes focused in a single wheel. In addition, the proposed solution cannot assure that the commands accomplish the physical constrains of the vehicle, resulting in slippage or even in clashes. This work proposes a solution that consists in the control of the vehicle looking at the position of its center of mass and its heading in the world frame. The solution is implemented using a rotational disk to control the vehicle heading and a common analogue joystick to control the vector speed of the center of the mass of the vehicle. The number of degrees of freedom reduces to three, i.e., two angles (vehicle heading and the orientation of the vector speed) and a scalar (the magnitude of the speed vector). This is possible using a kinematic model based on the vehicle Instantaneous

  14. A scalable soldier-machine interface for human-robotic interaction

    Science.gov (United States)

    Samples, Brian A.

    2007-04-01

    As part of the Crew-Automated and integration Testbed (CAT) Advanced Technology Objective (ATO), the US Army Tank-automotive and Armaments Research, Development, and Engineering Center (TARDEC) developed crew stations that provided soldiers the ability to control both manned and unmanned vehicles. The crew stations were designed to optimize soldier workload and provide the ability to conduct mission planning, route planning, reconnaissance, surveillance, and target acquisition (RSTA), and fire control capabilities. The crew station software is fully configurable, portable (between crew stations), and interoperable with one another. However, the software architecture was optimized for the specific computing platform utilized by each crew station and user interfaces were hard coded. Current CAT crew station capabilities are required to execute on other crew station configurations as well as handheld devices to meet the needs of expanded soldier roles, including dismounted infantry. TARDEC is currently exploring ways to develop a scalable software architecture that is able to adapt to the physical characteristics of differing computing platforms and devices. In addition, based upon a soldier's role, the software must be able to adapt and optimize the displays based upon individual soldier needs. And finally, the software must be capable of applying a unique style to the presentation of information to the soldier. Future programs require more robust software architectures that take these requirements into account. This paper will describe how scalable software architectures can be designed to address each of these unique requirements.

  15. From Darwinian to technological evolution: forgetting the human lottery.

    Science.gov (United States)

    Tintino, Giorgio

    2014-01-01

    The GRIN technologies (-geno, -robo, -info, -nano) promise to change the inner constitution of human body and its own existence. This transformation involves the structure of our lives and represent a brave new world that we have to explore and to manage. In this sense, the traditional tools of humanism seems very inadequate to think the biotech century and there is a strong demand of a new thought for the evolution and the concrete history of life. The posthuman philosophy tries to take this new path of human existence in all of its novelty since GRIN technologies seem to promise new and unexpected paths of evolution to living beings and, above all, man. For this, the post-human thought, as we see, is a new anthropological overview on the concrete evolution of human being, an overview that involves an epistemological revolution of the categories that humanism uses to conceptualize the journey that divides the Homo sapiens from the man. But, is this right?

  16. Theory Development and Convergence of Human Resource Fields: Implications for Human Performance Technology

    Science.gov (United States)

    Cho, Yonjoo; Yoon, Seung Won

    2010-01-01

    This study examines major theory developments in human resource (HR) fields and discusses implications for human performance technology (HPT). Differentiated HR fields are converging to improve organizational performance through knowledge-based innovations. Ruona and Gibson (2004) made a similar observation and analyzed the historical evolution…

  17. Theory Development and Convergence of Human Resource Fields: Implications for Human Performance Technology

    Science.gov (United States)

    Cho, Yonjoo; Yoon, Seung Won

    2010-01-01

    This study examines major theory developments in human resource (HR) fields and discusses implications for human performance technology (HPT). Differentiated HR fields are converging to improve organizational performance through knowledge-based innovations. Ruona and Gibson (2004) made a similar observation and analyzed the historical evolution…

  18. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    Science.gov (United States)

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  19. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    Science.gov (United States)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations

  20. Technology audit: the state of human language technologies (HLT) R&D in South Africa

    CSIR Research Space (South Africa)

    Grover, AS

    2011-07-01

    Full Text Available South Africa (SA) epitomises diversity, with the nation boasting eleven official languages. The field of human language technology (HLT) can play a vital role in bridging the digital divide and thus has been recognised as a priority area...

  1. Interface modification and material synthesis of organic light-emitting diodes using plasma technology

    Science.gov (United States)

    Liang, Rongqing; Ou, Qiongrong; Yang, Cheng; He, Kongduo; Yang, Xilu; Zhong, Shaofeng; plasma application Team

    2015-09-01

    Organic light-emitting diodes (OLEDs), due to their unique properties of solution processability, compatibility with flexible substrates and with large-scale printing technology, attract huge interest in the field of lighting. The integration of plasma technology into OLEDs provides a new route to improve their performance. Here we demonstrate the modification of indium-tin-oxide (ITO) work function by plasma treatment, synthesis of thermally activated delayed fluorescence (TADF) materials using plasma grafting (polymerisation), and multi-layer solution processing achieved by plasma cross-linking.

  2. Race as technology: from posthuman cyborg to human industry

    Directory of Open Access Journals (Sweden)

    Nicholaos Jones

    2017-06-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2017v70n2p39 Cyborg and prosthetic technologies frame prominent posthumanist approaches to understanding the nature of race. But these frameworks struggle to accommodate the phenomena of racial passing and racial travel, and their posthumanist orientation blurs useful distinctions between racialized humans and their social contexts. We advocate, instead, a humanist approach to race, understanding racial hierarchy as an industrial technology. Our approach accommodates racial passing and travel. It integrates a wide array of research across disciplines. It also helpfully distinguishes among grounds of racialization and conditions facilitating impacts of such racialization.

  3. 脑-机接口技术综述%Review of brain-computer interface technology

    Institute of Scientific and Technical Information of China (English)

    沈敏

    2007-01-01

    脑-机接口(brain computer interface,BCI)是在人脑与计算机或其它电子设备之间建立的直接的交流和控制通道,通过这种通道,人就可以直接通过脑来表达想法或操纵设备,而不需要语言或动作.脑-机接口是一种全新的通讯和控制技术.对脑-机接口技术的发展、研究现状、工作原理以及涉及的关键技术进行了较为详细地综述.

  4. Functionally graded scaffolds for the engineering of interface tissues using hybrid twin screw extrusion/electrospinning technology

    Science.gov (United States)

    Erisken, Cevat

    Tissue engineering is the application of the principles of engineering and life sciences for the development of biological alternatives for improvement or regeneration of native tissues. Native tissues are complex structures with functions and properties changing spatially and temporally, and engineering of such structures requires functionally graded scaffolds with composition and properties changing systematically along various directions. Utilization of a new hybrid technology integrating the controlled feeding, compounding, dispersion, deaeration, and pressurization capabilities of extrusion process with electrospinning allows incorporation of liquids and solid particles/nanoparticles into polymeric fibers/nanofibers for fabrication of functionally graded non-woven meshes to be used as scaffolds in engineering of tissues. The capabilities of the hybrid technology were demonstrated with a series of scaffold fabrication and cell culturing studies along with characterization of biomechanical properties. In the first study, the hybrid technology was employed to generate concentration gradations of beta-tricalcium phosphate (beta-TCP) nanoparticles in a polycaprolactone (PCL) binder, between two surfaces of nanofibrous scaffolds. These scaffolds were seeded with pre-osteoblastic cell line (MC3T3-E1) to attempt to engineer cartilage-bone interface, and after four weeks, the tissue constructs revealed formation of continuous gradations in extracellular matrix akin to cartilage-bone interface in terms of distributions of mineral concentrations and biomechanical properties. In a second demonstration of the hybrid technology, graded differentiation of stem cells was attempted by using insulin, a known stimulator of chondrogenic differentiation, and beta-glycerol phosphate (beta-GP), for mineralization. Concentrations of insulin and beta-GP in PCL were controlled to monotonically increase and decrease, respectively, along the length of scaffolds, which were then seeded

  5. Student Perceptions of Chemistry Experiments with Different Technological Interfaces: A Comparative Study

    Science.gov (United States)

    Priest, Samuel J.; Pyke, Simon M.; Williamson, Natalie M.

    2014-01-01

    Microcomputer based laboratory activities have been suggested to have a number of benefits in science education. However, their implementation produces mixed results, and student perception data have in the past yielded responses that are negative regarding the technology. This work presents a case study of three first year undergraduate chemistry…

  6. Risk Issues in Developing Novel User Interfaces for Human-Computer Interaction

    KAUST Repository

    Klinker, Gudrun

    2014-01-01

    © 2014 Springer International Publishing Switzerland. All rights are reserved. When new user interfaces or information visualization schemes are developed for complex information processing systems, it is not readily clear how much they do, in fact, support and improve users\\' understanding and use of such systems. Is a new interface better than an older one? In what respect, and in which situations? To provide answers to such questions, user testing schemes are employed. This chapter reports on a range of risks pertaining to the design and implementation of user interfaces in general, and to newly emerging interfaces (3-dimensionally, immersive, mobile) in particular.

  7. Using minimal human-computer interfaces for studying the interactive development of social awareness

    Directory of Open Access Journals (Sweden)

    Tom eFroese

    2014-09-01

    Full Text Available According to the enactive approach to cognitive science, perception is essentially a skillful engagement with the world. Learning how to engage via a human-computer interface (HCI can therefore be taken as an instance of developing a new mode of experiencing. Similarly, social perception is theorized to be primarily constituted by skillful engagement between people, which implies that it is possible to investigate the origins and development of social awareness using multi-user HCIs. We analyzed the trial-by-trial objective and subjective changes in sociality that took place during a perceptual crossing experiment in which embodied interaction between pairs of adults was mediated over a minimalist haptic HCI. Since that study required participants to implicitly relearn how to mutually engage so as to perceive each other’s presence, we hypothesized that there would be indications that the initial developmental stages of social awareness were recapitulated. Preliminary results reveal that, despite the lack of explicit feedback about task performance, there was a trend for the clarity of social awareness to increase over time. We discuss the methodological challenges involved in evaluating whether this trend was characterized by distinct developmental stages of objective behavior and subjective experience.

  8. Using minimal human-computer interfaces for studying the interactive development of social awareness.

    Science.gov (United States)

    Froese, Tom; Iizuka, Hiroyuki; Ikegami, Takashi

    2014-01-01

    According to the enactive approach to cognitive science, perception is essentially a skillful engagement with the world. Learning how to engage via a human-computer interface (HCI) can therefore be taken as an instance of developing a new mode of experiencing. Similarly, social perception is theorized to be primarily constituted by skillful engagement between people, which implies that it is possible to investigate the origins and development of social awareness using multi-user HCIs. We analyzed the trial-by-trial objective and subjective changes in sociality that took place during a perceptual crossing experiment in which embodied interaction between pairs of adults was mediated over a minimalist haptic HCI. Since that study required participants to implicitly relearn how to mutually engage so as to perceive each other's presence, we hypothesized that there would be indications that the initial developmental stages of social awareness were recapitulated. Preliminary results reveal that, despite the lack of explicit feedback about task performance, there was a trend for the clarity of social awareness to increase over time. We discuss the methodological challenges involved in evaluating whether this trend was characterized by distinct developmental stages of objective behavior and subjective experience.

  9. Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode

    Science.gov (United States)

    Schiefer, M. A.; Freeberg, M.; Pinault, G. J. C.; Anderson, J.; Hoyen, H.; Tyler, D. J.; Triolo, R. J.

    2013-10-01

    Objective. Electrical stimulation has been shown effective in restoring basic lower extremity motor function in individuals with paralysis. We tested the hypothesis that a flat interface nerve electrode (FINE) placed around the human tibial or common peroneal nerve above the knee can selectively activate each of the most important muscles these nerves innervate for use in a neuroprosthesis to control ankle motion. Approach. During intraoperative trials involving three subjects, an eight-contact FINE was placed around the tibial and/or common peroneal nerve, proximal to the popliteal fossa. The FINE's ability to selectively recruit muscles innervated by these nerves was assessed. Data were used to estimate the potential to restore active plantarflexion or dorsiflexion while balancing inversion and eversion using a biomechanical simulation. Main results. With minimal spillover to non-targets, at least three of the four targets in the tibial nerve, including two of the three muscles constituting the triceps surae, were independently and selectively recruited in all subjects. As acceptable levels of spillover increased, recruitment of the target muscles increased. Selective activation of muscles innervated by the peroneal nerve was more challenging. Significance. Estimated joint moments suggest that plantarflexion sufficient for propulsion during stance phase of gait and dorsiflexion sufficient to prevent foot drop during swing can be achieved, accompanied by a small but tolerable inversion or eversion moment.

  10. Human machine interface to manually drive rhombic like vehicles in remote handling operations

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pedro; Vale, Alberto [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo [Institute for Systems and Robotics, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-07-01

    In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes a Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)

  11. Using minimal human-computer interfaces for studying the interactive development of social awareness

    Science.gov (United States)

    Froese, Tom; Iizuka, Hiroyuki; Ikegami, Takashi

    2014-01-01

    According to the enactive approach to cognitive science, perception is essentially a skillful engagement with the world. Learning how to engage via a human-computer interface (HCI) can therefore be taken as an instance of developing a new mode of experiencing. Similarly, social perception is theorized to be primarily constituted by skillful engagement between people, which implies that it is possible to investigate the origins and development of social awareness using multi-user HCIs. We analyzed the trial-by-trial objective and subjective changes in sociality that took place during a perceptual crossing experiment in which embodied interaction between pairs of adults was mediated over a minimalist haptic HCI. Since that study required participants to implicitly relearn how to mutually engage so as to perceive each other's presence, we hypothesized that there would be indications that the initial developmental stages of social awareness were recapitulated. Preliminary results reveal that, despite the lack of explicit feedback about task performance, there was a trend for the clarity of social awareness to increase over time. We discuss the methodological challenges involved in evaluating whether this trend was characterized by distinct developmental stages of objective behavior and subjective experience. PMID:25309490

  12. Categorical vowel perception enhances the effectiveness and generalization of auditory feedback in human-machine-interfaces.

    Directory of Open Access Journals (Sweden)

    Eric Larson

    Full Text Available Human-machine interface (HMI designs offer the possibility of improving quality of life for patient populations as well as augmenting normal user function. Despite pragmatic benefits, utilizing auditory feedback for HMI control remains underutilized, in part due to observed limitations in effectiveness. The goal of this study was to determine the extent to which categorical speech perception could be used to improve an auditory HMI. Using surface electromyography, 24 healthy speakers of American English participated in 4 sessions to learn to control an HMI using auditory feedback (provided via vowel synthesis. Participants trained on 3 targets in sessions 1-3 and were tested on 3 novel targets in session 4. An "established categories with text cues" group of eight participants were trained and tested on auditory targets corresponding to standard American English vowels using auditory and text target cues. An "established categories without text cues" group of eight participants were trained and tested on the same targets using only auditory cuing of target vowel identity. A "new categories" group of eight participants were trained and tested on targets that corresponded to vowel-like sounds not part of American English. Analyses of user performance revealed significant effects of session and group (established categories groups and the new categories group, and a trend for an interaction between session and group. Results suggest that auditory feedback can be effectively used for HMI operation when paired with established categorical (native vowel targets with an unambiguous cue.

  13. A comparative analysis of three non-invasive Human-Machine Interfaces for the disabled

    Directory of Open Access Journals (Sweden)

    Vikram eRavindra

    2014-10-01

    Full Text Available In the framework of rehabilitation robotics, a major role is played by theHuman-Machine Interface (HMI used to gather the patient's intent from biologicalsignals, and convert them into control signals for the robotic artifact. Surprisingly,decades of research haven't yet declared what the optimal HMI is in this context;in particular, the traditional approach based upon surface electromyography (sEMGstill yields unreliable results due to the inherent variability of the signal. Toovercome this problem, the scientific community has recently been advocating thediscovery, analysis and usage of novel HMIs to supersede or augment sEMG; a comparativeanalysis of such HMIs is therefore a very desirable investigation.In this paper we compare three such HMIs employed in the detection of finger forces,namely sEMG, ultrasound imaging and pressure sensing. The comparison is performed alongfour main lines: the accuracy in the prediction, the stability over time, the wearabilityand the cost. A psychophysical experiment involving ten intact subjects engaged ina simple finger-flexion task was set up. Our results show that, at least in thisexperiment, pressure sensing and sEMG yield comparably good prediction accuraciesas opposed to ultrasound imaging; and that pressure sensing enjoys a much better stabilitythan sEMG.Given that pressure sensors are as wearable as sEMG electrodes but way cheaper, we claimthat this HMI could represent a valid alternative /augmentation to sEMG to control amulti-fingered hand prosthesis.

  14. Concept of software interface for BCI systems

    Science.gov (United States)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  15. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    Science.gov (United States)

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  16. The Transmission Interfaces Contribute Asymmetrically to the Assembly and Activity of Human P-glycoprotein.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2015-07-01

    P-glycoprotein (P-gp; ABCB1) is an ABC drug pump that protects us from toxic compounds. It is clinically important because it confers multidrug resistance. The homologous halves of P-gp each contain a transmembrane (TM) domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Each NBD is connected to the TMDs by a transmission interface involving a pair of intracellular loops (ICLs) that form ball-and-socket joints. P-gp is different from CFTR (ABCC7) in that deleting NBD2 causes misprocessing of only P-gp. Therefore, NBD2 might be critical for stabilizing ICLs 2 and 3 that form a tetrahelix bundle at the NBD2 interface. Here we report that the NBD1 and NBD2 transmission interfaces in P-gp are asymmetric. Point mutations to 25 of 60 ICL2/ICL3 residues at the NBD2 transmission interface severely reduced P-gp assembly while changes to the equivalent residues in ICL1/ICL4 at the NBD1 interface had little effect. The hydrophobic nature at the transmission interfaces was also different. Mutation of Phe-1086 or Tyr-1087 to arginine at the NBD2 socket blocked activity or assembly while the equivalent mutations at the NBD1 socket had only modest effects. The results suggest that the NBD transmission interfaces are asymmetric. In contrast to the ICL2/3-NBD2 interface, the ICL1/4-NBD1 transmission interface is more hydrophilic and insensitive to mutations. Therefore the ICL2/3-NBD2 transmission interface forms a precise hydrophobic connection that acts as a linchpin for assembly and trafficking of P-gp.

  17. Surgical Technology Integration with Tools for Cognitive Human Factors (STITCH)

    Science.gov (United States)

    2010-10-01

    endoscope. 2. Bi-channel Stereo Scope: Intuitive Surgical’s da Vinci ® Surgical System is a robotic surgical platform. As such, it is capable of handling...with two separate lenses embedded inside a single tube. The da Vinci ® Surgical System incorporates high-definition technology at a resolution of...data of using the software on the Da vinci and Vista laparoscopes. The models used are human phantom models. In the table the test is done via two

  18. NEW TEACHING AND LEARNING TECHNOLOGIES IN HUMAN NUTRITION COURSE

    OpenAIRE

    2010-01-01

    The University of Porto, like other universities around the world, is working to promote effective integration of various learning techniques. This paper describes the results of a research that aimed to find and test new technologies in TL of human nutrition in a second-cycle course of Porto University. The application of blended-learning as a strategy to respond to the numerous pedagogical challenges that Bologna presents to Higher Education and its use to join what should not be separated:...

  19. Drug Delivery Interfaces in the 21st Century: From Science Fiction Ideas to Viable Technologies

    Science.gov (United States)

    Chertok, Beata; Webber, Matthew J.; Succi, Marc D.; Langer, Robert S.

    2013-01-01

    Early science fiction envisioned the future of drug delivery as targeted micron-scale submarines and ‘Cyborg’ body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery – the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the pre-defined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics. PMID:23915375

  20. Service robotics: an emergent technology field at the interface between industry and services.

    Science.gov (United States)

    Ott, Ingrid

    2012-12-01

    The paper at hand analyzes the economic implications of service robots as expected important future technology. The considerations are embedded into global trends, focusing on the interdependencies between services and industry not only in the context of the provision of services but already starting at the level of the innovation process. It is argued that due to the various interdependencies combined with heterogenous application fields, the resulting implications need to be contextualized. Concerning the net labor market effects, it is reasonable to assume that the field of service robotics will generate overall job creation that goes along with increasing skill requirements demanded from involved employees. It is analyzed which challenges arise in evaluating and further developing the new technology field and some policy recommendations are given.

  1. Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies.

    Science.gov (United States)

    Chertok, Beata; Webber, Matthew J; Succi, Marc D; Langer, Robert

    2013-10-07

    Early science fiction envisioned the future of drug delivery as targeted micrometer-scale submarines and "cyborg" body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery: the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the predefined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics.

  2. Bovine tuberculosis at the wildlife-livestock-human interface in Hamer Woreda, South Omo, Southern Ethiopia.

    Directory of Open Access Journals (Sweden)

    Rea Tschopp

    Full Text Available Bovine tuberculosis (BTB is endemic in cattle in the Ethiopian Highlands but no studies have been done so far in pastoralists in South Omo. This study assessed the prevalence of bovine tuberculosis (BTB at an intensive interface of livestock, wildlife and pastoralists in Hamer Woreda (South Omo, Ethiopia. A cross-sectional survey including a comparative intradermal skin testing (CIDT was conducted in 499 zebu cattle and 186 goats in 12 settlements. Sputum samples from 26 symptomatic livestock owners were cultured for TB. Fifty-one wildlife samples from 13 different species were also collected in the same area and tested with serological (lateral flow assay and bacteriological (culture of lymph nodes techniques. Individual BTB prevalence in cattle was 0.8% (CI: 0.3%-2% with the >4 mm cut-off and 3.4% (CI: 2.1%-5.4% with the >2 mm cut-off. Herd prevalence was 33.3% and 83% when using the >4 and the >2 mm cut-off respectively. There was no correlation between age, sex, body condition and positive reactors upon univariate analysis. None of the goats were reactors for BTB. Acid fast bacilli (AFB were detected in 50% of the wildlife cultures, 79.2% of which were identified as Mycobacterium terrae complex. No M. bovis was detected. Twenty-seven percent of tested wildlife were sero-positive. Four sputum cultures (15.4% yielded AFB positive colonies among which one was M. tuberculosis and 3 non-tuberculous mycobacteria (NTM. The prevalence of M. avium-complex (MAC was 4.2% in wildlife, 2.5% in cattle and 0.5% in goats. In conclusion, individual BTB prevalence was low, but herd prevalence high in cattle and BTB was not detected in goats, wildlife and humans despite an intensive contact interface. On the contrary, NTMs were highly prevalent and some Mycobacterium spp were more prevalent in specific species. The role of NTMs in livestock and co-infection with BTB need further research.

  3. Bovine tuberculosis at the wildlife-livestock-human interface in Hamer Woreda, South Omo, Southern Ethiopia.

    Science.gov (United States)

    Tschopp, Rea; Aseffa, Abraham; Schelling, Esther; Berg, Stefan; Hailu, Elena; Gadisa, Endalamaw; Habtamu, Meseret; Argaw, Kifle; Zinsstag, Jakob

    2010-08-17

    Bovine tuberculosis (BTB) is endemic in cattle in the Ethiopian Highlands but no studies have been done so far in pastoralists in South Omo. This study assessed the prevalence of bovine tuberculosis (BTB) at an intensive interface of livestock, wildlife and pastoralists in Hamer Woreda (South Omo), Ethiopia. A cross-sectional survey including a comparative intradermal skin testing (CIDT) was conducted in 499 zebu cattle and 186 goats in 12 settlements. Sputum samples from 26 symptomatic livestock owners were cultured for TB. Fifty-one wildlife samples from 13 different species were also collected in the same area and tested with serological (lateral flow assay) and bacteriological (culture of lymph nodes) techniques. Individual BTB prevalence in cattle was 0.8% (CI: 0.3%-2%) with the >4 mm cut-off and 3.4% (CI: 2.1%-5.4%) with the >2 mm cut-off. Herd prevalence was 33.3% and 83% when using the >4 and the >2 mm cut-off respectively. There was no correlation between age, sex, body condition and positive reactors upon univariate analysis. None of the goats were reactors for BTB. Acid fast bacilli (AFB) were detected in 50% of the wildlife cultures, 79.2% of which were identified as Mycobacterium terrae complex. No M. bovis was detected. Twenty-seven percent of tested wildlife were sero-positive. Four sputum cultures (15.4%) yielded AFB positive colonies among which one was M. tuberculosis and 3 non-tuberculous mycobacteria (NTM). The prevalence of M. avium-complex (MAC) was 4.2% in wildlife, 2.5% in cattle and 0.5% in goats. In conclusion, individual BTB prevalence was low, but herd prevalence high in cattle and BTB was not detected in goats, wildlife and humans despite an intensive contact interface. On the contrary, NTMs were highly prevalent and some Mycobacterium spp were more prevalent in specific species. The role of NTMs in livestock and co-infection with BTB need further research.

  4. Research of brain computer interface technology%脑-机接口技术研究

    Institute of Scientific and Technical Information of China (English)

    洪杰; 秦现生; 谭小群; 王文杰; 牛军龙

    2014-01-01

    脑-机接口是在人脑与计算机或其他电子设备之间建立直接的交流和控制的通道,它直接通过脑来表达想法,而不需要语言和动作,为思维正常但有严重运动障碍的患者提供了与外界交流和控制的途径,提高了他们的生活质量.本文对脑-机接口(brain computer interface,BCI)技术、研究方法、分类以及涉及的关键技术、应用领域等进行了较为详细的综述,并在此基础上分析目前BCI存在的问题,最后指出该领域的发展趋势.

  5. Applying cybernetic technology to diagnose human pulmonary sounds.

    Science.gov (United States)

    Chen, Mei-Yung; Chou, Cheng-Han

    2014-06-01

    Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.

  6. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.

    Science.gov (United States)

    Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi

    2015-03-01

    This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand.

  7. Design of Human-Machine Interface System of High Frequency Inverter Spot Welding%高频逆变点焊人机交互系统的设计

    Institute of Scientific and Technical Information of China (English)

    邱祁; 朱燕丛

    2013-01-01

    Aiming at high frequency inverter spot welding, a human-machine interface system, SCM ADuC812 as the main chip is designed to realize the setting, modification and storage for welding parameters. The panel is set based on the inverter spot welding current and welding technology. The each stage of current wave is controlled by LED and key easily. Then welding current is controlled by the setting. It proves that the human-machine interface system is stable, easy-input and strong anti-interference ability.%针对高频逆变点焊电源,设计了以单片机ADuC812为核心的人机交互系统.该系统能实现焊接工艺参数的设置、修改、保存.根据逆变点焊电流波形及焊接工艺设置了面板外观,能够非常明确简单地设置焊接电流各阶段波形,控制焊接输出.实用证明,该系统运行稳定可靠,输入方便,抗干扰能力强.

  8. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface

    CERN Document Server

    Ruffini, G; Fuentemilla, L; Grau, C; Farres, E; Marco-Pallares, J; Watts, P C P; Silva, S R P

    2007-01-01

    Fatigue, sleepiness and disturbed sleep are important factors in health and safety in modern society and there is considerable interest in developing technologies for routine monitoring of associated physiological indicators. Electrophysiology, the measurement of the electrical activity of biological origin, is a key technique for the measurement of physiological parameters in several applications, but it has been traditionally difficult to develop sensors for measurements outside the laboratory or clinic with the required quality and robustness. In this paper we report the results from first human experiments using a new electrophysiology sensor called ENOBIO, using carbon nanotube arrays for penetration of the outer layers of the skin and improved electrical contact. These tests, which have included traditional protocols for the analysis of the electrical activity of the brain--spontaneous EEG and ERP--indicate performance on a par with state of the art research-oriented wet electrodes, suggesting that the ...

  9. A REVIEW OF HUMAN-SYSTEM INTERFACE DESIGN ISSUES OBSERVED DURING ANALOG-TO-DIGITAL AND DIGITAL-TO-DIGITAL MIGRATIONS IN U.S. NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, C.; Joe, J.

    2017-05-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is developing a scientific basis through targeted research and development (R&D) to support the U.S. nuclear power plant (NPP) fleet in extending their existing licensing period and ensuring their long-term reliability, productivity, safety, and security. Over the last several years, human factors engineering (HFE) professionals at the Idaho National Laboratory (INL) have supported the LWRS Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway across several U.S. commercial NPPs in analog-to-digital migrations (i.e., turbine control systems) and digital-to-digital migrations (i.e., Safety Parameter Display System). These efforts have included in-depth human factors evaluation of proposed human-system interface (HSI) design concepts against established U.S. Nuclear Regulatory Commission (NRC) design guidelines from NUREG-0700, Rev 2 to inform subsequent HSI design prior to transitioning into Verification and Validation. This paper discusses some of the overarching design issues observed from these past HFE evaluations. In addition, this work presents some observed challenges such as common tradeoffs utilities are likely to face when introducing new HSI technologies into NPP hybrid control rooms. The primary purpose of this work is to distill these observed design issues into general HSI design guidance that industry can use in early stages of HSI design.

  10. Automotive Technology and Human Factors Research: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Motoyuki Akamatsu

    2013-01-01

    Full Text Available This paper reviews the history of automotive technology development and human factors research, largely by decade, since the inception of the automobile. The human factors aspects were classified into primary driving task aspects (controls, displays, and visibility, driver workspace (seating and packaging, vibration, comfort, and climate, driver’s condition (fatigue and impairment, crash injury, advanced driver-assistance systems, external communication access, and driving behavior. For each era, the paper describes the SAE and ISO standards developed, the major organizations and conferences established, the major news stories affecting vehicle safety, and the general social context. The paper ends with a discussion of what can be learned from this historical review and the major issues to be addressed. A major contribution of this paper is more than 180 references that represent the foundation of automotive human factors, which should be considered core knowledge and should be familiar to those in the profession.

  11. An Ontology-Based Architecture for Adaptive Work-Centered User Interface Technology

    Science.gov (United States)

    2005-10-01

    Francisco. 133 15. Newell, Allen, 1990. Unified Theories of Cognition, Harvard University Press, Cambridge, MA. 16. Pinker , Steven (ed.), 1984. Visual... Pinker , 1984; Wade & Swanston, 1991) and is obviously the primary mode of computer-to- human communication in today’s screen-based, point-and-click...NY. 12. Horridge, Matthew, Holger Knublauch, Alan Rector, Robert Stevens , and Chris Wroe, 2004. A Practical Guide To Building OWL Ontologies Using The

  12. Posthumanism and somatechnologies: exploring the intimate relations between humans and technologies

    NARCIS (Netherlands)

    Dalibert, Lucie

    2014-01-01

    Recently, with the advent of technoscience, and especially the convergence of nanotechnology, biotechnology, information and communication technology and the cognitive sciences (NBIC), has come the prospect of human enhancement. Even though the latter – the technological enhancement of human beings

  13. Posthumanism and somatechnologies: exploring the intimate relations between humans and technologies

    NARCIS (Netherlands)

    Dalibert, Lucie

    2014-01-01

    Recently, with the advent of technoscience, and especially the convergence of nanotechnology, biotechnology, information and communication technology and the cognitive sciences (NBIC), has come the prospect of human enhancement. Even though the latter – the technological enhancement of human beings

  14. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    Science.gov (United States)

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  15. Analysis of neural activity in human motor cortex -- Towards brain machine interface system

    Science.gov (United States)

    Secundo, Lavi

    The discovery of directional tuned neurons in the primary motor cortex has advanced motor research in several domains. For instance, in the area of brain machine interface (BMI), researchers have exploited the robust characteristic of tuned motor neurons to allow monkeys to learn control of various machines. In the first chapter of this work we examine whether this phenomena can be observed using the less invasive method of recording electrocorticographic signals (ECoG) from the surface of a human's brain. Our findings reveal that individual ECoG channels contain complex movement information about the neuronal population. While some ECoG channels are tuned to hand movement direction (direction specific channels), others are associated to movement but do not contain information regarding movement direction (non-direction specific channels). More specifically, directionality can vary temporally and by frequency within one channel. In addition, a handful of channels contain no significant information regarding movement at all. These findings strongly suggest that directional and non-directional regions of cortex can be identified with ECoG and provide solutions to decoding movement at the signal resolution provided by ECoG. In the second chapter we examine the influence of movement context on movement reconstruction accuracy. We recorded neuronal signals recorded from electro-corticography (ECoG) during performance of cued- and self-initiated movements. ECoG signals were used to train a reconstruction algorithm to reconstruct continuous hand movement. We found that both cued- and self-initiated movements could be reconstructed with similar accuracy from the ECoG data. However, while an algorithm trained on the cued task could reconstruct performance on a subsequent cued trial, it failed to reconstruct self-initiated arm movement. The same task-specificity was observed when the algorithm was trained with self-initiated movement data and tested on the cued task. Thus

  16. Manufacturing Interfaces

    NARCIS (Netherlands)

    Houten, van F.J.A.M.

    1992-01-01

    The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering. Desi

  17. A wireless transmission neural interface system for unconstrained non-human primates

    Science.gov (United States)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  18. Human-robot skills transfer interfaces for a flexible surgical robot.

    Science.gov (United States)

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. A truly human interface: Interacting face-to-face with someone whose words are determined by a computer program

    Directory of Open Access Journals (Sweden)

    Kevin eCorti

    2015-05-01

    Full Text Available We use speech shadowing to create situations wherein people converse in person with a human whose words are determined by a conversational agent computer program. Speech shadowing involves a person (the shadower repeating vocal stimuli originating from a separate communication source in real-time. Humans shadowing for conversational agent sources (e.g., chat bots become hybrid agents (echoborgs capable of face-to-face interlocution. We report three studies that investigated people’s experiences interacting with echoborgs and the extent to which echoborgs pass as autonomous humans. First, participants in a Turing Test spoke with a chat bot via either a text interface or an echoborg. Human shadowing did not improve the chat bot’s chance of passing but did increase interrogators’ ratings of how human-like the chat bot seemed. In our second study, participants had to decide whether their interlocutor produced words generated by a chat bot or simply pretended to be one. Compared to those who engaged a text interface, participants who engaged an echoborg were more likely to perceive their interlocutor as pretending to be a chat bot. In our third study, participants were naïve to the fact that their interlocutor produced words generated by a chat bot. Unlike those who engaged a text interface, the vast majority of participants who engaged an echoborg neither sensed nor suspected a robotic interaction. These findings have implications for android science, the Turing Test paradigm, and human-computer interaction. The human body, as the delivery mechanism of communication, fundamentally alters the social psychological dynamics of interactions with machine intelligence.

  20. Design specifications of the Human Robotic interface for the biomimetic underwater robot "yellow submarine project"

    CERN Document Server

    Bheemaiah, Anil

    2010-01-01

    This paper describes the design of a web based multi agent design for a collision avoidance auto navigation biomimetic submarine for submarine hydroelectricity. The paper describes the nature of the map - topology interface for river bodies and the design of interactive agents for the control of the robotic submarine. The agents are migratory on the web and are designed in XML/html interface with both interactive capabilities and visibility on a map. The paper describes mathematically the user interface and the map definition languages used for the multi agent description

  1. Science at the policy interface: volcano-monitoring technologies and volcanic hazard management

    Science.gov (United States)

    Donovan, Amy; Oppenheimer, Clive; Bravo, Michael

    2012-07-01

    This paper discusses results from a survey of volcanologists carried out on the Volcano Listserv during late 2008 and early 2009. In particular, it examines the status of volcano monitoring technologies and their relative perceived value at persistently and potentially active volcanoes. It also examines the role of different types of knowledge in hazard assessment on active volcanoes, as reported by scientists engaged in this area, and interviewees with experience from the current eruption on Montserrat. Conclusions are drawn about the current state of monitoring and the likely future research directions, and also about the roles of expertise and experience in risk assessment on active volcanoes; while local knowledge is important, it must be balanced with fresh ideas and expertise in a combination of disciplines to produce an advisory context that is conducive to high-level scientific discussion.

  2. Development of exosome surface display technology in living human cells

    Energy Technology Data Exchange (ETDEWEB)

    Stickney, Zachary, E-mail: zstickney@scu.edu; Losacco, Joseph, E-mail: jlosacco@scu.edu; McDevitt, Sophie, E-mail: smmcdevitt@scu.edu; Zhang, Zhiwen, E-mail: zzhang@scu.edu; Lu, Biao, E-mail: blu2@scu.edu

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  3. Development of exosome surface display technology in living human cells.

    Science.gov (United States)

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  4. A user-friendly wearable single-channel EOG-based human-computer interface for cursor control

    OpenAIRE

    2015-01-01

    This paper presents a novel wearable single-channel electrooculography (EOG) based human-computer interface (HCI) with a simple system design and robust performance. In the proposed system, EOG signals for control are generated from double eye blinks, collected by a commercial wearable device (the NeuroSky MindWave headset), and then converted into a sequence of commands that can control cursor navigations and actions. The EOG-based cursor control system was tested on 8 subjects in indoor or ...

  5. Determination of anticonvulsants in human plasma using SPME in a heated interface coupled online to liquid chromatography (SPME-LC)

    OpenAIRE

    Alves, Claudete; Gomes, Paulo Clairmont Feitosa de Lima; Neto, Álvaro José dos Santos; Rodrigues, Jose Carlos; Lanças, Fernando Mauro

    2012-01-01

    A simple and sensitive method using solid phase microextraction (SPME) and liquid chromatography (LC) with heated online desorption (SPME-LC) was developed and validated to analyze anticonvulsants (AEDs) in human plasma samples. A heated lab-made interface chamber was used in the desorption procedure, which allowed the transference of the whole extracted sample. The SPME conditions were optimized by applying an experimental design. Important factors are discussed such as fiber coating types, ...

  6. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    Science.gov (United States)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  7. [Milk and dairy products for human nutrition: contribution of technology].

    Science.gov (United States)

    Maubois, Jean-Louis

    2008-04-01

    The complex composition of milk has led to the development of innovative technological processes such as membrane separation. The dairy industry is now able to offer consumers safe classical products (liquid milk, raw-milk cheeses) with little or no heat treatment. Indeed, heat treatment undermines the organoleptic qualities and bioactivity of many molecules found in milk. New technologies, and especially membrane microfiltration, have allowed researchers to identify two groups of milk proteins in terms of their human absorption kinetics: slow micellar casein and fast whey proteins. The highly purified products thus obtained are used for infant foods and slimming aids, and as functional ingredients. The same technologies have been applied to colostrum, yielding a sterile "serocolostrum" containing biologically active immunoglobulins, growth factors, and polypeptides. Combined with other separation techniques, membrane technologies should soon allow the separation and purification of minor milk proteins described as having essential roles in bone calcium uptake and vitamin transport, for example. The use of enzymatic membrane reactors has led to the identification of several bioactive peptides, such as--kappa-caseinomacropeptide, which induces CCK (cholecystokinin) secretion and thus regulates food intake and lipid assimilation,--alpha(S1) CN (91-100), a compound with benzodiazepine activity,-- kappaCN (106-116), which has anti-thrombotic activity by inhibiting blood platelet binding to fibrinogen, and--alpha(S) and beta casein phosphopeptides, which are thought to increase iron and calcium absorption.

  8. A simple technology for CuO/TiO2 3D interface fabrication using nanocrystalline oxide powders

    Science.gov (United States)

    Forcade, Fresnel; Snyders, Rony; Noirfalise, Xavier; González, Bernardo; Laza, Camila; Vigil, Elena

    2017-03-01

    A CuO/TiO2 interface with potential use for solar light conversion is studied. Thin films are synthesized using a mixture of commercially available nanocrystalline TiO2 and CuO powders. Samples with mass concentrations from 5 to 10% of CuO in TiO2 were prepared from a colloidal suspension using a ‘doctor blade’ technique. Heat treatment (500 °C, 1 h) was used to generate crystals necking and improve adhesion to substrates. X-ray diffraction analysis and scanning electron microscopy indicate that the CuO nanocrystals are smaller than those of TiO2. Since TiO2 does not absorb light in the spectral range where the CuO absorption edge is located, it was possible to obtain an effective CuO absorption coefficient spectra and then extract the bandgap energy. The results confirm the potential use of CuO as a TiO2 inorganic sensitizer for solar light. SEM images show a mesoporous structure for all samples that would facilitate penetration of a hole conductor and guarantee a large three-dimensional interface. Photocurrent direction with no bias confirms electron transfer from the CuO to the TiO2 when CuO/TiO2 films are used as photoelectrodes. Therefore, excited electrons in the CuO conduction band occupy levels with energy greater than the empty states in the TiO2 conduction band. Possible technological improvements to increase electron collection are discussed.

  9. A truly human interface: interacting face-to-face with someone whose words are determined by a computer program

    Science.gov (United States)

    Corti, Kevin; Gillespie, Alex

    2015-01-01

    We use speech shadowing to create situations wherein people converse in person with a human whose words are determined by a conversational agent computer program. Speech shadowing involves a person (the shadower) repeating vocal stimuli originating from a separate communication source in real-time. Humans shadowing for conversational agent sources (e.g., chat bots) become hybrid agents (“echoborgs”) capable of face-to-face interlocution. We report three studies that investigated people’s experiences interacting with echoborgs and the extent to which echoborgs pass as autonomous humans. First, participants in a Turing Test spoke with a chat bot via either a text interface or an echoborg. Human shadowing did not improve the chat bot’s chance of passing but did increase interrogators’ ratings of how human-like the chat bot seemed. In our second study, participants had to decide whether their interlocutor produced words generated by a chat bot or simply pretended to be one. Compared to those who engaged a text interface, participants who engaged an echoborg were more likely to perceive their interlocutor as pretending to be a chat bot. In our third study, participants were naïve to the fact that their interlocutor produced words generated by a chat bot. Unlike those who engaged a text interface, the vast majority of participants who engaged an echoborg did not sense a robotic interaction. These findings have implications for android science, the Turing Test paradigm, and human–computer interaction. The human body, as the delivery mechanism of communication, fundamentally alters the social psychological dynamics of interactions with machine intelligence. PMID:26042066

  10. Information Technology in Human Resource Management: A Practical Evaluation

    Directory of Open Access Journals (Sweden)

    Manpreet Kaur

    2014-12-01

    Full Text Available This paper encloses a brief overview of number of observations on the applications of information technology (IT in the field of human resource management (HRM in general. Although the impact of IT on HRM has long been attracting the concern of academics, no pragmatic research has ever been realized in this field in India, and few studies have been reported elsewhere. The survey was conducted among the IT managers and professionals from various sectors, based on those results, the data shows that IT is used widely in the organizations to perform HRM functions in India’s dynamic economy. The results also shown that, while IT has an impact on all sectors in terms of HRM to certain extent, the types of IT used vary significantly between recruitment, maintenance, and development tasks. However, the observed results here disclosed that these organizations are not applying these technologies systematically and wisely in the performance of HRM functions.

  11. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis

    Directory of Open Access Journals (Sweden)

    Thalakkotur Lazar Mathew

    2015-02-01

    Full Text Available This review elucidates the technologies in the field of exhaled breath analysis. Exhaled breath gas analysis offers an inexpensive, noninvasive and rapid method for detecting a large number of compounds under various conditions for health and disease states. There are various techniques to analyze some exhaled breath gases, including spectrometry, gas chromatography and spectroscopy. This review places emphasis on some of the critical biomarkers present in exhaled human breath, and its related effects. Additionally, various medical monitoring techniques used for breath analysis have been discussed. It also includes the current scenario of breath analysis with nanotechnology-oriented techniques

  12. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  13. Impact of information technology on human resources in healthcare.

    Science.gov (United States)

    Anvari, Mehran

    2007-01-01

    Incorporation of advances in information communications technology (ICT) into the workplace has had a major impact in human resource utilization in sectors of the economy where it has occurred in a substantial manner, such as manufacturing and financial services. While some benefits of ICT have been realized in healthcare, the full impact of its benefits will only be realized if it is incorporated in a systematic form, rather than in the current patchy and uneven manner seen around the province and across the country to date.

  14. TECHNOLOGY AND INNOVATION IN HUMAN ACTIVITY OF THE INFORMATION AGE: HUMAN AND ICT

    Directory of Open Access Journals (Sweden)

    Oleksandr Yu. Burov

    2016-01-01

    Full Text Available In the article a brief overview of projects initiated by the U.S. National Science Foundation that related to new knowledge on integration and mutual development of social systems is proposed. The projects have a potential for transformation of science and researches, improvement of life quality and economy prosperity, as well as they should ensure outrunning development of information and communication technologies for all spheres of human activity: anthropocentric computerization, integration of information and informatics, robust intelligence, cyber-human systems, as well as two cross-technical areas - human and/or robots interaction, security and information protection.

  15. The avian influenza H9N2 at avian-human interface: A possible risk for the future pandemics

    Directory of Open Access Journals (Sweden)

    Shaghayegh RahimiRad

    2016-01-01

    Full Text Available The avian influenza subtype H9N2 is considered a low pathogenic virus which is endemic in domestic poultry of a majority of Asian countries. Many reports of seropositivity in occupationally poultry-exposed workers and a number of confirmed human infections with an H9N2 subtype of avian influenza have been documented up to now. Recently, the human infections with both H7N9 and H10N8 viruses highlighted that H9N2 has a great potential for taking a part in the emergence of new human-infecting viruses. This review aimed at discussing the great potential of H9N2 virus which is circulating at avian-human interface, for cross-species transmission, contribution in the production of new reassortants and emergence of new pandemic subtypes. An intensified surveillance is needed for controlling the future risks which would be created by H9N2 circulation at avian-human interfaces.

  16. Human Enhancement Technologies. Verso nuovi modelli antropologici Parte I

    Directory of Open Access Journals (Sweden)

    Luca Lo Sapio

    2013-01-01

    Full Text Available This paper deals with the important topic of human enhancement and tries to focus the question under a new perspective. The international debate is focused around two main theoretical positions: bio-conservatorism and techno-enthusiasm. We seem to be forced to choose one or another conception in order to understand the relationship between human beings and technology. The first part of the paper analyzes different authors trying to circumscribe the principal features of each one. We can notice two main paradigms which are incapable to rightly understand the phenomenon we are considering. The relieves emerging in the first part will be suitable to prosecute the analysis in the second part of the work.

  17. Managing information technology human resources in health care.

    Science.gov (United States)

    Mahesh, Sathiadev; Crow, Stephen M

    2012-01-01

    The health care sector has seen a major increase in the use of information technology (IT). The increasing permeation of IT into the enterprise has resulted in many non-IT employees acquiring IT-related skills and becoming an essential part of the IT-enabled enterprise. Health care IT employees work in a continually changing environment dealing with new specializations that are often unfamiliar to other personnel. The widespread use of outsourcing and offshoring in IT has introduced a third layer of complexity in the traditional hierarchy and its approach to managing human resources. This article studies 3 major issues in managing these human resources in an IT-enabled health care enterprise and recommends solutions to the problem.

  18. Far-infrared in vivo signature of human skin by terahertz time-domain spectroscopy using waveform rebuilding technology

    Science.gov (United States)

    Li, Xiangjun; Liu, Jianjun; Hong, Zhi

    2010-11-01

    We present terahertz time-domain spectroscopy characterization of human thumb skin in reflection measurement mode with waveform rebuilding technology. The thumb skin contacts one side of a high resistive silicon wafer with 3 mm thick, and here is an orthogonal incidence of the THz pulse putting on the other side of the wafer. We rebuild the time domain signal from silicon-skin interface as a sample signal by the signal from the air-silicon interface as a reference and a Fresnel transform function between them. Material parameters were calculated by minimizing the difference between the measured sample waveform and a rebuilt one in time domain. The double Debye model parameters for the thumb skin were fitted. The method has potential to research complex layer-structures in skin if a precise model is built.

  19. Measurement of electrode-tissue interface impedance for improvement of a transcutaneous data transmission using human body as transmission medium.

    Science.gov (United States)

    Okamoto, Eiji; Kato, Yoshikuni; Kikuchi, Sakiko; Mitamura, Yoshinori

    2014-01-01

    The electrical property between an electrode and skin or tissue is one of the important issues for communication performance of the transcutaneous communication system (TCS) using a human body as a conductive medium.In this study, we used a simple method to measure interface resistance between the electrode and skin on the surface of the body. The electrode-electrode impedance was measured by a commercially available LCR meter with changes in the distance between two electrodes on an arm of a healthy male subject, and we obtained the tissue resistivity and electrode-skin interface resistance using the cross-sectional area of the arm.We also measured transmission gain of the TCS on the surface of the body, and we investigated the relationship between electrode-skin interface resistance and transmission gain. We examined four kinds of electrodes: a stainless steel electrode, a titanium electrode, an Ag-AgCl electrode and an Ag-AgCl paste electrode. The stainless steel electrode, which had lower electrode-skin resistance, had higher transmission gain.The results indicate that an electrode that has lower electrode-skin resistance will contribute to improvement of the performance of the TCS and that electrode-skin interface resistance is one of valuable evaluation parameters for selecting an optimum electrode for the TCS.

  20. Design on the Control System of a Gait Rehabilitation Training Robot based on Brain-Computer Interface and Virtual Reality Technology

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2012-10-01

    Full Text Available In this paper a control system of a gait rehabilitation training robot based on Brain-Computer Interface (BCI and virtual reality technology is proposed, which makes the patients’ rehabilitation training process more interesting. A technique for measuring the mental states of the human and associated applications based on normal brain signals are examined and evaluated firstly. Secondly, the virtual game starts with the information from the BCI and then it runs in the form of a thread, with the singleton design pattern as the main mode. Thirdly, through the synergistic cooperation with the main software, the virtual game can achieve quick and effective access to blood oxygen, heart rate and other physiological information of the patients. At the same time, by means of the hardware control system, the start‐up of the gait rehabilitation training robot could be controlled accurately and effectively. Therefore, the plantar pressure information and the velocity information, together with the physiological information of the patients, would be properly reflected in the game lastly and the physical condition of the patients participating in rehabilitation training would also be reflected to a great extent.