WorldWideScience

Sample records for human intercellular adhesion

  1. Intercellular adhesion molecule-1 expression in human endometrium: implications for long term progestin only contraception

    Directory of Open Access Journals (Sweden)

    Kuczynski Edward

    2006-01-01

    Full Text Available Abstract Background Neutrophils infiltrate the endometrium pre-menstrually and after long-term progestin only-contraceptive (LTPOC treatment. Trafficking of neutrophils involves endothelial cell-expressed intercellular adhesion molecule (ICAM-1. Previous studies observed that ICAM-1 was immunolocalized to the endothelium of endometrial specimens across the menstrual cycle, but disagreed as to whether extra-endothelial cell types express ICAM-1 and whether ICAM-1 expression varies across the menstrual cycle. Methods Endometrial biopsies were obtained from women across the menstrual cycle and from those on LTPOC treatment (either Mirena or Norplant. The biopsies were formalin-fixed and paraffin-embedded with subsequent immunohistochemical staining for ICAM-1. Results The current study found prominent ICAM-1 staining in the endometrial endothelium that was of equivalent intensity in different blood vessel types irrespective of the steroidal or inflammatory endometrial milieu across the menstrual cycle and during LTPOC therapy. Unlike the endothelial cells, the glands were negative and the stromal cells were weakly positive for ICAM immunostaining. Conclusion The results of the current study suggest that altered expression of ICAM-1 by endothelial cells does not account for the influx of neutrophils into the premenstrual and LTPOC-derived endometrium. Such neutrophil infiltration may depend on altered expression of neutrophil chemoattractants.

  2. Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium.

    Science.gov (United States)

    Bharadwaj, Arpita S; Schewitz-Bowers, Lauren P; Wei, Lai; Lee, Richard W J; Smith, Justine R

    2013-10-23

    Autoimmune inflammation of the retina causes vision loss in the majority of affected individuals. Th1 or Th17 cells initiate the disease on trafficking from the circulation into the eye across the retinal vascular endothelium. We investigated the ability of human Th1- and Th17-polarized cells to cross a simulated human retinal endothelium, and examined the role of IgG superfamily members in this process. Th1- and Th17-polarized cell populations were generated from human peripheral blood CD4(+) T cells, using two Th1- and Th17-polarizing protocols. Transendothelial migration assays were performed over 18 hours in Boyden chambers, after seeding the transwell membrane with human retinal endothelial cells. In some assays intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), or activated leukocyte cell adhesion molecule (ALCAM) blocking antibody, or isotype- and concentration-matched control antibody, was added to the upper chambers. Th1- and Th17-polarized cells migrated equally efficiently across the human retinal endothelial monolayer. The percentage of IL-17(+) IFN-γ(-) Th17-polarized cells was reduced following migration. Blocking ICAM-1, but not VCAM-1 or ALCAM, significantly reduced migration of Th1- and Th17-polarized cells for a majority of human donors. Taken in the context of other literature on transendothelial migration, our results illustrate the importance of investigating the specific tissue and vascular endothelium when considering helper T cell migration in autoimmune inflammation. Our findings further indicate that while generalizations about involvement of specific adhesion molecules in uveitis and other autoimmune disease may be possible, these may not apply to individual patients universally. The observations are relevant to the use of adhesion blockade for therapeutic purposes.

  3. CXC chemokine ligand 12/stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1.

    Science.gov (United States)

    Tung, Shui-Yi; Chang, Shun-Fu; Chou, Ming-Hui; Huang, Wen-Shih; Hsieh, Yung-Yu; Shen, Chien-Heng; Kuo, Hsing-Chun; Chen, Cheng-Nan

    2012-10-25

    The CXC chemokine ligand 12 (CXCL12)/stromal cell-derived factor-1 (SDF-1) and CXC receptor 4 (CXCR4) axis is involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. Interaction between CRC cells and endothelium is a key event in tumor progression. The aim of this study was to investigate the effect of SDF-1 on the adhesion of CRC cells. Human CRC DLD-1 cells were used to study the effect of SDF-1 on intercellular adhesion molecule-1 (ICAM-1) expression and cell adhesion to endothelium. SDF-1 treatment induced adhesion of DLD-1 cells to the endothelium and increased the expression level of the ICAM-1. Inhibition of ICAM-1 by small interfering RNA (siRNA) and neutralizing antibody inhibited SDF-1-induced cell adhesion. By using specific inhibitors and short hairpin RNA (shRNA), we demonstrated that the activation of ERK, JNK and p38 pathways is critical for SDF-1-induced ICAM-1 expression and cell adhesion. Promoter activity and transcription factor ELISA assays showed that SDF-1 increased Sp1-, C/EBP-β- and NF-κB-DNA binding activities in DLD-1 cells. Inhibition of Sp1, C/EBP-β and NF-κB activations by specific siRNA blocked the SDF-1-induced ICAM-1 promoter activity and expression. The effect of SDF-1 on cell adhesion was mediated by the CXCR4. Our findings support the hypothesis that ICAM-1 up-regulation stimulated by SDF-1 may play an active role in CRC cell adhesion.

  4. Expression of intercellular and vascular cell adhesion molecules and class II major histocompatibility antigens in human lungs: lack of influence by conditions of organ preservation.

    Science.gov (United States)

    Hasegawa, S; Ritter, J H; Patterson, A; Ockner, D M; Sawa, H; Mohanakumar, T; Cooper, J D; Wick, M R

    1995-01-01

    The expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and class II major histocompatibility complex antigens was studied in control lung tissue and preserved human donor lungs. The three controls were represented by wedge biopsy specimens taken from non-neoplastic lung surrounding bronchogenic carcinomas. Nine lungs were harvested from six brain-dead donors, flushed with Euro-Collins solution or low potassium-dextran-glucose solution, and stored at 1 degree C or 10 degrees C. Samples of the latter organs were taken at the time of surgical harvest (baseline) and after 2, 12, 24, and 48 hours of preservation time. Immunostains with monoclonal antibodies against intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and class II major histocompatibility complex molecules were performed on all samples, and the relative presence of these determinants was evaluated. In both the controls and preserved lungs, intercellular adhesion molecule-1 expression was intense in the septal capillary endothelium and alveolar pneumocytes, but essentially absent in bronchial epithelium. Vascular cell adhesion molecule-1 was moderately to strongly labeled in the endothelia of large and small blood vessels of all types, and it was not seen in other cell types. Class II major histocompatibility complex antigens were variably observed in pulmonary epithelial cells, but they were not expressed by endothelia. There appeared to be no significant difference in the immunohistologic density of intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 immunostaining in allografts at the specified time points of preservation; this conclusion was confirmed by Western blot analysis. Similar findings pertained to staining results for human leukocyte DR antigens. There was likewise no significant difference in the expression of the three analytes when donor lungs perfused with Euro-Collins solution versus low potassium

  5. Motorcycle exhaust particles up-regulate expression of vascular adhesion molecule-1 and intercellular adhesion molecule-1 in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Chen-Chen; Huang, Shih-Hsuan; Yang, Ya-Ting; Cheng, Yu-Wen; Li, Ching-Hao; Kang, Jaw-Jou

    2012-06-01

    Epidemiological studies have shown that there is a strong correlation between atherosclerosis and ambient air pollution. In this study, we found that motorcycle exhaust particles (MEP) induced adhesion between cells of the human monocytic leukemia cell line (THP-1) and human umbilical vein endothelial cells (HUVECs) in a time-and dose-dependent manner. In addition, MEP treatment induced both mRNA and protein expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HUVECs. The IκB degradation and p65 nuclear translocation was found in MEP-treated HUVECs, suggested the involvement of nuclear factor-κB (NF-κB). MEP-induced VCAM-1 and ICAM-1 protein expression was inhibited by NF-κB inhibitor BAY 11-7085. Oxidative stress was also involved in the signaling of VCAM-1 and ICAM-1 expression. MEP treatment caused hydrogen peroxide and superoxide formation. Pretreatment with α-tocopherol could inhibit MEP-induced reactive oxygen intermediates generation and suppressed MEP-induced IκB degradation and adhesion molecules expression. Furthermore, the carbon black (CB) nanoparticles with different diameters could induce VCAM-1 and ICAM-1 protein expression; however, polycyclic aromatic hydrocarbons (PAHs) only increased the expression of ICAM-1 but not that of VCAM-1 in HUVECs. In this study, we found that MEPs could induce ICAM-1 and VCAM-1 expression through oxidative stress and NF-κB activation in HUVECs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Curcumin attenuates TNF-α-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and proinflammatory cytokines in human endometriotic stromal cells.

    Science.gov (United States)

    Kim, Ki-Hyung; Lee, Eun Na; Park, Jin Kyeong; Lee, Ja-Rang; Kim, Ji-Hyun; Choi, Hak-Jong; Kim, Bong-Seon; Lee, Hee-Woo; Lee, Kyu-Sup; Yoon, Sik

    2012-07-01

    Curcumin, a naturally occurring polyphenolic compound from Curcuma longa, has long been used in folk medicine as an antiinflammatory remedy in Asian countries. Endometriosis is a chronic gynecological inflammatory disorder in which immune system deregulation may play a role in its initiation and progression. A number of mediators, including cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1); proinflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-6 and IL-8; and chemokines such as monocyte chemotactic protein-1 (MCP-1), play key roles in the pathogenesis of endometriosis. The aim of our study was to explore the effect of curcumin on the expression of these critical molecules in human ectopic endometriotic stromal cells isolated from women with endometriosis. Endometriotic stromal cells treated with curcumin showed marked suppression of TNF-α-induced mRNA expression of ICAM-1 and VCAM-1. Curcumin treatment also significantly decreased the TNF-α-induced cell surface and total protein expression of ICAM-1 and VCAM-1 in a dose-dependent manner. In addition, treatment of endometriotic stromal cells with curcumin markedly inhibited TNF-α-induced secretion of IL-6, IL-8 and MCP-1. Furthermore, curcumin inhibited the activation of transcription factor NF-κB, a key regulator of inflammation, in human endometriotic stromal cells. These findings suggest that curcumin may have potential therapeutic uses in the prevention and treatment of endometriosis. Copyright © 2011 John Wiley & Sons, Ltd.

  7. [Effects of Porphyromonas gingivalis with different fimA genotypes on vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 production by human umbilical vein endothelial cells].

    Science.gov (United States)

    Cai, Shu-Yu; Lin, Yu-Xiang; Xiao, Li; He, Quan-Min; Ge, Song; Qian, Min-Zhang

    2011-06-01

    To investigate the effect of Porphyromonas gingivalis (Pg) with different fimA genotypes on vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) production by human umbilical vein endothelial cells (HUVEC). In the present study, PgATCC33277 (type I fimA genotype), WCSP 115 (type II fimA genotype), W83 (type IV fimA genotype), and Escherichia coli-lipopolysaccharide (Ec-LPS) were designed as experimental group 1, 2, 3, and positive control group, respectively, to stimulate HUVEC, and the un-stimulated HUVEC were analyzed as negative control group. The three strains of Pg were cultured anaerobically in standard condition, and then the Pg cells and Ec-LPS were co-cultured with HUVEC for 2, 6, and 24 h, respectively. The amount of ICAM-1 and VCAM-1 produced by HUVEC was detected with flow cytometry (FCM). The expression of ICAM-1 and VCAM-1 by HUVEC were assayed with confocal laser scanning microscope (CLSM). The expression of ICAM-1 on the surface of HUVEC were intensified after infected by Pg with I, II, and IV fimA genotypes (P 0.05). Expression of ICAM-1 and VCAM-1 in Pg infected HUVEC were confirmed by CLSM. Infection of HUVEC with Pg resulted in more fluorescence staining of ICAM-1 and VCAM-1 compared with that in uninfected HUVEC cultures. The virulence and pathogenicity of Pg is associated with its fimA genotypes, Pg with type II and IV fimA genes possess stronger ability to stimulate HUVEC to up-regulate the expression of cell adhesion molecules, which may lead to disorders in vascular endothelial function.

  8. Increased expression of intercellular adhesion molecules in biliary atresia.

    OpenAIRE

    Dillon, P.; Belchis, D.; Tracy, T.; Cilley, R.; Hafer, L.; Krummel, T

    1994-01-01

    The expression of the inflammatory adhesion molecules intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and endothelial leukocyte adhesion molecule-1, was studied in six infants with biliary atresia using an immunoperoxidase technique on frozen sections. Controls consisted of five patients with various conditions including total parenteral nutrition-induced cholestasis, choledochal cyst, viral hepatitis, metastatic carcinoma, and thrombotic thrombocytopenic purpura. None o...

  9. Intercellular adhesion molecules (ICAMs) and spermatogenesis.

    Science.gov (United States)

    Xiao, Xiang; Mruk, Dolores D; Cheng, C Yan

    2013-01-01

    During the seminiferous epithelial cycle, restructuring takes places at the Sertoli-Sertoli and Sertoli-germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move 'up and down' the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood-testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)-BTB-basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. ICAMs are crucial regulatory molecules of spermatogenesis. The proposed

  10. [Down-regulation of human intercellular adhesion molecule-1 expression in MCF-7 cells infected by lentiviral short hairpin RNA interference vectors].

    Science.gov (United States)

    Di, Dalin; Chen, Lei; Wang, Lina; Wang, Chengdong; Ju, Jiyu

    2015-08-01

    To construct lentiviral interference vectors of human intercellular adhesion molecule-1 (ICAM-1), then infect human breast cancer MCF-7 cells and identify the interference effects. Three short hairpin RNA (shRNA) interference sequences targeting human ICAM-1 gene (ICAM-1 shRNA1, ICAM-1 shRNA2 and ICAM-1 shRNA3) and a negative control sequence (NS) were designed, synthesized and cloned into the pLKO.1-SP6-PGK-GFP vector. After DNA sequencing, three plasmid-based lentiviral packaging system (vector plasmid-psPAX2-pMD2.G) was used to transfect HEK293T cells to package lentiviruses. The supernatants containing viruses were harvested to detect the viral titer. Human MCF-7 breast cancer cells were infected with the lentiviruses and the interference efficiency was detected by real-time quantitative PCR (qRT-PCR) and Western blotting. PCR showed that the designed sequences were successfully inserted into the pLKO.1-SP6-PGK-GFP vector and DNA sequencing results were correct. The qRT-PCR and Western blotting showed that the mRNA and protein expression levels of ICAM-1 in the infected MCF-7 cells decreased significantly in the ICAM-1 shRNA3 group. Lentiviral interference vectors of human ICAM-1 were constructed successfully and the expression of ICAM-1 in MCF-7 cells was down-regulated by ICAM-1 shRNA.

  11. Interleukin-1 alpha produced by human T-cell leukaemia virus type I-infected T cells induces intercellular adhesion molecule-1 expression on lung epithelial cells.

    Science.gov (United States)

    Nakayama, Yuko; Ishikawa, Chie; Tamaki, Kazumi; Senba, Masachika; Fujita, Jiro; Mori, Naoki

    2011-12-01

    The pathogenic mechanism of human T-cell leukaemia virus type I (HTLV-I)-related pulmonary disease, which involves overexpression of intercellular adhesion molecule-1 (ICAM-1) in lung epithelial cells, was investigated. The supernatant of HTLV-I-infected Tax(+) MT-2 and C5/MJ cells induced ICAM-1 expression on A549 cells, a human tumour cell line with the properties of alveolar epithelial cells. Neutralization of ICAM-1 partially inhibited HTLV-I-infected T-cell adhesion to A549 cells. Analysis of the ICAM-1 promoter showed that the nuclear factor-kappa B-binding site was important for supernatant-induced ICAM-1 expression. Induction of interleukin (IL)-1 alpha (IL-1α) expression in MT-2 and C5/MJ cells was observed compared with uninfected controls and HTLV-I-infected Tax-negative cell lines. The significance of IL-1α as a soluble messenger was supported by blocking the biological activities of MT-2 supernatant with an IL-1α-neutralizing mAb. Moreover, Tax and IL-1α expression was demonstrated in the bronchoalveolar lavage cells of patients with HTLV-I-related pulmonary disease. Immunohistochemistry confirmed ICAM-1 and IL-1α expression in lung epithelial cells and lymphocytes of patients with HTLV-I-related pulmonary diseases, and in a transgenic mouse model of Tax expression. These results suggest that IL-1α produced by HTLV-I-infected Tax(+) T cells is crucial for ICAM-1 expression in lung epithelial cells and subsequent adhesion of lymphocytes in HTLV-I-related pulmonary diseases. © 2011 SGM

  12. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Directory of Open Access Journals (Sweden)

    Sarah L Appleby

    Full Text Available Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+ population of non-adherent endothelial forming cells (naEFCs which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38 together with mature endothelial cell markers (VEGFR2, CD144 and CD31. These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8 or myeloid markers (CD11b and CD14 which distinguishes them from 'early' endothelial progenitor cells (EPCs. Functional studies demonstrated that these naEFCs (i bound Ulex europaeus lectin, (ii demonstrated acetylated-low density lipoprotein uptake, (iii increased vascular cell adhesion molecule (VCAM-1 surface expression in response to tumor necrosis factor and (iv in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs. Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  13. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    Science.gov (United States)

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  14. Levels Of Serum Intercellular And Vascular Adhesion Molecules In ...

    African Journals Online (AJOL)

    The study evaluated the possible significant role of soluble intercellular and vascular adhesion molecule-1 (sICAM-1 and sVCAM-1), sE-selectin and interluekin-1β in development nephropathy in patients with insulin dependent diabetes mellitus (IDDM). This study included 60 patients with type 1 diabetes mellitus (IDDM) ...

  15. Transcriptional activation of mRNA of intercellular adhesion molecule 1 and induction of its cell surface expression in normal human gingival fibroblasts by Mycoplasma salivarium and Mycoplasma fermentans.

    Science.gov (United States)

    Dong, L; Shibata, K; Sawa, Y; Hasebe, A; Yamaoka, Y; Yoshida, S; Watanabe, T

    1999-06-01

    Lipoproteins in the cell membranes of both Mycoplasma salivarium and Mycoplasma fermentans were demonstrated to trigger the transcription of intercellular adhesion molecule-1 mRNA in normal fibroblasts isolated from human gingival tissue and to induce its cell surface expression by a mechanism distinct from that of Escherichia coli lipopolysaccharide. The lipid moiety of the lipoproteins was suggested to play a key role in the expression of the activity.

  16. Vitamin E isoforms differentially regulate intercellular adhesion molecule-1 activation of PKCα in human microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiam Abdala-Valencia

    Full Text Available ICAM-1-dependent leukocyte recruitment in vivo is inhibited by the vitamin E isoform d-α-tocopherol and elevated by d-γ-tocopherol. ICAM-1 is reported to activate endothelial cell signals including protein kinase C (PKC, but the PKC isoform and the mechanism for ICAM-1 activation of PKC are not known. It is also not known whether ICAM-1 signaling in endothelial cells is regulated by tocopherol isoforms. We hypothesized that d-α-tocopherol and d-γ-tocopherol differentially regulate ICAM-1 activation of endothelial cell PKC.ICAM-1 crosslinking activated the PKC isoform PKCα but not PKCβ in TNFα-pretreated human microvascular endothelial cells. ICAM-1 activation of PKCα was blocked by the PLC inhibitor U73122, ERK1/2 inhibitor PD98059, and xanthine oxidase inhibitor allopurinol. ERK1/2 activation was blocked by inhibition of XO and PLC but not by inhibition of PKCα, indicating that ERK1/2 is downstream of XO and upstream of PKCα during ICAM-1 signaling. During ICAM-1 activation of PKCα, the XO-generated ROS did not oxidize PKCα. Interestingly, d-α-tocopherol inhibited ICAM-1 activation of PKCα but not the upstream signal ERK1/2. The d-α-tocopherol inhibition of PKCα was ablated by the addition of d-γ-tocopherol.Crosslinking ICAM-1 stimulated XO/ROS which activated ERK1/2 that then activated PKCα. ICAM-1 activation of PKCα was inhibited by d-α-tocopherol and this inhibition was ablated by the addition of d-γ-tocopherol. These tocopherols regulated ICAM-1 activation of PKCα without altering the upstream signal ERK1/2. Thus, we identified a mechanism for ICAM-1 activation of PKC and determined that d-α-tocopherol and d-γ-tocopherol have opposing regulatory functions for ICAM-1-activated PKCα in endothelial cells.

  17. The influence of propofol on the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in reoxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Leucocytes are a pivotal component of the inflammatory cascade that results in tissue injury in a large group of disorders. Free radical production and endothelial activation promote leucocyte-endothelium interactions via endothelial expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) which augment these processes, particularly in the setting of reperfusion injury. Propofol has antioxidant properties which may attenuate the increased expression of these molecules that is observed. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia, then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg mL(-1) or propofol 5 microg mL(-1), for 4 h after reoxygenation and were examined for ICAM-1 and VCAM-1 expression. RESULTS: Hypoxia did not increase the expression of ICAM-1\\/VCAM-1. ICAM-1 expression peaked 12 h after reoxygenation (21.75(0.6) vs. 9.6(1.3), P = 0.02). Propofol, but not Diprivan, prevented this increase (8.2(2.9) vs. 21.75(0.6), P = 0.009). VCAM-1 expression peaked 24 h after reoxygenation (9.8(0.9) vs. 6.6(0.6), P = 0.03). Propofol and Diprivan prevented this increase, with no difference between the two treatments observed (4.3(0.3) and 6.4(0.5) vs. 9.8(0.9), P = 0.001, 0.02, respectively). CONCLUSION: These effects are likely to be attributable to the antioxidant properties of propofol, and suggest that propofol may have a protective role in disorders where free radical mediated injury promotes leucocyte-endothelium adhesive interactions.

  18. [Human soluble dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin inhibits phagocytosis of Staphylococcus aureus by immature dendritic cells].

    Science.gov (United States)

    Li, Hui-Jie; Xu, Tian-Yu; Zhou, Jia; Zhu, Ling-Yan; Zhang, Li-Yun; Lu, Xiao; Chen, Zheng-Liang

    2015-04-01

    To study the effect and mechanism of soluble dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (sDC-SIGN) on the phagocytosis of Staphylococcus aureus (S. aureus) by immature dendritic cells (imDCs). Flow cytometry was employed to examine the effect of sDC-SIGN on the phagocytosis of S. aureus by imDCs. Enzyme-linked immunosorbent assay (ELISA) was used to analyze the binging of sDC-SIGN to S. aureus, lipoteichoic acid (LTA) and lipopolysaccharides (LPS) and investigate the effect of the ligands mannan and LTA and anti-DC-SIGN antibodies 1C6 and 4H3 on the binging of sDC-SIGN to S. aureus. sDC-SIGN inhibited the phagocytosis of S. aureus by imDCs. sDC-SIGN bound to S. aureus in a Ca(2+)-dependent manner. sDC-SIGN concentration-dependently bound to LTA, but not to LTA, and the binging of sDC-SIGN to S. aureus was blocked by mannan, LTA, 1C6 and 4H3. sDC-SIGN preferentially binds to the carbohydrate constituents on S. aureus to affect the binding between membrane-bound DC-SIGN and S. aureus, thus suppressing the phagocytosis of S. aureus by imDCs.

  19. Chrysanthemum morifolium Ramat. reduces the oxidized LDL-induced expression of intercellular adhesion molecule-1 and E-selectin in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lii, Chong-Kuei; Lei, Yen-Ping; Yao, Hsien-Tsung; Hsieh, Yun-Sheng; Tsai, Chia-Wen; Liu, Kai-Li; Chen, Haw-Wen

    2010-03-02

    The flower of Chrysanthemum morifolium Ramat. (CM) with antioxidant, cardiovascular protective and anti-inflammatory functions, has been widely used in China for hundreds of years as a healthy beverage and medicine. The purpose of the present study is to investigate the effects of HCM (a hot water extract of the flower of Chrysanthemum morifolium Ramat. [CM]), ECM (an ethanol extract of CM), and the abundant flavonoids apigenin and luteolin in CM on the oxidized LDL (oxLDL)-induced expression of ICAM-1 and E-selectin in human umbilical vein endothelial cells (HUVECs). The possible mechanism of these effects was also determined. MTT assay was for cell viability. Western blot was used for ICAM-1 and E-selection protein expression, and for activation of protein kinase B (PKB) and cAMP responsive element binding protein (CREB) proteins. Fluorescence flow cytometry was for ICAM-1 and E-selectin expression on cell surface. DCF-DA flow cytometric assay was used for reactive oxygen species (ROS) production. HCM, ECM, apigenin, and luteolin dose-dependently inhibited ICAM-1 and E-selectin expression and adhesion of HL-60 by oxLDL. HCM, ECM, apigenin, and luteolin reversed the inhibition of phosphorylation of Akt and CREB by oxLDL; however, this reversion was abolished by wortmannin. In addition, wortmannin abrogated the inhibitory effects of CM extracts, apigenin and luteolin on adhesion molecule expression. The ROS scavenging capability of HCM, ECM, apigenin, and luteolin proceeded dose-dependently in the presence of oxLDL. CM is a plant with cardiovascular-protective potential and the inhibitory effects of CM on ICAM-1 and E-selectin expression are, at least partially, attributed to its antioxidant activity and modulation of the PI3K/Akt signaling pathway. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Clock upregulates intercellular adhesion molecule-1 expression and promotes mononuclear cells adhesion to endothelial cells.

    Science.gov (United States)

    Gao, Yinghua; Meng, Dan; Sun, Ning; Zhu, Zhu; Zhao, Ran; Lu, Chao; Chen, Sifeng; Hua, Luchun; Qian, Ruizhe

    2014-01-10

    Clock is a basic helix-loop-helix (bHLH) transcription factor that plays important role in circadian rhythms of various physiological functions. Previous study showed that the expression of intercellular adhesion molecule-1 (ICAM-1) was reduced in the liver tissues of Clock mutant mice. However, how Clock regulates ICAM-1 expression and whether Clock affects cell adhesion function remain unknown. In the present study, we found that exogenous expression of Clock upregulated the gene expressions of ICAM-1 and other adhesion-related genes including VCAM1 and CCL-2, and increased the transcriptional activity of ICAM-1 in mouse brain microvascular endothelial cell lines. In contrast, loss of Clock decreased these gene expressions and ICAM-1 transcriptional activity. Chromatin immunoprecipitation (ChIP) assay revealed that Clock binds to the E-box-like enhancer of ICAM-1 gene. ICAM-1 gene showed rhythmic expression in endothelial cells after serum shock in vitro, suggesting ICAM-1 may be a Clock-controlled gene. Clock regulates the adhesion of mononuclear cells to endothelial cells via ICAM-1. Together, our findings show that Clock is a positive regulator of ICAM-1, and promotes the adhesion of mononuclear cells to endothelial cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Pyocyanin and its precursor phenazine-1-carboxylic acid increase IL-8 and intercellular adhesion molecule-1 expression in human airway epithelial cells by oxidant-dependent mechanisms.

    Science.gov (United States)

    Look, Dwight C; Stoll, Lynn L; Romig, Sara A; Humlicek, Alicia; Britigan, Bradley E; Denning, Gerene M

    2005-09-15

    Pseudomonas aeruginosa secretes numerous factors that alter host cell function and may contribute to disease pathogenesis. Among recognized virulence factors is the redox-active phenazine pyocyanin. We have recently demonstrated that the precursor for pyocyanin, phenazine-1-carboxylic acid (PCA), increases oxidant formation and alters gene expression in human airway epithelial cells. We report in this work that PCA and pyocyanin increase expression of ICAM-1 both in vivo and in vitro. Moreover, phenazines enhanced cytokine-dependent increases in IL-8 and ICAM-1. Antioxidant intervention studies indicated both similarities and differences between PCA and pyocyanin. The thiol antioxidant N-acetyl cysteine, extracellular catalase, and inducible NO synthase inhibitors inhibited ICAM-1 and IL-8 increases in response to both phenazines. However, pyocyanin was significantly more sensitive to N-acetylcysteine inhibition. Interestingly, hydroxyl radical scavengers inhibited the response to pyocyanin, but not to PCA. These studies suggest that P. aeruginosa phenazines coordinately up-regulate chemokines (IL-8) and adhesion molecules (ICAM-1) by mechanisms that are, at least in part, oxidant dependent. However, results indicate that the mechanisms by which PCA and pyocyanin exert their effects are not identical, and not all antioxidant interventions are equally effective in inhibiting phenazine-mediated proinflammatory effects.

  2. Oldenlandia diffusa suppresses metastatic potential through inhibiting matrix metalloproteinase-9 and intercellular adhesion molecule-1 expression via p38 and ERK1/2 MAPK pathways and induces apoptosis in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Chung, Tae-Wook; Choi, Hyunju; Lee, Ji-Min; Ha, Sun-Hyung; Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Chang, Young-Chae; Ha, Ki-Tae; Cho, Seung-Hak; Chang, Hyeun Wook; Lee, Young-Choon; Kim, Cheorl-Ho

    2017-01-04

    Oldenlandia diffusa (OD) has long been known as an apoptotic inducer in breast tumors in ethnomedicine. To scientifically confirm the anti-breast cancer effects of water, methanol (MeOH) and butanol (BuOH) extracts of O. diffusa on cell apoptosis, matrix metalloproteinases (MMPs), intercellular adhesion molecule (ICAM)-1 and intracellular signaling in MCF-7 breast cancer cells. MeOH extracts (MOD) and BuOH extracts (BOD) were prepared and examined for their ability to inhibit phorbol myristate acetate (PMA)-induced matrix metalloproteinase (MMP)-9 and intercellular adhesion molecule (ICAM)-1 expressions in MCF-7 human breast cancer cells. Additionally, transwell migration, invasion and transcriptional activity were assessed. Results of immunofluorescence confocal microscopy for translocation of NF-κB and p-ERK and p-p38 were also checked. Finally, apoptotic signals including processed caspase-8, caspase-7, poly ADP-ribose polymerase, Bax and Bcl-2 were examined. MOD and BOD specifically inhibited PMA-induced MMP-9 expression as well as invasive and migration potential via ICAM-1. The inhibitory activity was also based on the suppressed transcriptional activity in MCF-7 breast cancer cells. Results of immunofluorescence confocal microscopy showed that translocation of NF-κB decreased upon BOD and MOD treatments, with a decreased level of p-ERK and p-p38 phosphorylation. In addition, treatment of MCF-7 cells with MOD and BOD activated apoptosis-linked proteins including enzymatically active forms of processed caspase-8, caspase-7 and poly ADP-ribose polymerase, together with increased expression of mitochondrial apoptotic protein, Bax and decreased expression of Bcl-2. The results indicate that OD as an anti-metastatic agent suppresses the metastatic response by targeting p-ERK, p-38 and NF-κB, thus reducing the invasion capacity of MCF-7 breast cancer cells through inhibition of MMP-9 and ICAM-1 expression and plays an important role in the regulation of breast

  3. The association between soluble intercellular adhesion molecule-1 levels in drained dialysate and peritoneal injury in peritoneal dialysis.

    Science.gov (United States)

    Igarashi, Yusuke; Morishita, Yoshiyuki; Yoshizawa, Hiromichi; Imai, Reika; Imai, Toshimi; Hirahara, Ichiro; Akimoto, Tetsu; Ookawara, Susumu; Ishibashi, Kenichi; Muto, Shigeaki; Nagata, Daisuke

    2017-11-01

    Chronic inflammation of the peritoneum causes peritoneal injury in patients on peritoneal dialysis. Intercellular adhesion molecule-1 and its circulating form, soluble intercellular adhesion molecule-1, play pivotal roles in inflammation. However, their role in peritoneal injury is unclear. We measured changes in intercellular adhesion molecule-1 expression in the peritoneum of a peritoneal injury model in rats. The associations between soluble intercellular adhesion molecule-1 levels in drained dialysate and the solute transport rate (D/P-Cr and D/D0-glucose) determined by the peritoneal equilibration test, and matrix metalloproteinase-2 levels in drained dialysate were investigated in 94 peritoneal drained dialysate samples. Intercellular adhesion molecule-1 expression was increased in the peritoneum of rats with peritoneal injury. Soluble intercellular adhesion molecule-1 levels in drained dialysate were significantly positively correlated with D/P-Cr (r = .51, p molecule-1expression is increased in the peritoneum of a peritoneal injury model in the rat, and soluble intercellular adhesion molecule-1 levels in drained dialysate are associated with peritoneal injury in patients on peritoneal dialysis. These results suggest that soluble intercellular adhesion molecule-1 could be a novel biomarker of peritoneal injury in patients on peritoneal dialysis.

  4. Proteins Play Important Role in Intercellular Adhesion Affecting on Fruit Textural Quality

    DEFF Research Database (Denmark)

    Bahadur Adhikari, Khem; Shomer, Ilan

    2012-01-01

    Fruit textural quality is becoming a major quality parameter for export, postharvest preservation, handling and processing. The main determinant of textural quality is intercellular adhesion (ICA) as attributed by the cell wall (CW) and its components. The importance of CW protein in ICA strength...

  5. Signals mediating cleavage of intercellular adhesion molecule-1.

    Science.gov (United States)

    Tsakadze, Nina L; Sen, Utpal; Zhao, Zhendong; Sithu, Srinivas D; English, William R; D'Souza, Stanley E

    2004-07-01

    ICAM-1, a membrane-bound receptor, is released as soluble ICAM-1 in inflammatory diseases. To delineate mechanisms regulating ICAM-1 cleavage, studies were performed in endothelial cells (EC), human embryonic kidney (HEK)-293 cells transfected with wild-type (WT) ICAM-1, and ICAM-1 containing single tyrosine-to-alanine substitutions (Y474A, Y476A, and Y485A) in the cytoplasmic region. Tyrosine residues at 474 and 485 become phosphorylated upon ICAM-1 ligation and associate with signaling modules. Cleavage was assessed by using an antibody against the cytoplasmic tail of ICAM-1, which recognizes intact ICAM-1 and the 7-kDa membrane-bound fragment remaining after cleavage. Cleavage in HEK-293 WT cells was accelerated by phorbol ester PMA, whereas in EC it was induced by tumor necrosis factor-alpha. In both cell types, a 7-kDa ICAM-1 remnant was detected. Tyrosine phosphatase inhibitors dephostatin and sodium orthovanadate augmented cleavage. PD-98059 (MEK kinase inhibitor), geldanamycin and PP2 (Src kinase inhibitors), and wortmannin (phosphatidylinositol 3-kinase inhibitor) dose-dependently inhibited cleavage in both cell types. SB-203580 (p38 inhibitor) was more effective in EC, and D609 (PLC inhibitor) mostly affected cleavage in HEK-293 cells. Cleavage was drastically decreased in Y474A and Y485A, whereas it was marginally reduced in Y476A. Surprisingly, phosphorylation was not detectable on the 7-kDa fragment of ICAM-1. These results implicate distinct pathways in the cleavage process and suggest a preferred signal transmission route for ICAM-1 shedding in the two cell systems tested. Tyrosine residues Y474 and Y485 within the cytoplasmic sequence of ICAM-1 regulate the cleavage process.

  6. Hydrogen sulfide suppresses high glucose-induced expression of intercellular adhesion molecule-1 in endothelial cells.

    Science.gov (United States)

    Guan, Qingbo; Wang, Xiaolei; Gao, Ling; Chen, Jicui; Liu, Yuantao; Yu, Chunxiao; Zhang, Nan; Zhang, Xu; Zhao, Jiajun

    2013-09-01

    Hydrogen sulfide (H₂S) is a newly identified endogenous gasotransmitter that has been implicated in the pathophysiology of several biologic systems. However, the role of H₂S in the pathogenesis of diabetic vascular injury remains unclear. The aims of this study were to determine the effect of H₂S on the high glucose (HG)-induced expression of intercellular adhesion molecule-1 (ICAM-1) in human umbilical vein endothelial cells and to explore the possible underlying mechanisms. Human umbilical vein endothelial cells were exposed either to a normal concentration of D-glucose (5.5 mmol/L) or to HG (16.7 mmol/L) in the absence or presence of NaHS for the indicated periods. The ICAM-1 protein and messenger RNA (mRNA) levels were analyzed by Western blotting and real-time reverse transcriptase-polymerase chain reaction, respectively. Exposure to HG for 48 or 72 hours significantly increased ICAM-1 expression at both the protein and mRNA levels, and these increases correlated with increases in both the production of intracellular reactive oxygen species and the activation of nuclear factor-κB. Pretreatment with NaHS inhibited HG-induced ICAM-1 expression at both the protein and mRNA levels and resulted in a reduction in the intracellular reactive oxygen species level and the suppression of nuclear factor-κB activity. NaHS also inhibited tumor necrosis factor-α-induced ICAM-1 protein expression, which was similar to the effect of antioxidant N-acetyl-L-cysteine. These findings indicate that H₂S might protect against HG-induced vascular damage by down-regulating ICAM-1 expression in endothelial cells.

  7. Experimental rhinovirus 16 infection increases intercellular adhesion molecule-1 expression in bronchial epithelium of asthmatics regardless of inhaled steroid treatment

    NARCIS (Netherlands)

    Grünberg, K; Sharon, R F; Hiltermann, T J; Brahim, J J; Dick, E C; Sterk, P J; Van Krieken, J H

    BACKGROUND: Rhinovirus infections in airway epithelial cells in vitro have been shown to upregulate intercellular adhesion molecule-1 (ICAM-1) expression. Epithelial ICAM-1, in its dual role as the major rhinovirus receptor and as adhesion molecule for inflammatory cells may be involved in the

  8. A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Stina Wichert

    Full Text Available Smoldering multiple myeloma (SMM is an indolent disease stage, considered to represent the transition phase from the premalignant MGUS (Monoclonal Gammopathy of Undetermined Significance state towards symptomatic multiple myeloma (MM. Even though this diagnosis provides an opportunity for early intervention, few treatment studies have been done and the current standard of care is observation until progression. BI-505, a monoclonal antibody directed against intercellular adhesion molecule 1 (ICAM-1 with promising anti-myeloma activity in preclinical trials, is a possible treatment approach for this patient category with potential to eliminate tumor cells with minimal long-term side effects. BI-505 was well tolerated in an earlier phase 1 trial.In this phase 2 trial the effects of BI-505 in patients with SMM were studied. Four patients were enrolled and three of them completed the first cycle of treatment defined as 5 doses of BI-505, a total of 43 mg/kg BW, over a 7-week period. In the three evaluable patients, BI-505 showed a benign safety profile. None of the patients achieved a response as defined per protocol. EudraCT number: 2012-004884-29.The study was conducted to assess the efficacy, safety and pharmacodynamics of BI-505 in patients with SMM. BI-505 showed no clinically relevant efficacy on disease activity in these patients with SMM, even if well tolerated.ClinicalTrials.gov Identifier: NCT01838369.

  9. A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma.

    Science.gov (United States)

    Wichert, Stina; Juliusson, Gunnar; Johansson, Åsa; Sonesson, Elisabeth; Teige, Ingrid; Wickenberg, Anna Teige; Frendeus, Björn; Korsgren, Magnus; Hansson, Markus

    2017-01-01

    Smoldering multiple myeloma (SMM) is an indolent disease stage, considered to represent the transition phase from the premalignant MGUS (Monoclonal Gammopathy of Undetermined Significance) state towards symptomatic multiple myeloma (MM). Even though this diagnosis provides an opportunity for early intervention, few treatment studies have been done and the current standard of care is observation until progression. BI-505, a monoclonal antibody directed against intercellular adhesion molecule 1 (ICAM-1) with promising anti-myeloma activity in preclinical trials, is a possible treatment approach for this patient category with potential to eliminate tumor cells with minimal long-term side effects. BI-505 was well tolerated in an earlier phase 1 trial. In this phase 2 trial the effects of BI-505 in patients with SMM were studied. Four patients were enrolled and three of them completed the first cycle of treatment defined as 5 doses of BI-505, a total of 43 mg/kg BW, over a 7-week period. In the three evaluable patients, BI-505 showed a benign safety profile. None of the patients achieved a response as defined per protocol. EudraCT number: 2012-004884-29. The study was conducted to assess the efficacy, safety and pharmacodynamics of BI-505 in patients with SMM. BI-505 showed no clinically relevant efficacy on disease activity in these patients with SMM, even if well tolerated. ClinicalTrials.gov Identifier: NCT01838369.

  10. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.

    Science.gov (United States)

    Goh, Qingnian; Dearth, Christopher L; Corbett, Jacob T; Pierre, Philippe; Chadee, Deborah N; Pizza, Francis X

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line

    DEFF Research Database (Denmark)

    Holland, J; Owens, T

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1) (CD54) is an adhesion molecule of the immunoglobulin superfamily. The interaction between ICAM-1 on B lymphocytes and leukocyte function-associated antigen 1 on T cells plays a major role in several aspects of the immune response, including T-dependent B...... investigate the biochemical mechanism for the signaling role of ICAM-1. We show that cross-linking of ICAM-1 on the B lymphoma line A20 induces an increase in tyrosine phosphorylation of several cellular proteins, including the Src family kinase p53/p56(lyn). In vitro kinase assays showed that Lyn kinase...... to various ICAM-1-elicited cellular responses. These data confirm the important role of ICAM-1 as a signaling molecule in B cell activation....

  12. Intercellular adhesion molecule-1 blockade attenuates inflammatory response and improves microvascular perfusion in rat pancreas grafts.

    Science.gov (United States)

    Preissler, Gerhard; Eichhorn, Martin; Waldner, Helmut; Winter, Hauke; Kleespies, Axel; Massberg, Steffen

    2012-10-01

    After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.

  13. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  14. Brain-Derived Neurotrophic Factor Inhibits Intercellular Adhesion Molecule-1 Expression in Interleukin-1β-Treated Endothelial Cells.

    Science.gov (United States)

    Takeda, Katsuhiro; Obinata, Yusuke; Konishi, Akihiro; Kajiya, Mikihito; Matsuda, Shinji; Mizuno, Noriyoshi; Sasaki, Shinya; Fujita, Tsuyoshi; Kurihara, Hidemi

    2016-09-01

    Brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration. Tissue regeneration is characterized by inflammation, which directs the quality of tissue repair. The objective of this study is to propose the relevance of BDNF to inflammation. In this study, we investigated the effect of BDNF on intercellular adhesion molecule (ICAM)-1, which is an inflammatory marker, expressed in interleukin (IL)-1β-treated human microvascular endothelial cells (HMVECs). In addition, we studied the effect of BDNF on the adhesion of neutrophil-like differentiated HL-60 cells to HMVECs in a cell adhesion assay. We demonstrated that BDNF attenuates the IL-1β-induced ICAM-1 mRNA and protein expression. Treatment of HMVECs with IL-1β led to an increase in the number of adherent neutrophil-like HL-60 cells. BDNF significantly decreased the number of neutrophil-like HL-60 cells attached to HMVECs. In conclusion, BDNF may reduce excess inflammation through reduced neutrophil recruitment by regulating ICAM-1 expression.

  15. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    Science.gov (United States)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  16. Tetraspanins in intercellular adhesion of polarized epithelial cells: spatial and functional relationship to integrins and cadherins.

    Science.gov (United States)

    Yáñez-Mó, M; Tejedor, R; Rousselle, P; Sánchez -Madrid, F

    2001-02-01

    The subcellular distribution of tetraspanin molecules and their functional relationship with integrins in cell-cell adhesion was studied in detail in different polarized epithelial cell models. CD9, CD81 and CD151 tetraspanins were localized at lateral cell-cell contact sites in a similar distribution to E-cadherin. Interestingly, CD9 was partially localized at the apical microvillae of Madin-Darby canine kidney cells forming multimolecular complexes distinct from those found on the basolateral membrane, suggesting the coexistence of differential tetraspanin webs with different subcellular localization. We found that tetraspanin-associated beta1 integrins at cell-to-cell contacts were in a low-affinity conformational state, and that their localization at intercellular contacts was independent of cadherin expression and adhesion. Furthermore, integrin-tetraspanin complexes were functionally relevant in cell-cell adhesion in a cadherin-independent manner, without requiring a conformational change of the integrin moiety. Nevertheless, the integrin alpha3beta1 was ligand-binding competent and this binding did not disrupt association to tetraspanins. Moreover, Chinese hamster ovary cells treated with anti-tetraspanin mAbs or activatory anti-beta1 integrin mAbs were able to develop tubule-like structures. Together, these data support tetraspanin association as a new regulatory mechanism of integrin function and suggest a role for tetraspanins-integrin complexes in providing the cell with the spatial cues necessary for their proper polarization.

  17. [Effect of Intercellular Adhesion Molecule-1 on Adherence Between Mesenchymal Stem Cells and Endothelial Progenitor Cells].

    Science.gov (United States)

    Guo, Jun; Xia, Jie; Zhang, Hong-Wei; Wang, Xiao-Yi; Hou, Ji-Xue; Chen, Xue-Ling; Wu, Xiang-Wei

    2016-02-01

    To investigate the effects of intercellular adhesion molecule-1(ICAM-1) on the adherence between mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC). MSC and EPC were isolated, cultured and expanded from the 6-8 weeks aged C57BL/6 murine bone marrow by in vitro. Immuno-fluorescence was used to detect the expression of ICAM-1 in MSC group, EPC group and co-cultured MSC and EPC group. The mRNA and protein levels of ICAM-1 were detected by RT-PCR and Western blot respectively, then, the ICAM-1 adherence between MSC and EPC was observed by adding different concentration of neutralizing antibody. The expression of ICAM-1 on surface of MSC and EPC could be detected by cell immunofluorescence method. According to results of the semiquantitative fluorescene detection, the fluorescence strength of MSC+EPC co-cultured group (89.02 ± 24.52) was higher than that of MSC group (31.25 ± 2.95) and EPC group (34.32 ± 5.02), and there was statistical difference between them (P 0.05). RT-PCR detection showed that the expression levels of ICAM-1 in MSC+EPC co-cultured group were higher than that in MSC group and that in EPC group (P adhesion capability of MSC and EPC was gradually decreasing. The ICAM-1 can mediate the adherence process between MSC and EPC.

  18. Loss of intercellular adhesion leads to differential accumulation of hypericin in bladder cancer

    Science.gov (United States)

    Lucky, S. Sasidharan; Bhuvaneswari, Ramaswamy; Chin, William W. L.; Lau, Weber K. O.; Olivo, Malini C. D.

    2009-06-01

    Photodynamic diagnosis (PDD) exploits the photoactive nature of certain compounds, namely photosensitizers, in order to enhance the visual demarcation between normal and neoplastic tissue. Hypericin is one such potent photosensitizer that preferentially accumulate in neoplastic tissue, and fluoresce in the visible spectrum when illuminated with light of an appropriate wavelength. In our study, we investigated the role of E-cadherin in the selective permeation of hypericin in bladder cancer tissues. Clinical studies were done on a series of 43 histologically graded bladder cancer biopsy specimens, obtained from 28 patients who received intravesical instillations with 8μM hypericin solution for at least 2 hours. Immunohistochemical staining was used to assess the expression of E-cadherin, in the cryosectioned tissues. Hypericin uptake was examined by fluorescence microscopy. Immunohistochemical staining showed a clear expression of E-cadherin along the urothelial lining of the normal and pre-malignant tissues. Partial expression of these cell adhesion molecules were still observed in malignant tissues, however there was a loss of expression to variable extends along the urothelium. Thus, loss of intercellular adhesion can be associated with enhanced hypericin permeation through paracellular diffusion.

  19. Cellular constituent and intercellular adhesion in Schistosoma mansoni granuloma: an ultrastructural study.

    Science.gov (United States)

    Mansy, S S

    1998-04-01

    The present work deals with the structural analysis of Schistosoma mansoni granuloma and the visualization of cellular interaction at an ultrastuctural level in the acute (8 weeks) and chronic (20 weeks) stages of infection, for more detailed understanding of pathophysiology of the disease. Although, S. mansoni granuloma is mediated by T-lymphocytes, yet in this work the macrophage cells and not the lymphocytes represented the main cell type in cellular and fibrocellular granulomas. The cellular and fibrocellular granulomas detected in the acute stage of infection elicited no difference in cellular constituent to those of the chronic stage respectively. Macrophage cells and fibrocytes were the only cell type detected in fibrotic granuloma. The monocytes may be considered the first cell reaching the site of the trapped egg as they formed the first row of cells around the egg. The cellular infiltrate forming the granuloma: monocytes, macrophages, lymphocytes, eosinophils, fibroblasts and plasma cells revealed direct contact or adherence between them and even between the individual cell type, through extending protrusion from the cell membrane of adjacent cells. They constituted an integrated network which encircled the egg. Similar adhesion between inflammatory cells in the blood vessels and between the inflammatory cells and the endothelial cells were displayed. These points of intercellular adhesion appeared as if, not only used for functional communication between the cells, but also for cellular deplacement either in the extracellular matrix or in the blood stream until extravasation. In conclusion, S. mansoni granuloma is a highly organized cellular lesion, in which cell to cell communication occurs through direct cell contact.

  20. Association of Intercellular Adhesion Molecule 1 (ICAM1 with Diabetes and Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Harvest F Gu

    2013-01-01

    Full Text Available Diabetes and diabetic nephropathy are complex diseases affected by genetic and environmental factors. Identification of the susceptibility genes and investigation of their roles may provide useful information for better understanding of the pathogenesis and for developing novel therapeutic approaches. Intercellular adhesion molecule 1 (ICAM1 is a cell surface glycoprotein expressed on endothelial cells and leukocytes in the immune system. The ICAM1 gene is located on chromosome 19p13 within the linkage region of diabetes. In the recent years, accumulating reports have implicated that genetic polymorphisms in the ICAM1 gene are associated with diabetes and diabetic nephropathy. Serum ICAM1 levels in diabetes patients and the icam1 gene expression in kidney tissues of diabetic animals are increased compared to the controls. Therefore, ICAM1 may play a role in the development of diabetes and diabetic nephropathy. In this review, we present genomic structure, variation and regulation of the ICAM1 gene, summarized genetic and biological studies of this gene in diabetes and diabetic nephropathy and discussed about the potential application using ICAM1 as a biomarker and target for prediction and treatment of diabetes and diabetic nephropathy.

  1. Effects of a thrombomodulin-derived peptide on monocyte adhesion and intercellular adhesion molecule-1 expression in lipopolysaccharide-induced endothelial cells.

    Science.gov (United States)

    Xu, Yan; Xu, Xun; Jin, Huiyi; Yang, Xiaolu; Gu, Qing; Liu, Kun

    2013-01-01

    It has been documented that GC31, a 31-animo acid peptide from human thrombomodulin, has potent anti-inflammatory properties in endotoxin-induced uveitis and lipopolysaccharide (LPS)-induced RAW264.7 cells, while the role of GC31 in the endothelial cells has not yet been fully understood. Therefore, the aim of this study was to explore the effect of GC31 on intercellular adhesion molecule-1 (ICAM-1) expression in LPS-activated endothelial cells. Human umbilical vein endothelial cells (HUVECs) were incubated with LPS (1 μg/ml) and peptide GC31 or control peptide VP30 simultaneously. ICAM-1 messenger RNA and protein levels were evaluated with real-time PCR and western blot. The adhesion of U937 cells labeled with CM-H2DCFDA to HUVECs was examined with fluorescence microscope. Extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) activation, inhibitor of nuclear factor kappa B alpha (IκBα) degradation, and nuclear factor kappa B (NF-κB) nuclear translocation were detected with western blot. Upon LPS stimulation, GC31 suppressed the mRNA and protein expression of ICAM-1 in HUVECs and remarkably reduced monocyte-endothelial cell adhesion in a dose-dependent manner. Furthermore, GC31 significantly inhibited the degradation of IκBα and nuclear translocation of NF-κB and moderately blocked the activation of p38 MAPK and ERK1/2 in activated HUVECs. Our results suggested that GC31 suppressed LPS-mediated ICAM-1 expression by inhibiting the activation of NF-κB and partially by attenuating the activity of ERK1/2 and p38 MAPK in vascular endothelium, which may contribute to ameliorating vascular inflammatory diseases, such as uveitis.

  2. Intercellular adhesion molecule 1 promotes HIV-1 attachment but not fusion to target cells.

    Directory of Open Access Journals (Sweden)

    Naoyuki Kondo

    Full Text Available Incorporation of intercellular adhesion molecule 1 (ICAM-1 into HIV-1 particles is known to markedly enhance the virus binding and infection of cells expressing lymphocyte function-associated antigen-1 (LFA-1. At the same time, ICAM-1 has been reported to exert a less pronounced effect on HIV-1 fusion with lymphoid cells. Here we examined the role of ICAM-1/LFA-1 interactions in productive HIV-1 entry into lymphoid cells using a direct virus-cell fusion assay. ICAM-1 promoted HIV-1 attachment to cells in a temperature-dependent manner. It exerted a marginal effect on virus binding in the cold, but enhanced binding up to 4-fold at physiological temperature. ICAM-1-independent attachment in the cold was readily reversible upon subsequent incubation at elevated temperature, whereas ICAM-1-bearing particles were largely retained by cells. The better virus retention resulted in a proportional increase in HIV-1 internalization and fusion, suggesting that ICAM-1 did not specifically accelerate endocytosis or fusion steps. We also measured the rates of CD4 engagement, productive endocytosis and HIV-endosome fusion using specific fusion inhibitors. These rates were virtually independent of the presence of ICAM-1 in viral particles. Importantly, irrespective of the presence of ICAM-1, HIV-1 escaped from the low temperature block, which stopped virus endocytosis and fusion, much later than from a membrane-impermeant fusion inhibitor targeting surface-accessible particles. This result, along with the complete inhibition of HIV-1 fusion by a small molecule dynamin inhibitor, implies this virus enters lymphoid cells used in this study via endocytosis and that this pathway is not altered by the viral ICAM-1. Our data highlight the role of ICAM-1 in stabilizing the HIV-1 attachment to LFA-1 expressing cells, which leads to a proportional enhancement of the receptor-mediated uptake and fusion with endosomes.

  3. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis.

    Science.gov (United States)

    Kotteas, Elias A; Boulas, Panagiotis; Gkiozos, Ioannis; Tsagkouli, Sofia; Tsoukalas, George; Syrigos, Konstantinos N

    2014-09-01

    The intercellular cell-adhesion molecule-1 (ICAM-1) is a transmembrane molecule and a distinguished member of the Immunoglobulin superfamily of proteins that participates in many important processes, including leukocyte endothelial transmigration, cell signaling, cell-cell interaction, cell polarity and tissue stability. ICAM-1and its soluble part are highly expressed in inflammatory conditions, chronic diseases and a number of malignancies. In the present article we present the implications of ICAM-1 in the progression and prognosis of one of the major global killers of our era: lung cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Soluble Inter-Cellular Adhesion Molecule-1 in Urban Asian North Indians: Relationships with Anthropometric and Metabolic Covariates

    Directory of Open Access Journals (Sweden)

    Astha Sethi

    2002-01-01

    Full Text Available Background: High prevalence of diabetes, obesity, and dyslipidemias in people belonging to poor socio-economic strata in urban slums of northern India has been recorded recently. To assess whether this population has high levels of soluble intercellular adhesion molecule-1 (sICAM-1, a cytokine involved in the pathogenesis of atherosclerosis, we investigated subjects belonging to poor socio-economic strata in urban slums and compared them to healthy control subjects from non-slum urban areas of New Delhi.

  5. L-tetrahydropalamatine inhibits tumor necrosis factor-α-induced monocyte-endothelial cell adhesion through downregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 involving suppression of nuclear factor-κ B signaling pathway.

    Science.gov (United States)

    Yang, Bin-rui; Yu, Nan; Deng, Yan-hui; Hoi, Pui Man; Yang, Bin; Liu, Guang-yu; Cong, Wei-hong; Lee, Simon Ming-yuen

    2015-05-01

    To investigate whether I-tetrahydropalmatine (I-THP), an alkaloid mainly present in Corydalis family, could ameliorate early vascular inflammatory responses in atherosclerotic processes. Fluorescently labeled monocytes were co-incubated with human umbilical vein endothelial cells (HUVECs), which were pretreated with I-THP and then simulated with tumor necrosis factor (TNF)-α in absence of I-THP to determine if I-THP could reduce thecytokine-induced adhesion of monocytes to HUVECs. Then I-THP were further studied the underlying mechanisms through observing the transcriptional and translational level of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the nuclear translocation of nuclear factor (NF)-κ B in HUVECs. L-THP could block TNF-α-induced adhesion of monocytes to HUVECs and could significantly inhibited the expression of ICAM-1 and VCAM-1 on cell surface by 31% and 36% at 30 μ mol/L. L-THP pretreatment could also markedly reduce transcriptional and translational level of VCAM-1 as well as mildly reduce the total protein and mRNA expression levels of ICAM-1. Furthermore, I-THP attenuated TNF-α-stimulated NF-κ B nuclear translocation. These results provide evidences supporting that I-THP could be a promising compound in the prevention and treatment of the early vascular inflammatory reaction in atherosclerosis by inhibiting monocyte adhesion to vascular endothelial cell through downregulating ICAM-1 and VCAM-1 in vascular endothelial cell based on suppressing NF-κ B.

  6. Identification and characterisation of human Junctional Adhesion Molecule (JAM).

    Science.gov (United States)

    Williams, L A; Martin-Padura, I; Dejana, E; Hogg, N; Simmons, D L

    1999-12-01

    It is widely believed that migrating immune cells utilise the intercellular junctions as routes of passage, and in doing so cause the transient disruption of junctional structures. Thus there is much interest in the molecules that have been identified at cell-cell contact points and their potential involvement in the control of leukocyte diapedesis. In this report we describe the human orthologue to Junctional Adhesion Molecule (JAM), a recently identified member of the immunoglobulin superfamily expressed at intercellular junctions (Martin-Padura et al., 1998). The human protein shares a highly conserved structure and sequence with the murine protein. However it is distinct in that it is constitutively expressed on circulating neutrophils, monocytes, platelets and lymphocyte subsets. This broad expression pattern is similar to another IgSF molecule, CD31, expressed at intercellular junctions, and may indicate further complexities in the control of leukocyte/ endothelial interactions.

  7. Activated endothelial interleukin-1beta, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine.

    LENUS (Irish Health Repository)

    Lan, Wei

    2012-02-03

    Endothelial cells play a key role in ischemia reperfusion injury. We investigated the effects of lidocaine on activated human umbilical vein endothelial cell (HUVEC) interleukin (IL)-1beta, IL-6, and IL-8 concentrations and intercellular adhesion molecule-1 (ICAM-1) expression. HUVECs were pretreated with different concentrations of lidocaine (0 to 0.5 mg\\/mL) for 60 min, thereafter tumor necrosis factor-alpha was added at a concentration of 2.5 ng\\/mL and the cells incubated for 4 h. Supernatants were harvested, and cytokine concentrations were analyzed by enzyme-linked immunosorbent assay. Endothelial ICAM-1 expression was analyzed by using flow cytometry. Differences were assessed using analysis of variance and post hoc unpaired Student\\'s t-test where appropriate. Lidocaine (0.5 mg\\/mL) decreased IL-1beta (1.89 +\\/- 0.11 versus 4.16 +\\/- 1.27 pg\\/mL; P = 0.009), IL-6 (65.5 +\\/- 5.14 versus 162 +\\/- 11.5 pg\\/mL; P < 0.001), and IL-8 (3869 +\\/- 785 versus 14,961 +\\/- 406 pg\\/mL; P < 0.001) concentrations compared with the control. IL-1beta, IL-6, and IL-8 concentrations in HUVECs treated with clinically relevant plasma concentrations of lidocaine (0.005 mg\\/mL) were similar to control. ICAM-1 expression on lidocaine-treated (0.05 mg\\/mL) HUVECs was less than on controls (198 +\\/- 52.7 versus 298 +\\/- 50.3; Mean Channel Fluorescence; P < 0.001). Activated endothelial IL-1beta, IL-6, and IL-8 concentrations and ICAM-1 expression are attenuated only by lidocaine at concentrations larger than clinically relevant concentrations.

  8. Junctional Adhesion Molecule, a Novel Member of the Immunoglobulin Superfamily That Distributes at Intercellular Junctions and Modulates Monocyte Transmigration

    Science.gov (United States)

    Martìn-Padura, Inés; Lostaglio, Susan; Schneemann, Markus; Williams, Lisa; Romano, Maria; Fruscella, Paolo; Panzeri, Carla; Stoppacciaro, Antonella; Ruco, Luigi; Villa, Antonello; Simmons, David; Dejana, Elisabetta

    1998-01-01

    Tight junctions are the most apical components of endothelial and epithelial intercellular cleft. In the endothelium these structures play an important role in the control of paracellular permeability to circulating cells and solutes. The only known integral membrane protein localized at sites of membrane–membrane interaction of tight junctions is occludin, which is linked inside the cells to a complex network of cytoskeletal and signaling proteins. We report here the identification of a novel protein (junctional adhesion molecule [JAM]) that is selectively concentrated at intercellular junctions of endothelial and epithelial cells of different origins. Confocal and immunoelectron microscopy shows that JAM codistributes with tight junction components at the apical region of the intercellular cleft. A cDNA clone encoding JAM defines a novel immunoglobulin gene superfamily member that consists of two V-type Ig domains. An mAb directed to JAM (BV11) was found to inhibit spontaneous and chemokine-induced monocyte transmigration through an endothelial cell monolayer in vitro. Systemic treatment of mice with BV11 mAb blocked monocyte infiltration upon chemokine administration in subcutaneous air pouches. Thus, JAM is a new component of endothelial and epithelial junctions that play a role in regulating monocyte transmigration. PMID:9660867

  9. Breast cancer cells compete with hematopoietic stem and progenitor cells for intercellular adhesion molecule 1-mediated binding to the bone marrow microenvironment.

    Science.gov (United States)

    Dhawan, Abhishek; Friedrichs, Jens; Bonin, Malte von; Bejestani, Elham Peshali; Werner, Carsten; Wobus, Manja; Chavakis, Triantafyllos; Bornhäuser, Martin

    2016-08-01

    Adhesion-based cellular interactions involved in breast cancer metastasis to the bone marrow remain elusive. We identified that breast cancer cells directly compete with hematopoietic stem and progenitor cells (HSPCs) for retention in the bone marrow microenvironment. To this end, we established two models of competitive cell adhesion-simultaneous and sequential-to study a potential competition for homing to the niche and displacement of the endogenous HSPCs upon invasion by tumor cells. In both models, breast cancer cells but not non-tumorigenic cells competitively reduced adhesion of HSPCs to bone marrow-derived mesenchymal stromal cells (MSCs) in a tumor cell number-dependent manner. Higher adhesive force between breast cancer cells and MSCs, as compared with HSPCs, assessed by quantitative atomic force microscopy-based single-cell force spectroscopy could partially account for tumor cell mediated reduction in HSPC adhesion to MSCs. Genetic inactivation and blockade studies revealed that homophilic interactions between intercellular adhesion molecule 1 (ICAM-1) expressed on tumor cells and MSCs, respectively, regulate the competition between tumor cells and HSPCs for binding to MSCs. Moreover, tumor cell-secreted soluble ICAM-1(sICAM-1) also impaired HSPC adhesion via blocking CD18-ICAM-1 binding between HSPCs and MSCs. Xenotransplantation studies in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice revealed reduction of human HSPCs in the bone marrow via metastatic breast cancer cells. These findings point to a direct competitive interaction between disseminated breast cancer cells and HSPCs within the bone marrow micro environment. This interaction might also have implications on niche-based tumor support. Therefore, targeting this cross talk may represent a novel therapeutic strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications.

    Science.gov (United States)

    Hocaoglu-Emre, F Sinem; Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-03-01

    Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (Pmolecule levels were not correlated with the complication type. In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM.

  11. The minimal essential unit for cadherin-mediated intercellular adhesion comprises extracellular domains 1 and 2

    DEFF Research Database (Denmark)

    Shan, Weisong; Yagita, Yoshiki; Wang, Zhaohui

    2004-01-01

    , the following questions remain unanswered: what is the minimal domain combination that can generate cell adhesion, how is domain organization related to adhesive strength, and does the cytoplasmic domain serve to facilitate extracellular domain interaction? To address these issues, we made serial constructs...... of the extracellular domains of N-cadherin and produced various cell lines to examine adhesion properties. We show that the first domain of N-cadherin alone on the cell surface fails to generate adhesive activity and that the first two domains of N-cadherin form the "minimal essential unit" to mediate cell adhesion...

  12. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Ruiz, María E., E-mail: mrruiz@unav.es [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Garasa, Saray; Rodriguez, Inmaculada [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Solorzano, Jose Luis; Barbes, Benigno [Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Yanguas, Alba [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Department of Biochemistry and Genetics, University of Navarra, Pamplona (Spain); Teijeira, Alvaro; Etxeberria, Iñaki [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Aristu, José Javier [Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Halin, Cornelia [Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich (Switzerland); Melero, Ignacio [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Rouzaut, Ana [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Department of Biochemistry and Genetics, University of Navarra, Pamplona (Spain)

    2017-02-01

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  13. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium.

    Science.gov (United States)

    Rodriguez-Ruiz, María E; Garasa, Saray; Rodriguez, Inmaculada; Solorzano, Jose Luis; Barbes, Benigno; Yanguas, Alba; Teijeira, Alvaro; Etxeberria, Iñaki; Aristu, José Javier; Halin, Cornelia; Melero, Ignacio; Rouzaut, Ana

    2017-02-01

    The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications

    Directory of Open Access Journals (Sweden)

    F. Sinem Hocaoglu-Emre

    2017-03-01

    Full Text Available BackgroundType 2 diabetes mellitus (T2DM is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1, vascular cell adhesion molecule 1 (VCAM-1, and cluster of differentiation-146 (CD146 are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM.MethodsSerum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1 and soluble VCAM-1 (sVCAM-1 were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels.ResultsSerum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (P<0.05. No significant differences were found in sVCAM-1 and CD146 levels between the study and the control group. Although patients were subdivided into groups according to the type of microvascular complications that they experienced, cell adhesion molecule levels were not correlated with the complication type.ConclusionIn the study group, most of the patients were on insulin therapy (76%, and 95% of them were receiving angiotensin-converting enzyme (ACE-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM.

  15. Kinin B1 receptor regulates interactions between neutrophils and endothelial cells by modulating the levels of Mac-1, LFA-1 and intercellular adhesion molecule-1.

    Science.gov (United States)

    Figueroa, Carlos D; Matus, Carola E; Pavicic, Francisca; Sarmiento, Jose; Hidalgo, Maria A; Burgos, Rafael A; Gonzalez, Carlos B; Bhoola, Kanti D; Ehrenfeld, Pamela

    2015-04-01

    Kinins are pro-inflammatory peptides that mimic the cardinal features of inflammation. We examined the concept that expression levels of endothelial intercellular adhesion molecule-1 (ICAM-1) and neutrophil integrins Mac-1 and LFA-1 are modulated by the kinin B1 receptor (B1R) agonist, Lys-des[Arg(9)]bradykinin (LDBK). Stimulation of endothelial cells with LDBK increased the levels of ICAM-1 mRNA transcripts/protein, and also of E-selectin and platelet endothelial adhesion molecule-1. ICAM-1 levels increased in a magnitude comparable with that produced by TNF-α. This stimulatory effect was reduced when endothelial cells, which had been previously transfected with a B1R small interfering RNA, were stimulated with LDBK, under comparable conditions. Similarly, LDBK produced a significant increase in protein levels of LFA-1 and Mac-1 integrins in human neutrophils, an effect that was reversed by pretreatment of cells with 10 µg/ml cycloheximide or a B1R antagonist. Functional experiments performed with post-confluent monolayers of endothelial cells stimulated with LDBK and neutrophils primed with TNF-α, and vice versa, resulted in enhanced adhesiveness between both cells. Neutralizing Abs to ICAM-1 and Mac-1 reduced the adhesion between them. Our results indicate that kinin B1R is a novel modulator that promotes adhesion of leukocytes to endothelial cells, critically enhancing the movement of neutrophils from the circulation to sites of inflammation. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Upregulation of intercellular adhesion molecule 1 (ICAM-1) on brain microvascular endothelial cells in rat ischemic cortex.

    Science.gov (United States)

    Wang, X; Siren, A L; Liu, Y; Yue, T L; Barone, F C; Feuerstein, G Z

    1994-10-01

    The expression of intercellular adhesion molecule 1 (ICAM-1) was studied in rat focal ischemic cortex. A significant increase in ICAM-1 mRNA expression in the ischemic cortex over levels in contralateral (nonischemic) site was observed by means of Northern blot analysis following either permanent or temporary occlusion with reperfusion of the middle cerebral artery (PMCAO or MCAO with reperfusion) in spontaneously hypertensive rats. In the ischemic cortex, levels of ICAM-1 mRNA increased significantly at 3 h (2.6-fold, n = 3, P hypertensive rats than in two normotensive rat strains. Immunostaining using anti-ICAM-1 antibodies indicated that upregulated ICAM-1 expression was localized to endothelial cells of intraparenchymal blood vessels in the ischemic but not contralateral cortex. The data suggest that an upregulation of ICAM-1 mRNA and protein on brain capillary endothelium may play an important role in leukocyte migration into ischemic brain tissue.

  17. Soluble intercellular adhesion molecule 1 and flow-mediated dilatation are related to the estimated risk of coronary heart disease independently from each other

    NARCIS (Netherlands)

    Witte, D.R.; Broekmans, W.; Kardinaal, A.F.M.; Klopping-Ketelaars, I.A.A.; Poppel, van G.; Bots, M.L.; Kluft, C.; Princen, J.M.G.

    2003-01-01

    Background: Flow mediated dilatation (FMD) of the brachial artery and soluble intercellular adhesion molecule 1 (sICAM-1) are measures of distinct functions of the endothelium, reflecting nitric oxide (NO)-mediated and pro-inflammatory status, respectively. The comparative value of the two measures

  18. Transfected HEK293 cells expressing functional recombinant intercellular adhesion molecule 1 (ICAM-1)--a receptor associated with severe Plasmodium falciparum malaria.

    Science.gov (United States)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R; Craig, Alister; Hviid, Lars; Jensen, Anja T R

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes. Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has been suggested to be involved in the development of cerebral malaria. However, more studies identifying cross-reactive antibody and ICAM-1-binding epitopes and the establishment of a clinical link between DBLβ expression and e.g. cerebral malaria are needed before the DBLβ domains can be put forward as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein purity, yield, fold, ability to bind DBLβ, and relative cost. We present a HEK293 cell-based, high-yield expression and purification scheme for producing inexpensive, functional ICAM‑1. ICAM-1 expressed in HEK293 is applicable to malaria research and can also be useful in other research fields.

  19. Epigenetic regulation of tumor endothelial cell anergy : Silencing of intercellular adhesion molecule-1 by histone modifications

    NARCIS (Netherlands)

    Hellebrekers, Debby M. E. I.; Castermans, Karolien; Vire, Emmanuelle; Dings, Ruud P. M.; Hoebers, Nicole T. H.; Mayos, Kevin H.; Egbrink, Mirjam G. A. Oude; Molema, Grietje; Fuks, Francois; Griffloen, Arjan W.

    2006-01-01

    Tumors can escape from immunity by repressing leukocyte adhesion molecule expression on tumor endothelial cells and by rendering endothelial cells unresponsive to inflammatory activation. This endothelial cell anergy is induced by angiogenic growth factors and results in reduced leukocyte-vessel

  20. FRET based quantification and screening technology platform for the interactions of leukocyte function-associated antigen-1 (LFA-1 with intercellular adhesion molecule-1 (ICAM-1.

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    Full Text Available The interaction between leukocyte function-associated antigen-1(LFA-1 and intercellular adhesion molecule-1 (ICAM-1 plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple 'in solution' steady state fluorescence resonance energy transfer (FRET technique to obtain the dissociation constant (Kd of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc as acceptor. From our quantitative FRET analysis, the Kd between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the Kd determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine Kd as well as classifying inhibitors of the LFA-1/ICAM-1 interaction.

  1. Possible mechanism of the anti-inflammatory activity of ruscogenin: role of intercellular adhesion molecule-1 and nuclear factor-kappaB.

    Science.gov (United States)

    Huang, Ya-Lin; Kou, Jun-Ping; Ma, Li; Song, Jia-Xi; Yu, Bo-Yang

    2008-10-01

    Ruscogenin (RUS), first isolated from Ruscus aculeatus, also a major steroidal sapogenin of traditional Chinese herb Radix Ophiopogon japonicus, has been found to exert significant anti-inflammatory and anti-thrombotic activities. Our previous studies suggested that ruscogenin remarkably inhibited adhesion of leukocytes to a human umbilical vein endothelial cell line (ECV304) injured by tumor necrosis factor-alpha (TNF-alpha) in a concentration-dependent manner. Yet the underlying mechanisms remain unclear. In this study, the in vivo effects of ruscogenin on leukocyte migration and celiac prostaglandin E(2) (PGE(2)) level induced by zymosan A were studied in mice. Furthermore, the effects of ruscogenin on TNF-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression and nuclear factor-kappaB (NF-kappaB) activation were also investigated under consideration of their key roles in leukocyte recruitment. The results showed that ruscogenin significantly suppressed zymosan A-evoked peritoneal total leukocyte migration in mice in a dose-dependent manner, while it had no obvious effect on PGE(2) content in peritoneal exudant. Ruscogenin also inhibited TNF-alpha-induced over expression of ICAM-1 both at the mRNA and protein levels and suppressed NF-kappaB activation considerably by decreasing NF-kappaB p65 translocation and DNA binding activity. These findings provide some new insights that may explain the possible molecular mechanism of ruscogenin and Radix Ophiopogon japonicus for the inhibition of endothelial responses to cytokines during inflammatory and vascular disorders.

  2. Green tea polyphenol epigallocatechin-3-gallate attenuates TNF-α-induced intercellular adhesion molecule-1 expression and monocyte adhesion to retinal pigment epithelial cells.

    Science.gov (United States)

    Thichanpiang, Peeradech; Wongprasert, Kanokpan

    2015-01-01

    Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte-RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte-RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte-RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.

  3. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells.

    Science.gov (United States)

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-09-01

    5,7-Dihydroxy-3',4',6'-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  4. The Prognostic Value of Soluble Intercellular Adhesion Molecule 1 Plasma Level in Children With Acute Lung Injury.

    Science.gov (United States)

    Al-Biltagi, Mohammed A; Abo-Elezz, Ahmed Ahmed Abd ElBasset; Abu-Ela, Khaled Talaat; Suliman, Ghada Abudelmomen; Sultan, Tamer Gomaa Hassan

    2017-06-01

    The objective of this study was to evaluate the prognostic significance of soluble intercellular adhesion molecule 1 (sICAM-1) measurement in plasma for the prediction of outcome of acute lung injury (ALI) in children that may allow early recognition of critical cases. The study was performed as a prospective, controlled cohort study involving 40 children with ALI and 30 healthy children. The plasma level of sICAM-1 was measured at days 1 and 3 of development of ALI for the patient group and measured only once for the control group. C-Reactive protein was measured in both groups on day 1 only. There was significant increase in sICAM-1 in the patient group than in the control group ( P = .001*). The mortality rate reached 55% in children with ALI. The ceased group had significantly higher plasma sICAM-1 levels both at days 1 and 3 than the survived group ( P < .001*), and there was positive correlation between plasma sICAM-1 level and both duration of mechanical ventilation and the death rate, but more significant correlation was observed with plasma sICAM-1 levels at day 3 than day 1. Plasma sICAM-1 level served as a good predictor biomarker for both mechanical ventilation duration and the mortality risk in children with ALI.

  5. RUNX3 regulates intercellular adhesion molecule 3 (ICAM-3 expression during macrophage differentiation and monocyte extravasation.

    Directory of Open Access Journals (Sweden)

    Ana Estecha

    Full Text Available The adhesion molecule ICAM-3 belongs to the immunoglobulin gene superfamily and functions as a ligand for the β2 integrins LFA-1, Mac-1 and α(dβ(2. The expression of ICAM-3 is restricted to cells of the hematopoietic lineage. We present evidences that the ICAM-3 gene promoter exhibits a leukocyte-specific activity, as its activity is significantly higher in ICAM-3+ hematopoietic cell lines. The activity of the ICAM-3 gene promoter is dependent on the occupancy of RUNX cognate sequences both in vitro and in vivo, and whose integrity is required for RUNX responsiveness and for the cooperative actions of RUNX with transcription factors of the Ets and C/EBP families. Protein analysis revealed that ICAM-3 levels diminish upon monocyte-derived macrophage differentiation, monocyte transendothelial migration and dendritic cell maturation, changes that correlate with an increase in RUNX3. Importantly, disruption of RUNX-binding sites led to enhanced promoter activity, and small interfering RNA-mediated reduction of RUNX3 expression resulted in increased ICAM-3 mRNA levels. Altogether these results indicate that the ICAM-3 gene promoter is negatively regulated by RUNX transcription factors, which contribute to the leukocyte-restricted and the regulated expression of ICAM-3 during monocyte-to-macrophage differentiation and monocyte extravasation.

  6. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice.

    Science.gov (United States)

    Gumuslu, Esen; Cine, Naci; Ertan Gökbayrak, Merve; Mutlu, Oguz; Komsuoglu Celikyurt, Ipek; Ulak, Guner

    2016-07-28

    BACKGROUND Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. MATERIAL AND METHODS The present study demonstrated the effects of exenatide treatment (0.1 µg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. RESULTS The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. CONCLUSIONS Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM.

  7. Radiation results in IL-8 mediated intercellular signaling that increases adhesion between monocytic cells and aortic endothelium

    Science.gov (United States)

    Kucik, Dennis; Babitz, Stephen; Dunaway, Chad; Steele, Chad

    Epidemiological evidence has established terrestrial radiation exposure as a risk factor for cardiovascular disease. For example, a major side effect of therapeutic radiation, especially for breast and head-and-neck cancers, is atherosclerosis, which can result in stroke years after treatment. Similarly, atomic bomb survivors were significantly more likely to die of cardiovascular disease than their countrymen. Even radiation technologists, prior to 1950 (when regulations governing shielding and occupational exposure were less rigorous) had an increased risk of clinically significant atherosclerosis. We have recently shown that 600 MeV (56) Fe similarly exacerbates plaque formation in the apoE mouse atherosclerosis model at doses 4-7 fold lower than required for x-rays to produce a similar pro-atherogenic effect. This raises concern that exposure to cosmic radiation might pose a similar risk for astronauts. Because so little is known about the mechanism of pro-atherogenic radiation effects, however, the current strategy to minimize risk from terrestrial radiation sources is to limit exposure. For astronauts on deep space missions, exposure to a significant amount of radiation will be unavoidable. Therefore, an understanding of the mechanism of radiation-induced atherosclerosis will be essential in order to develop countermeasures. Radiation can cause increased adhesiveness of vascular endothelium, leading to inappropriate accumulation of monocytes and other white blood cells, which can initiate a self-perpetuating inflammatory response. This vascular inflammation is an early event in atherosclerosis that can eventually lead to clinically significant cardiovascular events such as myocardial infarction and stroke. We showed earlier that x-rays, (56) Fe, and (28) Si all accelerate development of atherosclerosis in the apoE -/- mouse model. We also demonstrated that both x-rays and heavy ions increase adhesion of monocytic cells to vascular human aortic endothelial

  8. Cortactin affects cell migration by regulating intercellular adhesion and cell spreading

    NARCIS (Netherlands)

    van Rossum, AGSH; Moolenaar, WH; Schuuring, E

    2006-01-01

    Cortactin is an F-actin binding protein that stabilizes F-actin networks and promotes actin polymerization by activating the Arp2/3 complex. Overexpression of cortactin, as observed in several human cancers, stimulates cell migration, invasion, and experimental metastasis; however, the underlying

  9. Pervanadate-induced shedding of the intercellular adhesion molecule (ICAM)-1 ectodomain is mediated by membrane type-1 matrix metalloproteinase (MT1-MMP).

    Science.gov (United States)

    Essick, E; Sithu, S; Dean, W; D'Souza, S

    2008-07-01

    In several vascular diseases, the ectodomain of intercellular adhesion molecule (ICAM)-1 is shed by the proteolytic activity of a zinc-dependent endopeptidase, releasing a soluble form of the protein (sICAM-1), a common marker for inflammatory diseases. Since reactive oxygen species (ROS) generated during prolonged inflammation are known to induce shedding or cleavage of several transmembrane proteins, we sought to explore the cleavage and enzymatic effects that the pervanadate, via oxidation and subsequent inactivation of protein tyrosine phosphatase, has on ICAM-1 cleavage. In these studies, we used endothelial cells (ECs) and 293 human embryonic kidney (HEK) cells expressing high-levels of surface ICAM-1. In addition, use of specific tissue inhibitors of metalloproteinases (TIMPs), small interfering (si)RNA designed to knockdown endopeptidase activity, and an immunocolocalization assay were employed to determine the identity of a specific metalloproteinase mediating pervanadate-induced sICAM-1 shedding. Our data indicate that membrane type-1 matrix metalloproteinase (MT1-MMP) is involved in pervanadate-mediated shedding of the sICAM-1 ectodomain in both cell types. Immunostaining and confocal microscopy provide visual evidence that ICAM-1 and MT1-MMP colocalize at the cellular surface following pervanadate treatment, further implicating the involvement of MT1-MMP activity in this mode of ICAM-1 shedding.

  10. An analysis of chick limb bud intercellular adhesion underlying the establishment of cartilage aggregates in suspension culture.

    Science.gov (United States)

    Bee, J A; von der Mark, K

    1990-07-01

    To examine the mechanism of intercellular adhesion in the establishment of limb skeletal elements we have investigated the process of limb bud cell aggregation in vitro. Limb bud cells are aggregation-competent immediately after their trypsin:collagenase dissociation in the absence of calcium. This aggregation is largely Ca2(+)-independent (CI) and is completely and reversibly inhibited by cycloheximide. In contrast, when limb bud cells are first allowed to recover from Ca2(+)-free trypsin:collagenase dissociation, aggregation of the surviving population is exclusively Ca2(+)-dependent (CD) and completely and reversibly inhibited by cycloheximide. The presence of exogenous calcium during initial cell dissociation retains a functional CD aggregation mechanism. However, incubation of such cells with EGTA releases the CD component and converts the cells to a predominantly CI aggregation. Rabbits were immunized with limb bud cells exhibiting the recovered CD aggregation mechanism and the resulting immune sera were screened for their effect on cell aggregation. Relative to pre-immune sera, intact immune IgG agglutinated dissociated limb bud cells whilst immune Fab fragments inhibited their aggregation. The aggregation-inhibiting antiserum recognizes five major limb bud cell surface components with apparent molecular weights of 72K, 50K, 23K, 14.5K and 8.5K (K = 10(3) Mr), respectively. Limb bud cell surface plasma membranes were isolated by sucrose gradient density centrifugation and detergent-solubilized proteins coupled to Sepharose 4B with cyanogen bromide. Equivalent cell surface plasma membrane proteins were 125I-iodinated and applied to the affinity column. Limb bud cell surface protein affinity chromatography in the presence of exogenous calcium yields a single protein with an apparent molecular weight of approximately 8.5 K. This protein molecule elutes at 0.6 M NaCl, indicating a high affinity, is recognized by the aggregation-inhibiting antiserum, and is

  11. Effects of Chinese yellow wine on nitric oxide synthase and intercellular adhesion molecule-1 expressions in rat vascular endothelial cells.

    Science.gov (United States)

    Zhao, Fei; Ji, Zheng; Chi, Jufang; Tang, Weiliang; Zhai, Xiaoya; Meng, Liping; Guo, Hangyuan

    2016-02-01

    The objective of this study was to determine similarities in the effect of yellow wine as compared to statin and the possibility that yellow wine inhibits tumour necrosis factor-α (TNF-α)-induced nitric oxide (NO) synthesis, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) in cultured rat vascular endothelial cells (VECs). We isolated VECs, and cultivated and purified Sprague Dawley (SD) rat thoracic aortas in vitro. We selected the optimal wine concentration using clonogenic and MTT assays to measure cell survival. Next, we divided the cells into 9 groups: (1) control, (2) TNF-α, (3) TNF-α + rosuvastatin (10 μmol/L), (4) TNF-α + ethanol 0.5%, (5) TNF-α + yellow wine 0.5%, (6) TNF-α + ethanol 1.0%, (7) TNF-α + yellow wine 1.0%, (8) TNF-α + ethanol 1.5%, and (9) TNF-α + yellow wine 1.5% and they were given the corresponding treatment for 24 h. We determined NO production with nitrate reductase. We then measured eNOS activity, and detected eNOS, iNOS, and ICAM-1 protein levels by Western blotting. Compared with the TNF-α group, NO production, eNOS activity, and eNOS protein expression in the rosuvastatin, and yellow wine 1.0%, and 1.5% groups were significantly increased. Protein expression of iNOS and ICAM-1 in the rosuvastatin, yellow wine 1.0%, and 1.5% groups were significantly decreased. Compared with the rosuvastatin group, eNOS, iNOS, and ICAM-1 protein expression in the yellow wine (0.5% -1.5%) groups were significantly different. Treatment with yellow wine increased NO production, eNOS activity, and eNOS protein expression, which decreases iNOS and ICAM-1 protein expression. We conclude that yellow wine may have similar beneficial effects as rosuvastatin on the cardiovascular system. These effects may be attributed to their anti-atherosclerotic actions.

  12. Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes

    OpenAIRE

    Balzarini, Jan; Van Herrewege, Yven; Vermeire, Kurt; Vanham, Guido; Schols, Dominique

    2007-01-01

    Exposure of HIV-1 to dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing B-lymphoblast Raji cells (Raji/DC-SIGN) but not to wild-type Raji/0 cells results in the capture of HIV-1 particles to the cells as measured by the quantification of cell-associated p24 antigen. Cocultivation of HIV-1-captured Raji/DC-SIGN cells with uninfected CD4+ T lymphocyte C8166 cells results in abundant formation of syncytia within 36 h after cocultivation. Short pre...

  13. Cerebrospinal fluid and plasma concentration of soluble intercellular adhesion molecule1, vascular cell adhesion molecule1 and endothelial leukocyte adhesion molecule in patients with acute ischemic b

    Directory of Open Access Journals (Sweden)

    Selaković Vesna M.

    2003-01-01

    Full Text Available Background. Leukocyte migration into the ischemic area is a complex process controlled by adhesion molecules (AM in leukocytes and endothelium, by migratory capacity of leukocytes and the presence of hemotaxic agents in the tissue. In this research it was supposed that in the blood and cerebrospinal fluid (CSF of patients in the acute phase of ischemic brain disease (IBD there were relevant changes in the concentration of soluble AM (sICAM-1 sVCAM-1 and sE-selectin, that could have been the indicators of the intensity of damaging processes in central nervous system (CNS. Methods. The study included 45 IBD patients, 15 with transient ischemic attack (TIA 15 with reversible ischemic attack (RIA, and 15 with brain infarction (BI of both sexes, mean age 66±7. Control group consisted of 15 patients with radicular lesions of discal origin, subjected to diagnostic radiculography without the signs of interruption in the passage of CSF. Changes of selected biochemical parameters were determined in all patients in frame 72 hours since the occurence of an ischemic episode. Concentrations of soluble AM were determined in plasma and CSF by ELISA. Total number of leukocytes (TNL in peripheral blood was determined by hematological analyzer. Results. The results showed that during the first 72 hrs of IBD significant increases occured in TNL and that the increase was progressive compared to the severeness of the disease. Significant increase of soluble AM concentration was shown in plasma of IBD patients. The increase was highest in BI somewhat lower in RIA and the lowest in TIA patients compared to the control. In CSF concentrations of sICAM-1, sVCAM-1 and sE-selectin demonstrated similar increasing trend as in plasma. Conclusion. TNL, as well as the soluble AM concentrations in plasma and CSF, were increased during the acute IBD phase and progressive in relation to the severeness of the disease, so that they might have been the indicators of CNS inflammatory

  14. Soluble intercellular adhesion molecule-1 and E-selectin as markers of disease activity and endothelial activation in juvenile idiopathic arthritis.

    Science.gov (United States)

    Bloom, Bradley J; Nelson, Sarah M; Eisenberg, Daniel; Alario, Anthony J

    2005-02-01

    To determine whether soluble forms of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and E-selectin correlate with clinical measures or other markers of endothelial activation in children with juvenile idiopathic arthritis (JIA) over time. A total of 28 children with JIA were studied every 3 months over 2 years. At each interval, serum was tested for soluble (s)ICAM-1 and sE-selectin, plasma for fibrin d-dimer and von Willebrand factor (vWF), and the following clinical variables were recorded: erythrocyte sedimentation rate (ESR), physician and parent global assessments, swollen and limited joint counts, and functional assessment by Childhood Health Assessment Questionnaire. Concentrations of the adhesion molecules were also determined once in 30 age matched healthy children. Among all JIA subtypes, baseline sICAM-1 was elevated compared to controls; sE-selectin was higher in patients with systemic disease compared to other subtypes and controls. sE-selectin correlated with ESR, but there were no other correlations between concentrations of either adhesion molecule or any other clinical variables or vWF antigen. sICAM-1 was higher in those with elevated compared to normal d-dimer. There were no differences between mean sICAM-1 and sE-selectin before or during disease flare or improvement periods, except for an increase in sICAM-1 with flares in patients with systemic disease. sICAM-1 is elevated in children with active JIA. sE-selectin is only elevated in children with active systemic disease. Although some relationships were found between the adhesion molecules and other variables, they did not correlate with most variables, and did not parallel the disease course. Thus, we cannot recommend the routine use of these molecules as clinical biomarkers of disease activity. This study confirms that endothelial activation is key to the pathogenesis of JIA, especially in the systemic subtype.

  15. Soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) in scleroderma skin

    DEFF Research Database (Denmark)

    Søndergaard, Klaus; Deleuran, Mette; Heickendorff, Lene

    1998-01-01

    In order to investigate whether soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) were present in scleroderma skin, and to compare their levels to concentrations measured in plasma and clinical parameters, we examined suction blister fluid and plasma...... from 13 patients with systemic sclerosis and 11 healthy volunteers. Suction blisters and biopsies were from the transition zone between normal skin and scleroderma, and uninvolved abdominal skin. The levels of sICAM-1 and sIL-2R were significantly increased in both plasma and suction blister fluid from...... systemic sclerosis patients compared with healthy volunteers. ICAM-1 was localized to vessels and perivascular mononuclear infiltrates by immunohistochemical methods. IL-2R was expressed by CD3-positive cells. The elevated levels of sICAM-1 and sIL-2R in suction blister fluid point towards activation...

  16. Interferon‐γ up‐regulates intercellular adhesion molecule‐1 and vascular cell adhesion molecule‐1 and recruits lymphocytes into the vagina of immune mice challenged with herpes simplex virus‐2

    Science.gov (United States)

    Parr, M B; Parr, E L

    2000-01-01

    Lymphocyte recruitment into tissues involves interactions between adhesion molecules on vascular endothelial cells and corresponding ligands on the lymphocyte surface. In the present study we investigated the expression of four endothelial addressins in the vagina and their possible up‐regulation by interferon‐γ (IFN‐γ) in immune mice after vaginal challenge with herpes simplex virus type 2. The adhesion molecules intercellular adhesion molecule‐1 (ICAM‐1) and vascular cell adhesion molecule‐1 (VCAM‐1) were minimally expressed in the vagina of non‐immune mice with or without vaginal challenge and in immune mice before challenge, but both were up‐regulated by IFN‐γ, directly or indirectly, in immune mice after challenge. Mucosal addressin cell adhesion molecule‐1 (MAdCAM‐1) was detected in most vaginas but was not up‐regulated by IFN‐γ in immune mice after virus challenge. E‐selectin was not detected in any vaginas. The results suggest that ICAM‐1 and VCAM‐1 may be involved in rapid, IFN‐γ‐mediated recruitment of lymphocytes to the vaginal mucosal of immune mice after local virus challenge. PMID:10792501

  17. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells

    DEFF Research Database (Denmark)

    Henriksen, Zanne; Hiken, Jeffrey F; Steinberg, Thomas H

    2006-01-01

    Intercellular calcium waves (ICW) are calcium transients that spread from cell to cell in response to different stimuli. We previously demonstrated that human osteoblast-like cells in culture propagate ICW in response to mechanical stimulation by two mechanisms. One mechanism involves autocrine a...

  18. Nucleotide-binding oligomerization domain 1 regulates Porphyromonas gingivalis-induced vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression in endothelial cells through NF-κB pathway.

    Science.gov (United States)

    Wan, M; Liu, J; Ouyang, X

    2015-04-01

    Porphyromonas gingivalis has been shown to actively invade endothelial cells and induce vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) overexpression. Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern recognition reporter, and its involvement in this process was unknown. This study focused on endothelial cells infected with P. gingivalis, the detection of NOD1 expression and the role that NOD1 plays in the upregulation of VCAM-1 and ICAM-1. The human umbilical vein endothelial cell line (ECV-304) was intruded by P. gingivalis W83, and cells without any treatment were the control group. Expression levels of NOD1, VCAM-1, ICAM-1, phosphorylated P65 between cells with and without treatment on both mRNA and protein levels were compared. Then we examined whether mesodiaminopimelic acid (NOD1 agonist) could increase VCAM-1 and ICAM-1 expression, meanwhile, NOD1 gene silence by RNA interference could reduce VCAM-1, ICAM-1 and phosphorylated P65 release. At last, we examined whether inhibition of NF-κB by Bay117082 could reduce VCAM-1 and ICAM- 1 expression. The mRNA levels were measured by real-time polymerase chain reaction, and protein levels by western blot or electrophoretic mobility shift assays (for phosphorylated P65). P. gingivalis invasion showed significant upregulation of NOD1, VCAM-1 and ICAM-1. NOD1 activation by meso-diaminopimelic acid increased VCAM-1 and ICAM-1 expression, and NOD1 gene silence reduced VCAM-1 and ICAM-1 release markedly. The NF-κB signaling pathway was activated by P. gingivalis, while NOD1 gene silence decreased the activation of NF-κB. Moreover, inhibition of NF-κB reduced VCAM-1 and ICAM-1 expression induced by P. gingivalis in endothelial cells. The results revealed that P. gingivalis induced NOD1 overexpression in endothelial cells and that NOD1 played an important role in the process of VCAM-1 and ICAM-1 expression in endothelial cells infected with P

  19. Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1).

    Science.gov (United States)

    Tsakadze, Nina L; Sithu, Srinivas D; Sen, Utpal; English, William R; Murphy, Gillian; D'Souza, Stanley E

    2006-02-10

    Ectodomain shedding has emerged as an important regulatory step in the function of transmembrane proteins. Intercellular adhesion molecule-1 (ICAM-1), an adhesion receptor that mediates inflammatory and immune responses, undergoes shedding in the presence of inflammatory mediators and phorbol 12-myristate 13-acetate (PMA). The shedding of ICAM-1 in ICAM-1-transfected 293 cells upon PMA stimulation and in endothelial cells upon tumor necrosis factor-alpha stimulation was blocked by metalloproteinase inhibitors, whereas serine protease inhibitors were ineffective. p-Aminophenylmercuric acetate, a mercuric compound that is known to activate matrix metalloproteinases, up-regulated ICAM-1 shedding. TIMP-3 (but not TIMP-1 or -2) effectively blocked cleavage. This profile suggests the involvement of the ADAM family of proteases in the cleavage of ICAM-1. The introduction of enzymatically active tumor necrosis factor-alpha-converting enzyme (TACE) into ICAM-1-expressing cells up-regulated cleavage. Small interfering RNA directed against TACE blocked ICAM-1 cleavage. ICAM-1 transfected into TACE-/- fibroblasts did not show increased shedding over constitutive levels in the presence of PMA, whereas cleavage did occur in ICAM-1-transfected TACE+/+ cells. These results indicate that ICAM-1 shedding is mediated by TACE. Blocking the shedding of ICAM-1 altered the cell adhesive function, as ICAM-1-mediated cell adhesion was up-regulated in the presence of TACE small interfering RNA and TIMP-3, but not TIMP-1. However, cleavage was found to occur at multiple sites within the stalk domain of ICAM-1, and numerous point mutations within the region did not affect cleavage, indicating that TACE-mediated cleavage of ICAM-1 may not be sequence-specific.

  20. JAK/STAT pathway interacts with intercellular cell adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) while prostate cancer stem cells form tumor spheroids.

    Science.gov (United States)

    Duzagac, Fahriye; Inan, Sevinc; Ela Simsek, Fatma; Acikgoz, Eda; Guven, Ummu; Khan, Shafiq A; Rouhrazi, Hadi; Oltulu, Fatih; Aktug, Huseyin; Erol, Ayse; Oktem, Gulperi

    2015-01-01

    JAK/STAT is an evolutionarily conserved pathway and very important for second messenger system. This pathway is important in malignant transformation and accumulated evidence indicates that this pathway is involved in tumorigenesis and progression of several cancers. It was possible to assume that activation of JAK/STAT pathway is associated with increase in the expressions of ICAM/1 and VCAM-1. In this study we hypothesized that when cells were maintained as spheroids or monolayers, the structure of cancer stem cells (CSCs) could show differentiation when compared with non-CSCs. DU-145 human prostate cancer cells were cultured using the Ege University molecular embryology laboratory medium supplemented wıth 10% fetal bovine serum. Clusters of differentiation 133 (CD133)(+high)/CD44(+high) prostate CSCs were isolated from the DU145 cell line by using BD FACSAria. CD133//CD44+ CSCs were cultured until confluent with 3% noble agar. The expression of these proteins in CSCs and non-CSCs was analyzed by immunohistochemistry. Different expression profiles were observed in the conventional two-dimensional (2D) and three-dimensional (3D) experimental model system when CSCs and non-CSCs were compared. Human prostate CSCs exhibited intense ICAM-1 and VCAM-1 immunoreaction when compared with non-CSCs. These findings were supported by the fact that VCAM-1 on the surface of cancer cells binds to its counterreceptor, the α4β1 integrin (also known as very-late antigen, VLA-4), on metastasis-associated macrophages, triggering VCAM-1-mediated activation of the phosphoinositide 3-kinase growth and survival pathway in cancer cells. The results of this study showed that changes in JAK/STAT pathway are related with adhesion molecules and could affect cancer progression.

  1. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures.

    Science.gov (United States)

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano

    2013-05-22

    On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean "fried egg jellyfish" Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7 and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.

  2. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Brot, C

    2000-01-01

    Effective bone remodeling requires the coordination of bone matrix deposition by osteoblastic cells, which may occur via soluble mediators or via direct intercellular communication. We have previously identified two mechanisms by which rat osteoblastic cell lines coordinate calcium signaling amon...

  3. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    Science.gov (United States)

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  4. Sulphoraphane inhibited the expressions of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 through MyD88-dependent toll-like receptor-4 pathway in cultured endothelial cells.

    Science.gov (United States)

    Shan, Y; Lin, N; Yang, X; Tan, J; Zhao, R; Dong, S; Wang, S

    2012-03-01

    Chronic inflammation plays pivotal roles in both cancer and cardiovascular diseases. A large body of evidence suggests that high intake of cruciferous vegetables is closely related with low risk of these disorders. However, the underlying mechanisms of protection are not fully understood. The aim of this study is to test the protective effects of an isothiocyanate sulphoraphane on inflammatory injury and related regulation pathways in cultured endothelial cells. The expressions of adhesion molecules were determined by TaqMan real-time polymerase chain reaction (PCR) and Western blot analysis. Nuclear factor-kappa B (NF-кB) translocation was detected by immunofluorescent hybridisation. Other proteins were measured by Western blot analysis. The results demonstrated that sulphoraphane significantly suppresses the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 stimulated by lipopolysaccharide (LPS) both at the transcriptional and translational levels. In addition, sulphoraphane inhibited the translocation of NF-кB into the nucleus. Sulphoraphane decreased the phosphorylation of extra-cellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), while further blockade and activation using individually specific agents confirm that p38 MAPK and JNK are mainly involved. Interestingly, sulphoraphane down-regulated Toll-like receptor (TLR)-4, a receptor of LPS located on the membrane. In addition, MyD88, an effector downstream TLR-4 signal pathway was subsequently attenuated. Taken all together, adhesion molecules are confirmed to be the novel targets of sulphoraphane in preventing inflammatory insult to endothelial cells. Sulphoraphane suppressed TLR-4 followed by MyD88 and downstream factors such as p38 MAPK and JNK, ultimately blocking NF-кB translocation and the subsequent expression of adhesion molecules. These data suggested a novel inflammatory pathway

  5. Plasma levels of soluble intercellular adhesion molecule-1 as a biomarker for disease severity of patients with community-acquired pneumonia.

    Science.gov (United States)

    Chang, Pin-Yu; Tsao, Shih-Ming; Chang, Jer-Hwa; Chien, Ming-Hsien; Hung, Wen-Yueh; Huang, Yi-Wen; Yang, Shun-Fa

    2016-12-01

    Community-acquired pneumonia (CAP) is characterized as an acute inflammation of the lung associated with the activation of macrophages and neutrophils. Intercellular adhesion molecule-1 (ICAM-1) is an essential adhesion molecule involved in immune cell recruitment in lung inflammation. We investigated whether ICAM-1 is a useful biomarker for assessing the disease severity of hospitalized adult patients with CAP. Plasma soluble ICAM-1 (sICAM-1) levels were measured in 78 patients with CAP and 69 healthy controls by using a commercial enzyme-linked immunosorbent assay. The pneumonia severity index scores were used to determine CAP severity in patients upon initial hospitalization. The sICAM-1 and C-reactive protein (CRP) levels decreased significantly in patients with CAP after antibiotic treatment. The plasma concentration of sICAM-1 alone, but not CRP, was correlated with CAP severity according to the pneumonia severity index scores (r=0.431, p<0.001). The sICAM-1 levels in patients with CAP with high mortality risk were significantly higher than those in patients with CAP with medium or low mortality risk. Moreover, the sICAM-1 level showed a significant correlation with the length of hospital stay (r=0.488, p<0.001). Mechanistic investigations found that bacterial lipopolysaccharide induced upregulation of ICAM-1 expression through the c-Jun N-terminal kinase pathway in RAW264.7 macrophages. Plasma sICAM-1 levels may play a role in the diagnosis and clinical assessment of CAP severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    Science.gov (United States)

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation.

  7. Synovial fluid levels of E-selectin and intercellular adhesion molecule-1: relationship to joint inflammation in children with chronic arthritis.

    Science.gov (United States)

    Bloom, Bradley J; Nelson, Sarah M; Alario, Anthony J; Miller, Laurie C; Schaller, Jane G

    2002-09-01

    E-selectin and intercellular adhesion molecule (ICAM)-1 are crucial to the inflammatory response in chronic inflammatory arthritis. Soluble (s) levels of these molecules in sera and synovial fluid (SF) correlate with some clinical parameters and synovial tissue expression of the same molecules in rheumatoid arthritis. Studies of sera from children with chronic inflammatory arthritis corroborate this information; corresponding SF data are relatively lacking. We thus studied SF sE-selectin and sICAM-1 in 28 children with active juvenile rheumatoid arthritis or a spondyloarthropathy. Levels were correlated with erythrocyte sedimentation rate (ESR), SF leukocyte counts, duration of disease, and duration of response to concomitant intra-articular corticosteroid injection. Levels were compared according to use of methotrexate and/or sulfasalazine. Synovial fluid sE-selectin correlated with ESR and SF leukocyte counts. There was a trend toward lower sICAM-1 in patients treated with sulfasalazine and/or methotrexate. We conclude that SF levels of sE-selectin accurately reflect intra-synovial inflammation. Soluble ICAM-1 levels may reflect the effects of disease-modifying agents.

  8. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    and MHC II in the presence of IL-5 induced expression of a functional IL-2R on small resting B cells. By contrast CD40 ligation, which induced B cell proliferation, did not induce IL-2 responsiveness. These data show that CD40 ligation is necessary but may not be sufficient for B cell differentiation......We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells...

  9. Correlation of serum intercellular adhesion molecule 1 and vascular endothelial growth factor with tumor grading and staging in breast cancer patients.

    Science.gov (United States)

    Haghi, Alireza Rastgoo; Vahedi, Amir; Shekarchi, Ali Akbar; Kamran, Aziz

    2017-01-01

    Breast cancer is the most common cancer among women. There are several prognostic factors for this disease. The aim of this article is to explore the correlation of serum level of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM1) with tumor, node, metastasis staging and grading of breast cancer. Serum samples of 51 patients with breast cancer were assessed with enzyme-linked immunosorbent assay for the level of VEGF and ICAM1 preoperatively. After the operation, histopathologic specimens stained with hematoxylin and eosin were evaluated for tumor size, histopathologic subtype, grade, lymph node, vascular and lymphatic involvement. Then, the correlation of tumor stage and grade and serum level of markers was analyzed. There was no significant correlation between serum level of markers with vascular invasions, lymph node involvement, and menstruation. There was a weak correlation between tumor size and serum level of ICAM1 with Pearson score correlation, but there was no significant correlation with VEGF. There was no significant correlation between tumor grading and staging with the level of markers. There was a significant correlation between the level of VEGF and ICAM1 and histologic type of tumors in invasive through in situ tumors. Levels of VEGF and ICAM1 can be used as a predictor of tumor invasion and also for target therapy.

  10. DIFFERENTIAL LEVELS OF CYTOKINES AND INTERCELLULAR ADHESION MOLECULES AND THEIR DIAGNOSTIC EFFICIENCY IN AUTOIMMUNE AND ONCOLOGICAL THYROID DISEASES

    Directory of Open Access Journals (Sweden)

    S. P. Kazakov

    2010-01-01

    Full Text Available The article presents novel data concerning measurements of cytokine levels (IFNγ, IL-4, IL-6, IL-10, TNFβ, MCP-1, and cell adhesion molecules (sE-Selectin, sICAM-1 in blood plasma, llike as parameters of their diagnostic efficiency in the patients with thyroid autoimmune diseases (TAD, thyroid adenoma and cancer. The cytokines were analyzed by flow cytometris technique. We have shown that IL-4, IL-6, TNFβ, MCP-1 cytokines play an important role in pathogenesis of TAD, especially IL- 6, MCP-1. In cases of thyroid adenoma, a sufficient role belongs to IL-6, IL-10, TNFβ, MCP-1, sICAM-1, with IL-6 и sICAM-1 showing most significant changes. In thyroid cancer, IL-6, IL-10, MCP-1, sE-seleсtin are informative, with sE-seleсtin being the most reliable marker. In differential diagnostic between thyroid cancer and autoimmune diseases, one should employ such cytokines, as IL-10, MCP-1, sE-seleсtin, the latter being most significant. Differential diagnostics between thyroid adenoma and autoimmune diseases suggests determination of IL-6, IL-10 and sICAM-1 levels, preferring IL-6 and sICAM-1for their better diagnostic efficiency. Threshold levels of IL-6, sE-seleсtin may discriminate between thyroid cancer and adenoma, but these differences are of poor diagnostic efficiency.

  11. Ursolic acid, a natural pentacyclic triterpenoid, inhibits intracellular trafficking of proteins and induces accumulation of intercellular adhesion molecule-1 linked to high-mannose-type glycans in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Satoshi Mitsuda

    2014-01-01

    Full Text Available Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1 in response to interleukin-1α (IL-1α. We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum.

  12. Changes of Serum Intercellular Adhesion Molecule – 1, Vascular Adhesion Molecule-1 and C – Reactive Protein in Middle-Aged Men with Heart Failure after Eight Weeks of Aerobic Exercise

    Directory of Open Access Journals (Sweden)

    Hoda Haghir

    2017-03-01

    Full Text Available Introduction: The evidence has shown that expansion of cardiovascular disease has inflammation base, and general inflammation (systemic plays a pivotal role in the development of atherosclerosis. The purpose of this research was evaluation of changes in intercellular adhesion molecule – 1, vascular adhesion molecule-1 and C – reactive protein in middle-aged men with heart failure after eight weeks of aerobic exercise. Methods: Twenty four middle-aged men with heart failure were selected as volunteers, and were divided into two groups; the aerobic training and the control groups. Aerobic training program was eight weeks, three times per week with the intensity of 40%-70% maximum heart rate. Fasting blood samples were taken from all subjects before and after eight weeks of aerobic exercise. . Data were analyzed by paired sample t-test and independent sample t-test at a significance levels of P<0.05. Results: In the aerobic training group, comparison within groups showed, serum levels of ICAM-1, VCAM-1 and CRP (respectively P=0.001, P=0.001 and P=0.001 were significantly reduced. There was a significant reduction in comparison between groups only for VCAM-1 (P=0.001 and CRP (P=0.002. Conclusion: Aerobic exercise with reducing levels of inflammatory markers ICAM-1 and CRP may play an important role in the prevention and control of cardiovascular diseases in middle-aged men with heart failure.

  13. Inactivated Sendai virus particle upregulates cancer cell expression of intercellular adhesion molecule-1 and enhances natural killer cell sensitivity on cancer cells.

    Science.gov (United States)

    Li, Simin; Nishikawa, Tomoyuki; Kaneda, Yasufumi

    2017-09-25

    We have already reported that the inactivated Sendai virus (hemagglutinating virus of Japan; HVJ) envelope (HVJ-E) has multiple anticancer effects, including induction of cancer-selective cell death and activation of anticancer immunity. The HVJ-E stimulates dendritic cells to produce cytokines and chemokines such as β-interferon, interleukin-6, chemokine (C-C motif) ligand 5, and chemokine (C-X-C motif) ligand 10, which activate both CD8(+) T cells and natural killer (NK) cells and recruit them to the tumor microenvironment. However, the effect of HVJ-E on modulating the sensitivity of cancer cells to immune cell attack has yet to be investigated. In this study, we found that HVJ-E induced the production of intercellular adhesion molecule-1 (ICAM-1, CD54), a ligand of lymphocyte function-associated antigen 1, in several cancer cell lines through the activation of nuclear factor-κB downstream of retinoic acid-inducible gene I and the mitochondrial antiviral signaling pathway. The upregulation of ICAM-1 on the surface of cancer cells increased the sensitivity of cancer cells to NK cells. Knocking out expression of ICAM-1 in MDA-MB-231 cells using the CRISPR/Cas9 method significantly reduced the killing effect of NK cells on ICAM-1-depleted MDA-MB-231 cells. In addition, HVJ-E suppressed tumor growth in MDA-MB-231 tumor-bearing SCID mice, and the HVJ-E antitumor effect was impaired when NK cells were depleted by treatment with the anti-asialo GM1 antibody. Our findings suggest that HVJ-E enhances NK cell sensitivity against cancer cells by increasing ICAM-1 expression on the cancer cell surface. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Effects of asymmetric dimethylarginine on bovine retinal capillary endothelial cell proliferation, reactive oxygen species production, permeability, intercellular adhesion molecule-1, and occludin expression.

    Science.gov (United States)

    Chen, Yi-Hui; Xu, Xun; Sheng, Min-Jie; Zheng, Zhi; Gu, Qing

    2011-02-01

    Asymmetric dimethylarginine (ADMA), an endogenous competitive inhibitor of nitric oxide synthase, is associated with impaired endothelial dysfunction, such as chronic heart failure, hypertension, diabetes, and pulmonary hypertension. The effects of ADMA on cell proliferation, reactive oxygen species (ROS) production, cell permeability, intercellular adhesion molecule-1 (ICAM-1), and tight-junction protein occludin levels in bovine retinal capillary endothelial cells (BRCECs) were investigated. A cell proliferation assay was performed using the novel tetrazolium compound 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and an electron coupling reagent. Intracellular ROS levels were determined using the fluorescent probe CM-H(2)DCFDA. Horseradish peroxidase was used for a permeability assay. ICAM-1 and tight-junction protein occludin were assessed by western blotting and quantitative real-time PCR. Cell proliferation was significantly inhibited by ADMA. ADMA increased intracellular ROS generation in BRCECs. The increased ROS production induced by ADMA was markedly inhibited by the angiotensin II receptor-blocker telmisartan, the angiotensin-converting enzyme inhibitor benazepril, the reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenyliodonium (DPI), or the antioxidant and free-radical scavenger N-acetyl-L-cysteine (NAC). ADMA significantly increased horseradish peroxidase (HRP) permeability in BRCECs. Benazepril, telmisartan, DPI, and NAC downregulated cell permeability. ADMA markedly upregulated ICAM-1 expression in BRCECs, which were downregulated by telmisartan, DPI, and NAC. ADMA significantly downregulated occludin expression in BRCECs. Benazepril and telmisartan upregulated occludin expression in BRCECs exposed to ADMA. Our results provide the first reported evidence that ADMA has potent adverse effects on cell proliferation, intracellular ROS generation, cell permeability

  15. The comparative effect of pioglitazone and metformin on serum osteoprotegerin, adiponectin and intercellular adhesion molecule concentrations in patients with newly diagnosed type 2 diabetes: a randomized clinical trial.

    Science.gov (United States)

    Esteghamati, A; Azizi, R; Ebadi, M; Noshad, S; Mousavizadeh, M; Afarideh, M; Nakhjavani, M

    2015-05-01

    The etiologic role of inflammatory pathways in the development of diabetic complications, especially cardiovascular events, has been established. The anti-inflammatory role of metformin and pioglitazone has been described; however, no study to date has compared the efficacy of these common oral agents in this regard. In this study, the authors aimed to compare the anti-inflammatory properties of pioglitazone and metformin, with respect to their effect on serum concentrations of highly sensitive C-reactive protein (hsCRP), osteoprotegerin (OPG), intercellular adhesion molecule-1 (ICAM-1) and adiponectin. In an open-label randomized clinical trial, 117 patients with newly diagnosed type 2 diabetes mellitus were visited; 84 fulfilled the inclusion criteria, and were randomly allocated to 2 arms receiving either 1,000 mg/d metformin or 30 mg/d pioglitazone, respectively. Biochemical assessments were made at baseline and the end of the 3 months trial. Significant reduction in FPG, insulin and HbA1c in women and men of both arms were observed. Log-hsCRP values significantly decreased in both arms. A decreasing, but non-significant trend in log-OPG levels was observed in women of the metformin arm (p=0.063). A greater reduction in log-ICAM levels was identifiable in men receiving pioglitazone compared to the other arm (p=0.008); in addition, the same trend was observed in log-OPG values (p=0.029). Nonetheless, reduction in log-ICAM and log-OPG levels was comparable between the 2 arms. A significant increase in adiponectin was observed in both men and women in the pioglitazone arm (pmetformin arm. Remarkably, patients receiving pioglitazone revealed more significant reduction in inflammatory markers. © Georg Thieme Verlag KG Stuttgart · New York.

  16. The role of N-glycosylation in high glucose-induced upregulation of intercellular adhesion molecule-1 on bovine retinal endothelial cells.

    Science.gov (United States)

    Liu, Kun; Liu, Haiyun; Zhang, Zhihua; Ye, Wen; Xu, Xun

    2016-06-01

    The development of diabetic retinopathy has been implicated as a consequence of chronic inflammation. Given the role of the intercellular adhesion molecule-1 (ICAM-1) in inflammation, the potential effect of N-glycosylation on the upregulated expression of ICAM-1 at the surface of bovine retinal endothelial cells (BRECs) induced by high glucose concentrations was investigated. Gene and protein expression of ICAM-1 in primary BRECs cultured in medium containing increasing concentrations of mannose or glucose in the presence or absence of tunicamycin were studied with reverse transcription-polymerase chain reaction and Western blot analysis, and the expression level of ICAM-1 at the surface of BRECs was examined with an immunofluorescence analysis. A lectin blot assay with PHA-L was performed to explore the level of N-glycans on cell total proteins or immunoprecipitated ICAM-1 from cells treated or untreated with high glucose. Both the mRNA and protein levels of ICAM-1, as well as the level of ICAM-1 on the cell surface, were significantly upregulated by increasing the concentration of glucose in the culture medium, with a peak concentration of 20 mm. Consistent with these results, a dramatic increase in the N-glycosylation of ICAM-1 in BRECs cultured with a high concentration of glucose was observed, which could be partially attenuated by tunicamycin treatment. High glucose-induced upregulation of ICAM-1 on the surface of BRECs could be ascribed to the alterations in its N-glycosylation at least in part, indicating that interference with the glycosylation of ICAM-1 may contribute to improving the efficiency of current therapies with diabetic retinopathy. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. Nasal eosinophilia and serum soluble intercellular adhesion molecule 1 in patients with allergic rhinitis treated with montelukast alone or in combination with desloratadine or levocetirizine.

    Science.gov (United States)

    Ciebiada, Maciej; Barylski, Marcin; Gorska Ciebiada, Malgorzata

    2013-01-01

    Because intercellular adhesion molecule (ICAM) 1 and recruitment of eosinophils are crucial in supporting allergic inflammation, their down-regulation may bring additional benefits in patients' recovery. We have assessed nasal eosinophilia and serum soluble ICAM-1 (sICAM-1) concentrations in relation to nasal symptoms in patients with persistent allergic rhinitis (AR) treated for 6 weeks with either desloratadine, levocetirizine, montelukast alone, or in combination. In this single-center, randomized, double-blind, placebo-controlled, crossover, two-arm study, 40 patients with persistent AR were randomized to receive either montelukast and/or levocetirizine or placebo (n = 20) or to receive treatment with montelukast and/or desloratadine or placebo (n = 20). Nasal eosinophilia and concentration of sICAM-1 in peripheral blood were assessed before and on the last day of each treatment period. All active treatments in both arms of the study resulted in the decrease of sICAM-1 and nasal eosinophilia, which correlated with the severity of nasal symptoms. In the montelukast/levocetirizine arm, montelukast decreased nasal eosinophilia more significantly than levocetirizine, whereas in reduction of sICAM-1 all active treatment options were equally effective. However, in the desloratadine/montelukast arm, the resulting improvement of combination therapy of sICAM-1 and the influx of eosinophils was not statistically significant. The improvement of nasal symptoms in patients with AR treated with antihistamines, with or without montelukast, may additionally result from the reduction of sICAM-1 and nasal eosinophilia. Because the combination therapy may bring inconclusive benefits in this area there is a strong need of further studies to find mechanisms that favor combination therapy.

  18. Induction of epithelial migration of lymphocytes by intercellular adhesion molecule-1 in a rat model of oral mucosal graft-versus-host disease.

    Science.gov (United States)

    Ohno, Jun; Iwahashi, Teruaki; Ehara, Michiko; Ozasa, Ryuki; Hanada, Hironori; Funakoshi, Tomoyuki; Taniguchi, Kunihisa

    2011-06-01

    To elucidate the involvement of intercellular adhesion molecule-1 (ICAM-1) in the migration of lymphocytes to the oral mucosal epithelium in a rat model of acute graft-versus-host disease (AGVHD), we investigated (1) ICAM-1 and major histocompatibility complex (MHC) class II expression by keratinocytes (KCs) and their role in the epithelial infiltration of CD8+ cells, (2) the tissue expression of interferon-γ (IFN-γ) mRNA and expression of IFN-γ receptor by KCs, and (3) the ability of KCs to direct CD8+ cells into the epithelial layers. We classified the oral mucosal lesions into three consecutive temporal phases on the basis of increased epithelial ICAM-1 expression: basal- (phase I), parabasal- (phase II), and pan-epithelial except for the cornified cell layer (phase III). Basal ICAM-1 expression by KCs preceded that of MHC class II molecules, infiltration of CD8+ cells and epithelial histological changes. Tissue expression of IFN-γ mRNA and expression of IFN-γ receptor on KCs evidenced by immunohistochemistry were detected in early lesions (phase I), indicating that locally produced IFN-γ induced ICAM-1 expression by KCs. CD8+ cells were bound to KCs in frozen sections of epithelial lesions, whereas no lymphocyte attachment was observed in normal KC. Adherence could be inhibited by pretreating CD8+ cells with lymphocyte function-associated antigen-1 (LFA-1) antibody and/or by pretreating sections with ICAM-1 antibody. Our data suggest that in the early phase of acute oral mucosal GVHD, the induction of ICAM-1 expression on KCs leads to the migration of CD8+ cells into the epithelium and that this is mediated in part by the ICAM-1/LFA-1 pathway.

  19. Cyclosporine dosage can be reduced when used in combination with an anti-intercellular adhesion molecule-1 monoclonal antibody in rats undergoing heterotopic heart transplantation.

    Science.gov (United States)

    Harrison, P C; Mainolfi, E; Madwed, J B

    1998-02-01

    Intercellular adhesion molecule-1 (ICAM-1) is believed to play a role in acute rejection of allografted tissues. This molecule is involved in the interaction of T cells with antigen-presenting cells expressed on the vascular endothelium of transplanted organs and is involved in the adhesion of inflammatory cells to this endothelium and their subsequent migration into the underlying tissues. Rat abdominal heterotopic heart transplantation was used to study the role of ICAM-1 in the rejection process. American Cancer Institute rats were used as donors; Lewis rats were used as recipients. Graft survival was monitored daily via donor heart palpation. Nine groups (n = 6/group) were studied: untreated controls; olive oil; cyclosporine at 1.5, 2.75, and 5.0 mg/kg, respectively; R3.1, a control monoclonal antibody; 1A29, a rat anti-ICAM-1 monoclonal antibody, 3 mg/kg administered intraperitoneally; a combination of 1A29 (3 mg/kg) and cyclosporine (1.5 mg/kg); and a combination of 1A29 (3 mg/kg) and cyclosporine (2.75 mg/kg). Mean rejection time was 8.8 +/- 0.6 days for the untreated allografted controls and 9.7 +/- 1.1 days for the olive oil controls. Cyclosporine (1.5, 2.75, and 5.0 mg/kg) showed mean rejection times of 8.5 +/- 0.3, 20.5 +/- 1.9, and 28.8 +/- 3.6 days, respectively. The 1A29 treatment showed a mean rejection time of 9.3 +/- 0.7 days. Combination therapy of 1A29 and cyclosporine at 1.5 or 2.75 mg/kg demonstrated mean rejection times of 17.7 +/- 3.3 and 29.2 +/- 6.7 days, respectively. Thus 1A29 alone does not prolong cardiac allograft survival; however, combination therapy with either a subthreshold or a moderate dose of cyclosporine significantly extends the time to rejection of heterotopically transplanted rat hearts. Although monotherapy with an ICAM-1 antagonist alone may not be beneficial in preventing acute rejection episodes after organ transplantation, combination therapy of an anti-ICAM-1 monoclonal antibody may allow for a reduction in the dose

  20. Vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1, is associated with diabetic kidney disease in Asians with type 2 diabetes.

    Science.gov (United States)

    Liu, Jian-Jun; Yeoh, Lee Ying; Sum, Chee Fang; Tavintharan, Subramaniam; Ng, Xiao Wei; Liu, Sylvia; Lee, Simon B M; Tang, Wern Ee; Lim, Su Chi

    2015-07-01

    The association of adhesion molecules ICAM-1 and VCAM-1 with cardiovascular diseases has been well-studied. However, their roles in diabetic kidney disease (DKD) are incompletely understood. We aim to study the association of plasma ICAM-1 and VCAM-1 with DKD in Asians with type 2 diabetes (T2DM). A total of 1950 Asians with T2DM were included in this cross-sectional study. Plasma ICAM-1 and VCAM-1 were measured by immunoassays. Renal filtration function (eGFR) declined and urinary albumin-to-creatinine ratio (ACR) levels increased progressively with the increase in plasma VCAM-1 levels. In contrast, no significant changes in eGFR and ACR were observed in subjects across different plasma ICAM-1 levels. Both ICAM-1 and VCAM-1 were correlated with ACR (rho = 0.153, p < 0.001 for VCAM-1 and ACR; rho = 0.053, p = 0.020 for ICAM-1 and ACR) in bivariate correlation analysis. However, only VCAM-1 was correlated with eGFR (rho = -0.228, p < 0.001). Multivariable linear regression models revealed that VCAM-1, but not ICAM-1, was independently associated with eGFR and albuminuria. Backward linear regression suggested that plasma VCAM-1 variability was mainly determined by eGFR whereas plasma ICAM-1 level was mainly determined by C-reactive protein in patients with T2DM. Plasma VCAM-1 level, but not ICAM-1 level, was independently associated with prevalent DKD in Asians with T2DM. High level of ICAM-1 may be indicative of systemic inflammation and portends increase risk of incipient DKD. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Antagonism of selectin-dependent adhesion of human eosinophils and neutrophils by glycomimetics and oligosaccharide compounds.

    Science.gov (United States)

    Kim, M K; Brandley, B K; Anderson, M B; Bochner, B S

    1998-11-01

    Early in inflammation, adhesion occurs between leukocytes and endothelium when selectins bind to sialyl Lewis X (sLex) and related oligosaccharides. We tested novel compounds that mimic sLex for their ability to inhibit selectin-mediated adhesion of human eosinophils and neutrophils in vitro. Neutrophils and eosinophils were isolated by density gradient centrifugation, and eosinophils were further purified by immunomagnetic negative selection. Adhesion to unstimulated or interleukin-1beta-stimulated (5 ng/ml, 4-6 h) umbilical vein endothelial monolayers was tested under static or rotating conditions, where adhesion is primarily E- or L-selectin dependent, respectively. P-selectin-dependent adhesion was tested on immobilized platelets treated with or without phorbol myristate acetate (10(-7) M, 10 min). Stimulus-induced adhesion was always at least 4-fold higher than without stimulus, and selectin dependence was confirmed with specific blocking monoclonal antibodies. E-selectin-dependent adhesion of eosinophils and neutrophils was inhibited by compound GM2296 (the concentration producing 50% inhibition of adhesion [IC50] approximately 0.5-1 mM). E-selectin-dependent adhesion of neutrophils, but not eosinophils, was also inhibited by another compound, sLex with a lipid tail (30 +/- 6% inhibition at 3 mM), whereas compound GM1292 slightly inhibited adhesion of both (23 +/- 5 and 20 +/- 6% inhibition, respectively, at 1 mM). L-selectin-dependent adhesion was more effectively inhibited by GM2296 (IC50 approximately 0.2-0.5 mM), although P-selectin-dependent adhesion was also inhibited (IC50 approximately 1 mM). Inhibition was reversible without affecting viability, and no effect was seen with these compounds in assays testing neutrophil adhesion to immobilized intercellular adhesion molecule-1. Thus, compound GM2296, a carbon-fucosylated derivative of glycyrrhetinic acid, inhibits E-, L-, and P-selectin-dependent eosinophil and neutrophil adhesion. The ability of these

  2. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells.

    Science.gov (United States)

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay; Smith, Joseph D

    2016-07-12

    Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. Cerebral malaria is a severe neurological complication of P. falciparum infection associated with infected erythrocyte (IE) binding in cerebral vessels. Yet little is known about the mechanisms by which parasites adhere in the brain or other microvascular sites. Here, we studied parasite lines

  3. Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes.

    Science.gov (United States)

    Balzarini, Jan; Van Herrewege, Yven; Vermeire, Kurt; Vanham, Guido; Schols, Dominique

    2007-01-01

    Exposure of HIV-1 to dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing B-lymphoblast Raji cells (Raji/DC-SIGN) but not to wild-type Raji/0 cells results in the capture of HIV-1 particles to the cells as measured by the quantification of cell-associated p24 antigen. Cocultivation of HIV-1-captured Raji/DC-SIGN cells with uninfected CD4+ T lymphocyte C8166 cells results in abundant formation of syncytia within 36 h after cocultivation. Short preexposure of HIV-1 to carbohydrate-binding agents (CBA) dose dependently prevents the Raji/DC-SIGN cells from efficiently binding the virus particles, and no syncytia formation occurs upon subsequent cocultivation with C8166 cells. Thus, the mannose-specific [i.e., the plant lectins Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis agglutinin (GNA), Narcissus pseudonarcissus agglutinin; and Cymbidium agglutinin (CA); the procaryotic cyanovirin-N (CV-N); and the monoclonal antibody 2G12) and N-acetylglucosamine-specific (i.e., the plant lectin Urtica dioica agglutinin) CBAs efficiently abrogate the DC-SIGN-directed HIV-1 capture and subsequent transmission to T lymphocytes. In this assay, the CD4-down-regulating cyclotriazodisulfonamide derivative, the CXCR4 and CCR5 coreceptor antagonists 1-[[4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methyl] - 1,4,8,11 - tetrazacyclotetradecane (AMD3100) and maraviroc, the gp41-binding enfuvirtide, and the polyanionic substances dextran sulfate (M(r) 5000), sulfated polyvinyl alcohol, and the naphthalene sulfonate polymer PRO-2000 were markedly less efficient or even completely ineffective. Similar observations were made in primary monocyte-derived dendritic cell cultures that were infected with HIV-1 particles that had been shortly pre-exposed to the CBAs CV-N, CA, HHA, and GNA and the polyanions DS-5000 and PRO-2000. The potential of CBAs, but not polyanions and other structural/functional classes of entry inhibitors, to impair

  4. [FUNCTION OF INTERCELLULAR ADHESION A, FIBRINOGEN BINDING PROTEIN, AND ACCUMULATION-ASSOCIATED PROTEIN GENES IN FORMATION OF STAPHYLOCOCCUS EPIDERMIDIS-CANDIDA ALBICANS MIXED SPECIES BIOFILMS].

    Science.gov (United States)

    Wang, Xiaoyan; Chen, Ying; Huang, Yunchao; Zhou, Youquan; Zhao, Guangqiang; Ye, Lianhua; Lei, Yujie; Tang, Qi

    2015-01-01

    To explore the function of intercellular adhesion A (icaA), fibrinogen binding protein (fbe), and accumulation-associated protein (aap) genes in formation of Staphylococcus epidermidis-Candida albicans mixed species biofilms. The experiment was divided into 3 groups: single culture of Staphylococcus epidermidis ATCC35984 (S. epidermidis group) or Candida albicans ATCC10231 (C. albicans group), and co-culture of two strains (mixed group) to build in vitro biofilm model. Biofilm mass was detected by crystal violet semi-quantitative adherence assay at 2, 4, 6, 8, 12, 24, 48, and 72 hours after incubation. XTT assay was performed to determine the growth kinetics in the same time. Scanning electron microscopy (SEM) was used to observe the ultrastructure of the biofilms after 24 and 72 hours of incubation. The expressions of icaA, fbe, and aap genes were analyzed by real-time fluorescent quantitative PCR. Crystal violet semi-quantitative adherence assay showed that the biofilms thickened at 12 hours in the S. epidermidis and mixed groups; after co-cultured for 72 hours the thickness of biofilm in mixed group was more than that in the S. epidermidis group, and there was significant difference between 2 groups at the other time (P 0.05). In C. albicans group, the biofilm started to grow at 12 hours of cultivation, but the thickness of the biofilm was significantly lower than that in the mixed group in all the time points (P epidermidis group at 48 hours; there was no significant difference in the growth speed between the mixed groups and the S. epidermidis group in the other time points (P > 0.05) except at 12 hours (P epidermidis group at 2 and 4 hours, but no significant difference was shown (P > 0.05); the A value of mixed group was significantly higher than that of the C. albicans group after 6 hours (P epidermidis group (P Staphylococcus epidermidis or Candida albicans, which is related to increased expressions of the icaA, fbe, and aap genes of Staphylococcus

  5. High Permeability and Intercellular Space Widening With Brimonidine Tartrate Eye Drops in Cultured Stratified Human Corneal Epithelial Sheets.

    Science.gov (United States)

    Hashimoto, Yumi; Yokoo, Seiichi; Usui, Tomohiko; Tsubota, Yukiko; Yamagami, Satoru

    2018-02-01

    To investigate the toxicity of topical glaucoma medications using cultured stratified human corneal epithelial sheets (HCES). HCES were exposed for 30 minutes to the following glaucoma medications: 0.1% brimonidine with sodium chlorite as the preservative, 0.005% latanoprost with 0.02% benzalkonium chloride (BAC) as the preservative, and 0.5% timolol with 0.005% BAC as the preservative. Then, cell viability and barrier function were tested by the WST-1 assay and carboxyfluorescein permeability assay, respectively. After exposure to glaucoma medications, HCES were evaluated by hematoxylin and eosin staining, periodic acid-Schiff staining, scanning electron microscopy, and transmission electron microscopy. HCES exposed to brimonidine showed higher viability and better preservation of cell morphology and microvilli compared with cell sheets exposed to latanoprost or timolol. The carboxyfluorescein permeability assay demonstrated that the barrier function was preserved after HCES were exposed to timolol, but not after exposure to brimonidine or latanoprost. Transmission electron microscopy revealed widening of intercellular junctions with prominent deposits of glycogen or mucopolysaccharide (periodic acid-Schiff positive) after exposure of HCES to brimonidine. The toxicity of 0.1% brimonidine containing sodium chlorite for HCES was lower than that of ophthalmic preparations containing BAC. Reduction of the barrier function occurred after HCES were exposed to brimonidine because of widening of intercellular junctions.

  6. Intercellular adhesion molecule-1/LFA-1 ligation favors human Th1 development

    NARCIS (Netherlands)

    Smits, Hermelijn H.; de Jong, Esther C.; Schuitemaker, Joost H. N.; Geijtenbeek, Theo B. H.; van Kooyk, Yvette; Kapsenberg, Martien L.; Wierenga, Eddy A.

    2002-01-01

    Th cell polarization toward Th1 or Th2 cells is strongly driven by exogenous cytokines, in particular IL-12 or IL-4, if present during activation by Ag-presenting dendritic cells (DC). However, additional Th cell polarizing mechanisms are induced by the ligation of cell surface molecules on DC and

  7. The role of electrostatic interactions in the Streptococcus thermophilus adhesion on human erythrocytes in media with different 1:1 electrolyte concentration

    Directory of Open Access Journals (Sweden)

    О. І. Гордієнко

    2015-10-01

    Full Text Available The process of bacterial adhesion is usually discussed in terms of the two-stage sorption model. According to the model, at the first stage the bacteria fastly attaches to the surface by weak physical interactions, while at the second stage irreversible molecular and cellular adhesion process takes place. An important factor, influencing the adhesion processes, is physical-chemical characteristics of the medium, in particular, the presence of monovalent cations therein. The aim of this work is to assess the role of electrostatic component of the intercellular interactions at the first reversible stage of adhesion. Comparison of experimental data of adhesion of lactobacilli S. thermophilus on human erythrocytes and theoretical definition of the Debye radius and the erythrocytes surface potential in the experimental solutions showed that with decreasing ionic strength of the solution the change in the adhesion index in our experiments is fully in line with the theory DLVO predictions.

  8. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    Science.gov (United States)

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-06

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. IL-4 increases human endothelial cell adhesiveness for T cells but not for neutrophils.

    Science.gov (United States)

    Thornhill, M H; Kyan-Aung, U; Haskard, D O

    1990-04-15

    The adhesion of leukocytes to vascular endothelium is the first step in their passage from the blood into inflammatory tissues. By modulating endothelial cell (EC) adhesiveness for leukocytes, cytokines may regulate leukocyte accumulation and hence the nature and progression of inflammatory responses. We have found that the T cell cytokine IL-4 increases the adhesion of T cells, but not neutrophils, to human umbilical vein EC monolayers. The increase in T cell adhesion induced by IL-4 was dose dependent (ED50 = 5 U/ml) and peaked around 33 U/ml. No increase in adhesion of neutrophils was observed at concentrations of IL-4 up to 1000 U/ml. The kinetic of the increase in T cell adhesion exhibited a steady rise peaking between 18 and 24 h before returning to basal levels by 72 h. The IL-4 specificity of the effect was confirmed by the ability of neutralizing anti-IL-4, but not anti-TNF, antibodies to abolish the effect. The increase in T cell-EC adhesion was due to an effect of IL-4 on EC inasmuch as preincubation of the T cells with IL-4 did not increase T cell binding. Furthermore, preincubation of A549 epithelial cell line monolayers with IL-4 caused no increase in T cell binding whereas A549 cells and EC showed a similarly enhanced adhesiveness for T cells after preincubation with IL-1, TNF, or IFN-gamma. EC treated with IL-4 retained their increased adhesiveness for T cells after light fixation, suggesting that IL-4 up-regulates binding by increasing the expression or accessibility of EC surface receptors for lymphocytes. Although antibodies to intercellular adhesion molecule-1 (CD54) and the beta-chain (CD18) of lymphocyte function-associated Ag-1 (CD11a/CD18) partially inhibited T cell adhesion to unstimulated EC, they did not affect the increase in adhesion due to IL-4 stimulation, indicating that the increased binding resulted from the generation of an alternative binding receptor(s) on the EC membrane. These findings suggest that IL-4 may play a role in the

  10. Alpha-tocopherol and BAY 11-7082 reduce vascular cell adhesion molecule in human aortic endothelial cells.

    Science.gov (United States)

    Catalán, Ursula; Fernández-Castillejo, Sara; Pons, Laia; Heras, Mercedes; Aragonés, Gemma; Anglès, Neus; Morelló, Jose-Ramon; Solà, Rosa

    2012-01-01

    In endothelial dysfunction, vascular cell adhesion molecule-1 (VCAM-1), E-selectin and intercellular adhesion molecule-1 (ICAM-1) expression (collectively termed cell adhesion molecules; CAMs) increase at sites of atherosclerosis and are stimulated by proinflammatory cytokines such as tumor necrosis factor-α (TNF-α). We evaluated the effect of alpha-tocopherol (AT; 10-150 µM) and BAY 11-7082 (BAY; 0.1 or 1 µM) on CAMs mRNA expression as well as their protein in soluble release form (sCAMs) in human aortic endothelial cells (HAECs) activated by TNF-α (1 or 10 ng/ml). Also, we determined the extent of lymphocyte adhesion to activated HAECs. BAY reduced VCAM-1, E-selectin and ICAM-1 mRNA expression by 30, 30 and 10%, respectively. Furthermore, protein reduction of sVCAM-1 by 70%, sE-selectin by 51% and sICAM-1 by 25% compared to HAECs stimulated by TNF-α was observed (p adhesion to human Jurkat T lymphocytes was higher compared to nonactivated HAECs (p adhesion (p cell adhesion, while AT selectively inhibits VCAM-1; both induce endothelial dysfunction improvement. Copyright © 2012 S. Karger AG, Basel.

  11. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2.

    LENUS (Irish Health Repository)

    Stevens, Niall T

    2009-03-01

    Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and\\/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.

  12. Orthodontic adhesives induce human gingival fibroblast toxicity and inflammation.

    Science.gov (United States)

    Huang, Tsui-Hsien; Liao, Pao-Hsin; Li, Han Yu; Ding, Shinn Jyh; Yen, Min; Kao, Chia-Tze

    2008-05-01

    To test the null hypothesis that the resin base and the resin hybrid glass ionomer base adhesives do not cause inflammation after contacting primary human gingival fibroblasts in vitro. The resin base and resin hybrid glass ionomer base adhesives were used to treat human gingival fibroblasts to evaluate the survival rate using MTT colorimetric assay to detect the level of cyclooxygenase-2 (COX-2) mRNA by reverse transcription polymerase chain reaction (RT-PCR) technique and COX-2 protein expression using Western blot analysis. The results were analyzed using one-way analysis of variance (ANOVA). Tests of differences of the treatments were analyzed using the Tukey test and a value of P adhesive and the liquid of glass ionomer adhesive showed decreasing survival rates after 24 hours of treatment (P adhesives induced COX-2 protein expression in human gingival fibroblasts. The exposure of quiescent human gingival fibroblasts to adhesives resulted in the induction of COX-2 mRNA expression. The investigations of the time-dependent COX-2 mRNA expression in adhesive-treated human gingival fibroblasts revealed different patterns. The hypothesis is rejected. For orthodontic patients with gingival inflammation, except for those with oral hygiene problems, the activation of COX-2 expression by orthodontic adhesive may be one of the potential mechanisms.

  13. The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis.

    Science.gov (United States)

    Paharik, Alexandra E; Kotasinska, Marta; Both, Anna; Hoang, Tra-My N; Büttner, Henning; Roy, Paroma; Fey, Paul D; Horswill, Alexander R; Rohde, Holger

    2017-03-01

    The otherwise harmless skin inhabitant Staphylococcus epidermidis is a major cause of healthcare-associated medical device infections. The species' selective pathogenic potential depends on its production of surface adherent biofilms. The Cell wall-anchored protein Aap promotes biofilm formation in S. epidermidis, independently from the polysaccharide intercellular adhesin PIA. Aap requires proteolytic cleavage to act as an intercellular adhesin. Whether and which staphylococcal proteases account for Aap processing is yet unknown. Here, evidence is provided that in PIA-negative S. epidermidis 1457Δica, the metalloprotease SepA is required for Aap-dependent S. epidermidis biofilm formation in static and dynamic biofilm models. qRT-PCR and protease activity assays demonstrated that under standard growth conditions, sepA is repressed by the global regulator SarA. Inactivation of sarA increased SepA production, and in turn augmented biofilm formation. Genetic and biochemical analyses demonstrated that SepA-related induction of biofilm accumulation resulted from enhanced Aap processing. Studies using recombinant proteins demonstrated that SepA is able to cleave the A domain of Aap at residue 335 and between the A and B domains at residue 601. This study identifies the mechanism behind Aap-mediated biofilm maturation, and also demonstrates a novel role for a secreted staphylococcal protease as a requirement for the development of a biofilm. © 2016 John Wiley & Sons Ltd.

  14. NAD(P)H:quinone oxidoreductase 1-compromised human bone marrow endothelial cells exhibit decreased adhesion molecule expression and CD34+ hematopoietic cell adhesion.

    Science.gov (United States)

    Zhou, Hongfei; Dehn, Donna; Kepa, Jadwiga K; Siegel, David; Scott, Devon E; Tan, Wei; Ross, David

    2010-07-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) deficiency resulting from a homozygous NQO1*2 polymorphism has been associated with an increased risk of benzene-induced myeloid toxicity and a variety of de novo and therapy-induced leukemias. Endothelial cells in human bone marrow form one of the two known hematopoietic stem cell microenvironments and are one of the major cell types that express NQO1 in bone marrow. We have used a transformed human bone marrow endothelial cell (TrHBMEC) line to study the potential impact of a lack of NQO1 activity on adhesion molecule [endothelial leukocyte adhesion molecule 1 (E-selectin), vascular cell adhesion molecule (VCAM)-1, and intercellular adhesion molecule (ICAM)-1] expression and functional adhesion to bone marrow progenitor cells. We used both 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936), a mechanism-based inhibitor of NQO1, and anti-NQO1 small interfering RNA to abrogate NQO1 activity. Real-time reverse transcription-polymerase chain reaction data demonstrated a significant inhibition of tumor necrosis factor (TNF)alpha-induced E-selectin mRNA levels after ES936 pretreatment. Immunoblot assays demonstrated a significant reduction in TNFalpha-stimulated E-selectin, VCAM-1, and ICAM-1 proteins after inhibition or knockdown of NQO1. The mechanisms underlying this effect remain undefined, but modulation of nuclear factor-kappaB (p65), c-Jun, and activating transcription factor 2, transcriptional regulators of adhesion molecules, were observed after inhibition or knockdown of NQO1. Decreased level of E-selectin, VCAM-1, and ICAM-1 also resulted in a functional deficit in adhesion. A parallel plate flow chamber study demonstrated a marked reduction in CD34(+) cell (KG1a) adhesion to NQO1-deficient TrHBMECs relative to controls. The reduced adhesive ability of TrHBMECs may affect the function of the vascular stem cell niche and also may contribute to the increased susceptibility of polymorphic individuals

  15. Intercellular deposits of basement membrane material in active human pituitary adenomas detected by immunostaining for laminin and electron microscopy

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1986-01-01

    and one patient with Cushing's syndrome). Concurrently, at the ultrastructural level, bunches of basement membrane-like material intermingled between the adenoma cells were demonstrated in seven of these ten active adenomas. Furthermore, secretory granules were entrapped occasionally in this intercellular...

  16. Adhesions

    Science.gov (United States)

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  17. The Analysis of Intracellular and Intercellular Calcium Signaling in Human Anterior Lens Capsule Epithelial Cells with Regard to Different Types and Stages of the Cataract

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Fajmut, Aleš; Marhl, Marko; Hawlina, Marko; Andjelić, Sofija

    2015-01-01

    In this work we investigated how modifications of the Ca2+ homeostasis in anterior lens epithelial cells (LECs) are associated with different types of cataract (cortical or nuclear) and how the progression of the cataract (mild or moderate) affects the Ca2+ signaling. We systematically analyzed different aspects of intra- and inter-cellular Ca2+ signaling in the human LECs, which are attached to surgically isolated lens capsule (LC), obtained during cataract surgery. We monitored the temporal and spatial changes in intracellular Ca2+ concentration after stimulation with acetylcholine by means of Fura-2 fluorescence captured with an inverted microscope. In our analysis we compared the features of Ca2+ signals in individual cells, synchronized activations, spatio-temporal grouping and the nature of intercellular communication between LECs. The latter was assessed by using the methodologies of the complex network theory. Our results point out that at the level of individual cells there are no significant differences when comparing the features of the signals with regard either to the type or the stage of the cataract. On the other hand, noticeable differences are observed at the multicellular level, despite inter-capsule variability. LCs associated with more developed cataracts were found to exhibit a slower collective response to stimulation, a less pronounced spatio-temporal clustering of LECs with similar signaling characteristics. The reconstructed intercellular networks were found to be sparser and more segregated than in LCs associated with mild cataracts. Moreover, we show that spontaneously active LECs often operate in localized groups with quite well aligned Ca2+ activity. The presence of spontaneous activity was also found to affect the stimulated Ca2+ responses of individual cells. Our findings indicate that the cataract progression entails the impairment of intercellular signaling thereby suggesting the functional importance of altered Ca2+ signaling of

  18. CKIP-1 ameliorates high glucose-induced expression of fibronectin and intercellular cell adhesion molecule-1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.

    Science.gov (United States)

    Gong, Wenyan; Chen, Cheng; Xiong, Fengxiao; Yang, Zhiying; Wang, Yu; Huang, Junying; Liu, Peiqing; Huang, Heqing

    2016-09-15

    Glucose and lipid metabolism disorders as well as oxidative stress (OSS) play important roles in diabetic nephropathy (DN). Glucose and lipid metabolic dysfunctions are the basic pathological changes of chronic microvascular complications of diabetes mellitus, such as DN. OSS can lead to the accumulation of extracellular matrix and inflammatory factors which will accelerate the progress of DN. Casein kinase 2 interacting protein-1 (CKIP-1) mediates adipogenesis, cell proliferation and inflammation under many circumstances. However, whether CKIP-1 is involved in the development of DN remains unknown. Here, we show that CKIP-1 is a novel regulator of resisting the development of DN and the underlying molecular mechanism is related to activating the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) antioxidative stress pathway. The following findings were obtained: (1) The treatment of glomerular mesangial cells (GMCs) with high glucose (HG) decreased CKIP-1 levels in a time-dependent manner; (2) CKIP-1 overexpression dramatically reduced fibronectin (FN) and intercellular adhesionmolecule-1 (ICAM-1) expression. Depletion of CKIP-1 further induced the production of FN and ICAM-1; (3) CKIP-1 promoted the nuclear accumulation, DNA binding, and transcriptional activity of Nrf2. Moreover, CKIP-1 upregulated the expression of Nrf2 downstream genes, heme oxygenase (HO-1) and superoxide dismutase 1 (SOD1); and ultimately decreased the levels of reactive oxygen species (ROS). The molecular mechanisms clarify that the advantageous effect of CKIP-1 on DN are well connected with the activation of the Nrf2/ARE antioxidative stress pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A Strong Contractile Actin Fence and Large Adhesions Direct Human Pluripotent Colony Morphology and Adhesion

    Directory of Open Access Journals (Sweden)

    Elisa Närvä

    2017-07-01

    Full Text Available Cell-type-specific functions and identity are tightly regulated by interactions between the cell cytoskeleton and the extracellular matrix (ECM. Human pluripotent stem cells (hPSCs have ultimate differentiation capacity and exceptionally low-strength ECM contact, yet the organization and function of adhesion sites and associated actin cytoskeleton remain poorly defined. We imaged hPSCs at the cell-ECM interface with total internal reflection fluorescence microscopy and discovered that adhesions at the colony edge were exceptionally large and connected by thick ventral stress fibers. The actin fence encircling the colony was found to exert extensive Rho-ROCK-myosin-dependent mechanical stress to enforce colony morphology, compaction, and pluripotency and to define mitotic spindle orientation. Remarkably, differentiation altered adhesion organization and signaling characterized by a switch from ventral to dorsal stress fibers, reduced mechanical stress, and increased integrin activity and cell-ECM adhesion strength. Thus, pluripotency appears to be linked to unique colony organization and adhesion structure.

  20. Beneficial Effects of Coenzyme Q10 Supplementation on Lipid Profile and Intereukin-6 and Intercellular Adhesion Molecule-1 Reduction, Preliminary Results of a Double-blind Trial in Acute Myocardial Infarction

    Science.gov (United States)

    Mohseni, Mona; Vafa, Mohammadreza; Zarrati, Mitra; Shidfar, Farzad; Hajimiresmail, Seyed Javad; Rahimi Forushani, Abbas

    2015-01-01

    Background: The present investigation was aimed to improve the inflammatory factors and lipoproteins concentration in patients with myocardial infarction (MI) by supplementation with coenzyme Q10 (CoQ10). Methods: In a double-blind, placebo-controlled study, we measured serum concentrations of one soluble cell adhesion molecules (intercellular adhesion molecule-1 [ICAM-1]), serum concentration of intereukin-6 (IL-6) and lipid profiles (high-density lipoprotein-cholesterol [HDL-C], low-density lipoprotein-cholesterol [LDL-C], total cholesterol and triglyceride [TG]) in CoQ10 supplementation group (n = 26) compared with placebo group (n = 26) in hyperlipidemic patients with MI. Fifty-two patients were randomized to receive 200 mg/day of CoQ10 or placebo for 12 weeks. Results: There were no significant differences for serum LDL-C, total cholesterol, and TG between two mentioned groups after the intervention. A significant enhancement in serum HDL-C level was observed between groups after the intervention (55.46 ± 6.87 and 44.07 ± 6.99 mg/dl in CoQ10 and placebo groups, respectively P < 0.001). Concentrations of ICAM-1 (415.03 ± 96.89 and 453.38 ± 0.7 ng/dl CoQ10 and placebo groups, respectively, P = 0.001) and IL-6 (11 ± 9.57 and 12.55 ± 8.76 pg/ml CoQ10 and placebo groups, respectively P = 0.001) in serum were significantly decreased in CoQ10 group. Conclusions: Supplementation with CoQ10 in hyperlipidemic patients with MI that have statin therapy has beneficial effects on their aspects of health. PMID:26330989

  1. Changes in CD200 and intercellular adhesion molecule-1 (ICAM-1) levels in brains of Lewy body disorder cases are associated with amounts of Alzheimer's pathology not α-synuclein pathology.

    Science.gov (United States)

    Walker, Douglas G; Lue, Lih-Fen; Tang, Tiffany M; Adler, Charles H; Caviness, John N; Sabbagh, Marwan N; Serrano, Geidy E; Sue, Lucia I; Beach, Thomas G

    2017-06-01

    Enhanced inflammation has been associated with Alzheimer's disease (AD) and diseases with Lewy body (LB) pathology, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). One issue is whether amyloid and tangle pathology, features of AD, or α-synuclein LB pathology have similar or different effects on brain inflammation. An aim of this study was to examine if certain features of inflammation changed in brains with increasing LB pathology. To assess this, we measured levels of the anti-inflammatory protein CD200 and the pro-inflammatory protein intercellular adhesion molecule-1 (ICAM-1) in cingulate and temporal cortex from a total of 143 cases classified according to the Unified Staging System for LB disorders. Changes in CD200 and ICAM-1 levels did not correlate with LB pathology, but with AD pathology. CD200 negatively correlated with density of neurofibrillary tangles, phosphorylated tau, and amyloid plaque density. ICAM-1 positively correlated with these AD pathology measures. Double immunohistochemistry for phosphorylated α-synuclein and markers for microglia showed limited association of microglia with LB pathology, but microglia strongly associated with amyloid plaques or phosphorylated tau. These results suggest that there are different features of inflammatory pathology in diseases associated with abnormal α-synuclein compared with AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Effect of non-surgical periodontal therapy on level of serum soluble intercellular adhesion molecule-1 and glycated hemoglobin A1c in patients with type 2 diabetes and chronic periodontitis].

    Science.gov (United States)

    Yuan, Tangxia; Zhang, Yanbiao; Zhou, Yun; Wang, Fantao; Wang, Feng

    2013-08-01

    To evaluate the effects of non-surgical periodontal treatment on clinical periodontal measurements, glycemic control, and level of serum soluble intercellular adhesion molecule-1 (sICAM-1) in type 2 diabetes mellitus with chronic periodontitis patients. Patients with type 2 diabetes and chronic periodontitis were selected and classified into well-controlled group[glycated hemoglobin Ac(GHbA1) or = 7.00%, n = 30, DMCP2 group). Thirty systemically healthy patients with chronic periodontitis were recruited as control group (CP group). All subjects underwent non-surgical periodontal therapy. Plaque index(PLI), sulcus bleeding index(SBI), bleeding on probing (BOP), probing depth(PD), clinical attachment loss (CAL), serum sICAM-1 concentration, and the value of fasting plasma glucose(FPG), GHbAc were recorded at baseline, 1 and 3 months after periodontal treatment. The three study groups showed significant improvements for the levels of PD, SBI, PLI, BOP, and serum sICAM-1 concentration at 1 and 3 months after non-surgical periodontal treatment (P 0.05). At 3 months after periodontal treatment, GHbA1c levels in DMCP2 group significantly decreased by 1.12% (P 0.05). Non-surgical periodontal treatment can siginificantly improve periodontal health status in patients with type 2 diabetes and periodontitis, reduce the level of serum sICAM-1, and can reduce the level of GHbA1c in poorly controlled type 2 diabetic patients.

  3. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z. [The Third Hospital of Hebei Medical University, The Provincial Key Laboratory for Orthopedic Biomechanics of Hebei, Shijiazhuang, Hebei Province (China)

    2015-02-13

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.

  4. Streptococcus pyogenes Phospholipase A2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice.

    Science.gov (United States)

    Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2017-01-01

    The Streptococcus pyogenes phospholipase A2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes, which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the ΔslaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.

  5. Epigallocatechin gallate reduces human monocyte mobility and adhesion in vitro.

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2009-12-01

    Monocytes/macrophages are an important population of immune inflammatory cells that have diverse effector functions in which their mobility and adhesion play a very relevant role. Epigallocatechin gallate (EGCG), a major component of green tea, has been reported to have anti-allergic and anti-inflammatory activities, but its effects on monocytes remain to be determined. Here we investigated the effects of EGCG on the migration and adhesion of monocytes. We used a human monocyte cell line (THP-1) to analyse the effects of treatment with EGCG under non-cytotoxic conditions on the expression levels of the monocyte chemotactic protein-1 (MCP-1) and of the MCP-1 receptor (CCR2) and on the activation of beta1 integrin. A functional validation was carried out by evaluating the inhibitory effect of EGCG on monocyte adhesiveness and migration in vitro. Treatment of THP-1 cells with EGCG decreased MCP-1 and CCR2 gene expression, together with MCP-1 secretion and CCR2 expression at the cell surface. EGCG also inhibited beta1 integrin activation. The effects on these molecular targets were in agreement with the EGCG-induced inhibition of THP-1 migration in response to MCP-1 and adhesion to fibronectin. Under our experimental conditions, EGCG treatment inhibited the migration and adhesion of monocytes. These inhibitory effects of EGCG on monocyte function should be considered as a promising new anti-inflammatory response with a potential therapeutic role in the treatment of inflammation-dependent diseases.

  6. Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    Science.gov (United States)

    Domínguez, Francisco; Simón, Carlos; Quiñonero, Alicia; Ramírez, Miguel Ángel; González-Muñoz, Elena; Burghardt, Hans; Cervero, Ana; Martínez, Sebastián; Pellicer, Antonio; Palacín, Manuel; Sánchez-Madrid, Francisco; Yáñez-Mó, María

    2010-01-01

    Background Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. Methods and Principal Findings Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. Conclusions These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window. PMID:20976164

  7. Human endometrial CD98 is essential for blastocyst adhesion.

    Directory of Open Access Journals (Sweden)

    Francisco Domínguez

    Full Text Available BACKGROUND: Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. METHODS AND PRINCIPAL FINDINGS: Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. CONCLUSIONS: These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window.

  8. Cleavage and cell adhesion properties of human epithelial cell adhesion molecule (HEPCAM).

    Science.gov (United States)

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-10-02

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    Science.gov (United States)

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  10. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion.

    Science.gov (United States)

    Pokrishevsky, Edward; Grad, Leslie I; Cashman, Neil R

    2016-03-01

    Amyotrophic lateral sclerosis (ALS), which appears to spread through the neuroaxis in a spatiotemporally restricted manner, is linked to heritable mutations in genes encoding SOD1, TDP-43, FUS, C9ORF72, or can occur sporadically without recognized genetic mutations. Misfolded human wild-type (HuWt) SOD1 has been detected in both familial and sporadic ALS patients, despite mutations in SOD1 accounting for only 2% of total cases. We previously showed that accumulation of pathological TDP-43 or FUS coexist with misfolded HuWtSOD1 in patient motor neurons, and can trigger its misfolding in cultured cells. Here, we used immunocytochemistry and immunoprecipitation to demonstrate that TDP-43 or FUS-induced misfolded HuWtSOD1 can propagate from cell-to-cell via conditioned media, and seed cytotoxic misfolding of endogenous HuWtSOD1 in the recipient cells in a prion-like fashion. Knockdown of SOD1 using siRNA in recipient cells, or incubation of conditioned media with misfolded SOD1-specific antibodies, inhibits intercellular transmission, indicating that HuWtSOD1 is an obligate seed and substrate of propagated misfolding. In this system, intercellular spread of SOD1 misfolding is not accompanied by transmission of TDP-43 or FUS pathology. Our findings argue that pathological TDP-43 and FUS may exert motor neuron pathology in ALS through the initiation of propagated misfolding of SOD1.

  11. Quantitative analysis of adhesion molecules on cellular constituents of the human uterine microenvironment under the influence of estrogen and progesterone.

    Science.gov (United States)

    Brackin, Martha N; Cruse, Julius M; Lewis, Robert E; Hines, Randal S; Stopple, J A; Cowan, Bryan D

    2002-04-01

    The uterus contains all the components of a tertiary lymphoid compartment. We hypothesize that specific leukocyte recruitment to the endometrium during the secretory phase of the menstrual cycle and early pregnancy limits the type of immunocyte that gains access. The present study utilized flow cytometry to define and quantify adhesion molecules possibly used by decidual infiltrating lymphocytes (DIL) as homing receptors, uterine microvascular myometrial endothelial cells (UtMVE-Myo) as addressins, and secretory endometrial stroma cells (STO) as retainment factors. Human umbilical cord vein endothelial cells and peripheral blood lymphocytes were used as control cells for comparison studies. DIL were composed of predominantly lymphocyte function-associated antigen (LFA)-1+, intercellular adhesion molecule (ICAM)-1+, LFA-2+, LFA-3+, gp150,95+, alpha1beta1+, Hermes cell adhesion molecule (H-CAM)+, and neural cell adhesion molecule (N-CAM)+ (CD56(bright)) memory/effector natural killer cells. A significant number of UtMVEC-Myo expressed platelet endothelial cell adhesion molecule (PECAM)-1, a percentage were uniquely LFA-3+, and alpha4 integrin expression was uniquely high. An increased number of STO uniquely expressed alpha3, beta3, and LFA-3, whereas alpha2, alpha4, alphaVbeta3, and H-CAM were significantly increased. Possible unique adhesions of DIL:UtMVEC-Myo included SLe(x):PECAM, vascular cell adhesion molecule-1:alpha4, and LFA-2:LFA-3, whereas DIL:STO included LFA-2:LFA-3 and N-CAM:N-CAM. Unique molecules on DIL may also associate with extracellular matrix (ECM) or complement on UtMVEC-Myo or STO to form gp150,95:fibrinogen/iC3b/C3dg, alpha1beta1:laminin (LM)/collagen (CO), and ICAM-1:fibronectin (FN) interactions. Bridges of ECM may also form between DIL and UtMVEC-Myo adhesion molecules including ICAM-1:FN:ICAM-1 and alpha4beta1:FN:alpha4beta1. DIL:ECM:STO interactions may involve alpha2beta1:CO:alpha2beta1, alpha3beta1:LM/CO/FN:alpha3beta1, alphaVbeta3:VN

  12. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R

    2013-01-01

    . Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...... been suggested to be involved in the development of cerebral malaria. However, more studies identifying cross-reactive antibody and ICAM-1-binding epitopes and the establishment of a clinical link between DBLβ expression and e.g. cerebral malaria are needed before the DBLβ domains can be put forward...... as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein...

  13. Human climbing with efficiently scaled gecko-inspired dry adhesives

    OpenAIRE

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for syn...

  14. Study The Relationship Between Intercellular Adhesion Molecules ...

    African Journals Online (AJOL)

    plasma concentration of ICAM-1 as a marker for endothelial activation among type 2 diabetic patients with or without nephropathy (as tool in early diagnosis of nephropathy as major diabetic complications) also to explore the relationship between plasma level of ICAM-1 and insulin resistance in the studied patients.

  15. Aggregation of human platelets and adhesion of Streptococcus sanguis.

    Science.gov (United States)

    Herzberg, M C; Brintzenhofe, K L; Clawson, C C

    1983-01-01

    Platelet vegetations or thrombi are common findings in subacute bacterial endocarditis. We investigated the hypothesis that human platelets selectively bind or adhere strains of Streptococcus sanguis and Streptococcus mutans and aggregate, as a result, into an in vitro thrombus. Earlier ultrastructural studies suggested that aggregation of platelets over time by Staphylococcus aureus was preceded in order by adhesion and platelet activation. We uncoupled the adhesion step from activation and aggregation in our studies by incubating streptococci with platelet ghosts in a simple, quantitative assay. Adhesion was shown to be mediated by protease-sensitive components on the streptococci and platelet ghosts rather than cell surface carbohydrates or dextrans, plasma components, or divalent cations. The same streptococci were also studied by standard aggregometry techniques. Platelet-rich plasma was activated and aggregated by certain isolates of S. sanguis. Platelet ghosts bound the same strains selectively under Ca2+- and plasma-depleted conditions. Fresh platelets could activate after washing, but Ca2+ had to be restored. Aggregation required fresh platelets in Ca2+-restored plasma and was inducible by washed streptococcal cell walls. These reactions in the binding and aggregometry assays were confirmed by transmission electron microscopy. Surface microfibrils on intact S. sanguis were identified. These appendages appeared to bind S. sanguis to platelets. The selectivity of adhesion of the various S. sanguis strains to platelet ghosts or Ca2+- and plasma-depleted fresh washed platelets was similar for all donors. Thus, the platelet binding site was expressed widely in the population and was unlikely to be an artifact of membrane aging or preparation. Since selective adhesion of S. sanguis to platelets was apparently required for aggregation, it is suggested that functionally defined receptors for ligands on certain strains of S. sanguis may be present on human

  16. Increased levels of soluble forms of E-selectin and ICAM-1 adhesion molecules during human leptospirosis.

    Science.gov (United States)

    Raffray, Loic; Giry, Claude; Thirapathi, Yoga; Reboux, Anne-Hélène; Jaffar-Bandjee, Marie-Christine; Gasque, Philippe

    2017-01-01

    Leptospirosis is a multisystemic zoonotic disease with infiltration of visceral organs by Leptospira. The capacity of the vascular endothelium to grant immune cell recruitment and activation in target organs during the disease course remains poorly characterized. We ascertained the levels of expression of several soluble cell adhesion molecules (CAM) notably expressed by endothelial cells in human leptospirosis. We prospectively enrolled 20 hospitalized patients and compared them to 10 healthy controls. Disease severity was defined by one or more organ failures, or death. Plasmatic concentrations of soluble CAM were assessed by multiplex bead assay at the time of patient presentation (M0) and 1 month after hospital discharge. The levels of soluble E-selectin (sCD62E) and soluble intercellular adhesion molecule 1 (sICAM-1, sCD53) were significantly increased in patients compared to controls (pleptospirosis: E-selectin and s-ICAM1. These molecules may interfere with the process of immune cell recruitment to clear Leptospira at tissue levels.

  17. Ciprofloxacin inhibits advanced glycation end products-induced adhesion molecule expression on human monocytes.

    Science.gov (United States)

    Mori, S; Takahashi, H K; Liu, K; Wake, H; Zhang, J; Liu, R; Yoshino, T; Nishibori, M

    2010-09-01

    BACKGROUND AND PURPOSE Advanced glycation end products (AGEs) subtypes, proteins or lipids that become glycated after exposure to sugars, can induce complications in diabetes. Among the various AGE subtypes, glyceraldehyde-derived AGE (AGE-2) and glycolaldehyde-derived AGE (AGE-3) are involved in inflammation in diabetic patients; monocytes are activated by these AGEs. Ciprofloxacin (CIP), a fluorinated 4-quinolone, is often used clinically to treat infections associated with diabetis due to its antibacterial properties. It also modulates immune responses in human peripheral blood mononuclear cells (PBMC) therefore we investigated the involvement of AGEs in these effects. EXPERIMENTAL APPROACH Expression of intercellular adhesion molecule (ICAM)-1, B7.1, B7.2 and CD40 was examined by flow cytometry. The production of tumour necrosis factor (TNF)-alpha, interferon (IFN)-gamma, prostaglandin E(2) (PGE(2)) and cAMP were determined by enzyme-linked immunosorbent assay. Cyclooxygenase (COX)-2 expression was determined by Western blot analysis. Lymphocyte proliferation was determined by [(3)H]-thymidine uptake. KEY RESULTS CIP induced PGE(2) production in monocytes, irrespective of the presence of AGE-2 and AGE-3, by enhancing COX-2 expression; this led to an elevation of intracellular cAMP in monocytes. Non-selective and selective COX-2 inhibitors, indomethacin and NS398, inhibited CIP-induced PGE(2) and cAMP production. In addition, CIP inhibited AGE-2- and AGE-3-induced expressions of ICAM-1, B7.1, B7.2 and CD40 in monocytes, the production of TNF-alpha and IFN-gamma and lymphocyte proliferation in PBMC. Indomethacin, NS398 and a protein kinase A inhibitor, H89, inhibited the actions of CIP. CONCLUSIONS AND IMPLICATIONS CIP exerts immunomodulatory activity via PGE(2), implying therapeutic potential of CIP for the treatment of AGE-2- and AGE-3-induced inflammatory responses.

  18. Ginsenoside Rg3 inhibits lipopolysaccharide-induced adhesion molecule expression in human umbilical vein endothelial cell and C57BL/6 mice.

    Science.gov (United States)

    Cho, Young-Suk; Kim, Chan Hyung; Kim, Han Na; Ha, Tae-Sun; Ahn, Hee Yul

    2014-11-01

    Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), P- and E-selectin play a key role for initiation of vascular inflammation. Ginsenoside, a class of steroid glycosides, is abundant in Panax ginseng root, which has been used for health promotion in Korea. In this study, we investigated the mechanism by which ginsenoside Rg3 may inhibit ICAM-1 and VCAM-1 expressions stimulated with lipopolysaccharide (LPS) in human umbilical vein endothelial cell (HUVEC) and C57BL/6 mice. LPS increased ICAM-1 and VCAM-1 expression. Ginsenoside Rg3 prevented LPS-mediated increase of ICAM-1 and VCAM-1 expression. LPS induced IkappaBα (IκBα) degradation within 1 hr. Ginsenoside Rg3 prevented the IκBα degradation stimulated with LPS. Moreover, ginsenoside Rg3 reduced LPS-mediated THP-1 monocyte adhesion to HUVEC, in a concentration-dependent manner. In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, which was prevented by ginsenoside Rg3. These data provide a novel mechanism where the ginsenoside Rg3 may provide direct vascular benefits with inhibition of leukocyte adhesion into vascular wall thereby providing prevention against vascular inflammatory disease.

  19. 1α,25-Dihydroxyvitamin D(3) inhibits vascular cellular adhesion molecule-1 expression and interleukin-8 production in human coronary arterial endothelial cells.

    Science.gov (United States)

    Kudo, Keiko; Hasegawa, Shunji; Suzuki, Yasuo; Hirano, Reiji; Wakiguchi, Hiroyuki; Kittaka, Setsuaki; Ichiyama, Takashi

    2012-11-01

    Kawasaki disease is an acute febrile vasculitis of childhood that is associated with elevated production of inflammatory cytokines, causing damage to the coronary arteries. The production of proinflammatory cytokines and expression of adhesion molecules in human coronary arterial endothelial cells (HCAECs) is regulated by nuclear transcription factor-κB (NF-κB) activation. We have previously reported that the active form of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)), inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activation. In this study, we examined the anti-inflammatory effects of 1α,25-(OH)(2)D(3) on TNF-α-induced adhesion molecule expression (vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)) and cytokine production (interleukin-6 (IL-6) and IL-8) in HCAECs. Pretreatment with 1α,25-(OH)(2)D(3) significantly inhibited TNF-α-induced VCAM-1 expression and IL-8 production in HCAECs. Our results suggest that adjunctive 1α,25-(OH)(2)D(3) therapy may modulate the inflammatory response during Kawasaki disease vasculitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Immunohistochemistry of the intercellular matrix components and the epithelio-mesenchymal junction of the human tooth germ

    DEFF Research Database (Denmark)

    Matthiessen, M E; Olsen, B E; Moe, D

    1994-01-01

    The immunohistochemical localization of heparan sulphate, collagen type I, III and IV, laminin, tenascin, plasma- and cellular fibronectin was studied in tooth germs from human fetuses. The lamina basalis ameloblastica or membrana preformativa, which separates the pre-ameloblasts from the pre...

  1. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R; Henriksen, Zanne; Sørensen, Ole

    2002-01-01

    that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium signaling...

  2. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    Directory of Open Access Journals (Sweden)

    Md. Abdur Rakib

    2013-01-01

    Full Text Available The major conjugated linoleic acid (CLA isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43 expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB activity and enhanced reactive oxygen species (ROS generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells.

  3. Soluble adhesion molecules in human cancers: sources and fates.

    NARCIS (Netherlands)

    Kilsdonk, J.W.J. van; Kempen, L.C.L.T. van; Muijen, G.N.P. van; Ruiter, D.J.; Swart, G.W.

    2010-01-01

    Adhesion molecules endow tumor cells with the necessary cell-cell contacts and cell-matrix interactions. As such, adhesion molecules are involved in cell signalling, proliferation and tumor growth. Rearrangements in the adhesion repertoire allow tumor cells to migrate, invade and form metastases.

  4. CADM1 Controls Actin Cytoskeleton Assembly and Regulates Extracellular Matrix Adhesion in Human Mast Cells

    Science.gov (United States)

    Moiseeva, Elena P.; Straatman, Kees R.; Leyland, Mark L.; Bradding, Peter

    2014-01-01

    CADM1 is a major receptor for the adhesion of mast cells (MCs) to fibroblasts, human airway smooth muscle cells (HASMCs) and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM). Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion. PMID:24465823

  5. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  6. Bystander normal human fibroblasts reduce damage response in radiation targeted cancer cells through intercellular ROS level modulation

    Energy Technology Data Exchange (ETDEWEB)

    Widel, Maria, E-mail: maria.widel@polsl.pl [Biosystem Group, Department of Automatics, Electronics and Informatics, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice (Poland); Przybyszewski, Waldemar M., E-mail: wmp@io.gliwice.pl [Center for Translational Research and Molecular Biology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Branch Gliwice, 15 Wybrzeze Armii Krajowej, 44-101 Gliwice (Poland); Cieslar-Pobuda, Artur [Biosystem Group, Department of Automatics, Electronics and Informatics, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice (Poland); Saenko, Yuri V. [Department of Pharmacology and Biochemistry, Center of Nanotechnology and Materials, Ulyanovsk State University (Russian Federation); Rzeszowska-Wolny, Joanna [Biosystem Group, Department of Automatics, Electronics and Informatics, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice (Poland)

    2012-03-01

    The radiation-induced bystander effect is a well-established phenomenon which results in damage in non-irradiated cells in response to signaling from irradiated cells. Since communication between irradiated and bystander cells could be reciprocal, we examined the mutual bystander response between irradiated cells and co-cultured with them non-irradiated recipients. Using a transwell culture system, irradiated human melanoma (Me45) cells were co-cultured with non-irradiated Me45 cells or normal human dermal fibroblasts (NHDF) and vice versa. The frequency of micronuclei and of apoptosis, ROS level, and mitochondrial membrane potential were used as the endpoints. Irradiated Me45 and NHDF cells induced conventional bystander effects detected as modest increases of the frequency of micronuclei and apoptosis in both recipient neighbors; the increase of apoptosis was especially high in NHDF cells co-cultured with irradiated Me45 cells. However, the frequencies of micronuclei and apoptosis in irradiated Me45 cells co-cultured with NHDF cells were significantly reduced in comparison with those cultured alone. This protective effect was not observed when irradiated melanomas were co-cultured with non-irradiated cells of the same line, or when irradiated NHDF fibroblasts were co-cultured with bystander melanomas. The increase of micronuclei and apoptosis in irradiated Me45 cells was paralleled by an increase in the level of intracellular reactive oxygen species (ROS), which was reduced significantly when they were co-cultured for 24 h with NHDF cells. A small but significant elevation of ROS level in NHDF cells shortly after irradiation was also reduced by co-culture with non-irradiated NHDF cells. We propose that in response to signals from irradiated cells, non-irradiated NHDF cells trigger rescue signals, whose nature remains to be elucidated, which modify the redox status in irradiated cells. This inverse bystander effect may potentially have implications in clinical

  7. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction.

    Science.gov (United States)

    Li, Chuan; Zhang, Wei-Jian; Frei, Balz

    2016-10-01

    Atherosclerosis, the underlying cause of ischemic heart disease and stroke, is an inflammatory disease of arteries in a hyperlipidemic milieu. Endothelial expression of cellular adhesion molecules, such as endothelial-leukocyte adhesion molecule-1 (E-selectin) and intercellular adhesion molecule-1 (ICAM-1), plays a critical role in the initiation and progression of atherosclerosis. The dietary flavonoid, quercetin, has been reported to inhibit expression of cellular adhesion molecules, but the underlying mechanisms are incompletely understood. In this study, we found that quercetin dose-dependently (5-20µM) inhibits lipopolysaccharide (LPS)-induced mRNA and protein expression of E-selectin and ICAM-1 in human aortic endothelial cells (HAEC). Incubation of HAEC with quercetin also significantly reduced LPS-induced oxidant production, but did not inhibit activation of the nuclear factor-kappaB (NF-κB). Furthermore, quercetin induced activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and subsequent mRNA and protein expression of the antioxidant enzymes, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase, quinone 1, and glutamate-cysteine ligase. The induction of Nrf2 and antioxidant enzymes was partly inhibited by the p38 mitogen-activated protein kinase (p38) inhibitor, SB203580. Our results suggest that quercetin suppresses LPS-induced oxidant production and adhesion molecule expression by inducing Nrf2 activation and antioxidant enzyme expression, which is partially mediated by p38; and the inhibitory effect of quercetin on adhesion molecule expression is not due to inhibition of NF-κB activation, but instead due to antioxidant-independent effects of HO-1. Copyright © 2016. Published by Elsevier B.V.

  8. MHC class II ligation induces CD58 (LFA-3)-mediated adhesion in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Gerwien, J; Geisler, C

    1998-01-01

    MHC class II positive T cells found in areas of inflammation are believed to play an important pathogenetic role in autoimmunity. In experimental models , class II molecules have been shown to regulate adhesion between human T cells. It is, however, not known in detail how class II molecules...... are functionally linked to adhesion molecules. Some data suggest that beta2 integrin (CD11a/CD18) molecules play a role in class-II-induced homotypic adhesion in B cells, monocytes, and virus-transformed or neoplastic cell lines. We have previously obtained evidence that adhesion molecules other than beta2...... integrins might play a role in class-II-mediated adhesion in T cells. To study further class-II-mediated adhesion in T cells, we have taken advantage of (allo)antigen-specific beta2-integrin-negative, CD4-positive T cell lines obtained from a leukocyte adhesion deficiency patient. We show that class II...

  9. Gingipains of Porphyromonas gingivalis Modulate Leukocyte Adhesion Molecule Expression Induced in Human Endothelial Cells by Ligation of CD99

    OpenAIRE

    Yun, Peter L. W.; Decarlo, Arthur A.; Hunter, Neil

    2006-01-01

    Porphyromonas gingivalis has been implicated as a key etiologic agent in the pathogenesis of destructive chronic periodontitis. Among virulence factors of this organism are cysteine proteinases, or gingipains, that have the capacity to modulate host inflammatory defenses. Intercellular adhesion molecule expression by vascular endothelium represents a crucial process for leukocyte transendothelial migration into inflamed tissue. Ligation of CD99 on endothelial cells was shown to induce express...

  10. Rhein inhibits the expression of vascular cell adhesion molecule 1 in human umbilical vein endothelial cells with or without lipopolysaccharide stimulation.

    Science.gov (United States)

    Hu, Gang; Liu, Jiang; Zhen, Yong-Zhan; Wei, Jie; Qiao, Yue; Lin, Ya-Jun; Tu, Ping

    2013-01-01

    Reducing the expression of endothelial cell adhesion molecules (ECAMs) is known to decrease inflammation-induced vascular complications. In this study, we explored whether rhein can reduce the inflammation-induced expression of ECAMs in human umbilical vein endothelial cells (HUVECs) with or without lipopolysaccharide (LPS) stimulation. HUVECs were treated with different concentrations of rhein with or without 2.5 μg/ml LPS stimulation. Cell viability was assayed using the MTT method. Real-time PCR and Western blot analysis were used to measure the transcription and expression levels of ECAMs, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-SELECTIN and related signaling proteins. The results indicated that rhein (0-20 μmol/L) and LPS (0-10 μg/ml) had no effect on the viability of HUVECs. LPS could promote the expression of VCAM-1, ICAM-1 and E-SELECTIN. Rhein appeared to target VCAM-1, ICAM-1 and E-SELECTIN, with the transcription and expression of all three factors being reduced by the rhein treatment (10 and 20 μmol/L). The transcription and expression of VCAM-1 were also reduced by treatment with rhein (10 and 20 μmol/L) in the presence of LPS stimulation. In conclusion, rhein treatment reduced the expression of VCAM-1 in HUVECs via a p38-dependent pathway.

  11. Adhesion Molecule Expression in Human Endothelial Cells under Simulated Microgravity

    Science.gov (United States)

    Rudimov, E. G.; Andreeva, E. R.; Buravkova, L. B.

    2013-02-01

    High gravisensitivity of endothelium is now well recognized. Therefore, the microgravity can be one of the main factors affecting the endothelium in space flight. In this work we studied the effects of gravity vector randomization (3D-clinorotation in RPM) on the viability of endothelial cells from human umbilical vein (HUVEC) and the expression of adhesion molecules on its surface. After RPM exposure, HUVEC conditioning medium was collected for cytokines evaluation, a part of vials was used for immunocytochemistry and other one - for cytofluorimetric analysis of ICAM-I, VCAM-I, PECAM-I, E-selectin, Endoglin, VE-cadherin expression. The viability of HUVEC and constitutive expression of EC marker molecules PECAM-I and Endoglin were similar in all experimental groups both after 6 and 24 hrs of exposure. There were no differences in ICAM-I and E-selectin expression on HUVEC in 3 groups after 6 hrs of exposure. 24 hrs incubation has provoked decrease in ICAM-I and E-selectin expression. Thus, gravity vector randomization can lead to the disruption of ECs monolayer.

  12. Laminin-dependent and laminin-independent adhesion of human melanoma cells to sulfatides

    DEFF Research Database (Denmark)

    Roberts, D D; Wewer, U M; Liotta, L A

    1988-01-01

    Sulfatides (galactosylceramide-I3-sulfate) but not neutral glycolipids or gangliosides adsorbed on plastic promote adhesion of the human melanoma cell line G361. Direct adhesion of G361 cells requires densities of sulfatide greater than 1 pmol/mm2. In the presence of laminin, however, specific...... adhesion of G361 cells to sulfatide or seminolipid (galactosylalkylacyl-glycerol-I3-sulfate) but not to other lipids is strongly stimulated and requires only 25 fmol/mm2 of adsorbed lipid. The effects of laminin and sulfatide on adhesion are synergistic, suggesting that laminin is mediating adhesion...... by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed on the plastic. Although thrombospondin binds to sulfatides and G361 cells, it does not enhance, but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide. In contrast, C32 melanoma cells also adhere...

  13. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion

    DEFF Research Database (Denmark)

    Iba, K; Albrechtsen, R; Gilpin, B J

    1999-01-01

    The ADAMs (A disintegrin and metalloprotease) comprise a family of membrane-anchored cell surface proteins with a putative role in cell-cell and/or cell-matrix interactions. By immunostaining, ADAM 12 (meltrin alpha) was up-regulated in several human carcinomas and could be detected along the tumor...... cell membranes. Because of this intriguing staining pattern, we investigated whether human ADAM 12 supports tumor cell adhesion. Using an in vitro assay using recombinant polypeptides expressed in Escherichia coli, we examined the ability of individual domains of human ADAM 12 and ADAM 15 to support...... tumor cell adhesion. We found that the disintegrin-like domain of human ADAM 15 supported adhesion of alphavbeta3-expressing A375 melanoma cells. In the case of human ADAM 12, however, recombinant polypeptides of the cysteine-rich domain but not the disintegrin-like domain supported cell adhesion...

  14. Expression pattern and regulation of genes differ between fibroblasts of adhesion and normal human peritoneum

    Directory of Open Access Journals (Sweden)

    Saed Ghassan M

    2005-01-01

    Full Text Available Abstract Background Injury to the peritoneum during surgery is followed by a healing process that frequently results in the attachment of adjacent organs by a fibrous mass, referred commonly as adhesions. Because injuries to the peritoneum during surgery are inevitable, it is imperative that we understand the mechanisms of adhesion formation to prevent its occurrence. This requires thorough understanding of the molecular sequence that results in the attachment of injured peritoneum and the development of fibrous tissue. Recent data show that fibroblasts from the injured peritoneum may play a critical role in the formation of adhesion tissues. Therefore, identifying changes in gene expression pattern in the peritoneal fibroblasts during the process may provide clues to the mechanisms by which adhesion develop. Methods In this study, we compared expression patterns of larger number of genes in the fibroblasts isolated from adhesion and normal human peritoneum using gene filters. Contributions of TGF-beta1 and hypoxia in the altered expression of specific genes were also examined using a semiquantitative RT-PCR technique. Results Results show that several genes are differentially expressed between fibroblasts of normal and adhesion peritoneum and that the peritoneal fibroblast may acquire a different phenotype during adhesion formation. Genes that are differentially expressed between normal and adhesion fibroblasts encode molecules involved in cell adhesion, proliferation, differentiation, migration and factors regulating cytokines, transcription, translation and protein/vesicle trafficking. Conclusions Our data substantiate that adhesion formation is a multigenic phenomenon and not all changes in gene expression pattern between normal and adhesion fibroblasts are the function of TGF-beta1 and hypoxia that are known to influence adhesion formation. Analysis of the gene expression data in the perspective of known functions of genes connote to

  15. CADM1 is a key receptor mediating human mast cell adhesion to human lung fibroblasts and airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available Mast cells (MCs play a central role in the development of many diseases including asthma and pulmonary fibrosis. Interactions of human lung mast cells (HLMCs with human airway smooth muscle cells (HASMCs are partially dependent on adhesion mediated by cell adhesion molecule-1 (CADM1, but the adhesion mechanism through which HLMCs interact with human lung fibroblasts (HLFs is not known. CADM1 is expressed as several isoforms (SP4, SP1, SP6 in HLMCs, with SP4 dominant. These isoforms differentially regulate HLMC homotypic adhesion and survival.In this study we have investigated the role of CADM1 isoforms in the adhesion of HLMCs and HMC-1 cells to primary HASMCs and HLFs.CADM1 overexpression or downregulation was achieved using adenoviral delivery of CADM1 short hairpin RNAs or isoform-specific cDNAs respectively.Downregulation of CADM1 attenuated both HLMC and HMC-1 adhesion to both primary HASMCs and HLFs. Overexpression of either SP1 or SP4 isoforms did not alter MC adhesion to HASMCs, whereas overexpression of SP4, but not SP1, significantly increased both HMC-1 cell and HLMC adhesion to HLFs. The expression level of CADM1 SP4 strongly predicted the extent of MC adhesion; linear regression indicated that CADM1 accounts for up to 67% and 32% of adhesion to HLFs for HMC-1 cells and HLMCs, respectively. HLFs supported HLMC proliferation and survival through a CADM1-dependent mechanism. With respect to CADM1 counter-receptor expression, HLFs expressed both CADM1 and nectin-3, whereas HASMCs expressed only nectin-3.Collectively these data indicate that the CADM1 SP4 isoform is a key receptor mediating human MC adhesion to HASMCs and HLFs. The differential expression of CADM1 counter-receptors on HLFs compared to HASMCs may allow the specific targeting of either HLMC-HLF or HLMC-HASMC interactions in the lung parenchyma and airways.

  16. CADM1 Is a Key Receptor Mediating Human Mast Cell Adhesion to Human Lung Fibroblasts and Airway Smooth Muscle Cells

    Science.gov (United States)

    Moiseeva, Elena P.; Roach, Katy M.; Leyland, Mark L.; Bradding, Peter

    2013-01-01

    Background Mast cells (MCs) play a central role in the development of many diseases including asthma and pulmonary fibrosis. Interactions of human lung mast cells (HLMCs) with human airway smooth muscle cells (HASMCs) are partially dependent on adhesion mediated by cell adhesion molecule-1 (CADM1), but the adhesion mechanism through which HLMCs interact with human lung fibroblasts (HLFs) is not known. CADM1 is expressed as several isoforms (SP4, SP1, SP6) in HLMCs, with SP4 dominant. These isoforms differentially regulate HLMC homotypic adhesion and survival. Objective In this study we have investigated the role of CADM1 isoforms in the adhesion of HLMCs and HMC-1 cells to primary HASMCs and HLFs. Methods CADM1 overexpression or downregulation was achieved using adenoviral delivery of CADM1 short hairpin RNAs or isoform-specific cDNAs respectively. Results Downregulation of CADM1 attenuated both HLMC and HMC-1 adhesion to both primary HASMCs and HLFs. Overexpression of either SP1 or SP4 isoforms did not alter MC adhesion to HASMCs, whereas overexpression of SP4, but not SP1, significantly increased both HMC-1 cell and HLMC adhesion to HLFs. The expression level of CADM1 SP4 strongly predicted the extent of MC adhesion; linear regression indicated that CADM1 accounts for up to 67% and 32% of adhesion to HLFs for HMC-1 cells and HLMCs, respectively. HLFs supported HLMC proliferation and survival through a CADM1-dependent mechanism. With respect to CADM1 counter-receptor expression, HLFs expressed both CADM1 and nectin-3, whereas HASMCs expressed only nectin-3. Conclusion and Clinical Relevance Collectively these data indicate that the CADM1 SP4 isoform is a key receptor mediating human MC adhesion to HASMCs and HLFs. The differential expression of CADM1 counter-receptors on HLFs compared to HASMCs may allow the specific targeting of either HLMC-HLF or HLMC-HASMC interactions in the lung parenchyma and airways. PMID:23620770

  17. Cytotoxic and Genotoxic effects of Orthodontic Adhesives on Human lymphocyte – An In-vitro Study

    OpenAIRE

    S, Ravi M; R, Vijay; N, Suchetha Kumari; Panchasara, Chirag

    2014-01-01

    Aim of this study was to evaluate the in vitro genotoxicity and cytotoxicity of two orthodontic adhesives and to determine the type of cell death they induce on human lymphocytes. The materials tested were 1.Light cure orthodontic adhesive with conventional primer (Transbond XT3M) and 2. Self cure orthodontic adhesive (Unite, 3M). Cured sterile individual masses were immersed in DMEM and left at 370C for 24 h. Then a volume of 200 μL of the extract medium was mixed with human peripheral bloo...

  18. Cytotoxicity evaluation of three light-cured dentin adhesive materials on human gingival fibroblasts, ex vivo.

    Science.gov (United States)

    Kierklo, A; Pawińska, M; Tokajuk, G; Popławska, B; Bielawska, A

    2012-01-01

    To evaluate the cytotoxic effects of three current light-cured dentin adhesives, in both uncured and post-cured conditions, on human gingival fibroblasts. The materials tested were Heliobond, Adper Single Bond 2 and Xeno V, which are characterized by various compositions and application procedures. Each agent, in volumes of 5 and 10 μL, was tested after polymerization, and those unpolymerized were diluted in DMEM to 10-3 and 10-5. The cytotoxicity of the adhesives was assessed on the basis of a test of cell viability in a culture of human gingival fibroblasts, with the use of tetrazolic salt (MTT assay). The results showed that, among the adhesive/bonding systems tested, Xeno V was the least cytotoxic. There were statistically significant differences in cell survival between polymerized Xeno V, Adper Single Bond 2 and Heliobond in the amount of 5 μL as well as between the Xeno V and Adper Single Bond 2 in 10-5 dilutions. The tested adhesives were more toxic in the polymerized form than in the dilutions. Samples of 10 μL resulted in a lower survival percentage of fibroblasts compared to 5 μL. All the tested adhesives demonstrated cytopathic effects towards human gingival fibroblasts, but varied in their cytotoxicity. This has clinical implications. Dentists should follow the rules of adhesive application, precisely dose them and not allow direct contact with the gums as, even after polymerization, adhesive agents exhibit potential cytotoxic activity.

  19. Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin.

    Science.gov (United States)

    Renvoise, Julien; Burlot, Delphine; Marin, Gérard; Derail, Christophe

    2009-02-23

    This work deals with the rheological behavior and adherence properties of pressure sensitive adhesive formulations dedicated to medical applications. We have developed a specific viscoelastic substrate which mimics adhesion on human skin to measure the adherence properties of PSAs when they are stuck on the human skin. By comparing peeling results of PSAs, dedicated to medical applications, stuck on human skin and on this viscoelastic substrate we show that this substrate, based on a blend of natural proteins, presents a better representation of the interactions occurring at the skin/adhesive interface than conventional substrates used for peel test (i.e. glass and steel).

  20. The Effect of Glass Ionomer and Adhesive Cements on Substance P Expression in Human Dental Pulp

    OpenAIRE

    Caviedes Bucheli, Javier; Ariza García, Germán; Camelo, Patricia; Mejía, Mónica; Ojeda, Karyn; Azuero Holguin, María Mercedes; Abad Coronel, Dunia; Munoz, Hugo-Roberto

    2013-01-01

    Objectives: The purpose of this study was to quantify the effect of glass ionomer and adhesive cements on SP expression in healthy human dental pulp. Study Design: Forty pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic reasons. In thirty of these premolars a Class V cavity preparation was performed and teeth were equally divided in three groups: Experimental Group I: Glass Ionomer cement was placed in the cavity. Experimental Group II: Adhesive ...

  1. Adhesion and Spreading of Human Fibroblasts on Superhydrophobic Fep-Teflon

    OpenAIRE

    Busscher, H. J.; Stokroos, I.; Golverdingen, J. G.; Shakenraad, J. M.

    1991-01-01

    Adhesion and spreading of human fibroblasts was studied on hydrophobized and hydrophilized FEPTeflon, and compared with adhesion and spreading on untreated FEP-Teflon and Tissue culture polystyrene (TCPS). Superhydrophobic FEP-Teflon was prepared by ion etching followed by oxygen glow-discharge. Hydrophilic PEP-Teflon was prepared by ion etching only. Water contact angles of the modified surfaces were 140- 1500 and 5-10° for the hydrophobic and the hydrophilic variant, respectively. (Untreate...

  2. Berberine‑attenuated monocyte adhesion to endothelial cells induced by oxidized low‑density lipoprotein via inhibition of adhesion molecule expression.

    Science.gov (United States)

    Huang, Zhouqing; Cai, Xueli; Li, Sheng; Zhou, Hao; Chu, Maoping; Shan, Peiren; Huang, Weijian

    2013-02-01

    Recruitment of monocytes to endothelial cells is important during early stages of atherosclerosis development. This process is predominantly mediated by cellular adhesion molecules, including vascular cell adhesion molecule‑1 (VCAM‑1) and intercellular adhesion molecule‑1 (ICAM‑1), which are expressed by activated endothelial cells in response to a number of inflammatory stimuli, including oxidized low‑density lipoprotein (oxLDL). Previous studies have demonstrated that berberine, a natural extract from Rhizoma coptidis, prevents oxLDL‑induced endothelial cellular apoptosis. However, its effect on the adhesion of monocytes to endothelial cells and the mechanism associated with this process remains unclear. In the present study, berberine was revealed to markedly reduce oxLDL‑induced monocyte adhesion to human umbilical vein endothelial cells. In addition, the inhibitory mechanism of berberine was associated with suppression of adhesion molecule expression, including VCAM‑1 and ICAM‑1. Results indicate that berberine plays a protective role in the early stages of atherosclerosis.

  3. Intercellular bridges in vertebrate gastrulation.

    Directory of Open Access Journals (Sweden)

    Luca Caneparo

    Full Text Available The developing zebrafish embryo has been the subject of many studies of regional patterning, stereotypical cell movements and changes in cell shape. To better study the morphological features of cells during gastrulation, we generated mosaic embryos expressing membrane attached Dendra2 to highlight cellular boundaries. We find that intercellular bridges join a significant fraction of epiblast cells in the zebrafish embryo, reaching several cell diameters in length and spanning across different regions of the developing embryos. These intercellular bridges are distinct from the cellular protrusions previously reported as extending from hypoblast cells (1-2 cellular diameters in length or epiblast cells (which were shorter. Most of the intercellular bridges were formed at pre-gastrula stages by the daughters of a dividing cell maintaining a membrane tether as they move apart after mitosis. These intercellular bridges persist during gastrulation and can mediate the transfer of proteins between distant cells. These findings reveal a surprising feature of the cellular landscape in zebrafish embryos and open new possibilities for cell-cell communication during gastrulation, with implications for modeling, cellular mechanics, and morphogenetic signaling.

  4. Docosahexaenoic acid inhibits the adhesion of flowing neutrophils to cytokine stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Yates, Clara M; Tull, Samantha P; Madden, Jackie; Calder, Philip C; Grimble, Robert F; Nash, Gerard B; Rainger, G Ed

    2011-07-01

    The (n-3) PUFA, DHA, is widely thought to posses the ability to modulate the inflammatory response. However, its modes of interaction with inflammatory cells are poorly understood. In particular, there are limited data on the interactions of DHA with vascular endothelium, the cells that regulate the traffic of leukocytes from the blood into inflamed tissue. Using human umbilical vein endothelial cells (EC) cultured in a flow-based adhesion assay and activated with TNFα, we tested whether supplementing human umbilical vein EC with physiologically achievable concentrations of DHA would inhibit the recruitment of flowing neutrophils. DHA caused a dose-dependent reduction in neutrophil recruitment to the EC surface, although cells that became adherent were activated and could migrate across the human umbilical vein EC monolayer normally. Using EPA as an alternative supplement had no effect on the levels of neutrophil adhesion in this assay. Analysis of adhesion receptor expression by qPCR demonstrated that DHA did not alter the transcriptional activity of human umbilical vein EC. However, DHA did significantly reduce E-selectin expression at the human umbilical vein EC surface without altering the total cellular pool of this adhesion receptor. Thus, we have identified a novel mechanism by which DHA alters the trafficking of leukocytes during inflammation and demonstrate that this involves disruption of intracellular transport mechanisms used to present adhesion molecules on the surface of cytokine-stimulated EC.

  5. Effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel.

    Science.gov (United States)

    Zhang, Y F; Zheng, J; Zheng, L; Zhou, Z R

    2015-02-01

    Salivary pellicle is a biofilm that is formed by the selective adsorption of salivary proteins. Almost all the functions of the salivary pellicle (lubricating properties, anti-caries properties, etc.) are closely associated with its adhesion strength to tooth surface. The objective of this study was to investigate the effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel, aiming to understand what act as the determinant of the interfacial adhesion. In this study, human tooth enamel samples were immersed in human whole saliva in vitro to obtain a salivary pellicle on the surface of enamel. Immersion treatments lasting up to 1, 3, 10 and 60 min were conducted, respectively. Nano-scratch tests were conducted on the surface of enamel after different adsorption times. The wettability of enamel surface was measured through water contact angle. Results showed that the shear energy between salivary pellicle and enamel surface increased exponentially with the adsorption time. The adhesion force between salivary pellicle and bare enamel surface was more than twice that between salivary pellicle and salivary pellicle. It was found that both the wettability and zeta potential of enamel increased obviously after 1 min saliva-adsorption treatment, and then they almost kept stable as the adsorption time further increased. In summary, the adhesion strength between initial salivary pellicle and enamel surface was much higher than that between initial salivary pellicle and outer salivary pellicle. It seemed that electrostatic interaction contributed to the adhesion between the initial salivary pellicle and enamel surface, but not to the adhesion between the initial and outer salivary pellicle. The results would be helpful to extend the understanding of the adhesion mechanism of salivary pellicle and then to develop new artificial saliva and dental restorative materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    Directory of Open Access Journals (Sweden)

    Cécile Bernard

    2015-01-01

    Full Text Available The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL and a two-steps/self-etch adhesive system (Optibond XTR were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR. All specimens were submitted to thermocycling ageing (10000 cycles. The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL.

  7. Making human enamel and dentin surfaces superwetting for enhanced adhesion

    Science.gov (United States)

    Vorobyev, A. Y.; Guo, Chunlei

    2011-11-01

    Good wettability of enamel and dentin surfaces is an important factor in enhancing adhesion of restorative materials in dentistry. In this study, we developed a femtosecond laser surface texturing approach that makes both the enamel and dentine surfaces superwetting. In contrast to the traditional chemical etching that yields random surface structures, this approach produces engineered surface structures. The surface structure engineered and tested here is an array of parallel microgrooves that generates a strong capillary force. Due to the powerful capillary action, water is rapidly sucked into this engineered surface structure and spreads even on a vertical surface.

  8. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  9. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions

    Science.gov (United States)

    Ting, Lucas H.; Jahn, Jessica R.; Jung, Joon I.; Shuman, Benjamin R.; Feghhi, Shirin; Han, Sangyoon J.; Rodriguez, Marita L.

    2012-01-01

    Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions. PMID:22447948

  10. Effect of Biodentine™ on the proliferation, migration and adhesion of human dental pulp stem cells.

    Science.gov (United States)

    Luo, Zhirong; Li, Dongmei; Kohli, Meetu R; Yu, Qing; Kim, Syngcuk; He, Wen-Xi

    2014-04-01

    To investigate the proliferative, migratory and adhesion effect of Biodentine™, a new tricalcium silicate cement formulation, on the human dental pulp stem cells (hDPSCs). The cell cultures of hDPSCs obtained from impacted third molars were treated with Biodentine™ extract at four different concentrations: Biodentine™ 0.02mg/ml (BD 0.02), Biodentine™ 0.2mg/ml (BD 0.2), Biodentine™ 2mg/ml (BD 2) and Biodentine™ 20mg/ml (BD 20). Human dental pulp stem cells proliferation was evaluated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) viability analysis at different times. Migration was investigated by microphotographs of wound healing and transwell migration assays. Adhesion assay was performed as well in presence of BD 0.2, BD 2 and blank control, while qRT-PCR (quantitative real-time reverse-transcriptase polymerase chain) was used for further analysis of the mRNA expression of chemokine and adhesion molecules in hDPSCs. Biodentine™ significantly increased proliferation of stem cells at BD 0.2 and BD 2 concentrations while decreased significantly at higher concentration of BD 20. BD 0.2 concentration had a statistically significant increased migration and adhesion abilities. In addition, qRT-PCR results showed that BD 0.2 could have effect on the mRNA expression of chemokines and adhesion molecules in human dental pulp stem cells. The data imply that Biodentine™ is a bioactive and biocompatible material capable of enhancing hDPSCs proliferation, migration and adhesion abilities. Biodentine™ when placed in direct contact with the pulp during pulp exposure can positively influence healing by enhancing the proliferation, migration and adhesion of human dental pulp stem cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Host and Bacterial Phenotype Variation in Adhesion of Streptococcus mutans to Matched Human Hosts

    Science.gov (United States)

    Esberg, Anders; Löfgren-Burström, Anna; Öhman, Ulla

    2012-01-01

    The commensal pathogen Streptococcus mutans uses AgI/II adhesins to adhere to gp340 adsorbed on teeth. Here we analyzed isolates of S. mutans (n = 70 isolates) from caries and caries-free human extremes (n = 19 subjects) by multilocus sequence typing (MLST), AgI/II full-length gene sequencing, and adhesion to parotid saliva matched from the strain donors (nested from a case-control sample of defined gp340 and acidic proline-rich protein [PRP] profiles). The concatenated MLST as well as AgI/II gene sequences showed unique sequence types between, and identical types within, the subjects. The matched adhesion levels ranged widely (40% adhesion range), from low to moderate to high, between subjects but were similar within subjects (or sequence types). In contrast, the adhesion avidity of the strains was narrow, normally distributed for high, moderate, or low adhesion reference saliva or pure gp340 regardless of the sequence type. The adhesion of S. mutans Ingbritt and matched isolates and saliva samples correlated (r = 0.929), suggesting that the host specify about four-fifths (r2 = 0.86) of the variation in matched adhesion. Half of the variation in S. mutans Ingbritt adhesion to saliva from the caries cases-controls (n = 218) was explained by the primary gp340 receptor and PRP coreceptor composition. The isolates also varied, although less so, in adhesion to standardized saliva (18% adhesion range) and clustered into three major AgI/II groups (groups A, B1, and B2) due to two variable V-region segments and diverse AgI/II sequence types due to a set of single-amino-acid substitutions. Isolates with AgI/II type A versus types B1 and B2 tended to differ in gp340 binding avidity and qualitative adhesion profiles for saliva gp340 phenotypes. In conclusion, the host saliva phenotype plays a more prominent role in S. mutans adhesion than anticipated previously. PMID:22927045

  12. The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro.

    Science.gov (United States)

    Li, Dongmei; Fu, Lei; Zhang, Yaqing; Yu, Qing; Ma, Fengle; Wang, Zhihua; Luo, Zhirong; Zhou, Zeyuan; Cooper, Paul R; He, Wenxi

    2014-10-01

    The aim of the present study was to investigate the effects of lipopolysaccharide (LPS) on the migration and adhesion of human dental pulp stem cells (hDPSCs) and the associated intracellular signalling pathways. hDPSCs obtained from impacted third molars were exposed to LPS and in vitro cell adhesion and migration were evaluated. The effects of LPS on gene expression of adhesion molecules and chemotactic factors were investigated using quantitative real-time reverse-transcriptase polymerase chain (qRT-PCR). The potential involvement of nuclear factor NF-kappa-B (NF-κB) or mitogen-activated protein kinase (MAPK) signalling pathways in the migration and adhesion of hDPSCs induced by LPS was assessed using a transwell cell migration assay and qRT-PCR. LPS promoted the adhesion of hDPSCs at 1μg/mL and 10μg/mL concentrations, 1μg/mL LPS showing the greater effect. Transwell cell migration assay demonstrated that LPS increased migration of hDPSCs at 1μg/mL concentration while decreasing it significantly at 10μg/mL. The mRNA expressions of adhesion molecules and chemotactic factors were enhanced significantly after stimulation with 1μg/mL LPS. Specific inhibitors for NF-κB and extracellular signal regulated kinases (ERK), c-Jun N-terminal kinase (JNK), and P38, markedly antagonised LPS-induced adhesion and migration of hDPSCs and also significantly abrogated LPS-induced up-regulation of adhesion molecules and chemotactic factors. In addition, specific inhibitors of SDF-1/CXCR4, AMD3100 significantly diminished LPS-induced migration of hDPSCs. LPS at specific concentrations can promote cell adhesion and migration in hDPSCs via the NF-κB and MAPK pathways by up-regulating the expression of adhesion molecules and chemotactic factors. LPS may influence pulp healing through enhancing the adhesion and migration of human dental pulp stem cells when it enters into pulp during pulp exposure or deep caries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Adhesion of Human B Cells to Germinal Centers in Vitro Involves VLA-4 and INCAM-110

    Science.gov (United States)

    Freedman, Arnold S.; Munro, J. Michael; Rice, G. Edgar; Bevilacqua, Michael P.; Morimoto, Chikao; McIntyre, Bradley W.; Rhynhart, Kurt; Pober, Jordan S.; Nadler, Lee M.

    1990-08-01

    Human B lymphocytes localize and differentiate within the microenvironment of lymphoid germinal centers. A frozen section binding assay was developed for the identification of those molecules involved in the adhesive interactions between B cells and lymphoid follicles. Activated human B cells and B cell lines were found to selectively adhere to germinal centers. The VLA-4 molecule on the lymphocyte and the adhesion molecule INCAM-110, expressed on follicular dendritic cells, supported this interaction. This cellular interaction model can be used for the study of how B cells differentiate.

  14. Histologic Evaluation of Human Pulp Response to Total Etch and Self Etch Adhesive Systems

    OpenAIRE

    Malekipour, Mohammad Reza; Razavi, Sayed Mohammad; Khazaei, Saber; Kazemi, Shantia; Behnamanesh, Maryam; Shirani, Farzaneh

    2013-01-01

    Background To investigate pulp response to the application of two types adhesive systems (total-etch and self-etch) in human premolar teeth. Materials and Methods Cavities limited to enamel walls in all margins with 2.5 mm depth were prepared on buccal surfaces of thirty three human premolars. The cavities were treated with the following adhesive. Single Bond (SB) and Prompt L-Pop (PLP). The teeth were extracted after 30 days and prepared due to histological technique. Results Pulp responses ...

  15. Integrin upregulation and localization to focal adhesion sites in pregnant human myometrium.

    Science.gov (United States)

    Burkin, Heather R; Rice, Monica; Sarathy, Apurva; Thompson, Sara; Singer, Cherie A; Buxton, Iain L O

    2013-07-01

    Focal adhesions are integrin-rich microdomains that structurally link the cytoskeleton to the extracellular matrix and transmit mechanical signals. In the pregnant uterus, increases in integrin expression and activation are thought to be critical for the formation of the mechanical syncytium required for labor. The aim of this study was to determine which integrins are upregulated and localized to focal adhesions in pregnant human myometrium. We used quantitative polymerase chain reaction, Western blotting, and confocal microscopy to determine the expression levels and colocalization with focal adhesion proteins. We observed increases in several integrin transcripts in pregnant myometrium. At the protein level, integrins such as α5-integrin (ITGA5), ITGA7, ITGAV, and ITGB3 were significantly increased during pregnancy. The integrins ITGA3, ITGA5, ITGA7, and ITGB1 colocalized with focal adhesion proteins in term human myometrium. These data suggest that integrins α3β1, α5β1, and α7β1 are the most likely candidates to transmit mechanical signals from the extracellular matrix through focal adhesions in pregnant human myometrium.

  16. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    Full Text Available As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2 were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  17. Effects of Helicobacter pylori Water Extract on Expression of Endothelial Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    Norimasa Yoshida

    2004-01-01

    Full Text Available The present study investigated whether Helicobacter pylori water extract induces the upregulation of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin on human umbilical vein endothelial cells, using an ELISA. The nature of the substances mediating this upregulation was also analyzed. H pylori water extract derived from type strain (NCTC 11637 significantly upregulated intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin to the same extent as interleukin-1. Treatments with extracts from clinical strains showed no significant increases in expression of these adhesion molecules. In a fractionation study, approximately 7 kDa fraction showed peak activity. This activity was tolerant to heating and trypsin digestion. These results indicate that H pylori water extract contains water-soluble, low-molecular, nonprotein substances which induce upregulation of adhesion molecules on human umbilical vein endothelial cells, suggesting that products of H pylori may elicit gastric mucosal inflammation by promoting expression of endothelial adhesion molecules.

  18. Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis

    Science.gov (United States)

    Trosko, James E.

    2016-01-01

    The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules (“quorum sensing”), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or “connexin” genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision–making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global “metabolic disease” crisis. PMID:27314399

  19. Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis.

    Science.gov (United States)

    Trosko, James E

    2016-06-15

    The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules ("quorum sensing"), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or "connexin" genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision-making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global "metabolic disease" crisis.

  20. Intercellular Interactomics of Human Brain Endothelial Cells and Th17 Lymphocytes: A Novel Strategy for Identifying Therapeutic Targets of CNS Inflammation

    Directory of Open Access Journals (Sweden)

    Arsalan S. Haqqani

    2011-01-01

    Full Text Available Leukocyte infiltration across an activated brain endothelium contributes to the neuroinflammation seen in many neurological disorders. Recent evidence shows that IL-17-producing T-lymphocytes (e.g., Th17 cells possess brain-homing capability and contribute to the pathogenesis of multiple sclerosis and cerebral ischemia. The leukocyte transmigration across the endothelium is a highly regulated, multistep process involving intercellular communications and interactions between the leukocytes and endothelial cells. The molecules involved in the process are attractive therapeutic targets for inhibiting leukocyte brain migration. We hypothesized and have been successful in demonstrating that molecules of potential therapeutic significance involved in Th17-brain endothelial cell (BEC communications and interactions can be discovered through the combination of advanced membrane/submembrane proteomic and interactomic methods. We describe elements of this strategy and preliminary results obtained in method and approach development. The Th17-BEC interaction network provides new insights into the complexity of the transmigration process mediated by well-organized, subcellularly localized molecular interactions. These molecules and interactions are potential diagnostic, therapeutic, or theranostic targets for treatment of neurological conditions accompanied or caused by leukocyte infiltration.

  1. Activation of focal adhesion kinase enhances the adhesion of Fusarium solani to human corneal epithelial cells via the tyrosine-specific protein kinase signaling pathway.

    Science.gov (United States)

    Pan, Xiaojing; Wang, Ye; Zhou, Qingjun; Chen, Peng; Xu, Yuanyuan; Chen, Hao; Xie, Lixin

    2011-03-05

    To determine the role of the integrin-FAK signaling pathway triggered by the adherence of F. solani to human corneal epithelial cells (HCECs). After pretreatment with/without genistein, HCECs were incubated with F. solani spores at different times (0-24 h). Cell adhesion assays were performed by optical microscopy. Changes of the ultrastructure were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The expression of F-actin and Paxillin (PAX) were detected by immunofluorescence and western blotting to detect the expression of these key proteins with/without genistein treatment. Cell adhesion assays showed that the number of adhered spores began to rise at 6 h after incubation and peaked at 8 h. SEM and TEM showed that the HCECs exhibited a marked morphological alteration induced by the attachment and entry of the spores. The expression of PAX increased, while the expression of F-actin decreased by stimulation with F. solani. The interaction of F. solani with HCECs causes actin rearrangement in HCECs. Genistein strongly inhibited FAK phosphorylation and the activation of the downstream protein (PAX). F. solani-induced enhancement of cell adhesion ability was inhibited along with the inhibition of FAK phosphorylation. Our results suggest that the integrin-FAK signaling pathway is involved in the control of F. solani adhesion to HCECs and that the activation of focal adhesion kinase enhances the adhesion of human corneal epithelial cells to F. solani via the tyrosine-specific protein kinase signaling pathway.

  2. The effect of glass ionomer and adhesive cements on substance P expression in human dental pulp.

    Science.gov (United States)

    Caviedes-Bucheli, Javier; Ariza-Garcia, German; Camelo, Patricia; Mejia, Monica; Ojeda, Karyn; Azuero-Holguin, Maria-Mercedes; Abad-Coronel, Dunia; Munoz, Hugo-Roberto

    2013-11-01

    The purpose of this study was to quantify the effect of glass ionomer and adhesive cements on SP expression in healthy human dental pulp. Forty pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic reasons. In thirty of these premolars a Class V cavity preparation was performed and teeth were equally divided in three groups: Experimental Group I: Glass Ionomer cement was placed in the cavity. Experimental Group II: Adhesive Cement was placed in the cavity. Positive control group: Class V cavities only. The remaining ten healthy premolars where extracted without treatment and served as a negative control group. All pulp samples were processed and SP was measured by radioimmunoassay. Greater SP expression was found in the adhesive cement group, followed by the glass ionomer and the positive control groups. The lower SP values were for the negative control group. ANOVA showed statistically significant differences between groups (padhesive cements provoke a greater SP expression when compared with glass ionomer.

  3. Human milk glycosaminoglycans inhibit in vitro the adhesion of Escherichia coli and Salmonella fyris to human intestinal cells.

    Science.gov (United States)

    Coppa, Giovanni V; Facinelli, Bruna; Magi, Gloria; Marini, Emanuela; Zampini, Lucia; Mantovani, Veronica; Galeazzi, Tiziana; Padella, Lucia; Marchesiello, Rita L; Santoro, Lucia; Coscia, Alessandra; Peila, Chiara; Volpi, Nicola; Gabrielli, Orazio

    2016-04-01

    Breast-fed infants have a lower incidence of acute gastroenteritis due to the presence of several anti-infective factors in human milk. The aim of this work is to study the capacity of human milk glycosaminoglycans (GAGs) to inhibit the adhesion of some common pathogenic bacteria. GAGs were isolated from a pool of milk samples collected from different mothers during the first month of lactation. Experiments were carried out to study the ability of GAGs to inhibit the adhesion of two intestinal micro-organisms (enteropathogenic Escherichia coli serotype 0119 and Salmonella fyris) to Caco-2 and Int-407 cell lines. The study showed that the GAGs had an anti-adhesive effect on the two pathogenic strains studied with different degrees of inhibition. In particular, in the presence of human milk GAGs, the adhesion of S. fyris to Caco-2 cells and to Int-407 cells of both tested strains was significantly reduced. Our results demonstrated that GAGs in human milk can be one of the important defensive factors against acute diarrheal infections in breast-fed infants.

  4. Potential ligands for cell adhesion molecules in human milk.

    Science.gov (United States)

    Schwertmann, A; Rudloff, S; Kunz, C

    1996-01-01

    In this study, glycoproteins and oligosaccharides with sialyl Lewis a, sialyl Lewis x, Lewis x, and Lewis y epitopes were isolated by ultracentrifugation and fast-protein liquid chromatography from human milk of mothers with term or preterm infants. The identification of these epitopes on whey proteins was achieved by monoclonal antibodies and lectins after Western blotting. Lactose-derived oligosaccharides were characterized by high-performance thin-layer chromatography and high-pH anion-exchange chromatography with pulsed amperometric detection. These carbohydrate epitopes which are potential ligands for selections are not of cellular origin but appear in the soluble fraction of milk. Here, they are present as lactose-derived oligosaccharides (molecular weight 100 kD). Lewis antigens might represent another category of protective nonimmunological substances in human milk with the potential to influence inflammatory processes in human milk fed infants.

  5. Lactobacilli-expressed single-chain variable fragment (scFv) specific for intercellular adhesion molecule 1 (ICAM-1) blocks cell-associated HIV-1 transmission across a cervical epithelial monolayer.

    Science.gov (United States)

    Chancey, Caren J; Khanna, Kristen V; Seegers, Jos F M L; Zhang, Guang Wen; Hildreth, James; Langan, Abigail; Markham, Richard B

    2006-05-01

    The vaginal and cervical epithelia provide an initial barrier to sexually acquired HIV-1 infection in women. To study the interactions between HIV-1-infected cells or cell-free HIV-1 and the reproductive epithelium, the transmission of HIV-1 by infected cells or cell-free virus across human cervical epithelial cells was examined using a Transwell culture system. Cell-associated HIV-1 was transmitted more efficiently than cell-free virus, and monocyte-associated virus was transmitted most efficiently. Abs to ICAM-1 added to the apical side of the epithelium blocked cell-mediated transepithelial HIV-1 transmission in vitro. When used in a previously described model of vaginal HIV-1 transmission in human PBL-SCID mice, anti-murine ICAM-1 Abs (0.4 microg/10 microl) also blocked vaginal transmission of cell-associated HIV-1 in vivo. To evaluate a candidate delivery system for the use of this Ab as an anti-HIV-1 microbicide, anti-ICAM single-chain variable fragment Abs secreted by transformed lactobacilli were evaluated for their protective efficacy in the Transwell model. Like the intact Ab and Fab derived from it, the single-chain variable fragment at a concentration of 6.7 microg/100 microl was able to reduce HIV-1 transmission by 70 +/- 5%. These data support the potential efficacy of an anti-ICAM Ab delivered by lactobacilli for use as an anti-HIV-1 microbicide.

  6. Pharmacological implications from the adhesion-induced signaling profiles in cultured human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Wen-Chuan Wu

    2014-01-01

    Full Text Available Extracellular matrix (ECM plays an active and complex role in regulating cellular behaviors, including proliferation and adhesion. This study aimed at delineating the adhesion-induced signaling profiles in cultured human retinal pigment epithelium (RPE cells and investigating the antiadhesion effect of antiproliferative drugs in this context. RPE R-50 cells grown on various ECM molecules, such as type I and IV collagens, fibronectin, and laminin, were used for adhesion assay and for examining the phosphorylation profiles of signaling mediators including Akt, extracellular signal-regulated kinase (ERK 1/2, and integrin-linked kinase (ILK using Western blotting. The cells receiving antiproliferative drug treatment at subtoxic doses were used to evaluate their antiadhesive and suppressive effects on kinase activities. ECM coating enhanced adhesion and spreading of RPE cells significantly. The cellular attachment onto ECM-coated surfaces differentially induced Akt, ERK1/2, and ILK phosphorylation, and concomitantly increased p53 phosphorylation and cyclin D1 expression, but decreased Bcl-2/Bax ratios. Treatment with antiproliferative agents, including 5-fluorouracil, mitomycin C, and daunomycin, at subtoxic doses suppressed the ability of RPE cells to adhere to ECM substratum significantly. This suppression was in part mediated through reduction of integrin β1 and β3 expressions and interfering Akt-ILK signaling activity. Mechanistically, blockade of PI3K/Akt signaling resulted in the suppressed adhesion of RPE cells to ECM. These findings support the hypothesis that, in addition to their antimitogenic effect, antiproliferative agents also exhibit suppressive effect on the adhesiveness of cultured RPE cells. Moreover, inhibitors of the PI3K/Akt signaling mediator can potentially be used as therapeutic agents for proliferative vitreoretinopathy.

  7. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  8. Ultrastructural study of adhesion of enterotoxigenic Escherichia coli to erythrocytes and human intestinal epithelial cells.

    OpenAIRE

    Knutton, S; Lloyd, D R; Candy, D C; McNeish, A S

    1984-01-01

    The adhesion to erythrocytes and human intestinal epithelial cells of enterotoxigenic Escherichia coli strains H10407, B2C, and H10407P, expressing colonization factor antigen I (CFA/I), CFA/II, and type 1 fimbriae, respectively, was examined by electron microscopy. CFA and type 1 fimbriae were visualized by negative staining in thin sections after en bloc staining with ruthenium red and by immune labeling with antisera raised against purified fimbriae. By negative and ruthenium red staining,...

  9. Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds

    OpenAIRE

    Matschegewski Claudia; Matthies Jörn-Bo; Grabow Niels; Schmitz Klaus-Peter

    2016-01-01

    The usage of electrospun polymer scaffolds is a promising approach for artificial heart valve design. This study aims at the evaluation of biological performance of nanofibrous polymer scaffolds poly(L-lactide) PLLA L210, PLLA L214 and polyamide-6 fabricated by electrospinning via analyzing viability, adhesion and morphology of human umbilical vein endothelial cells (EA.hy926). Nanofibrous surface topography was shown to influence cell phenotype and cell viability according to the observation...

  10. Effects of drospirenone on adhesion molecule expression and monocyte adherence in human endothelial cells.

    Science.gov (United States)

    Ito, Fumitake; Mori, Taisuke; Takaoka, Osamu; Tanaka, Yukiko; Koshiba, Akemi; Tatsumi, Hiroshi; Iwasa, Koichi; Kitawaki, Jo

    2016-06-01

    A major concern in hormone replacement therapy is the associated increased risk of cardiovascular diseases. A progestogen without the unfavorable effects on cardiovascular disease should be explored. Monocyte adhesion to endothelial cells is an important initial event in atherosclerosis. In this study, the effects of the alternative progestogen drospirenone (DRSP) on monocyte adhesion in human umbilical venous endothelial cells (HUVECs) were examined. In HUVECs treated with estrogens and progestogens, including DRSP and medroxyprogesterone acetate (MPA), the expression of the adhesion molecules E-selectin, P-selectin, ICAM-1, and VCAM-1 were examined by real-time PCR and using an enzyme-linked immunosorbent assay. A flow chamber system was used to investigate the effects of DRSP on U937 monocytoid cell adherence to HUVEC monolayers. All experimental data were compared using one-way Analysis of Variance. Upregulation of adhesion molecule mRNA or protein was not seen in HUVECs treated with DRSP alone or with 17β-estradiol+DRSP. DRSP alone, 17β-estradiol+DRSP or ethinylestradiol+DRSP did not increase the number of adherent monocytoid cells to HUVECs in the flow chamber system. However, MPA significantly enhanced the monocytoid cell adherence (Padhesion molecules or monocytoid cell adherence to endothelial cells, indicating that DRSP could reduce the risk of atherogenesis caused by MPA. These results suggest that DRSP may be an alternative to MPA in hormone replacement therapy. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. The Promotion of Human Neural Stem Cells Adhesion Using Bioinspired Poly(norepinephrine Nanoscale Coating

    Directory of Open Access Journals (Sweden)

    Minah Park

    2014-01-01

    Full Text Available The establishment of versatile biomaterial interfaces that can facilitate cellular adhesion is crucial for elucidating the cellular processes that occur on biomaterial surfaces. Furthermore, biomaterial interfaces can provide physical or chemical cues that are capable of stimulating cellular behaviors by regulating intracellular signaling cascades. Herein, a method of creating a biomimetic functional biointerface was introduced to enhance human neural stem cell (hNSC adhesion. The hNSC-compatible biointerface was prepared by the oxidative polymerization of the neurotransmitter norepinephrine, which generates a nanoscale organic thin layer, termed poly(norepinephrine (pNE. Due to its adhesive property, pNE resulted in an adherent layer on various substrates, and pNE-coated biointerfaces provided a highly favorable microenvironment for hNSCs, with no observed cytotoxicity. Only a 2-hour incubation of hNSCs was required to firmly attach the stem cells, regardless of the type of substrate. Importantly, the adhesive properties of pNE interfaces led to micropatterns of cellular attachment, thereby demonstrating the ability of the interface to organize the stem cells. This highly facile surface-modification method using a biomimetic pNE thin layer can be applied to a number of suitable materials that were previously not compatible with hNSC technology.

  12. The role of Lutheran/basal cell adhesion molecule in human bladder carcinogenesis.

    Science.gov (United States)

    Chang, Hong-Yi; Chang, Hsin-Mei; Wu, Tsung-Jung; Chaing, Chang-Yao; Tzai, Tzong-Shin; Cheng, Hong-Lin; Raghavaraju, Giri; Chow, Nan-Haw; Liu, Hsiao-Sheng

    2017-08-26

    Lutheran/basal cell adhesion molecule (Lu/BCAM) is a membrane bound glycoprotein. This study was performed to investigate the role and downstream signaling pathway of Lu/BCAM in human bladder tumorigenesis. Five human bladder cancer (E6, RT4, TSGH8301, TCCSUP and J82), one stable mouse fibroblast cell line (NIH-Lu) expressing Lu/BCAM transgene and sixty human uroepithelial carcinoma specimens were analyzed by real-time PCR, immunohistochemistry (IHC), immunofluorescence (IFA) staining, Western blotting and promoter luciferase assay for Lu/BCAM, respectively. The tumorigenicity of Lu/BCAM was demonstrated by focus formation, colony-forming ability, tumour formation, cell adhesion and migration. H-ras V12 was revealed to up-regulate Lu/BCAM at both transcriptional and translation levels. Lu/BCAM expression was detected on the membrane of primary human bladder cancer cells. Over-expression of Lu/BCAM in NIH-Lu stable cells increased focus number, colony formation and cell adhesion accompanied with F-actin rearrangement and decreased cell migration compared with parental NIH3T3 fibroblasts. In the presence of laminin ligand, Lu/BCAM overexpression further suppressed cell migration accompanied with increased cell adhesion. We further revealed that laminin-Lu/BCAM-induced cell adhesion and F-actin rearrangement were through increased Erk phosphorylation with an increase of RhoA and a decrease of Rac1 activity. Similarly, high Lu/BCAM expression was detected in the tumors of human renal pelvis, ureter and bladder, and was significantly associated with advanced tumor stage (p = 0.02). Patients with high Lu/BCAM expression showed a trend toward larger tumor size (p = 0.07) and lower disease-specific survival (p = 0.08), although not reaching statistical significance. This is the first report showing that Lu/BCAM, in the presence of its ligand laminin, is oncogenic in human urothelial cancers and may have potential as a novel therapeutic target.

  13. Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides.

    Science.gov (United States)

    Bode, Lars; Kunz, Clemens; Muhly-Reinholz, Marion; Mayer, Konstantin; Seeger, Werner; Rudloff, Silvia

    2004-12-01

    Excessive leukocyte infiltration causes severe tissue damage in a variety of inflammatory diseases. The initial step in leukocyte extravasation is mediated by selectins and oligosaccharides on their glycoconjugate ligands. Human milk is a rich source of lactose-derived oligosaccharides that are partly absorbed in the intestine and excreted with the urine. As these components contain binding determinants for the selectins we investigated whether human milk oligosaccharides are able to affect leukocyte rolling and adhesion to endothelial cells under dynamic conditions. Therefore, monocytes, lymphocytes, or neutrophils isolated from human peripheral blood were passed over TNF-alpha-activated HUVEC under shear stress. The influence of different oligosaccharide fractions was determined by video-microscopy and compared with the effects of various individual oligosaccharides. Within a physiological range (12.5 - 125 microg/ml) the acidic fraction significantly inhibited leukocyte rolling and adhesion (up to 24.0% and 52.8%, respectively) in a concentration-dependent manner. These effects were even more pronounced than those achieved by soluble sialyl-Lewis x, a physiological binding determinant for selectins. Several active components within the oligosaccharide fraction of human milk were identified, e.g. 3'-sialyl-lactose and 3'-sialyl-3-fucosyl-lactose. These results indicate that specific oligosaccharides in human milk may serve as anti-inflammatory components and might therefore contribute to the lower incidence of inflammatory diseases in human milk-fed infants.

  14. Comparison of bonding performance of self-etching and etch-and-rinse adhesives on human dentin using reliability analysis.

    Science.gov (United States)

    Bradna, Pavel; Vrbova, Radka; Dudek, Michal; Roubickova, Adela; Housova, Devana

    2008-12-01

    To estimate the in vitro reliability of typical self-etching and etch-and-rinse adhesives of various application protocols. The following adhesives were applied on flat dentin surfaces of extracted human teeth (n = 223): self-etching two-step adhesives: AdheSE (AH), Clearfil SE Bond (CL), OptiBond SE (OS); one-step adhesives: Adper Prompt L-Pop (ADP), Adper Prompt (AD), and Xeno III (XE); all-in-one adhesive: iBond (IB); etch-and-rinse three-step adhesives: OptiBond FL (OF), two-step Gluma Comfort Bond (G), Excite (E) and Prime & Bond NT (PB). Composite buildups were prepared using a microhybrid composite, Opticor New. Shear bond strength was determined after 24 h of storage at 37 degrees C in distilled water. The results were analyzed with a nested ANOVA (adhesive, type of adhesive) followed by the Fisher post-hoc tests of group homogeneity at alpha = 0.05. A two-parameter Weibull distribution was used to calculate the critical shear bond strength corresponding to 5% probability of failure as a measure of system reliability. ANOVA revealed a significant decrease (p AD=IB=XE>PB=ADP, but no significant difference (p > 0.48) between the etch-and-rinse and self-etching adhesives. The corresponding characteristic bond strength of Weibull distribution ranged between 24.1 and 12.1 MPa, Weibull modulus between 8.3 and 2.1, and the critical shear bond strength varied from 16.0 to 3.0 MPa. Pronounced differences in the critical shear bond strength suggest reliability variations in the adhesive systems tested, which originate from chemical composition rather than type of adhesive.

  15. Histological response of human pulps capped with calcium hydroxide and a self-etch adhesive containing an antibacterial component

    OpenAIRE

    Ambalavanan Parthasarathy; Kamat, Sharad B.; Mamta Kamat; Krishnamurthy Haridas Kidiyoor

    2016-01-01

    Aim: To compare human pulp tissue response following direct pulp capping with calcium hydroxide and a self-etch adhesive containing antibacterial component. Materials and Methods: Sixty-six erupted sound premolars scheduled to be extracted for orthodontic reasons were selected from 17 human subjects. Pulp exposures were made. Direct pulp capping was then performed using calcium hydroxide and a self-etch adhesive containing antibacterial component in its primer. The teeth were then restor...

  16. Genetic regulation of the intercellular adhesion locus in staphylococci

    Directory of Open Access Journals (Sweden)

    David R Cue

    2012-03-01

    Full Text Available The formation of biofilms by Staphylococcus aureus and Staphylococcus epidermidis is an important aspect of many staphylococcal infections, most notably endocarditis, osteomyelitis and infections associated with indwelling medical devices. The major constituents of S. aureus biofilms are polysaccharides, such as poly N-acetyl glucosamine (PIA/PNAG, cell surface and secreted bacterial proteins, and extracellular DNA. The exact composition of biofilms often varies considerably between different strains of staphylococci and between different sites of infection by the same strain. PIA/PNAG is synthesized by the products of 4 genes, icaADBC, that are encoded in a single operon. A fifth gene, icaR, is a negative regulator of icaADBC. Expression of icaADBC is tightly regulated, but can often be induced in vitro by growing staphylococci in the presence of high salt, high glucose or ethanol. Regulation of icaADBC is complex and numerous regulatory factors have been implicated in control of icaADBC. Many of these are well known global transcriptional regulatory factors like SarA and sigmaB, whereas other regulators, such as IcaR, seem to affect expression of relatively few genes. Here, we will attempt to summarize how various regulatory factors affect the production of PIA/PNAG in staphylococci.

  17. Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges

    Science.gov (United States)

    Sugimoto, Haruyo; Sakata, Toshiya

    2014-01-01

    We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.

  18. Intercellular communication for innate immunity.

    Science.gov (United States)

    Nguyen, Tan A; Pang, Ken C; Masters, Seth L

    2017-06-01

    An effective innate immune response relies on the detection of pathogen associated molecular patterns (PAMPs) by various host pattern recognition receptors (PRRs) that result in the production of pro-inflammatory cytokines and chemokines. Viruses and bacteria have co-evolved with the immune system and developed multiple strategies to usurp or circumvent host machinery and blunt the innate immune response in infected cells. Recently, it has become apparent that infected or dying cells can transmit PAMPs and host PRR signalling proteins to uninfected bystander cells to thereby bypass pathogen evasion strategies, and potentiate innate immune signalling. This bystander activation of innate immunity represents an alternative method by which the host can control infections via cell-to-cell communication. In this review, we discuss what is currently known about the intercellular transfer of pathogen- or host-derived RNA, DNA and proteins from infected cells to neighbouring cells and how this impacts on host innate immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Shear bond strength between feldspathic CAD/CAM ceramic and human dentine for two adhesive cements.

    Science.gov (United States)

    Graiff, Lorenzo; Piovan, Caterina; Vigolo, Paolo; Mason, Pier Nicola

    2008-06-01

    The purpose of this study was to evaluate the shear bond strength values between dentin substrate and a feldspathic ceramic material, based on computer-assisted design and manufacture (CAD/CAM) technology, bonded together with two adhesive systems coupled with two dual-polymerized luting agents. In addition, the effect of a silane coupling agent on bond strength was evaluated. Forty cylinders (6 mm in diameter, 5 mm thick) obtained from feldspathic ceramic blocks were cemented to the dentin of 40 recently extracted human teeth stored in saline solution at room temperature until testing. The specimens were randomly divided into four groups of ten teeth each. All specimens were airborne-particle abraded and etched with hydrofluoric acid. In the first two groups (A1, A2) 20 ceramic cylinders were cemented using Excite DSC and Variolink II; in the A2 group the bonding surfaces were also treated with a silane coupling agent. In Groups B1 and B2, 20 ceramic cylinders were cemented using Scotchbond MPP and RelyX ARC; in the B2 group the bonding surfaces were also treated with a silane coupling agent as in Group A2. All cemented specimens were submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin and ceramic. The data were analyzed with two-way analysis of variance (p Variolink II without silanization (Group A1); 29 +/- 3 for Excite DSC/Variolink II with silanization (Group A2); 22 +/- 4 for Scotchbond MPP/RelyX ARC without silanization (Group B1); and 26 +/- 5 for Scotchbond MPP/RelyX ARC with silanization (Group B2). Two-way ANOVA revealed a significant effect of silanization (p 0.1) or the interaction between silanization and bonding agent (p > 0.05). Multinomial logit model did not show any statistical effects on the failure mode by the shear bond strength (p > 0.1). The hypotheses of independence between failure mode (cohesive vs. adhesive) and both the adhesive system (p adhesion strength with both adhesive

  20. Dextromethorphan attenuates LPS-induced adhesion molecule expression in human endothelial cells.

    Science.gov (United States)

    Jiang, Shinn-Jong; Hsu, Sheng-Yao; Deng, Chuan-Rou; Huang, Huey-Chun; Liu, Shu-Lin; Shi, Guey-Yueh; Wu, Hua-Lin

    2013-02-01

    This study examines the effect of Dextromethorphan (d-3-methoxy-17-methylmorphinan; DXM), a commonly used cough-suppressing drug, on the expression of VCAM-1 and ICAM-1 in human umbilical vein endothelial cells (HUVECs) stimulated with lipopolysaccharide (LPS). The effect of DXM on expression of cell adhesion molecules induced by LPS was evaluated by monocyte bindings in vitro and ex vivo and transmigration assays. The signaling pathways involved in the inflammation inhibitory effect of DXM were analyzed by Western blot and immunofluorescent stain. Pretreatment of HUVECs with DXM inhibited LPS-induced adhesion of THP-1 cells in vitro and ex vivo, and reduced transendothelial migration of these cells. Furthermore, treatment of HUVECs with DXM can significantly decrease LPS-induced expression of ICAM-1 and VCAM-1. DXM abrogated LPS-induced phosphorylation of ERK and Akt. The translocation of early growth response gene-1 (Egr-1), a downstream transcription factor involved in the mitogen-activated kinase (MEK)-ERK signaling pathway, was suppressed by DXM treatment. Furthermore, DXM inhibited LPS-induced IκBα degradation and nuclear translocation of p65. Dextromethorphan inhibits the adhesive capacity of HUVECs by reducing the LPS-induced ICAM-1 and VCAM-1 expression via the suppression of the ERK, Akt, and NF-κB signaling pathways. Thus, DXM is a potential anti-inflammatory therapeutic that may modulate atherogenesis. © 2012 John Wiley & Sons Ltd.

  1. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion.

    Science.gov (United States)

    Peterson, Robyn A; Gueniche, Audrey; Adam de Beaumais, Ségolène; Breton, Lionel; Dalko-Csiba, Maria; Packer, Nicolle H

    2016-03-01

    There is increasing evidence that secretory fluids such as tears, saliva and milk play an important role in protecting the human body from infection via a washing mechanism involving glycan-mediated adhesion of potential pathogens to secretory glycoproteins. Interaction of sweat with bacteria is well established as the cause of sweat-associated malodor. However, the role of sweat glycoproteins in microbial attachment has received little, if any, research interest in the past. In this review, we demonstrate how recent published studies involving high-throughput proteomic analysis have inadvertently, and fortuitously, exposed an abundance of glycoproteins in sweat, many of which have also been identified in other secretory fluids. We bring together research demonstrating microbial adhesion to these secretory glycoproteins in tears, saliva and milk and suggest a similar role of the sweat glycoproteins in mediating microbial attachment to sweat and/or skin. The contribution of glycan-mediated microbial adhesion to sweat glycoproteins, and the associated impact on sweat derived malodor and pathogenic skin infections are unchartered new research areas that we are beginning to explore. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Staphylococcus aureus hemolysin A disrupts cell-matrix adhesions in human airway epithelial cells.

    Science.gov (United States)

    Hermann, Ina; Räth, Susann; Ziesemer, Sabine; Volksdorf, Thomas; Dress, Regine J; Gutjahr, Melanie; Müller, Christian; Beule, Achim G; Hildebrandt, Jan-Peter

    2015-01-01

    Treatment of primary or immortalized human airway epithelial cells (16HBE14o-, S9) or alveolar cancer cells (A549) with recombinant hemolysin A (rHla), a major virulence-associated factor of Staphylococcus aureus, induces alterations in cell shape and formation of paracellular gaps in the cell layer. Semiquantitative Western blotting using extracts of freshly isolated airway tissue (nasal epithelium) or 16HBE14o- model cells revealed that phosphorylation levels of focal adhesion kinase (Fak) and paxillin were altered upon treatment of tissue or cells with rHla. Immune fluorescence analyses showed that rHla treatment of 16HBE14o- cells results in losses of vinculin and paxillin from focal contacts and a net reduction in the number of focal contacts. The actin cytoskeleton was strongly remodeled. We concluded that treatment of cells with rHla activates Fak signaling, which accelerates focal contact turnover and prevents newly formed focal contacts (focal complexes) from maturation to focal adhesions. The inability of rHla-treated cells to form stable focal adhesions may be one factor that contributes to gap formation in the cell layer. In vivo, such changes may disturb the defensive barrier function of the airway epithelium and may facilitate lung infections by S. aureus.

  3. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells.

    Science.gov (United States)

    Zhao, Xiaomin; Oh, Soon-Hwan; Hoyer, Lois L

    2007-07-01

    The Candida albicans ALS (agglutinin-like sequence) family includes eight genes (ALS1 to ALS7, and ALS9) that share a common general organization, consisting of a relatively conserved 5' domain, a central domain of tandemly repeated sequence units, and a 3' domain of relatively variable length and sequence. To test the hypothesis that the cell-surface glycoproteins encoded by the ALS genes mediate contact between the fungal cell and host surfaces, a set of C. albicans mutant strains was systematically constructed, each lacking one of the ALS sequences. Phenotypes of the mutant strains were evaluated, primarily using adhesion assays. ALS9 is unique within the ALS family due to extensive allelic sequence variation within the 5' domain that may result in functional differences between proteins encoded by ALS9-1 and ALS9-2. Deletion of ALS9 significantly reduces C. albicans adhesion to human vascular endothelial cell monolayers. The mutation was complemented by reintegration of a wild-type copy of ALS9-2, but not ALS9-1, suggesting allelic functional differences. Complementation of the mutation with a gene fusion between the 5' domain of ALS9-2 and the tandem repeats and 3' domain of ALS9-1 also restored wild-type adhesion levels. Analysis of the als9Delta/als9Delta mutant phenotype in other assays demonstrated no significant difference from a control strain for adhesion to buccal epithelial cells or laminin-coated plastic plates. The als9Delta/als9Delta mutant did not show significant differences from the control for adhesion to or destruction of cells in the reconstituted human epithelium (RHE) disease model, or for cell-wall defects, germ-tube formation or biofilm formation in a catheter model. Analysis of ALS9 allelic frequency in a collection of geographically diverse clinical isolates showed a distinct preference for ALS9-2 allelic sequences, within both the 5' and the 3' domain of the ALS9 coding region. These data suggest greater selective pressure to maintain

  4. An extracellular Staphylococcus epidermidis polysaccharide: relation to Polysaccharide Intercellular Adhesin and its implication in phagocytosis

    Science.gov (United States)

    2012-01-01

    Background The skin commensal and opportunistic pathogen Staphylococcus epidermidis is a leading cause of hospital-acquired and biomaterial-associated infections. The polysaccharide intercellular adhesin (PIA), a homoglycan composed of β-1,6-linked N-acetylglucosamine residues, synthesized by enzymes encoded in icaADBC is a major functional factor in biofilm accumulation, promoting virulence in experimental biomaterial-associated S. epidermidis infection. Extracellular mucous layer extracts of S. epidermidis contain another major polysaccharide, referred to as 20-kDa polysaccharide (20-kDaPS), composed mainly out of glucose, N-acetylglucosamine, and being partially sulfated. 20-kDaPS antiserum prevents adhesion of S. epidermidis on endothelial cells and development of experimental keratitis in rabbits. Here we provide experimental evidence that 20-kDaPS and PIA represent distinct molecules and that 20-kDaPS is implicated in endocytosis of S. epidermidis bacterial cells by human monocyte-derived macrophages. Results Analysis of 75 clinical coagulase-negative staphylococci from blood-cultures and central venous catheter tips indicated that 20-kDaPS is expressed exclusively in S. epidermidis but not in other coagulase-negative staphylococcal species. Tn917-insertion in various locations in icaADBC in mutants M10, M22, M23, and M24 of S. epidermidis 1457 are abolished for PIA synthesis, while 20-kDaPS expression appears unaltered as compared to wild-type strains using specific anti-PIA and anti-20-kDaPS antisera. While periodate oxidation and dispersin B treatments abolish immuno-reactivity and intercellular adhesive properties of PIA, no abrogative activity is exerted towards 20-kDaPS immunochemical reactivity following these treatments. PIA polysaccharide I-containing fractions eluting from Q-Sepharose were devoid of detectable 20-kDaPS using specific ELISA. Preincubation of non-20-kDaPS-producing clinical strain with increasing amounts of 20-kDaPS inhibits

  5. Exosomes: secreted vesicles and intercellular communications

    OpenAIRE

    Théry, Clotilde

    2011-01-01

    Exosomes are small membrane vesicles of endocytic origin secreted by most cell types, and are thought to play important roles in intercellular communications. Although exosomes were originally described in 1983, interest in these vesicles has really increased dramatically in the last 3 years, after the finding that they contain mRNA and microRNA. This discovery sparked renewed interest for the general field of membrane vesicles involved in intercellular communications, and research on these s...

  6. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  7. Streptococcal Adhesin P (SadP contributes to Streptococcus suis adhesion to the human intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Maria Laura Ferrando

    Full Text Available Streptococcus suis is a zoonotic pathogen, causing meningitis and septicemia. We previously demonstrated that the gastrointestinal tract (GIT is an entry site for zoonotic S. suis infection. Here we studied the contribution of Streptococcal adhesin Protein (SadP to host-pathogen interaction at GIT level.SadP expression in presence of Intestinal Epithelial Cells (IEC was compared with expression of other virulence factors by measuring transcript levels using quantitative Real Time PCR (qRT-PCR. SadP variants were identified by phylogenetic analysis of complete DNA sequences. The interaction of SadP knockout and complementation mutants with IEC was tested in vitro.Expression of sadP was significantly increased in presence of IEC. Sequence analysis of 116 invasive strains revealed five SadP sequence variants, correlating with genotype. SadP1, present in zoonotic isolates of clonal complex 1, contributed to binding to both human and porcine IEC and translocation across human IEC. Antibodies against the globotriaosylceramide Gb3/CD77 receptor significantly inhibited adhesion to human IEC.SadP is involved in the host-pathogen interaction in the GIT. Differences between SadP variants may determine different affinities to the Gb3/CD77 host-receptor, contributing to variation in adhesion capacity to host IEC and thus to S. suis zoonotic potential.

  8. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  9. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    Science.gov (United States)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  10. Expression of endothelia and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT in adult human lung

    Directory of Open Access Journals (Sweden)

    Takeuchi Toru

    2009-10-01

    Full Text Available Abstract Background Bronchus-associated lymphoid tissue (BALT is the secondary lymphoid tissue in bronchial mucosa and is involved in the development of bronchopulmonary immune responses. Although migration of lymphocytes from blood vessels into secondary lymphoid tissues is critical for the development of appropriate adaptive immunity, the endothelia and lymphocyte adhesion molecules that recruit specific subsets of lymphocytes into human BALT are not known. The aim of this study was to determine which adhesion molecules are expressed on lymphocytes and high endothelial venules (HEVs in human BALT. Methods We immunostained frozen sections of BALT from lobectomy specimens from 17 patients with lung carcinoma with a panel of monoclonal antibodies to endothelia and lymphocyte adhesion molecules. Results Sections of BALT showed B cell follicles surrounded by T cells. Most BALT CD4+ T cells had a CD45RO+ memory phenotype. Almost all BALT B cells expressed α4 integrin and L-selectin. In contrast, 43% of BALT T cells expressed α4 integrin and 20% of BALT T cells expressed L-selectin. Almost all BALT lymphocytes expressed LFA-1. HEVs, which support the migration of lymphocytes from the bloodstream into secondary lymphoid tissues, were prominent in BALT. All HEVs expressed peripheral node addressin, most HEVs expressed vascular cell adhesion molecule-1, and no HEVs expressed mucosal addressin cell adhesion molecule-1. Conclusion Human BALT expresses endothelia and lymphocyte adhesion molecules that may be important in recruiting naive and memory/effector lymphocytes to BALT during protective and pathologic bronchopulmonary immune responses.

  11. Expression of endothelia and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT) in adult human lung.

    Science.gov (United States)

    Kawamata, Nakaaki; Xu, Baohui; Nishijima, Hiroo; Aoyama, Kohji; Kusumoto, Mayumi; Takeuchi, Toru; Tei, Chuwa; Michie, Sara A; Matsuyama, Takami

    2009-10-22

    Bronchus-associated lymphoid tissue (BALT) is the secondary lymphoid tissue in bronchial mucosa and is involved in the development of bronchopulmonary immune responses. Although migration of lymphocytes from blood vessels into secondary lymphoid tissues is critical for the development of appropriate adaptive immunity, the endothelia and lymphocyte adhesion molecules that recruit specific subsets of lymphocytes into human BALT are not known. The aim of this study was to determine which adhesion molecules are expressed on lymphocytes and high endothelial venules (HEVs) in human BALT. We immunostained frozen sections of BALT from lobectomy specimens from 17 patients with lung carcinoma with a panel of monoclonal antibodies to endothelia and lymphocyte adhesion molecules. Sections of BALT showed B cell follicles surrounded by T cells. Most BALT CD4+ T cells had a CD45RO+ memory phenotype. Almost all BALT B cells expressed alpha4 integrin and L-selectin. In contrast, 43% of BALT T cells expressed alpha4 integrin and 20% of BALT T cells expressed L-selectin. Almost all BALT lymphocytes expressed LFA-1. HEVs, which support the migration of lymphocytes from the bloodstream into secondary lymphoid tissues, were prominent in BALT. All HEVs expressed peripheral node addressin, most HEVs expressed vascular cell adhesion molecule-1, and no HEVs expressed mucosal addressin cell adhesion molecule-1. Human BALT expresses endothelia and lymphocyte adhesion molecules that may be important in recruiting naive and memory/effector lymphocytes to BALT during protective and pathologic bronchopulmonary immune responses.

  12. Gene Expression Profile of Extracellular Matrix and Adhesion Molecules in the Human Normal Corneal Stroma.

    Science.gov (United States)

    Liu, Ying; Huang, Hu; Sun, Guoying; Alwadani, Saeed; Semba, Richard D; Lutty, Gerard A; Yiu, Samuel; Edward, Deepak P

    2017-04-01

    There is limited information on region-specific gene expression in the human corneal stroma. In this study, we aimed to investigate the expression profile of the extracellular matrix and adhesion molecules in the normal corneal stroma using laser capture microdissection (LCM) and molecular techniques. Frozen sections of human cornea without ocular disease were used to isolate the central and peripheral corneal stromal keratocytes by LCM. RNA was extracted from LCM-captured tissues and the RT2 Profiler PCR Arrays were used to examine the expression profile of extracellular matrix and adhesion molecules in the central and peripheral stroma. Real-time quantitative PCR was used to quantify gene expression. Proteomic and western blotting (WB) analyses were performed to confirm gene expression at protein level. Function association network was generated via the web tools String and Cytoscape. The gene expression profiling demonstrated that 35 out of the 84 extracellular matrix and adhesion molecules represented in the array were expressed in stromal keratocytes. Among them, 24 genes were not previously described in the corneal stroma. Two genes were found more abundantly expressed in the central stroma than in the periphery: TGFBI, COL6A2 (p < 0.05). ADAMTS13 was detected only in the central stroma. Proteomics and WB analysis confirmed the expression of 10 genes. Functional analysis revealed that most identified genes were presented in a core cluster that had multiple and strong associations with other genes. This study identified genes not previously described in the corneal stroma, revealed regional differences in gene expression between central and peripheral stroma, and also detected some interesting candidate genes that may play important roles in corneal function. These observations serve as the foundation to further investigate the molecular and cellular mechanisms regulating the pathogenesis of regional corneal stromal disorders such as keratoconus.

  13. Lauric acid abolishes interferon-gamma (IFN-γ-induction of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression in human macrophages

    Directory of Open Access Journals (Sweden)

    Wei-Siong Lim

    2015-09-01

    Conclusions: This study successfully proved that lauric acid was able to antagonize the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expressions in THP-1 macrophages. This indicates that lauric acid may be an anti-inflammatory therapeutic and prophylaxis agent for atherosclerosis.

  14. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells

    OpenAIRE

    Thieme, Sebastian; Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian

    2013-01-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal str...

  15. Increased proliferation and adhesion properties of human dental pulp stem cells in PLGA scaffolds via simulated microgravity.

    Science.gov (United States)

    He, L; Pan, S; Li, Y; Zhang, L; Zhang, W; Yi, H; Song, C; Niu, Y

    2016-02-01

    To explore the possibility of utilizing a rotary cell culture system (RCCS) to model simulated microgravity and investigate its effects on the proliferation, adhesion, migration and cytoskeletal organization of human dental pulp stem cells (hDPSCs) on poly (lactic-co-glycolic acid) (PLGA) scaffolds. Isolated and identified hDPSCs grown on PLGA scaffolds were exposed to simulated microgravity (SMG) or normal gravity (NG) conditions for 3 days. MTT cell proliferation assays, BrdU incorporation assays, flow cytometry analysis and Western blotting were undertaken to identify the proliferation ability of hDPSCs under SMG conditions. Additionally, immunofluorescence detection, SEM observations and cell migration and adhesion assays were performed to compare adhesion, migration and cytoskeletal changes in hDPCSs subjected to SMG conditions. To further investigate the mechanisms, human pathway-focused matrix and adhesion PCR array analyses were performed. The Student's t-test was used for statistical analyses. SMG promoted proliferation and adhesion, decreased migration and reorganized the cytoskeletal organization of hDPSCs compared with the NG group. PCR array analyses revealed that following SMG treatment, ITGA6 (integrin alpha-6), ITGAV (integrin alpha-V), ITGB1 (integrin beta-1), LAMB1 (laminin beta-1) and TNC (tenascin-C) were significantly upregulated (P adhesion. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Mouse double minute homologue 2 (MDM2) downregulation by miR-661 impairs human endometrial epithelial cell adhesive capacity.

    Science.gov (United States)

    Winship, Amy; Ton, Amanda; Van Sinderen, Michelle; Menkhorst, Ellen; Rainczuk, Katarzyna; Griffiths, Meaghan; Cuman, Carly; Dimitriadis, Evdokia

    2017-08-29

    Human blastocysts that fail to implant following IVF secrete elevated levels of miR-661, which is taken up by primary human endometrial epithelial cells (HEECs) and impairs their adhesive capability. MicroRNA miR-661 downregulates mouse double minute homologue 2 (MDM2) and MDM4 in other epithelial cell types to activate p53; however, this has not been examined in the endometrium. In this study MDM2 protein was detected in the luminal epithelium of the endometrium, the site of blastocyst attachment, during the mid secretory receptive phase of the menstrual cycle. The effects of miR-661 on gene expression in and adhesion of endometrial cells was also examined. MiR-661 overexpression consistently downregulated MDM2 but not MDM4 or p53 gene expression in the Ishikawa endometrial epithelial cell line and primary HEEC. Adhesion assays were performed on the real-time monitoring xCELLigence system and by co-culture using Ishikawa cells and HEECs with HTR8/SVneo trophoblast spheroids. Targeted siRNA-mediated knockdown of MDM2 in endometrial epithelial cells reduced Ishikawa cell adhesion (Phuman blastocyst-secreted miR-661 reduces endometrial epithelial cell adhesion; via downregulation of MDM2. These findings suggest that MDM2 contributes to endometrial-blastocyst adhesion, implantation and infertility in women.

  17. Intercellular transfer of oncogenic H-Ras at the immunological synapse.

    Directory of Open Access Journals (Sweden)

    Oded Rechavi

    Full Text Available Immune cells establish dynamic adhesive cell-cell interactions at a specific contact region, termed the immunological synapse (IS. Intriguing features of the IS are the formation of regions of plasma membrane fusion and the intercellular exchange of membrane fragments between the conjugated cells. It is not known whether upon IS formation, intact intracellular proteins can transfer from target cells to lymphocytes to allow the transmission of signals across cell boundaries. Here we show by both FACS and confocal microscopy that human lymphocytes acquire from the cells they scan the inner-membrane protein H-Ras, a G-protein vital for common lymphocyte functions and a prominent participant in human cancer. The transfer was cell contact-dependent and occurred in the context of cell-conjugate formation. Moreover, the acquisition of oncogenic H-RasG12V by natural killer (NK and T lymphocytes had important biological functions in the adopting lymphocytes: the transferred H-RasG12V induced ERK phosphorylation, increased interferon-gamma and tumor necrosis factor-alpha secretion, enhanced lymphocyte proliferation, and augmented NK-mediated target cell killing. Our findings reveal a novel mode of cell-to-cell communication-allowing lymphocytes to extend the confines of their own proteome-which may moreover play an important role in natural tumor immunity.

  18. Ligation of the beta4 integrin triggers adhesion behavior of human keratinocytes by an "inside-out" mechanism.

    Science.gov (United States)

    Kippenberger, Stefan; Loitsch, Stefan; Müller, Jutta; Guschel, Maike; Kaufmann, Roland; Bernd, August

    2004-09-01

    Carcinogenesis is considered as a multistep process involving functional changes in the hemidesmosomal organization. In normal skin keratinocytes, expression of the alpha(6)beta(4) integrin is restricted to the proliferative basal layer and mediates stable adhesion to the underlying basement membrane. Observations in carcinoma cells show a functional and spatial dissociation of the alpha(6)beta(4) integrin from the hemidesmosomal complex, which stimulates cell migration and, therefore, may contribute to carcinoma invasion. We now have evaluated the adhesion behavior of epithelial cells at different stages of transformation in response to activation of the beta(4) integrin. It is demonstrated that ligation of the beta(4) integrin augmented adhesion of carcinoma and pre-carcinoma cells to non-modified plastic. In contrast, adhesion behavior of normal human keratinocytes was not influenced by ligation of the beta(4) integrin. In order to explain the mechanism of beta(4)-mediated adhesion, the hypothesis of an "inside-out" activation of integrins was tested. Evidence is given that for cells expressing the alpha(6)beta(4) integrin, ligation of the beta(4) integrin increased beta(1) integrin-mediated adhesion. Furthermore, ligation of the beta(4) integrin led to phosphorylation of PKB/Akt at both phosphorylation sites. Functional blocking of PKB/Akt by dominant-negative overexpression decreased cell adhesion in response to beta(4) integrin ligation. Taken together, the present data establish a link between the ligation of the beta(4) integrin and beta(1) integrin-mediated cell adhesion in carcinoma and pre-carcinoma cells. Hence, these findings provide further insight into the conversion processes during carcinogenesis and show the beta(4) integrin to be a key regulator of cellular adhesion.

  19. Intercellular crosstalk in human malignant melanoma

    Czech Academy of Sciences Publication Activity Database

    Dvořánková, Barbora; Szabo, Pavol; Kodet, O.; Strnad, Hynek; Kolář, Michal; Lacina, L.; Krejčí, E.; Nanka, O.; Sedo, A.; Smetana, K.

    2017-01-01

    Roč. 254, č. 3 (2017), s. 1143-1150 ISSN 0033-183X R&D Projects: GA ČR GA16-05534S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378050 Keywords : Melanocyte * Melanoma cells * Melanoma ecosystem * cancer -associated fibroblast * Keratinocyte * Cytokine Impact factor: 2.870, year: 2016

  20. Hydrogen bonds of a novel resin cement contribute to high adhesion strength to human dentin.

    Science.gov (United States)

    Wu, Wei-Che; Wang, Da-Ming; Lin, Yu-Chen; Dai, Chi-An; Cheng, Kuo-Chung; Hu, Mei-Shan; Lee, Bor-Shiunn

    2016-01-01

    The detachment of fiber posts from root canals is primarily caused by the loss of adhesion between dentin and cement; therefore, the purpose of this study was to formulate a novel resin cement that improves the bond strength of fiber posts to the dentin-cement interface. Three concentrations (30, 35, and 40wt.%) of bis[2-(methacryloyloxy)-ethyl] phosphate (2MP) were prepared as dentin bonding agent components. Isobornyl acrylate (IBOA) and ethylhexylacrylate (EHA) were used as key components to fabricate the resin cement (named IE cement). The adhesive strengths of IE cement to coronal and root canal dentin were tested after placement of specimens in a water bath at 100% humidity and 37°C for either 24h or 5 months. The microtensile bond test, the push-out bond test, and the fracture toughness test were performed. Four commercially available resin cements (Nexus(®) third generation (NX3), Variolink II, RelyX Unicem, and Panavia F 2.0) were used for comparisons. X-ray photoelectron spectroscopy (XPS) was used to analyze the interaction of collagen extracted from human dentin and 2MP as well as the fracture surfaces of the specimens submitted to the microtensile bond test. The 35% concentration of 2MP, in combination with IBOA and EHA, was the most effective for improving the IE cement's bond strength to dentin. The XPS results revealed that the phosphate groups of 2MP formed hydrogen bonds with the collagen and that such bonds prominently decreased in number in the specimens that were stored for 5 months. The combination of 2MP, IBOA, and EHA can effectively increase the adhesive strength of IE cement to dentin via hydrogen bond formation. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Rahman, Norizah, E-mail: norizah@science.putra.edu.my [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Department of Chemistry, University of Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan (Malaysia); Feisst, Vaughan [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dickinson, Michelle E. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Malmström, Jenny [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dunbar, P. Rod [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Maurice Wilkins Centre, Private Bag 92019, Auckland (New Zealand); Travas-Sejdic, Jadranka, E-mail: j.travas-sejdic@auckland.ac.nz [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 600, Wellington 6140 (New Zealand)

    2013-02-15

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, h{sub max} <75 nm) than in the inner fibre core (2–4 GPa, h{sub max} >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells.

  2. Drug exposure in a metastatic human lung adenocarcinoma cell line gives rise to cells with differing adhesion, proliferation, and gene expression: Implications for cancer chemotherapy.

    Science.gov (United States)

    Li, Huiling; He, Jianxing; Zhong, Nanshan; Hoffman, Robert M

    2015-09-01

    The Am1010 cell line was previously established from a metastatic deposit in an arm muscle from a patient with lung adenocarcinoma who had undergone four cycles of chemotherapy with cisplatin and taxol. Am1010 cells were labeled with red fluorescent protein or green fluorescent protein. A total of eight sublines were isolated following in vitro exposure to cisplatin or taxol. The sublines differed with regard to their adhesion and proliferation properties, with certain sublines exhibiting an increased proliferation rate and/or decreased surface adhesion. Gene expression assays demonstrated that tenascin C; cyclin D1; collagen, type 1, α2; integrin α1; related RAS viral (r‑ras) oncogene homolog 2; platelet‑derived growth factor C; and Src homolog 2 domain containing in the focal adhesion pathway, and intercellular adhesion molecule 1, F11 receptor, claudin 7 and cadherin 1 in the cell adhesion pathway, varied in expression among the sublines. The results of the present study suggested that drug exposure may alter the aggressiveness and metastatic potential of cancer cells, which has important implications for cancer chemotherapy.

  3. Human β-Defensin 3 Reduces TNF-α-Induced Inflammation and Monocyte Adhesion in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Tianying Bian

    2017-01-01

    Full Text Available The aim of this study was to investigate the role of human β-defensin 3 (hBD3 in the initiation stage of atherosclerosis with human umbilical vein endothelial cells (HUVECs triggered by tumor necrosis factor- (TNF- α. The effects of hBD3 on TNF-α-induced endothelial injury and inflammatory response were evaluated. Our data revealed that first, hBD3 reduced the production of interleukin-6 (IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1, and macrophage migration inhibitory factor (MIF in HUVECs in a dose-dependent manner. In addition, hBD3 significantly prevented intracellular reactive oxygen species (ROS production by HUVECs. Second, western blot analysis demonstrated that hBD3 dose-dependently suppressed the protein levels of intracellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 in TNF-α-induced HUVECs. As a result, hBD3 inhibited monocyte adhesion to TNF-α-treated endothelial cells. Additionally, hBD3 suppressed TNF-α-induced F-actin reorganization in HUVECs. Third, hBD3 markedly inhibited NF-κB activation by decreasing the phosphorylation of IKK-α/β, IκB, and p65 subunit within 30 min. Moreover, the phosphorylation of p38 and c-Jun N-terminal protein kinase (JNK in the mitogen-activated protein kinase (MAPK pathway were also inhibited by hBD3 in HUVECs. In conclusion, hBD3 exerts anti-inflammatory and antioxidative effects in endothelial cells in response to TNF-α by inhibiting NF-κB and MAPK signaling.

  4. [The evaluation of the cytotoxicity of 2 dental adhesives using human pulp cells in culture].

    Science.gov (United States)

    Bouillaguet, S; Ciucchi, B; Holz, J

    1993-01-01

    This in vitro study was designed to ascertain the cytotoxicity of two new dentin systems, Scotchbond MP (3M) and A.R.T. Bond (Coltène), on cultured cell monolayers prepared from fresh explants of human pulp tissue and placed in contact with the materials according to two methods. In a direct method, the two components (primer, adhesive) of each bonding system were placed directly on the cell layers. In an indirect method the bonding agents were placed on dentin slices of 0.3 and 1.0 mm thickness, that were interposed between agents and cells. After 8 days the cytotoxicity was quantitatively assessed by counting of the remaining living cells. The results indicate that the different primer solutions, when placed in direct contact with the cells, are more cytotoxic than the adhesive resins. In indirect contact through dentin, both bonding systems exhibited a similar cytotoxicity. The cytotoxicity appeared to be considerably diminished with a thick dentin slice interposed. These data confirm the role of dentin as a diffusion and buffer membrane for bonding materials. This kind of experiment could in the future improve the correlation between in vitro and in vivo results.

  5. Structural characterization of the NAP; the major adhesion complex of the human pathogen Mycoplasma genitalium.

    Science.gov (United States)

    Scheffer, Margot P; Gonzalez-Gonzalez, Luis; Seybert, Anja; Ratera, Mercè; Kunz, Michael; Valpuesta, José M; Fita, Ignacio; Querol, Enrique; Piñol, Jaume; Martín-Benito, Jaime; Frangakis, Achilleas S

    2017-09-01

    Mycoplasma genitalium, the causative agent of non-gonococcal urethritis and pelvic inflammatory disease in humans, is a small eubacterium that lacks a peptidoglycan cell wall. On the surface of its plasma membrane is the major surface adhesion complex, known as NAP that is essential for adhesion and gliding motility of the organism. Here, we have performed cryo-electron tomography of intact cells and detergent permeabilized M. genitalium cell aggregates, providing sub-tomogram averages of free and cell-attached NAPs respectively, revealing a tetrameric complex with two-fold rotational (C2) symmetry. Each NAP has two pairs of globular lobes (named α and β lobes), arranged as a dimer of heterodimers with each lobe connected by a stalk to the cell membrane. The β lobes are larger than the α lobes by 20%. Classification of NAPs showed that the complex can tilt with respect to the cell membrane. A protein complex containing exclusively the proteins P140 and P110, was purified from M. genitalium and was structurally characterized by negative-stain single particle EM reconstruction. The close structural similarity found between intact NAPs and the isolated P140/P110 complexes, shows that dimers of P140/P110 heterodimers are the only components of the extracellular region of intact NAPs in M. genitalium. © 2017 John Wiley & Sons Ltd.

  6. Integrin-Associated Focal Adhesion Kinase Protects Human Embryonic Stem Cells from Apoptosis, Detachment, and Differentiation

    Directory of Open Access Journals (Sweden)

    Loriana Vitillo

    2016-08-01

    Full Text Available Human embryonic stem cells (hESCs can be maintained in a fully defined niche on extracellular matrix substrates, to which they attach through integrin receptors. However, the underlying integrin signaling mechanisms, and their contribution to hESC behavior, are largely unknown. Here, we show that focal adhesion kinase (FAK transduces integrin activation and supports hESC survival, substrate adhesion, and maintenance of the undifferentiated state. After inhibiting FAK kinase activity we show that hESCs undergo cell detachment-dependent apoptosis or differentiation. We also report deactivation of FAK downstream targets, AKT and MDM2, and upregulation of p53, all key players in hESC regulatory networks. Loss of integrin activity or FAK also induces cell aggregation, revealing a role in the cell-cell interactions of hESCs. This study provides insight into the integrin signaling cascade activated in hESCs and reveals in FAK a key player in the maintenance of hESC survival and undifferentiated state.

  7. Soluble Delta-like ligand 1 alters human endometrial epithelial cell adhesive capacity.

    Science.gov (United States)

    Van Sinderen, Michelle; Oyanedel, Jennifer; Menkhorst, Ellen; Cuman, Carly; Rainczuk, Katarzyna; Winship, Amy; Salamonsen, Lois; Edgell, Tracey; Dimitriadis, Evdokia

    2017-04-01

    The endometrium undergoes substantial morphological and functional changes to become receptive to embryo implantation and to enable establishment of a successful pregnancy. Reduced Delta-like ligand 1 (DLL1, Notch ligand) in the endometrium is associated with infertility. DLL1 can be cleaved by 'a disintegrin and metalloprotease' (ADAM) proteases to produce a soluble ligand that may act to inhibit Notch signalling. We used an enzyme-linked immunosorbent assay to quantify soluble DLL1 in uterine lavages from fertile and infertile women in the secretory phase of the menstrual cycle. We also determined the cellular location and immunostaining intensity of ADAM12 and 17 in human endometrium throughout the cycle. Functional effects of soluble DLL1 in receptivity were analysed using in vitro adhesion and proliferation assays and gene expression analysis of Notch signalling targets. Soluble DLL1 was significantly increased in uterine lavage samples of infertile women compared with fertile women in the secretory phase of the menstrual cycle. This coincided with significantly increased ADAM17 immunostaining detected in the endometrial luminal epithelium in the mid-secretory phase in infertile women. Soluble DLL1 significantly inhibited the adhesive capacity of endometrial epithelial cells via downregulation of helix-loop-helix and hairy/enhancer of split family member HES1 mRNA. Thus, soluble DLL1 may serve as a suitable target or potential biomarker for receptivity.

  8. Identification of Human Junctional Adhesion Molecule 1 as a Functional Receptor for the Hom-1 Calicivirus on Human Cells.

    Science.gov (United States)

    Sosnovtsev, Stanislav V; Sandoval-Jaime, Carlos; Parra, Gabriel I; Tin, Christine M; Jones, Ronald W; Soden, Jo; Barnes, Donna; Freeth, Jim; Smith, Alvin W; Green, Kim Y

    2017-02-14

    The Hom-1 vesivirus was reported in 1998 following the inadvertent transmission of the animal calicivirus San Miguel sea lion virus to a human host in a laboratory. We characterized the Hom-1 strain and investigated the mechanism by which human cells could be infected. An expression library of 3,559 human plasma membrane proteins was screened for reactivity with Hom-1 virus-like particles, and a single interacting protein, human junctional adhesion molecule 1 (hJAM1), was identified. Transient expression of hJAM1 conferred susceptibility to Hom-1 infection on nonpermissive Chinese hamster ovary (CHO) cells. Virus infection was markedly inhibited when CHO cells stably expressing hJAM were pretreated with anti-hJAM1 monoclonal antibodies. Cell lines of human origin were tested for growth of Hom-1, and efficient replication was observed in HepG2, HuH7, and SK-CO15 cells. The three cell lines (of hepatic or intestinal origin) were confirmed to express hJAM1 on their surface, and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of the hJAM1 gene in each line abolished Hom-1 propagation. Taken together, our data indicate that entry of the Hom-1 vesivirus into these permissive human cell lines is mediated by the plasma membrane protein hJAM1 as a functional receptor.IMPORTANCE Vesiviruses, such as San Miguel sea lion virus and feline calicivirus, are typically associated with infection in animal hosts. Following the accidental infection of a laboratory worker with San Miguel sea lion virus, a related virus was isolated in cell culture and named Hom-1. In this study, we found that Hom-1 could be propagated in a number of human cell lines, making it the first calicivirus to replicate efficiently in cultured human cells. Screening of a library of human cell surface membrane proteins showed that the virus could utilize human junctional adhesion molecule 1 as a receptor to enter cells and initiate replication. The Hom-1 virus presents a new

  9. Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells

    NARCIS (Netherlands)

    Eich, C.; Lasonder, E.; Cruz, L.J.; Reinieren-Beeren, I.M.J.; Cambi, A.; Figdor, C.G.; Buschow, S.I.

    2016-01-01

    The beta2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even

  10. Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells

    NARCIS (Netherlands)

    C. Eich (Christina); E. Lasonder (Edwin); J.L. Cruz (Luis); I. Reinieren-Beeren (Inge); A. Cambi (Alessandra); C.G. Figdor (Carl); S.I. Buschow (Sonja)

    2016-01-01

    textabstractThe β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely

  11. Identification of Human Junctional Adhesion Molecule 1 as a Functional Receptor for the Hom-1 Calicivirus on Human Cells

    Directory of Open Access Journals (Sweden)

    Stanislav V. Sosnovtsev

    2017-02-01

    Full Text Available The Hom-1 vesivirus was reported in 1998 following the inadvertent transmission of the animal calicivirus San Miguel sea lion virus to a human host in a laboratory. We characterized the Hom-1 strain and investigated the mechanism by which human cells could be infected. An expression library of 3,559 human plasma membrane proteins was screened for reactivity with Hom-1 virus-like particles, and a single interacting protein, human junctional adhesion molecule 1 (hJAM1, was identified. Transient expression of hJAM1 conferred susceptibility to Hom-1 infection on nonpermissive Chinese hamster ovary (CHO cells. Virus infection was markedly inhibited when CHO cells stably expressing hJAM were pretreated with anti-hJAM1 monoclonal antibodies. Cell lines of human origin were tested for growth of Hom-1, and efficient replication was observed in HepG2, HuH7, and SK-CO15 cells. The three cell lines (of hepatic or intestinal origin were confirmed to express hJAM1 on their surface, and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of the hJAM1 gene in each line abolished Hom-1 propagation. Taken together, our data indicate that entry of the Hom-1 vesivirus into these permissive human cell lines is mediated by the plasma membrane protein hJAM1 as a functional receptor.

  12. Comparison of human amniotic membrane and hyaluronate/carboxymethylcellulose membrane for prevention of adhesion formation in rats.

    Science.gov (United States)

    Kelekci, Sefa; Uygur, Dilek; Yilmaz, Bulent; Sut, Necdet; Yesildaglar, Narter

    2007-10-01

    To investigate the effectiveness of human amniotic membrane (HAM) in the prevention of postoperative adhesion formation and to compare it with the efficacy of hyaluronate/carboxymethylcellulose (HA/CMC) membrane in a rat model. Following pilot studies and computer-generated randomization, 23 female Wistar albino rats were operated on in the full study. One of the uterine horns with standard lesions was treated with either HAM (n = 13) or HA/CMC (n = 10) and the other uterine horn served as the control. Second look laparotomies were performed 2 weeks after the operations. Main outcome measures were extent, severity, degree, total adhesion scores and histopathologic characteristics of adhesions. Uterine horns treated with HAM had significantly lower total adhesion scores than the controls (5.15 +/- 2.67 vs. 7.92 +/- 1.50, P CMC membrane were significantly lower than those of the controls (4.30 +/- 1.95 vs. 7.50 +/- 1.84, P CMC groups regarding any adhesion scores. HAM and HA/CMC membrane are both effective for prevention of adhesion formation in a rat uterine horn model; however, one does not seem to be more effective than the other.

  13. Sialylation by ?-galactoside ?-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma

    OpenAIRE

    Suzuki, Osamu; ABE, MASAFUMI; HASHIMOTO Yuko

    2015-01-01

    The interaction between cell surface glycans and extracellular matrix (ECM) including galectins is known to be closely associated with tumor cell adhesion, invasion and metastasis. We analyzed the roles of cell surface sialylation or glycosylation in galectin or ECM-mediated cell adhesion and invasion of human malignant lymphoma cells. Neuraminidase from Arthrobacter ureafaciens (AU) treatment resulted in reduction of cell adhesion to galectin-8 in human anaplastic large cell lymphoma (H-ALCL...

  14. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion

    Directory of Open Access Journals (Sweden)

    Carly Cuman

    2015-10-01

    Full Text Available Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM from blastocysts that failed to implant (non-implanted compared to blastocysts that implanted (implanted. Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs. miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure.

  15. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion.

    Science.gov (United States)

    Cuman, Carly; Van Sinderen, Michelle; Gantier, Michael P; Rainczuk, Kate; Sorby, Kelli; Rombauts, Luk; Osianlis, Tiki; Dimitriadis, Evdokia

    2015-10-01

    Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs) are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM) from blastocysts that failed to implant (non-implanted) compared to blastocysts that implanted (implanted). Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs). miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure.

  16. Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds

    Directory of Open Access Journals (Sweden)

    Matschegewski Claudia

    2016-09-01

    Full Text Available The usage of electrospun polymer scaffolds is a promising approach for artificial heart valve design. This study aims at the evaluation of biological performance of nanofibrous polymer scaffolds poly(L-lactide PLLA L210, PLLA L214 and polyamide-6 fabricated by electrospinning via analyzing viability, adhesion and morphology of human umbilical vein endothelial cells (EA.hy926. Nanofibrous surface topography was shown to influence cell phenotype and cell viability according to the observation of diminished cell spreading accompanied with reduced cell viability on nonwovens. Among those, highest biocompatibility was assessed for PLLA L214, although being generally low when compared to the planar control surface. Electrospinning was demonstrated as an innovative technique for the fabrication of advanced biomaterials aiming at guided cellular behavior as well as the design of novel implant platforms. A better understanding of cell–biomaterial interactions is desired to further improve implant development.

  17. Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuk Lee

    Full Text Available Coccidioides spp. are dimorphic pathogenic fungi whose parasitic forms cause coccidioidomycosis (Valley fever in mammalian hosts. We use an innovative interdisciplinary approach to analyze one-on-one encounters between human neutrophils and two forms of Coccidioides posadasii. To examine the mechanisms by which the innate immune system coordinates different stages of the host response to fungal pathogens, we dissect the immune-cell response into chemotaxis, adhesion, and phagocytosis. Our single-cell technique reveals a surprisingly strong response by initially quiescent neutrophils to close encounters with C. posadasii, both from a distance (by complement-mediated chemotaxis as well as upon contact (by serum-dependent adhesion and phagocytosis. This response closely resembles neutrophil interactions with Candida albicans and zymosan particles, and is significantly stronger than the neutrophil responses to Cryptococcus neoformans, Aspergillus fumigatus, and Rhizopus oryzae under identical conditions. The vigorous in vitro neutrophil response suggests that C. posadasii evades in vivo recognition by neutrophils through suppression of long-range mobilization and recruitment of the immune cells. This observation elucidates an important paradigm of the recognition of microbes, i.e., that intact immunotaxis comprises an intricate spatiotemporal hierarchy of distinct chemotactic processes. Moreover, in contrast to earlier reports, human neutrophils exhibit vigorous chemotaxis toward, and frustrated phagocytosis of, the large spherules of C. posadasii under physiological-like conditions. Finally, neutrophils from healthy donors and patients with chronic coccidioidomycosis display subtle differences in their responses to antibody-coated beads, even though the patient cells appear to interact normally with C. posadasii endospores.

  18. Adhesion of Human and Animal Escherichia coli Strains in Association with Their Virulence-Associated Genes and Phylogenetic Origins

    Science.gov (United States)

    Frömmel, Ulrike; Lehmann, Werner; Rödiger, Stefan; Böhm, Alexander; Nitschke, Jörg; Weinreich, Jörg; Groß, Julia; Roggenbuck, Dirk; Zinke, Olaf; Ansorge, Hermann; Vogel, Steffen; Klemm, Per; Wex, Thomas; Schröder, Christian; Wieler, Lothar H.

    2013-01-01

    Intestinal colonization is influenced by the ability of the bacterium to inhabit a niche, which is based on the expression of colonization factors. Escherichia coli carries a broad range of virulence-associated genes (VAGs) which contribute to intestinal (inVAGs) and extraintestinal (exVAGs) infection. Moreover, initial evidence indicates that inVAGs and exVAGs support intestinal colonization. We developed new screening tools to genotypically and phenotypically characterize E. coli isolates originating in humans, domestic pigs, and 17 wild mammal and avian species. We analyzed 317 isolates for the occurrence of 44 VAGs using a novel multiplex PCR microbead assay (MPMA) and for adhesion to four epithelial cell lines using a new adhesion assay. We correlated data for the definition of new adhesion genes. inVAGs were identified only sporadically, particularly in roe deer (Capreolus capreolus) and the European hedgehog ( Erinaceus europaeus). The prevalence of exVAGs depended on isolation from a specific host. Human uropathogenic E. coli isolates carried exVAGs with the highest prevalence, followed by badger (Meles meles) and roe deer isolates. Adhesion was found to be very diverse. Adhesion was specific to cells, host, and tissue, though it was also unspecific. Occurrence of the following VAGs was associated with a higher rate of adhesion to one or more cell lines: afa-dra, daaD, tsh, vat, ibeA, fyuA, mat, sfa-foc, malX, pic, irp2, and papC. In summary, we established new screening methods which enabled us to characterize large numbers of E. coli isolates. We defined reservoirs for potential pathogenic E. coli. We also identified a very broad range of colonization strategies and defined potential new adhesion genes. PMID:23872574

  19. Adhesion of human and animal Escherichia coli strains in association with their virulence-associated genes and phylogenetic origins.

    Science.gov (United States)

    Frömmel, Ulrike; Lehmann, Werner; Rödiger, Stefan; Böhm, Alexander; Nitschke, Jörg; Weinreich, Jörg; Groß, Julia; Roggenbuck, Dirk; Zinke, Olaf; Ansorge, Hermann; Vogel, Steffen; Klemm, Per; Wex, Thomas; Schröder, Christian; Wieler, Lothar H; Schierack, Peter

    2013-10-01

    Intestinal colonization is influenced by the ability of the bacterium to inhabit a niche, which is based on the expression of colonization factors. Escherichia coli carries a broad range of virulence-associated genes (VAGs) which contribute to intestinal (inVAGs) and extraintestinal (exVAGs) infection. Moreover, initial evidence indicates that inVAGs and exVAGs support intestinal colonization. We developed new screening tools to genotypically and phenotypically characterize E. coli isolates originating in humans, domestic pigs, and 17 wild mammal and avian species. We analyzed 317 isolates for the occurrence of 44 VAGs using a novel multiplex PCR microbead assay (MPMA) and for adhesion to four epithelial cell lines using a new adhesion assay. We correlated data for the definition of new adhesion genes. inVAGs were identified only sporadically, particularly in roe deer (Capreolus capreolus) and the European hedgehog ( Erinaceus europaeus). The prevalence of exVAGs depended on isolation from a specific host. Human uropathogenic E. coli isolates carried exVAGs with the highest prevalence, followed by badger (Meles meles) and roe deer isolates. Adhesion was found to be very diverse. Adhesion was specific to cells, host, and tissue, though it was also unspecific. Occurrence of the following VAGs was associated with a higher rate of adhesion to one or more cell lines: afa-dra, daaD, tsh, vat, ibeA, fyuA, mat, sfa-foc, malX, pic, irp2, and papC. In summary, we established new screening methods which enabled us to characterize large numbers of E. coli isolates. We defined reservoirs for potential pathogenic E. coli. We also identified a very broad range of colonization strategies and defined potential new adhesion genes.

  20. Hyperbaric oxygen treatment reduces neutrophil-endothelial adhesion in chronic wound conditions through S-nitrosation.

    Science.gov (United States)

    Kendall, Alexandra C; Whatmore, Jacqueline L; Winyard, Paul G; Smerdon, Gary R; Eggleton, Paul

    2013-01-01

    Hyperbaric oxygen (HBO) therapy is an effective treatment for diabetic chronic wounds. HBO reduces inflammation and accelerates wound healing, by mechanisms that remain unclear. Here we examined a mechanism by which HBO may reduce neutrophil recruitment, through changes in endothelial and neutrophil adhesion molecule expression and function. Human umbilical vein endothelial cells and neutrophils were exposed to selected chronic wound conditions, comprising hypoxia in the presence of lipopolysaccharide and tumor necrosis factor-alpha, and then treated with HBO. We observed neutrophil adhesion to endothelial cells following treatment with chronic wound conditions, which was reversed by HBO treatment. This was partly explained by reduced expression of endothelial intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 by HBO. No changes in neutrophil adhesion molecule expression (CD18, CD11b, CD62L, CD31) were observed following HBO treatment. However, HBO decreased hydrogen peroxide generation by neutrophils, and induced nitrous oxide-related protein modifications. The transnitrosating agent S-nitroso-L-cysteine ethyl ester (600 μM) also reduced neutrophil adhesion to human umbilical vein endothelial cell monolayers, and the iNOS inhibitor 1400 W (10 μM) and HgCl2, which promotes the decomposition of S-nitrosothiols (1 mM), reversed the effect of HBO, suggesting that S-nitrosation may inhibit neutrophil-endothelial cell adhesion. This study indicates that HBO could reduce inflammation in wounds through reduced neutrophil recruitment, mediated by S-nitrosation. © 2013 by the Wound Healing Society.

  1. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells.

    Science.gov (United States)

    Huang, Wen-Shih; Yang, Jen-Tsung; Lu, Chien-Chang; Chang, Shun-Fu; Chen, Cheng-Nan; Su, Yu-Ping; Lee, Ko-Chao

    2015-12-09

    A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC). Hence, resistin may play a role in CRC development. Fulvic acid (FA), a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative) and SW-48 (p53-positive) CRC cells and human umbilical vein endothelial cells (HUVECs) were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin.

  2. [Effect of the self-etching adhesives system on human pulp fibroblast].

    Science.gov (United States)

    Zhang, Ming; Feng, Yan; Huang, Xiao-jing; Lei, Li-shan; Zheng, Bi-qiong; Lu, You-guang

    2008-02-01

    To compare and evaluate the biocompatibility of three kinds of dentin bonding agents Xeno III (XO), Adper Prompt (AP), Single bond2 (SB) through cell culture in vitro. Three kinds of dentin bonding agents (XO, AP, SB) were applied on the surface of the dental slices which were 5.0 mm in diameter and 0.5 mm in depth. By immersing the slices into the DMEM culture medium, the maceration extracts were obtained. Normal dental pulps of teenagers were collected and human pulp fibroblast was cultured using tissue explant method. The fifth generation pulp cells were exposed to culture medium containing different concentrations of maceration extracts (100.0%, 50.0%, 25.0%, 12.5%) for 24, 72, 120 h. At last, MTT method was used to evaluate the cytotoxicity of the dentin bonding agents on human pulp fibroblast. The results showed that all three kinds of dentin bonding systems had cytotoxicity to human pulp fibroblast in different degree in vitro. The cytotoxicity of XO and AP was less than SB. The difference was statistically significant (Padhesives system has more irritation to pulp than self-etching adhesives system.

  3. Laminin receptor 37/67LR regulates adhesion and proliferation of normal human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Taoufik Khalfaoui

    Full Text Available Interactions between the cell basal membrane domain and the basement membrane are involved in several cell functions including proliferation, migration and differentiation. Intestinal epithelial cells can interact with laminin, a major intestinal basement membrane glycoprotein, via several cell-surface laminin-binding proteins including integrin and non-integrin receptors. The 37/67kDa laminin receptor (37/67LR is one of these but its role in normal epithelial cells is still unknown. The aim of this study was to characterise the expression pattern and determine the main function of 37/67LR in the normal human small intestinal epithelium. Immunolocalization studies revealed that 37/67LR was predominantly present in the undifferentiated/proliferative region of the human intestinal crypt in both the immature and adult intestine. Using a human intestinal epithelial crypt (HIEC cell line as experimental model, we determined that 37/67LR was expressed in proliferative cells in both the cytoplasmic and membrane compartments. Small-interfering RNA-mediated reduction of 37/67LR expression led to HIEC cell-cycle reduction and loss of the ability to adhere to laminin-related peptides under conditions not altering ribosomal function. Taken together, these findings indicate that 37/67LR regulates proliferation and adhesion in normal intestinal epithelial cells independently of its known association with ribosomal function.

  4. Understanding intercellular communication in the brain: Identified ...

    Indian Academy of Sciences (India)

    Understanding intercellular communication in the brain: Identified neuromuscular synapses of the fruitfly. Drosophila serve as a model. The transmission of information between nerve cells in the brain takes place at specialized sites of contact, the synapses. Spatial interactions between synapses and temporal modulation of ...

  5. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  6. Effect of Nanofiller Addition to an Experimental Dentin Adhesive on Microtensile Bond Strength to Human Dentin

    Directory of Open Access Journals (Sweden)

    SH. Kasraei

    2009-06-01

    Full Text Available Objective: The purpose of the study was to evaluate the influence of adding nanofiller particles to a dentin bonding agent on resin-dentin bond strength.Materials and Methods: Fifty-four human intact premolar teeth were divided in to 6 groups of nine. The teeth were ground on occlusal surfaces and polished with 320 and then 600 grit silicon carbide papers. An experimental bonding system based on acetone/alcoholsolvent was provided with filler contents of 0.0, 0.5, 1.0, 2.5, 5.0, and 10.0 weight percent fumed silica nanofiller. After dentin surface etching, rinsing and blot drying, the experimentalbonding agents were applied to dentin surface. A composite resin was, then,bonded to the dentin on the bonding agent. The specimens were thermocycled for 500 cycles and sectioned in stick form. After two week of storage in distilled water, resin-dentin microtensile bond strength of the specimens was measured. Data were analyzed by one way ANOVA and DunnettT3 tests.Results: Bond strength to dentin was significantly affected by the filler level. Minimum and maximum resin-microtensile bond strength was in the experimental bonding agent with no filler (5.88 MPa and with filler level of 1.0 weight percent (15.15 MPa, respectively,and decreased with the increase of filler content down to 8.95 MPa for the filler level of 10.0 weight percent.Conclusion: Filler content seems to be one of the important factors influencing the bond strength of dental adhesives. Maximum dentin bond strength was obtained with 1% silanized nanofiller silica added to experimental adhesive system.

  7. Characterization of Enterobius vermicularis in a human population, employing a molecular-based method from adhesive tape samples.

    Science.gov (United States)

    Piperaki, Evangelia-Theophano; Spanakos, Gregory; Patsantara, Giannoula; Vassalou, Evdokia; Vakalis, Nikolaos; Tsakris, Athanassios

    2011-01-01

    Human infection with the parasitic nematode Enterobius vermicularis occurs worldwide, particularly in children. Although its prevalence may exceed 35% in some parts of the world, molecular studies of E. vermicularis in humans are limited. The aim of the present study was to investigate the genetic variation within E. vermicularis in a human population. For this purpose, 77 adhesive tape samples taken from Greek children infested with E. vermicularis were tested. New primers were designed to amplify a segment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of E. vermicularis from adhesive tape samples. Thirty-six amplicons were sequenced and eleven different haplotypes were identified. All sequences clustered within the type previously characterized (type B), only reported to date from captive chimpanzees. To the best of our knowledge, this is the first study of E. vermicularis genotypes from a human population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. B-cell receptor-associated protein 31 regulates human embryonic stem cell adhesion, stemness, and survival via control of epithelial cell adhesion molecule.

    Science.gov (United States)

    Kim, Won-Tae; Seo Choi, Hong; Min Lee, Hyun; Jang, Young-Joo; Ryu, Chun Jeih

    2014-10-01

    B-Cell receptor-associated protein 31 (BAP31) regulates the export of secreted membrane proteins from the endoplasmic reticulum (ER) to the downstream secretory pathway. Previously, we generated a monoclonal antibody 297-D4 against the surface molecule on undifferentiated human embryonic stem cells (hESCs). Here, we found that 297-D4 antigen was localized to pluripotent hESCs and downregulated during early differentiation of hESCs and identified that the antigen target of 297-D4 was BAP31 on the hESC-surface. To investigate the functional role of BAP31 in hESCs, BAP31 expression was knocked down by small interfering RNA. BAP31 depletion impaired hESC self-renewal and pluripotency and drove hESC differentiation into multicell lineages. BAP31 depletion hindered hESC proliferation by arresting cell cycle at G0/G1 phase and inducing caspase-independent cell death. Interestingly, BAP31 depletion reduced hESC adhesion to extracellular matrix (ECM). Analysis of cell surface molecules showed decreased expression of epithelial cell adhesion molecule (EpCAM) in BAP31-depleted hESCs, while ectopic expression of BAP31 elevated the expression of EpCAM. EpCAM depletion also reduced hESC adhesion to ECM, arrested cell cycle at G0/G1 phase and induced cell death, producing similar effects to those of BAP31 depletion. BAP31 and EpCAM were physically associated and colocalized at the ER and cell surface. Both BAP31 and EpCAM depletion decreased cyclin D1 and E expression and suppressed PI3K/Akt signaling, suggesting that BAP31 regulates hESC stemness and survival via control of EpCAM expression. These findings provide, for the first time, mechanistic insights into how BAP31 regulates hESC stemness and survival via control of EpCAM expression. © 2014 AlphaMed Press.

  9. Human Galectin-3 Promotes Trypanosoma cruzi Adhesion to Human Coronary Artery Smooth Muscle Cells

    OpenAIRE

    Kleshchenko, Yuliya Y.; Moody, Tapria N.; Furtak, Vyacheslav A.; Ochieng, Josiah; Lima, Maria F.; Villalta, Fernando

    2004-01-01

    Human galectin-3 binds to the surface of Trypanosoma cruzi trypomastigotes and human coronary artery smooth muscle (CASM) cells. CASM cells express galectin-3 on their surface and secrete it. Exogenous galectin-3 increased the binding of T. cruzi to CASM cells. Trypanosome binding to CASM cells was enhanced when either T. cruzi or CASM cells were preincubated with galectin-3. Cells stably transfected with galectin-3 antisense show a dramatic decrease in galectin-3 expression and very little T...

  10. Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion.

    Science.gov (United States)

    Montanari, Paolo; Bozza, Giuseppe; Capecchi, Barbara; Caproni, Elena; Barrile, Riccardo; Norais, Nathalie; Capitani, Mirco; Sallese, Michele; Cecchini, Paola; Ciucchi, Laura; Gao, Zhenai; Rappuoli, Rino; Pizza, Mariagrazia; Aricò, Beatrice; Merola, Marcello

    2012-03-01

    NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA. © 2011 Blackwell Publishing Ltd.

  11. Effect of Plasma Pretreatments on the Bio-adhesive Functionalized by Biomimetic Catechol Groups to Human Dentin

    Science.gov (United States)

    Lee, Sangbae; Kim, Kwangmahn; Kim, Kyoungnam

    2012-10-01

    Plasma pretreatments have been introduced for modifying the surface chemistry of biomaterials. In an effort to improve the strength of the human dentin/bio-adhesive joint, oxygen plasma pretreatments to the bio-adhesive were investigated. Plasma treatments were carried out using custom-built and low pressure. Dentin were treated with plasma and used to prepare lap shear tests. Bio-adhesives were prepared synthesizing dopamine methacrylamide (DMA) monomer. DMA were copolymerized with 2-methoxyethylacrylate (MEA) by free radical polymerization. Proton nuclear magnetic resonance (^1H-NMR) and Gel permeation chromatography (GPC) analysis on samples of synthesized p(DMA-co-MEA) was performed to confirm that the resulting materials had the desired chemical structure. The effects of plasma pretreatments on surface chemistry were studied using Fourier transform infrared analysis (FTIR), and contact angle measurements. Oxygen plasma pretreatments enhanced adhesive strength by oxidizing of the catechol residue and creating a cross-linking as compared with control group. Furthermore plasma pretreatments lead to increase hydrophilicity of copolymers. Prospectively, the great potential of advanced technology in creation of the ``Plasma pretreatment to the DOPA adhesives'' would lead to the development of versatile method for coating to medial devices as well as dentin bonding.

  12. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Al-Menhali, Afnan; Al-Rumaihi, Aisha; Al-Mohammed, Hana; Al-Mazrooey, Hana; Al-Shamlan, Maryam; AlJassim, Meaad; Al-Korbi, Noof; Eid, Ali Hussein

    2015-01-01

    Colorectal cancer (CRC) remains one of the most common malignancies and a leading cause of cancer-related deaths. Its prognosis remains poor for patients with several grades of this disease. This underscores the need for alternative modalities, such as herbal medicines, to treat this disease. A commonly used plant that appears to be of high medicinal value is Thymus vulgaris L. However, the effects of this plant on the malignant behavior of human CRC cells remains poorly investigated. This study was undertaken to determine the anticancer efficacy of T. vulgaris extract (TVE) in CRC cells. Our results show that TVE inhibits proliferation in a concentration- and time-dependent fashion. This decreased proliferation was concomitant with increased apoptotic cell death as evidenced by increased caspase3/7 activity. Moreover, TVE also decreased adhesion to fibronectin in a concentration-dependent manner. The migratory and invasive capacities of HCT116 cells were significantly inhibited by TVE. Taken together, these data suggest that the TVE inhibits malignant phenotype of colon cancer cells. Therefore, T. vulgaris could have an anticancer effect and that some of its bioactive compounds may prove to be effective treatment modalities for human CRC.

  13. Effects of Roundabout 5 on adhesion, invasion and potential motility of human tongue carcinoma Tb cells.

    Science.gov (United States)

    Xiao, Rui; Zhao, Yuan; Wang, Li-jing; Li, Wei-ping

    2011-08-01

    Roundabout 5 (R5) is a monoclonal antibody which can neutralize the binding of Roundabout 1 (Robo1) to Slit2. Oral squamous cell carcinoma angiogenesis was significantly inhibited when R5 blocked slit-robo signaling pathway. However, the effect of R5 on the invasion of tongue cancer cells has not been investigated clearly. In this study, we treated human brain metastasis of tongue cancer cell lines (Tb cells) with R5 at different concentrations, and the control Tb cells were treated with 10 mg/ml immunoglobin G 2b (IgG2b). The effect of R5 on the proliferation, adhension, invasion and motility of Tb cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, cell attachment assay on fibronectin (FN), wound assay and chemotaxis assay, respectively. And gelatin-incorporated sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to investigate the activity of matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9). R5 had no effect on the proliferation of Tb cells. However, R5 could significantly inhibit the motility, attachment and chemotaxis of Tb cells to FN, and it could also significantly inhibit the activity of MMP2 and MMP9 in Tb cells. R5 can inhibit the adhesion, invasion and motility of human tongue carcinoma Tb cells.

  14. Chronic resveratrol treatment ameliorates cell adhesion and mitigates the inflammatory phenotype in senescent human fibroblasts.

    Science.gov (United States)

    Pitozzi, Vanessa; Mocali, Alessandra; Laurenzana, Anna; Giannoni, Elisa; Cifola, Ingrid; Battaglia, Cristina; Chiarugi, Paola; Dolara, Piero; Giovannelli, Lisa

    2013-04-01

    We evaluated the effect of resveratrol on the senescence-associated secretory phenotype (SASP) and on adhesion-related processes in cultured human MRC5 fibroblasts. Presenescent cultures were chronically treated with or without 5 µM resveratrol. The development of SASP in MRC5 fibroblasts approaching senescence was significantly attenuated by resveratrol treatment, which reduced both gene expression and release of proinflammatory cytokines. Although to a lesser extent, 1 µM resveratrol proved to be effective on cytokine gene expression. Cell spreading capacity and plating efficiency were strikingly increased and accompanied by recovery of type I collagen expression to presenescent levels. As p16(INK4a) protein expression was not significantly modified, and based on our previous data, we propose that resveratrol does not affect fibroblast replicative senescence, but improves tissue maintenance and repair during normal cellular aging. Considering these low concentrations proved effective in vitro, translation of these data to human research on inflammation-related pathologies can be envisaged.

  15. Impact of simulated microgravity on the secretory and adhesive activity of cultured human vascular endothelial cells.

    Science.gov (United States)

    Rudimov, Evgeny; Buravkova, Ludmila; Pogodina, Margarita; Andrianova, Irina

    The layer of vascular endothelial cells (ECs) is a dynamic,disseminated organ that perform the function of an interface between the blood and vascular wall. The endothelial monolayer is able to quickly respond to changes in the microenvironment due to its synthesis of vasoactive substances, chemokines, adhesion molecules expression, etc. ECs are highly sensitive to gravitational changes and capable of short-term and long-term responses (Sangha et al., 2001; Buravkova et al., 2005; Infanger et al., 2006, 2007. However, the question remains how to reflect the impact of microgravity on endothelium under the inflammatory process. Therefore, the aim of this study was to investigate secretory and adhesive activity of human umbilical vein endothelial cells (HUVECs) during simulated microgravity and TNF-a activation. HUVECs were isolated according to Gimbrone et al. (1978) in modification A. Antonov (1981) and used for experiments at 2-4 passages. HUVECs were activated by low level of TNF-a (2 ng/ml). Microgravity was generated by Random Positioning Machine (RPM, Dutch Space, Leiden) placed into the thermostat at 37°C. After 24 hours of clinorotation we measured adhesion molecules expression on the cell surface (ICAM-1, VCAM-1, PECAM-1, E-selectin, CD144, endoglin (CD105)) and cell viability using a flow cytometry. To evaluate the level of target gene expression was used the real time RT-PCR. IL-6 and IL-8 concentration was measured in the conditioned medium of HUVECs by using the ELISA test. We found that simulated microgravity within 24 hours caused a decrease of ICAM-1, CD144, and E-selectin expression, at the same time not affect the cell viability, endoglin and PECAM-1 expression on the surface HUVEC. Furthermore, there were no changes of the level of IL-6 and IL-8 gene expression and their products in the culture medium. TNF-activated HUVECs showed an increase in gene expression of interleukins and molecules involved in the adhesion process, which also was confirmed

  16. Myricitrin inhibits vascular adhesion molecule expression in TNF‑α‑stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Yan, Li-Jie; Yang, Hai-Tao; Duan, Hong-Yan; Wu, Jin-Tao; Qian, Peng; Fan, Xian-Wei; Wang, Shanling

    2017-11-01

    Increased expression of adhesion molecules is thought to serve an important role in the pathogenesis of atherosclerosis. Myricitrin, a bioactive compound of Myrica cerifera, has been demonstrated to exhibit anti‑atherogenic effects. However, the effect of myricitrin on the expression of adhesion molecules in vascular smooth muscle cells (VSMCs) remains unknown. Therefore, the aim of the present study was to evaluate the inhibitory effects of myricitrin on tumor necrosis factor‑α (TNF‑α)‑induced expression of adhesion molecules in VSMCs in vitro. The results revealed that myricitrin inhibited the adhesion of human THP‑1 monocyte cells to TNF‑α‑stimulated mouse MOVAS‑1 VSMC cells, and reduced the expression of adhesion molecules in TNF‑α‑stimulated MOVAS‑1 cells. In addition, myricitrin significantly inhibited the TNF‑α‑induced expression of nuclear factor (NF)‑κB p65, and prevented the TNF‑α‑induced degradation of nuclear factor of κ light chain enhancer in B‑cells inhibitor α. Furthermore, myricitrin inhibited the production of intracellular reactive oxygen species in TNF‑α‑stimulated MOVAS‑1 cells. In conclusion, the results of the present study indicated that myricitrin inhibits the expression of vascular cell adhesion protein‑1 and intercellular adhesion molecule‑1 in TNF‑α‑stimulated MOVAS‑1 cells potentially via the NF‑κB signaling pathway. Therefore, myricitrin may be an effective pharmacological agent for the prevention or treatment of atherosclerosis.

  17. Recombinant human interferon-gamma treatment in severe leucocyte adhesion deficiency

    NARCIS (Netherlands)

    Weening, R. S.; Bredius, R. G.; Vomberg, P. P.; van der Schoot, C. E.; Hoogerwerf, M.; Roos, D.

    1992-01-01

    We describe a patient with leucocyte adhesion deficiency (LAD). Clinically, the patient had delayed umbilical cord detachment, omphalitis, impaired wound healing and persistent leucocytosis. The patient had the severe form of LAD, with a total absence of leucocyte cell adhesion molecules (LeuCAMs)

  18. Effect of anticoagulants on the protein corona-induced reduced drug carrier adhesion efficiency in human blood flow.

    Science.gov (United States)

    Sobczynski, Daniel J; Eniola-Adefeso, Omolola

    2017-01-15

    Plasma proteins rapidly coat the surfaces of particulate drug carriers to form a protein corona upon their injection into the bloodstream. The high presence of immunoglobulins in the corona formed on poly(lactic-co-glycolic acid) (PLGA) vascular-targeted carrier (VTC) surfaces was recently shown to negatively impact their adhesion to activated endothelial cells (aECs) in vitro. Here, we characterized the influence of anticoagulants, or their absence, on the binding efficiency of VTCs of various materials via modulation of their protein corona. Specifically, we evaluated the adhesion of PLGA, poly(lactic acid) (PLA), polycaprolactone (PCL), silica, and polystyrene VTCs to aECs in heparinized, citrated, and non-anticoagulated (serum and whole) blood flows relative to buffer control. Particle adhesion is substantially reduced in non-anticoagulated blood flows regardless of the material type while only moderate to minimal reduction is observed for VTCs in anticoagulant-containing blood flow depending on the anticoagulant and material type. The substantial reduction in VTC adhesion in blood flows was linked to a high presence of immunoglobulin-sized proteins in the VTC corona via SDS-PAGE analysis. Of all the materials evaluated, PLGA was the most sensitive to plasma protein effects while PCL was the most resistant, suggesting particle hydrophobicity is a critical component of the observed negative plasma protein effects. Overall, this work demonstrates that anticoagulant positively alters the effect of plasma proteins in prescribing VTC adhesion to aECs in human blood flow, which has implication in the use of in vitro blood flow assays for functional evaluation of VTCs for in vivo use. This study addresses the impact of anticoagulant on altering the extent of the previously observed protein corona-induced adhesion reduction of vascular-targeted drug carriers in human blood flows. Specifically, serum blood flow (no anticoagulant) magnifies the negative effect of the

  19. High glucose-mediated overexpression of ICAM-1 in human vaginal epithelial cells increases adhesion of Candida albicans.

    Science.gov (United States)

    Mikamo, Hiroshige; Yamagishi, Yuka; Sugiyama, Hiroyuki; Sadakata, Hisato; Miyazaki, Shun; Sano, Takako; Tomita, Tsutomu

    2017-09-18

    To investigate the involvement of ICAM-1 in the adhesion of Candida to the genitourinary epithelial cells in high glucose, we examined the adhesion of Candida albicans or Candida glabrata to human vaginal epithelial cells (VK2/E6E7) or human vulvovaginal epidermal cells (A431). These cells were cultured in 100, 500 or 3000 mg/dL glucose for three days and inoculated with Candida for 60 minutes. Followed by, adhering of Candida to the cells, which were counted. While the adhesion of Candida albicans to VK2/E6E7 significantly increased in the high glucose, A431 did not. We next examined the expression of ICAM-1 as a ligand on the epithelial cells. ICAM-1 expression was increased in VK2/E6E7 cultured in the high glucose; however, the expression level in A431 was not high compared with VK2/E6E7. This data suggested that ICAM-1 functions as one of ligands in the adhesion of Candida albicans to the vaginal epithelial cells in a high glucose environment. Impact statement What is already known on the subject: Candida's complement receptor is involved in the adhesion to epithelial cells. The expression of this receptor has been reported to increase as glucose concentration increases. This is considered as a contributing factor to the high risk for vulvovaginal candidiasis (VVC) in diabetes. On the host side, diabetic patients have a factor that facilitates adhesion of Candida to epithelial cells. This factor has been unknown until recently. What the results of this study add: In this study, we used a vaginal epithelial cell line and showed that the adhesion of C. albicans to cells increased at higher glucose concentrations. At the same time, ICAM-1 expression of cells also increased. Thereby, it is suggested that the expression of ICAM-1 in vaginal epithelial cells is increased by glucose such as urinary sugar in diabetic patients and is a condition for facilitating adhesion of Candida. What the implications are of these findings for clinical practice and/or further

  20. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    Directory of Open Access Journals (Sweden)

    Giugliano Loreny

    2004-04-01

    Full Text Available Abstract Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the effect of human milk proteins on the colonization potential of Shigella dysenteriae, S. flexneri and S. sonnei. To fulfill this purpose, pooled milk samples from five donors, were fractionated by gel filtration and affinity chromatography. Using tissue culture, the milk fractions obtained were tested in Shigella adhesion and invasion assays. Results Our revealed showed that both adhesion and invasion of Shigella species were inhibited by low concentration of secretory immunoglobulin A, lactoferrin and free secretory component. This work also showed that, these proteins bind to superficial and whole-cell Shigella proteins. Conclusions Our findings suggest that human milk may act inhibiting adhesion and, consequently, invasion of Shigella, thereafter preventing shigellosis in infants.

  1. Cannabinoid inhibits HIV-1 Tat-stimulated adhesion of human monocyte-like cells to extracellular matrix proteins

    Science.gov (United States)

    Raborn, Erinn S.; Jamerson, Melissa; Marciano-Cabral, Francine; Cabral, Guy A.

    2014-01-01

    Aims The aim of this study was to assess the effect of select cannabinoids on human immunodeficiency virus type 1 (HIV-1) transactivating (Tat) protein-enhanced monocyte-like cell adhesion to proteins of the extracellular matrix (ECM). Main Methods Collagen IV, laminin, or an ECM gel were used to construct extracellular matrix layers. Human U937 monocyte-like cells were exposed to Tat in the presence of Δ9-tetrahydrocannabinol (THC), CP55,940, and other select cannabinoids. Cell attachment to ECM proteins was assessed using an adhesion assay. Key findings THC and CP55,940 inhibited Tat-enhanced attachment of U937 cells to ECM proteins in a mode that was linked to the cannabinoid receptor type 2 (CB2R). The cannabinoid treatment of Tat-activated U937 cells was associated with altered β1-integrin expression and distribution of polymerized actin, suggesting a modality by which these cannabinoids inhibited adhesion to the ECM. Significance The blood-brain barrier (BBB) is a complex structure that is composed of cellular elements and an extracellular matrix (ECM). HIV-1 Tat promotes transmigration of monocytes across this barrier, a process that includes interaction with ECM proteins. The results indicate that cannabinoids that activate the CB2R inhibit the ECM adhesion process. Thus, this receptor has potential to serve as a therapeutic agent for ablating neuroinflammation associated with HIV-elicited influx of monocytes across the BBB. PMID:24742657

  2. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    Science.gov (United States)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  3. Transient inter-cellular polymeric linker.

    Science.gov (United States)

    Ong, Siew-Min; He, Lijuan; Thuy Linh, Nguyen Thi; Tee, Yee-Han; Arooz, Talha; Tang, Guping; Tan, Choon-Hong; Yu, Hanry

    2007-09-01

    Three-dimensional (3D) tissue-engineered constructs with bio-mimicry cell-cell and cell-matrix interactions are useful in regenerative medicine. In cell-dense and matrix-poor tissues of the internal organs, cells support one another via cell-cell interactions, supplemented by small amount of the extra-cellular matrices (ECM) secreted by the cells. Here we connect HepG2 cells directly but transiently with inter-cellular polymeric linker to facilitate cell-cell interaction and aggregation. The linker consists of a non-toxic low molecular-weight polyethyleneimine (PEI) backbone conjugated with multiple hydrazide groups that can aggregate cells within 30 min by reacting with the aldehyde handles on the chemically modified cell-surface glycoproteins. The cells in the cellular aggregates proliferated; and maintained the cortical actin distribution of the 3D cell morphology while non-aggregated cells died over 7 days of suspension culture. The aggregates lost distinguishable cell-cell boundaries within 3 days; and the ECM fibers became visible around cells from day 3 onwards while the inter-cellular polymeric linker disappeared from the cell surfaces over time. The transient inter-cellular polymeric linker can be useful for forming 3D cellular and tissue constructs without bulk biomaterials or extensive network of engineered ECM for various applications.

  4. A rare association between leukocyte adhesion deficiency type I and psoriasis in humans.

    Science.gov (United States)

    El-Sayed, Zeinab A; El-Ghoneimy, Dalia H; Abd-Allah, Heba; Afifi, Hanaa M

    2011-04-01

    The β2 integrins are expressed exclusively on leukocytes and participate in many immune and inflammatory processes. This subfamily comprises four heterodimeric glycoproteins with a common β-subunit, designated β2 (CD18). Spontaneous mutations of the CD18 gene result in leukocyte adhesion deficiency type I (LAD-I). Low level of CD18 expression has also been implicated in the pathogenesis of psoriasis. We here describe a child with recurrent skin infections without pus formation, persistent gingivitis and periodontitis. His blood counts showed persistent leukocytosis (neutrophilia). CD11b expression was defective on neutrophils, while that of CD18 was normal. So, our patient represents a mild variant of LAD-I with possible dysfunctional CD18. Moreover, he developed psoriasis with reduced CD18 expression on CD4(+) T-cells. Psoriasiform dermatitis has been described before in association with LAD-I, however, clinically and histologically confirmed psoriasis in association with LAD-I has been described only in CD18 hypomorphic mice. Therefore, our patient represents the first clinically and histopathologically documented association between LAD-I and psoriasis in humans. It lends support to the role of β2 integrins in the etiopathogenesis of psoriasis.

  5. Regulated Expression of Vascular Cell Adhesion Molecule-1 in Human Malignant Melanoma

    Science.gov (United States)

    Jonjic, Nives; Martìn-Padura, Inés; Pollicino, Teresa; Bernasconi, Sergio; Jílek, Petr; Bigotti, Aldo; Mortarini, Roberta; Anichini, Andrea; Parmiani, Giorgio; Colotta, Francesco; Dejana, Elisabetta; Mantovani, Alberto; Natali, Pier Giorgio

    1992-01-01

    Expression of the endothelial adhesion molecule VCAM-1 was studied in human malignant melanoma lines by flow cytometry. Clones 2/4 and 2/14(derived from the same lesion) had appreciable levels of VCAM-1 expression, whereas clone 2/21 and thelines A2058, Mel24, and A375 were negative. Clone 2/14 was selected for further analysis. Exposure to tumor necrosis factor (TNF) markedly augmented VCAM-1 on melanoma cells. Surface VCAM-1 was associated with expression of specific transcripts that were augmented by TNF. Analysis by reverse transcriptase and polymerase chain reaction using appropriate primers revealed that TNF-stimulated melanoma cells expressed both 7 and 6 immunoglobulin domain transcripts with predominance of the longer species. Tumor necrosis factor-stimulated melanoma cells bound more VLA-4-expressing cells (melanoma and monocytes) than resting tumor cells and anti-VCAM-1 monoclonal antibodies significantly inhibited binding, thus suggesting that surface VCAM-1 on melanoma is functional. Analysis of melanoma tissue sections demonstrated that VCAM-1 is not a marker of transformation of melanocytes because it can be detected in benign nevi. Although, unlike ICAM-1, VCAM-1 is not correlated with tumor progression, its expression in a fraction of primary melanomas indicates that it may play a role in regulating host immune response and homotypic interactions in some malignant melanomas ImagesFigure 2Figure 3Figure 5 PMID:1281617

  6. Transmigrated neutrophils down-regulate the expression of VCAM-1 on endothelial cells and inhibit the adhesion of flowing lymphocytes.

    Science.gov (United States)

    Stone, Philip C W; Lally, Frank; Rahman, Mahbub; Smith, Emily; Buckley, Christopher D; Nash, Gerard B; Rainger, G Ed

    2005-01-01

    As the first leukocytes recruited during inflammation, neutrophils are ideally situated to regulate the subsequent recruitment of mononuclear leukocytes. Here, we found that human neutrophils recruited by endothelial cells (EC), which had been stimulated with tumor necrosis factor alpha for 4 h, inhibited the adhesion of flowing, mixed mononuclear cells or purified lymphocytes over the subsequent 20 h but did not affect the adhesion of a secondary bolus of neutrophils. The degree of inhibition of lymphocyte adhesion increased with the duration of neutrophil-EC contact and with the number of recruited neutrophils. Antibody-blocking studies showed that lymphocyte adhesion was mediated predominantly by vascular cell adhesion molecule-1 (VCAM-1). Recruited neutrophils reduced the EC expression of VCAM-1 but not intercellular adhesion molecule-1 (ICAM-1) or E-selectin in a manner that mirrored the time- and number-dependent reduction in lymphocyte adhesion. VCAM-1 was not shed into the culture supernatant, and a panel of protease inhibitors was unable to reverse its down-regulation, indicating that it was not proteolytically degraded by neutrophils. In EC that had been in contact with neutrophils, the mRNA message for VCAM-1 but not ICAM-1 was down-regulated, indicating that alterations in transcriptional activity were responsible for the reduction in VCAM-1. Thus, under some inflammatory milieu, neutrophils may delay the recruitment of mononuclear leukocytes by regulating the expression of EC adhesion receptors.

  7. Interbacterial Adhesion Networks within Early Oral Biofilms of Single Human Hosts.

    Science.gov (United States)

    Palmer, Robert J; Shah, Nehal; Valm, Alex; Paster, Bruce; Dewhirst, Floyd; Inui, Taichi; Cisar, John O

    2017-06-01

    Specific interbacterial adhesion, termed coaggregation, is well established for three early colonizers of the plaque biofilm: streptococci, actinomyces, and veillonellae. However, little is known about interactions of other early colonizers and about the extent of interactions within the bacterial community from a single host. To address these gaps, subject-specific culture collections from two individuals were established using an intraoral biofilm retrieval device. Molecular taxonomy (Human Oral Microbe Identification Microarray [HOMIM]) analysis of biofilm samples confirmed the integrity and completeness of the collections. HOMIM analysis verified the isolation of Streptococcus gordonii and S. anginosus from only one subject, as well as isolation of a previously uncultivated streptococcal phylotype from the other subject. Strains representative of clonal diversity within each collection were further characterized. Greater than 70% of these streptococcal strains from each subject coaggregated with at least one other coisolate. One-third of the strains carry a known coaggregation mediator: receptor polysaccharide (RPS). Almost all nonstreptococcal isolates coaggregated with other coisolates. Importantly, certain Rothia strains demonstrated more coaggregations with their coisolated bacteria than did any Streptococcus or Actinomyces strain, and certain Haemophilus isolates participated in twice as many. Confocal microscopy of undisturbed biofilms showed that Rothia and Haemophilus each occur in small multispecies microcolonies. However, in confluent high-biomass regions, Rothia occurred in islands whereas Haemophilus was distributed throughout. Together, the data demonstrate that coaggregation networks within an individual's oral microflora are extensive and that Rothia and Haemophilus can be important initiators of cell-cell interactions in the early biofilm.IMPORTANCE Extensive involvement of specific interbacterial adhesion in dental plaque biofilm formation has

  8. Fourier transform infrared photoacoustic spectroscopy study of physicochemical interaction between human dentin and etch-&-rinse adhesives in a simulated moist bond technique

    Science.gov (United States)

    Ubaldini, Adriana L. M.; Baesso, Mauro L.; Sehn, Elizandra; Sato, Francielle; Benetti, Ana R.; Pascotto, Renata C.

    2012-06-01

    The purpose of this study was to provide the physicochemical interactions at the interfaces between two commercial etch-&-rinse adhesives and human dentin in a simulated moist bond technique. Six dentin specimens were divided into two groups (n=3) according to the use of two different adhesive systems: (a) 2-hydroxyethylmethacrylate (HEMA) and 4-methacryloxyethyl trimellitate anhydrate (4-META), and (b) HEMA. The Fourier transform infrared photoacoustic spectroscopy was performed before and after dentin treatment with 37% phosphoric acid, with adhesive systems and also for the adhesive systems alone. Acid-conditioning resulted in a decalcification pattern. Adhesive treated spectra subtraction suggested the occurrence of chemical bonding to dentin expressed through modifications of the OH stretching peak (3340 cm-1) and symmetric CH stretching (2900 cm-1) for both adhesives spectra; a decrease of orthophosphate absorption band (1040 to 970 cm-1) for adhesive A and a better resolved complex band formation (1270 to 970 cm-1) for adhesive B were observed. These results suggested the occurrence of chemical bonding between sound human dentin and etch-&-rinse adhesives through a clinical typical condition.

  9. An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity.

    Science.gov (United States)

    Piwat, S; Sophatha, B; Teanpaisan, R

    2015-07-01

    There is limited information concerning the adhesion and aggregation of human oral lactobacilli. In this study, the adhesion of 10 Lactobacillus species was investigated using H357 oral keratinocyte cells as an in vitro model for oral mucosa. Coaggregation with the representative oral pathogen, Streptococcus mutans ATCC 25175, and the physicochemical cell properties was also evaluated. The results demonstrated significant variations in adhesion (42-96%) and aggregation (autoaggregation, 14-95%; coaggregation, 19-65%). All strains showed a high affinity for chloroform, and most strains had a moderate-to-high hydrophobicity. All strains, except Lactobacillus casei and Lactobacillus gasseri, showed a moderate affinity for ethyl acetate. There was a strong association of autoaggregation with coaggregation (rs = 0·883, P characteristics and aggregation were observed among the Lactobacillus fermentum and Lactobacillus paracasei strains; however, there was a variation in the strains properties within and between species. This study indicated that the Lact. gasseri, Lact. fermentum, and Lact. paracasei strains might be potential probiotics for the human oral cavity given their desirable properties. It should also be emphasized that a selective process for probiotic strains is required. Adhesion to host tissues and bacterial aggregation (auto- and coaggregation) are the highly important criteria for selecting strains with probiotic potential. These abilities are commonly involved with surface-charged characteristics. This is the first study to investigate the oral Lactobacillus species using an oral keratinocyte cell line. Significant results were found for the correlations between the adhesion and surface charge characteristics and for aggregation among certain strains of Lactobacillus gasseri, Lactobacillus fermentum and Lactobacillus paracasei. This observation could be useful when collecting background information for the selection of probiotic strains for use in oral

  10. Adhesion of human and animal escherichia coli strains in association with their virulence-associated genes and phylogenetic origins

    DEFF Research Database (Denmark)

    Fr̈mmel, Ulrike; R̈diger, Stefan; B̈hm, Alexander

    2013-01-01

    VAGs) infection. Moreover, initial evidence indicates that inVAGs and exVAGs support intestinal colonization. We developed new screening tools to genotypically and phenotypically characterize E. coli isolates originating in humans, domestic pigs, and 17 wild mammal and avian species. We analyzed 317 isolates......Intestinal colonization is influenced by the ability of the bacterium to inhabit a niche, which is based on the expression of colonization factors. Escherichia coli carries a broad range of virulence-associated genes (VAGs) which contribute to intestinal (inVAGs) and extraintestinal (ex......) and the European hedgehog (Erinaceus europaeus). The prevalence of exVAGs depended on isolation from a specific host. Human uropathogenic E. coli isolates carried exVAGs with the highest prevalence, followed by badger (Meles meles) and roe deer isolates. Adhesion was found to be very diverse. Adhesion was specific...

  11. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  12. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays

    OpenAIRE

    Yang, Jing; Mei, Ying; Hook, Andrew L.; Taylor, Michael; Urquhart, Andrew J.; Bogatyrev, Said R.; Langer, Robert; Anderson, Daniel G.; Davies, Martyn C.; Alexander, Morgan R.

    2010-01-01

    High throughput materials discovery using combinatorial polymer microarrays to screen for new biomaterials with new and improved function is established as a powerful strategy. Here we combine this screening approach with high throughput surface characterisation (HT-SC) to identify surface structure-function relationships. We explore how this combination can help to identify surface chemical moieties that control protein adsorption and subsequent cellular response. The adhesion of human embry...

  13. Expression of endothelia and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT) in adult human lung.

    OpenAIRE

    Kawamata, N.; Xu, B.; Nishijima, H.; Aoyama, K.; Kusumoto, M.; Takeuchi, T.; Tei, C.; Michie, S. A.; Matsuyama, T.

    2009-01-01

    BACKGROUND: Bronchus-associated lymphoid tissue (BALT) is the secondary lymphoid tissue in bronchial mucosa and is involved in the development of bronchopulmonary immune responses. Although migration of lymphocytes from blood vessels into secondary lymphoid tissues is critical for the development of appropriate adaptive immunity, the endothelia and lymphocyte adhesion molecules that recruit specific subsets of lymphocytes into human BALT are not known. The aim of this study was to determine w...

  14. Screening between normal and cancer human thyroid cells through comparative adhesion studies using the Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Dimitra Chronaki

    2016-12-01

    Full Text Available In this work, the Quartz Crystal Microbalance with Dissipation monitoring (QCM-D was used to distinguish the dynamic cell adhesion behavior of human normal (Nthy thyroid epithelial cells from poorly differentiated anaplastic carcinoma cells (ARO. The surfaces used to facilitate cell adhesion were bare titanium (Ti, gold (Au and fibrinogen-coated gold (Fg-Au. The pattern of cell adhesion for both cell lines was that the largest acoustic signals were observed on Ti, followed by Au and last by Fg-Au; in addition, ARO cells always produced smaller acoustic signals than Nthy cells on the same surface and for the same number of cells in suspension. Moreover, the calculated acoustic ratio of energy dissipation over frequency change suggests a higher ability of Nthy cells to spread and potentially form more attachment points on the surface than the ARO cells, something observed in SEM images. Finally, we demonstrated that the application of two surfaces for cell adhesion experiments, one of which is Au and the other either Ti or Fg-Au, can discriminate with accuracy between the two particular cell types and potentially form a platform for differentiation between normal and cancer thyroid cell types.

  15. Cathepsin G, a Neutrophil Protease, Induces Compact Cell-Cell Adhesion in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Kudo

    2009-01-01

    Full Text Available Cathepsin G is a serine protease secreted by activated neutrophils that play a role in the inflammatory response. Because neutrophils are known to be invading leukocytes in various tumors, their products may influence the characteristics of tumor cells such as the growth state, motility, and the adhesiveness between cells or the extracellular matrix. Here, we demonstrate that cathepsin G induces cell-cell adhesion of MCF-7 human breast cancer cells resulting from the contact inhibition of cell movement on fibronectin but not on type IV collagen. Cathepsin G subsequently induced cell condensation, a very compact cell colony, resulting due to the increased strength of E-cadherin-mediated cell-cell adhesion. Cathepsin G action is protease activity-dependent and was inhibited by the presence of serine protease inhibitors. Cathepsin G promotes E-cadherin/catenin complex formation and Rap1 activation in MCF-7 cells, which reportedly regulates E-cadherin-based cell-cell junctions. Cathepsin G also promotes E-cadherin/protein kinase D1 (PKD1 complex formation, and Go6976, the selective PKD1 inhibitor, suppressed the cathepsin G-induced cell condensation. Our findings provide the first evidence that cathepsin G regulates E-cadherin function, suggesting that cathepsin G has a novel modulatory role against tumor cell-cell adhesion.

  16. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    Science.gov (United States)

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Human Endometrial Exosomes Contain Hormone-Specific Cargo Modulating Trophoblast Adhesive Capacity: Insights into Endometrial-Embryo Interactions.

    Science.gov (United States)

    Greening, David W; Nguyen, Hong P T; Elgass, Kirstin; Simpson, Richard J; Salamonsen, Lois A

    2016-02-01

    Embryo implantation into receptive endometrium requires synergistic endometrial-blastocyst interactions within the uterine cavity and is essential for establishing pregnancy. We demonstrate that exosomes (40-150 nm nanovesicles) released from endometrial epithelial cells are an important component of these interactions. We defined the proteome of purified endometrial epithelial-derived exosomes (Exos) influenced by menstrual cycle hormones estrogen (E; proliferative phase) and estrogen plus progesterone (EP; receptive phase) and examined their potential to modify trophoblast function. E-/EP-Exos were uniquely enriched with 254 and 126 proteins, respectively, with 35% newly identified proteins not previously reported in exosome databases. Importantly, EP-Exos protein cargo was related to fundamental changes in implantation: adhesion, migration, invasion, and extracellular matrix remodeling. These findings from hormonally treated ECC1 endometrial cancer cells were validated in human primary uterine epithelial cell-derived exosomes. Functionally, exosomes were internalized by human trophoblast cells and enhanced their adhesive capacity, a response mediated partially through active focal adhesion kinase (FAK) signaling. Thus, exosomes contribute to the endometrial-embryo interactions within the human uterine microenvironment essential for successful implantation. © 2016 by the Society for the Study of Reproduction, Inc.

  18. Intercellular Communication in Malignant Pleural Mesothelioma: Properties of Tunneling Nanotubes

    Directory of Open Access Journals (Sweden)

    Justin William Ady

    2014-10-01

    Full Text Available Malignant pleural mesothelioma is a particularly aggressive and locally invasive malignancy with a poor prognosis despite advances in understanding of cancer cell biology and development of new therapies. At the cellular level, cultured mesothelioma cells present a mesenchymal appearance and a strong capacity for local cellular invasion. One important but underexplored area of mesothelioma cell biology is intercellular communication. Our group has previously characterized in multiple histological subtypes of mesothelioma a unique cellular protrusion known as tunneling nanotubes (TnTs. TnTs are long, actin filament-based, narrow cytoplasmic extensions that are non-adherent when cultured in vitro and are capable of shuttling cellular cargo between connected cells. Our prior work confirmed the presence of nanotube structures in tumors resected from patients with human mesothelioma. In our current study, we quantified the number of TnTs/cell among various mesothelioma subtypes and normal mesothelial cells using confocal microscopic techniques. We also examined TnT length among adherent cells and cells in suspension. We further examined potential approaches to the in vivo study of TnTs in animal models of cancer. We have developed novel approaches to study TnTs in aggressive solid tumor malignancies and define fundamental characteristics of TnTs in malignant mesothelioma. There is mounting evidence that TnTs play an important role in intercellular communication in mesothelioma and thus merit further investigation of their role in vivo.

  19. Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study.

    Science.gov (United States)

    Ashander, Liam M; Appukuttan, Binoy; Ma, Yuefang; Gardner-Stephen, Dione; Smith, Justine R

    2016-01-01

    Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1) mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1), in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α), and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (si)RNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans.

  20. Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Liam M. Ashander

    2016-01-01

    Full Text Available Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1 mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1, in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α, and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (siRNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans.

  1. Adhesion, invasion, and agglutination mediated by two trimeric autotransporters in the human uropathogen Proteus mirabilis.

    Science.gov (United States)

    Alamuri, Praveen; Löwer, Martin; Hiss, Jan A; Himpsl, Stephanie D; Schneider, Gisbert; Mobley, Harry L T

    2010-11-01

    Fimbriae of the human uropathogen Proteus mirabilis are the only characterized surface proteins that contribute to its virulence by mediating adhesion and invasion of the uroepithelia. PMI2122 (AipA) and PMI2575 (TaaP) are annotated in the genome of strain HI4320 as trimeric autotransporters with "adhesin-like" and "agglutinating adhesin-like" properties, respectively. The C-terminal 62 amino acids (aa) in AipA and 76 aa in TaaP are homologous to the translocator domains of YadA from Yersinia enterocolitica and Hia from Haemophilus influenzae. Comparative protein modeling using the Hia three-dimensional structure as a template predicted that each of these domains would contain four antiparallel beta sheets and that they formed homotrimers. Recombinant AipA and TaaP were seen as ∼28 kDa and ∼78 kDa, respectively, in Escherichia coli, and each also formed high-molecular-weight homotrimers, thus supporting this model. E. coli synthesizing AipA or TaaP bound to extracellular matrix proteins with a 10- to 60-fold-higher level of affinity than the control strain. Inactivation of aipA in P. mirabilis strains significantly (P < 0.01) reduced the mutants' ability to adhere to or invade HEK293 cell monolayers, and the functions were restored upon complementation. A 51-aa-long invasin region in the AipA passenger domain was required for this function. E. coli expressing TaaP mediated autoagglutination, and a taaP mutant of P. mirabilis showed significantly (P < 0.05) more reduced aggregation than HI4320. Gly-247 in AipA and Gly-708 in TaaP were indispensable for trimerization and activity. AipA and TaaP individually offered advantages to P. mirabilis in a murine model. This is the first report characterizing trimeric autotransporters in P. mirabilis as afimbrial surface adhesins and autoagglutinins.

  2. Epithelial cell adhesion molecule in human hepatocellular carcinoma cell lines: a target of chemoresistence.

    Science.gov (United States)

    Li, Yan; Farmer, Russell W; Yang, Yingbin; Martin, Robert C G

    2016-03-16

    The low survival rate of hepatocellular carcinoma (HCC) is partly attributable to its resistance to existing chemotherapeutic agents. Until now, there have been limited chemotherapeutic agents for liver cancer. Epithelial cell adhesion molecule (EpCAM) has been found to be over-expressed during stages of carcinogenesis and has been associated with poor overall survival in many cancers. The aim of this study was to evaluate EpCAM expression in HCC and evaluate the effects of EpCAM to established chemotherapy. Three human hepatocellular carcinoma cell lines--HepG2, Hep3B and HuH-7--were pre- and post-treated with doxorubicin, 5-fluorouracil (5-FU) and cisplatin. Cell viability and EpCAM protein expression were measured by MTT assay and Western Blotting respectively. EpCAM positive cells were analyzed by flow cytometry. To evaluate the effects of doxorubicin efficacy on EpCAM positive cells, a small interfering RNA (siRNA) specific to EpCAM was transfected into the cells and treated with doxorubicin. EpCAM was significantly down-regulated by doxorubicin treatment in all three HCC cell lines (P cells, however the EpCAM expression was up-regulated by 5-FU and cisplatin in Hep3B cell line. EpCAM expression was down-regulated by 5-FU, and up-regulated by cisplatin in Huh-7 cell line. Flow cytometry assay showed doxorubicin exposure decreased EpCAM positive cell quantities in three HCC cell lines. EpCAM siRNA knock-down attenuated cell mortality after doxorubicin exposure. All of these findings demonstrate that EpCAM is one of targets of chemoresistence.

  3. Impact of Dilution and Polymerization on Cytotoxicity of Dentin Adhesives to Human Gingival Fibroblasts: Early Exposure Time

    Directory of Open Access Journals (Sweden)

    Sepideh Banava

    2015-09-01

    Full Text Available Background and aims. The aim of this study was to evaluate the effect of dilution and curing methods of an etch-and-rinse adhesive and a self-etching primer from the same manufacturer at early exposure time on cytotoxicity of primary hu-man gingival fibroblasts. Materials and methods. Primary human gingival fibroblasts were exposed to different dilutions of Adper Single Bond (ASB and Adper Prompt L-Pop (APL (3M ESPE, USA. They were evaluated in unpolymerized mode for 20 s, 5 min and 24 h and in polymerized mode for 24 h and 48 h. Cytotoxicity was evaluated using three cytotoxic tests (MTT, cell counting and DNA condensation. Data was analyzed by a one-way ANOVA and Post Hoc Tukey HSD test. Results. Cytotoxicity tests revealed that unpolymerized APL was more cytotoxic compared to ASB after 20 s (P<0.05. By increasing the time to 5 min and 24 h, ASB was more cytotoxic than APL with lower dilutions. Polymerized ASB was more toxic than APL. Conclusion. Both adhesives were cytotoxic in different dilutions, times and curing modes. Cytotoxicity of the unpolymer-ized self-etching primer (APL was more than etch-and-rinse adhesive (ASB in 20 s, which is important clinically and den-tists should be aware of the harmful effects and try to minimize it by curing and rinsing soon after composite resin insertion. ASB was more cytotoxic at 5 min and 24h.

  4. ADHESIVES WITH DIFFERENT PHS: EFFECT ON THE MTBS OF CHEMICALLY ACTIVATED AND LIGHT-ACTIVATED COMPOSITES TO HUMAN DENTIN

    Science.gov (United States)

    Mallmann, André; de Melo, Renata Marques; Estrela, Verbênia; Pelogia, Fernanda; Campos, Laura; Bottino, Marco Antonio; Valandro, Luiz Felipe

    2007-01-01

    Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37°C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm2. Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min−1). Data were analyzed using two-way ANOVA and Tukey’s tests (p<0.05). Results: The anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7±7.1ª; PB+Z100 = 23.8±5.7ª). However, with use of the chemically activated composite (B2B), PB (7.8±3.6b MPa) showed significantly lower dentin bond strengths than OS (32.2±7.6ª). Conclusion: The low pH of the adhesive system can affect the bond of chemically activated composite to dentin. On the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly. PMID:19089142

  5. Different Phenotypes in Human Prostate Cancer: α6 or α3 Integrin in Cell-extracellular Adhesion Sites

    Directory of Open Access Journals (Sweden)

    Monika Schmelz

    2002-01-01

    Full Text Available The distribution of α6/α3 integrin in adhesion complexes at the basal membrane in human normal and cancer prostate glands was analyzed in 135 biopsies from 61 patients. The levels of the polarized α6/α3 integrin expression at the basal membrane of prostate tumor glands were determined by quantitative immunohistochemistry. The α6/α3 integrin expression was compared with Gleason sum score, pathological stage, and preoperative serum prostate-specific antigen (PSA. The associations were assessed by statistical methods. Eighty percent of the tumors expressed the α6 or α3 integrin and 20% was integrin-negative. Gleason sum score, but not serum PSA, was associated with the integrin expression. Low Gleason sum score correlated with increased integrin expression, high Gleason sum score with low and negative integrin expression. Three prostate tumor phenotypes were distinguished based on differential integrin expression. Type I coexpressed both α6 and α3 subunits, type II exclusively expressed a6 integrin, and type III expressed α3 integrin only. Fifteen cases were further examined for the codistribution of vinculin, paxillin, and CD 151 on frozen serial sections using confocal laser scanning microscopy. The α6/α3 integrins, CD151, paxillin, and vinculin were present within normal glands. In prostate carcinoma, α6 integrin was colocalized with CD 151, but not with vinculin or paxillin. In tumor phenotype I, the α6 subunit did not colocalize with the α3 subunit indicating the existence of two different adhesion complexes. Human prostate tumors display on their cell surface the α6β1 and/or α3β1 integrins. Three tumor phenotypes associated with two different adhesion complexes were identified, suggesting a reorganization of cell adhesion structures in prostate cancer.

  6. Influence of different ECM mimetic peptide sequences embedded in a nonfouling environment on the specific adhesion of human-skin keratinocytes and fibroblasts on deformable substrates.

    Science.gov (United States)

    Salber, Jochen; Gräter, Stefan; Harwardt, Marc; Hofmann, Matthias; Klee, Doris; Dujic, Jadranka; Jinghuan, Huang; Ding, Jiandong; Kippenberger, Stefan; Bernd, August; Groll, Jürgen; Spatz, Joachim P; Möller, Martin

    2007-06-01

    Mechanical stress is a decisive factor for the differentiation, proliferation, and general behavior of cells. However, the specific signaling of mechanotransduction is not fully understood. One basic problem is the clear distinction between the different extracellular matrix (ECM) constituents that participate in cellular adhesion and their corresponding signaling pathways. Here, a system is proposed that enables mechanical stimulation of human-skin-derived keratinocytes and human dermal fibroblasts that specifically interact with peptide sequences immobilized on a non-interacting but deformable substrate. The peptide sequences mimic fibronectin, laminin, and collagen type IV, three major components of the ECM. To achieve this, PDMS is activated using ammonia plasma and coated with star-shaped isocyanate-terminated poly(ethylene glycol)-based prepolymers, which results in a functional coating that prevents unspecific cell adhesion. Specific cell adhesion is achieved by functionalization of the layers with the peptide sequences in different combinations. Moreover, a method that enables the decoration of deformable substrates with cell-adhesion peptides in extremely defined nanostructures is presented. The distance and clustering of cell adhesion molecules below 100 nm has been demonstrated to be of utmost importance for cell adhesion. Thus we present a new toolbox that allows for the detailed analysis of the adhesion of human-skin-derived cells on structurally and biochemically decorated deformable substrates.

  7. Oxytocin inhibits ox-LDL-induced adhesion of monocytic THP-1 cells to human brain microvascular endothelial cells.

    Science.gov (United States)

    Liu, Shuyan; Pan, Shengying; Tan, Jing; Zhao, Weina; Liu, Fengguo

    2017-12-15

    The attachment of monocytes to human brain microvascular endothelial cells (HBMVEs) caused by oxidized low-density lipoprotein (ox-LDL) is associated with an early event and the pathological progression of cerebrovascular diseases. Oxytocin (OT) is a human peptide hormone that is traditionally used as a medication to facilitate childbirth. However, little information is available regarding the physiological function of OT in brain endothelial dysfunction. In the present study, our results indicate that the oxytocin receptor (OTR) was expressed in human brain microvascular endothelial cells (HBMVEs) and was upregulated in response to ox-LDL in a concentration-dependent manner. Notably, OT significantly suppressed ox-LDL-induced attachment of THP-1 monocytes to HBMVEs. Furthermore, we found that OT reduced the expression of adhesion molecules, such as VCAM-1 and E-selectin. Interestingly, it was shown that OT could restore ox-LDL-induced reduction of KLF4 in HBMVEs. Importantly, knockdown of KLF4 abolished the inhibitory effects of OT on ox-LDL-induced expressions of VCAM-1 and E-selectin as well as the adhesion of human monocytic THP-1 cells to endothelial HBMVEs. Mechanistically, we found that the stimulatory effects of OT on KLF4 expression are mediated by the MEK5/MEF2A pathway. Copyright © 2017. Published by Elsevier Inc.

  8. Bioactivity studies and adhesion of human osteoblast (hFOB) on silicon-biphasic calcium phosphate material.

    Science.gov (United States)

    Ibrahim, S; Sabudin, S; Sahid, S; Marzuke, M A; Hussin, Z H; Kader Bashah, N S; Jamuna-Thevi, K

    2016-01-01

    Surface reactivity of bioactive ceramics contributes in accelerating bone healing by anchoring osteoblast cells and the connection of the surrounding bone tissues. The presence of silicon (Si) in many biocompatible and bioactive materials has been shown to improve osteoblast cell adhesion, proliferation and bone regeneration due to its role in the mineralisation process around implants. In this study, the effects of Si-biphasic calcium phosphate (Si-BCP) on bioactivity and adhesion of human osteoblast (hFOB) as an in vitro model have been investigated. Si-BCP was synthesised using calcium hydroxide (Ca(OH)2) and phosphoric acid (H3PO4) via wet synthesis technique at Ca/P ratio 1.60 of material precursors. SiO2 at 3 wt% based on total precursors was added into apatite slurry before proceeding with the spray drying process. Apatite powder derived from the spray drying process was pressed into discs with Ø 10 mm. Finally, the discs were sintered at atmospheric condition to obtain biphasic hydroxyapatite (HA) and tricalcium phosphate (TCP) peaks simultaneously and examined by XRD, AFM and SEM for its bioactivity evaluation. In vitro cell viability of L929 fibroblast and adhesion of hFOB cell were investigated via AlamarBlue® (AB) assay and SEM respectively. All results were compared with BCP without Si substitution. Results showed that the presence of Si affected the material's surface and morphology, cell proliferation and cell adhesion. AFM and SEM of Si-BCP revealed a rougher surface compared to BCP. Bioactivity in simulated body fluid (SBF) was characterised by pH, weight gain and apatite mineralisation on the sample surface whereby the changes in surface morphology were evaluated using SEM. Immersion in SBF up to 21 days indicated significant changes in pH, weight gain and apatite formation. Cell viability has demonstrated no cytotoxic effect and denoted that Si-BCP promoted good initial cell adhesion and proliferation. These results suggest that Si

  9. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function

    NARCIS (Netherlands)

    Yona, Simon; Lin, Hsi-Hsien; Dri, Pietro; Davies, John Q.; Hayhoe, Richard P. G.; Lewis, Sion M.; Heinsbroek, Sigrid E. M.; Brown, K. Alun; Perretti, Mauro; Hamann, Jörg; Treacher, David F.; Gordon, Siamon; Stacey, Martin

    2008-01-01

    At present, approximately 150 different members of the adhesion-G protein-coupled receptor (GPCR) family have been identified in metazoans. Surprisingly, very little is known about their function, although they all possess large extracellular domains coupled to a seven-transmembrane domain,

  10. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Paola Luciani

    Full Text Available Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R, thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i the evaluation of neurite-like protrusions in 3D cell cultures, ii the analysis of the expression of neuronal markers and iii electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties.

  11. Intercellular Ca2+ Waves: Mechanisms and Function

    Science.gov (United States)

    Sanderson, Michael J.

    2012-01-01

    Intercellular calcium (Ca2+) waves (ICWs) represent the propagation of increases in intracellular Ca2+ through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca2+ from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs. PMID:22811430

  12. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Pospischil Andreas

    2006-06-01

    Full Text Available Abstract Background Enterobacter sakazakii is an opportunistic pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. However, up to now little is known about the mechanisms of pathogenicity in E. sakazakii. A necessary state in the successful colonization, establishment and ultimately production of disease by microbial pathogens is the ability to adhere to host surfaces such as mucous membranes, gastric and intestinal epithelial or endothelial tissue. This study examined for the first time the adherence ability of 50 E. sakazakii strains to the two epithelial cell lines HEp-2 and Caco-2, as well as the brain microvascular endothelial cell line HBMEC. Furthermore, the effects of bacterial culture conditions on the adherence behaviour were investigated. An attempt was made to characterize the factors involved in adherence. Results Two distinctive adherence patterns, a diffuse adhesion and the formation of localized clusters of bacteria on the cell surface could be distinguished on all three cell lines. In some strains, a mixture of both patterns was observed. Adherence was maximal during late exponential phase, and increased with higher MOI. The adhesion capacity of E. sakazakii to HBMEC cells was affected by the addition of blood to the bacteria growth medium. Mannose, hemagglutination, trypsin digestion experiments and transmission electron microscopy suggested that the adhesion of E. sakazakii to the epithelial and endothelial cells is mainly non-fimbrial based. Conclusion Adherence experiments show heterogeneity within different E. sakazakii strains. In agreement with studies on E. cloacae, we found no relationship between the adhesive capacities in E. sakazakii and the eventual production of specific fimbriae. Further studies will have to be carried out in order to determine the adhesin(s involved in the interaction of E. sakazakii with cells and to

  13. A Rare Association Between Leukocyte Adhesion Deficiency Type I and Psoriasis in Humans

    OpenAIRE

    El-Sayed, Zeinab A.; El-Ghoneimy, Dalia H.; Abd-Allah, Heba; Afifi, Hanaa M

    2011-01-01

    The β2 integrins are expressed exclusively on leukocytes and participate in many immune and inflammatory processes. This subfamily comprises four heterodimeric glycoproteins with a common β-subunit, designated β2 (CD18). Spontaneous mutations of the CD18 gene result in leukocyte adhesion deficiency type I (LAD-I). Low level of CD18 expression has also been implicated in the pathogenesis of psoriasis. We here describe a child with recurrent skin infections without pus formation, persistent gin...

  14. Activated leukocyte cell adhesion molecule (ALCAM/CD166): signaling at the divide of melanoma cell clustering and cell migration?

    NARCIS (Netherlands)

    Swart, G.W.M.; Lunter, P.C.; Kilsdonk, J.W.J. van; Kempen, L.C. van

    2005-01-01

    Orchestrated modulation of cell adhesion is essential for development and homeostasis in multicellular organisms. It optimizes embedding of the cell in its dynamic environment and facilitates appropriate cell responses and intercellular communication. Chronic disturbance of this delicate equilibrium

  15. Clinical and Histological Evaluation of Direct Pulp Capping on Human Pulp Tissue Using a Dentin Adhesive System

    Directory of Open Access Journals (Sweden)

    Alicja Nowicka

    2016-01-01

    Full Text Available Objective. This study presents a clinical and histological evaluation of human pulp tissue responses after direct capping using a new dentin adhesive system. Methods. Twenty-eight caries-free third molar teeth scheduled for extraction were evaluated. The pulps of 22 teeth were mechanically exposed and randomly assigned to 1 of 2 groups: Single Bond Universal or calcium hydroxide. Another group of 6 teeth acted as the intact control group. The periapical response was assayed, and a clinical examination was performed. The teeth were extracted after 6 weeks, and a histological analysis was performed. The pulp status was assessed, and the thickness of the dentin bridge was measured and categorized using a histological scoring system. Results. The clinical phase was asymptomatic for Single Bond Universal patients. Patients in the calcium hydroxide group reported mild symptoms of pain, although the histological examination revealed that dentin bridges with or without limited pulpitis had begun forming in each tooth. The universal adhesive system exhibited nonsignificantly increased histological signs of pulpitis (P>0.05 and a significantly weaker thin mineralized tissue layer (P<0.001 compared with the calcium hydroxide group. Conclusion. The results suggest that Single Bond Universal is inappropriate for human pulp capping; however, further long-term studies are needed to determine the biocompatibility of this agent.

  16. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Grazia Marano

    2012-05-01

    Full Text Available Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethylfuran as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis.The most active compound, (4-{[(β-D-galactopyranosyloxy]methyl}furan-3-ylmethyl hydrogen sulfate (GSF, inhibited the activation of matrix-metalloproteinase-2 (MMP-2 as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM proteins, fibrinogen and fibronectin.In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyloxy]methyl}furan (BGF nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethylfuran, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site.These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  17. Adhesion of Epstein–Barr virus-positive natural killer cell lines to cultured endothelial cells stimulated with inflammatory cytokines

    Science.gov (United States)

    Kanno, H; Watabe, D; Shimizu, N; Sawai, T

    2008-01-01

    Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is characterized by chronic recurrent infectious mononucleosis-like symptoms. Approximately one-fourth of CAEBV patients develop vascular lesions with infiltration of EBV-positive lymphoid cells. Furthermore, EBV-positive natural killer (NK)/T cell lymphomas often exhibit angiocentric or angiodestructive lesions. These suggest an affinity of EBV-positive NK/T cells to vascular components. In this study, we evaluated the expression of adhesion molecules and cytokines in EBV-positive NK lymphoma cell lines, SNK1 and SNK6, and examined the role of cytokines in the interaction between NK cell lines and endothelial cells. SNKs expressed intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) at much higher levels than those in EBV-negative T cell lines. SNKs produced the larger amount of tumour necrosis factor (TNF)-α, which caused increased expression of ICAM-1 and VCAM-1 in cultured human endothelial cells, than that from EBV-negative T cell lines. Furthermore, SNKs exhibited increased adhesion to cultured endothelial cells stimulated with TNF-α or interleukin (IL)-1β, and the pretreatment of cytokine-stimulated endothelial cells with anti-VCAM-1-antibodies reduced cell adhesion. These indicate that the up-regulated expression of VCAM-1 on cytokine-stimulated endothelial cells would be important for the adhesion of EBV-positive NK cells and might initiate the vascular lesions. PMID:18190605

  18. In-vitro rescue and recovery studies of human melanoma (BLM) cell growth, adhesion and migration functions after treatment with progesterone.

    Science.gov (United States)

    Leder, Douglas C; Brown, Jason R; Ramaraj, Pandurangan

    2015-01-01

    Treatment of human melanoma (BLM) cells for 48 hrs with progesterone resulted in a significant inhibition of cell growth. The mechanism of growth inhibition was due to autophagy and this action of progesterone was not mediated through progesterone receptor. As cells were floating during treatment, adhesion assay was performed, which showed complete loss of adhesion. When cells were allowed to recover after treatment by culturing in growth medium without progesterone, there was recovery in cell growth. Preliminary experiments on adhesion and recovery cell growth prompted us to suppress autophagic lysosomal degradation with 3-methyladenine (3-MA), which resulted in partial rescue of cell growth, adhesion and migration functions. The above experimental design gave rise to two experimental groups viz., progesterone treated and 3-MA rescued. Since, recovery studies also showed improvement in cell growth, progesterone treated and 3-MA rescued groups were allowed to recover on their own for first 48 hrs and then a second 48 hrs. Comparison of in-vitro cell growth, adhesion and migration functions of progesterone treated, 3-MA rescued and recovered human melanoma cells revealed that the recovery of 3-MA rescued cells was better than the recovery of progesterone treated cells in terms of cell growth and adhesion functions. These in-vitro experiments not only provided the scientific basis for epidemiological findings that menstruating females were better protected in melanoma, but also showed the potential of progesterone to act as an anti-cancer agent for melanoma treatment.

  19. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.

    Science.gov (United States)

    Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica

    2013-04-01

    The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-Shih Huang

    2015-12-01

    Full Text Available A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC. Hence, resistin may play a role in CRC development. Fulvic acid (FA, a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative and SW-48 (p53-positive CRC cells and human umbilical vein endothelial cells (HUVECs were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin.

  1. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells

    Science.gov (United States)

    Huang, Wen-Shih; Yang, Jen-Tsung; Lu, Chien-Chang; Chang, Shun-Fu; Chen, Cheng-Nan; Su, Yu-Ping; Lee, Ko-Chao

    2015-01-01

    A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC). Hence, resistin may play a role in CRC development. Fulvic acid (FA), a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative) and SW-48 (p53-positive) CRC cells and human umbilical vein endothelial cells (HUVECs) were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin. PMID:26690142

  2. Eptifibatide and abciximab inhibit insulin-induced focal adhesion formation and proliferative responses in human aortic smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Huang Jianhua

    2008-12-01

    Full Text Available Abstract Background The use of abciximab (c7E3 Fab or eptifibatide improves clinical outcomes in diabetics undergoing percutaneous coronary intervention. These β3 integrin inhibitors antagonize fibrinogen binding to αIIbβ3 integrins on platelets and ligand binding to αvβ3 integrins on vascular cells. αvβ3 integrins influence responses to insulin in various cell types but effects in human aortic smooth muscle cells (HASMC are unknown. Results and discussion Insulin elicited a dose-dependent proliferative response in HASMC. Pretreatment with m7E3 (an anti-β3 integrin monoclonal antibody from which abciximab is derived, c7E3 or LM609 inhibited proliferative responses to insulin by 81%, 59% and 28%, respectively. Eptifibatide or cyclic RGD peptides completely abolished insulin-induced proliferation whereas tirofiban, which binds αIIbβ3 but not αvβ3, had no effect. Insulin-induced increases in c-Jun NH2-terminal kinase-1 (JNK1 activity were partially inhibited by m7E3 and eptifibatide whereas antagonism of αvβ3 integrins had no effect on insulin-induced increases in extracellular signal-regulated kinase (ERK activity. Insulin stimulated a rapid increase in the number of vinculin-containing focal adhesions per cell and treatment with m7E3, c7E3 or eptifibatide inhibited insulin-induced increases in focal adhesions by 100%, 74% and 73%, respectively. Conclusion These results demonstrate that αvβ3 antagonists inhibit signaling, focal adhesion formation and proliferation of insulin-treated HASMC.

  3. Eptifibatide and abciximab inhibit insulin-induced focal adhesion formation and proliferative responses in human aortic smooth muscle cells

    Science.gov (United States)

    Pathak, Alokkumar; Zhao, Renyi; Huang, Jianhua; Stouffer, George A

    2008-01-01

    Background The use of abciximab (c7E3 Fab) or eptifibatide improves clinical outcomes in diabetics undergoing percutaneous coronary intervention. These β3 integrin inhibitors antagonize fibrinogen binding to αIIbβ3 integrins on platelets and ligand binding to αvβ3 integrins on vascular cells. αvβ3 integrins influence responses to insulin in various cell types but effects in human aortic smooth muscle cells (HASMC) are unknown. Results and discussion Insulin elicited a dose-dependent proliferative response in HASMC. Pretreatment with m7E3 (an anti-β3 integrin monoclonal antibody from which abciximab is derived), c7E3 or LM609 inhibited proliferative responses to insulin by 81%, 59% and 28%, respectively. Eptifibatide or cyclic RGD peptides completely abolished insulin-induced proliferation whereas tirofiban, which binds αIIbβ3 but not αvβ3, had no effect. Insulin-induced increases in c-Jun NH2-terminal kinase-1 (JNK1) activity were partially inhibited by m7E3 and eptifibatide whereas antagonism of αvβ3 integrins had no effect on insulin-induced increases in extracellular signal-regulated kinase (ERK) activity. Insulin stimulated a rapid increase in the number of vinculin-containing focal adhesions per cell and treatment with m7E3, c7E3 or eptifibatide inhibited insulin-induced increases in focal adhesions by 100%, 74% and 73%, respectively. Conclusion These results demonstrate that αvβ3 antagonists inhibit signaling, focal adhesion formation and proliferation of insulin-treated HASMC. PMID:19108709

  4. Dilated intercellular spaces in eosinophilic esophagitis.

    Science.gov (United States)

    Ravelli, Alberto; Villanacci, Vincenzo; Cadei, Moris; Fuoti, Maurizio; Gennati, Giada; Salemme, Marianna

    2014-11-01

    Dilated intercellular spaces (DIS) in the esophageal epithelium can be induced by acid and reduced by proton pump inhibitors (PPI), and are thus considered a marker of gastroesophageal reflux disease (GERD). Over the years, however, DIS have also been reported in esophagitis unrelated to GERD. Because DIS have never been formally measured in eosinophilic esophagitis (EoE), we aimed at detecting and measuring DIS in EoE before and after nutritional or pharmacological therapy. In 22 children with EoE, DIS were measured by morphometry and transmission electron microscopy (TEM), before and after treatment with topical steroids (n = 16) and/or exclusion diet (n = 13). A total of 30 children undergoing upper gastrointestinal endoscopy with biopsy for nonesophageal disorders acted as controls. In controls, the mean (± standard deviation [SD]) number of esophageal eosinophils was 0.91 (± 0.47) and the mean DIS values were 0.62 (± 0.08) μm at morphometry and 0.33 (± 0.24) μm at TEM. In patients with EoE, the mean (± SD) number of esophageal eosinophils decreased from 31.8 (± 6.96) to 6.64 (± 5.01) (P treatment. DIS are a prominent morphological feature of EoE, in which they can be significantly reduced by an appropriate non-PPI therapy.

  5. Extracellular vesicles as emerging intercellular communicasomes.

    Science.gov (United States)

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-10-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

  6. Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    NARCIS (Netherlands)

    Borgman, K.J.; Zanten, T.S. van; Manzo, C.; Cabezon, R.; Cambi, A.; Benitez-Ribas, D.; Garcia-Parajo, M.F.

    2014-01-01

    LFA-1 is a leukocyte specific beta2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into

  7. Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    NARCIS (Netherlands)

    Borgman, K.J.; van Zanten, T.S.; Manzo, C.; Cabezon, R.; Cambi, A.; Benitez-Ribas, D.; Garcia Parajo, M.F.

    2014-01-01

    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the

  8. Gecko adhesion: evolutionary nanotechnology.

    Science.gov (United States)

    Autumn, Kellar; Gravish, Nick

    2008-05-13

    If geckos had not evolved, it is possible that humans would never have invented adhesive nanostructures. Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1ms-1. Climbing presents a significant challenge for an adhesive in requiring both strong attachment and easy rapid removal. Conventional pressure-sensitive adhesives (PSAs) are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). The gecko adhesive differs dramatically from conventional adhesives. Conventional PSAs are soft viscoelastic polymers that degrade, foul, self-adhere and attach accidentally to inappropriate surfaces. In contrast, gecko toes bear angled arrays of branched, hair-like setae formed from stiff, hydrophobic keratin that act as a bed of angled springs with similar effective elastic modulus to that of PSAs. Setae are self-cleaning and maintain function for months during repeated use in dirty conditions. Setae are an anisotropic 'frictional adhesive' in that adhesion requires maintenance of a proximally directed shear load, enabling either a tough bond or spontaneous detachment. Gecko-like synthetic adhesives may become the glue of the future-and perhaps the screw of the future as well.

  9. Priming by chemokines restricts lateral mobility of the adhesion receptor LFA-1 and restores adhesion to ICAM-1 nano-aggregates on human mature dendritic cells.

    Directory of Open Access Journals (Sweden)

    Kyra J E Borgman

    Full Text Available LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.

  10. Priming by chemokines restricts lateral mobility of the adhesion receptor LFA-1 and restores adhesion to ICAM-1 nano-aggregates on human mature dendritic cells.

    Science.gov (United States)

    Borgman, Kyra J E; van Zanten, Thomas S; Manzo, Carlo; Cabezón, Raquel; Cambi, Alessandra; Benítez-Ribas, Daniel; Garcia-Parajo, Maria F

    2014-01-01

    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.

  11. Triptolide-Mediated Apoptosis by Suppression of Focal Adhesion Kinase through Extrinsic and Intrinsic Pathways in Human Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Haw-Young Kwon

    2013-01-01

    Full Text Available Triptolide (TPL has been shown to inhibit cell proliferation and induce apoptosis in various human cancer cells; however, the precise mechanism of apoptosis induced by TPL in human melanoma cells has not yet been elucidated. In this study, we investigated the precise mechanism underlying cytocidal effects of TPL on human melanoma cells. Treatment of human melanoma cells with TPL significantly inhibited cell growth and induced apoptosis, as evidenced by flow cytometry and annexin V-fluorescein isothiocyanate analyses. TPL increased the levels of Fas and Fas-associated death domain (FADD and induced cleavage of Bid by activation of caspase-8 and cytochrome c release from mitochondria to the cytosol, which resulted in activation of caspase-9 and caspase-3. Moreover, TPL-induced apoptosis in SK-MEL-2 cells was mediated through dephosphorylation of focal adhesion kinase (FAK and its cleavage by caspase-8-mediated caspase-3 activation via upregulation of Fas expression. We also found that TPL mediated the dissociation of receptor-interacting protein (RIP from FAK and enhanced the formation of RIP/Fas complex formation initiating cell death. In conclusion, our data firstly demonstrated that TPL induces apoptosis by both extrinsic and intrinsic apoptosis pathways in human melanoma cells and identified that RIP shuttles between Fas and FAK to mediate apoptosis.

  12. Docosahexaenoic acid and eicosapentaenoic acid suppress adhesion molecule expression in human aortic endothelial cells via differential mechanisms.

    Science.gov (United States)

    Huang, Chun-Ying; Sheu, Wayne Huey-Herng; Chiang, An-Na

    2015-04-01

    Dietary PUFAs modulate the progression of cardiovascular disease, but the underlying mechanisms within vascular cells remain unclear. The aim of this study was to investigate the biological function and regulatory mechanisms of PUFAs in LPS-activated human aortic endothelial cells (HAECs). To simulate the in vivo conditions of atherosclerosis, we have established an in vitro model in which THP-1 monocytes adhere to HAECs. Our results showed that n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) remarkably attenuated the adhesion of THP-1 cells to HAECs, probably through inhibiting the expression of VCAM-1 and ICAM-1. Using lipid raft isolation and confocal microscopy, we found that DHA and EPA suppressed the translocation of TLR4 into lipid rafts. Furthermore, DHA and EPA inhibited the ubiquitination and translocation of TRAF6, and the phosphorylation of TAK1, p38, and IκBα. We demonstrated that DHA reduced the phosphorylation of PKR, but EPA increased the expression of A20. Additionally, silencing of A20 reversed the inhibitory effect of EPA on the expression of adhesion molecules. Our study revealed differential signaling pathways modulated by n-3 PUFAs in LPS-stimulated HAECs. These signaling pathways are potential targets for the prevention of atherosclerotic progression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Proliferation and adhesion capability of human gingival fibroblasts onto zirconia, lithium disilicate and feldspathic veneering ceramic in vitro.

    Science.gov (United States)

    Tetè, Stefano; Zizzari, Vincenzo Luca; Borelli, Bruna; De Colli, Marianna; Zara, Susi; Sorrentino, Roberto; Scarano, Antonio; Gherlone, Enrico; Cataldi, Amelia; Zarone, Fernando

    2014-01-01

    Human gingival fibroblasts (HGFs) were cultured onto CAD/CAM zirconia (Group A), CAD/CAM zirconia after polishing (Group B), CAD/CAM lithium disilicate after polishing (Group C), and feldspathic ceramic (Group D) to evaluate their proliferation and adhesion potential. After 3 h, HGF adhesion was similar in all groups. Later, HGFs closely adhered to surfaces, particularly onto groups B, C and D, acquiring an elongated shape. Proliferation assay showed no differences in cell viability among the groups after 24 h, while significant increase was shown after 72 h in Groups B and C. After 24 h, similar Collagen I levels were found in all groups, while after 72 h Groups B and C revealed a deep reduction in respect to the 24 h level. In vitro, HGF behavior may reflect variability in soft tissue response to different surface materials for prosthetic restorations, and support that polished zirconia is able to achieve a better integration in vivo in respect to the other materials.

  14. Fibrin serves as a divalent ligand that regulates neutrophil-mediated melanoma cells adhesion to endothelium under shear conditions

    Science.gov (United States)

    Ozdemir, Tugba; Zhang, Pu; Fu, Changliang

    2012-01-01

    Elevated soluble fibrin (sFn) levels are characteristic of melanoma hematogeneous dissemination, where tumor cells interact intimately with host cells. Melanoma adhesion to the blood vessel wall is promoted by immune cell arrests and tumor-derived thrombin, a serine protease that converts soluble fibrinogen (sFg) into sFn. However, the molecular requirement for sFn-mediated melanoma-polymorphonuclear neutrophils (PMNs) and melanoma-endothelial interactions under physiological flow conditions remain elusive. To understand this process, we studied the relative binding capacities of sFg and sFn receptors e.g., αvβ3 integrin and intercellular adhesion molecule-1 (ICAM-1) expressed on melanoma cells, ICAM-1 on endothelial cells (EC), and CD11b/CD18 (Mac-1) on PMNs. Using a parallel-plate flow chamber, highly metastatic melanoma cells (1205Lu and A375M) and human PMNs were perfused over an EC monolayer expressing ICAM-1 in the presence of sFg or sFn. It was found that both the frequency and lifetime of direct melanoma adhesion or PMN-facilitated melanoma adhesion to the EC in a shear flow were increased by the presence of sFn in a concentration-dependent manner. In addition, sFn fragment D and plasmin-treated sFn failed to increase melanoma adhesion, implying that sFn-bridged cell adhesion requires dimer-mediated receptor-receptor cross-linking. Finally, analysis of the respective kinetics of sFn binding to Mac-1, ICAM-1, and αvβ3 by single bond cell tethering assays suggested that ICAM-1 and αvβ3 are responsible for initial capture and firm adhesion of melanoma cells. These results provide evidence that sFn enhances melanoma adhesion directly to ICAM-1 on the EC, while prolonged shear-resistant melanoma adhesion requires interactions with PMNs. PMID:22262064

  15. Fibrin serves as a divalent ligand that regulates neutrophil-mediated melanoma cells adhesion to endothelium under shear conditions.

    Science.gov (United States)

    Ozdemir, Tugba; Zhang, Pu; Fu, Changliang; Dong, Cheng

    2012-04-15

    Elevated soluble fibrin (sFn) levels are characteristic of melanoma hematogeneous dissemination, where tumor cells interact intimately with host cells. Melanoma adhesion to the blood vessel wall is promoted by immune cell arrests and tumor-derived thrombin, a serine protease that converts soluble fibrinogen (sFg) into sFn. However, the molecular requirement for sFn-mediated melanoma-polymorphonuclear neutrophils (PMNs) and melanoma-endothelial interactions under physiological flow conditions remain elusive. To understand this process, we studied the relative binding capacities of sFg and sFn receptors e.g., α(v)β(3) integrin and intercellular adhesion molecule-1 (ICAM-1) expressed on melanoma cells, ICAM-1 on endothelial cells (EC), and CD11b/CD18 (Mac-1) on PMNs. Using a parallel-plate flow chamber, highly metastatic melanoma cells (1205Lu and A375M) and human PMNs were perfused over an EC monolayer expressing ICAM-1 in the presence of sFg or sFn. It was found that both the frequency and lifetime of direct melanoma adhesion or PMN-facilitated melanoma adhesion to the EC in a shear flow were increased by the presence of sFn in a concentration-dependent manner. In addition, sFn fragment D and plasmin-treated sFn failed to increase melanoma adhesion, implying that sFn-bridged cell adhesion requires dimer-mediated receptor-receptor cross-linking. Finally, analysis of the respective kinetics of sFn binding to Mac-1, ICAM-1, and α(v)β(3) by single bond cell tethering assays suggested that ICAM-1 and α(v)β(3) are responsible for initial capture and firm adhesion of melanoma cells. These results provide evidence that sFn enhances melanoma adhesion directly to ICAM-1 on the EC, while prolonged shear-resistant melanoma adhesion requires interactions with PMNs.

  16. Lewis antigen mediated adhesion of freshly removed human bladder tumors to E-selectin

    DEFF Research Database (Denmark)

    Skorsteensgaard, Karna; Vestergaard, Else Marie; Langkilde, Niels

    1999-01-01

    and appropriate controls was used for bladder tumor cell adhesion. On the same tumors expression of carbohydrate structures was examined by immunohistochemistry and Western blotting. RESULTS: No tumor bound to P-selectin. Nine tumors showed a high number of cells binding to E-selectin, 5 showed intermediate......-stainings were smeared indicating a mucin-type carrier molecule, but 115, 55 and 40 kDa bands carrying Le(a) and/or Le(b) epitopes were present in all tumors that bound. The Le(a) structure, as detected by blotting, was the only structure necessary for binding in the center of the wells (p ....001), and was correlated to number of bound cells (p cells (p cell membranes correlated with frequent binding (p

  17. Protein phosphatase 2A plays a critical role in interleukin-2-induced beta 2-integrin dependent homotypic adhesion in human CD4+ T cell lines

    DEFF Research Database (Denmark)

    Brockdorff, J; Nielsen, M; Svejgaard, A

    1997-01-01

    A, blocks PP1/PP2A activity and IL-2 induced adhesion, whereas cyclosporin A, an inhibitor of protein serine/threonine phosphatase 2B (PP2B), does not, suggesting that PP1 and/or PP2A are involved in IL-2 induced adhesion. Endothall, which preferentially inhibits PP2A, strongly inhibited cytokine...... modulates enzymatic activity and/or subcellular distribution of serine/threonine phosphatases 1 and 2A (PP1/PP2A) in T cells, we examined the role of these phosphatases in IL-2 induced homotypic adhesion in antigen specific human CD4+ T cell lines. We show that calyculin A, a potent inhibitor of PP1 and PP2...... induced adhesion, whereas the structurally related compound 1,4-dimethylendothall had no effect on either phosphatase activity or the adhesion response. Okadaic acid, which preferentially inhibits PP2A, almost completely blocked IL-2-induced adhesion, whereas tautomycin, a potent inhibitor of PP1, had...

  18. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  19. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  20. Sialylation and glycosylation modulate cell adhesion and invasion to extracellular matrix in human malignant lymphoma: Dependency on integrin and the Rho GTPase family

    OpenAIRE

    Suzuki, Osamu; ABE, MASAFUMI; HASHIMOTO Yuko

    2015-01-01

    To determine the biological roles of cell surface glycosylation, we modified the surface glycosylation of human malignant lymphoma cell lines using glycosylation inhibitors. The O-glycosylation inhibitor, benzyl-?-GalNAc (BZ) enhanced the fibronectin adhesion of HBL-8 cells, a human Burkitt's lymphoma cell line, and of H-ALCL cells, a human anaplastic large cell lymphoma cell line, both of which were established in our laboratory. The N-glycosylation inhibitor, tunicamycin (TM) inhibited the ...

  1. Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes

    DEFF Research Database (Denmark)

    Hofgaard, Johannes P; Banach, Kathrin; Mollerup, Sarah

    2008-01-01

    Changes in the lipid composition of cardiac myocytes have been reported during cardiac hypertrophy, cardiomyopathy, and infarction. Because a recent study indicates a relation between low phosphatidylinositol-bisphosphate (PIP(2)) levels and reduced intercellular coupling, we tested the hypothesis...... in cardiomyocytes grown on microelectrode arrays. Intercellular coupling was reduced by angiotensin II (43.7 +/- 9.3%, N = 11) and noradrenaline (58.0 +/- 10.7%, N = 11). To test if reduced intercellular coupling after agonist stimulation was caused by PIP(2)-depletion, myocytes were stimulated by angiotensin II...... coupling. In beating myocytes, conduction velocity was reduced by angiotensin II stimulation, and recovery after wash out was prevented by inhibition of PIP(2) production. Reductions in PIP(2) inhibit intercellular coupling in cardiomyocytes, and stimulation by physiologically relevant agonists reduces...

  2. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    Science.gov (United States)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  3. IgA and IgM protein primarily drive plasma corona-induced adhesion reduction of PLGA nanoparticles in human blood flow.

    Science.gov (United States)

    Sobczynski, Daniel J; Eniola-Adefeso, Omolola

    2017-06-01

    The high abundance of immunoglobulins (Igs) in the plasma protein corona on poly(lactic-co-glycolic) acid (PLGA)-based vascular-targeted carriers (VTCs) has previously been shown to reduce their adhesion to activated endothelial cells (aECs) in human blood flow. However, the relative role of individual Ig classes (e.g., IgG, IgA, and IgM) in causing adhesion reduction remains largely unknown. Here, we characterized the influence of specific Ig classes in prescribing the binding efficiency of PLGA nano-sized VTCs in blood flow. Specifically, we evaluated the flow adhesion to aECs of PLGA VTCs with systematic depletion of various Igs in their corona. Adhesion reduction was largely eliminated for PLGA VTCs when all Igs were removed from the corona. Furthermore, re-addition of IgA or IgM to the Igs-depleted corona reinstated the low adhesion of PLGA VTCs, as evidenced by ∼40-70% reduction relative to particles with an Igs-deficient corona. However, re-addition of a high concentration of IgG to the Igs-depleted corona did not cause significant adhesion reduction. Overall, the presented results reveal that PLGA VTC adhesion reduction in blood flows is primarily driven by high adsorption of IgA and IgM in the particle corona. Pre-coating of albumin on PLGA VTCs mitigated the extent of adhesion reduction in plasma for some donors but was largely ineffective in general. Overall, this work may shed light into effective control of protein corona composition, thereby enhancing VTC functionality in vivo for eventual clinical use.

  4. Signal transduction by HLA class II molecules in human T cells: induction of LFA-1-dependent and independent adhesion

    DEFF Research Database (Denmark)

    Odum, Niels; Yoshizumi, H; Okamoto, Y

    1992-01-01

    Crosslinking HLA-DR molecules by monoclonal antibodies (moAbs) induces protein tyrosine phosphorylation and results in a secondary elevation of free cytoplasmic calcium concentrations in activated human T cells. Binding of bacterial superantigens or moAbs to DR molecules on activated T cells...... was recently reported to induce homotypic aggregation through activation of protein kinase C (PKC) and mediated by CD11a/CD54 (LFA-1/CAM-1) adhesion molecules. Here, we report that moAbs directed against framework DR, but neither DR1, 2- and DRw52- nor DQ- and DP-specific moABs induced homotypic aggregation...... of antigen- and alloantigen-activated T cells, antigen-specific CD4+ T-cell lines, a CD8+ T-cytotoxic cell line, and T-leukemia cells (HUT78). Protein tyrosine kinase (PTK) inhibitor herbimycin A partly blocked class-II-induced aggregation responses. In contrast, phorbol ester (PMA)-induced aggregation...

  5. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells.

    Science.gov (United States)

    Eyckmans, Jeroen; Lin, Grace L; Chen, Christopher S

    2012-11-15

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs) to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs) exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  6. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  7. Occludin is involved in adhesion, apoptosis, differentiation and Ca2+-homeostasis of human keratinocytes: implications for tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Susanne Rachow

    Full Text Available Tight junction (TJ proteins are involved in a number of cellular functions, including paracellular barrier formation, cell polarization, differentiation, and proliferation. Altered expression of TJ proteins was reported in various epithelial tumors. Here, we used tissue samples of human cutaneous squamous cell carcinoma (SCC, its precursor tumors, as well as sun-exposed and non-sun-exposed skin as a model system to investigate TJ protein alteration at various stages of tumorigenesis. We identified that a broader localization of zonula occludens protein (ZO-1 and claudin-4 (Cldn-4 as well as downregulation of Cldn-1 in deeper epidermal layers is a frequent event in all the tumor entities as well as in sun-exposed skin, suggesting that these changes result from chronic UV irradiation. In contrast, SCC could be distinguished from the precursor tumors and sun-exposed skin by a frequent complete loss of occludin (Ocln. To elucidate the impact of down-regulation of Ocln, we performed Ocln siRNA experiments in human keratinocytes and uncovered that Ocln downregulation results in decreased epithelial cell-cell adhesion and reduced susceptibility to apoptosis induction by UVB or TNF-related apoptosis-inducing ligand (TRAIL, cellular characteristics for tumorigenesis. Furthermore, an influence on epidermal differentiation was observed, while there was no change of E-cadherin and vimentin, markers for epithelial-mesenchymal transition. Ocln knock-down altered Ca(2+-homeostasis which may contribute to alterations of cell-cell adhesion and differentiation. As downregulation of Ocln is also seen in SCC derived from other tissues, as well as in other carcinomas, we suggest this as a common principle in tumor pathogenesis, which may be used as a target for therapeutic intervention.

  8. SWEETs, transporters for intracellular and intercellular sugar translocation.

    Science.gov (United States)

    Eom, Joon-Seob; Chen, Li-Qing; Sosso, Davide; Julius, Benjamin T; Lin, I W; Qu, Xiao-Qing; Braun, David M; Frommer, Wolf B

    2015-06-01

    Three families of transporters have been identified as key players in intercellular transport of sugars: MSTs (monosaccharide transporters), SUTs (sucrose transporters) and SWEETs (hexose and sucrose transporters). MSTs and SUTs fall into the major facilitator superfamily; SWEETs constitute a structurally different class of transporters with only seven transmembrane spanning domains. The predicted topology of SWEETs is supported by crystal structures of bacterial homologs (SemiSWEETs). On average, angiosperm genomes contain ∼20 paralogs, most of which serve distinct physiological roles. In Arabidopsis, AtSWEET8 and 13 feed the pollen; SWEET11 and 12 provide sucrose to the SUTs for phloem loading; AtSWEET11, 12 and 15 have distinct roles in seed filling; AtSWEET16 and 17 are vacuolar hexose transporters; and SWEET9 is essential for nectar secretion. The remaining family members await characterization, and could play roles in the gametophyte as well as other important roles in sugar transport in the plant. In rice and cassava, and possibly other systems, sucrose transporting SWEETs play central roles in pathogen resistance. Notably, the human genome also contains a glucose transporting isoform. Further analysis promises new insights into mechanism and regulation of assimilate allocation and a new potential for increasing crop yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins

    Science.gov (United States)

    Dobrowsky, Terrence M.; Rabi, S. Alireza; Nedellec, Rebecca; Daniels, Brian R.; Mullins, James I.; Mosier, Donald E.; Siliciano, Robert F.; Wirtz, Denis

    2013-10-01

    In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.

  10. Heterophyllin B inhibits the adhesion and invasion of ECA-109 human esophageal carcinoma cells by targeting PI3K/AKT/β-catenin signaling.

    Science.gov (United States)

    Tantai, Ji-Cheng; Zhang, Yao; Zhao, Heng

    2016-02-01

    The present study aimed to measure the effect of heterophyllin B (HB) on the adhesion and invasion of ECA-109 human esophageal carcinoma cells, and examine the possible mechanism involved. A Cell Counting kit 8 assay was performed to determine the cell viability. Cell adhesion and invasion were determined following treatment of the ECA-109 cells with HB (0, 10, 25 and 50 µM) for 24 h. The levels of phosphorylated (p-)ATK and p-phosphoinositide 3-kinase (PI3K), and the protein levels of β-catenin were measured using western blot analysis. The mRNA and protein expression levels of E-cadherin, vimentin, snail, matrix metalloproteinase (MMP)2 and MMP9 were detected using reverse transcription-quantitative polymerase chain reaction and western blot analyses, respectively. HB (10, 25 and 50 µM) significantly suppressed the adhesion and invasion of the ECA-109 human esophageal carcinoma cells in a dose-dependant manner. The expression levels of p-ATK, p-PI3K and β-catenin were markedly decreased. The expression of E-cadherin was promoted, whereas the expression levels of snail, vimentin, MMP 2 and MMP 9 were decreased significantly in the ECA-109 cells treated with HB. In addition, HB inhibited the adhesion and invasion induced by PI3K activating peptide in the ECA-109 cells, and the protein expression levels were also adjusted. These results suggested that HB effectively suppressed the adhesion and invasion of the human esophageal carcinoma cells by mediating the PI3K/AKT/β-catenin pathways and regulating the expression levels of adhesion- and invasion-associated genes.

  11. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (BBB disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE. Infection with WNV (NY99 strain significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1 did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101 strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  12. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Science.gov (United States)

    Roe, Kelsey; Orillo, Beverly; Verma, Saguna

    2014-01-01

    Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  13. Cordycepin inhibits vascular adhesion molecule expression in TNF-α-stimulated vascular muscle cells.

    Science.gov (United States)

    Yan, Li-Jie; Yang, Hai-Tao; Duan, Hong-Yan; Wu, Jin-Tao; Qian, Peng; Fan, Xian-Wei; Wang, Shanling

    2017-09-01

    Atherosclerosis is a chronic inflammatory disease, which is associated with the increased expression of adhesion molecules in vascular smooth muscle cells (VSMCs). Cordycepin is one of the major bioactive components of Ophiocordyceps sinensis that has been demonstrated to exert anti-atherogenic activity; however, its molecular mechanisms are poorly understood. The aim of the present study was to examine the in vitro effects of cordycepin on the tumor necrosis factor (TNF)-α-induced suppression of adhesion molecule expression. The results of the present study demonstrated that cordycepin markedly inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in TNF-α-stimulated human aortic vascular smooth muscle cells (HA-VSMCs). Cordycepin significantly inhibited the TNF-α-induced mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) activation (P<0.05), markedly inhibited the TNF-α-induced expression level of nuclear factor (NF)-κB p65 and markedly prevented the TNF-α-associated degradation of IκBα in HA-VSMCs. The results of the present study suggest that cordycepin inhibits the expression of VCAM-1 and ICAM-1 in TNF-α-stimulated HA-VSMCs via downregulating the MAPK/Akt/NF-κB signaling pathway. Therefore, cordycepin may have a potential therapeutic application for preventing the advancement of atherosclerotic lesions.

  14. Unique Cell Adhesion and Invasion Properties of Yersinia enterocolitica O:3, the Most Frequent Cause of Human Yersiniosis

    Science.gov (United States)

    Uliczka, Frank; Pisano, Fabio; Schaake, Julia; Stolz, Tatjana; Rohde, Manfred; Fruth, Angelika; Strauch, Eckhard; Skurnik, Mikael; Batzilla, Julia; Rakin, Alexander; Heesemann, Jürgen; Dersch, Petra

    2011-01-01

    Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y. enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y. enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37°C. Increase of invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model. Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37°C is required to allow efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or a higher pathogenic potential in a certain host or host environment. PMID:21750675

  15. NADPH Oxidase/ROS-Dependent VCAM-1 Induction on TNF-α-Challenged Human Cardiac Fibroblasts Enhances Monocyte Adhesion

    Science.gov (United States)

    Lin, Chih-Chung; Yang, Chien-Chung; Wang, Chen-Yu; Tseng, Hui-Ching; Pan, Chih-Shuo; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-01-01

    The inflammation-dependent adhesion molecule expressions are characterized in cardiovascular diseases and myocardial tissue infiltrations. Several pro-inflammatory cytokines are elevated in the acute myocardial injury and infarction. Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine, is raised in the injury tissues and inflammatory regions and involved in the pathogenesis of cardiac injury, inflammation, and apoptosis. In fibroblasts, TNF-α-triggered expression of vascular cell adhesion molecule (VCAM)-1 aggravated the heart inflammation. However, the mechanisms underlying TNF-α-mediated VCAM-1 expression in cardiac fibroblasts remain unclear. Here, the primary cultured human cardiac fibroblasts (HCFs) were used to investigate the effects of TNF-α on VCAM-1 expression. The molecular evidence, including protein, mRNA, and promoter analyses, indicated that TNF-α-induced VCAM-1 gene expression is mediated through the TNFR-dependent manner. Activation of TNF-α/TNFR system triggered PKCα-dependent NADPH oxidase (Nox)/reactive oxygen species (ROS) signal linking to MAPK cascades, and then led to activation of the transcription factor, AP-1. Moreover, the results of mRNA and promoter assay demonstrated that c-Jun/AP-1 phosphorylated by TNF-α turns on VCAM-1 gene expression. Subsequently, up-regulated VCAM-1 on the cell surface of TNF-α-challenged HCFs increased the number of monocytes adhering to these cells. These results indicated that in HCFs, activation of AP-1 by PKCα-dependent Nox/ROS/MAPKs cascades is required for TNF-α-induced VCAM-1 expression. To clarify the mechanisms of TNF-α-induced VCAM-1 expression in HCFs may provide therapeutic strategies for heart injury and inflammatory diseases. PMID:26858641

  16. Prognostic Value of Focal Adhesion Kinase (FAK in Human Solid Carcinomas: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Xiao-Qing Zeng

    Full Text Available Recently, the number of reports on focal adhesion kinase (FAK as a vital therapeutic target in solid carcinomas has increased; however, the prognostic role of FAK status remains poorly understood. This study aims to evaluate the prognostic effect of FAK by means of a meta-analysis.We performed a systematic literature search in order to examine the correlation between expression of FAK and overall survival(OS. The hazard ratio (HR of OS was used to measure survival. A random-effects model was used to pool study statistics. Sensitivity and publication bias analyses were also conducted.Thirty eligible studies involving 4702 patients were included. The median expression rate of FAK was 54%. Meta-analysis of the HRs demonstrated that high FAK expression was associated with worse OS (average HR = 2.073, 95%confidence interval[CI]:1.712-2.510, p = 0.000. Regarding cancer type, FAK was associated with worse OS in gastric cancer (HR = 2.646,95% CI:1.743-4.017, p = 0.000, hepatocellular carcinoma (HR = 1.788,95% CI:1.228-2.602, p = 0.002, ovarian cancer (HR = 1.815, 95% CI: 1.193-2.762, p = 0.005, endometrial cancer (HR = 4.149, 95% CI:2.832-6.079, p = 0.000, gliomas (HR = 2.650, 95% CI: 1.205-5.829, p = 0.015, and squamous cell carcinoma (HR = 1,696, 95% CI: 1.030-2.793, p = 0.038. No association was found between HR and disease staging according to our meta-regression analysis.Our study shows that high expression of FAK is associated with a worse OS in patients with carcinomas, but the association between FAK and prognosis varies according to cancer type. The value of FAK status in clinical prognosis in cancer needs further research.

  17. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  18. Glutathione peroxidase-1 modulates lipopolysaccharide-induced adhesion molecule expression in endothelial cells by altering CD14 expression.

    Science.gov (United States)

    Lubos, Edith; Mahoney, Christopher E; Leopold, Jane A; Zhang, Ying-Yi; Loscalzo, Joseph; Handy, Diane E

    2010-07-01

    CD14 contributes to LPS signaling in leukocytes through formation of toll-like receptor 4/CD14 receptor complexes; however, a specific role for endogenous cell-surface CD14 in endothelial cells is unclear. We have found that suppression of glutathione peroxidase-1 (GPx-1) in human microvascular endothelial cells increases CD14 gene expression compared to untreated or siControl (siCtrl)-treated conditions. Following LPS treatment, GPx-1 deficiency augmented LPS-induced intracellular reactive oxygen species accumulation, CD14 expression, and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein expression compared to LPS-treated control cells. GPx-1 deficiency also transiently augmented LPS-induced vascular cell adhesion molecule-1 (VCAM-1) expression. Adenoviral overexpression of GPx-1 significantly diminished LPS-mediated responses in adhesion molecule expression. Consistent with these findings, LPS responses were also greater in endothelial cells derived from GPx-1-knockout mice, whereas adhesion molecule expression was decreased in cells from GPx-1-overexpressing transgenic mice. Knockdown of CD14 attenuated LPS-mediated up-regulation of ICAM-1 and VCAM-1 mRNA and protein, and it mitigated the effects of GPx-1 deficiency on LPS-induced adhesion molecule expression. Taken together, these data suggest that GPx-1 modulates the endothelial cell response to LPS, in part, by altering CD14-mediated effects.

  19. Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway

    Science.gov (United States)

    Sun, Hai-Jian; Zhao, Ming-Xia; Liu, Tong-Yan; Ren, Xing-Sheng; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-01-01

    Vascular smooth muscle cells (VSMCs) are indispensible components in foam cell formation. Salusin-β is a stimulator in the progression of atherosclerosis. Here, we showed that salusin-β increased foam cell formation evidenced by accumulation of lipid droplets and intracellular cholesterol content, and promoted monocyte adhesion in human VSMCs. Salusin-β increased the expressions and activity of acyl coenzyme A:cholesterol acyltransferase-1 (ACAT-1) and vascular cell adhesion molecule-1 (VCAM-1) in VSMCs. Silencing of ACAT-1 abolished the salusin-β-induced lipid accumulation, and silencing of VCAM-1 prevented the salusin-β-induced monocyte adhesion in VSMCs. Salusin-β caused p65-NFκB nuclear translocation and increased p65 occupancy at the ACAT-1 and VCAM-1 promoter. Inhibition of NFκB with Bay 11-7082 prevented the salusin-β-induced ACAT-1 and VCAM-1 upregulation, foam cell formation and monocyte adhesion in VSMCs. Scavenging ROS, inhibiting NADPH oxidase or knockdown of NOX2 abolished the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation and monocyte adhesion in VSMCs. Salusin-β increased miR155 expression, and knockdown of miR155 prevented the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation, monocyte adhesion and ROS production in VSMCs. These results indicate that salusin-β induces foam formation and monocyte adhesion via miR155/NOX2/NFκB-mediated ACAT-1 and VCAM-1 expressions in VSMCs. PMID:27004848

  20. Chinese Herbal Cardiotonic Pill Stabilizes Vulnerable Plaques in Rabbits by Decreasing the Expression of Adhesion Molecules

    OpenAIRE

    Chen, Liang; Li, Xiaonan; Li, Changjiang; Rong, Yuanyuan; Xiao, Yawei; Xu, Xinsheng; Yao, Guihua; Jiang, Guihua; Zhang, Mei

    2016-01-01

    Abstract: The cardiotonic pill (CP), consisting of a mixture of Radix Salviae Miltiorrhizae, Radix Notoginseng, and Borneolum Syntheticum, has been widely used in the prevention and treatment of cardiovascular disease. Adhesion molecules, including intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1, are involved in the development of vulnerable plaque. We investigated the effect of the CP in a rabbit model of vulnerable plaque established by local transfection with p...

  1. Influence of Air Abrasion and Sonic Technique on Microtensile Bond Strength of One-Step Self-Etch Adhesive on Human Dentin

    OpenAIRE

    Baraba Anja; Dukić Walter; Chieffi Nicoletta; Ferrari Marco; Sonja Pezelj Ribarić; Miletić Ivana

    2015-01-01

    The purpose of this in vitro study was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n = 12 per group), according to the pretreatment of the den...

  2. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K

    2013-01-01

    Abstract Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells...... were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1....... In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis....

  3. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles.

    Science.gov (United States)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K; Saber, Anne T; Wallin, Håkan; Loft, Steffen; Vogel, Ulla; Møller, Peter

    2013-03-01

    Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species. In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis.

  4. Evaluation of microtensile bond strength of total-etch, self-etch, and glass ionomer adhesive to human dentin: An in vitro study

    Directory of Open Access Journals (Sweden)

    Neelima Lakshmi

    2008-01-01

    Full Text Available Aim: To evaluate the microtensile bond strength of Single Bond, AdheSE, and Fuji Bond LC to human dentin. Fifteen non-carious third molars were selected for the study. The teeth were randomly divided into three groups of five teeth each. Each group was given a different bonding treatment. Group I was treated with Single Bond (3M, ESPE, group II with AdheSE (Ivoclar, Vivadent, and group III was treated with Fuji Bond LC (GC America. A T-band metal matrix was placed and composite resin bonded on to the tooth surface using appropriate bonding agents. The composite resin was packed in increments and light cured. Each tooth was sectioned to obtain 1 mm x 1 mm beams of dentin-resin samples. Tensile bond testing was done using a universal testing machine (Instron at a cross-head speed of 0.5 mm/min. Results: The mean bond strength of Single Bond (35.5 MPa was significantly higher than that of AdheSE (32.8 MPa and Fuji Bond LC (32.6 MPa. The difference between the microtensile bond strength values of AdheSE and Fuji Bond LC was statistically insignificant. Inference: Though the bond strength of AdheSE and Fuji Bond LC was above 30 MPa, it was less than that of Single Bond as evaluated by testing of microtensile bond strength.

  5. Anti-Adhesive Activities of Flavan-3-ols and Proanthocyanidins in the Interaction of Group A-Streptococci and Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Aneta Janecki

    2010-10-01

    Full Text Available Bacterial adhesion to epithelial cells is a key step in infections, allowing subsequent colonization, invasion and internalization of pathogens into tissues. Anti-adhesive agents are therefore potential prophylactic tools against bacterial infections. The range of anti-adhesive compounds is largely confined to carbohydrate analogues. Tannins are generously recognized as potent antimicrobials, but little data exist on their anti-adherence potency. Using a model for mucosal pathogenesis with labeled group A-streptococci (GAS and human laryngeal HEp-2 cells, a series of flavan-3-ols (epicatechin, epigallocatechin, epigallocatechin-3-O-gallate and highly purified and chemically characterized proanthocyanidin samples including procyanidins based on epicatechin, catechin or ‘mixed’ constituent flavanyl units, prodelphinidins made up of (epigallocatechin monomeric unts as well as oligomers possessing A-type units in their molecules was evaluated for anti-adhesive effects. Reduced microbial adherence was observed exclusively for prodelphinidins, suggesting that pyrogallol-type elements, i.e., (epigallocatechin units are important structural features. This is the first report on structure-activity relationships regarding the anti-adhesive potency of proanthocyanidins. In addition, the structures of the first chemically defined proanthocyanidins from Pelargonium sidoides are disclosed.

  6. Resveratrol and Estradiol Exert Disparate Effects on Cell Migration, Cell Surface Actin Structures, and Focal Adhesion Assembly in MDA-MB-231 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios

    2005-02-01

    Full Text Available Resveratrol, a grape polyphenol, is thought to be a cancer preventive, yet its effects on metastatic breast cancer are relatively unknown. Since cancer cell invasion is dependent on cell migration, the chemotactic response of MDA-MB-231 metastatic human breast cancer cells to resveratrol, estradiol (E2, or epidermal growth factor (EGF was investigated. Resveratrol decreased while E2 and EGF increased directed cell migration. Resveratrol may inhibit cell migration by altering the cytoskeleton. Resveratrol induced a rapid global array of filopodia and decreased focal adhesions and focal adhesion kinase (FAK activity. E2 or EGF treatment did not affect filopodia extension but increased lamellipodia and associated focal adhesions that are integral for cell migration. Combined resveratrol and E2 treatment resulted in a filopodia and focal adhesion response similar to resveratrol alone. Combined resveratrol and EGF resulted in a lamellipodia and focal adhesion response similar to EGF alone. E2 and to a lesser extent resveratrol increased EGFR activity. The cytoskeletal changes and EGFR activity in response to E2 were blocked by EGFR1 inhibitor indicating that E2 may increase cell migration via crosstalk with EGFR signaling. These data suggest a promotional role for E2 in breast cancer cell migration but an antiestrogenic, preventative role for resveratrol.

  7. Inhibitive Effects of Mulberry Leaf-Related Extracts on Cell Adhesion and Inflammatory Response in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    P.-Y. Chao

    2013-01-01

    Full Text Available Effects of mulberry leaf-related extracts (MLREs on hydrogen peroxide-induced DNA damage in human lymphocytes and on inflammatory signaling pathways in human aortic endothelial cells (HAECs were studied. The tested MLREs were rich in flavonols, especially bombyx faces tea (BT in quercetin and kaempferol. Polyphenols, flavonoids, and anthocyanidin also abounded in BT. The best trolox equivalent antioxidant capacity (TEAC was generated from the acidic methanolic extracts of BT. Acidic methanolic and water extracts of mulberry leaf tea (MT, mulberry leaf (M, and BT significantly inhibited DNA oxidative damage to lymphocytes based on the comet assay as compared to the H2O2-treated group. TNF-α-induced monocyte-endothelial cell adhesion was significantly suppressed by MLREs. Additionally, nuclear factor kappa B (NF-κB expression was significantly reduced by BT and MT. Significant reductions were also observed in both NF-κB and activator protein (AP-1 DNA binding by MLREs. Significant increases in peroxisome proliferator-activated receptor (PPAR α and γ DNA binding by MLREs were also detected in M and MT extracts, but no evidence for PPAR α DNA binding in 50 μg/mL MT extract was found. Apparently, MLREs can provide distinct cytoprotective mechanisms that may contribute to its putative beneficial effects on suppressing endothelial responses to cytokines during inflammation.

  8. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence.

    Science.gov (United States)

    Freires, Irlan A; Avilés-Reyes, Alejandro; Kitten, Todd; Simpson-Haidaris, P J; Swartz, Michael; Knight, Peter A; Rosalen, Pedro L; Lemos, José A; Abranches, Jacqueline

    2017-01-02

    In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.

  9. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices.

    Science.gov (United States)

    Stafiej, Piotr; Küng, Florian; Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E; Schubert, Dirk W; Fuchsluger, Thomas A

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Vaspin inhibits cytokine-induced nuclear factor-kappa B activation and adhesion molecule expression via AMP-activated protein kinase activation in vascular endothelial cells.

    Science.gov (United States)

    Jung, Chang Hee; Lee, Min Jung; Kang, Yu Mi; Lee, Yoo La; Yoon, Hae Kyeong; Kang, Sang-Wook; Lee, Woo Je; Park, Joong-Yeol

    2014-02-12

    Vaspin is an adipocytokine that was recently identified in the visceral adipose tissue of diabetic rats and has anti-diabetic and anti-atherogenic effects. We hypothesized that vaspin prevents inflammatory cytokine-induced nuclear factor-kappa B (NF-κB) activation by activating AMP-activated protein kinase (AMPK) in vascular endothelial cells. We examined the effects of vaspin on NF-κB activation and the expression of the NF-κB-mediated genes intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and monocyte chemoattractant protein-1 (MCP-1). Human aortic endothelial cells (HAECS) were used. Tumor necrosis factor alpha (TNFα) was used as a representative proinflammatory cytokine. Treatment with vaspin significantly increased the phosphorylation of AMPK and acetyl-CoA carboxylase, the down-stream target of AMPK. Furthermore, treatment with vaspin significantly decreased TNFα-induced activation of NF-κB, as well as the expression of the adhesion molecules ICAM-1, VCAM-1, E-selectin, and MCP-1. These effects were abolished following transfection of AMPKα1-specific small interfering RNA. In an adhesion assay using THP-1 cells, vaspin reduced TNFα-induced adhesion of monocytes to HAECS in an AMPK-dependent manner. Vaspin might attenuate the cytokine-induced expression of adhesion molecule genes by inhibiting NF-κB following AMPK activation.

  11. Two functional reticulocyte binding-like (RBL) invasion ligands of zoonotic Plasmodium knowlesi exhibit differential adhesion to monkey and human erythrocytes.

    Science.gov (United States)

    Semenya, Amma A; Tran, Tuan M; Meyer, Esmeralda Vs; Barnwell, John W; Galinski, Mary R

    2012-07-06

    Plasmodium knowlesi is a monkey malaria species that is becoming a serious public health concern infecting hundreds and perhaps thousands of humans in Southeast Asia. Invasion of erythrocytes by merozoites entails a cascade of molecular interactions. One step involves the adhesion of Plasmodium reticulocyte binding-like (RBL) proteins. Plasmodium knowlesi merozoites express only two RBL invasion ligands, known as Normocyte Binding Proteins (PkNBPXa and PkNBPXb). Overlapping N-terminal regions of PkNBPXa and PkNBPXb were expressed in COS7 cells and tested for surface expression and adhesion to rhesus monkey erythrocytes. Subsequent tests to study specific receptor ligand interactions included adhesion to a panel of human and non-human primate erythrocytes, enzymatic treatment, and site directed mutagenesis. An N-terminal cysteine-rich region of PkNBPXb (PkNBPXb-II) exhibited specific adhesion to rhesus monkey erythrocytes. Mutation of four of five cysteines in PkNBPXb-II interfered with its surface expression on COS7 cells, suggesting disulphide bond conformation is critical for intracellular trafficking. Binding of PkNBPXb-II was abolished when rhesus erythrocytes were pre-treated with chymotrypsin, but not trypsin or neuraminidase. PkNBPXb-II also bound other Old World monkey species and gibbon erythrocytes. However, erythrocytes from other primate species including humans did not bind to PkNBPXb-II or native PkNBPXb. Importantly, unlike PkNBPXb, PkNBPXa bound human erythrocytes, and this binding was independent of the Duffy blood group determinant. The data reported here begins to clarify the functional domains of the P. knowlesi RBLs. A binding domain has been identified and characterized in PkNBPXb. Notably, this study demonstrates that unlike PkNBPXb, PkNBPXa can bind to human erythrocytes, suggesting that PkNBPXa may function as a ligand to enable the invasion of P. knowlesi merozoites into human cells.

  12. Two functional reticulocyte binding-like (RBL invasion ligands of zoonotic Plasmodium knowlesi exhibit differential adhesion to monkey and human erythrocytes

    Directory of Open Access Journals (Sweden)

    Semenya Amma A

    2012-07-01

    Full Text Available Abstract Background Plasmodium knowlesi is a monkey malaria species that is becoming a serious public health concern infecting hundreds and perhaps thousands of humans in Southeast Asia. Invasion of erythrocytes by merozoites entails a cascade of molecular interactions. One step involves the adhesion of Plasmodium reticulocyte binding-like (RBL proteins. Plasmodium knowlesi merozoites express only two RBL invasion ligands, known as Normocyte Binding Proteins (PkNBPXa and PkNBPXb. Methods Overlapping N-terminal regions of PkNBPXa and PkNBPXb were expressed in COS7 cells and tested for surface expression and adhesion to rhesus monkey erythrocytes. Subsequent tests to study specific receptor ligand interactions included adhesion to a panel of human and non-human primate erythrocytes, enzymatic treatment, and site directed mutagenesis. Results An N-terminal cysteine-rich region of PkNBPXb (PkNBPXb-II exhibited specific adhesion to rhesus monkey erythrocytes. Mutation of four of five cysteines in PkNBPXb-II interfered with its surface expression on COS7 cells, suggesting disulphide bond conformation is critical for intracellular trafficking. Binding of PkNBPXb-II was abolished when rhesus erythrocytes were pre-treated with chymotrypsin, but not trypsin or neuraminidase. PkNBPXb-II also bound other Old World monkey species and gibbon erythrocytes. However, erythrocytes from other primate species including humans did not bind to PkNBPXb-II or native PkNBPXb. Importantly, unlike PkNBPXb, PkNBPXa bound human erythrocytes, and this binding was independent of the Duffy blood group determinant. Conclusions The data reported here begins to clarify the functional domains of the P. knowlesi RBLs. A binding domain has been identified and characterized in PkNBPXb. Notably, this study demonstrates that unlike PkNBPXb, PkNBPXa can bind to human erythrocytes, suggesting that PkNBPXa may function as a ligand to enable the invasion of P. knowlesi merozoites into

  13. The lymphoid chemokine CCL21 triggers LFA-1 adhesive properties on human dendritic cells

    NARCIS (Netherlands)

    Eich, C.; Vries, I.J.M. de; Linssen, P.C.M.; Boer, A. de; Boezeman, J.B.M.; Figdor, C.G.; Cambi, A.

    2011-01-01

    Dendritic cells (DCs) are the most potent APCs, involved in the induction of immunity and tolerance. Recently we showed that during differentiation of human DCs from monocyte precursors, Lymphocyte function-associated antigen-1 (LFA-1)-binding capacity is lost, although integrin expression levels

  14. ADHESION OF 3 LACTOBACILLUS STRAINS TO HUMAN URINARY AND INTESTINAL EPITHELIAL-CELLS

    NARCIS (Netherlands)

    REID, G; SERVIN, AL; BRUCE, AW; BUSSCHER, HJ

    1993-01-01

    Three strains of urogenital lactobacilli were found to adhere in phosphate buffered saline to human uroepithelial cells in vitro according to thermodynamic principles, and to adhere in culture medium to intestinal cells with no such correlation. The most hydrophilic strain (water contact angle

  15. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...... different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...

  16. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  17. Denture Adhesives

    Science.gov (United States)

    ... Devices Home Medical Devices Products and Medical Procedures Dental Devices Denture Adhesives Share Tweet Linkedin Pin it More sharing options ... Manufacturers (February 23, 2011) (PDF - 22KB) More in Dental Devices Denture Adhesives Multiple-Use Dental Dispenser Devices Dental Amalgam About ...

  18. Targeting Tumor Necrosis Factor-α with Adalimumab: Effects on Endothelial Activation and Monocyte Adhesion.

    Directory of Open Access Journals (Sweden)

    Raghav Oberoi

    Full Text Available It is well known that atherosclerotic inflammatory vascular disease is critically driven by oxidized lipids and cytokines. In this regard, tumor necrosis factor (TNF-α is known as a crucial mediator of early pro-atherosclerotic events. Epidemiologic data suggest that blockade of TNF-α has beneficial effects on vascular outcomes in patients with rheumatoid arthritis, however, detailed mechanistic studies are still lacking. This study aims to elucidate effects of TNF-α blockade by adalimumab-which is approved for several inflammatory disorders-on endothelial activation and monocyte adhesion under pro-atherosclerotic conditions.Phorbol myristate acetate (PMA differentiated THP-1 macrophages were stimulated with oxidized low density lipoprotein and subsequent analysis of this conditioned media (oxLDL CM revealed a strong release of TNF-α. The TNF-α rich supernatant led to activation of human umbilical vein endothelial cells (HUVEC as shown by enhanced expression of major adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1 and E-selectin which was suppressed by the TNF-α inhibitor adalimumab. Accordingly, adalimumab effectively prevented THP-1 monocyte adhesion to endothelial cells under static as well as under flow conditions. Furthermore, adalimumab suppressed endothelial leakage as shown by Evan's blue diffusion across a confluent endothelial monolayer. Of note, after intraperitoneal injection we detected abundant deposition of fluorophore-labelled adalimumab in atherosclerotic plaques of hypercholesterolemic mice.Our results show that adalimumab prevents major inflammatory effects of TNF-α on endothelial activation, endothelial monocyte adhesion, endothelial leakage and therefore extends the therapeutic options of adalimumab to limit vascular inflammation.

  19. Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Masato Murakami

    Full Text Available Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A-/- tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target.

  20. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation.

    Science.gov (United States)

    Li, Yumei; Li, Xiang; Zhao, Rui; Wang, Chuying; Qiu, Fangping; Sun, Bolun; Ji, He; Qiu, Ju; Wang, Ce

    2017-03-01

    Recently, electrically conductive biomaterial scaffolds have shown great potential in tissue regeneration. Herein, we reported an electrically conductive polyaniline (PANI) coated poly(ε-caprolactone) (PCL) electrospun micron-fiber scaffold for the enhanced attachment and proliferation of human umbilical vein endothelial cells (HUVECs) under electrical stimulation conditions. After the O2 plasma treatment toward PCL electrospun fiber, PANI could be polymerized onto their surfaces successfully. The obtained PANI-PCL fibers were characterized by SEM observations, FT-IR spectra, XPS analysis, and water contact angle measurement. The mechanical tests indicated that the fibers could satisfy the practical vascular scaffold requirements. The conductivity of the PANI-PCL fibers was 6.71×10-3S/cm which could provide a conductive in-vitro platform to study the effect of electrical stimulation on HUVECs proliferation. When PANI-coated PCL fibers were compared with PCL fibers, HUVECs exhibited highly enhanced adhesion and viability, especially under electrical stimulation (ES) of 200, 300, and 400mV/cm. Proliferation of HUVECs on PANI-PCL fibers was strongly dependent on electrical stimulation intensity. The results showed new insights into conductive scaffolds for vascular tissue engineering. Copyright © 2016. Published by Elsevier B.V.

  1. Expression of neural cell adhesion molecule in human liver development and in congenital and acquired liver diseases.

    Science.gov (United States)

    Libbrecht, L; Cassiman, D; Desmet, V; Roskams, T

    2001-09-01

    In the liver, neural cell adhesion molecule (NCAM) is a marker of immature cells committed to the biliary lineage and is expressed by reactive bile ductules in human liver diseases. We investigated the possible role of NCAM in the development of intrahepatic bile ducts and aimed at determining whether immature biliary cells can contribute to the repair of damaged bile ducts in chronic liver diseases. Therefore, we performed immunohistochemistry for NCAM and bile duct cell markers cytokeratin 7 and cytokeratin 19 on frozen sections of 85 liver specimens taken from 14 fetuses, 10 donor livers, 18 patients with congenital liver diseases characterized by ductal plate malformations (DPMs), and 43 cirrhotic explant livers. Duplicated ductal plates and incorporating bile ducts during development showed a patchy immunoreactivity for NCAM, while DPMs were continuously positive for NCAM. Bile ducts showing complete or patchy immunoreactivity for NCAM were found in cirrhotic livers, with higher frequency in biliary than in posthepatitic cirrhosis. Our results suggest that NCAM may have a function in the development of the intrahepatic bile ducts and that NCAM-positive immature biliary cells can contribute to the repair of damaged bile ducts in chronic liver diseases.

  2. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells.

    Science.gov (United States)

    Werneburg, Sebastian; Buettner, Falk F R; Mühlenhoff, Martina; Hildebrandt, Herbert

    2015-05-01

    Oligodendrocyte precursor cells (OPCs) are the progenitors of myelinating oligodendrocytes in brain development and repair. Successful myelination depends on the control of adhesiveness during OPC migration and axon contact formation. The decoration of cell surface proteins with the glycan polysialic acid (polySia) is a key regulatory element of OPC interactions during development and under pathological conditions. By far the major protein carrier of polySia is the neural cell adhesion molecule NCAM, but recently, polysialylation of the synaptic cell adhesion molecule SynCAM 1 has been detected in the developing mouse brain. In mice, polySia-SynCAM 1 is associated with cells expressing NG2, a marker of a heterogeneous precursor cell population, which is the primary source for oligodendrocytes in development and myelin repair but can also give rise to astrocytes and possibly neurons. It is not yet clear if polySia-SynCAM 1 is expressed by OPCs and its occurrence in humans is elusive. By generating uniform human embryonic stem cell-derived OPC cultures, we demonstrate that polySia is present on human OPCs but down-regulated during differentiation into myelin basic protein-positive oligodendrocytes. PolySia on NCAM resides on the isoforms NCAM-180 and NCAM-140, and SynCAM 1 is identified as a novel polySia acceptor in human OPCs. Copyright © 2015. Published by Elsevier B.V.

  3. Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-kappa B signaling.

    Science.gov (United States)

    Liang, W Y; Zhu, X Y; Zhang, J W; Feng, X R; Wang, Y C; Liu, M L

    2015-02-01

    Hyperuricemia is an important risk factor for atherosclerosis, yet the potential mechanisms are not well understood. Migration and adhesion of leukocytes to endothelial cells play key roles in initiation and development of atherosclerosis. We investigated monocyte-endothelial cell interactions and potential signaling pathways under uric acid (UA)-stimulated conditions. Primary human umbilical vein endothelial cells (HUVECs) were cultured and exposed to different concentrations of UA for various periods. Experimental hyperuricemia rat models were established. Expression of chemoattractant protein-1 (MCP-1), interleukin 8 (IL-8), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were evaluated. Monocyte-endothelial cell interactions were elucidated by chemotaxis and adhesion assays, and nuclear factor-kappa B (NF-κB) pathway was studied using fluorescent microscopy and electrophoretic mobility shift assay. Results showed that high concentration of UA stimulated generation of chemokines and adhesion molecules in ex vivo and in vivo experiments. Migration and adhesion of human monocytic leukemia cell line THP-1 cells to HUVECs were promoted and activated NF-κB was significantly increased. UA-induced responses were ameliorated by organic anion transporter inhibitor probenecid and NF-κB inhibitor BAY11-7082. It was also observed that human endothelial cells expressed urate transporter-1, which was not regulated by UA. High concentration of UA exerts unfavorable effects directly on vascular endothelium via the NF-κB signaling pathway, the process of which requires intracellular uptake of UA. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Characterization of DC-SIGN/R interaction with human immunodeficiency virus type 1 gp120 and ICAM molecules favors the receptor's role as an antigen-capturing rather than an adhesion receptor.

    Science.gov (United States)

    Snyder, Greg A; Ford, Jennifer; Torabi-Parizi, Parizad; Arthos, James A; Schuck, Peter; Colonna, Marco; Sun, Peter D

    2005-04-01

    The dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin binding receptor (DC-SIGN) was shown to bind human immunodeficiency virus type 1 (HIV-1) viral envelope protein gp120 and proposed to function as a Trojan horse to enhance trans-virus infection to host T cells. To better understand the mechanism by which DC-SIGN and DC-SIGNR selectively bind HIV-1 gp120, we constructed a series of deletion mutations in the repeat regions of both receptors. Different truncated receptors exist in different oligomeric forms. The carbohydrate binding domain without any repeats was monomeric, whereas the full extracellular receptors existed as tetramers. All reconstituted receptors retained their ability to bind gp120. The dissociation constant, however, differed drastically from micromolar values for the monomeric receptors to nanomolar values for the tetrameric receptors, suggesting that the repeat region of these receptors contributes to the avidity of gp120 binding. Such oligomerization may provide a mechanism for the receptor to selectively recognize pathogens containing multiple high-mannose-concentration carbohydrates. In contrast, the receptors bound to ICAMs with submicromolar affinities that are similar to those of two nonspecific cell surface glycoproteins, FcgammaRIIb and FcgammaRIII, and the oligomerization of DC-SIGNR resulted in no increase in binding affinity to ICAM-3. These findings suggest that DC-SIGN may not discriminate other cell surface glycoproteins from ICAM-3 binding. The pH dependence in DC-SIGN binding to gp120 showed that the receptor retained high-affinity gp120 binding at neutral pH but lost gp120 binding at pH 5, suggesting a release mechanism of HIV in the acidic endosomal compartment by DC-SIGN. Our work contradicts the function of DC-SIGN as a Trojan horse to facilitate HIV-1 infection; rather, it supports the function of DC-SIGN/R (a designation referring to both DC-SIGN and DC-SIGNR) as an antigen

  5. Laser-Raman spectroscopic study of the adhesive interface; analysis between 4-META/MMA-TBB resin and bovine or human dentin.

    Science.gov (United States)

    Ozaki, M; Suzuki, M; Itoh, K; Wakumoto, S; Hisamitsu, H

    1992-06-01

    A study of the adhesive interface between 4-MET/MMA-TBB resin and hydroxyapatite or bovine enamel was reported. The present report is a continuation of that study. The possible chemical interaction between 4-methacryloxyethyl trimellitic acid (4-MET) and bovine or human dentin was examined by laser Raman spectroscopy. A 4-MET monomer solution was prepared by evaporating two thirds of the methyl methacrylate (MMA) in a commercial dentin adhesive. The solution was then applied to a dentin surface after treating the surface with an aqueous solution of 10% citric acid containing 3% ferric chloride. A salt formed on both bovine and human dentin surfaces. This salt was formed by the process we previously reported in which 4-MET formed a salt on the hydroxyapatite and bovine enamel. No evidence was observed of chemical reaction between 4-MET and any organic component in the dentin.

  6. Selection of oral microbial adhesion antagonists using biotinylated Streptococcus sanguis and a human mixed oral microflora.

    Science.gov (United States)

    Guan, Y H; de Graaf, T; Lath, D L; Humphreys, S M; Marlow, I; Brook, A H

    2001-02-01

    A microtitre assay has been developed using hydroxyapatite-coated wells and Streptococcus sanguis NCTC 10904 at 10(7) cells per ml. A number of models representing toothpaste and mouthwash usage were adopted to detect the anti-adherent efficacy of a polyvinylmethylether maleic acid copolymer (PVM/MA), polyoxypropylene/polyoxyethylene block copolymer (PO/EO), two casein-derived peptides and selected silicones. The results not only confirmed the anti-adherence property of the selected components but also indicated possible molecular interactions leading to the observed performance. To account for the diversity of oral microbial cells in vivo, a further testing system was developed. This involved submerging a hydroxyapatite disc in a mixed culture of human salivary microbial cells, and exposing it to different treatments using the active component either in an aqueous dispersion or in a toothpaste. The effect of toothpastes containing PO/EO, dimethicone copoyol or PVM/MA was investigated over a 4-h incubation with microflora. These tests showed that in a toothpaste formulation the anti-adherent efficacy may be reduced when compared with an aqueous dispersion containing the same or nearly the same concentration of the active component.

  7. Na,K-pump modulates intercellular communication in vascular wall

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Nilsson, Holger; Aalkjær, Christian

      Ouabain, a specific inhibitor of the Na,K-pump, has previously been shown to interfere with intercellular communication. Here we test the hypothesis that the communication between vascular smooth muscle cells (SMCs) is regulated through an interaction between the Na,K-pump and the Na...

  8. TNF-α enhances vascular cell adhesion molecule-1 expression in human bone marrow mesenchymal stem cells via the NF-κB, ERK and JNK signaling pathways.

    Science.gov (United States)

    Lu, Zi-Yuan; Chen, Wan-Cheng; Li, Yong-Hua; Li, Li; Zhang, Hang; Pang, Yan; Xiao, Zhi-Fang; Xiao, Hao-Wen; Xiao, Yang

    2016-07-01

    The migration of circulating mesenchymal stem cells (MSCs) to injured tissue is an important step in tissue regeneration and requires adhesion to the microvascular endothelium. The current study investigated the underlying mechanism of MSC adhesion to endothelial cells during inflammation. In in vitro MSC culture, tumor necrosis factor‑α (TNF‑α) increased the level of vascular cell adhesion molecule‑1 (VCAM‑1) expression in a dose‑dependent manner. The nuclear factor-κB (NF-κB), extracellular signal‑regulated kinase (ERK) and c‑Jun N‑terminal kinase (JNK) signaling pathway inhibitors, pyrrolidine dithiocarbamate (PDTC), U0126 and SP600125, respectively, suppressed VCAM‑1 expression induced by TNF‑α at the mRNA and protein levels (Padhesion to human umbilical vein endothelial cells; however, the inhibitors of NF‑κB, ERK and JNK did not affect this process in these cells. The results of the current study indicate that adhesion of circulating MSCs to the endothelium is regulated by TNF-α-induced VCAM-1 expression, which is potentially mediated by the NF‑κB, ERK and JNK signaling pathways.

  9. Time-dependent metabolic activity and adhesion of human osteoblast-like cells on sensor chips with a plasma polymer nanolayer.

    Science.gov (United States)

    Rebl, Henrike; Finke, Birgit; Schroeder, Karsten; Nebe, J Barbara

    2010-10-01

    To improve orthopedic implant ingrowth, knowledge of the effect of chemical surface modifications on vital cell function in vitro is of importance. Early in our investigations we recognized that amino groups, positively charged via plasma polymerized allylamine, increased cell growth and the actin-filament formation in the initial cell-material contact phase. To gain insight into continuous vital cell behavior on this plasma polymer layer, here we present the metabolic activity of osteoblasts and their time-dependent adhesion using the sensor chip technology. We demonstrate a new method for continuous 24 hour-measurements with vital human osteoblast-like cells (MG-63, ATCC) on sensor chips (Bionas® SC 1000) modified with plasma polymerized allylamine (PPAAm). The PPAAm film deposited on the chip is a cross-linked, strongly fixed plasma polymer with relatively high amino functionality and well defined chemical surface composition. We assessed continuous cell adhesion and the metabolic activity, i.e., oxygen consumption and acidification. We determined that adhesion of vital cells on PPAAm is not only enhanced shortly (1 h) after cell seeding but remained continuously higher for 24 h, which is significant. This nanometer-thin PPAAm layer did not change the overall metabolic activity of MG-63 cells during 24 h. This tool--using adhesion and metabolic sensor chips--appears to be a suitable method for the recognition of vital cell physiology in biocompatibility measurements of plasma chemical treated surfaces.

  10. [Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro].

    Science.gov (United States)

    Yu, Hai-Yue; Ma, Dan-Dan; Wu, Bu-Ling

    2017-05-20

    To evaluate the cytotoxicity of gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting in human dental pulp cells (HDPCs) and compare the cell adhesion and proliferation of the cells seeded in the biomaterial using two different methods. HDPCs isolated by tissue block culture and enzyme digestion were cultured and passaged. Gelatin/alginate hydrogel scaffolds were printed using a bioplotter, and the cytotoxicity of the aqueous extracts of the scaffold material was tested in the third passage of HDPCs using cell counting kit-8. Scanning electron microscopy and trypan blue were used to assess the adhesion and proliferation of the cells seeded in the scaffold material at a low or high concentration. The aqueous extract of the scaffolds at different concentrations showed no obvious cytotoxicity and promoted the proliferation of HDPCs. The scaffolds had a good biocompatibility and HDPCs seeded in the scaffold showed good cell growth. Cell seeding at a high concentration in the scaffold better promoted the adhesion of HDPCs and resulted in a greater cell number on the scaffold surface compared with low-concentration cell seeding after a 5-day culture (P<0.05). Gelatinadhesion to the scaffold material.

  11. Herpes simplex virus glycoprotein D relocates nectin-1 from intercellular contacts.

    Science.gov (United States)

    Bhargava, Arjun K; Rothlauf, Paul W; Krummenacher, Claude

    2016-12-01

    Herpes simplex virus (HSV) uses the cell adhesion molecule nectin-1 as a receptor to enter neurons and epithelial cells. The viral glycoprotein D (gD) is used as a non-canonical ligand for nectin-1. The gD binding site on nectin-1 overlaps with a functional adhesive site involved in nectin-nectin homophilic trans-interaction. Consequently, when nectin-1 is engaged with a cellular ligand at cell junctions, the gD binding site is occupied. Here we report that HSV gD is able to disrupt intercellular homophilic trans-interaction of nectin-1 and induce a rapid redistribution of nectin-1 from cell junctions. This movement does not require the receptor's interaction with the actin-binding adaptor afadin. Interaction of nectin-1 with afadin is also dispensable for virion surfing along nectin-1-rich filopodia. Cells seeded on gD-coated surfaces also fail to accumulate nectin-1 at cell contact. These data indicate that HSV gD affects nectin-1 locally through direct interaction and more globally through signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cell Adhesion Minimization by a Novel Mesh Culture Method Mechanically Directs Trophoblast Differentiation and Self-Assembly Organization of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao

    2015-10-01

    Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.

  13. Thrombospondin-1 (TSP-1) Stimulates Expression of Integrin alpha6 in Human Breast Carcinoma Cells: A Downstream Modulator of TSP-1-Induced Cellular Adhesion.

    Science.gov (United States)

    John, Anitha S; Rothman, Vicki L; Tuszynski, George P

    2010-01-01

    Thrombospondin-1 (TSP-1) is involved in a variety of different cellular processes including cell adhesion, tumor progression, and angiogenesis. This paper reports the novel finding that TSP-1 upregulates integrin alpha6 subunit in human keratinocytes and human breast cancer cells resulting in increased cell adhesion and tumor cell invasion. The effect of TSP-1 on alpha6 subunit expression was examined in human keratinocytes and breast adenocarcinoma cell lines (MDA-MB-231) treated with TSP-1 and in TSP-1 stably transfected breast cancer cells. TSP-1 upregulated alpha6 message and protein in these cells as revealed by differential display, Northern and Western blot analysis and immunohistochemical localization studies. The increased expression of alpha6 was shown to mediate adhesion and invasion of these cells to laminin, a major component of the basement membrane and extracellular matrix (ECM). These data suggest that TSP-1 plays an integral role in the attachment of cells to the ECM facilitating cell motility and angiogenesis.

  14. Bio-functionalization of grade V titanium alloy with type I human collagen for enhancing and promoting human periodontal fibroblast cell adhesion - an in-vitro study.

    Science.gov (United States)

    Sharan, Jitendra; Koul, Veena; Dinda, Amit K; Kharbanda, Om P; Lale, Shantanu V; Duggal, Ritu; Mishra, Monu; Gupta, Govind; Singh, Manoj P

    2018-01-01

    Surface modification of medical grade V titanium alloy (Ti-6Al-4V) with biomolecules is an important and vital step for tailoring it for various biomedical applications. Present study investigates theinfluence of type I human collagen (T1HC) bio-conjugation through a three stage process. Polished grade V titanium alloy discs were functionalizedwith free OH group by means of controlled heat and alkali treatment followed by coating of 3-aminopropyltriethoxy (APTES) silane couplingagent. T1HC were bio-conjugated through 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride N-hydroxysuccinimide (EDCNHS)coupling reaction. At each stage, grade V titanium alloy surfaces were characterized by atomic force microscopy (AFM), scanning electronmicroscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Xrayphotoelectron spectroscopy (XPS). FTIR and XPS studies confirms thecovalent attachment of APTES with titanium alloy surface while terminalamine groups of APTES remained free for further attachment of T1HCthrough covalent bond. Aqueous stability of bio-conjugated titanium discsat various pH and time intervals (i.e. at pH of 5.5, 6.8 and 8.0 at timeinterval of 27 and 48h) confirmed the stability of T1HC bioconjugated collagen on titanium surface. Further human periodontalfibroblast cell line (HPdlF) culture revealed enhanced adhesion on theT1HC bio-conjugated surface compared to the polystyrene and polishedgrade V titanium alloy surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Leptospira Immunoglobulin-Like Protein B Interacts with the 20th Exon of Human Tropoelastin Contributing to Leptospiral Adhesion to Human Lung Cells

    Directory of Open Access Journals (Sweden)

    Ching-Lin Hsieh

    2017-05-01

    Full Text Available Leptospira immunoglobulin-like protein B (LigB, a surface adhesin, is capable of mediating the attachment of pathogenic leptospira to the host through interaction with various components of the extracellular matrix (ECM. Human tropoelastin (HTE, the building block of elastin, confers resilience and elasticity to lung, and other tissues. Previously identified Ig-like domains of LigB, including LigB4 and LigB12, bind to HTE, which is likely to promote Leptospira adhesion to lung tissue. However, the molecular mechanism that mediates the LigB-HTE interaction is unclear. In this study, the LigB-binding site on HTE was further pinpointed to a N-terminal region of the 20th exon of HTE (HTE20N. Alanine mutants of basic and aromatic residues on HTE20N significantly reduced binding to the LigB. Additionally, HTE-binding site was narrowed down to the first β-sheet of LigB12. On this binding surface, residues F1054, D1061, A1065, and D1066 were critical for the association with HTE. Most importantly, the recombinant HTE truncates could diminish the binding of LigB to human lung fibroblasts (WI-38 by 68%, and could block the association of LigA-expressing L. biflexa to lung cells by 61%. These findings should expand our understanding of leptospiral pathogenesis, particularly in pulmonary manifestations of leptospirosis.

  16. Rapamycin inhibits ox-LDL-induced inflammation in human endothelial cells in vitro by inhibiting the mTORC2/PKC/c-Fos pathway.

    Science.gov (United States)

    Sun, Juan-Juan; Yin, Xiao-Wei; Liu, Hui-Hui; Du, Wen-Xiu; Shi, Lu-Yao; Huang, Ya-Bo; Wang, Fen; Liu, Chun-Feng; Cao, Yong-Jun; Zhang, Yan-Lin

    2017-10-26

    Rapamycin and its derivative possess anti-atherosclerosis activity, but its effects on adhesion molecule expression and macrophage adhesion to endothelial cells during atherosclerosis remain unclear. In this study we explored the effects of rapamycin on ox-LDL-induced adhesion molecule expression and macrophage adhesion to endothelial cells in vitro and the underlying mechanisms. Ox-LDL (6-48 μg/mL) dose-dependently increased the protein levels of two adhesion molecules, intercellular adhesion molecule-1 (ICAM-1) and E-selectin, in human umbilical vein endothelial cells (HUVECs), whereas pretreatment with rapamycin (1-10 μmol/L) dose-dependently inhibited ox-LDL-induced increase in the adhesion molecule expression and macrophage adhesion to endothelial cells. Knockdown of mTOR or rictor, rather than raptor, mimicked the effects of rapamycin. Ox-LDL (100 μg/mL) time-dependently increased PKC phosphorylation in HUVECs, which was abolished by rapamycin or rictor siRNA. Pretreatment with PKC inhibitor staurospo¬rine significantly reduced ox-LDL-stimulated adhesion molecule expression and macrophage adhesion to endothelial cells, whereas pretreatment with PKC activator PMA/TPA attenuated the inhibitory effect of rapamycin on adhesion molecule expression. Ox-LDL (100 μg/mL) time-dependently increased c-Fos levels in HUVECs, and pretreatment with rapamycin or rictor siRNA significantly decreased expression of c-Fos. Knockdown of c-Fos antagonized ox-LDL-induced adhesion molecule expression and macrophage adhesion to endothelial cells. Our results demonstrate that rapamycin reduces ox-LDL-stimulated adhesion molecule expression and macrophage adhesion to endothelial cells by inhibiting mTORC2, but not mTORC1, and mTORC2 acts through the PKC/c-Fos signaling pathway.

  17. Effect of a functional desensitizing paste containing 8% arginine and calcium carbonate on the microtensile bond strength of etch-and-rinse adhesives to human dentin.

    Science.gov (United States)

    Yang, Hongye; Pei, Dandan; Liu, Siying; Wang, Yake; Zhou, Liqun; Deng, Donglai; Huang, Cui

    2013-06-01

    To evaluate (1) the effect of a desensitizing paste containing 8% arginine and calcium carbonate on the microtensile bond strength between dentin and etch-and-rinse adhesive systems; and (2) to examine the dentin tubules occlusion quantitatively. 48 freshly extracted intact human mandibular third molars were divided randomly into three groups. The mid-coronal dentin of each tooth was exposed and treated. Group A: no treatment; Group B: specimens were polished with a desensitizing paste containing 8% arginine and calcium carbonate using a rotary cup operating at a low speed for 3 seconds, followed by an additional duration of 3 seconds (total operation time of 6 seconds), according to the manufacturer's instructions; Group C: specimens were handled in the same way with the exception of an increased operation time of 9 seconds, twice (total operation time of 18 seconds). Each group was randomly divided into two subgroups in order to evaluate the effectiveness of two different adhesive agents. A two-step etch-and-rinse adhesive agent (Adper SingleBond 2) and a three-step etch-and-rinse adhesive agent (Adper ScotchBond Multi-purpose) were applied to dentin surfaces. Then, microtensile bond strengths of the six subgroups were tested. Dentin surfaces were analyzed using field-emission scanning electron microscopy (FESEM) and laser scanning confocal microscopy (LSCM). There was no significant difference in microtensile bond strength between the control group and the experimental groups treated with the 8% arginine and calcium carbonate desensitizing paste during the application of etch-and-rinse adhesives. Both FESEM and LSCM showed that the desensitizing paste occluded dentin tubules effectively.

  18. Interaction between mDia1 and ROCK in Rho-induced migration and adhesion of human dental pulp cells.

    Science.gov (United States)

    Cheng, L; Xu, J; Qian, Y Y; Pan, H Y; Yang, H; Shao, M Y; Cheng, R; Hu, T

    2017-01-01

    To investigate the effects of mammalian homologue of Drosophila diaphanous-1(mDia1) and Rho-associated coiled-coil-containing protein kinase (ROCK) on the migration and adhesion of dental pulp cells (DPCs). Lysophosphatidic acid (LPA) was used to activate Rho signalling. mDia1 and ROCK were inhibited by short interfering RNA and the specific inhibitor, Y-27632, respectively. The migration of DPCs was assessed using the transwell migration assay and scratch test. Formation of cytoskeleton and focal adhesions(FAs) was observed by confocal laser scanning microscopy. Cell adhesion and spreading assays were performed. Phosphorylation of focal adhesion kinase (FAK) and paxillin was detected by Western blotting, and the bands were analysed using Adobe Photoshop CS5 software. All experiments were performed at least three times, and data were analysed with one-way anova and a post hoc test. LPA-triggered activation of Rho and inhibition of ROCK significantly increased the cell migration rate. Cell migration was inhibited by silencing mDia1. mDia1 silencing and ROCK inhibition suppressed the LPA-induced formation of the cytoskeleton, FA and phosphorylation of FAK and paxillin. Inhibition of ROCK or mDia1 facilitated early cell adhesion and spreading; by contrast, the combined inhibition of ROCK and mDia1 neutralized these effects. mDia1 promoted RhoA-induced migration of DPCs, but ROCK had an opposite effect. Both mDia1 and ROCK participated in cytoskeleton formation and adhesion of DPCs. The interactions between mDia1 and ROCK might influence dental pulp repair by determining the migration and adhesion of DPCs. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    Science.gov (United States)

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  20. Silicone-Based Adhesives with Highly Tunable Adhesion Force for Skin-Contact Applications.

    Science.gov (United States)

    Lee, Bong Kuk; Ryu, Jin Hwa; Baek, In-Bok; Kim, Yarkyeon; Jang, Won Ick; Kim, Sang-Hyeob; Yoon, Yong Sun; Kim, Seung Hwan; Hong, Seong-Gu; Byun, Sangwon; Yu, Han Young

    2017-11-01

    A fundamental approach to fabricating silicone-based adhesives with highly tunable adhesion force for the skin-contact applications is presented. Liquid blends consisting of vinyl-multifunctional polydimethylsiloxane (V-PDMS), hydride-terminated PDMS (H-PDMS), and a tackifier composed of a silanol-terminated PDMS/MQ resin mixture and the MQ resin are used as the adhesive materials. The peel adhesion force of addition-cured adhesives on the skin is increased by increasing the H-PDMS molecular weights and the tackifier content, and decreasing the H-PDMS/V-PDMS ratio. There is an inverse relationship between the adhesion force and the Young's modulus. The low-modulus adhesives with a low H-PDMS/V-PDMS ratio exhibit enhanced adhesion properties. The low-modulus adhesives with the high MQ resin content show significantly enhanced adhesion properties. These adhesives exhibit a wide range of modulus (2-499 kPa), and their adhesion force (0.04-5.38 N) is superior to commercially available soft silicone adhesives (0.82-2.79 N). The strong adhesives (>≈2 N) provide sufficient adhesion for fixing the flexible electrocardiogram (ECG) device to the skin in most daily activity. The human ECG signals are successfully recorded in real time. These results suggest that the silicone-based adhesives should be useful as an atraumatic adhesive for the skin-contact applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Integrative genomic analysis identifies a role for intercellular adhesion molecule 1 in childhood asthma

    NARCIS (Netherlands)

    Klaassen, Ester M. M.; van de Kant, Kim D. G.; Jobsis, Quirijn; Penders, John; van Schooten, Frederik Jan; Quaak, Marieke; den Hartog, Gertjan J. M.; Koppelman, Gerard H.; van Schayck, Constant P.; van Eys, Guillaume; Dompeling, Edward

    Background Mounting evidence suggests that fetal exposures may exert long-term effects on the function of the skin and of the immune system. This study aimed at assessing whether maternal complications during pregnancy are associated with an increased risk of eczema during childhood. Methods The

  2. Adhesives with different pHs: effect on the MTBS of chemically activated and light-activated composites to human dentin

    Directory of Open Access Journals (Sweden)

    André Mallmann

    2007-08-01

    Full Text Available PURPOSE: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. MATERIAL AND METHOD: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7, depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]. Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37ºC/24 h and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm². Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min-1. Data were analyzed using two-way ANOVA and Tukey's tests (p<0.05. RESULTS: The anticipated hypothesis was not confirmed (p<0.0001. The bond strengths (MPa were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7±7.1ª; PB+Z100 = 23.8±5.7ª. However, with use of the chemically activated composite (B2B, PB (7.8±3.6b MPa showed significantly lower dentin bond strengths than OS (32.2±7.6ª. CONCLUSION: The low pH of the adhesive system can affect the bond of chemically activated composite to dentin. On the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly.

  3. A comparative study on adhesion and recovery of potential probiotic strains of Lactobacillus spp. by in vitro assay and analysis of human colon biopsies

    DEFF Research Database (Denmark)

    Larsen, Nadejda Nikolajevna; Michaelsen, Kim F.; Pærregaard, Anders

    2009-01-01

    Adhesion of the new Lactobacillus isolates, L. casei D12, L. casei Q85, L. casei Z11 and L. plantarum Q47, to the porcine intestinal cell line IPEC-J2 was investigated and compared to the recovery of the same bacterial strains from colon biopsies and faeces obtained from human intervention studies....... Probiotic bacteria L. rhamnosus 19070, L. reuteri 12246 and L. casei F19 were used as reference strains. The new isolates exhibited low to moderate adhesion to IPEC-J2 cells in the range of 7-26%. A large variation in the recovery of strains was observed between the persons, suggesting host specificity...... of intestinal colonization. High correlation was shown between recovery from the different sections of the colon of the same subject, indicating consistency of bacterial colonization of the epithelium. The recovery of L. casei Z11 and L. casei Q85 was highest and comparable to the reference strains of L...

  4. A Rho-associated coiled-coil containing kinases (ROCK) inhibitor, Y-27632, enhances adhesion, viability and differentiation of human term placenta-derived trophoblasts in vitro.

    Science.gov (United States)

    Motomura, Kenichiro; Okada, Naoko; Morita, Hideaki; Hara, Mariko; Tamari, Masato; Orimo, Keisuke; Matsuda, Go; Imadome, Ken-Ichi; Matsuda, Akio; Nagamatsu, Takeshi; Fujieda, Mikiya; Sago, Haruhiko; Saito, Hirohisa; Matsumoto, Kenji

    2017-01-01

    Although human term placenta-derived primary cytotrophoblasts (pCTBs) represent a good human syncytiotrophoblast (STB) model, in vitro culture of pCTBs is not always easily accomplished. Y-27632, a specific inhibitor of Rho-associated coiled-coil containing kinases (ROCK), reportedly prevented apoptosis and improved cell-to-substrate adhesion and culture stability of dissociated cultured human embryonic stem cells and human corneal endothelial cells. The Rho kinase pathway regulates various kinds of cell behavior, some of which are involved in pCTB adhesion and differentiation. In this study, we examined Y-27632's potential for enhancing pCTB adhesion, viability and differentiation. pCTBs were isolated from term, uncomplicated placentas by trypsin-DNase I-Dispase II treatment and purified by HLA class I-positive cell depletion. Purified pCTBs were cultured on uncoated plates in the presence of epidermal growth factor (10 ng/ml) and various concentrations of Y-27632. pCTB adhesion to the plates was evaluated by phase-contrast imaging, viability was measured by WST-8 assay, and differentiation was evaluated by immunofluorescence staining, expression of fusogenic genes and hCG-β production. Ras-related C3 botulinum toxin substrate 1 (Rac1; one of the effector proteins of the Rho family) and protein kinase A (PKA) involvement was evaluated by using their specific inhibitors, NSC-23766 and H-89. We found that Y-27632 treatment significantly enhanced pCTB adhesion to plates, viability, cell-to-cell fusion and hCG-β production, but showed no effects on pCTB proliferation or apoptosis. Furthermore, NSC-23766 and H-89 each blocked the effects of Y-27632, suggesting that Y-27632 significantly enhanced pCTB differentiation via Rac1 and PKA activation. Our findings suggest that Rac1 and PKA may be interactively involved in CTB differentiation, and addition of Y-27632 to cultures may be an effective method for creating a stable culture model for studying CTB and STB biology

  5. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  6. Laminar shear stress prevents simvastatin-induced adhesion molecule expression in cytokine activated endothelial cells.

    Science.gov (United States)

    Rossi, Joanna; Rouleau, Leonie; Emmott, Alexander; Tardif, Jean-Claude; Leask, Richard L

    2010-12-15

    In addition to lowering cholesterol, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, have been shown to modulate gene expression in endothelial cells. The effect of statins on cell adhesion molecule expression is unclear and largely unexplored in endothelial cells exposed to shear stress, an important regulator of endothelial cell function. In this study, the effect of simvastatin on vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was evaluated in human abdominal aortic endothelial cells (HAAEC) conditioned with various levels of laminar wall shear stress with or without tumor necrosis factor alpha (TNFα). As expected, TNFα alone greatly enhanced both VCAM-1 and ICAM-1 mRNA and protein. In static culture, simvastatin potentiated the TNFα-induced increase in VCAM-1 and ICAM-1 mRNA but not total protein at 24 h. Mevalonate, a precursor to cholesterol biosynthesis, eliminated the effect of simvastatin. Exposure of endothelial cells to elevated levels of laminar shear stress during simvastatin treatment prevented the potentiating effect of simvastatin on cell adhesion molecule mRNA. A shear stress of 12.5 dyn/cm² eliminated the increase in VCAM-1 by simvastatin, while 25 dyn/cm² was needed for ICAM-1. We conclude that simvastatin enhances VCAM-1 and ICAM-1 gene expression in TNFα-activated endothelial cells through inhibition of HMG-CoA reductase. High levels of laminar shear stress prevented the upregulation of VCAM-1 and ICAM-1 by simvastatin suggesting that an induction of cell adhesion molecules by statins may not occur in endothelial cells exposed to shear stress from blood flow. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. DEVELOPMENT OF STRUCTURAL ADHESIVES,

    Science.gov (United States)

    Contents: (A) Structural adhesives for metals; development of better adhesives; development of heat resistance adhesives; development of room...temperature setting adhesives; recent investigations of metal-bonding adhesives; development of production processes and design criteria for metal adhesives... development of non-destructive inspection methods for adhesive bonded structures. (B) European papers; British developments in the field of

  8. Inositol hexaphosphate (IP6) inhibits key events of cancer metastasis: I. In vitro studies of adhesion, migration and invasion of MDA-MB 231 human breast cancer cells.

    Science.gov (United States)

    Tantivejkul, Kwanchanit; Vucenik, Ivana; Shamsuddin, Abulkalam M

    2003-01-01

    The anti-cancer agent inositol hexaphosphate (IP6) is an abundant intrinsic component of both plant and mammalian cells. In addition to inducing differentiation and inhibiting growth of numerous cancer cell lines in vitro, IP6 has been demonstrated to prevent and abrogate both primary tumor and metastasis in vivo. Using MDA-MB 231 human breast cancer cells, we studied the potential of IP6 to inhibit cell adhesion, migration and invasion, the key steps in cancer metastasis, utilizing the extracellular matrix (ECM) proteins, a culture wounding assay, modified Boyden chambers, immunocytochemistry and zymography. IP6 treatment caused a 65% reduction of cell adhesion to fibronection (p = 0.002) and a 37% reduction to collagen (p = 0.005). To determine whether a decrease in cell adhesion leads to a decrease in cell motility, migration assays were performed; IP6 decreased both the number of migrating cells and the distance of cell migration into the denuded area by 72% (p < 0.001). Haptotatic cell migration in a modified Boyden chambers was also reduced in a dose-dependent manner. While cell migration on fibronectin was inhibited by 65% (p < 0.001), migration on collagen and laminin was decreased by 32% (p < 0.01) and 13% (p < 0.05), respectively. Immunocytochemistry revealed the absence of lamellipodia structure in IP6-treated cells as compared to untreated cells, corresponding to a diminished ability of cancer cells to form cellular network as determined by Matrigel outgrowth assay. Likewise, cell invasion also was decreased (by 72% after IP6 treatment, p = 0.001) in a dose-dependent fashion. Additionally, IP6 significantly (p = 0.006) inhibited the secretion of matrix metalloproteinase (MMP)-9 as assessed by zymography. The results of this study show that IP6 inhibits the metastasis of human breast cancer cells in vitro through effects on cancer cell adhesion, migration and invasion.

  9. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    Science.gov (United States)

    Hong, Hao; Brown, Christine E; Ostberg, Julie R; Priceman, Saul J; Chang, Wen-Chung; Weng, Lihong; Lin, Paul; Wakabayashi, Mark T; Jensen, Michael C; Forman, Stephen J

    2016-01-01

    New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR)-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM) were then genetically modified to express an anti-L1-CAM CAR (CE7R), which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p.) administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  10. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  11. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting...... in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal......43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium....

  12. Intercellular Genomics of Subsurface Microbial Colonies

    Energy Technology Data Exchange (ETDEWEB)

    Ortoleva, Peter [Indiana Univ., Bloomington, IN (United States); Tuncay, Kagan [Indiana Univ., Bloomington, IN (United States); Gannon, Dennis [Indiana Univ., Bloomington, IN (United States); Meile, Christof [Indiana Univ., Bloomington, IN (United States)

    2007-02-14

    This report summarizes progress in the second year of this project. The objective is to develop methods and software to predict the spatial configuration, properties and temporal evolution of microbial colonies in the subsurface. To accomplish this, we integrate models of intracellular processes, cell-host medium exchange and reaction-transport dynamics on the colony scale. At the conclusion of the project, we aim to have the foundations of a predictive mathematical model and software that captures the three scales of these systems – the intracellular, pore, and colony wide spatial scales. In the second year of the project, we refined our transcriptional regulatory network discovery (TRND) approach that utilizes gene expression data along with phylogenic similarity and gene ontology analyses and applied it successfully to E.coli, human B cells, and Geobacter sulfurreducens. We have developed a new Web interface, GeoGen, which is tailored to the reconstruction of microbial TRNs and solely focuses on Geobacter as one of DOE’s high priority microbes. Our developments are designed such that the frameworks for the TRND and GeoGen can readily be used for other microbes of interest to the DOE. In the context of modeling a single bacterium, we are actively pursuing both steady-state and kinetic approaches. The steady-state approach is based on a flux balance that uses maximizing biomass growth rate as its objective, subjected to various biochemical constraints, for the optimal values of reaction rates and uptake/release of metabolites. For the kinetic approach, we use Karyote, a rigorous cell model developed by us for an earlier DOE grant and the DARPA BioSPICE Project. We are also investigating the interplay between bacterial colonies and environment at both pore and macroscopic scales. The pore scale models use detailed representations for realistic porous media accounting for the distribution of grain size whereas the macroscopic models employ the Darcy-type flow

  13. META2: Intercellular DNA Methylation Pairwise Annotation and Integrative Analysis

    OpenAIRE

    Binhua Tang

    2016-01-01

    Genome-wide deciphering intercellular differential DNA methylation as well as its roles in transcriptional regulation remains elusive in cancer epigenetics. Here we developed a toolkit META2 for DNA methylation annotation and analysis, which aims to perform integrative analysis on differentially methylated loci and regions through deep mining and statistical comparison methods. META2 contains multiple versatile functions for investigating and annotating DNA methylation profiles. Benchmarked w...

  14. Substrate Coupling Strength of Integrin-Binding Ligands Modulates Adhesion, Spreading, and Differentiation of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Choi, Chun Kit K; Xu, Yang J; Wang, Ben; Zhu, Meiling; Zhang, Li; Bian, Liming

    2015-10-14

    Substrate stiffness has been shown to regulate the differentiation fate of human mesenchymal stem cells (hMSCs). hMSCs sense and respond to substrate rigidity by exerting traction forces upon the binding between integrins and integrin-specific ligands present on the substrate surface. However, in previous studies, integrin-specific ligands such as Arg-Gly-Asp (RGD) peptides are always grafted to the substrate by a permanent covalent bond. Whether the coupling strength of integrin-specific ligands on substrate will influence cell behaviors has not been explored. In this work, we have developed a facile platform to investigate the effects of varied coupling strength between the RGD peptide and the glass substrate on stem cell behaviors. Glass coverslips are decorated with positive charges by silanization using (3-aminopropyl) triethoxysilane (APTES) to immobilize negatively charged citrate-capped gold nanoparticles (cit-AuNPs) solely via electrostatic interactions. The monolayer of electrostatically immobilized cit-AuNPs is further conjugated with the thiolated RGD peptides through the sulfur-gold bond. The substrate coupling strength of the RGD peptides, which is dependent on the electrostatic interactions between the APTES-treated glass substrate and the cit-AuNPs, is simply tuned by changing the APTES dosage and, hence, the resultant positive charge density on the surface. A total of 0.5% and 12.5% of APTES are used to fabricate low-coupling-strength surfaces (namely, LCS0.5 and LCS12.5), whereas 25% and 50% of APTES are used to fabricate high-coupling-strength surfaces (namely, HCS25 and HCS50). Fluorescence microscopy shows that hMSCs spread well and form stable actin filamentous structure on HCS surfaces but not on LCS surfaces. Remarkably, hMSCs exhibit enhanced osteogenesis on HCS surfaces as revealed by the immunostaining results of multiple early osteogenic markers. These differential behaviors may be governed by Yes-associated protein (YAP), a

  15. Recombinant disintegrin (r-Cam-dis) from Crotalus adamanteus inhibits adhesion of human pancreatic cancer cell lines to laminin-1 and vitronectin.

    Science.gov (United States)

    Suntravat, Montamas; Barret, Henriquez S; Jurica, Cameron A; Lucena, Sara E; Perez, John C; Sánchez, Elda E

    2015-01-01

    Pancreatic cancer is a malignant cancer common worldwide having poor prognosis, even when diagnosed at its early stage. Cell adhesion plays a critical role in cancer invasion and metastasis. Integrins are major mediators of cell adhesion and play an important role in invasion and metastatic growth of human pancreatic cancer cells. Snake disintegrins are the most potent ligands of several integrins and have potential therapeutic applications for cancers. We have previously cloned and expressed a new recombinant RGD-disintegrin from Crotalus adamanteus (r-Cam-dis). This recently published r-Cam-dis has an extra nine amino acids derived from the vector (SPGARGSEF) at the N-terminus end and has strong anti-platelet activity. However, this r-Cam-dis contains the contamination of the cleavage of the N-terminal end of the pET-43.1a cloning vector. In this study, we have cloned r-Cam-dis in a different cloning vector (pGEX-4T-1) showing five different amino acids (GSPEF) at the N-terminal part. This new r-Cam-dis was expressed and tested for inhibition of platelet aggregation, specific binding activity with seven different integrins, and inhibition of adhesion of three different pancreatic cancer cell lines on laminin-1 and vitronectin. The r-Cam-dis showed potent binding to αvβ3 integrin, but was moderate to weak with αvβ5, αvβ6, α2β1, and α6β1. Interestingly, the inhibition of r-Cam-dis on pancreatic cancer cell lines adhesion to laminin-1 was more effective than that to vitronectin. Based on our binding results to integrin receptors and previous adhesion studies using function-blocking monoclonal antibodies, it is suggested that r-Cam-dis could be inhibiting adhesion of pancreatic cancer cell lines through integrins α2β1, α6β1, αvβ5, and αvβ6.

  16. Phosphatidylinositol 4-phosphate in the Golgi apparatus regulates cell-cell adhesion and invasive cell migration in human breast cancer.

    Science.gov (United States)

    Tokuda, Emi; Itoh, Toshiki; Hasegawa, Junya; Ijuin, Takeshi; Takeuchi, Yukiko; Irino, Yasuhiro; Fukumoto, Miki; Takenawa, Tadaomi

    2014-06-01

    Downregulation of cell-cell adhesion and upregulation of cell migration play critical roles in the conversion of benign tumors to aggressive invasive cancers. In this study, we show that changes in cell-cell adhesion and cancer cell migration/invasion capacity depend on the level of phosphatidylinositol 4-phosphate [PI(4)P] in the Golgi apparatus in breast cancer cells. Attenuating SAC1, a PI(4)P phosphatase localized in the Golgi apparatus, resulted in decreased cell-cell adhesion and increased cell migration in weakly invasive cells. In contrast, silencing phosphatidylinositol 4-kinase IIIβ, which generates PI(4)P in the Golgi apparatus, increased cell-cell adhesion and decreased invasion in highly invasive cells. Furthermore, a PI(4)P effector, Golgi phosphoprotein 3, was found to be involved in the generation of these phenotypes in a manner that depends on its PI(4)P-binding ability. Our results provide a new model for breast cancer cell progression in which progression is controlled by PI(4)P levels in the Golgi apparatus. ©2014 American Association for Cancer Research.

  17. The influence of pre-operative radiotherapy on the expression of p53 and adhesion molecules: correlation with treatment results in patients with squamous cell carcinoma or adenocarcinoma

    NARCIS (Netherlands)

    Pomp, J.; Blom, J.; Linthorst, M.; Zwinderman, A. H.; van Krimpen, C.

    2002-01-01

    E-cadherin and the catenins are responsible for inter-cellular adhesion in epithelial tissues. E-cadherin and/or catenin expression is often altered in malignancies, leading to increased invasiveness and metastatic activity of tumour cells. Intact adhesion molecules reduce the risk on distant

  18. Investigation of the Viability, Adhesion, and Migration of Human Fibroblasts in a Hyaluronic Acid/Gelatin Microgel-Reinforced Composite Hydrogel for Vocal Fold Tissue Regeneration.

    Science.gov (United States)

    Heris, Hossein K; Daoud, Jamal; Sheibani, Sara; Vali, Hojatollah; Tabrizian, Maryam; Mongeau, Luc

    2016-01-21

    The potential use of a novel scaffold biomaterial consisting of cross-linked hyaluronic acid (HA)-gelatin (Ge) composite microgels is investigated for use in treating vocal fold injury and scarring. Cell adhesion integrins and kinematics of cell motion are investigated in 2D and 3D culture conditions, respectively. Human vocal fold fibroblast (hVFF) cells are seeded on HA-Ge microgels attached to a HA hydrogel thin film. The results show that hVFF cells establish effective adhesion to HA-Ge microgels through the ubiquitous expression of β1 integrin in the cell membrane. The microgels are then encapsulated in a 3D HA hydrogel for the study of cell migration. The cells within the HA-Ge microgel-reinforced composite hydrogel (MRCH) scaffold have an average motility speed of 0.24 ± 0.08 μm min(-1) . The recorded microscopic images reveal features that are presumably associated with lobopodial and lamellipodial cell migration modes within the MRCH scaffold. Average cell speed during lobopodial migration is greater than that during lamellipodial migration. The cells move faster in the MRCH than in the HA-Ge gel without microgels. These findings support the hypothesis that HA-Ge MRCH promotes cell adhesion and migration; thereby they constitute a promising biomaterial for vocal fold repair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. LEFTY2 Controls Migration of Human Endometrial Cancer Cells via Focal Adhesion Kinase Activity (FAK) and miRNA-200a.

    Science.gov (United States)

    Alowayed, Nour; Salker, Madhuri S; Zeng, Ni; Singh, Yogesh; Lang, Florian

    2016-01-01

    LEFTY2, a suppressor of cell proliferation, tumor growth, regulator of stemness and embryonic differentiation, is a negative regulator of cancer cell reprogramming. Malignant transformation may lead to migration requiring loss of adhesion and gain of migratory activity. Signaling involved in the orchestration of migration, proliferation and spreading of cells include focal adhesion kinase (FAK) and adhesion molecule E-cadherin. The present study explored whether LEFTY2 influences the proliferation marker MKi67, FAK activity, E-cadherin abundance and migration of Ishikawa human endometrial carcinoma cells. Moreover, the study explored the involvement of microRNA-200a (miR-200a), which is known to regulate cellular adhesion by targeting E-Cadherin. FAK activity was estimated from FAK phosphorylation quantified by Western blotting, migration utilizing a wound healing assay, miR-200a and MKi67 expression levels utilizing qRT-PCR, cell proliferation and apoptosis using BrdU and Annexin V staining, respectively, and E-Cadherin (E-Cad) abundance, using confocal microscopy. LEFTY2 (25 ng/ml, 48 hours) treatment was followed by decrease of MKi67 expression, FAK activity and migration. LEFTY2 upregulated miRNA-200a and E-Cad protein level in Ishikawa cells. The effect of LEFTY2 on migration was mimicked by FAK inhibitor PF 573228 (50 µM). Addition of LEFTY2 in the presence of PF-573228 did not result in a further significant decline of migration. In conclusion, LEFTY2 down-regulates MKi67 expression and FAK activity, up-regulates miR-200a and E-cadherin, and is thus a powerful negative regulator of endometrial cell proliferation and migration. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Human TM9SF4 Is a New Gene Down-Regulated by Hypoxia and Involved in Cell Adhesion of Leukemic Cells.

    Directory of Open Access Journals (Sweden)

    Rosa Paolillo

    Full Text Available The transmembrane 9 superfamily protein member 4, TM9SF4, belongs to the TM9SF family of proteins highly conserved through evolution. TM9SF4 homologs, previously identified in many different species, were mainly involved in cellular adhesion, innate immunity and phagocytosis. In human, the function and biological significance of TM9SF4 are currently under investigation. However, TM9SF4 was found overexpressed in human metastatic melanoma and in a small subset of acute myeloid leukemia (AMLs and myelodysplastic syndromes, consistent with an oncogenic function of this gene.In this study, we first analyzed the expression and regulation of TM9SF4 in normal and leukemic cells and identified TM9SF4 as a gene highly expressed in human quiescent CD34+ hematopoietic progenitor cells (HPCs, regulated during monocytic and granulocytic differentiation of HPCs, both lineages giving rise to mature myeloid cells involved in adhesion, phagocytosis and immunity. Then, we found that TM9SF4 is markedly overexpressed in leukemic cells and in AMLs, particularly in M2, M3 and M4 AMLs (i.e., in AMLs characterized by the presence of a more or less differentiated granulocytic progeny, as compared to normal CD34+ HPCs. Proliferation and differentiation of HPCs occurs in hypoxia, a physiological condition in bone marrow, but also a crucial component of cancer microenvironment. Here, we investigated the impact of hypoxia on TM9SF4 expression in leukemic cells and identified TM9SF4 as a direct target of HIF-1α, downregulated in these cells by hypoxia. Then, we found that the hypoxia-mediated downregulation of TM9SF4 expression is associated with a decrease of cell adhesion of leukemic cells to fibronectin, thus demonstrating that human TM9SF4 is a new molecule involved in leukemic cell adhesion.Altogether, our study reports for the first time the expression of TM9SF4 at the level of normal and leukemic hematopoietic cells and its marked expression at the level of AMLs

  1. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2014-03-01

    Full Text Available Glioblastoma multiforme (GBM is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.

  2. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  3. CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions.

    Science.gov (United States)

    Azcutia, Veronica; Routledge, Matthew; Williams, Marcie R; Newton, Gail; Frazier, William A; Manica, Andrè; Croce, Kevin J; Parkos, Charles A; Schmider, Angela B; Turman, Melissa V; Soberman, Roy J; Luscinskas, Francis W

    2013-11-01

    CD47 plays an important but incompletely understood role in the innate and adaptive immune responses. CD47, also called integrin-associated protein, has been demonstrated to associate in cis with β1 and β3 integrins. Here we test the hypothesis that CD47 regulates adhesive functions of T-cell α4β1 (VLA-4) and αLβ2 (LFA-1) in in vivo and in vitro models of inflammation. Intravital microscopy studies reveal that CD47(-/-) Th1 cells exhibit reduced interactions with wild-type (WT) inflamed cremaster muscle microvessels. Similarly, murine CD47(-/-) Th1 cells, as compared with WT, showed defects in adhesion and transmigration across tumor necrosis factor-α (TNF-α)-activated murine endothelium and in adhesion to immobilized intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) under flow conditions. Human Jurkat T-cells lacking CD47 also showed reduced adhesion to TNF-α-activated endothelium and ICAM-1 and VCAM-1. In cis interactions between Jurkat T-cell β2 integrins and CD47 were detected by fluorescence lifetime imaging microscopy. Unexpectedly, Jurkat CD47 null cells exhibited a striking defect in β1 and β2 integrin activation in response to Mn(2+) or Mg(2+)/ethylene glycol tetraacetic acid treatment. Our results demonstrate that CD47 associates with β2 integrins and is necessary to induce high-affinity conformations of LFA-1 and VLA-4 that recognize their endothelial cell ligands and support leukocyte adhesion and transendothelial migration.

  4. 21 CFR 878.3750 - External prosthesis adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External prosthesis adhesive. 878.3750 Section 878.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... adhesive. (a) Identification. An external prosthesis adhesive is a silicone-type adhesive intended to be...

  5. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Noriko [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Yao, Hisayuki [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Iwasa, Masaki; Fujishiro, Aya [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Division of Gastroenterology and Hematology, Shiga University of Medical Science, Shiga 520-2192 (Japan); Fujii, Sumie [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Hirai, Hideyo [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Takaori-Kondo, Akifumi [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ichinohe, Tatsuo [Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Maekawa, Taira [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan)

    2016-01-22

    Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansion of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive treatment

  6. Adhesive plasters

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  7. Fas signalling promotes intercellular communication in T cells.

    Science.gov (United States)

    Luchetti, Francesca; Canonico, Barbara; Arcangeletti, Marcella; Guescini, Michele; Cesarini, Erica; Stocchi, Vilberto; Degli Esposti, Mauro; Papa, Stefano

    2012-01-01

    Cell-to-cell communication is a fundamental process for development and maintenance of multicellular organisms. Diverse mechanisms for the exchange of molecular information between cells have been documented, such as the exchange of membrane fragments (trogocytosis), formation of tunneling nanotubes (TNTs) and release of microvesicles (MVs). In this study we assign to Fas signalling a pivotal role for intercellular communication in CD4+ T cells. Binding of membrane-bound FasL to Fas expressing target cells triggers a well-characterized pro-apoptotic signalling cascade. However, our results, pairing up flow cytometric studies with confocal microscopy data, highlight a new social dimension for Fas/FasL interactions between CD4+ T cells. Indeed, FasL enhances the formation of cell conjugates (8 fold of increase) in an early time-frame of stimulation (30 min), and this phenomenon appears to be a crucial step to prime intercellular communication. Our findings show that this communication mainly proceeds along a cytosolic material exchange (ratio of exchange >10, calculated as ratio of stimulated cells signal divided by that recorded in control cells) via TNTs and MVs release. In particular, inhibition of TNTs genesis by pharmacological agents (Latruculin A and Nocodazole) markedly reduced this exchange (inhibition percentage: >40% and >50% respectively), suggesting a key role for TNTs in CD4+ T cells communication. Although MVs are present in supernatants from PHA-activated T cells, Fas treatment also leads to a significant increase in the amount of released MVs. In fact, the co-culture performed between MVs and untreated cells highlights a higher presence of MVs in the medium (1.4 fold of increase) and a significant MVs uptake (6 fold of increase) by untreated T lymphocytes. We conclude that Fas signalling induces intercellular communication in CD4+ T cells by different mechanisms that seem to start concomitantly with the main pathway (programmed cell death) promoted

  8. Fas signalling promotes intercellular communication in T cells.

    Directory of Open Access Journals (Sweden)

    Francesca Luchetti

    Full Text Available Cell-to-cell communication is a fundamental process for development and maintenance of multicellular organisms. Diverse mechanisms for the exchange of molecular information between cells have been documented, such as the exchange of membrane fragments (trogocytosis, formation of tunneling nanotubes (TNTs and release of microvesicles (MVs. In this study we assign to Fas signalling a pivotal role for intercellular communication in CD4+ T cells. Binding of membrane-bound FasL to Fas expressing target cells triggers a well-characterized pro-apoptotic signalling cascade. However, our results, pairing up flow cytometric studies with confocal microscopy data, highlight a new social dimension for Fas/FasL interactions between CD4+ T cells. Indeed, FasL enhances the formation of cell conjugates (8 fold of increase in an early time-frame of stimulation (30 min, and this phenomenon appears to be a crucial step to prime intercellular communication. Our findings show that this communication mainly proceeds along a cytosolic material exchange (ratio of exchange >10, calculated as ratio of stimulated cells signal divided by that recorded in control cells via TNTs and MVs release. In particular, inhibition of TNTs genesis by pharmacological agents (Latruculin A and Nocodazole markedly reduced this exchange (inhibition percentage: >40% and >50% respectively, suggesting a key role for TNTs in CD4+ T cells communication. Although MVs are present in supernatants from PHA-activated T cells, Fas treatment also leads to a significant increase in the amount of released MVs. In fact, the co-culture performed between MVs and untreated cells highlights a higher presence of MVs in the medium (1.4 fold of increase and a significant MVs uptake (6 fold of increase by untreated T lymphocytes. We conclude that Fas signalling induces intercellular communication in CD4+ T cells by different mechanisms that seem to start concomitantly with the main pathway (programmed cell death

  9. Gap junctional intercellular communication and cytoskeletal organization in chondrocytes in suspension in an ultrasound trap.

    Science.gov (United States)

    Bazou, Despina; Dowthwaite, Gary P; Khan, Ilyas M; Archer, Charles W; Ralphs, James R; Coakley, W Terence

    2006-01-01

    Particles or cells suspended in an appropriately designed ultrasound standing wave field can be aggregated at a node to form a single monolayer in a plane that can be interrogated microscopically. The approach is applied here to investigate the temporal development of F-actin and Cx43 distribution and of gap junctional intercellular communication in 2-D chondrocyte aggregates (monolayers) rapidly and synchronously formed and held in suspension in an ultrasound trap. Development of the F-actin cytoskeleton in the confluent single layer of 'cuboidal' cells forming the aggregate was completed within 1 h. Chondrocytes levitated in the trap synchronously formed functional gap junctions (as assessed by CMFDA dye transfer assays) in less than 1 h of initiation of cell-cell contact in the trap. It was shown that Cx43 gene expression was retained in isolated chondrocytes in suspension. Preincubation of cells with the protein synthesis inhibitor cycloheximide caused a six-fold decrease in Cx43 accumulation (as assessed by immunofluorescence) at the interfaces of chondrocytes in the aggregate. It is shown that the ultrasound trap provides an approach to studying the early stages of cytoskeletal and gap junction development as cells progress from physical aggregation, through molecular adhesion, to display the intracellular consequences of receptor interactions.

  10. Curcumin inhibits activation induced by urban particulate material or titanium dioxide nanoparticles in primary human endothelial cells.

    Science.gov (United States)

    Montiel-Dávalos, Angélica; Silva Sánchez, Guadalupe Jazmin; Huerta-García, Elizabeth; Rueda-Romero, Cristhiam; Soca Chafre, Giovanny; Mitre-Aguilar, Irma B; Alfaro-Moreno, Ernesto; Pedraza-Chaverri, José; López-Marure, Rebeca

    2017-01-01

    Curcumin has protective effects against toxic agents and shows preventive properties for various diseases. Particulate material with an aerodynamic diameter of ≤10 μm (PM10) and titanium dioxide nanoparticles (TiO2-NPs) induce endothelial dysfunction and activation. We explored whether curcumin is able to attenuate different events related to endothelial activation. This includes adhesion, expression of adhesion molecules and oxidative stress induced by PM10 and TiO2-NPs. Human umbilical vein endothelial cells (HUVEC) were treated with 1, 10 and 100 μM curcumin for 1 h and then exposed to PM10 at 3 μg/cm2 or TiO2-NPs at 10 μg/cm2. Cell adhesion was evaluated by co-culture with U937 human myelomonocytic cells. Adhesion molecules expression was measured by flow cytometry after 3 or 24 h of exposure. Oxidative stress was determined by 2,7-dichlorodihydrofluorescein (H2DCF) oxidation. PM10 and TiO2-NPs induced the adhesion of U937 cells and the expression of E- and P-selectins, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1). The expression of E- and P-selectins matched the adhesion of monocytes to HUVEC after 3 h. In HUVEC treated with 1 or 10 μM curcumin, the expression of adhesion molecules and monocytes adhesion was significantly diminished. Curcumin also partially reduced the H2DCF oxidation induced by PM10 and TiO2-NPs. Our results suggest an anti-inflammatory and antioxidant role by curcumin attenuating the activation caused on endothelial cells by exposure to particles. Therefore, curcumin could be useful in the treatment of diseases where an inflammatory process and endothelial activation are involved.

  11. Influence of Air Abrasion and Sonic Technique on Microtensile Bond Strength of One-Step Self-Etch Adhesive on Human Dentin

    Directory of Open Access Journals (Sweden)

    Baraba Anja

    2015-01-01

    Full Text Available The purpose of this in vitro study was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n = 12 per group, according to the pretreatment of the dentin: (1 control group, (2 air abrasion group, and (3 sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P > 0.05. Mean microtensile bond strength (MPa values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin.

  12. Anti-Inflammatory effect of Buddleja officinalis on vascular inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Moon, Mi Kyoung; Hwang, Sun Mi; Yoon, Jung Joo; Lee, So Min; Seo, Kwan Soo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-01-01

    Vascular inflammation process has been suggested to be an important risk factor in the initiation and development of atherosclerosis. In this study, we investigated whether and by what mechanisms an aqueous extract of Buddleja officinalis (ABO) inhibited the expressions of cellular adhesion molecules, which are relevant to inflammation and atherosclerosis. Pretreatment of human umbilical vein endothelial cells (HUVEC) with ABO (1-10 microg/ml) for 18 hours dose-dependently inhibited TNF-alpha-induced adhesion U937 monocytic cells, as well as mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1). Pretreatment with ABO also blocked TNF-alpha-induced ROS formation. Nuclear factor-kappa B (NF-kappaB) is required in the transcription of these adhesion molecule genes. Western blot analysis revealed that ABO inhibits the translocation of the p65 subunit of NF-kappaB to the nucleus. ABO inhibited the TNF-alpha-induced degradation of IkappaB-alpha, an inhibitor of NF-kappaB, by inhibiting the phosphorylation of IkappaB-alpha in HUVEC. Taken together, ABO could reduce cytokine-induced endothelial adhesiveness throughout down-regulating intracellular ROS production, NF-kappaB, and adhesion molecule expression in HUVEC, suggesting that the natural herb Buddleja officinalis may have potential implications in atherosclerosis.

  13. 5-Hydroxymethylfurfural from black garlic extract prevents TNFα-induced monocytic cell adhesion to HUVECs by suppression of vascular cell adhesion molecule-1 expression, reactive oxygen species generation and NF-κB activation.

    Science.gov (United States)

    Kim, Hye Kyung; Choi, Young-Whan; Lee, Eun Na; Park, Jin Kyeong; Kim, Sun-Gun; Park, Da-Jung; Kim, Bong-Seon; Lim, Young-Tak; Yoon, Sik

    2011-07-01

    5-Hydroxymethylfurfural (5-HMF) is a common Maillard reaction product; the reaction occurs during heat-processing and the preparation of many types of foods and beverages. Although 5-HMF has been proposed to have harmful effects, recently, its beneficial effects, including antioxidant, cytoprotective and antitumor effects have become increasingly apparent. It was found recently that a chloroform extract of aged black garlic shows antiinflammatory properties when administered to human umbilical vein endothelial cells (HUVECs). This study investigated the antiinflammatory potential of 5-HMF purified from the chloroform extract of aged black garlic in tumor necrosis factor-α (TNF-α)-stimulated HUVECs. Treatment of HUVECs with 5-HMF strongly suppressed TNF-α-induced cell surface and total protein expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) as well as their mRNA expression. In addition, 5-HMF significantly inhibited TNF-α-induced reactive oxygen species formation, and markedly reduced THP-1 monocyte adhesion to TNF-α-stimulated HUVECs. Furthermore, 5-HMF significantly inhibited NF-κB transcription factor activation in TNF-α-stimulated HUVECs. The data provide new evidence of the antiinflammatory properties of 5-HMF in support of its potential therapeutic use for the prevention and management of vascular diseases such as atherosclerosis through mechanisms involving the inhibition of VCAM-1 expression and NF-κB activation in vascular endothelial cells. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Bond Strength of a Novel One Bottle Multi-mode Adhesive to Human Dentin After Six Months of Storage

    Science.gov (United States)

    Manfroi, Fernanda Borguetti; Marcondes, Maurem Leitão; Somacal, Deise Caren; Borges, Gilberto Antonio; Júnior, Luiz Henrique Burnett; Spohr, Ana Maria

    2016-01-01

    Objective: The aim of the study was to evaluate the microtensile bond strength (µTBS) of Scotchbond Universal to dentin using the etch-and-rinse or the self-etch technique after 24 h and 6 months of storage. Materials and Methods: Flat dentin surfaces were obtained in 24 third molars. The teeth were divided into four groups: G1 – Scotchbond Universal applied in the etch-and-rinse mode; G2 – Scotchbond Universal applied in the self-etch mode; G3 – Scotchbond Multi-Purpose; G4 – Clearfil SE Bond. A block of composite was built on the adhesive area. The tooth/resin sets were cut parallel to the long axis to obtain 40 beams (~0.8 mm2) for each group. Twenty specimens were immediately submitted to the µTBS test, and the remaining 20 were stored in water for 6 months. Failures and the adhesive interface were analyzed by SEM. Results: According to two-way ANOVA, the interaction between adhesive and storage time was significant (p=0.015).The µTBS (MPa) means were the following: 24 h – G1 (39.37±10.82), G2 (31.02±13.76), G3 (35.09±14.03) and G4 (35.84±11.06); 6 months – G1 (36.99±8.78), G2 (40.58±8.07), G3 (32.44±6.07) and G4 (41.75±8.25). Most failures were mixed. Evidence of hybrid layer and numerous resin tags were noted for Scotchbond Universal applied with the etch-and-rinse mode and Scotchbond Multi-Purpose. A thinner hybrid layer and fewer resin tags were noted for Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond. Conclusion: The results indicate that the µTBS for Scotchbond Universal is comparable to the gold-standard adhesives. Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond revealed higher bond stability compared to the etch-and-rinse mode. PMID:27347230

  15. New blocking antibodies impede adhesion, migration and survival of ovarian cancer cells, highlighting MFGE8 as a potential therapeutic target of human ovarian carcinoma.

    Directory of Open Access Journals (Sweden)

    Lorenzo Tibaldi

    Full Text Available Milk Fat Globule--EGF--factor VIII (MFGE8, also called lactadherin, is a secreted protein, which binds extracellularly to phosphatidylserine and to αvβ3 and αvβ5 integrins. On human and mouse cells expressing these integrins, such as endothelial cells, phagocytes and some tumors, MFGE8/lactadherin has been shown to promote survival, epithelial to mesenchymal transition and phagocytosis. A protumoral function of MFGE8 has consequently been documented for a few types of human cancers, including melanoma, a subtype of breast cancers, and bladder carcinoma. Inhibiting the functions of MFGE8 could thus represent a new type of therapy for human cancers. Here, we show by immunohistochemistry on a collection of human ovarian cancers that MFGE8 is overexpressed in 45% of these tumors, and we confirm that it is specifically overexpressed in the triple-negative subtype of human breast cancers. We have established new in vitro assays to measure the effect of MFGE8 on survival, adhesion and migration of human ovarian and triple-negative breast cancer cell lines. Using these assays, we could identify new MFGE8-specific monoclonal antibodies, which efficiently blocked these three tumor-promoting effects of MFGE8. Our results suggest future use of MFGE8-blocking antibodies as new anti-cancer therapeutics in subgroups of ovarian carcinoma, and triple-negative breast carcinoma patients.

  16. Communication Is Key: Mechanisms of Intercellular Signaling in Vasodilation.

    Science.gov (United States)

    Freed, Julie K; Gutterman, David D

    2017-05-01

    Thirty years ago, Robert F. Furchgott concluded that nitric oxide, a compound traditionally known to be a toxic component of fuel exhaust, is in fact released from the endothelium, and in a paracrine fashion, induces relaxation of underlying vascular smooth muscle resulting in vasodilation. This discovery has helped pave the way for a more thorough understanding of vascular intercellular and intracellular communication that supports the process of regulating regional perfusion to match the local tissue oxygen demand. Vasoregulation is controlled not only by endothelial release of a diverse class of vasoactive compounds such as nitric oxide, arachidonic acid metabolites, and reactive oxygen species, but also by physical forces on the vascular wall and through electrotonic conduction through gap junctions. Although the endothelium is a critical source of vasoactive compounds, paracrine mediators can also be released from surrounding parenchyma such as perivascular fat, myocardium, and cells in the arterial adventitia to exert either local or remote vasomotor effects. The focus of this review will highlight the various means by which intercellular communication contributes to mechanisms of vasodilation. Paracrine signaling and parenchymal influences will be reviewed as well as regional vessel communication through gap junctions, connexons, and myoendothelial feedback. More recent modes of communication such as vesicular and microRNA signaling will also be discussed.

  17. Simple modifications to methimazole that enhance its inhibitory effect on tumor necrosis factor-α-induced vascular cell adhesion molecule-1 expression by human endothelial cells.

    Science.gov (United States)

    Alapati, Anuja; Deosarkar, Sudhir P; Lanier, Olivia L; Qi, Chunyan; Carlson, Grady E; Burdick, Monica M; Schwartz, Frank L; McCall, Kelly D; Bergmeier, Stephen C; Goetz, Douglas J

    2015-03-15

    The expression of vascular cell adhesion molecule-1 (VCAM-1) on the vascular endothelium can be increased by pro-inflammatory cytokines [e.g. tumor necrosis factor-α (TNF-α)]. VCAM-1 contributes to leukocyte adhesion to, and emigration from, the vasculature which is a key aspect of pathological inflammation. As such, a promising therapeutic approach for pathological inflammation is to inhibit the expression of VCAM-1. Methimazole [3-methyl-1, 3 imidazole-2 thione (MMI)] is routinely used for the treatment of Graves׳ disease and patients treated with MMI have decreased levels of circulating VCAM-1. In this study we used cultured human umbilical vein endothelial cells (HUVEC) to investigate the effect of MMI structural modifications on TNF-α induced VCAM-1 expression. We found that addition of a phenyl ring at the 4-nitrogen of MMI yields a compound that is significantly more potent than MMI at inhibiting 24h TNF-α-induced VCAM-1 protein expression. Addition of a para methoxy to the appended phenyl group increases the inhibition while substitution of a thiazole ring for an imidazole ring in the phenyl derivatives yields no clear difference in inhibition. Addition of the phenyl ring to MMI appears to increase toxicity as does substitution of a thiazole ring for an imidazole ring in the phenyl MMI derivatives. Each of the compounds reduced TNF-α-induced VCAM-1 mRNA expression and had a functional inhibitory effect, i.e. each inhibited monocytic cell adhesion to 24h TNF-α-activated HUVEC under fluid flow conditions. Combined, these studies provide important insights into the design of MMI-related anti-inflammatory compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A novel monoclonal antibody to human laminin α5 chain strongly inhibits integrin-mediated cell adhesion and migration on laminins 511 and 521.

    Directory of Open Access Journals (Sweden)

    Zenebech Wondimu

    Full Text Available Laminins, a large family of αβγ heterotrimeric proteins mainly found in basement membranes, are strong promoters of adhesion and migration of multiple cell types, such as tumor and immune cells, via several integrin receptors. Among laminin α (LMα chains, α5 displays the widest tissue distribution in adult life and is synthesized by most cell types. Here, we have generated and characterized five novel monoclonal antibodies (mAbs to the human LMα5 chain to further study the biological relevance of α5 laminins, such as laminins 511 (α5β1γ1 and 521 (α5β2γ1. As detected by ELISA, immunohistochemistry, immunoprecipitation and Western blotting, each antibody displayed unique properties when compared to mAb 4C7, the prototype LMα5 antibody. Of greatest interest, mAb 8G9, but not any other antibody, strongly inhibited α3β1/α6β1 integrin-mediated adhesion and migration of glioma, melanoma, and carcinoma cells on laminin-511 and, together with mAb 4C7, on laminin-521. Accordingly, mAb 8G9 abolished the interaction of soluble α3β1 integrin with immobilized laminins 511 and 521. Binding of mAb 8G9 to laminin-511 was unaffected by the other mAbs to the LMα5 chain but largely hindered by mAb 4E10 to a LMβ1 chain epitope near the globular domain of laminin-511. Thus, mAb 8G9 defines a novel epitope localized at or near the integrin-binding globular domain of the LMα5 chain, which is essential for cell adhesion and migration, and identifies a potential therapeutic target in malignant and inflammatory diseases.

  19. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  20. Expression of connexin32 and connexin43 gap junction proteins and E-cadherin in human lung cancer.

    Science.gov (United States)

    Jinn, Y; Ichioka, M; Marumo, F

    1998-05-15

    We used immunohistochemical staining to examine the expression of the gap junction proteins connexin32 and connexin43 and of the intercellular adhesion molecule, E-cadherin, that is thought to be a prerequisite for gap junctional intercellular communication (GJIC), in 24 specimens of human lung cancer. Connexin32 was not found in cancer tissue and there were significantly fewer spots of connexin43 in the poorly differentiated versus the well differentiated (P = 0.0005) and moderately differentiated (P = 0.0002) adenocarcinomas and in the poorly differentiated versus the well differentiated (P = 0.0182) and moderately differentiated (P = 0.004) squamous cell carcinomas of the lung. E-Cadherin was expressed in all but three cases of poorly differentiated non-small cell lung cancer that showed a heterogeneously decreased expression of E-cadherin. These findings suggest that GJIC is decreased in poorly differentiated non-small cell lung cancer.

  1. Detection of Intracellular Adhesion (ica and Biofilm Formation Genes in Staphylococcus aureus Isolates from Clinical Samples

    Directory of Open Access Journals (Sweden)

    Khadije Rezaie Keikhaie

    2017-02-01

    Full Text Available Introduction: Nosocomial infections that result in the formation of biofilms on the surfaces of biomedical implants are a leading cause of sepsis and are often associated with colonization of the implants by Staphylococcus epidermidis. Biofilm formation is thought to require two sequential steps: adhesion of cells to a solid substrate followed by cell-cell adhesion, creating multiple layers of cells. Intercellular adhesion requires the polysaccharide intercellular adhesion (PIA, which is composed of linear β-1, 6-linked glucosaminylglycans and can be synthesized in vitro from UDP-N-acetylglucosamine by products of the intercellular adhesion (ica locus. We have investigated a variety of Staphylococcus aureus strains and find that all strains tested contain the ica locus and that several can form biofilms in vitro. Material and Method: A total of 31 clinical S. aureus isolates were collected from Zabol, Iran. In vitro biofilm formation ability was determined by microliter tissue culture plates. All clinical isolates were examined for determination the ica locus by using PCR method. Result: The results of this study showed that 40 strains of Staphylococcus aureus, 12 strains carrying the gene Cocos icaA (30% and 8 strains carrying the gene icaD (20% and the number of five strains (12.5% containing both genes ica A and has been ica D. Conclusions:  S. aureus clinical isolates have different ability to form biofilm. This may be caused by the differences in the expression of biofilm related genes, genetic make-up and physiological conditions.

  2. Endometrial CRISP3 is regulated throughout the mouse estrous and human menstrual cycle and facilitates adhesion and proliferation of endometrial epithelial cells.

    Science.gov (United States)

    Evans, Jemma; D'Sylva, Rebecca; Volpert, Marianna; Jamsai, Duangporn; Merriner, Donna Jo; Nie, Guiying; Salamonsen, Lois A; O'Bryan, Moira K

    2015-04-01

    The endometrium (the mucosal lining of the uterus) is a dynamic tissue that undergoes extensive remodeling, secretory transformation in preparation for implantation of an embryo, inflammatory and proteolytic activity during menstruation, and rapid postmenstrual repair. A plethora of local factors influence these processes. Recently, a cysteine-rich protein, CRISP3, a clade of the CRISP, antigen 5, pathogenesis-related (CAP) protein superfamily, has been implicated in uterine function. The localization, regulation, and potential function of CRISP3 in both the human and mouse endometrium is described. CRISP3 localizes to the luminal and glandular epithelium of the endometrium within both species, with increased immunoreactivity during the proliferative phase of the human cycle. CRISP3 also localizes to neutrophils, particularly within the premenstrual human endometrium and during the postbreakdown repair phase of a mouse model of endometrial breakdown and repair. Endometrial CRISP3 is produced by primary human endometrial epithelial cells and secreted in vivo to accumulate in the uterine cavity. Secreted CRISP3 is more abundant in uterine lavage fluid during the proliferative phase of the menstrual cycle. Human endometrial epithelial CRISP3 is present in both a glycosylated and a nonglycosylated form in vitro and in vivo. Treatment of endometrial epithelial cells in vitro with recombinant CRISP3 enhances both adhesion and proliferation. These data suggest roles for epithelial and neutrophil-derived CRISP3 in postmenstrual endometrial repair and regeneration. © 2015 by the Society for the Study of Reproduction, Inc.

  3. Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling

    Science.gov (United States)

    Nanes, Benjamin A.; Kowalczyk, Andrew P.

    2014-01-01

    Adherens junctions are important mediators of intercellular adhesion, but they are not static structures. They are regularly formed, broken, and rearranged in a variety of situations, requiring changes in the amount of cadherins, the main adhesion molecule in adherens junctions, present at the cell surface. Thus, endocytosis, degradation, and recycling of cadherins are crucial for dynamic regulation of adherens junctions and control of intercellular adhesion. In this chapter, we review the involvement of cadherin endocytosis in development and disease. We discuss the various endocytic pathways available to cadherins, the adaptors involved, and the sorting of internalized cadherin for recycling or lysosomal degradation. In addition, we review the regulatory pathways controlling cadherin endocytosis and degradation, including regulation of cadherin endocytosis by catenins, cadherin ubiquitination, and growth factor receptor signaling pathways. Lastly, we discuss the proteolytic cleavage of cadherins at the plasma membrane. PMID:22674073

  4. Focal Adhesion Kinases in Adhesion Structures and Disease

    Directory of Open Access Journals (Sweden)

    Pierre P. Eleniste

    2012-01-01

    Full Text Available Cell adhesion to the extracellular matrix (ECM is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases.

  5. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro.

    Science.gov (United States)

    Heng, Boon Chin; Zhu, Shaoyue; Xu, Jianguang; Yuan, Changyong; Gong, Ting; Zhang, Chengfei

    2016-04-01

    A major bottleneck to the therapeutic applications of dental pulp stem cells (DPSC) are their limited proliferative capacity ex vivo and tendency to undergo senescence. This may be partly due to the sub-optimal in vitro culture milieu, which could be improved by an appropriate extracellular matrix substratum. This study therefore examined decellularized matrix (DECM) from stem cells derived from human exfoliated deciduous teeth (SHED) and periodontal ligament stem cells (PDLSC), as potential substrata for DPSC culture. Both SHED-DECM and PDLSC-DECM promoted rapid adhesion and spreading of newly-seeded DPSC compared to bare polystyrene (TCPS), with vinculin immunocytochemistry showing expression of more focal adhesions by newly-adherent DPSC cultured on DECM versus TCPS. Culture of DPSC on SHED-DECM and PDLSC-DECM yielded higher proliferation of cell numbers compared to TCPS. The qRT-PCR data showed significantly higher expression of nestin by DPSC cultured on DECM versus the TCPS control. Osteogenic differentiation of DPSC was enhanced by culturing on PDLSC-DECM and SHED-DECM versus TCPS, as demonstrated by alizarin red S staining for mineralized calcium deposition, alkaline phosphatase assay and qRT-PCR analysis of key osteogenic marker expression. Hence, both SHED-DECM and PDLSC-DECM could enhance the ex vivo culture of DPSC under both non-inducing and osteogenic-inducing conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Kinetics of LFA-1 mediated adhesion of human neutrophils to ICAM-1-role of E-selectin signaling post-activation.

    Science.gov (United States)

    LFA-1 and Mac-1 are the two integrins involved in the arrest and firm adhesion of neutrophils. LFA-1 plays a role in the early stage of cell arrest while Mac-1 stabilizes firm adhesion. Here, we further elucidated the kinetics of LFA-1 activation and its role in mediating neutrophil adhesion to ICAM...

  7. Upregulation of transmembrane endothelial junction proteins in human cerebral cavernous malformations.

    Science.gov (United States)

    Burkhardt, Jan-Karl; Schmidt, Dörthe; Schoenauer, Roman; Brokopp, Chad; Agarkova, Irina; Bozinov, Oliver; Bertalanffy, Helmut; Hoerstrup, Simon P

    2010-09-01

    Cerebral cavernous malformations (CCMs) are among the most prevalent cerebrovascular malformations, and endothelial cells seem to play a major role in the disease. However, the underlying mechanisms, including endothelial intercellular communication, have not yet been fully elucidated. In this article, the authors focus on the endothelial junction proteins CD31, VE-cadherin, and occludin as important factors for functional cell-cell contacts known as vascular adhesion molecules and adherence and tight junctions. Thirteen human CCM specimens and 6 control tissue specimens were cryopreserved and examined for the presence of VE-cadherin, occludin, and CD31 by immunofluorescence staining. Protein quantification was performed by triplicate measurements using western blot analysis. Immunofluorescent analyses of the CCM sections revealed a discontinuous pattern of dilated microvessels and capillaries as well as increased expression of occludin, VE-cadherin, and CD31 in the intima and in the enclosed parenchymal tissue compared with controls. Protein quantification confirmed these findings by showing upregulation of the levels of these proteins up to 2-6 times. A protocol enabling the molecular and morphological examination of the intercellular contact proteins in human CCM was validated. The abnormal and discontinuous pattern in these endothelial cell-contact proteins compared with control tissue explains the loose intercellular junctions that are considered to be one of the causes of CCM-associated bleeding or transendothelial oozing of erythrocytes. Despite the small number of specimens, this study demonstrates for the first time a quantitative analysis of endothelial junction proteins in human CCM.

  8. Adhesion of Human Probiotic Lactobacillus rhamnosus to Cervical and Vaginal Cells and Interaction with Vaginosis-Associated Pathogens

    Directory of Open Access Journals (Sweden)

    Sophie Coudeyras

    2008-01-01

    Full Text Available Objectives. The ability of a probiotic Lactobacillus rhamnosus strain (Lcr35 to adhere to cervical and vaginal cells and to affect the viability of two main vaginosis-associated pathogens, Prevotella bivia, Gardnerella vaginalis, as well as Candida albicans was investigated. Methods. Adhesion ability was determined in vitro with immortalized epithelial cells from the endocervix, ectocervix, and vagina. Coculture experiments were performed to count viable pathogens cells in the presence of Lcr35. Results. Lcr35 was able to specifically and rapidly adhere to the three cell lines. In coculture assays, a decrease in pathogen cell division rate was observed as from 4 hours of incubation and bactericidal activity after a longer period of incubation, mostly with P. bivia. Conclusion. The ability of Lcr35 to adhere to cervicovaginal cells and its antagonist activities against vaginosis-associated pathogens suggest that this probiotic strain is a promising candidate for use in therapy.

  9. Optical properties of human radicular dentin: ATR-FTIR characterization and dentine tubule direction influence on radicular post adhesion

    Science.gov (United States)

    Quinto, Jose; Zamataro, Claudia B.; Benetti, Carolina; Dias, Derly A.; Blay, Alberto; Zezell, Denise Maria

    2015-06-01

    Knowledge of dental structures is essential for understanding of laser interaction and its consequences during adhesion processes. Tubule density in dentin ranges from 4.900 to 90.000 per mm2, for diameters from 1 to 3 μm. Light propagation inside the tubules is associated with tubules orientation. To the best of our knowledge, there is no previous work in literature characterizing physical-chemical alterations in dentin. The dentin samples were irradiated with a Er,Cr:YSGG Laser at wavelength 2.78 μm, with an energy density of 9.46 J/cm2 , above the ablation threshold. ATRFTIR at wavenumbers 2000 to 700 cm-1 was used to evaluate the differences among third root region and tubules orientation.

  10. META2: Intercellular DNA Methylation Pairwise Annotation and Integrative Analysis

    Directory of Open Access Journals (Sweden)

    Binhua Tang

    2016-01-01

    Full Text Available Genome-wide deciphering intercellular differential DNA methylation as well as its roles in transcriptional regulation remains elusive in cancer epigenetics. Here we developed a toolkit META2 for DNA methylation annotation and analysis, which aims to perform integrative analysis on differentially methylated loci and regions through deep mining and statistical comparison methods. META2 contains multiple versatile functions for investigating and annotating DNA methylation profiles. Benchmarked with T-47D cell, we interrogated the association within differentially methylated CpG (DMC and region (DMR candidate count and region length and identified major transition zones as clues for inferring statistically significant DMRs; together we validated those DMRs with the functional annotation. Thus META2 can provide a comprehensive analysis approach for epigenetic research and clinical study.

  11. Esophageal dilated intercellular spaces (DIS) and nonerosive reflux disease.

    Science.gov (United States)

    van Malenstein, Hannah; Farré, Ricard; Sifrim, Daniel

    2008-04-01

    Esophageal mucosal dilated intercellular spaces (DIS) are frequently observed in patients with nonerosive reflux disease (NERD) and patients with esophagitis. The specificity of DIS is questionable, as it is present in up to 30% of asymptomatic healthy subjects and in patients with other esophageal disorders. DIS occurs in parallel with a drop in potential difference, diminished transepithelial resistance, and increased esophageal mucosal permeability. These alterations arise with exposure to acid and pepsin during gastroesophageal reflux, but the exact pathway of damage to the intercellular junctions remains unclear and seems to be multifactorial. Other noxious contents of the refluxate, such as bile acids, are harmful and DIS can also be induced by acute psychological stress. DIS can be assessed quantitatively with electron microscopy (EM), but it is also recognizable with light microscopy (LM). DIS can disappear after treatment with proton pump inhibitors (PPI); however, this is not the case in all NERD patients. A recent study showed that patients with NERD who are refractory to PPI might still have DIS; and animal experiments showed that persistence of DIS might be due to esophageal mucosal exposure to bile acids and/or psychological stress. In conclusion, DIS is a frequent but nonspecific histological feature of NERD. It can be caused by acid reflux, but bile acids in the refluxate and/or psychological stress can modulate the development or persistence of DIS. Although a causal relationship between DIS and heartburn has been proposed, it still needs to be proven and the underlying mechanisms investigated before considering DIS as a target for treatment of NERD.

  12. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair

    Energy Technology Data Exchange (ETDEWEB)

    Chatzinikolaidou, Maria, E-mail: mchatzin@materials.uoc.gr [Department of Materials Science and Technology, University of Crete (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Rekstyte, Sima; Danilevicius, Paulius [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Pontikoglou, Charalampos; Papadaki, Helen [Hematology Laboratory, School of Medicine, University of Crete (Greece); Farsari, Maria [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Vamvakaki, Maria [Department of Materials Science and Technology, University of Crete (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece)

    2015-03-01

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50 mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2 h after seeding, and up to several days, and a proliferation increase after 14 and 21 days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell–material combination in bone tissue engineering. - Graphical abstract: Scanning electron microscopy image depicting cell adhesion of bone marrow mesenchymal stem cells into a pore of a hybrid Direct Laser Writing

  13. CD11c/CD18 Dominates Adhesion of Human Monocytes, Macrophages and Dendritic Cells over CD11b/CD18.

    Science.gov (United States)

    Sándor, Noémi; Lukácsi, Szilvia; Ungai-Salánki, Rita; Orgován, Norbert; Szabó, Bálint; Horváth, Róbert; Erdei, Anna; Bajtay, Zsuzsa

    Complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) belong to the family of beta2 integrins and are expressed mainly by myeloid cell types in humans. Previously, we proved that CR3 rather than CR4 plays a key role in phagocytosis. Here we analysed how CD11b and CD11c participate in cell adhesion to fibrinogen, a common ligand of CR3 and CR4, employing human monocytes, monocyte-derived macrophages (MDMs) and monocyte-derived dendritic cells (MDDCs) highly expressing CD11b as well as CD11c. We determined the exact numbers of CD11b and CD11c on these cell types by a bead-based technique, and found that the ratio of CD11b/CD11c is 1.2 for MDDCs, 1.7 for MDMs and 7.1 for monocytes, suggesting that the function of CD11c is preponderant in MDDCs and less pronounced in monocytes. Applying state-of-the-art biophysical techniques, we proved that cellular adherence to fibrinogen is dominated by CD11c. Furthermore, we found that blocking CD11b significantly enhances the attachment of MDDCs and MDMs to fibrinogen, demonstrating a competition between CD11b and CD11c for this ligand. On the basis of the cell surface receptor numbers and the measured adhesion strength we set up a model, which explains the different behavior of the three cell types.

  14. CD11c/CD18 Dominates Adhesion of Human Monocytes, Macrophages and Dendritic Cells over CD11b/CD18.

    Directory of Open Access Journals (Sweden)

    Noémi Sándor

    Full Text Available Complement receptors CR3 (CD11b/CD18 and CR4 (CD11c/CD18 belong to the family of beta2 integrins and are expressed mainly by myeloid cell types in humans. Previously, we proved that CR3 rather than CR4 plays a key role in phagocytosis. Here we analysed how CD11b and CD11c participate in cell adhesion to fibrinogen, a common ligand of CR3 and CR4, employing human monocytes, monocyte-derived macrophages (MDMs and monocyte-derived dendritic cells (MDDCs highly expressing CD11b as well as CD11c. We determined the exact numbers of CD11b and CD11c on these cell types by a bead-based technique, and found that the ratio of CD11b/CD11c is 1.2 for MDDCs, 1.7 for MDMs and 7.1 for monocytes, suggesting that the function of CD11c is preponderant in MDDCs and less pronounced in monocytes. Applying state-of-the-art biophysical techniques, we proved that cellular adherence to fibrinogen is dominated by CD11c. Furthermore, we found that blocking CD11b significantly enhances the attachment of MDDCs and MDMs to fibrinogen, demonstrating a competition between CD11b and CD11c for this ligand. On the basis of the cell surface receptor numbers and the measured adhesion strength we set up a model, which explains the different behavior of the three cell types.

  15. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment

    Directory of Open Access Journals (Sweden)

    Martin Keith R

    2010-07-01

    Full Text Available Abstract Background Cardiovascular disease (CVD is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC were incubated overnight with control media with dimethylsulfoxide (DMSO vehicle (1% v/v or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL, which included Agaricus bisporus (white button and crimini, Lentinula edodes (shiitake, Pleurotus ostreatus (oyster, and Grifola frondosa (maitake. Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM. AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support the notion that dietary mushrooms can be protective against CVD.

  16. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment

    Science.gov (United States)

    2010-01-01

    Background Cardiovascular disease (CVD) is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC) were incubated overnight with control media with dimethylsulfoxide (DMSO) vehicle (1% v/v) or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL), which included Agaricus bisporus (white button and crimini), Lentinula edodes (shiitake), Pleurotus ostreatus (oyster), and Grifola frondosa (maitake). Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL) for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM). AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p mushrooms significantly modulated AM expression singly, collectively, or combinatorially. All mushrooms, however, significantly reduced binding of monocytes to both quiescent and cytokine-stimulated monolayers. Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support the notion that dietary mushrooms can be protective against CVD. PMID

  17. Chemical Tumor Promoters, Oncogenes and Growth Factors: Modulators of Gap Junctional Intercellular Communication

    Science.gov (United States)

    1991-01-01

    tives ( saccharin ), solvents (heptanol), pollutants (PCBs, PBBs), pesticides and herbicides (DDT, 2,3,5-T), nutritional factors (unsaturated fatty acids...acids and saccharin could inhibit gap junctional intercellular communication (41). Oncogenes as modulators of gap junctional intercellular communication...phosphorylation reactions, could (a) prepare the plasma membrane for active transport of regulatory ions and substrates for macromolecular synthesis

  18. Transient adhesion of neutrophils to endothelium.

    Science.gov (United States)

    Lo, S K; Detmers, P A; Levin, S M; Wright, S D

    1989-05-01

    Fluorescently labeled polymorphonuclear leukocytes (PMN) were used to measure adhesion to human umbilical vein endothelial cells (EC) cultured in vitro. Stimulation of PMN with phorbol dibutyrate (PDB), TNF, or C5a caused an increase in adhesion followed by a return to prestimulation levels of adhesion of longer times of incubation. Maximal adhesion of PMN to EC occurred rapidly in response to C5a (5 min) and more slowly with TNF or PDB (15 min). PMN stimulated to adhere with C5a detached from EC by 15 min. PMN from CD11/CD18-deficient patients and PMN incubated with anti-CD18 mAbs failed to bind to EC despite maximal stimulation. Anti-CD11a/CD18 and anti-CD11b/CD18 each partially inhibited adhesion, and a combination of these two reagents completely blocked adhesion. The adhesion we measured was therefore completely dependent on CD11/CD18, and CD11a/CD18 and CD11b/CD18 each contributed to adhesion. Stimuli that enhanced adhesion of PMN to EC also enhanced expression of CD11b/CD18 on the cell surface, but the time course of expression correlated poorly with changes in adhesivity. To determine if changes in the expression of CD11b/CD18 are necessary for the changes in adhesivity, we used enucleate cytoplasts that did not increase expression of CD11b/CD18. Cytoplasts showed a normal rise and fall in adhesivity in response to PDB. We conclude that the transient adhesion of stimulated PMN to naive EC is regulated by changes in the nature of existing CD11/CD18 molecules on the PMN surface. Changes in expression of CD11b/CD18 may contribute to enhancement of adhesivity, but a definite role for this phenomenon has yet to be established.

  19. Exploring the interaction between human focal adhesion kinase and inhibitors: a molecular dynamic simulation and free energy calculations.

    Science.gov (United States)

    Zhan, Jiu-Yu; Zhang, Ji-Long; Wang, Yan; Li, Ye; Zhang, Hong-Xing; Zheng, Qing-Chuan

    2016-11-01

    Focal adhesion kinase is an important target for the treatment of many kinds of cancers. Inhibitors of FAK are proposed to be the anticancer agents for multiple tumors. The interaction characteristic between FAK and its inhibitors is crucial to develop new inhibitors. In the present article, we used Molecular Dynamic (MD) simulation method to explore the characteristic of interaction between FAK and three inhibitors (PHM16, TAE226, and ligand3). The MD simulation results together with MM-GB/SA calculations show that the combinations are enthalpy-driven process. Cys502 and Asp564 are both essential residues due to the hydrogen bond interactions with inhibitors, which was in good agreement with experimental data. Glu500 can form a non-classical hydrogen bond with each inhibitor. Arg426 can form electrostatic interactions with PHM16 and ligand3, while weaker with TAE226. The electronic static potential was employed, and we found that the ortho-position methoxy of TAE226 has a weaker negative charge than the meta-position one in PHM16 or ligand3. Ile428, Val436, Ala452, Val484, Leu501, Glu505, Glu506, Leu553, Gly563 Leu567, Ser568 are all crucial residues in hydrophobic interactions. The key residues in this work will be available for further inhibitor design of FAK and also give assistance to further research of cancer.

  20. Nurse's A-Phase Material Enhance Adhesion, Growth and Differentiation of Human Bone Marrow-Derived Stromal Mesenchymal Stem Cells.

    Science.gov (United States)

    Rabadan-Ros, Ruben; Aznar-Cervantes, Salvador; Mazón, Patricia; Ros-Tarraga, Patricia; De Aza, Piedad N; Meseguer-Olmo, Luis

    2017-03-27

    The purpose of this study was to evaluate the bioactivity and cell response of a well-characterized Nurse's A-phase (7CaO·P₂O₅·2SiO₂) ceramic and its effect compared to a control (tissue culture polystyrene-TCPS) on the adhesion, viability, proliferation, and osteogenic differentiation of ahMSCs in vitro. Cell proliferation (Alamar Blue Assay), Alizarin Red-S (AR-s) staining, alkaline phosphatase (ALP) activity, osteocalcin (OCN), and collagen I (Col I) were evaluated. Also, field emission scanning electron microscopy (FESEM) images were acquired in order to visualise the cells and the topography of the material. The proliferation of cells growing in a direct contact with the material was slower at early stages of the study because of the new environmental conditions. However, the entire surface was colonized after 28 days of culture in growth medium (GM). Osteoblastic differentiation markers were significantly enhanced in cells growing on Nurse's A phase ceramic and cultured with osteogenic medium (OM), probably due to the role of silica to stimulate the differentiation of ahMSCs. Moreover, calcium nodules were formed under the influence of ceramic material. Therefore, it is predicted that Nurse's A-phase ceramic would present high biocompatibility and osteoinductive properties and would be a good candidate to be used as a biomaterial for bone tissue engineering.

  1. Adhesion kinetics of human primary monocytes, dendritic cells, and macrophages: Dynamic cell adhesion measurements with a label-free optical biosensor and their comparison with end-point assays.

    Science.gov (United States)

    Orgovan, Norbert; Ungai-Salánki, Rita; Lukácsi, Szilvia; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Szabó, Bálint; Horvath, Robert

    2016-09-01

    Monocytes, dendritic cells (DCs), and macrophages (MFs) are closely related immune cells that differ in their main functions. These specific functions are, to a considerable degree, determined by the differences in the adhesion behavior of the cells. To study the inherently and essentially dynamic aspects of the adhesion of monocytes, DCs, and MFs, dynamic cell adhesion assays were performed with a high-throughput label-free optical biosensor [Epic BenchTop (BT)] on surfaces coated with either fibrinogen (Fgn) or the biomimetic copolymer PLL-g-PEG-RGD. Cell adhesion profiles typically reached their maximum at ∼60 min after cell seeding, which was followed by a monotonic signal decrease, indicating gradually weakening cell adhesion. According to the biosensor response, cell types could be ordered by increasing adherence as monocytes, MFs, and DCs. Notably, all three cell types induced a larger biosensor signal on Fgn than on PLL-g-PEG-RGD. To interpret this result, the molecular layers were characterized by further exploiting the potentials of the biosensor: by measuring the adsorption signal induced during the surface coating procedure, the authors could estimate the surface density of adsorbed molecules and, thus, the number of binding sites potentially presented for the adhesion receptors. Surfaces coated with PLL-g-PEG-RGD presented less RGD sites, but was less efficient in promoting cell spreading than those coated with Fgn; hence, other binding sites in Fgn played a more decisive role in determining cell adherence. To support the cell adhesion data obtained with the biosensor, cell adherence on Fgn-coated surfaces 30-60 min after cell seeding was measured with three complementary techniques, i.e., with (1) a fluorescence-based classical adherence assay, (2) a shear flow chamber applying hydrodynamic shear stress to wash cells away, and (3) an automated micropipette using vacuum-generated fluid flow to lift cells up. These techniques confirmed the results

  2. Compression induced intercellular shaping for some geometric cellular lattices

    Directory of Open Access Journals (Sweden)

    Adonai Gimenez Calbo

    2001-03-01

    Full Text Available The wall perimeter fraction, which contact neighboring cells, was named compression ratio (alpha. A zero compression ratio indicates maximum intercellular (air volume (vG, v/v and neglectable contact among cells, while alpha=1 indicates complete adherence between neighboring cells and no vG in the lattice. The maximum intercellular air volume (beta, v/v, when alpha=0, was 0.593 for triangular, 0.2146 for square and 0,0931 for hexagonal lattices. The equation alpha=1- (vG/beta½ was derived to relate alpha, beta and vG in the studied lattices. The relation (P S=p/alpha between cell turgor (P S and the tissue aggregating pressure (p, defined as the compression to keep in place a layer of cells, was demonstrated using the compression ratio concept. Intercellular deformations of Ipomea batatas L. roots obtained with pressure chamber were used to test alpha, vG, p and P S as a function of compression. Volumetric and transversal elastic extensibilities and the lamella media tearing forces were obtained and alpha constancy was considered as a criteria of cellular shape stability.A fração do perímetro da parede celular em contato com células vizinha foi denominada razão de compressão (alfa. Razão de compressão zero indica volume intercelular (vG, v/v máximo e contato neglível entre as células, enquanto alfa=1 ocorre quando há completa aderência com as células vizinhas (vG=0. O volume (gasoso intercelular máximo (beta, v/v, quando alfa=0, foi 0,593, 0,2146 e 0,0931 para látices triangulares, quadradas e hexagonais. A equação derivada para relacionar alfa, beta and vG nas látices estudadas foi alfa=1- (vG/beta½. A razão de compressão foi em seguida empregada para estabelecer a relação P S=p/alfa entre a pressão de turgescência (P S e a pressão de agregação (p, definida com a compressão para manter uma camada de células no seu lugar. As deformações intercelulares de batata-doce obtidas com procedimentos de c

  3. Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Doris Estrugo

    Full Text Available BACKGROUND: Chemo- and radiotherapeutic responses of leukemia cells are modified by integrin-mediated adhesion to extracellular matrix. To further characterize the molecular mechanisms by which beta1 integrins confer radiation and chemoresistance, HL60 human acute promyelocytic leukemia cells stably transfected with beta1 integrin and A3 Jurkat T-lymphoma cells deficient for Fas-associated death domain protein or procaspase-8 were examined. METHODOLOGY/PRINCIPAL FINDINGS: Upon exposure to X-rays, Ara-C or FasL, suspension and adhesion (fibronectin (FN, laminin, collagen-1; 5-100 microg/cm(2 coating concentration cultures were processed for measurement of apoptosis, mitochondrial transmembrane potential (MTP, caspase activation, and protein analysis. Overexpression of beta1 integrins enhanced the cellular sensitivity to X-rays and Ara-C, which was counteracted by increasing concentrations of matrix proteins in association with reduced caspase-3 and -8 activation and MTP breakdown. Usage of stimulatory or inhibitory anti beta1 integrin antibodies, pharmacological caspase or phosphatidylinositol-3 kinase (PI3K inhibitors, coprecipitation experiments and siRNA-mediated beta1 integrin silencing provided further data showing an interaction between FN-ligated beta1 integrin and PI3K/Akt for inhibiting procaspase-8 cleavage. CONCLUSIONS/SIGNIFICANCE: The presented data suggest that the ligand status of beta1 integrins is critical for their antiapoptotic effect in leukemia cells treated with Ara-C, FasL or ionizing radiation. The antiapoptotic actions involve formation of a beta1 integrin/Akt complex, which signals to prevent procaspase-8-mediated induction of apoptosis in a PI3K-dependent manner. Antagonizing agents targeting beta1 integrin and PI3K/Akt signaling in conjunction with conventional therapies might effectively reduce radiation- and drug-resistant tumor populations and treatment failure in hematological malignancies.

  4. Ligand Bound β1 Integrins Inhibit Procaspase-8 for Mediating Cell Adhesion-Mediated Drug and Radiation Resistance in Human Leukemia Cells

    Science.gov (United States)

    Hess, Franziska; Scherthan, Harry; Belka, Claus; Cordes, Nils

    2007-01-01

    Background Chemo- and radiotherapeutic responses of leukemia cells are modified by integrin-mediated adhesion to extracellular matrix. To further characterize the molecular mechanisms by which β1 integrins confer radiation and chemoresistance, HL60 human acute promyelocytic leukemia cells stably transfected with β1 integrin and A3 Jurkat T-lymphoma cells deficient for Fas-associated death domain protein or procaspase-8 were examined. Methodology/Principal Findings Upon exposure to X-rays, Ara-C or FasL, suspension and adhesion (fibronectin (FN), laminin, collagen-1; 5–100 µg/cm2 coating concentration) cultures were processed for measurement of apoptosis, mitochondrial transmembrane potential (MTP), caspase activation, and protein analysis. Overexpression of β1 integrins enhanced the cellular sensitivity to X-rays and Ara-C, which was counteracted by increasing concentrations of matrix proteins in association with reduced caspase-3 and -8 activation and MTP breakdown. Usage of stimulatory or inhibitory anti β1 integrin antibodies, pharmacological caspase or phosphatidylinositol-3 kinase (PI3K) inhibitors, coprecipitation experiments and siRNA-mediated β1 integrin silencing provided further data showing an interaction between FN-ligated β1 integrin and PI3K/Akt for inhibiting procaspase-8 cleavage. Conclusions/Significance The presented data suggest that the ligand status of β1 integrins is critical for their antiapoptotic effect in leukemia cells treated with Ara-C, FasL or ionizing radiation. The antiapoptotic actions involve formation of a β1 integrin/Akt complex, which signals to prevent procaspase-8-mediated induction of apoptosis in a PI3K-dependent manner. Antagonizing agents targeting β1 integrin and PI3K/Akt signaling in conjunction with conventional therapies might effectively reduce radiation- and drug-resistant tumor populations and treatment failure in hematological malignancies. PMID:17342203

  5. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier.

    Science.gov (United States)

    Verma, Saguna; Lo, Yeung; Chapagain, Moti; Lum, Stephanie; Kumar, Mukesh; Gurjav, Ulziijargal; Luo, Haiyan; Nakatsuka, Austin; Nerurkar, Vivek R

    2009-03-15

    Neurological complications such as inflammation, failure of the blood-brain barrier (BBB), and neuronal death contribute to the mortality and morbidity associated with WNV-induced meningitis. Compromised BBB indicates the ability of the virus to gain entry into the CNS via the BBB, however, the underlying mechanisms, and the specific cell types associated with WNV-CNS trafficking are not well understood. Brain microvascular endothelial cells, the main component of the BBB, represent a barrier to virus dissemination into the CNS and could play key role in WNV spread via hematogenous route. To investigate WNV entry into the CNS, we infected primary human brain microvascular endothelial (HBMVE) cells with the neurovirulent strain of WNV (NY99) and examined WNV replication kinetics together with the changes in the expressions of key tight junction proteins (TJP) and cell adhesion molecules (CAM). WNV infection of HBMVE cells was productive as analyzed by plaque assay and qRT-PCR, and did not induce cytopathic effect. Increased mRNA and protein expressions of TJP (claudin-1) and CAM (vascular cell adhesion molecule and E-selectin) were observed at days 2 and 3 after infection, respectively, which coincided with the peak in WNV replication. Further, using an in vitro BBB model comprised of HBMVE cells, we demonstrate that cell-free WNV can cross the BBB, without compromising the BBB integrity. These data suggest that infection of HBMVE cells can facilitate entry of cell-free virus into the CNS without disturbing the BBB, and increased CAM may assist in the trafficking of WNV-infected immune cells into the CNS, via 'Trojan horse' mechanism, thereby contributing to WNV dissemination in the CNS and associated pathology.

  6. SILENCING THE NUCLEOCYTOPLASMIC O-GLCNAC TRANSFERASE REDUCES PROLIFERATION, ADHESION AND MIGRATION OF CANCER AND FETAL HUMAN COLON CELL LINES

    Directory of Open Access Journals (Sweden)

    AGATA eSTEENACKERS

    2016-05-01

    Full Text Available The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP, whereas O-GlcNAcase (OGA removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically de-creased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of mi-gration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disor-ganize microfilament, microtubule and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migra-tory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biolog-ical properties of cancer cell lines but also for normal cells.

  7. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  8. Elucidating the crucial role of poly N-acetylglucosamine from Staphylococcus aureus in cellular adhesion and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Mei Hui Lin

    Full Text Available Staphylococcus aureus is an important pathogen that forms biofilms on the surfaces of medical implants. Biofilm formation by S. aureus is associated with the production of poly N-acetylglucosamine (PNAG, also referred to as polysaccharide intercellular adhesin (PIA, which mediates bacterial adhesion, leading to the accumulation of bacteria on solid surfaces. This study shows that the ability of S. aureus SA113 to adhere to nasal epithelial cells is reduced after the deletion of the ica operon, which contains genes encoding PIA/PNAG synthesis. However, this ability is restored after a plasmid carrying the entire ica operon is transformed into the mutant strain, S. aureus SA113Δica, showing that the synthesis of PIA/PNAG is important for adhesion to epithelial cells. Additionally, S. carnosus TM300, which does not produce PIA/PNAG, forms a biofilm and adheres to epithelial cells after the bacteria are transformed with a PIA/PNAG-expressing plasmid, pTXicaADBC. The adhesion of S. carnosus TM300 to epithelial cells is also demonstrated by adding purified exopolysaccharide (EPS, which contains PIA/PNAG, to the bacteria. In addition, using a mouse model, we find that the abscess lesions and bacterial burden in lung tissues is higher in mice infected with S. aureus SA113 than in those infected with the mutant strain, S. aureus SA113Δica. The results indicate that PIA/PNAG promotes the adhesion of S. aureus to human nasal epithelial cells and lung infections in a mouse model. This study elucidates a mechanism that is important to the pathogenesis of S. aureus infections.

  9. Antibody fragments directed against different portions of the human