WorldWideScience

Sample records for human insular cortex

  1. Activation of the insular cortex during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Williamson, James; Nobrega, A C; McColl, R

    1997-01-01

    1. The insular cortex has been implicated as a region of cortical cardiovascular control, yet its role during exercise remains undefined. The purpose of the present investigation was to determine whether the insular cortex was activated during volitional dynamic exercise and to evaluate further its...... alone. 5. These findings provide the first evidence of insular activation during dynamic exercise in humans, suggesting that the left insular cortex may serve as a site for cortical regulation of cardiac autonomic (parasympathetic) activity. Additionally, findings during passive cycling with electrical...

  2. Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex

    NARCIS (Netherlands)

    Cerliani, Leonardo; Thomas, Rajat M.; Jbabdi, Saad; Siero, Jeroen C. W.; Nanetti, Luca; Crippa, Alessandro; Gazzola, Valeria; D'Arceuil, Helen; Keysers, Christian

    The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet

  3. A rapid sound-action association effect in human insular cortex.

    Directory of Open Access Journals (Sweden)

    Isabella Mutschler

    Full Text Available BACKGROUND: Learning to play a musical piece is a prime example of complex sensorimotor learning in humans. Recent studies using electroencephalography (EEG and transcranial magnetic stimulation (TMS indicate that passive listening to melodies previously rehearsed by subjects on a musical instrument evokes differential brain activation as compared with unrehearsed melodies. These changes were already evident after 20-30 minutes of training. The exact brain regions involved in these differential brain responses have not yet been delineated. METHODOLOGY/PRINCIPAL FINDING: Using functional mri (fmri, we investigated subjects who passively listened to simple piano melodies from two conditions: in the 'actively learned melodies' condition subjects learned to play a piece on the piano during a short training session of a maximum of 30 minutes before the fMRI experiment, and in the 'passively learned melodies' condition subjects listened passively to and were thus familiarized with the piece. We found increased fMRI responses to actively compared with passively learned melodies in the left anterior insula, extending to the left fronto-opercular cortex. The area of significant activation overlapped the insular sensorimotor hand area as determined by our meta-analysis of previous functional imaging studies. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence for differential brain responses to action-related sounds after short periods of learning in the human insular cortex. As the hand sensorimotor area of the insular cortex appears to be involved in these responses, re-activation of movement representations stored in the insular sensorimotor cortex may have contributed to the observed effect. The insular cortex may therefore play a role in the initial learning phase of action-perception associations.

  4. Food related processes in the insular cortex

    Directory of Open Access Journals (Sweden)

    Sabine eFrank

    2013-08-01

    Full Text Available The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa. The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

  5. Insular cortex and neuropsychiatric disorders: A review of recent literature

    National Research Council Canada - National Science Library

    Nagai, M; Kishi, K; Kato, S

    2007-01-01

    .... The insular cortex is involved in the processing of visceral sensory, visceral motor, vestibular, attention, pain, emotion, verbal, motor information, inputs related to music and eating, in addition...

  6. Sensory integration in mouse insular cortex reflects GABA circuit maturation

    National Research Council Canada - National Science Library

    Gogolla, Nadine; Takesian, Anne E; Feng, Guoping; Fagiolini, Michela; Hensch, Takao K

    2014-01-01

    Insular cortex (IC) contributes to a variety of complex brain functions, such as communication, social behavior, and self-awareness through the integration of sensory, emotional, and cognitive content...

  7. Orosensory and Homeostatic Functions of the Insular Taste Cortex

    Science.gov (United States)

    de Araujo, Ivan E.; Geha, Paul

    2014-01-01

    The gustatory aspect of the insular cortex is part of the brain circuit that controls ingestive behaviors based on chemosensory inputs. However, the sensory properties of foods are not restricted to taste and should also include salient features such as odor, texture, temperature, and appearance. Therefore, it is reasonable to hypothesize that specialized circuits within the central taste pathways must be involved in representing several other oral sensory modalities in addition to taste. In this review, we evaluate current evidence indicating that the insular gustatory cortex functions as an integrative circuit, with taste-responsive regions also showing heightened sensitivity to olfactory, somatosensory, and even visual stimulation. We also review evidence for modulation of taste-responsive insular areas by changes in physiological state, with taste-elicited neuronal responses varying according to the nutritional state of the organism. We then examine experimental support for a functional map within the insular cortex that might reflect the various sensory and homeostatic roles associated with this region. Finally, we evaluate the potential role of the taste insular cortex in weight-gain susceptibility. Taken together, the current experimental evidence favors the view that the insular gustatory cortex functions as an orosensory integrative system that not only enables the formation of complex flavor representations but also mediates their modulation by the internal state of the body, playing therefore a central role in food intake regulation. PMID:25485032

  8. The insular cortex and the neuroanatomy of major depression.

    Science.gov (United States)

    Sprengelmeyer, Reiner; Steele, J Douglas; Mwangi, Benson; Kumar, Poornima; Christmas, David; Milders, Maarten; Matthews, Keith

    2011-09-01

    The neuroanatomical substrate underlying Major Depressive Disorder (MDD) is incompletely understood. Recent reports have implicated the insular cortex. Two cohorts of participants with MDD were tested. In the first MDD cohort, we used standardised facial expression recognition tasks. In the second cohort, we focused on facial disgust recognition, a function associated with the insular cortex. T1 weighted MR imaging was used in the second cohort to test the hypothesis of abnormal insular volume being associated with impaired disgust recognition. Disgust recognition was particularly impaired in both cohorts. In the second cohort, the magnitude of the disgust recognition deficit correlated with reduced insula grey matter volume. Exploring the idea of insula involvement in MDD further, we identified the insular cortex and the anterior cingulate cortex as key neural correlates of core symptoms, in that scores of 3 clinical scales (the Beck Depression Inventory, the Hamilton Depression Rating Scale, and the Snaith-Hamilton Pleasure Scale) correlated with grey matter volume in these structures. MDD participants were clinically representative of specialist and academic psychiatric practice in the UK and presented with robust primary diagnoses; we did not exclude common co-morbidities such as anxiety and personality disorders. We propose that cognitive and emotional functions assumed to be associated with the insula are adversely affected in patients with MDD and that this may, therefore, represent the substrate for some core clinical features of MDD. Further exploration of the involvement of the insular cortex in MDD is warranted. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. CREB regulates memory allocation in the insular cortex.

    Science.gov (United States)

    Sano, Yoshitake; Shobe, Justin L; Zhou, Miou; Huang, Shan; Shuman, Tristan; Cai, Denise J; Golshani, Peyman; Kamata, Masakazu; Silva, Alcino J

    2014-12-01

    The molecular and cellular mechanisms of memory storage have attracted a great deal of attention. By comparison, little is known about memory allocation, the process that determines which specific neurons in a neural network will store a given memory. Previous studies demonstrated that memory allocation is not random in the amygdala; these studies showed that amygdala neurons with higher levels of the cyclic-AMP-response-element-binding protein (CREB) are more likely to be recruited into encoding and storing fear memory. To determine whether specific mechanisms also regulate memory allocation in other brain regions and whether CREB also has a role in this process, we studied insular cortical memory representations for conditioned taste aversion (CTA). In this task, an animal learns to associate a taste (conditioned stimulus [CS]) with the experience of malaise (such as that induced by LiCl; unconditioned stimulus [US]). The insular cortex is required for CTA memory formation and retrieval. CTA learning activates a subpopulation of neurons in this structure, and the insular cortex and the basolateral amygdala (BLA) interact during CTA formation. Here, we used a combination of approaches, including viral vector transfections of insular cortex, arc fluorescence in situ hybridization (FISH), and designer receptors exclusively activated by designer drugs (DREADD) system, to show that CREB levels determine which insular cortical neurons go on to encode a given conditioned taste memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ictus emeticus and the insular cortex.

    Science.gov (United States)

    Fiol, M E; Leppik, I E; Mireles, R; Maxwell, R

    1988-01-01

    A 30-year-old man had a long history of seizures that began with feelings of tightness in his throat and fear, followed by projectile vomiting and head and eye deviation to the left. These episodes were not completely controlled by antiepileptic medications. Video EEG monitoring confirmed his clinical description. Corticography was performed before and after temporal lobectomy and revealed residual spikes in the unresectable tissue of the insula. Three years postoperatively he has had no seizures with vomiting but has occasional 'auras' of throat tightening and fear. The case suggests that the insula may be a trigger area for emesis but requires anterior-mesial temporal cortex for completion.

  11. Variable temporo-insular cortex neuroanatomy in primates suggests a bottleneck effect in eastern gorillas

    Science.gov (United States)

    Barks, Sarah K.; Bauernfeind, Amy L.; Bonar, Christopher J.; Cranfield, Michael R.; de Sousa, Alexandra A.; Erwin, Joseph M.; Hopkins, William D.; Lewandowski, Albert H.; Mudakikwa, Antoine; Phillips, Kimberley A.; Raghanti, Mary Ann; Stimpson, Cheryl D.; Hof, Patrick R.; Zilles, Karl; Sherwood, Chet C.

    2013-01-01

    In this study, we describe an atypical neuroanatomical feature present in several primate species that involves a fusion between the temporal lobe (often including Heschl’s gyrus in great apes) and the posterior dorsal insula, such that a portion of insular cortex forms an isolated pocket medial to the Sylvian fissure. We assessed the frequency of this fusion in 56 primate species (including apes, Old World monkeys, New World monkeys, and strepsirrhines) using either magnetic resonance images or histological sections. A fusion between temporal cortex and posterior insula was present in 22 species (7 apes, 2 Old World monkeys, 4 New World monkeys, and 9 strepsirrhines). The temporo-insular fusion was observed in most eastern gorilla (Gorilla beringei beringei and G. b. graueri) specimens (62% and 100% of cases, respectively) but less frequently in other great apes and was never found in humans. We further explored the histology of this fusion in eastern gorillas by examining the cyto- and myeloarchitecture within this region, and observed that the degree to which deep cortical layers and white matter are incorporated into the fusion varies among individuals within a species. We suggest that fusion between temporal and insular cortex is an example of a relatively rare neuroanatomical feature that has become more common in eastern gorillas, possibly as the result of a population bottleneck effect. Characterizing the phylogenetic distribution of this morphology highlights a derived feature of these great apes. PMID:23939630

  12. Anterior Insular Cortex Activity to Emotional Salience of Voices in A Passive Oddball Paradigm

    Directory of Open Access Journals (Sweden)

    Chenyi eChen

    2014-09-01

    Full Text Available The human voice, which has a pivotal role in communication, is processed in specialized brain regions. Although a general consensus holds that the anterior insular cortex (AIC plays a critical role in negative emotional experience, previous studies have not observed AIC activation in response to hearing disgust in voices. We used magnetoencephalography to measure the magnetic counterparts of mismatch negativity (MMNm and P3a (P3am in healthy adults while the emotionally meaningless syllables dada, spoken as neutral, happy, or disgusted prosodies, along with acoustically matched simple and complex tones, were presented in a passive oddball paradigm. The results revealed that disgusted relative to happy syllables elicited stronger MMNm-related cortical activities in the right AIC and precentral gyrus along with the left posterior insular cortex, supramarginal cortex, transverse temporal cortex, and upper bank of superior temporal cortex. The AIC activity specific to disgusted syllables (corrected p < .05 was associated with the hit rate of the emotional categorization task. These findings may clarify the neural correlates of emotional MMNm and lend support to the role of AIC in the processing of emotional salience already at the preattentive level.

  13. Structural basis of empathy and the domain general region in the anterior insular cortex

    Directory of Open Access Journals (Sweden)

    Isabella eMutschler

    2013-05-01

    Full Text Available Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises emotional and cognitive components, such as feeling and knowing what another person is feeling, and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person’s feelings and to reduce another person’s pain. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmental demands or intrinsic factors. Here we have investigated changes in brain structure resulting from or predisposing to empathy. Structural MRI data of 101 healthy adult females was analyzed. Empathy in fictitious as well as real-life situations was assessed by using a widely used and validated self-evaluation measure. Furthermore, empathy-related structural effects were also put into the context of a functional map of the anterior insular cortex determined by activation likelihood estimate (ALE meta-analysis of previous functional imaging studies. We found that gray matter density in the left dorsal anterior insular cortex correlates with empathy and that this area overlaps with the domain general region of the anterior insula that is situated in-between functional systems involved in emotion-cognition, pain and motor tasks as determined by our meta-analysis. Thus, we propose that this insular region where we find structural differences depending on individual empathy might play a crucial role in modulating the efficiency of neural integration underlying emotional, cognitive, and sensorimotor information which is essential for global empathy.

  14. Cardioembolism and Involvement of the Insular Cortex in Patients with Ischemic Stroke.

    Directory of Open Access Journals (Sweden)

    Jihoon Kang

    Full Text Available To evaluate whether topographical characteristics of insular involvement in ischemic stroke are associated with cardioembolism.A consecutive series of patients hospitalized for ischemic stroke within 7 days of symptom onset were identified. Based on diffusion-weighted imaging, we included those who had ischemic lesions in the middle cerebral artery (MCA territory. Each patient was assigned to one of two groups based on the presence or absence of insular involvement. The primary outcome was the frequency of cardioembolism, which was compared based on insular involvement. Of 1,311 patients with ischemic stroke in the MCA territory, 112 had insular involvement (8.5%. The frequency of cardioembolism in patients with insular involvement (52.7% was significantly higher than that in patients without insular involvement (30.4%, P < 0.001. Although insular involvement was associated with a severe baseline National Institutes of Health Stroke Scale score (13 vs. 4, it did not independently affect the 3-month functional outcome.In cases of stroke in the MCA territory, involvement of the insular cortex may be associated with a risk of cardioembolism.

  15. Rostral Agranular Insular Cortex Lesion with Motor Cortex Stimulation Enhances Pain Modulation Effect on Neuropathic Pain Model

    Directory of Open Access Journals (Sweden)

    Hyun Ho Jung

    2016-01-01

    Full Text Available It is well known that the insular cortex is involved in the processing of painful input. The aim of this study was to evaluate the pain modulation role of the insular cortex during motor cortex stimulation (MCS. After inducing neuropathic pain (NP rat models by the spared nerve injury method, we made a lesion on the rostral agranular insular cortex (RAIC unilaterally and compared behaviorally determined pain threshold and latency in 2 groups: Group A (NP + MCS; n=7 and Group B (NP + RAIC lesion + MCS; n=7. Also, we simultaneously recorded neuronal activity (NP; n=9 in the thalamus of the ventral posterolateral nucleus and RAIC to evaluate electrophysiological changes from MCS. The pain threshold and tolerance latency increased in Group A with “MCS on” and in Group B with or without “MCS on.” Moreover, its increase in Group B with “MCS on” was more than that of Group B without MCS or of Group A, suggesting that MCS and RAIC lesioning are involved in pain modulation. Compared with the “MCS off” condition, the “MCS on” induced significant threshold changes in an electrophysiological study. Our data suggest that the RAIC has its own pain modulation effect, which is influenced by MCS.

  16. The von Economo neurons in fronto-insular and anterior cingulate cortex

    Science.gov (United States)

    Allman, John M.; Tetreault, Nicole A.; Hakeem, Atiya Y.; Manaye, Kebreten F.; Semendeferi, Katerina; Erwin, Joseph M.; Park, Soyoung; Goubert, Virginie; Hof, Patrick R.

    2011-01-01

    The von Economo neurons (VENs) are large bipolar neurons located in fronto-insular cortex (FI) and anterior limbic area (LA) in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week post conception, with numbers increasing during the first eight months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of fronto-temporal dementia implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  17. New insights on the role of the insular cortex and habenula in OSA.

    Science.gov (United States)

    Li, Ming-Xian; Yan, Chao-Ying; Wang, Shao

    2015-12-01

    Abnormal structure or function in the central nervous system (CNS) can also affect obstructive sleep apnea (OSA). Because human afferent and motor pathways that regulate apnea are still poorly understood, it is not possible to modify the behavior of motor neurons to control airway function. The purpose of this article is to clear the central control mechanism of genioglossus (GG) and to discuss how altered activity in the limbic system and its related structures might affect OSA development, in order to provide help for the treatment of this disease. Functional magnetic resonance imaging (fMRI) data from previous studies on OSA-related brain damage in human beings plus the data from clinical and animal experiments are summarized. These articles are overviewed to discuss the roles of the limbic system-the insular cortex (Ic), the habenula (Hb), and CNS-in the pathogenesis and mechanisms of OSA. The Ic, which relays signals through the Hb, may play a role in OSA because activating the Ic causes the Hb to suppress activity of the raphe nucleus (RN), resulting in lower levels of 5-hydroxytryptamine (5-HT) that decreases the muscle tone of the GG. This leads to airway collapse. The Ic may be an important region in the development of OSA. Altered activity in the limbic system and its related structures could also be associated with OSA.

  18. Loss of long-term depression in the insular cortex after tail amputation in adult mice

    Science.gov (United States)

    2014-01-01

    The insular cortex (IC) is an important forebrain structure involved in pain perception and taste memory formation. Using a 64-channel multi-electrode array system, we recently identified and characterized two major forms of synaptic plasticity in the adult mouse IC: long-term potentiation (LTP) and long-term depression (LTD). In this study, we investigate injury-related metaplastic changes in insular synaptic plasticity after distal tail amputation. We found that tail amputation in adult mice produced a selective loss of low frequency stimulation-induced LTD in the IC, without affecting (RS)-3,5-dihydroxyphenylglycine (DHPG)-evoked LTD. The impaired insular LTD could be pharmacologically rescued by priming the IC slices with a lower dose of DHPG application, a form of metaplasticity which involves activation of protein kinase C but not protein kinase A or calcium/calmodulin-dependent protein kinase II. These findings provide important insights into the synaptic mechanisms of cortical changes after peripheral amputation and suggest that restoration of insular LTD may represent a novel therapeutic strategy against the synaptic dysfunctions underlying the pathophysiology of phantom pain. PMID:24398034

  19. Gray Matter Volume of the Anterior Insular Cortex and Social Networking.

    Science.gov (United States)

    Spagna, Alfredo; Dufford, Alexander J; Wu, Qiong; Wu, Tingting; Zheng, Weihao; Coons, Edgar E; Hof, Patrick R; Hu, Bin; Wu, Yanhong; Fan, Jin

    2018-02-06

    In human life, social context requires the engagement in complex interactions among individuals as the dynamics of social networks. The evolution of the brain as the neurological basis of the mind must be crucial in supporting this process. Although the relationship between social networking and the amygdala, a small but core region for emotion processing, has been reported, other structures supporting sophisticated social interactions must be involved and need to be identified. In this study, we examined the relationship between morphology of the anterior insular cortex (AIC), a structure involved in basic and high-level cognition, and social networking. Two independent cohorts of individuals (New York group n = 50, Beijing group n = 100) were recruited. Structural magnetic resonance images acquired and the social network index (SNI), a composite measure summarizing an individual's network diversity, size, and complexity, were measured. The association between morphological features of the AIC, in addition to amygdala, and the SNI was examined. Positive correlations between the measures of the volume as well as sulcal depth of the AIC and the SNI were found in both groups, while a significant positive correlation between the volume of the amygdala and the SNI was found in the New York group. The converging results from the two groups suggest that the AIC supports network-level social interactions. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  20. Kainate receptor mediated presynaptic LTP in agranular insular cortex contributes to fear and anxiety in mice.

    Science.gov (United States)

    Shi, Tian-Yao; Feng, Shu-Fang; Wei, Ming-Xiao; Huang, Yan; Liu, Gang; Wu, Hai-Tao; Zhang, Yong-Xiang; Zhou, Wen-Xia

    2017-11-08

    Anxiety disorders represent serious social problems worldwide. Recent neuroimaging studies have found that elevated activity and altered connectivity of the insular cortex might account for the negative emotional states in highly anxious individuals. However, the exact synaptic mechanisms of specific insular subregions have yet to be studied in detail. To assess the electrophysiological properties of agranular insular cortex (AIC) neurons, basic synaptic transmission was recorded and different protocols were used to induce presynaptic and postsynaptic long-term potentiation in mice with anxiety-related behaviors. The presynaptic membrane expression of kainate receptors (KARs) and pharmacologic manipulations were quantified to examine the role of Gluk1 subtype in anxiety-like behaviors. Fear conditioning occludes electrically induced postsynaptic-LTP in the AIC. Quantal analysis of LTP expression in this region revealed a significant presynaptic component reflected by an increase in the probability of transmitter release. A form of presynaptic-LTP that requires KARs has been characterized. Interestingly, a simple emotional anxiety stimulus resulted in selective occlusion of presynaptic-LTP, but not of postsynaptic-LTP. Finally, injecting GluK1-specific antagonists into the AIC reduced behavioral responses to fear or anxiety stimuli in the mouse. These findings suggest that activity-dependent synaptic plasticity takes place in the AIC due to exposure to fear or anxiety, and inhibiting the presynaptic KAR function may help to prevent or treat anxiety disorder. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Corticotrigeminal projections from the insular cortex to the trigeminal caudal subnucleus regulate orofacial pain after nerve injury via extracellular signal-regulated kinase activation in insular cortex neurons

    Directory of Open Access Journals (Sweden)

    Jian eWang

    2015-12-01

    Full Text Available Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc, especially the superficial laminae (I/II, received direct descending projections from granular and dysgranular parts of the insular cortex (IC. Extracellular signal-regulated kinase (ERK, an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs and reduced the paired-pulse ratio (PPR of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These

  2. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons.

    Science.gov (United States)

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help

  3. Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation

    Science.gov (United States)

    Vinding, Mikkel C.; Allen, Micah; Jensen, Troels Staehelin; Finnerup, Nanna Brix

    2017-01-01

    Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1–4 Hz) and gamma (55–90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas. NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage. PMID:28250150

  4. Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation.

    Science.gov (United States)

    Fardo, Francesca; Vinding, Mikkel C; Allen, Micah; Jensen, Troels Staehelin; Finnerup, Nanna Brix

    2017-05-01

    Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1-4 Hz) and gamma (55-90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas.NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage. Copyright © 2017 the American Physiological Society.

  5. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    Directory of Open Access Journals (Sweden)

    Izumi Matsudaira

    Full Text Available A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old. We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM following magnetic resonance imaging (MRI. In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between

  6. Learning Touch Preferences with a Tactile Robot Using Dopamine Modulated STDP in a Model of Insular Cortex

    Directory of Open Access Journals (Sweden)

    Ting-Shuo eChou

    2015-07-01

    Full Text Available Neurorobots enable researchers to study how behaviors are produced by neural mechanisms in an uncertain, noisy, real-world environment. To investigate how the somatosensory system processes noisy, real-world touch inputs, we introduce a neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design of CARL-SJR is such that it encourages people to communicate with it through gentle touch. CARL-SJR provides feedback to users by displaying bright colors on its surface. In the present study, we show that CARL-SJR is capable of learning associations between conditioned stimuli (CS; a color pattern on its surface and unconditioned stimuli (US; a preferred touch pattern by applying a spiking neural network (SNN with neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic touch, to process noisy data generated directly from CARL-SJR’s tactile sensory area. To facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity (STDP to our simulated prefrontal cortex, striatum and insular cortex. To cope with noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and variations in subject hand swipes, the learning was quite robust. Further, the plasticity (i.e., STDP in primary somatosensory cortex and insular cortex in the incremental pathway of dopaminergic reward system allowed us to control CARL-SJR’s preference for touch direction without heavily pre-processed inputs. The emerged behaviors we found in this model match animal’s behaviors wherein they prefer touch in particular areas and directions. Thus, the results in this paper could serve as an explanation on the underlying neural mechanisms for developing tactile preferences and hedonic touch.

  7. Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex.

    Science.gov (United States)

    Chou, Ting-Shuo; Bucci, Liam D; Krichmar, Jeffrey L

    2015-01-01

    Neurorobots enable researchers to study how behaviors are produced by neural mechanisms in an uncertain, noisy, real-world environment. To investigate how the somatosensory system processes noisy, real-world touch inputs, we introduce a neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design of CARL-SJR is such that it encourages people to communicate with it through gentle touch. CARL-SJR provides feedback to users by displaying bright colors on its surface. In the present study, we show that CARL-SJR is capable of learning associations between conditioned stimuli (CS; a color pattern on its surface) and unconditioned stimuli (US; a preferred touch pattern) by applying a spiking neural network (SNN) with neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic touch, to process noisy data generated directly from CARL-SJR's tactile sensory area. To facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity (STDP) to our simulated prefrontal cortex, striatum, and insular cortex. To cope with noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and variations in subject hand swipes, the learning was quite robust. Further, insular cortex activities in the incremental pathway of dopaminergic reward system allowed us to control CARL-SJR's preference for touch direction without heavily pre-processed inputs. The emerged behaviors we found in this model match animal's behaviors wherein they prefer touch in particular areas and directions. Thus, the results in this paper could serve as an explanation on the underlying neural mechanisms for developing tactile preferences and hedonic touch.

  8. Cardiovascular effects of noradrenaline microinjected into the insular cortex of unanesthetized rats.

    Science.gov (United States)

    Alves, Fernando H F; Crestani, Carlos C; Resstel, Leonardo B M; Correa, Fernando M A

    2011-02-24

    The insular cortex (IC) has been reported to be involved in central cardiovascular control. In the present study, we investigated the cardiovascular responses evoked by microinjection of noradrenaline into the IC as well as the central and peripheral mechanisms involved in their mediation. Microinjection of noradrenaline into the IC (3, 7, 10, 15, 30 and 45 nmol/100 nL) caused long-lasting dose-related pressor and bradycardiac responses. The cardiovascular responses evoked by 15 nmol of noradrenaline were blocked by IC pretreatment with WB4101 or 5-methyl-urapidil, selective α(1)-adrenoceptor antagonists. IC pretreatment with either the selective α(2)-adrenoceptor antagonists RX821002 or the β-adrenoceptor antagonist propranolol did not affect noradrenaline cardiovascular responses. Noradrenaline cardiovascular responses were mimicked by microinjection of the selective α(1)-adrenoceptor agonist phenylephrine into the IC, thus reinforcing the idea that α(1)-adrenoceptors mediate cardiovascular responses to noradrenaline microinjected into the IC. The pressor response to noradrenaline microinjection was potentiated by i.v. pretreatment with the ganglion blocker pentolinium and inhibited by i.v. pretreatment with the selective V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP. The bradycardiac response to noradrenaline microinjection into the IC was abolished by pretreatment with either pentolinium or the V(1)-vasopressin receptor antagonist, indicating its reflex origin. In conclusion, our results suggest that pressor response evoked by microinjection of noradrenaline into the IC involve the activation of IC α(1)-adrenoceptors to cause the release of vasopressin into the circulation. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Glucocorticoids enhance taste aversion memory via actions in the insular cortex and basolateral amygdala

    Science.gov (United States)

    Miranda, Maria Isabel; Quirarte, Gina L.; Rodriguez-Garcia, Gabriela; McGaugh, James L.; Roozendaal, Benno

    2008-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function. Corticosterone (1.0 or 3.0 mg/kg) administered subcutaneously to male Sprague–Dawley rats immediately after the pairing of saccharin consumption with the visceral malaise-inducing agent lithium chloride (LiCl) dose-dependently increased aversion to the saccharin taste on a 96-h retention test trial. In a second experiment, rats received corticosterone either immediately after saccharin consumption or after the LiCl injection, when both stimuli were separated by a 3-h time interval, to investigate whether corticosterone enhances memory of the gustatory or visceral stimulus presentation. Consistent with the finding that the LiCl injection, but not saccharin consumption, increases endogenous corticosterone levels, corticosterone selectively enhanced CTA memory when administered after the LiCl injection. Suppression of this training-induced release of corticosterone with the synthesis-inhibitor metyrapone (35 mg/kg) impaired CTA memory, and was dose-dependently reversed by post-training supplementation of corticosterone. Moreover, direct post-training infusions of corticosterone into the insular cortex or basolateral complex of the amygdala, two brain regions that are critically involved in the acquisition and consolidation of CTA, also enhanced CTA retention, whereas post-training infusions into the dorsal hippocampus were ineffective. These findings provide evidence that glucocorticoid effects on memory consolidation are not limited to hippocampus-dependent spatial/contextual information, but that these hormones also modulate memory consolidation of discrete-cue associative learning via actions in other brain regions. PMID

  10. Involvement of the insular cortex in regulating glucocorticoid effects on memory consolidation of inhibitory avoidance training

    Directory of Open Access Journals (Sweden)

    Raquel eFornari

    2012-03-01

    Full Text Available Glucocorticoids are known to enhance the consolidation of memory of emotionally arousing experiences by acting upon a network of interconnected brain regions. Although animal studies typically do not consider the insular cortex (IC to be part of this network, the present findings indicate that the IC is importantly involved in regulating glucocorticoid effects on memory consolidation of emotionally arousing inhibitory avoidance training. The specific glucocorticoid receptor agonist RU 28362 (3 or 10 ng in 0.5 l infused bilaterally into the IC of male Sprague-Dawley rats immediately after one-trial inhibitory avoidance training dose-dependently enhanced 48-h retention performance. Moreover, training on the inhibitory avoidance task increased neuronal activity of the IC, as assessed by an increased number of cells expressing immunoreactivity for phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2. However, systemic administration of a memory-enhancing dose of corticosterone (1 mg/kg after inhibitory avoidance training rapidly reduced the number of pERK1/2-positive cells in the IC, suggesting that glucocorticoid administration reduces overall neuronal activity of the IC. To investigate which components of the inhibitory avoidance training experience were influenced by the intra-IC glucocorticoid administration, in the last experiment rats were trained on a modified inhibitory avoidance task in which context exposure and footshock training occur on two sequential days. RU 28362 administration into the IC enhanced later retention when infused immediately after either the context or footshock training. Thus, these findings indicate that the IC mediates glucocorticoid effects on the consolidation of memory of different components of inhibitory avoidance training and suggest that the IC might be an important element of the rodent brain network involved in emotional regulation of learning and memory.

  11. Electrical Stimulations of the Human Insula: Their Contribution to the Ictal Semiology of Insular Seizures.

    Science.gov (United States)

    Mazzola, Laure; Mauguière, François; Isnard, Jean

    2017-07-01

    Stereotactic stimulations of the insular cortex through intracranial electrodes aim at characterizing the semiology of insular seizures. These stimulations, carried out in the context of Stereo-Electro-Encephalography (SEEG) during presurgical monitoring of epilepsy, reproduce the ictal symptoms observed during the development of insular seizures. The authors reviewed the results of insular stimulations performed in 222 patients admitted between 1997 and 2015 for presurgical SEEG exploration of atypical temporal or perisylvian epilepsy. Stimulations (50 Hz, trains of 5 seconds, pulses of 0.5 ms, intensity 0.2-3.5 mA) were carried out using transopercular electrodes implanted orthogonal to midsagittal plane. Out of a total of 669 stimulations, 550 were clinically eloquent in the absence of any postdischarge (237 and 313, respectively, in the right and left insulae). Somatosensory responses (61% of evoked sensations) including pain and visceral sensations (14.9%) were the most frequent, followed by auditory sensations (8%), vestibular illusions (7.5%), speech impairment (5%), gustatory, (2.7%), and olfactory (1%) sensations. Although these responses showed some functional segregation (in particular a privileged pain representation in the postero-superior quadrant), there was a clear spatial overlap between representations of the different modalities. Symptoms evoked by insular stimulations are multiple. None of them can be considered as absolutely specific to the insular cortex, but the occurrence in given seizure of a somatosensory symptom such as pain or of a laryngeal spasm associated with vestibular, auditory, aphasic, or olfacto-gustatory symptoms points to a discharge development in the insular cortex, which is the only cortical region where stimulations demonstrate such a multimodal representation.

  12. Neuronal Migration and Axonal Pathways Linked to Human Fetal Insular Development Revealed by Diffusion MR Tractography.

    Science.gov (United States)

    Das, Avilash; Takahashi, Emi

    2017-08-31

    The insula is a multimodal sensory integration structure that, in addition to serving as a gateway between somatosensory areas and limbic structures, plays a crucial role in autonomic nervous system function. While anatomical studies following the development of the insula have been conducted, currently, no studies have been published in human fetuses tracking the development of neuronal migration or of white matter tracts in the cortex. In this study, we aimed to follow the neuronal migration and subsequent maturation of axons in and around the insula in human fetal ages. Using high-angular resolution diffusion magnetic resonance imaging tractography, major white matter pathways to/from the insula and its surrounding operculum were identified at a number of time points during human gestation. Pathways likely linked to neuronal migration from the ventricular zone to the inferior frontal gyrus, superior temporal region, and the insular cortex were detected in the earliest gestational age studied (15 GW). Tractography reveals neuronal migration to areas surrounding the insula occurred at different time points. These results, in addition to demonstrating key time points for neuronal migration, suggest that neurons and axonal fiber pathways underlying the insula and its surrounding gyri mature differentially despite their relationship during cortical folding. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback

    Science.gov (United States)

    Berman, Brian D.; Horovitz, Silvina G.; Hallett, Mark

    2013-01-01

    The capacity for subjects to learn to volitionally control localized brain activity using neurofeedback is actively being investigated. We aimed to investigate the ability of healthy volunteers to quickly learn to use visual feedback during real-time functional MRI (rtfMRI) to modulate brain activity within their anterior right insular cortex (RIC) localized during a blink suppression task, an approach of possible interest in the use of rtfMRI to reduce urges. The RIC region of interest (RIC-ROI) was functionally localized using a blink suppression task, and blood-oxygen level dependent (BOLD) signal changes within RIC-ROI used to create a constantly updating display fed back to the subject in the scanner. Subjects were instructed to use emotional imagery to try and increase activity within RIC-ROI during four feedback training runs (FB1–FB4). A “control” run (CNTRL) before training and a “transfer” run (XSFR) after training were performed without feedback to assess for baseline abilities and learning effects. Fourteen participants completed all neurofeedback training runs. At the group-level, increased BOLD activity was seen in the anterior RIC during all the FB runs, but a significant increase in the functionally defined RIC-ROI was only attained during FB2. In atlas-defined insular cortex ROIs, significant increases were seen bilaterally during the CNTRL, FB1, FB2, and FB4 runs. Increased activity within the insular cortices did not show lateralization. Training did, however, result in a significant increase in functional connectivity between the RIC-ROI and the medial frontal gyrus when comparing FB4 to FB1. Since neurofeedback training did not lead to an increase in BOLD signal across all feedback runs, we suggest that learning to control one’s brain activity in this fashion may require longer or repeated rtfMRI training sessions. PMID:24133436

  14. Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback

    Directory of Open Access Journals (Sweden)

    Brian D Berman

    2013-10-01

    Full Text Available The capacity for subjects to learn to volitionally control localized brain activity using neurofeedback is actively being investigated. We aimed to investigate the ability of healthy volunteers to quickly learn to use visual feedback during real-time functional MRI (rtfMRI to modulate brain activity within their anterior right insular cortex (RIC localized during a blink suppression task, an approach of possible interest in the use of rtfMRI to reduce urges. The RIC region of interest (RIC-ROI was functionally localized using a blink suppression task, and BOLD signal changes within RIC-ROI used to create a constantly updating display fed back to the subject in the scanner. Subjects were instructed to use emotional imagery to try and increase activity within RIC-ROI during four feedback training runs (FB1–FB4. A ‘control’ run (CNTRL before training and a ‘transfer’ run (XSFR after training were performed without feedback to assess for baseline abilities and learning effects. Fourteen participants completed all neurofeedback training runs. At the group level, increased BOLD activity was seen in the anterior RIC during all the FB runs, but a significant increase in the functionally defined RIC-ROI was only attained during FB2. In atlas-defined insular cortex ROIs, significant increases were seen bilaterally during the CNTRL, FB1, FB2, and FB4 runs. Increased activity within the insular cortices did not show lateralization. Training did, however, result in a significant increase in functional connectivity between the RIC-ROI and the medial frontal gyrus when comparing FB4 to FB1. Since neurofeedback training did not lead to an increase in BOLD signal across all feedback runs, we suggest that learning to control one’s brain activity in this fashion may require longer or repeated rtfMRI training sessions.

  15. Memory Trace Reactivation and Behavioral Response during Retrieval Are Differentially Modulated by Amygdalar Glutamate Receptors Activity: Interaction between Amygdala and Insular Cortex

    Science.gov (United States)

    Osorio-Gómez, Daniel; Guzmán-Ramos, Kioko; Bermúdez-Rattoni, Federico

    2017-01-01

    The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the…

  16. Multiple Somatotopic Representations of Heat and Mechanical Pain in the Operculo-Insular Cortex: A High-Resolution fMRI Study

    Science.gov (United States)

    Iannetti, Gian Domenico; Zambreanu, Laura; Stoeter, Peter; Treede, Rolf-Detlef; Tracey, Irene

    2010-01-01

    Whereas studies of somatotopic representation of touch have been useful to distinguish multiple somatosensory areas within primary (SI) and secondary (SII) somatosensory cortex regions, no such analysis exists for the representation of pain across nociceptive modalities. Here we investigated somatotopy in the operculo-insular cortex with noxious heat and pinprick stimuli in 11 healthy subjects using high-resolution (2 × 2 × 4 mm) 3T functional magnetic resonance imaging (fMRI). Heat stimuli (delivered using a laser) and pinprick stimuli (delivered using a punctate probe) were directed to the dorsum of the right hand and foot in a balanced design. Locations of the peak fMRI responses were compared between stimulation sites (hand vs. foot) and modalities (heat vs. pinprick) within four bilateral regions of interest: anterior and posterior insula and frontal and parietal operculum. Importantly, all analyses were performed on individual, non-normalized fMRI images. For heat stimuli, we found hand-foot somatotopy in the contralateral anterior and posterior insula [hand, 9 ± 10 (SD) mm anterior to foot, P < 0.05] and in the contralateral parietal operculum (SII; hand, 7 ±10 mm lateral to foot, P < 0.05). For pinprick stimuli, we also found somatotopy in the contralateral posterior insula (hand, 9 ±10 mm anterior to foot, P < 0.05). Furthermore, the response to heat stimulation of the hand was 11 ± 12 mm anterior to the response to pinprick stimulation of the hand in the contralateral (left) anterior insula (P < 0.05). These results indicate the existence of multiple somatotopic representations for pain within the operculo-insular region in humans, possibly reflecting its importance as a sensory-integration site that directs emotional responses and behavior appropriately depending on the body site being injured. PMID:20739597

  17. Cortex Insular y su rol putativo en la configuración de trastornos Alimenticios

    OpenAIRE

    Noemí Sanagua

    2007-01-01

    El estudio neurocientífico de los desordenes alimenticios, ha experimentado importantes avances en la ultima década, posibilitando dilucidar sustratos cerebrales asociados a la configuración de diversas patologías. El lóbulo insular ha sido escasamente estudiado, trabajos de neuroimagen recientes han permitido conocer su representación anatómica, citoarquitectónica y funcional, así como su conexión con el sistema límbico y neocortex. Su activación, ha sido implicada en diversos procesos: sens...

  18. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  19. Sodium butyrate into the insular cortex during conditioned taste-aversion acquisition delays aversive taste memory extinction.

    Science.gov (United States)

    Núñez-Jaramillo, Luis; Reyes-López, Julian; Miranda, María Isabel

    2014-04-16

    Histone acetylation is one mechanism that promotes gene expression, and it increases during learning of various tasks. Specifically, novel taste consumption produces an increased acetylation of histone lysine residues in the insular cortex (IC), where protein synthesis is crucial during memory consolidation of conditioned taste aversion (CTA). However, the role of this elevated histone acetylation during CTA learning has not been examined directly. Thus, the present study investigated the effects of sodium butyrate (NaBu), a histone deacetylase inhibitor, injected into the IC during CTA acquisition. Male Wistar rats, IC bilaterally implanted, were injected 60 min before saccharine presentation, with a total volume of 0.5 µl of NaBu solution (100, 500, and 10 µg/0.5 µl) or saline; 30 min later animals were injected intraperitoneally with lithium chloride, a malaise-inducing drug. The next day, CTA retrieval was tested. No effects of NaBu were observed during acquisition or retrieval, but during extinction trials, a significant delay in aversive memory extinction was observed in the group injected with the lowest NaBu dose. This result indicates that NaBu in the IC strengthens CTA and delays aversive memory extinction, and suggests that histone acetylation could increase long-term taste-aversive memory strength.

  20. Calcium-stimulated adenylyl cyclase subtype 1 (AC1 contributes to LTP in the insular cortex of adult mice

    Directory of Open Access Journals (Sweden)

    Manabu Yamanaka

    2017-07-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission in the central nervous system is a key form of cortical plasticity. The insular cortex (IC is known to play important roles in pain perception, aversive memory and mood disorders. LTP has been recently reported in the IC, however, the signaling pathway for IC LTP remains unknown. Here, we investigated the synaptic mechanism of IC LTP. We found that IC LTP induced by the pairing protocol was N-methyl-D-aspartate receptors (NMDARs dependent, and expressed postsynaptically, since paired-pulse ratio (PPR was not affected. Postsynaptic calcium is important for the induction of post-LTP, since the postsynaptic application of BAPTA completely blocked the induction of LTP. Calcium-activated adenylyl cyclase subtype 1 (AC1 is required for potentiation. By contrast, AC8 is not required. Inhibition of Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs or protein kinase M zeta (PKMζ reduced the expression of LTP. Our results suggest that calcium-stimulated AC1, but not AC8, can be a trigger of the induction and maintenance of LTP in the IC.

  1. Plasticity-Related PKMζ Signaling in the Insular Cortex Is Involved in the Modulation of Neuropathic Pain after Nerve Injury

    Directory of Open Access Journals (Sweden)

    Jeongsoo Han

    2015-01-01

    Full Text Available The insular cortex (IC is associated with important functions linked with pain and emotions. According to recent reports, neural plasticity in the brain including the IC can be induced by nerve injury and may contribute to chronic pain. Continuous active kinase, protein kinase Mζ (PKMζ, has been known to maintain the long-term potentiation. This study was conducted to determine the role of PKMζ in the IC, which may be involved in the modulation of neuropathic pain. Mechanical allodynia test and immunohistochemistry (IHC of zif268, an activity-dependent transcription factor required for neuronal plasticity, were performed after nerve injury. After ζ-pseudosubstrate inhibitory peptide (ZIP, a selective inhibitor of PKMζ injection, mechanical allodynia test and immunoblotting of PKMζ, phospho-PKMζ (p-PKMζ, and GluR1 and GluR2 were observed. IHC demonstrated that zif268 expression significantly increased in the IC after nerve injury. Mechanical allodynia was significantly decreased by ZIP microinjection into the IC. The analgesic effect lasted for 12 hours. Moreover, the levels of GluR1, GluR2, and p-PKMζ were decreased after ZIP microinjection. These results suggest that peripheral nerve injury induces neural plasticity related to PKMζ and that ZIP has potential applications for relieving chronic pain.

  2. Noradrenergic Activation of the Basolateral Amygdala Enhances Object Recognition Memory and Induces Chromatin Remodeling in the Insular Cortex

    Directory of Open Access Journals (Sweden)

    Hassiba eBeldjoud

    2015-04-01

    Full Text Available It is well established that arousal-induced memory enhancement requires noradrenergic activation of the basolateral complex of the amygdala (BLA and modulatory influences on information storage processes in its many target regions. While this concept is well accepted, the molecular basis of such BLA effects on neural plasticity changes within other brain regions remains to be elucidated. The present study investigated whether noradrenergic activation of the BLA after object recognition training induces chromatin remodeling through histone post-translational modifications in the insular cortex (IC, a brain region that is importantly involved in object recognition memory. Male Sprague–Dawley rats were trained on an object recognition task, followed immediately by bilateral microinfusions of norepinephrine (1.0 µg or saline administered into the BLA. Saline-treated control rats exhibited poor 24-h retention, whereas norepinephrine treatment induced robust 24-h object recognition memory. Most importantly, this memory-enhancing dose of norepinephrine induced a global reduction in the acetylation levels of histone H3 at lysine 14, H2B and H4 in the IC 1 h later, whereas it had no effect on the phosphorylation of histone H3 at serine 10 or tri-methylation of histone H3 at lysine 27. Norepinephrine administered into the BLA of non-trained control rats did not induce any changes in the histone marks investigated in this study. These findings indicate that noradrenergic activation of the BLA induces training-specific effects on chromatin remodeling mechanisms, and presumably gene transcription, in its target regions, which may contribute to the understanding of the molecular mechanisms of stress and emotional arousal effects on memory consolidation.

  3. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Directory of Open Access Journals (Sweden)

    Alexandra E. Proshchina

    2014-04-01

    Full Text Available The ontogeny of the neuro-insular complexes (NIC and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE and S100 protein and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw 10 onwards. Later the density of S100 and NSE-positive fibers increased. In adults this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onwards. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained neuro-insular complexes and the number of these complexes was reduced in adults. The highest density of neuro-insular complexes is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  4. Cholinergic Neurotransmission in the Posterior Insular Cortex Is Altered in Preclinical Models of Neuropathic Pain: Key Role of Muscarinic M2 Receptors in Donepezil-Induced Antinociception

    Science.gov (United States)

    Ferrier, Jérémy; Bayet-Robert, Mathilde; Dalmann, Romain; El Guerrab, Abderrahim; Aissouni, Youssef; Graveron-Demilly, Danielle; Chalus, Maryse; Pinguet, Jérémy; Eschalier, Alain; Richard, Damien; Daulhac, Laurence; Balayssac, David

    2015-01-01

    Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS 1H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment. SIGNIFICANCE STATEMENT Our study describes a decrease in cholinergic neurotransmission in the posterior insular

  5. Differential Involvement of the Agranular vs Granular Insular Cortex in the Acquisition and Performance of Choice Behavior in a Rodent Gambling Task.

    Science.gov (United States)

    Pushparaj, Abhiram; Kim, Aaron S; Musiol, Martin; Zangen, Abraham; Daskalakis, Zafiris J; Zack, Martin; Winstanley, Catharine A; Le Foll, Bernard

    2015-11-01

    Substance-related and addictive disorders, in particular gambling disorder, are known to be associated with risky decision-making behavior. Several neuroimaging studies have identified the involvement of the insular cortex in decision-making under risk. However, the extent of this involvement remains unclear and the specific contributions of two distinct insular subregions, the rostral agranular (RAIC) and the caudal granular (CGIC), have yet to be examined. Animals were trained to perform a rat gambling task (rGT), in which subjects chose between four options that differed in the magnitude and probability of rewards and penalties. In order to address the roles of the RAIC and CGIC in established choice behavior, pharmacological inactivations of these two subregions via local infusions of GABA receptor agonists were performed following 30 rGT training sessions. The contribution made by the RAIC or CGIC to the acquisition of choice behavior was also determined by lesioning these areas before behavioral training. Inactivation of the RAIC, but not of the CGIC, shifted rats' preference toward options with greater reward frequency and lower punishment. Before rGT acquisition, lesions of the RAIC, but not the CGIC, likewise resulted in a higher preference for options with greater reward frequency and lower punishment, and this persisted throughout the 30 training sessions. Our results provide confirmation of the involvement of the RAIC in rGT choice behavior and suggest that the RAIC may mediate detrimental risky decision-making behavior, such as that associated with addiction and gambling disorder.

  6. Extinction of conditioned taste aversion is related to the aversion strength and associated with c-fos expression in the insular cortex.

    Science.gov (United States)

    Hadamitzky, M; Bösche, K; Engler, A; Schedlowski, M; Engler, H

    2015-09-10

    Taste aversion learning is a type of conditioning where animals learn to associate a novel taste (conditioned stimulus; CS) with a stimulus inducing symptoms of poisoning or illness (unconditioned stimulus; US). As a consequence animals later avoid this taste, a reaction known as conditioned taste aversion (CTA). An established CTA extinguishes over time when the CS is repeatedly presented in the absence of the US. However, inter-individual differences in CTA extinction do exist. Using a model of behavioral conditioning with saccharin as CS and the immunosuppressant cyclosporine A as US, the present study aimed at further elucidating the factors underlying individual differences in extinction learning by investigating whether extinction of an established CTA is related to the strength of the initially acquired CS-US association. In addition, we analyzed the expression of the neuronal activation marker c-fos in brain structures relevant for acquisition and retrieval of the CTA, such as the insular cortex and the amygdala. We here show that animals, displaying a strong CS-US association during acquisition, maintained a strong CTA during unreinforced CS re-exposures, in contrast to animals with moderate CS-US association. Moreover, the latter animals showed increased c-fos mRNA expression in the insular cortex. Our data indicate that CTA extinction apparently depends on the strength of the initially learned CS-US association. In addition, these findings provide further evidence that the memory for the initial excitatory conditioning and its subsequent extinction is probably stored in those structures that participate in the processing of the CS and the US. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Mapping Prefrontal Cortex Functions in Human Infancy

    Science.gov (United States)

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  8. Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa.

    Science.gov (United States)

    Lawson, Elizabeth A; Holsen, Laura M; Santin, McKale; Meenaghan, Erinne; Eddy, Kamryn T; Becker, Anne E; Herzog, David B; Goldstein, Jill M; Klibanski, Anne

    2012-10-01

    Animal data suggest that oxytocin is a satiety hormone. We have demonstrated that anorexia nervosa (anorexia), a disorder characterized by food restriction, low weight, and hypoleptinemia, is associated with decreased nocturnal oxytocin secretion. We have also reported functional magnetic resonance imaging (fMRI) hypoactivation in anorexia in brain regions involved in food motivation. The relationships between oxytocin, food-motivation neurocircuitry, and disordered eating psychopathology have not been investigated in humans. The objective of the study was to determine whether the oxytocin response to feeding in anorexia differs from healthy women and to establish the relationship between oxytocin secretion and disordered eating psychopathology and food-motivation neurocircuitry. This was a cross-sectional study. The study was conducted at a clinical research center. Participants included 35 women: 13 anorexia (AN), nine weight-recovered anorexia (ANWR), and 13 healthy controls (HC). Peripheral oxytocin and leptin levels were measured fasting and 30, 60, and 120 min after a standardized mixed meal. The Eating Disorder Examination-Questionnaire was used to assess disordered eating psychopathology. fMRI was performed during visual processing of food and nonfood stimuli to measure brain activation before and after the meal. Mean oxytocin levels were higher in AN than HC at 60 and 120 min and lower in ANWR than HC at 0, 30, and 120 min and AN at all time points. Mean oxytocin area under the curve (AUC) was highest in AN, intermediate in HC, and lowest in ANWR. Mean leptin levels at all time points and AUC were lower in AN than HC and ANWR. Oxytocin AUC was associated with leptin AUC in ANWR and HC but not in AN. Oxytocin AUC was associated with the severity of disordered eating psychopathology in AN and ANWR, independent of leptin secretion, and was associated with between-group variance in fMRI activation in food motivation brain regions, including the hypothalamus

  9. The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans.

    Science.gov (United States)

    Allman, John M; Tetreault, Nicole A; Hakeem, Atiya Y; Manaye, Kebreten F; Semendeferi, Katerina; Erwin, Joseph M; Park, Soyoung; Goubert, Virginie; Hof, Patrick R

    2010-06-01

    The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation

  10. Aberrant intrinsic connectivity of hippocampus and amygdala overlap in the fronto-insular and dorsomedial-prefrontal cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Masoud eTahmasian

    2013-10-01

    Full Text Available Neuroimaging studies of major depressive disorder (MDD have consistently observed functional and structural changes of the hippocampus (HP and amygdale (AY. Thus, these brain regions appear to be critical elements of the pathophysiology of MDD. The HP and AY directly interact and show broad and overlapping intrinsic functional connectivity (iFC to other brain regions. Therefore, we hypothesized the HP and AY would show a corresponding pattern of aberrant intrinsic connectivity in MDD. Resting-state functional MRI was acquired from 21 patients with MDD and 20 healthy controls. ß-maps of region-of-interest-based FC for bilateral body of the HP and basolateral AY were used as surrogates for iFC of the HP and AY. ANOVA was used to compare ß-maps between MDD and healthy control groups, and included covariates for age and gender as well as grey matter volume of the HP and AY. The HP and AY of MDD patient’s showed an overlapping pattern of reduced FC to the dorsomedial prefrontal cortex and fronto-insular operculum. Both of these regions are known to regulate the interactions among intrinsic networks (i.e. default mode, central executive, and salience networks that are disrupted in MDD. These results provide the first evidence of overlapping aberrant HP and AY intrinsic connectivity in MDD. Our findings suggest that aberrant HP and AY connectivity may interact with dysfunctional intrinsic network activity in MDD.

  11. Central vestibular disorder due to ischemic injury on the parieto-insular vestibular cortex in patients with middle cerebral artery territory infarction: Observational study.

    Science.gov (United States)

    Yeo, Sang Seok; Jang, Sung Ho; Kwon, Jung Won

    2017-12-01

    Central vestibular disorder is common after middle cerebral artery (MCA) territory infarction. The MCA supplies blood to the parieto-insular vestibular cortex (PIVC), a core region of central vestibular symptoms. We report on patients that sustained injuries of the core vestibular pathway to the PIVC with central vestibular disorder following MCA territory infarction, demonstrated on diffusion tensor imaging (DTI). Nineteen patients with MCA territory infarction and 12 control subjects were recruited. To reconstruct the core vestibular pathway to the PIVC, we defined seed region of interest (ROI) as vestibular nuclei of pons and target ROI as the PIVC. Fractional anisotropy (FA), mean diffusivity, and tract volume were measured. In the affected hemisphere, FA value of the core vestibular pathway to the PIVC revealed significant difference between all patient groups and the control group (P territory infarction. Analysis of the core vestibular pathway to the PIVC using DTI would be beneficial in clinical evaluation and management of patients with MCA territory infarction. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  12. Flavor Preference Learning Increases Olfactory and Gustatory Convergence onto Single Neurons in the Basolateral Amygdala but Not in the Insular Cortex in Rats

    Science.gov (United States)

    Desgranges, Bertrand; Ricaño-Cornejo, Itzel; Lévy, Frédéric

    2010-01-01

    The basolateral amygdala (BLA) and the insular cortex (IC) represent two major areas for odor-taste associations, i.e. flavor integration. This learning may require the development of convergent odor and taste neuronal activation allowing the memory representation of such association. Yet identification of neurons that respond to such coincident input and the effect of flavor experience on odor-taste convergence remain unclear. In the present study we used the compartmental analysis of temporal activity using fluorescence in situ hybridization for Arc (catFISH) to visualize odor-taste convergence onto single neurons in the BLA and in the IC to assess the number of cells that were co-activated by both stimuli after odor-taste association. We used a sucrose conditioned odor preference as a flavor experience in rats, in which 9 odor-sucrose pairings induce a reliable odor-taste association. The results show that flavor experience induced a four-fold increase in the percentage of cells activated by both taste and odor stimulations in the BLA, but not in the IC. Because conditioned odor preference did not modify the number of cells responding selectively to one stimulus, this greater odor-taste convergence into individual BLA neurons suggests the recruitment of a neuronal population that can be activated by both odor and taste only after the association. We conclude that the development of convergent activation in amygdala neurons after odor-taste associative learning may provide a cellular basis of flavor memory. PMID:20404918

  13. Both α1- and α2-adrenoceptors in the Insular Cortex Are Involved in the Cardiovascular Responses to Acute Restraint Stress in Rats

    Science.gov (United States)

    Alves, Fernando H. F.; Crestani, Carlos C.; Resstel, Leonardo B. M.; Corrêa, Fernando M. A.

    2014-01-01

    The insular cortex (IC) is a limbic structure involved in cardiovascular responses observed during aversive threats. However, the specific neurotransmitter mediating IC control of cardiovascular adjustments to stress is yet unknown. Therefore, in the present study we investigated the role of local IC adrenoceptors in the cardiovascular responses elicited by acute restraint stress in rats. Bilateral microinjection of different doses (0.3, 5, 10 and 15 nmol/100 nl) of the selective α1-adrenoceptor antagonist WB4101 into the IC reduced both the arterial pressure and heart rate increases elicited by restraint stress. However, local IC treatment with different doses (0.3, 5, 10 and 15 nmol/100 nl) of the selective α2-adrenoceptor antagonist RX821002 reduced restraint-evoked tachycardia without affecting the pressor response. The present findings are the first direct evidence showing the involvement of IC adrenoceptors in cardiovascular adjustments observed during aversive threats. Our findings indicate that IC noradrenergic neurotransmission acting through activation of both α1- and α2-adrenoceptors has a facilitatory influence on pressor response to acute restraint stress. Moreover, IC α1-adrenoceptors also play a facilitatory role on restraint-evoked tachycardiac response. PMID:24404141

  14. Aberrant Intrinsic Connectivity of Hippocampus and Amygdala Overlap in the Fronto-Insular and Dorsomedial-Prefrontal Cortex in Major Depressive Disorder

    Science.gov (United States)

    Tahmasian, Masoud; Knight, David C.; Manoliu, Andrei; Schwerthöffer, Dirk; Scherr, Martin; Meng, Chun; Shao, Junming; Peters, Henning; Doll, Anselm; Khazaie, Habibolah; Drzezga, Alexander; Bäuml, Josef; Zimmer, Claus; Förstl, Hans; Wohlschläger, Afra M.; Riedl, Valentin; Sorg, Christian

    2013-01-01

    Neuroimaging studies of major depressive disorder (MDD) have consistently observed functional and structural changes of the hippocampus (HP) and amygdale (AY). Thus, these brain regions appear to be critical elements of the pathophysiology of MDD. The HP and AY directly interact and show broad and overlapping intrinsic functional connectivity (iFC) to other brain regions. Therefore, we hypothesized the HP and AY would show a corresponding pattern of aberrant intrinsic connectivity in MDD. Resting-state functional MRI was acquired from 21 patients with MDD and 20 healthy controls. ß-Maps of region-of-interest-based FC for bilateral body of the HP and basolateral AY were used as surrogates for iFC of the HP and AY. Analysis of variance was used to compare ß-maps between MDD and healthy control groups, and included covariates for age and gender as well as gray matter volume of the HP and AY. The HP and AY of MDD patient’s showed an overlapping pattern of reduced FC to the dorsomedial-prefrontal cortex and fronto-insular operculum. Both of these regions are known to regulate the interactions among intrinsic networks (i.e., default mode, central executive, and salience networks) that are disrupted in MDD. These results provide the first evidence of overlapping aberrant HP and AY intrinsic connectivity in MDD. Our findings suggest that aberrant HP and AY connectivity may interact with dysfunctional intrinsic network activity in MDD. PMID:24101900

  15. Attenuated sensitivity to the emotions of others by insular lesion

    National Research Council Canada - National Science Library

    Terasawa, Yuri; Kurosaki, Yoshiko; Ibata, Yukio; Moriguchi, Yoshiya; Umeda, Satoshi

    2015-01-01

    .... Recent neuroimaging studies have demonstrated that anterior insular cortex activation is associated with accessing interoceptive information and underpinning the subjective experience of emotional state...

  16. Density and Frequency Caudo-Rostral Gradients of Sleep Spindles Recorded in the Human Cortex

    Science.gov (United States)

    Peter-Derex, Laure; Comte, Jean-Christophe; Mauguière, François; Salin, Paul A.

    2012-01-01

    Study Objective: This study aims at providing a quantitative description of intrinsic spindle frequency and density (number of spindles/min) in cortical areas using deep intracerebral recordings in humans. Patients or Participants: Thirteen patients suffering from pharmaco-resistant focal epilepsy and investigated through deep intracortical EEG in frontal, parietal, temporal, occipital, insular, and limbic cortices including the hippocampus were included. Methods: Spindle waves were detected from the ongoing EEG during slow wave sleep (SWS) by performing a time-frequency analysis on filtered signals (band-pass filter: 10-16 Hz). Then, spindle intrinsic frequency was determined using a fast Fourier transform, and spindle density (number of spindles per minute) was computed. Results: Firstly, we showed that sleep spindles were recorded in all explored cortical areas, except temporal neocortex. In particular, we observed the presence of spindles during SWS in areas such as the insular cortex, medial parietal cortex, occipital cortex, and cingulate gyrus. Secondly, we demonstrated that both spindle frequency and density smoothly change along the caudo-rostral axis, from fast frequent posterior spindles to slower and less frequent anterior spindles. Thirdly, we identified the presence of spindle frequency oscillations in the hippocampus and the entorhinal cortex. Conclusions: Spindling activity is widespread among cortical areas, which argues for the fundamental role of spindles in cortical functions. Mechanisms of caudo-rostral gradient modulation in spindle frequency and density may result from a complex interplay of intrinsic properties and extrinsic modulation of thalamocortical and corticothalamic neurons. Citation: Peter-Derex L; Comte JC; Mauguière F; Salin PA. Density and frequency caudo-rostral gradients of sleep spindles recorded in the human cortex. SLEEP 2012;35(1):69-79. PMID:22215920

  17. The Age of Human Cerebral Cortex Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  18. Opposing Roles of Cholinergic and GABAergic Activity in the Insular Cortex and Nucleus Basalis Magnocellularis during Novel Recognition and Familiar Taste Memory Retrieval.

    Science.gov (United States)

    Rodríguez-García, Gabriela; Miranda, María Isabel

    2016-02-10

    Acetylcholine (ACh) is thought to facilitate cortical plasticity during memory formation and its release is regulated by the nucleus basalis magnocellularis (NBM). Questions remain regarding which neuronal circuits and neurotransmitters trigger activation or suppression of cortical cholinergic activity. During novel, but not familiar, taste consumption, there is a significant increase in ACh release in the insular cortex (IC), a highly relevant structure for taste learning. Here, we evaluate how GABA inhibition modulates cholinergic transmission and its involvement during taste novelty processing and familiar taste memory retrieval. Using saccharin as a taste stimulus in a taste preference paradigm, we examined the effects of injecting the GABAA receptor agonist muscimol or the GABAA receptor antagonist bicuculline into the IC or NBM during learning or retrieval of an appetitive taste memory on taste preference in male Sprague Dawley rats. GABAA receptor agonism and antagonism had opposite effects on cortical ACh levels in novel taste presentation versus familiar taste recognition and ACh levels were associated with the propensity to acquire or retrieve a taste memory. These results indicate that the pattern of cortical cholinergic and GABAergic neuroactivity during novel taste exposure is the opposite of that which occurs during familiar taste recognition and these differing neurotransmitter system states may enable different behavioral consequences. Divergences in ACh and GABA levels may produce differential alterations in excitatory and inhibitory neural processes within the cortex during acquisition and retrieval. During learning and recall, several brain structures act together. This work demonstrates interactions between cortical cholinergic and GABAergic systems during taste learning and memory retrieval. We found that the neuroactivity pattern during novel taste exposure is opposite that which occurs during familiar taste recognition. GABAA receptors must

  19. Effect of age on methylphenidate-induced conditioned taste avoidance and related BDNF/TrkB signaling in the insular cortex of the rat.

    Science.gov (United States)

    Wetzell, B Bradley; Muller, Mirabella M; Cobuzzi, Jennifer L; Hurwitz, Zachary E; DeCicco-Skinner, Kathleen; Riley, Anthony L

    2014-04-01

    Drug use and abuse is thought to be a function of the balance between its rewarding and aversive effects, such that the rewarding effects increase the likelihood of use while the drug's dissociable aversive effects limit it. Adolescents exhibit a shift in this balance toward reward, which may ultimately lead to increased use. Importantly, recent work shows that adolescents are also protected from the aversive effects of many abusable drugs as measured by conditioned taste avoidance (CTA). However, such effects of methylphenidate (MPH, widely prescribed to adolescents with ADHD) have not been characterized. The effect of age on MPH-induced CTA was assessed. In addition, MPH-induced changes in brain-derived neurotrophic factor (BDNF) activity in the insular cortex (IC) and central nucleus of the amygdala (CeA), known to be important to CTA, were examined and related to CTAs in adolescents and adults. CTAs induced by MPH (0, 10, 18, and 32 mg/kg) were assessed in adolescent (n = 34) and adult (n = 33) male Sprague Dawley rats. Following MPH CTA, IC and CeA tissue was probed for differences in BDNF and tropomyosin-related kinase receptor-B (TrkB) using Western blots. Blunted expression of MPH CTA was observed in the adolescents versus adults, which correlated with generally attenuated adolescent BDNF/TrkB activity in the IC, but the drug effects ran contrary to the expression of CTA. Adolescents are protected from the aversive effects of MPH versus adults, but further work is needed to characterize the possible involvement of BDNF/TrkB.

  20. Reconstructing speech from human auditory cortex.

    Directory of Open Access Journals (Sweden)

    Brian N Pasley

    2012-01-01

    Full Text Available How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex.

  1. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain

    Directory of Open Access Journals (Sweden)

    Mariela eRance

    2014-10-01

    Full Text Available The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC and the left posterior insula (pInsL on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1 or the pInsL (state 2 being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: (rACC – pInsL increase (state 1, rACC – pInsL decrease (state 2, pInsL – rACC increase (state 2, pInsL – rACC decrease (state 1. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e. learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of

  2. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain.

    Science.gov (United States)

    Rance, Mariela; Ruttorf, Michaela; Nees, Frauke; Schad, Lothar R; Flor, Herta

    2014-01-01

    The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC) and the left posterior insula (pInsL) on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1) or the pInsL (state 2) being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: [rACC-pInsL increase (state 1), rACC-pInsL decrease (state 2), pInsL-rACC increase (state 2), pInsL-rACC decrease (state 1)]. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e., learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of the the same state.

  3. Neural processing of gustatory information in insular circuits.

    Science.gov (United States)

    Maffei, Arianna; Haley, Melissa; Fontanini, Alfredo

    2012-08-01

    The insular cortex is the primary cortical site devoted to taste processing. A large body of evidence is available for how insular neurons respond to gustatory stimulation in both anesthetized and behaving animals. Most of the reports describe broadly tuned neurons that are involved in processing the chemosensory, physiological and psychological aspects of gustatory experience. However little is known about how these neural responses map onto insular circuits. Particularly mysterious is the functional role of the three subdivisions of the insular cortex: the granular, the dysgranular and the agranular insular cortices. In this article we review data on the organization of the local and long-distance circuits in the three subdivisions. The functional significance of these results is discussed in light of the latest electrophysiological data. A view of the insular cortex as a functionally integrated system devoted to processing gustatory, multimodal, cognitive and affective information is proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Insular dentin formation pattern in human odontogenesis in relation to the scalloped dentino-enamel junction.

    Science.gov (United States)

    Radlanski, Ralf J; Renz, Herbert

    2007-01-01

    This study is a first report on the modality of early dentin formation in respect to the scalloped pattern of the dentino-enamel junction (DEJ). We applied scanning electron microscopy (SEM), transmission electron microscopy (TEM), histological serial sections, and three-dimensional (3D) reconstructions. TEM and SEM showed scallops and secondary scallops on the DEJ of deciduous dental primordia and on deciduous teeth with the enamel cap removed. This peculiar outline of the DEJ requires a specific dentin formation pattern; histological sections showed that dentin formation began at the brims of the scallops, seen as triangular spikes in serial sections. The dentin formation front was not uniform; instead, it was characterized by multiple, insular forming centers, as revealed by our 3D reconstructions. As thicker dentin layers formed, the islands became confluent. Factors are discussed, which may lead to crimpling of the inner enamel epithelium, and maintained as the scalloped pattern of the DEJ develops. Signaling patterns in accordance with the insular dentin formation are unknown so far.

  5. Frequency specific modulation of human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Matteo eFeurra

    2011-02-01

    Full Text Available Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS over the primary somatosensory cortex (SI could elicit tactile sensations in humans in a frequency dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10-14 Hz and high gamma (52-70 Hz frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16-20 Hz stimulation. These findings highlight the frequency-dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous EEG/MEG studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.

  6. Monocular Visual Deprivation Suppresses Excitability in Adult Human Visual Cortex

    DEFF Research Database (Denmark)

    Lou, Astrid Rosenstand; Madsen, Kristoffer Hougaard; Paulson, Olaf Bjarne

    2011-01-01

    The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we...... employed TMS to trace plastic changes in adult visual cortex before, during, and after 48 h of monocular deprivation (MD) of the right dominant eye. In healthy adult volunteers, MD-induced changes in visual cortex excitability were probed with paired-pulse TMS applied to the left and right occipital cortex...... of visual deprivation has a substantial impact on experience-dependent plasticity of the human visual cortex....

  7. Compressive Temporal Summation in Human Visual Cortex.

    Science.gov (United States)

    Zhou, Jingyang; Benson, Noah C; Kay, Kendrick N; Winawer, Jonathan

    2018-01-17

    Combining sensory inputs over space and time is fundamental to vision. Population receptive field models have been successful in characterizing spatial encoding throughout the human visual pathways. A parallel question, how visual areas in the human brain process information distributed over time, has received less attention. One challenge is that the most widely used neuroimaging method, fMRI, has coarse temporal resolution compared with the time-scale of neural dynamics. Here, via carefully controlled temporally modulated stimuli, we show that information about temporal processing can be readily derived from fMRI signal amplitudes in male and female subjects. We find that all visual areas exhibit subadditive summation, whereby responses to longer stimuli are less than the linear prediction from briefer stimuli. We also find fMRI evidence that the neural response to two stimuli is reduced for brief interstimulus intervals (indicating adaptation). These effects are more pronounced in visual areas anterior to V1-V3. Finally, we develop a general model that shows how these effects can be captured with two simple operations: temporal summation followed by a compressive nonlinearity. This model operates for arbitrary temporal stimulation patterns and provides a simple and interpretable set of computations that can be used to characterize neural response properties across the visual hierarchy. Importantly, compressive temporal summation directly parallels earlier findings of compressive spatial summation in visual cortex describing responses to stimuli distributed across space. This indicates that, for space and time, cortex uses a similar processing strategy to achieve higher-level and increasingly invariant representations of the visual world. SIGNIFICANCE STATEMENT Combining sensory inputs over time is fundamental to seeing. Two important temporal phenomena are summation, the accumulation of sensory inputs over time, and adaptation, a response reduction for repeated

  8. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  9. The Anterior Insular Cortex→Central Amygdala Glutamatergic Pathway Is Critical to Relapse after Contingency Management.

    Science.gov (United States)

    Venniro, Marco; Caprioli, Daniele; Zhang, Michelle; Whitaker, Leslie R; Zhang, Shiliang; Warren, Brandon L; Cifani, Carlo; Marchant, Nathan J; Yizhar, Ofer; Bossert, Jennifer M; Chiamulera, Cristiano; Morales, Marisela; Shaham, Yavin

    2017-10-11

    Despite decades of research on neurobiological mechanisms of psychostimulant addiction, the only effective treatment for many addicts is contingency management, a behavioral treatment that uses alternative non-drug reward to maintain abstinence. However, when contingency management is discontinued, most addicts relapse to drug use. The brain mechanisms underlying relapse after cessation of contingency management are largely unknown, and, until recently, an animal model of this human condition did not exist. Here we used a novel rat model, in which the availability of a mutually exclusive palatable food maintains prolonged voluntary abstinence from intravenous methamphetamine self-administration, to demonstrate that the activation of monosynaptic glutamatergic projections from anterior insular cortex to central amygdala is critical to relapse after the cessation of contingency management. We identified the anterior insular cortex-to-central amygdala projection as a new addiction- and motivation-related projection and a potential target for relapse prevention. Published by Elsevier Inc.

  10. Category selectivity in human visual cortex: Beyond visual object recognition

    NARCIS (Netherlands)

    Peelen, M.V.; Downing, P.E.

    2017-01-01

    Human ventral temporal cortex shows a categorical organization, with regions responding selectively to faces, bodies, tools, scenes, words, and other categories. Why is this? Traditional accounts explain category selectivity as arising within a hierarchical system dedicated to visual object

  11. High membrane protein oxidation in the human cerebral cortex.

    Science.gov (United States)

    Granold, Matthias; Moosmann, Bernd; Staib-Lasarzik, Irina; Arendt, Thomas; Del Rey, Adriana; Engelhard, Kristin; Behl, Christian; Hajieva, Parvana

    2015-01-01

    Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old animals, and adult rat hippocampus and cortex subjected or not subjected to cerebral ischemia. Most tissues showed relatively similar levels of protein oxidation. However, human cortex was affected by severe membrane protein oxidation, while exhibiting lower than average cytoplasmic protein oxidation. In contrast, ex vivo autooxidation of murine cortical tissue primarily induced aqueous protein oxidation, while in vivo biological aging or cerebral ischemia had no major effect on brain protein oxidation. The unusually high levels of membrane protein oxidation in the human cortex were also not predicted by lipid peroxidation, as the levels of isoprostane immunoreactivity in human samples were considerably lower than in rodent tissues. Our results indicate that the aged human cortex is under steady pressure from specific and potentially detrimental membrane protein oxidation. The pronounced difference between humans, mice and rats regarding the primary site of cortical oxidation might have contributed to the unresolved difficulties in translating into therapies the wealth of data describing successful antioxidant neuroprotection in rodents. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. High membrane protein oxidation in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Matthias Granold

    2015-04-01

    Full Text Available Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old animals, and adult rat hippocampus and cortex subjected or not subjected to cerebral ischemia. Most tissues showed relatively similar levels of protein oxidation. However, human cortex was affected by severe membrane protein oxidation, while exhibiting lower than average cytoplasmic protein oxidation. In contrast, ex vivo autooxidation of murine cortical tissue primarily induced aqueous protein oxidation, while in vivo biological aging or cerebral ischemia had no major effect on brain protein oxidation. The unusually high levels of membrane protein oxidation in the human cortex were also not predicted by lipid peroxidation, as the levels of isoprostane immunoreactivity in human samples were considerably lower than in rodent tissues. Our results indicate that the aged human cortex is under steady pressure from specific and potentially detrimental membrane protein oxidation. The pronounced difference between humans, mice and rats regarding the primary site of cortical oxidation might have contributed to the unresolved difficulties in translating into therapies the wealth of data describing successful antioxidant neuroprotection in rodents.

  13. High membrane protein oxidation in the human cerebral cortex

    OpenAIRE

    Granold, Matthias; Moosmann, Bernd; Staib-Lasarzik, Irina; Arendt, Thomas; del Rey, Adriana; Engelhard, Kristin; Behl, Christian; Hajieva, Parvana

    2014-01-01

    Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old anim...

  14. The Cingulate Cortex and Human Memory Processes

    Directory of Open Access Journals (Sweden)

    Maria M.Pyasik

    2012-01-01

    Full Text Available This study presents data from a magnetic-resonance morphometric (MRMM analysisof the main regions of the cingulate cortex (in both hemispheres and theirrole in memory processes in a group of healthy, females of older age. The resultsdemonstrate a statistically reliable correlation between overall performance andthe type of errors in different neuropsychological memory tests and the relativesize of these regions. The discovered pattern of correlations can be explained byhypothesizing the reciprocal functional influence of the two major areas of thecingulate cortex – its anterior and posterior dorsal parts – on performance in neuropsychologicalmemory tests.

  15. Social Distance Evaluation in Human Parietal Cortex

    Science.gov (United States)

    Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi

    2009-01-01

    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. “close friends” “high lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space. PMID:19204791

  16. Effects of insular stimulation on thermal nociception.

    Science.gov (United States)

    Denis, D J; Marouf, R; Rainville, P; Bouthillier, A; Nguyen, D K

    2016-05-01

    Electrical stimulation used for brain mapping in the postero-superior insula can evoke pain. The effects of prolonged high frequency insular stimulation on pain thresholds are unknown. Prolonged high frequency insular stimulation, by virtue of its inhibitory properties on networks, could decrease thermal nociception. Epileptic subjects had electrodes implanted in the insular cortex for the purpose of epileptic focus resection. Thermal and pressure nociceptive thresholds were tested bilaterally on the forearm on two consecutive days. Randomly assigned double-blind high frequency (150 Hz) insular stimulation took place for 10 min before pain testing either on the first day or on the second day. Six subjects (three females; mean age of 35 years) were included. Insular stimulation increased heat pain threshold on the ipsilateral (p = 0.003; n = 6) and contralateral sides (p = 0.047; n = 6). Differences in cold pain threshold did not reach statistical significance (ipsilateral: p = 0.341, contralateral: p = 0.143; n = 6), but one subject had a profound decrease in both heat and cold pain responses. Pressure pain threshold was not modified by insular stimulation (ipsilateral: p = 0.1123; contralateral: p = 0.1192; n = 6). Two of the three subjects who had a postero-superior operculo-insulectomy developed central pain with contralateral thermal nociceptive deficit. High frequency inhibitory postero-superior insular stimulation may have the potential to decrease thermal nociception. Together with previous studies, our data support the notion that the integrity of this brain region is necessary for thermal but not pressure nociceptive processing. © 2015 European Pain Federation - EFIC®

  17. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex.

    Science.gov (United States)

    Imbe, H; Kimura, A; Donishi, T; Kaneoke, Y

    2014-02-14

    Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via the descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and c-Fos in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in the rats with stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced an increase in the expression of pCREB and c-Fos in the anterior IC (AIC). CFA injection into the hindpaw after the FS shows significantly enhanced thermal hyperalgesia and induced a decrease in the expression of c-Fos in the AIC and the posterior IC (PIC). Quantitative image analysis showed that the numbers of c-Fos-immunoreactive neurons in the left AIC and PIC were significantly lower in the FS+CFA group (L AIC, 95.9±6.8; L PIC, 181.9±23.1) than those in the naive group (L AIC, 151.1±19.3, pCFA-induced thermal hyperalgesia through dysfunction of the descending pain modulatory system. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Preprocessing of emotional visual information in the human piriform cortex.

    Science.gov (United States)

    Schulze, Patrick; Bestgen, Anne-Kathrin; Lech, Robert K; Kuchinke, Lars; Suchan, Boris

    2017-08-23

    This study examines the processing of visual information by the olfactory system in humans. Recent data point to the processing of visual stimuli by the piriform cortex, a region mainly known as part of the primary olfactory cortex. Moreover, the piriform cortex generates predictive templates of olfactory stimuli to facilitate olfactory processing. This study fills the gap relating to the question whether this region is also capable of preprocessing emotional visual information. To gain insight into the preprocessing and transfer of emotional visual information into olfactory processing, we recorded hemodynamic responses during affective priming using functional magnetic resonance imaging (fMRI). Odors of different valence (pleasant, neutral and unpleasant) were primed by images of emotional facial expressions (happy, neutral and disgust). Our findings are the first to demonstrate that the piriform cortex preprocesses emotional visual information prior to any olfactory stimulation and that the emotional connotation of this preprocessing is subsequently transferred and integrated into an extended olfactory network for olfactory processing.

  19. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a

  20. Perception and Action Selection Dissociate Human Ventral and Dorsal Cortex

    Science.gov (United States)

    Ikkai, Akiko; Jerde, Trenton A.; Curtis, Clayton E.

    2011-01-01

    We test theories about the functional organization of the human cortex by correlating brain activity with demands on perception versus action selection. Subjects covertly searched for a target among an array of 4, 8, or 12 items (perceptual manipulation) and then, depending on the color of the array, made a saccade toward, away from, or at a right…

  1. Attenuated sensitivity to the emotions of others by insular lesion

    Directory of Open Access Journals (Sweden)

    Yuri eTerasawa

    2015-09-01

    Full Text Available The insular cortex has been considered to be the neural base of visceral sensation for many years. Previous studies in psychology and cognitive neuroscience have accumulated evidence indicating that interoception is an essential factor in the subjective feeling of emotion. Recent neuroimaging studies have demonstrated that anterior insular cortex activation is associated with accessing interoceptive information and underpinning the subjective experience of emotional state.Only a small number of studies have focused on the influence of insular damage on emotion processing and interoceptive awareness. Moreover, disparate hypotheses have been proposed for the alteration of emotion processing by insular lesions. Some studies show that insular lesions yield an inability for understanding and representing disgust exclusively, but other studies suggest that such lesions modulate arousal and valence judgments for both positive and negative emotions.In this study, we examined the alteration in emotion recognition in three right insular and adjacent area damaged cases with well-preserved higher cognitive function. Participants performed an experimental task using morphed photos that ranged between neutral and emotional facial expressions (i.e., anger, sadness, disgust, and happiness. Recognition rates of particular emotions were calculated to measure emotional sensitivity. In addition, they performed heartbeat perception task for measuring interoceptive accuracy. The cases identified emotions that have high arousal level (e.g., anger as less aroused emotions (e.g., sadness and a case showed remarkably low interoceptive accuracy. The current results show that insular lesions lead to attenuated emotional sensitivity across emotions, rather than category-specific impairments such as to disgust. Despite the small number of cases, our findings suggest that the insular cortex modulates recognition of emotional saliency and mediates interoceptive and emotional

  2. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  3. Subplate in the developing cortex of mouse and human

    DEFF Research Database (Denmark)

    Wang, Wei Zhi; Hoerder-Suabedissen, Anna; Oeschger, Franziska M

    2010-01-01

    Abstract The subplate is a largely transient zone containing precocious neurons involved in several key steps of cortical development. The majority of subplate neurons form a compact layer in mouse, but are dispersed throughout a much larger zone in the human. In rodent, subplate neurons are among...... the earliest born neocortical cells, whereas in primate, neurons are added to the subplate throughout cortical neurogenesis. Magnetic resonance imaging and histochemical studies show that the human subplate grows in size until the end of the second trimester. Previous microarray experiments in mice have shown...... several genes that are specifically expressed in the subplate layer of the rodent dorsal cortex. Here we examined the human subplate for some of these markers. In the human dorsal cortex, connective tissue growth factor-positive neurons can be seen in the ventricular zone at 15-22 postconceptional weeks...

  4. A direct demonstration of functional specialization in human visual cortex.

    Science.gov (United States)

    Zeki, S; Watson, J D; Lueck, C J; Friston, K J; Kennard, C; Frackowiak, R S

    1991-03-01

    We have used positron emission tomography (PET), which measures regional cerebral blood flow (rCBF), to demonstrate directly the specialization of function in the normal human visual cortex. A novel technique, statistical parametric mapping, was used to detect foci of significant change in cerebral blood flow within the prestriate cortex, in order to localize those parts involved in the perception of color and visual motion. For color, we stimulated the subjects with a multicolored abstract display containing no recognizable objects (Land color Mondrian) and contrasted the resulting blood flow maps with those obtained when subjects viewed an identical display consisting of equiluminous shades of gray. The comparison identified a unique area (area V4) located in the lingual and fusiform gyri of the prestriate cortex. For motion, blood flow maps when subjects viewed moving or stationary black and white random-square patterns were contrasted. The comparison identified a unique area located in the region of the temporo-parieto-occipital junction (area V5). We thus provide direct evidence to show that, just as in the macaque monkey, different areas of the human prestriate visual cortex are specialized for different attributes of vision. The striate cortex (V1) and the contiguous visual area (V2), which in the monkey brain feed both the homologous areas, were active in all 4 conditions. This pattern of activity allowed us to use an extension of the approach to assess the functional relationship between the 3 areas during color and motion stimulation. This is based on an hypothesis-led analysis of the covariance structure of the blood flow maps and promises to be a powerful tool for inferring anatomical pathways in the normal human brain.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Similarities between GCS and human motor cortex: complex movement coordination

    Science.gov (United States)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  6. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  7. Functional sex differences in human primary auditory cortex.

    Science.gov (United States)

    Ruytjens, Liesbet; Georgiadis, Janniko R; Holstege, Gert; Wit, Hero P; Albers, Frans W J; Willemsen, Antoon T M

    2007-12-01

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies.

  8. Functional involvement of cerebral cortex in human narcolepsy.

    Science.gov (United States)

    Oliviero, A; Della Marca, G; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Versace, V; Mennuni, G; Di Lazzaro, V

    2005-01-01

    The pathophysiology of human narcolepsy is still poorly understood. The hypoactivity of some neurotransmitter systems has been hypothesised on the basis of the canine model. To determine whether narcolepsy is associated with changes in excitability of the cerebral cortex, we assessed the excitability of the motor cortex with transcranial magnetic stimulation (TMS) in 13 patients with narcolepsy and in 12 control subjects. We used several TMS paradigms that can provide information on the excitability of the motor cortex. Resting and active motor thresholds were higher in narcoleptic patients than in controls and intracortical inhibition was more pronounced in narcoleptic patients. No changes in the other evaluated measures were detected. These results are consistent with an impaired balance between excitatory and inhibitory intracortical circuits in narcolepsy that leads to cortical hypoexcitability. We hypothesise that the deficiency of the excitatory hypocretin/orexin-neurotransmitter-system in narcolepsy is reflected in changes of cortical excitability since circuits originating in the lateral hypothalamus and in the basal forebrain project widely to the neocortex, including motor cortex. This abnormal excitability of cortical networks could be the physiological correlate of excessive daytime sleepiness and it could be the substrate for allowing dissociated states of wakefulness and sleep to emerge suddenly while patients are awake, which constitute the symptoms of narcolepsy.

  9. Lucky Rhythms in Orbitofrontal Cortex Bias Gambling Decisions in Humans

    OpenAIRE

    Sacr?, Pierre; Kerr, Matthew S. D.; Kahn, Kevin; Gonzalez-Martinez, Jorge; Bulacio, Juan; Park, Hyun-Joo; Johnson, Matthew A.; Thompson, Susan; Jones, Jaes; Chib, Vikram S.; Gale, John T.; Sarma, Sridevi V.

    2016-01-01

    It is well established that emotions influence our decisions, yet the neural basis of this biasing effect is not well understood. Here we directly recorded local field potentials from the OrbitoFrontal Cortex (OFC) in five human subjects performing a financial decision-making task. We observed a striking increase in gamma-band (36?50?Hz) oscillatory activity that reflected subjects? decisions to make riskier choices. Additionally, these gamma rhythms were linked back to mismatched expectation...

  10. The tracking of speech envelope in the human cortex.

    Directory of Open Access Journals (Sweden)

    Jan Kubanek

    Full Text Available Humans are highly adept at processing speech. Recently, it has been shown that slow temporal information in speech (i.e., the envelope of speech is critical for speech comprehension. Furthermore, it has been found that evoked electric potentials in human cortex are correlated with the speech envelope. However, it has been unclear whether this essential linguistic feature is encoded differentially in specific regions, or whether it is represented throughout the auditory system. To answer this question, we recorded neural data with high temporal resolution directly from the cortex while human subjects listened to a spoken story. We found that the gamma activity in human auditory cortex robustly tracks the speech envelope. The effect is so marked that it is observed during a single presentation of the spoken story to each subject. The effect is stronger in regions situated relatively early in the auditory pathway (belt areas compared to other regions involved in speech processing, including the superior temporal gyrus (STG and the posterior inferior frontal gyrus (Broca's region. To further distinguish whether speech envelope is encoded in the auditory system as a phonological (speech-related, or instead as a more general acoustic feature, we also probed the auditory system with a melodic stimulus. We found that belt areas track melody envelope weakly, and as the only region considered. Together, our data provide the first direct electrophysiological evidence that the envelope of speech is robustly tracked in non-primary auditory cortex (belt areas in particular, and suggest that the considered higher-order regions (STG and Broca's region partake in a more abstract linguistic analysis.

  11. Ipsilateral Directional Encoding of Joystick Movements in Human Cortex

    OpenAIRE

    Sharma, Mohit; Gaona, Charles; Roland, Jarod; Anderson, Nick; Freudenberg, Zachary; Leuthardt, Eric C.

    2009-01-01

    The majority of Brain Computer Interfaces have relied on signals related to primary motor cortex and the operation of the contralateral limb. Recently, the physiology associated with same-sided (ipsilateral) motor movements has been found to have a unique cortical physiology. This study sets out to assess whether more complex motor movements can be discerned utilizing ipsilateral cortical signals. In this study, three invasively monitored human subjects were recorded while performing a center...

  12. Multi-Regional Adaptation in Human Auditory Association Cortex

    Directory of Open Access Journals (Sweden)

    Urszula Malinowska

    2017-05-01

    Full Text Available In auditory cortex, neural responses decrease with stimulus repetition, known as adaptation. Adaptation is thought to facilitate detection of novel sounds and improve perception in noisy environments. Although it is well established that adaptation occurs in primary auditory cortex, it is not known whether adaptation also occurs in higher auditory areas involved in processing complex sounds, such as speech. Resolving this issue is important for understanding the neural bases of adaptation and to avoid potential post-operative deficits after temporal lobe surgery for treatment of focal epilepsy. Intracranial electrocorticographic recordings were acquired simultaneously from electrodes implanted in primary and association auditory areas of the right (non-dominant temporal lobe in a patient with complex partial seizures originating from the inferior parietal lobe. Simple and complex sounds were presented in a passive oddball paradigm. We measured changes in single-trial high-gamma power (70–150 Hz and in regional and inter-regional network-level activity indexed by cross-frequency coupling. Repetitive tones elicited the greatest adaptation and corresponding increases in cross-frequency coupling in primary auditory cortex. Conversely, auditory association cortex showed stronger adaptation for complex sounds, including speech. This first report of multi-regional adaptation in human auditory cortex highlights the role of the non-dominant temporal lobe in suppressing neural responses to repetitive background sounds (noise. These results underscore the clinical utility of functional mapping to avoid potential post-operative deficits including increased listening difficulties in noisy, real-world environments.

  13. Lateralization of gene expression in human language cortex.

    Science.gov (United States)

    Karlebach, Guy; Francks, Clyde

    2015-06-01

    Lateralization is an important aspect of the functional brain architecture for language and other cognitive faculties. The molecular genetic basis of human brain lateralization is unknown, and recent studies have suggested that gene expression in the cerebral cortex is bilaterally symmetrical. Here we have re-analyzed two transcriptomic datasets derived from post mortem human cerebral cortex, with a specific focus on superior temporal and auditory language cortex in adults. We applied an empirical Bayes approach to model differential left-right expression, together with gene ontology (GO) analysis and meta-analysis. There was robust and reproducible lateralization of individual genes and GO groups that are likely to fine-tune the electrophysiological and neurotransmission properties of cortical circuits, most notably synaptic transmission, nervous system development and glutamate receptor activity. Our findings anchor the cerebral biology of language to the molecular genetic level. Future research in model systems may determine how these molecular signatures of neurophysiological lateralization effect fine-tuning of cerebral cortical function, differently in the two hemispheres. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Inactivating anterior insular cortex reduces risk taking

    NARCIS (Netherlands)

    Ishii, H.; Ohara, S.; Tobler, P.N.; Tsutsui, K.I.; Iijima, T.

    2012-01-01

    We often have to make risky decisions between alternatives with outcomes that can be better or worse than the outcomes of safer alternatives. Although previous studies have implicated various brain regions in risky decision making, it remains unknown which regions are crucial for balancing whether

  15. Representational Similarity of Body Parts in Human Occipitotemporal Cortex.

    Science.gov (United States)

    Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V

    2015-09-23

    Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex

  16. The cutaneous rabbit illusion affects human primary sensory cortex somatotopically.

    Directory of Open Access Journals (Sweden)

    Felix Blankenburg

    2006-03-01

    Full Text Available We used functional magnetic resonance imaging (fMRI to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion, illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept.

  17. Magnetoencephalographic signatures of insular epileptic spikes based on functional connectivity.

    Science.gov (United States)

    Zerouali, Younes; Pouliot, Philippe; Robert, Manon; Mohamed, Ismail; Bouthillier, Alain; Lesage, Frédéric; Nguyen, Dang K

    2016-09-01

    Failure to recognize insular cortex seizures has recently been identified as a cause of epilepsy surgeries targeting the temporal, parietal, or frontal lobe. Such failures are partly due to the fact that current noninvasive localization techniques fare poorly in recognizing insular epileptic foci. Our group recently demonstrated that magnetoencephalography (MEG) is sensitive to epileptiform spikes generated by the insula. In this study, we assessed the potential of distributed source imaging and functional connectivity analyses to distinguish insular networks underlying the generation of spikes. Nineteen patients with operculo-insular epilepsy were investigated. Each patient underwent MEG as well as T1-weighted magnetic resonance imaging (MRI) as part of their standard presurgical evaluation. Cortical sources of MEG spikes were reconstructed with the maximum entropy on the mean algorithm, and their time courses served to analyze source functional connectivity. The results indicate that the anterior and posterior subregions of the insula have specific patterns of functional connectivity mainly involving frontal and parietal regions, respectively. In addition, while their connectivity patterns are qualitatively similar during rest and during spikes, couplings within these networks are much stronger during spikes. These results show that MEG can establish functional connectivity-based signatures that could help in the diagnosis of different subtypes of insular cortex epilepsy. Hum Brain Mapp 37:3250-3261, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. The Role of Human Parietal Cortex in Attention Networks

    Science.gov (United States)

    Han, Shihui; Jiang, Yi; Gu, Hua; Rao, Hengyi; Mao, Lihua; Cui, Yong; Zhai, Renyou

    2004-01-01

    The parietal cortex has been proposed as part of the neural network for guiding spatial attention. However, it is unclear to what degree the parietal cortex contributes to the attentional modulations of activities of the visual cortex and the engagement of the frontal cortex in the attention network. We recorded behavioural performance and…

  19. Triglycerides in the human kidney cortex: relationship with body size.

    Directory of Open Access Journals (Sweden)

    Ion Alexandru Bobulescu

    Full Text Available Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04. Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis.

  20. Human Orbitofrontal Cortex Represents a Cognitive Map of State Space.

    Science.gov (United States)

    Schuck, Nicolas W; Cai, Ming Bo; Wilson, Robert C; Niv, Yael

    2016-09-21

    Although the orbitofrontal cortex (OFC) has been studied intensely for decades, its precise functions have remained elusive. We recently hypothesized that the OFC contains a "cognitive map" of task space in which the current state of the task is represented, and this representation is especially critical for behavior when states are unobservable from sensory input. To test this idea, we apply pattern-classification techniques to neuroimaging data from humans performing a decision-making task with 16 states. We show that unobservable task states can be decoded from activity in OFC, and decoding accuracy is related to task performance and the occurrence of individual behavioral errors. Moreover, similarity between the neural representations of consecutive states correlates with behavioral accuracy in corresponding state transitions. These results support the idea that OFC represents a cognitive map of task space and establish the feasibility of decoding state representations in humans using non-invasive neuroimaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  2. Evidence for persistent organochlorine pollutants in the human adrenal cortex.

    Science.gov (United States)

    Fommei, Enza; Turci, Roberta; Ripoli, Andrea; Balzan, Silvana; Bianchi, Fabrizio; Morelli, Luca; Coi, Alessio

    2017-09-01

    Environmental pollutants may act as endocrine disruptors in animals. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) enter the food chain and may accumulate in the fatty animal tissues, including adrenals. To our knowledge, no previous study has investigated their presence in the human normal adrenal (NA) cortex and aldosterone-producing adenomas (APA). Surgical fragments of APA from 11 patients and NA from 8 kidney donors were analyzed for 16 PCBs congeners and 10 OCPs. A Matrix Solid-Phase Dispersion (MSPD) method for simultaneous determination of the target compounds in cortex homogenates was developed. A gas-chromatography triple quadrupole mass spectrometry (Triple Quad GC-MS) system was used for the analysis. Data were analyzed using Random Forest and Wilcoxon's rank-sum test. OCPs and PCBs were found in specimens from both types. A subset of pollutants characterized APA more than NA. Higher concentrations (μg g(-1) ) in APA were observed for α-, β-, and γ- Hexachlorocyclohexane (HCH) (1.48 ± 3.32 vs. 0.17 ± 0.19, P = 0.028; 2.81 ± 2.10 vs. 0.96 ± 0.98, P = 0.011; 2.16 ± 4.85 vs. 0.17 ± 0.26, P = 0.004, respectively), as well as for Hexachlorobenzene (HCB) and for PCBs 28, 52 and 101 (3.41 ± 3.11 vs. 0.97 ± 1.06, P = 0.021; 2.34 ± 4.68 vs. 0.25 ± 0.22, P = 0.039; 0.58 ± 1.19 vs. 0.06 ± 0.02, P = 0.002; 0.26 ± 0.43 vs. 0.05 ± 0.00, P = 0.001, respectively). Environmental organochlorine pollutants were shown to be present in the human normal and abnormal adrenal cortex, deserving future investigation on their possible role as adrenal endocrine disruptors in human disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Is the prefrontal cortex especially enlarged in the human brain allometric relations and remapping factors.

    Science.gov (United States)

    Passingham, Richard E; Smaers, Jeroen B

    2014-01-01

    There has been no agreement as to whether the prefrontal cortex is especially enlarged in the human brain. To answer this question, we analyzed the only two datasets that provide information on total prefrontal cortex volume based on cytoarchitectonic criteria. One delineated the prefrontal cortex proper on the basis of cytoarchitectonic criteria; the other used a proxy of the prefrontal cortex based on a cytoarchitectonic delineation of the frontal lobe. To investigate whether all cortical association areas, including the prefrontal cortex, are enlarged in the human brain, we scaled the different areas to a common reference, the primary visual cortex. To investigate whether the prefrontal cortex is more enlarged than other association areas, we scaled it relative to its inputs from and outputs to other nonprimary areas. We carried out separate regression analyses using different data samples as a predictive baseline group: data for monkeys alone informs us on whether great apes are different from monkeys; data for all non-human anthropoids, including great apes, informs us on whether humans are different from all other primates. The analyses show that the value for the human prefrontal cortex is greater than expected, and that this is true even when data for the great apes are included in the analysis. They also show that the chimpanzee prefrontal cortex is greater than expected for a monkey with a similar sized cortex. We discuss possible functional consequences.

  4. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  5. Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion

    NARCIS (Netherlands)

    Cohen, M.X.; Ridderinkhof, K.R.; Haupt, S.; Elger, C.E.; Fell, J.

    2008-01-01

    The medial frontal cortex (MFC) has been implicated in the monitoring and selection of actions in the face of competing alternatives, but much remains unknown about its functional properties, including electrophysiological oscillations, during response conflict tasks. Here, we recorded intracranial

  6. Exon microarray analysis of human dorsolateral prefrontal cortex in alcoholism.

    Science.gov (United States)

    Manzardo, Ann M; Gunewardena, Sumedha; Wang, Kun; Butler, Merlin G

    2014-06-01

    Alcohol abuse is associated with cellular and biochemical disturbances that impact upon protein and nucleic acid synthesis, brain development, function, and behavioral responses. To further characterize the genetic influences in alcoholism and the effects of alcohol consumption on gene expression, we used a highly sensitive exon microarray to examine mRNA expression in human frontal cortex of alcoholics and control males. Messenger RNA was isolated from the dorsolateral prefrontal cortex (dlPFC; Brodmann area 9) of 7 adult alcoholic (6 males, 1 female, mean age 49 years) and 7 matched controls. Affymetrix Human Exon 1.0 ST array was performed according to standard procedures and the results analyzed at the gene level. Microarray findings were validated using quantitative reverse transcription polymerase chain reaction, and the ontology of disturbed genes characterized using Ingenuity Pathway Analysis (IPA). Decreased mRNA expression was observed for genes involved in cellular adhesion (e.g., CTNNA3, ITGA2), transport (e.g., TF, ABCA8), nervous system development (e.g., LRP2, UGT8, GLDN), and signaling (e.g., RASGRP3, LGR5) with influence over lipid and myelin synthesis (e.g., ASPA, ENPP2, KLK6). IPA identified disturbances in network functions associated with neurological disease and development including cellular assembly and organization impacting on psychological disorders. Our data in alcoholism support a reduction in expression of dlPFC mRNA for genes involved with neuronal growth, differentiation, and signaling that targets white matter of the brain. Copyright © 2014 by the Research Society on Alcoholism.

  7. Restricted vision increases sensorimotor cortex involvement in human walking.

    Science.gov (United States)

    Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P

    2017-10-01

    This study aimed to determine whether there is electrocortical evidence of augmented participation of sensory brain areas in walking modulation during walking with eyes closed. Healthy subjects (n = 10) walked on a treadmill at 1 m/s while alternating 5 min of walking with the eyes open or closed while we recorded ground reaction forces (GRFs) and high-density scalp electroencephalography (EEG). We applied independent component analysis to parse EEG signals into maximally independent component (IC) processes and then computed equivalent current dipoles for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Our results indicated that walking with eyes closed reduced the first peak of the vertical GRFs and induced shorter stride duration. Regarding the EEG, we found that walking with eyes closed induced significantly increased relative theta desynchronization in the frontal and premotor cortex during stance, as well as greater desynchronization from theta to beta bands during transition to single support for both left and right somatosensory cortex. These results suggest a phase-specific increased participation of brain areas dedicated to sensory processing and integration when vision is not available for locomotor guidance. Furthermore, the lack of vision demands higher neural processing related to motor planning and execution. Our findings provide evidence supporting the use of eyes-closed tasks in clinical practice, such as gait rehabilitation and improvements in balance control, as there is higher demand for additional sensory integration for achieving postural control.NEW & NOTEWORTHY We measured electrocortical dynamics in sighted individuals while walking with eyes open and eyes closed to induce the participation of other sensory systems in postural control. Our findings show that walking with visual restriction increases the participation of brain areas dedicated to sensory processing

  8. Hand Shape Representations in the Human Posterior Parietal Cortex.

    Science.gov (United States)

    Klaes, Christian; Kellis, Spencer; Aflalo, Tyson; Lee, Brian; Pejsa, Kelsie; Shanfield, Kathleen; Hayes-Jackson, Stephanie; Aisen, Mindy; Heck, Christi; Liu, Charles; Andersen, Richard A

    2015-11-18

    Humans shape their hands to grasp, manipulate objects, and to communicate. From nonhuman primate studies, we know that visual and motor properties for grasps can be derived from cells in the posterior parietal cortex (PPC). Are non-grasp-related hand shapes in humans represented similarly? Here we show for the first time how single neurons in the PPC of humans are selective for particular imagined hand shapes independent of graspable objects. We find that motor imagery to shape the hand can be successfully decoded from the PPC by implementing a version of the popular Rock-Paper-Scissors game and its extension Rock-Paper-Scissors-Lizard-Spock. By simultaneous presentation of visual and auditory cues, we can discriminate motor imagery from visual information and show differences in auditory and visual information processing in the PPC. These results also demonstrate that neural signals from human PPC can be used to drive a dexterous cortical neuroprosthesis. This study shows for the first time hand-shape decoding from human PPC. Unlike nonhuman primate studies in which the visual stimuli are the objects to be grasped, the visually cued hand shapes that we use are independent of the stimuli. Furthermore, we can show that distinct neuronal populations are activated for the visual cue and the imagined hand shape. Additionally we found that auditory and visual stimuli that cue the same hand shape are processed differently in PPC. Early on in a trial, only the visual stimuli and not the auditory stimuli can be decoded. During the later stages of a trial, the motor imagery for a particular hand shape can be decoded for both modalities. Copyright © 2015 the authors 0270-6474/15/3515466-11$15.00/0.

  9. Aversive learning shapes neuronal orientation tuning in human visual cortex.

    Science.gov (United States)

    McTeague, Lisa M; Gruss, L Forest; Keil, Andreas

    2015-07-28

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.

  10. Human primary auditory cortex follows the shape of Heschl's gyrus.

    Science.gov (United States)

    Da Costa, Sandra; van der Zwaag, Wietske; Marques, Jose P; Frackowiak, Richard S J; Clarke, Stephanie; Saenz, Melissa

    2011-10-05

    The primary auditory cortex (PAC) is central to human auditory abilities, yet its location in the brain remains unclear. We measured the two largest tonotopic subfields of PAC (hA1 and hR) using high-resolution functional MRI at 7 T relative to the underlying anatomy of Heschl's gyrus (HG) in 10 individual human subjects. The data reveals a clear anatomical-functional relationship that, for the first time, indicates the location of PAC across the range of common morphological variants of HG (single gyri, partial duplications, and complete duplications). In 20/20 individual hemispheres, two primary mirror-symmetric tonotopic maps were clearly observed with gradients perpendicular to HG. PAC spanned both divisions of HG in cases of partial and complete duplications (11/20 hemispheres), not only the anterior division as commonly assumed. Specifically, the central union of the two primary maps (the hA1-R border) was consistently centered on the full Heschl's structure: on the gyral crown of single HGs and within the sulcal divide of duplicated HGs. The anatomical-functional variants of PAC appear to be part of a continuum, rather than distinct subtypes. These findings significantly revise HG as a marker for human PAC and suggest that tonotopic maps may have shaped HG during human evolution. Tonotopic mappings were based on only 16 min of fMRI data acquisition, so these methods can be used as an initial mapping step in future experiments designed to probe the function of specific auditory fields.

  11. Mid-Holocene (4200 kyr BP) mass mortalities in Mauritius (Mascarenes) : Insular vertebrates resilient to climatic extremes but vulnerable to human impact

    NARCIS (Netherlands)

    Rijsdijk, Kenneth F.; Zinke, Jens; de Louw, Perry G. B.; Hume, Julian P.; van der Plicht, Hans (J); Hooghiemstra, Henry; Meijer, Hanneke J. M.; Vonhof, Hubert B.; Porch, Nick; Florens, F. B. Vincent; Baider, Claudia; van Geel, Bas; Brinkkemper, Joost; Vernimmen, Tamara; Janoo, Anwar

    2011-01-01

    In the light of the currently increasing drought frequency and water scarcity on oceanic islands, it is crucial for the conservation of threatened insular vertebrates to assess how they will be affected. A 4000 yr old fossil assemblage in the Mare Aux Songes (MAS), southwest Mauritius, Mascarene

  12. How can we explain the frontal presentation of insular lobe epilepsy? The impact of non-linear analysis of insular seizures.

    Science.gov (United States)

    Hagiwara, Koichi; Jung, Julien; Bouet, Romain; Abdallah, Chifaou; Guénot, Marc; Garcia-Larrea, Luis; Mauguière, François; Rheims, Sylvain; Isnard, Jean

    2017-05-01

    For a decade it has been known that the insular lobe epilepsy can mimic frontal lobe epilepsy. We aimed to clarify the pattern of functional coupling occurring during the frontal presentation. We analyzed five insular lobe epilepsy patients. Frontal semiology was predominant for three of them, whereas insular semiology was predominant for the two others. We applied the non-linear regression analysis to stereoelectroencephalography-recorded seizures. A directed functional coupling index was calculated during clonic discharge periods that were accompanied either with frontal or insular semiology. We found significant functional coupling between the insula and mesial frontal/cingulate regions, with the former being a leader region for seizures propagation. Extra-insular regions showed significantly less or even no coupling with the mesial hemispheric regions. The three patients with frontal semiology showed strong couplings with the mesial frontal as well as cingulate regions, including the medial orbitofrontal cortex, pre-SMA/SMA, and the anterior to posterior cingulate. The two patients with the insular semiology only showed couplings between the insula and cingulate regions. The frontal semiology was expressed by strong functional couplings between the insula and mesial frontal regions. The insular origin of seizure should be considered in cryptogenic mesial frontal epilepsies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Tuning to Binaural Cues in Human Auditory Cortex.

    Science.gov (United States)

    McLaughlin, Susan A; Higgins, Nathan C; Stecker, G Christopher

    2016-02-01

    Interaural level and time differences (ILD and ITD), the primary binaural cues for sound localization in azimuth, are known to modulate the tuned responses of neurons in mammalian auditory cortex (AC). The majority of these neurons respond best to cue values that favor the contralateral ear, such that contralateral bias is evident in the overall population response and thereby expected in population-level functional imaging data. Human neuroimaging studies, however, have not consistently found contralaterally biased binaural response patterns. Here, we used functional magnetic resonance imaging (fMRI) to parametrically measure ILD and ITD tuning in human AC. For ILD, contralateral tuning was observed, using both univariate and multivoxel analyses, in posterior superior temporal gyrus (pSTG) in both hemispheres. Response-ILD functions were U-shaped, revealing responsiveness to both contralateral and—to a lesser degree—ipsilateral ILD values, consistent with rate coding by unequal populations of contralaterally and ipsilaterally tuned neurons. In contrast, for ITD, univariate analyses showed modest contralateral tuning only in left pSTG, characterized by a monotonic response-ITD function. A multivoxel classifier, however, revealed ITD coding in both hemispheres. Although sensitivity to ILD and ITD was distributed in similar AC regions, the differently shaped response functions and different response patterns across hemispheres suggest that basic ILD and ITD processes are not fully integrated in human AC. The results support opponent-channel theories of ILD but not necessarily ITD coding, the latter of which may involve multiple types of representation that differ across hemispheres.

  14. Disparity-tuned population responses from human visual cortex.

    Science.gov (United States)

    Cottereau, Benoit R; McKee, Suzanne P; Ales, Justin M; Norcia, Anthony M

    2011-01-19

    We used source imaging of visual evoked potentials to measure neural population responses over a wide range of horizontal disparities (0.5-64 arcmin). The stimulus was a central disk that moved back and forth across the fixation plane at 2 Hz, surrounded either by binocularly uncorrelated dots (disparity noise) or by correlated dots presented in the fixation plane. Both disk and surround were composed of dynamic random dots to remove coherent monocular information. Disparity tuning was measured in five visual regions of interest (ROIs) [V1, human middle temporal area (hMT+), V4, lateral occipital complex (LOC), and V3A], defined in separate functional magnetic resonance imaging scans. The disparity tuning functions peaked between 2 and 16 arcmin for both types of surround in each ROI. Disparity tuning in the V1 ROI was unaffected by the type of surround, but surround correlation altered both the amplitude and phase of the disparity responses in the other ROIs. Response amplitude increased when the disk was in front of the surround in the V3A and LOC ROIs, indicating that these areas encode figure-ground relationships and object convexity. The correlated surround produced a consistent phase lag at the second harmonic in the hMT+ and V4 ROIs without a change in amplitude, while in the V3A ROI, both phase and amplitude effects were observed. Sensitivity to disparity context is thus widespread in visual cortex, but the dynamics of these contextual interactions differ across regions.

  15. Interaction of streaming and attention in human auditory cortex.

    Science.gov (United States)

    Gutschalk, Alexander; Rupp, André; Dykstra, Andrew R

    2015-01-01

    Serially presented tones are sometimes segregated into two perceptually distinct streams. An ongoing debate is whether this basic streaming phenomenon reflects automatic processes or requires attention focused to the stimuli. Here, we examined the influence of focused attention on streaming-related activity in human auditory cortex using magnetoencephalography (MEG). Listeners were presented with a dichotic paradigm in which left-ear stimuli consisted of canonical streaming stimuli (ABA_ or ABAA) and right-ear stimuli consisted of a classical oddball paradigm. In phase one, listeners were instructed to attend the right-ear oddball sequence and detect rare deviants. In phase two, they were instructed to attend the left ear streaming stimulus and report whether they heard one or two streams. The frequency difference (ΔF) of the sequences was set such that the smallest and largest ΔF conditions generally induced one- and two-stream percepts, respectively. Two intermediate ΔF conditions were chosen to elicit bistable percepts (i.e., either one or two streams). Attention enhanced the peak-to-peak amplitude of the P1-N1 complex, but only for ambiguous ΔF conditions, consistent with the notion that automatic mechanisms for streaming tightly interact with attention and that the latter is of particular importance for ambiguous sound sequences.

  16. Reduced Sensitivity to Sooner Reward During Intertemporal Decision-Making Following Insula Damage in Humans

    OpenAIRE

    Manuela eSellitto; Elisa eCiaramelli; Flavia eMattioli; Giuseppe eDi Pellegrino

    2016-01-01

    During intertemporal choice, humans tend to prefer small-sooner rewards over larger-delayed rewards, reflecting temporal discounting (TD) of delayed outcomes. Functional neuroimaging (fMRI) evidence has implicated the insular cortex in time-sensitive decisions, yet it is not clear whether activity in this brain region is crucial for, or merely associated with, TD behavior. Here, patients with damage to the insula (Insular patients), control patients with lesions outside the insula, and health...

  17. Systematic variation of population receptive field properties across cortical depth in human visual cortex

    NARCIS (Netherlands)

    Fracasso, Alessio; Petridou, N; Dumoulin, Serge O

    2016-01-01

    Receptive fields (RFs) in visual cortex are organized in antagonistic, center-surround, configurations. RF properties change systematically across eccentricity and between visual field maps. However, it is unknown how center-surround configurations are organized in human visual cortex across lamina.

  18. Reorganization of the Human Somatosensory Cortex in Hand Dystonia

    Directory of Open Access Journals (Sweden)

    Maria Jose Catalan

    2012-05-01

    Full Text Available Background and Purpose: Abnormalities of finger representations in the somatosensory cortex have been identified in patients with focal hand dystonia. Measuring blood flow with positron emission tomography (PET can be use to demonstrate functional localization of receptive fields. Methods: A vibratory stimulus was applied to the right thumb and little finger of six healthy volunteers and six patients with focal hand dystonia to map their receptive fields using H215O PET. Results: The cortical finger representations in the primary somatosensory cortex were closer to each other in patients than in normal subjects. No abnormalities were found in secondary somatosensory cortex, but the somatotopy there is less well distinguished. Conclusions: These data confirm prior electrophysiological and functional neuroimaging observations showing abnormalities of finger representations in somatosensory cortex of patients with focal hand dystonia.

  19. The Hyper-Cortex of Human Collective-Intelligence Systems

    OpenAIRE

    Rodriguez, Marko A.

    2005-01-01

    Individual-intelligence research, from a neurological perspective, discusses the hierarchical layers of the cortex as a structure that performs conceptual abstraction and specification. This theory has been used to explain how motor-cortex regions responsible for different behavioral modalities such as writing and speaking can be utilized to express the same general concept represented higher in the cortical hierarchy. For example, the concept of a dog, represented across a region of high-lev...

  20. Hierarchical organization of speech perception in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Colin eHumphries

    2014-12-01

    Full Text Available Human speech consists of a variety of articulated sounds that vary dynamically in spectral composition. We investigated the neural activity associated with the perception of two types of speech segments: (a the period of rapid spectral transition occurring at the beginning of a stop-consonant vowel (CV syllable and (b the subsequent spectral steady-state period occurring during the vowel segment of the syllable. Functional magnetic resonance imaging (fMRI was recorded while subjects listened to series of synthesized CV syllables and non-phonemic control sounds. Adaptation to specific sound features was measured by varying either the transition or steady-state periods of the synthesized sounds. Two spatially distinct brain areas in the superior temporal cortex were found that were sensitive to either the type of adaptation or the type of stimulus. In a relatively large section of the bilateral dorsal superior temporal gyrus (STG, activity varied as a function of adaptation type regardless of whether the stimuli were phonemic or non-phonemic. Immediately adjacent to this region in a more limited area of the ventral STG, increased activity was observed for phonemic trials compared to non-phonemic trials, however, no adaptation effects were found. In addition, a third area in the bilateral medial superior temporal plane showed increased activity to non-phonemic compared to phonemic sounds. The results suggest a multi-stage hierarchical stream for speech sound processing extending ventrolaterally from the superior temporal plane to the superior temporal sulcus. At successive stages in this hierarchy, neurons code for increasingly more complex spectrotemporal features. At the same time, these representations become more abstracted from the original acoustic form of the sound.

  1. Heterogeneous and nonlinear development of human posterior parietal cortex function.

    Science.gov (United States)

    Chang, Ting-Ting; Metcalfe, Arron W S; Padmanabhan, Aarthi; Chen, Tianwen; Menon, Vinod

    2016-02-01

    Human cognitive problem solving skills undergo complex experience-dependent changes from childhood to adulthood, yet most neurodevelopmental research has focused on linear changes with age. Here we challenge this limited view, and investigate spatially heterogeneous and nonlinear neurodevelopmental profiles between childhood, adolescence, and young adulthood, focusing on three cytoarchitectonically distinct posterior parietal cortex (PPC) regions implicated in numerical problem solving: intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus (SMG). Adolescents demonstrated better behavioral performance relative to children, but their performance was equivalent to that of adults. However, all three groups differed significantly in their profile of activation and connectivity across the PPC subdivisions. Activation in bilateral ventral IPS subdivision IPS-hIP1, along with adjoining anterior AG subdivision, AG-PGa, and the posterior SMG subdivision, SMG-PFm, increased linearly with age, whereas the posterior AG subdivision, AG-PGp, was equally deactivated in all three groups. In contrast, the left anterior SMG subdivision, SMG-PF, showed an inverted U-shaped profile across age groups such that adolescents exhibited greater activation than both children and young adults. Critically, greater SMG-PF activation was correlated with task performance only in adolescents. Furthermore, adolescents showed greater task-related functional connectivity of the SMG-PF with ventro-temporal, anterior temporal and prefrontal cortices, relative to both children and adults. These results suggest that nonlinear up-regulation of SMG-PF and its interconnected functional circuits facilitate adult-level performance in adolescents. Our study provides novel insights into heterogeneous age-related maturation of the PPC underlying cognitive skill acquisition, and further demonstrates how anatomically precise analysis of both linear and nonlinear neurofunctional changes with age is

  2. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans

    NARCIS (Netherlands)

    Williams, D; Tijssen, M; van Bruggen, G; Bosch, A; Insola, A; Di Lazzaro, V; Mazzone, P; Oliviero, A; Quartarone, A; Speelman, H; Brown, P

    2002-01-01

    We test the hypothesis that interaction between the human basal ganglia and cerebral cortex involves activity in multiple functional circuits characterized by their frequency of oscillation, phase characteristics, dopamine dependency and topography. To this end we took recordings from

  3. Neural population dynamics in human motor cortex during movements in people with ALS.

    Science.gov (United States)

    Pandarinath, Chethan; Gilja, Vikash; Blabe, Christine H; Nuyujukian, Paul; Sarma, Anish A; Sorice, Brittany L; Eskandar, Emad N; Hochberg, Leigh R; Henderson, Jaimie M; Shenoy, Krishna V

    2015-06-23

    The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation.

  4. Phineas gauged: decision-making and the human prefrontal cortex

    NARCIS (Netherlands)

    Sanfey, A.G.; Hastie, R.; Colvin, M.K.; Grafman, J.

    2003-01-01

    Poor social judgment and decision-making abilities have often been attributed to people who have suffered injury to the ventromedial prefrontal cortex (VMPFC). However, few laboratory tests of decision-making have been conducted on these patients. The exception to this is the Iowa Gambling Task

  5. Perisylvian, including insular, childhood epilepsy: Presurgical workup and surgical outcome.

    Science.gov (United States)

    Freri, Elena; Matricardi, Sara; Gozzo, Francesca; Cossu, Massimo; Granata, Tiziana; Tassi, Laura

    2017-08-01

    To report the presurgical workup, surgical procedures, and outcomes in a series of pediatric patients with drug-resistant epilepsy involving the perisylvian/insular regions. We retrospectively assessed 16 pediatric patients affected by drug-resistant focal epilepsy involving perisylvian/insular regions, who consecutively underwent tailored resective surgery. All patients underwent a detailed presurgical workup, which included the analysis of the anatomoelectroclinical correlations with scalp electroencephalography (EEG) and/or with stereo-electroencephalography (SEEG), brain magnetic resonance imaging (MRI), and comprehensive cognitive and neuropsychological evaluations. After surgery, all patients underwent serial clinical and laboratory evaluations. Focal motor seizures restricted to perioral area, associated with symptoms related to the surrounding areas (as auditory hallucinations, unpleasant paresthesia, fear, and epigastric sensation), characterized the ictal semiology in 75% of patients. In 50%, autonomic manifestations were present and in 56% subjective manifestations were reported. The 50% of the patients underwent SEEG with insular sampling to better define the epileptogenic zone. In all patients, the insular cortex was always part of the epileptogenic zone, and tailored resections also involved, with variable degree, the frontal, parietal, and temporal opercula. Preoperatively, the neuropsychological assessment revealed impairments in specific cognitive functions and mild or moderate cognitive compromise in 88% of the patients. Postoperatively, one patient had permanent slight hemiparesis. At the most recent follow-up (median 39 months), seizure outcome was satisfactory in 69% of patients: seven patients were completely seizure-free (Engel class Ia), two were free of disabling seizure (class Ic), and two had rare disabling seizures (class II). The cognitive functioning remained unchanged in 62%, and improved in 38%. The assessment of perisylvian/insular

  6. Functional organization and visual representations of human ventral lateral prefrontal cortex

    Science.gov (United States)

    Chan, Annie W.-Y.

    2013-01-01

    Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex (VLPFC) even in the absence of working memory (WM) demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the VLPFC remain unclear. In a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the VLPFC? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the VLPFC to enhance our understanding of the evolution and development of this cortex. PMID:23847558

  7. Processing of Natural Sounds: Characterization of Multipeak Spectral Tuning in Human Auditory Cortex

    OpenAIRE

    Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2013-01-01

    We examine the mechanisms by which the human auditory cortex processes the frequency content of natural sounds. Through mathematical modeling of ultra-high field (7 T) functional magnetic resonance imaging responses to natural sounds, we derive frequency-tuning curves of cortical neuronal populations. With a data-driven analysis, we divide the auditory cortex into five spatially distributed clusters, each characterized by a spectral tuning profile. Beyond neuronal populations with simple sing...

  8. Large-scale Contextual Effects in Early Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Sung Jun Joo

    2012-10-01

    Full Text Available A commonly held view about neurons in early visual cortex is that they serve as localized feature detectors. Here, however, we demonstrate that the responses of neurons in early visual cortex are sensitive to global visual patterns. Using multiple methodologies–psychophysics, fMRI, and EEG–we measured neural responses to an oriented Gabor (“target” embedded in various orientation patterns. Specifically, we varied whether a central target deviated from its context by changing distant orientations while leaving the immediately neighboring flankers unchanged. The results of psychophysical contrast adaptation and fMRI experiments show that a target that deviates from its context results in more neural activity compared to a target that is grouped into an alternating pattern. For example, the neural response to a vertically oriented target was greater when it deviated from the orientation of flankers (HHVHH compared to when it was grouped into an alternating pattern (VHVHV. We then found that this pattern-sensitive response manifests in the earliest sensory component of the event-related potential to the target. Finally, in a forced-choice classification task of “noise” stimuli, perceptions are biased to “see” an orientation that deviates from its context. Our results show that neurons in early visual cortex are sensitive to large-scale global patterns in images in a way that is more sophisticated than localized feature detection. Our results showing a reduced neural response to statistical redundancies in images is not only optimal from an information theory perspective but also takes into account known energy constraints in neural processing.

  9. Functional Changes in the Human Auditory Cortex in Ageing

    Science.gov (United States)

    Profant, Oliver; Tintěra, Jaroslav; Balogová, Zuzana; Ibrahim, Ibrahim; Jilek, Milan; Syka, Josef

    2015-01-01

    Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years) and compared the results with young subjects (presbycusis (EP) differed from the elderly group with mild presbycusis (MP) in hearing thresholds measured by pure tone audiometry, presence and amplitudes of transient otoacoustic emissions (TEOAE) and distortion-product oto-acoustic emissions (DPOAE), as well as in speech-understanding under noisy conditions. Acoustically evoked activity (pink noise centered around 350 Hz, 700 Hz, 1.5 kHz, 3 kHz, 8 kHz), recorded by BOLD fMRI from an area centered on Heschl’s gyrus, was used to determine age-related changes at the level of the auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC) leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing. PMID:25734519

  10. Functional changes in the human auditory cortex in ageing.

    Directory of Open Access Journals (Sweden)

    Oliver Profant

    Full Text Available Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years and compared the results with young subjects (cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing.

  11. Repeated forced swim stress prior to complete Freund's adjuvant injection enhances mechanical hyperalgesia and attenuates the expression of pCREB and ΔFosB and the acetylation of histone H3 in the insular cortex of rat.

    Science.gov (United States)

    Imbe, H; Kimura, A

    2015-08-20

    Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and ΔFosB and the acetylation of histone H3 in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in rats with stress-induced hyperalgesia. CFA injection into the hindpaw or FS (day 1, 10min; days 2-3, 20min) induced a significant increase in the expression of pCREB and ΔFosB and the acetylation of histone H3 in the IC. Quantitative image analysis showed that the numbers of ΔFosB-immunoreactivity (IR) cells in the bilateral anterior and posterior IC (AIC and PIC) were significantly higher in the CFA group (AIC R, 548.0±98.6; AIC L, 433.5±89.4; PIC R, 546.1±72.8; PIC L, 415.5±53.5) than those in the naive group (AIC R, 86.6±14.8; AIC L, 85.5±24.7; PIC R, 124.5±29.9; PIC L, 107.0±19.8, p<0.01). However the FS prior to the CFA injection enhanced the mechanical hyperalgesia and attenuated the expression of pCREB and ΔFosB and the acetylation of histone H3 in the IC. There was no significant difference in the numbers of ΔFosB-IR cells in the bilateral PIC between the FS+CFA and naive groups. These findings suggest neuroplasticity in the IC after the FS, which may be involved in the enhancement of CFA-induced mechanical hyperalgesia through dysfunction of the descending pain modulatory system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Human Topological Task Adapted for Rats: Spatial Information Processes of the Parietal Cortex

    OpenAIRE

    Goodrich-Hunsaker, Naomi J.; Howard, Brian P.; Hunsaker, Michael R.; Kesner, Raymond P.

    2008-01-01

    Human research has shown that lesions of the parietal cortex disrupt spatial information processing, specifically topological information. Similar findings have been found in nonhumans. It has been difficult to determine homologies between human and non-human mnemonic mechanisms for spatial information processing because methodologies and neuropathology differ. The first objective of the present study was to adapt a previously established human task for rats. The second objective was to bette...

  13. Topographic representation of the human body in the occipitotemporal cortex.

    Science.gov (United States)

    Orlov, Tanya; Makin, Tamar R; Zohary, Ehud

    2010-11-04

    Large-scale topographic representations of the body have long been established in the somatosensory and motor cortices. Using functional imaging, we identified a topographically organized body part map within the occipitotemporal cortex (OTC), with distinct clusters of voxels showing clear preference for different visually presented body parts. This representation was consistent both across hemispheres and participants. Using converging methods, the preference for specific body parts was demonstrated to be robust and did not merely reflect shape differences between the categories. Finally, execution of (unseen) movements with different body parts resulted in a limited topographic representation of the limbs and trunk, which partially overlapped with the visual body part map. This motor-driven activation in the OTC could not be explained solely by visual or motor imagery of the body parts. This suggests that visual and motor-related information converge within the OTC in a body part specific manner. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Science.gov (United States)

    Lieblein-Boff, Jacqueline C; Johnson, Elizabeth J; Kennedy, Adam D; Lai, Chron-Si; Kuchan, Matthew J

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  15. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Lieblein-Boff

    Full Text Available Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510 were excluded. In addition, moderate correlations with xenobiotic relationships (2 or those driven by single outliers (3 were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  16. Individual Differences in Human Path Integration Abilities Correlate with Gray Matter Volume in Retrosplenial Cortex, Hippocampus, and Medial Prefrontal Cortex.

    Science.gov (United States)

    Chrastil, Elizabeth R; Sherrill, Katherine R; Aselcioglu, Irem; Hasselmo, Michael E; Stern, Chantal E

    2017-01-01

    Humans differ in their individual navigational abilities. These individual differences may exist in part because successful navigation relies on several disparate abilities, which rely on different brain structures. One such navigational capability is path integration, the updating of position and orientation, in which navigators track distances, directions, and locations in space during movement. Although structural differences related to landmark-based navigation have been examined, gray matter volume related to path integration ability has not yet been tested. Here, we examined individual differences in two path integration paradigms: (1) a location tracking task and (2) a task tracking translational and rotational self-motion. Using voxel-based morphometry, we related differences in performance in these path integration tasks to variation in brain morphology in 26 healthy young adults. Performance in the location tracking task positively correlated with individual differences in gray matter volume in three areas critical for path integration: the hippocampus, the retrosplenial cortex, and the medial prefrontal cortex. These regions are consistent with the path integration system known from computational and animal models and provide novel evidence that morphological variability in retrosplenial and medial prefrontal cortices underlies individual differences in human path integration ability. The results for tracking rotational self-motion-but not translation or location-demonstrated that cerebellum gray matter volume correlated with individual performance. Our findings also suggest that these three aspects of path integration are largely independent. Together, the results of this study provide a link between individual abilities and the functional correlates, computational models, and animal models of path integration.

  17. Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Rosanna Cabré

    2016-12-01

    Full Text Available Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions—entorhinal cortex, hippocampus, and frontal cortex—using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.

  18. Functional organization of human posterior parietal cortex: grasping- and reaching-related activations relative to topographically organized cortex

    Science.gov (United States)

    Konen, Christina S.; Mruczek, Ryan E. B.; Montoya, Jessica L.

    2013-01-01

    The act of reaching to grasp an object requires the coordination between transporting the arm and shaping the hand. Neurophysiological, neuroimaging, neuroanatomic, and neuropsychological studies in macaque monkeys and humans suggest that the neural networks underlying grasping and reaching acts are at least partially separable within the posterior parietal cortex (PPC). To better understand how these neural networks have evolved in primates, we characterized the relationship between grasping- and reaching-related responses and topographically organized areas of the human intraparietal sulcus (IPS) using functional MRI. Grasping-specific activation was localized to the left anterior IPS, partially overlapping with the most anterior topographic regions and extending into the postcentral sulcus. Reaching-specific activation was localized to the left precuneus and superior parietal lobule, partially overlapping with the medial aspects of the more posterior topographic regions. Although the majority of activity within the topographic regions of the IPS was nonspecific with respect to movement type, we found evidence for a functional gradient of specificity for reaching and grasping movements spanning posterior-medial to anterior-lateral PPC. In contrast to the macaque monkey, grasp- and reach-specific activations were largely located outside of the human IPS. PMID:23515795

  19. Decoding of faces and face components in face-sensitive human visual cortex

    Directory of Open Access Journals (Sweden)

    David F Nichols

    2010-07-01

    Full Text Available A great challenge to the field of visual neuroscience is to understand how faces are encoded and represented within the human brain. Here we show evidence from functional magnetic resonance imaging (fMRI for spatially distributed processing of the whole face and its components in face-sensitive human visual cortex. We used multi-class linear pattern classifiers constructed with a leave-one-scan-out verification procedure to discriminate brain activation patterns elicited by whole faces, the internal features alone, and the external head outline alone. Furthermore, our results suggest that whole faces are represented disproportionately in the fusiform cortex (FFA whereas the building blocks of faces are represented disproportionately in occipitotemporal cortex (OFA. Faces and face components may therefore be organized with functional clustering within both the FFA and OFA, but with specialization for face components in the OFA and the whole face in the FFA.

  20. Hearing suppression induced by electrical stimulation of human auditory cortex.

    Science.gov (United States)

    Fenoy, Albert J; Severson, Meryl A; Volkov, Igor O; Brugge, John F; Howard, Matthew A

    2006-11-06

    In the course of performing electrical stimulation functional mapping (ESFM) in neurosurgery patients, we identified three subjects who experienced hearing suppression during stimulation of sites within the superior temporal gyrus (STG). One of these patients had long standing tinnitus that affected both ears. In all subjects, auditory event related potentials (ERPs) were recorded from chronically implanted intracranial electrodes and the results were used to localize auditory cortical fields within the STG. Hearing suppression sites were identified within anterior lateral Heschl's gyrus (HG) and posterior lateral STG, in what may be auditory belt and parabelt fields. Cortical stimulation suppressed hearing in both ears, which persisted beyond the period of electrical stimulation. Subjects experienced other stimulation-evoked perceptions at some of these same sites, including symptoms of vestibular activation and alteration of audio-visual speech processing. In contrast, stimulation of presumed core auditory cortex within posterior medial HG evoked sound perceptions, or in one case an increase in tinnitus intensity, that affected the contralateral ear and did not persist beyond the period of stimulation. The current results confirm a rarely reported experimental observation, and correlate the cortical sites associated with hearing suppression with physiologically identified auditory cortical fields.

  1. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  2. Positive and negative reinforcement activate human auditory cortex

    Directory of Open Access Journals (Sweden)

    Tina eWeis

    2013-12-01

    Full Text Available Prior studies suggest that reward modulates neural activity in sensory cortices, but less is known about punishment. We used functional magnetic resonance imaging and an auditory discrimination task, where participants had to judge the duration of frequency modulated tones. In one session correct performance resulted in financial gains at the end of the trial, in a second session incorrect performance resulted in financial loss. Incorrect performance in the rewarded as well as correct performance in the punishment condition resulted in a neutral outcome. The size of gains and losses was either low or high (10 or 50 Euro cent depending on the direction of frequency modulation. We analyzed neural activity at the end of the trial, during reinforcement, and found increased neural activity in auditory cortex when gaining a financial reward as compared to gaining no reward and when avoiding financial loss as compared to receiving a financial loss. This was independent on the size of gains and losses. A similar pattern of neural activity for both gaining a reward and avoiding a loss was also seen in right middle temporal gyrus, bilateral insula and pre-supplemental motor area, here however neural activity was lower after correct responses compared to incorrect responses. To summarize, this study shows that the activation of sensory cortices, as previously shown for gaining a reward is also seen during avoiding a loss.

  3. Feature-coding transitions to conjunction-coding with progression through human visual cortex.

    Science.gov (United States)

    Cowell, Rosemary A; Leger, Krystal R; Serences, John T

    2017-12-01

    Identifying an object and distinguishing it from similar items depends upon the ability to perceive its component parts as conjoined into a cohesive whole, but the brain mechanisms underlying this ability remain elusive. The ventral visual processing pathway in primates is organized hierarchically: Neuronal responses in early stages are sensitive to the manipulation of simple visual features, whereas neuronal responses in subsequent stages are tuned to increasingly complex stimulus attributes. It is widely assumed that feature-coding dominates in early visual cortex whereas later visual regions employ conjunction-coding in which object representations are different from the sum of their simple feature parts. However, no study in humans has demonstrated that putative object-level codes in higher visual cortex cannot be accounted for by feature-coding and that putative feature codes in regions prior to ventral temporal cortex are not equally well characterized as object-level codes. Thus the existence of a transition from feature- to conjunction-coding in human visual cortex remains unconfirmed, and if a transition does occur its location remains unknown. By employing multivariate analysis of functional imaging data, we measure both feature-coding and conjunction-coding directly, using the same set of visual stimuli, and pit them against each other to reveal the relative dominance of one vs. the other throughout cortex. Our results reveal a transition from feature-coding in early visual cortex to conjunction-coding in both inferior temporal and posterior parietal cortices. This novel method enables the use of experimentally controlled stimulus features to investigate population-level feature and conjunction codes throughout human cortex. NEW & NOTEWORTHY We use a novel analysis of neuroimaging data to assess representations throughout visual cortex, revealing a transition from feature-coding to conjunction-coding along both ventral and dorsal pathways. Occipital

  4. Exceptional Evolutionary Expansion of Prefrontal Cortex in Great Apes and Humans.

    Science.gov (United States)

    Smaers, Jeroen B; Gómez-Robles, Aida; Parks, Ashley N; Sherwood, Chet C

    2017-03-06

    One of the enduring questions that has driven neuroscientific enquiry in the last century has been the nature of differences in the prefrontal cortex of humans versus other animals [1]. The prefrontal cortex has drawn particular interest due to its role in a range of evolutionarily specialized cognitive capacities such as language [2], imagination [3], and complex decision making [4]. Both cytoarchitectonic [5] and comparative neuroimaging [6] studies have converged on the conclusion that the proportion of prefrontal cortex in the human brain is greatly increased relative to that of other primates. However, considering the tremendous overall expansion of the neocortex in human evolution, it has proven difficult to ascertain whether this extent of prefrontal enlargement follows general allometric growth patterns, or whether it is exceptional [1]. Species' adherence to a common allometric relationship suggests conservation through phenotypic integration, while species' deviations point toward the occurrence of shifts in genetic and/or developmental mechanisms. Here we investigate prefrontal cortex scaling across anthropoid primates and find that great ape and human prefrontal cortex expansion are non-allometrically derived features of cortical organization. This result aligns with evidence for a developmental heterochronic shift in human prefrontal growth [7, 8], suggesting an association between neurodevelopmental changes and cortical organization on a macroevolutionary scale. The evolutionary origin of non-allometric prefrontal enlargement is estimated to lie at the root of great apes (∼19-15 mya), indicating that selection for changes in executive cognitive functions characterized both great ape and human cortical organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex

    DEFF Research Database (Denmark)

    Moisa, Marius; Siebner, Hartwig R; Pohmann, Rolf

    2012-01-01

    Primate electrophysiological and lesion studies indicate a prominent role of the left dorsal premotor cortex (PMd) in action selection based on learned sensorimotor associations. Here we applied transcranial magnetic stimulation (TMS) to human left PMd at low or high intensity while right-handed ...

  6. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants

    DEFF Research Database (Denmark)

    Samuelsen, Grethe B; Pakkenberg, Bente; Bogdanović, Nenad

    2007-01-01

    with controls. The daily increase in brain cells in the future cortex was only half of that of the controls. In the 3 other developmental zones, no significant differences in cell numbers could be demonstrated. CONCLUSIONS: IUGR in humans is associated with a severe reduction in cortical growth...

  7. Predictions to motion stimuli in human early visual cortex : Effects of motion displacement on motion predictability

    NARCIS (Netherlands)

    Schellekens, W.|info:eu-repo/dai/nl/413971309; Ramsey, N. F.|info:eu-repo/dai/nl/07313774X; Raemaekers, M.|info:eu-repo/dai/nl/31370709X

    2015-01-01

    Recently, several studies showed that fMRI BOLD responses to moving random dot stimuli are enhanced at the location of dot appearance, i.e., the motion trailing edge. Possibly, BOLD activity in human visual cortex reflects predictability of visual motion input. In the current study, we investigate

  8. Differential distribution of group I metabotropic glutamate receptors in developing human cortex

    NARCIS (Netherlands)

    Boer, Karin; Encha-Razavi, Ferechte; Sinico, Martine; Aronica, Eleonora

    2010-01-01

    Neuronal and glial cells in human cerebral cortex are enriched in group I metabotropic glutamate receptors (mGluRs). Developmental regulation of mGluRs has been shown in rodent brain and recent studies suggest an involvement of mGluR-mediated glutamate signaling in the proliferation and survival of

  9. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    Science.gov (United States)

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  10. Insular species swarm goes underground

    DEFF Research Database (Denmark)

    P. S. Reboleira, Ana Sofia; Enghoff, Henrik

    2014-01-01

    -group, an insular species swarm distributed in the archipelagos of Madeira and the Canary Islands. We discuss the differences between the new species and their relatives and present information on the subterranean environment of Madeira. An updated overview of the subterranean biodiversity of millipedes......Two new species of the genus Cylindroiulus Verhoeff, 1894, C. julesvernei and C. oromii, are described from the subterranean ecosystem of Madeira Island, Portugal. Species are illustrated with photographs and diagrammatic drawings. The new species belong to the Cylindroiulus madeirae...

  11. Functional maps of human auditory cortex: effects of acoustic features and attention.

    Directory of Open Access Journals (Sweden)

    David L Woods

    Full Text Available BACKGROUND: While human auditory cortex is known to contain tonotopically organized auditory cortical fields (ACFs, little is known about how processing in these fields is modulated by other acoustic features or by attention. METHODOLOGY/PRINCIPAL FINDINGS: We used functional magnetic resonance imaging (fMRI and population-based cortical surface analysis to characterize the tonotopic organization of human auditory cortex and analyze the influence of tone intensity, ear of delivery, scanner background noise, and intermodal selective attention on auditory cortex activations. Medial auditory cortex surrounding Heschl's gyrus showed large sensory (unattended activations with two mirror-symmetric tonotopic fields similar to those observed in non-human primates. Sensory responses in medial regions had symmetrical distributions with respect to the left and right hemispheres, were enlarged for tones of increased intensity, and were enhanced when sparse image acquisition reduced scanner acoustic noise. Spatial distribution analysis suggested that changes in tone intensity shifted activation within isofrequency bands. Activations to monaural tones were enhanced over the hemisphere contralateral to stimulation, where they produced activations similar to those produced by binaural sounds. Lateral regions of auditory cortex showed small sensory responses that were larger in the right than left hemisphere, lacked tonotopic organization, and were uninfluenced by acoustic parameters. Sensory responses in both medial and lateral auditory cortex decreased in magnitude throughout stimulus blocks. Attention-related modulations (ARMs were larger in lateral than medial regions of auditory cortex and appeared to arise primarily in belt and parabelt auditory fields. ARMs lacked tonotopic organization, were unaffected by acoustic parameters, and had distributions that were distinct from those of sensory responses. Unlike the gradual adaptation seen for sensory responses

  12. Reduced sensitivity to sooner reward during intertemporal decision-making following insula damage in humans

    Directory of Open Access Journals (Sweden)

    Manuela eSellitto

    2016-01-01

    Full Text Available During intertemporal choice, humans tend to prefer small-sooner rewards over larger-delayed rewards, reflecting temporal discounting (TD of delayed outcomes. Functional neuroimaging evidence has implicated the insular cortex in time-sensitive decisions, yet it is not clear whether activity in this brain region is crucial for, or merely associated with, TD behaviour. Here, patients with damage to the insula (Insular patients, control patients with lesions outside the insula, and healthy individuals chose between smaller-sooner and larger-later monetary rewards. Insular patients were less sensitive to sooner rewards than were the control groups, exhibiting reduced TD. A Voxel-based Lesion-Symptom Mapping (VLSM analysis confirmed a statistically significant association between insular damage and reduced TD. These results indicate that the insular cortex is crucial for intertemporal choice. We suggest that he insula may be necessary to anticipate the bodily/emotional effects of receiving rewards at different delays, influencing the computation of their incentive value. Devoid of such input, insular patients’ choices would be governed by a heuristic of quantity, allowing patients to wait for larger options.

  13. Neural mechanisms of economic commitment in the human medial prefrontal cortex.

    Science.gov (United States)

    Tsetsos, Konstantinos; Wyart, Valentin; Shorkey, S Paul; Summerfield, Christopher

    2014-10-21

    Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases-to defer commitments to later, and to weight potential losses more heavily than gains-that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex.

  14. Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex.

    Science.gov (United States)

    Dux, Paul E; Tombu, Michael N; Harrison, Stephenie; Rogers, Baxter P; Tong, Frank; Marois, René

    2009-07-16

    Our ability to multitask is severely limited: task performance deteriorates when we attempt to undertake two or more tasks simultaneously. Remarkably, extensive training can greatly reduce such multitasking costs. While it is not known how training alters the brain to solve the multitasking problem, it likely involves the prefrontal cortex given this brain region's purported role in limiting multitasking performance. Here, we show that the reduction of multitasking interference with training is not achieved by diverting the flow of information processing away from the prefrontal cortex or by segregating prefrontal cells into independent task-specific neuronal ensembles, but rather by increasing the speed of information processing in this brain region, thereby allowing multiple tasks to be processed in rapid succession. These results not only reveal how training leads to efficient multitasking, they also provide a mechanistic account of multitasking limitations, namely the poor speed of information processing in human prefrontal cortex.

  15. Magnetic Field Homogenization of the Human Prefrontal Cortex with a Set of Localized Electrical Coils

    Science.gov (United States)

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    The prefrontal cortex is a common target brain structure in psychiatry and neuroscience due to its role in working memory and cognitive control. Large differences in magnetic susceptibility between the air-filled sinuses and the tissue/bone in the frontal part of the human head cause a strong and highly localized magnetic field focus in the prefrontal cortex. As a result, image distortion and signal dropout are observed in MR imaging. A set of external, electrical coils is presented that provides localized and high amplitude shim fields in the prefrontal cortex with minimum impact on the rest of the brain when combined with regular zero-to-second order spherical harmonics shimming. The experimental realization of the new shim method strongly minimized or even eliminated signal dropout in gradient-echo images acquired at settings typically used in functional magnetic resonance at 4 Tesla. PMID:19918909

  16. Human Development XI: The Structure of the Cerebral Cortex. Are There Really Modules in the Brain?

    Directory of Open Access Journals (Sweden)

    Tyge Dahl Hermansen

    2007-01-01

    Full Text Available The structure of human consciousness is thought to be closely connected to the structure of cerebral cortex. One of the most appreciated concepts in this regard is the Szanthagothei model of a modular building of neo-cortex. The modules are believed to organize brain activity pretty much like a computer. We looked at examples in the literature and argue that there is no significant evidence that supports Szanthagothei's model. We discuss the use of the limited genetic information, the corticocortical afferents termination and the columns in primary sensory cortex as arguments for the existence of the cortex-module. Further, we discuss the results of experiments with Luminization Microscopy (LM colouration of myalinized fibres, in which vertical bundles of afferent/efferent fibres that could support the cortex module are identified. We conclude that sensory maps seem not to be an expression for simple specific connectivity, but rather to be functional defined. We also conclude that evidence for the existence of the postulated module or column does not exist in the discussed material. This opens up for an important discussion of the brain as functionally directed by biological information (information-directed self-organisation, and for consciousness being closely linked to the structure of the universe at large. Consciousness is thus not a local phenomena limited to the brain, but a much more global phenomena connected to the wholeness of the world.

  17. Optical properties of the medulla and the cortex of human scalp hair

    Science.gov (United States)

    Kharin, Aleksey; Varghese, Babu; Verhagen, Rieko; Uzunbajakava, Natallia

    2009-03-01

    An increasing number of applications, including non- or minimally invasive diagnostics and treatment as well as various cosmetic procedures, has resulted in a need to determine the optical properties of hair and its structures. We report on the measurement of the total attenuation coefficient of the cortex and the medulla of blond, gray, and Asian black human scalp hair at a 633-nm wavelength. Our results show that for blond and gray hair the total attenuation coefficient of the medulla is more than 200 times higher compared to that of the cortex. This difference is only 1.5 times for Asian black hair. Furthermore, we present the total attenuation coefficient of the cortex of blond, gray, light brown, and Asian black hair measured at wavelengths of 409, 532, 633, 800, and 1064 nm. The total attenuation coefficient consistently decreases with an increase in wavelength, as well as with a decrease in hair pigmentation. Additionally, we demonstrate the dependence of the total attenuation coefficient of the cortex and the medulla of Asian black hair on the polarization of incident light. A similar dependence is observed for the cortex of blond and gray hair but not for the medulla of these hair types.

  18. Histogenesis of human foetal cerebellar cortex | Krishna Veni ...

    African Journals Online (AJOL)

    Anatomy Journal of Africa ... The aim of this study is to demonstrate the various histological features of human foetal cerebellum in spontaneously aborted fetuses of different gestational ages for analyzing the cerebellar histology. ... The knowledge of cerebellar anatomy has a tremendous neurosurgical importance.

  19. The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.

    Science.gov (United States)

    Li, Yansong; Vanni-Mercier, Giovanna; Isnard, Jean; Mauguière, François; Dreher, Jean-Claude

    2016-04-01

    The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological signatures of the intact orbitofrontal cortex in processing information relevant for risky decisions. Local field potentials were recorded from the intact orbitofrontal cortex of patients suffering from drug-refractory partial epilepsy with implanted depth electrodes as they performed a probabilistic reward learning task that required them to associate visual cues with distinct reward probabilities. We observed three successive signals: (i) around 400 ms after cue presentation, the amplitudes of the local field potentials increased with reward probability; (ii) a risk signal emerged during the late phase of reward anticipation and during the outcome phase; and (iii) an experienced value signal appeared at the time of reward delivery. Both the medial and lateral orbitofrontal cortex encoded risk and reward probability while the lateral orbitofrontal cortex played a dominant role in coding experienced value. The present study provides the first evidence from intracranial recordings that the human orbitofrontal cortex codes reward risk both during late reward anticipation and during the outcome phase at a time scale of milliseconds. Our findings offer insights into the rapid mechanisms underlying the ability to learn structural relationships from the environment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Rapid Functional Reorganization in Human Cortex Following Neural Perturbation

    OpenAIRE

    Zanto, Theodore P.; Chadick, James Z.; Satris, Gabriela; Gazzaley, Adam

    2013-01-01

    Despite the human brain's ability to rapidly reorganize neuronal activity patterns in response to interactions with the environment (e.g., learning), it remains unclear whether compensatory mechanisms occur, on a similar time scale, in response to exogenous cortical perturbations. To investigate this, we disrupted normal neural function via repetitive transcranial magnetic stimulation and assessed, using fMRI, activity changes associated with performance on a working memory task. Although tra...

  1. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing

    Science.gov (United States)

    Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio

    2003-01-01

    We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.

  2. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.

    Science.gov (United States)

    Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel

    2017-07-26

    Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices.SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by

  3. Human parietal cortex lesions impact the precision of spatial working memory.

    Science.gov (United States)

    Mackey, Wayne E; Devinsky, Orrin; Doyle, Werner K; Golfinos, John G; Curtis, Clayton E

    2016-09-01

    The neural mechanisms that support working memory (WM) depend on persistent neural activity. Within topographically organized maps of space in dorsal parietal cortex, spatially selective neural activity persists during WM for location. However, to date, the necessity of these topographic subregions of human parietal cortex for WM remains unknown. To test the causal relationship of these areas to WM, we compared the performance of patients with lesions to topographically organized parietal cortex with those of controls on a memory-guided saccade (MGS) task as well as a visually guided saccade (VGS) task. The MGS task allowed us to measure WM precision continuously with great sensitivity, whereas the VGS task allowed us to control for any deficits in general spatial or visuomotor processing. Compared with controls, patients generated memory-guided saccades that were significantly slower and less accurate, whereas visually guided saccades were unaffected. These results provide key missing evidence for the causal role of topographic areas in human parietal cortex for WM, as well as the neural mechanisms supporting WM. Copyright © 2016 the American Physiological Society.

  4. Architecture of Explanatory Inference in the Human Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Aron eBarbey

    2011-07-01

    Full Text Available Causal reasoning is a ubiquitous feature of human cognition. We continuously seek to understand, at least implicitly and often explicitly, the causal scenarios in which we live, so that we may anticipate what will come next, plan a potential response and envision its outcome, decide among possible courses of action in light of their probable outcomes, make midstream adjustments in our goal-related activities as our situation changes, and so on. A considerable body of research shows that the lateral PFC is crucial for causal reasoning, but also that there are significant differences in the manner in which ventrolateral PFC, dorsolateral PFC, and anterolateral PFC support causal reasoning. We propose, on the basis of research on the evolution, architecture, and functional organization of the lateral PFC, a general framework for understanding its roles in the many and varied sorts of causal reasoning carried out by human beings. Specifically, the ventrolateral PFC supports the generation of basic causal explanations and inferences; dorsolateral PFC supports the evaluation of these scenarios in light of some given normative standard (e.g., of plausibility or correctness in light of real or imagined causal interventions; and anterolateral PFC supports explanation and inference at an even higher level of complexity, coordinating the processes of generation and evaluation with further cognitive processes, and especially with computations of hedonic value and emotional implications of possible behavioral scenarios – considerations that are often critical both for understanding situations causally and for deciding about our own courses of action.

  5. Insular muscarinic signaling regulates anxiety-like behaviors in rats on the elevated plus-maze.

    Science.gov (United States)

    Li, Hui; Chen, Lei; Li, Peng; Wang, Xiaohong; Zhai, Haifeng

    2014-08-15

    Anxiety is one of the most prevalent neuropsychiatric disorders, and little is known about its pathogenesis. In order to investigate the neural mechanisms of this mental disorder, we used rat behavior in the elevated plus-maze as an animal model of anxiety and the insular cortex (insula) as a brain target. The microinjection of non-selective and selective M1 and M4 muscarinic acetylcholine receptor (mAChR) agonists or antagonists was used to explore whether the insular muscarinic receptor and its subtypes regulate levels of anxiety. The results showed that both non-selective and selective M1 and M4 mAChR agonists increased the time spent on exploring in the open arms, whereas antagonists decreased exploration. Our results indicate that activation of insular mAChRs could produce anxiolytic effects, whereas inhibition of insular mAChRs could increase anxiety. We concluded that the insular muscarinic system plays a role in the modulation of anxiety, and dysfunction of mAChR signaling may be involved in the mechanism of anxiogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The bilingual brain: Flexibility and control in the human cortex

    Science.gov (United States)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  7. APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons

    Directory of Open Access Journals (Sweden)

    Steven Moore

    2015-05-01

    Full Text Available Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD. To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.

  8. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route.

    NARCIS (Netherlands)

    Groppa, S.; Schlaak, B.H.; Munchau, A.; Werner-Petroll, N.; Dunnweber, J.; Baumer, T.; Nuenen, B.F.L. van; Siebner, H.R.

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and

  9. Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans.

    Science.gov (United States)

    Reagh, Zachariah M; Yassa, Michael A

    2014-10-07

    Recent models of episodic memory propose a division of labor among medial temporal lobe cortices comprising the parahippocampal gyrus. Specifically, perirhinal and lateral entorhinal cortices are thought to comprise an object/item information pathway, whereas parahippocampal and medial entorhinal cortices are thought to comprise a spatial/contextual information pathway. Although several studies in human subjects have demonstrated a perirhinal/parahippocampal division, such a division among subregions of the human entorhinal cortex has been elusive. Other recent work has implicated pattern separation computations in the dentate gyrus and CA3 subregions of the hippocampus as a mechanism supporting the resolution of mnemonic interference. However, the nature of contributions of medial temporal lobe cortices to downstream hippocampal computations is largely unknown. We used high-resolution fMRI during a task selectively taxing mnemonic discrimination of object identity or spatial location, designed to differentially engage the two information pathways in the medial temporal lobes. Consistent with animal models, we demonstrate novel evidence for a domain-selective dissociation between lateral and medial entorhinal cortex in humans, and between perirhinal and parahippocampal cortex as a function of information content. Conversely, hippocampal dentate gyrus/CA3 demonstrated signals consistent with resolution of mnemonic interference across domains. These results provide insight into the information processing capacities and hierarchical interference resolution throughout the human medial temporal lobe.

  10. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex.

    Directory of Open Access Journals (Sweden)

    Daniel P Spiegel

    Full Text Available Transcranial direct current stimulation (tDCS is a safe, non-invasive technique for transiently modulating the balance of excitation and inhibition within the human brain. It has been reported that anodal tDCS can reduce both GABA mediated inhibition and GABA concentration within the human motor cortex. As GABA mediated inhibition is thought to be a key modulator of plasticity within the adult brain, these findings have broad implications for the future use of tDCS. It is important, therefore, to establish whether tDCS can exert similar effects within non-motor brain areas. The aim of this study was to assess whether anodal tDCS could reduce inhibitory interactions within the human visual cortex. Psychophysical measures of surround suppression were used as an index of inhibition within V1. Overlay suppression, which is thought to originate within the lateral geniculate nucleus (LGN, was also measured as a control. Anodal stimulation of the occipital poles significantly reduced psychophysical surround suppression, but had no effect on overlay suppression. This effect was specific to anodal stimulation as cathodal stimulation had no effect on either measure. These psychophysical results provide the first evidence for tDCS-induced reductions of intracortical inhibition within the human visual cortex.

  11. Time Adaptation Shows Duration Selectivity in the Human Parietal Cortex.

    Directory of Open Access Journals (Sweden)

    Masamichi J Hayashi

    Full Text Available Although psychological and computational models of time estimation have postulated the existence of neural representations tuned for specific durations, empirical evidence of this notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI adaptation paradigm, we show that the inferior parietal lobule (IPL (corresponding to the supramarginal gyrus exhibited reduction in neural activity due to adaptation when a visual stimulus of the same duration was repeatedly presented. Adaptation was strongest when stimuli of identical durations were repeated, and it gradually decreased as the difference between the reference and test durations increased. This tuning property generalized across a broad range of durations, indicating the presence of general time-representation mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject's attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape did not produce neural adaptation in the IPL. These results provide neural evidence for duration-tuned representations in the human brain.

  12. 24 CFR 570.441 - Citizen participation-insular areas.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Citizen participation-insular areas...-Entitlement CDBG Grants in Hawaii and Insular Areas Programs § 570.441 Citizen participation—insular areas. (a... shall comply with the citizen participation requirements described in this section. An insular area...

  13. Decorrelated Input Dissociates Narrow Band γ Power and BOLD in Human Visual Cortex.

    Science.gov (United States)

    Butler, Russell; Bernier, Pierre-Michel; Lefebvre, Jérémie; Gilbert, Guillaume; Whittingstall, Kevin

    2017-05-31

    Although fMRI using the BOLD contrast is widely used for noninvasively mapping hemodynamic brain activity in humans, its exact link to underlying neural processing is poorly understood. Whereas some studies have reported that BOLD signals measured in visual cortex are tightly linked to neural activity in the narrow band γ (NBG) range, others have found a weak correlation between the two. To elucidate the mechanisms behind these conflicting findings, we hypothesized that BOLD reflects the strength of synaptic inputs to cortex, whereas NBG is more dependent on how well these inputs are correlated. To test this, we measured NBG, BOLD, and cerebral blood flow responses to stimuli that either correlate or decorrelate neural activity in human visual cortex. Next, we simulated a recurrent network model of excitatory and inhibitory neurons that reproduced in detail the experimental NBG and BOLD data. Results show that the visually evoked BOLD response was solely predicted by the sum of local inputs, whereas NBG was critically dependent on how well these inputs were correlated. In summary, the NBG-BOLD relationship strongly depends on the nature of sensory input to cortex: stimuli that increase the number of correlated inputs to visual cortex will increase NBG and BOLD in a similar manner, whereas stimuli that increase the number of decorrelated inputs will dissociate the two. The NBG-BOLD relationship is therefore not fixed but is rather highly dependent on input correlations that are both stimulus- and state-dependent. SIGNIFICANCE STATEMENT It is widely believed that γ oscillations in cortex are tightly linked to local hemodynamic activity. Here, we present experimental evidence showing how a stimulus can increase local blood flow to the brain despite suppressing γ power. Moreover, using a sophisticated model of cortical neurons, it is proposed that this occurs when synaptic input to cortex is strong yet decorrelated. Because input correlations are largely determined

  14. Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex.

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Fischer, Catherine; Besle, Julien; Aguera, Pierre-Emmanuel; Giard, Marie-Helene; Bertrand, Olivier

    2007-08-29

    In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.

  15. Thermodynamic study of 5-(/sup 3/H)hydroxytryptamine binding to human cortex membranes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, R.D.; Babinski, J.

    1987-11-01

    Kinetic and equilibrium measurements of (/sup 3/H)-serotonin (5-hydroxytryptamine) binding to human frontal cortex membranes have been made between 4 and 30 degrees C. The effects of spiperone and ascorbate on binding have also been determined. Under the conditions used, binding was saturable and reversible. Affinity constants derived from kinetic and equilibrium data were comparable. Serotonin binding to several sites had substantial enthalpic as well as entropic components.

  16. Identity-specific coding of future rewards in the human orbitofrontal cortex.

    OpenAIRE

    Howard James D; Gottfried Jay A; Tobler Philippe N.; Kahnt Thorsten

    2015-01-01

    Nervous systems must encode information about the identity of expected outcomes to make adaptive decisions. However the neural mechanisms underlying identity specific value signaling remain poorly understood. By manipulating the value and identity of appetizing food odors in a pattern based imaging paradigm of human classical conditioning we were able to identify dissociable predictive representations of identity specific reward in orbitofrontal cortex (OFC) and identity general reward in ven...

  17. Identity-specific coding of future rewards in the human orbitofrontal cortex

    OpenAIRE

    Howard, James D.; Gottfried, Jay A; Tobler, Philippe N; Kahnt, Thorsten

    2015-01-01

    Nervous systems must encode information about the identity of expected outcomes to make adaptive decisions. However, the neural mechanisms underlying identity-specific value signaling remain poorly understood. By manipulating the value and identity of appetizing food odors in a pattern-based imaging paradigm of human classical conditioning, we were able to identify dissociable predictive representations of identity-specific reward in orbitofrontal cortex (OFC) and identity-general reward in v...

  18. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1(H...... corticospinal volleys. This paradigm opens up new possibilities to study context-dependent intrahemispheric PMd-to-M1(HAND) interactions in the intact human brain....

  19. Laminar imaging of positive and negative BOLD in human visual cortex at 7T.

    Science.gov (United States)

    Fracasso, Alessio; Luijten, Peter R; Dumoulin, Serge O; Petridou, Natalia

    2017-02-14

    Deciphering the direction of information flow is critical to understand the brain. Data from non-human primate histology shows that connections between lower to higher areas (e.g. retina→V1), and between higher to lower areas (e.g. V1←V2) can be dissociated based upon the distribution of afferent synapses at the laminar level. Ultra-high field scanners opened up the possibility to image brain structure and function at an unprecedented level of detail. Taking advantage of the increased spatial resolution available, it could theoretically be possible to disentangle activity from different cortical depths from human cerebral cortex, separately studying different compartments across depth. Here we use half-millimeter human functional and structural magnetic resonance imaging (fMRI, MRI) to derive laminar profiles in early visual cortex using a paradigm known to elicit two separate responses originating from an excitatory and a suppressive source, avoiding any contamination due to blood-stealing. We report the shape of laminar blood level oxygenation level dependent (BOLD) profiles from the excitatory and suppressive conditions. We analyse positive and negative %BOLD laminar profiles with respect to the dominating linear trend towards the pial surface, a confounding feature of gradient echo BOLD fMRI, and examine the correspondence with the anatomical landmark of input-related signals in primary visual cortex, the stria of Gennari. Copyright © 2017. Published by Elsevier Inc.

  20. Serotonin receptor expression in human prefrontal cortex: balancing excitation and inhibition across postnatal development.

    Directory of Open Access Journals (Sweden)

    Evelyn K Lambe

    Full Text Available Serotonin and its receptors (HTRs play critical roles in brain development and in the regulation of cognition, mood, and anxiety. HTRs are highly expressed in human prefrontal cortex and exert control over prefrontal excitability. The serotonin system is a key treatment target for several psychiatric disorders; however, the effectiveness of these drugs varies according to age. Despite strong evidence for developmental changes in prefrontal Htrs of rodents, the developmental regulation of HTR expression in human prefrontal cortex has not been examined. Using postmortem human prefrontal brain tissue from across postnatal life, we investigated the expression of key serotonin receptors with distinct inhibitory (HTR1A, HTR5A and excitatory (HTR2A, HTR2C, HTR4, HTR6 effects on cortical neurons, including two receptors which appear to be expressed to a greater degree in inhibitory interneurons of cerebral cortex (HTR2C, HTR6. We found distinct developmental patterns of expression for each of these six HTRs, with profound changes in expression occurring early in postnatal development and also into adulthood. However, a collective look at these HTRs in terms of their likely neurophysiological effects and major cellular localization leads to a model that suggests developmental changes in expression of these individual HTRs may not perturb an overall balance between inhibitory and excitatory effects. Examining and understanding the healthy balance is critical to appreciate how abnormal expression of an individual HTR may create a window of vulnerability for the emergence of psychiatric illness.

  1. Independent effects of motivation and spatial attention in the human visual cortex.

    Science.gov (United States)

    Bayer, Mareike; Rossi, Valentina; Vanlessen, Naomi; Grass, Annika; Schacht, Annekathrin; Pourtois, Gilles

    2017-01-01

    Motivation and attention constitute major determinants of human perception and action. Nonetheless, it remains a matter of debate whether motivation effects on the visual cortex depend on the spatial attention system, or rely on independent pathways. This study investigated the impact of motivation and spatial attention on the activity of the human primary and extrastriate visual cortex by employing a factorial manipulation of the two factors in a cued pattern discrimination task. During stimulus presentation, we recorded event-related potentials and pupillary responses. Motivational relevance increased the amplitudes of the C1 component at ∼70 ms after stimulus onset. This modulation occurred independently of spatial attention effects, which were evident at the P1 level. Furthermore, motivation and spatial attention had independent effects on preparatory activation as measured by the contingent negative variation; and pupil data showed increased activation in response to incentive targets. Taken together, these findings suggest independent pathways for the influence of motivation and spatial attention on the activity of the human visual cortex. © The Author (2016). Published by Oxford University Press.

  2. Attention to Color Sharpens Neural Population Tuning via Feedback Processing in the Human Visual Cortex Hierarchy.

    Science.gov (United States)

    Bartsch, Mandy V; Loewe, Kristian; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Tsotsos, John K; Hopf, Jens-Max

    2017-10-25

    Attention can facilitate the selection of elementary object features such as color, orientation, or motion. This is referred to as feature-based attention and it is commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. Although gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity. Here, we show with high-resolution magnetoencephalography in human observers (men and women) that sharpened selectivity for a particular color arises from feedback processing in the human visual cortex hierarchy. To assess color selectivity, we analyze the response to a color probe that varies in color distance from an attended color target. We find that attention causes an initial gain enhancement in anterior ventral extrastriate cortex that is coarsely selective for the target color and transitions within ∼100 ms into a sharper tuned profile in more posterior ventral occipital cortex. We conclude that attention sharpens selectivity over time by attenuating the response at lower levels of the cortical hierarchy to color values neighboring the target in color space. These observations support computational models proposing that attention tunes feature selectivity in visual cortex through backward-propagating attenuation of units less tuned to the target.SIGNIFICANCE STATEMENT Whether searching for your car, a particular item of clothing, or just obeying traffic lights, in everyday life, we must select items based on color. But how does attention allow us to select a specific color? Here, we use high spatiotemporal resolution neuromagnetic recordings to examine how color selectivity emerges in the human brain. We find that color selectivity evolves as a coarse to fine process from higher to lower levels within the visual cortex hierarchy. Our observations support computational models proposing that feature selectivity increases over time by attenuating the

  3. Insular primary glioblastomas with IDH mutations: Clinical and biological specificities.

    Science.gov (United States)

    Hata, Nobuhiro; Hatae, Ryusuke; Yoshimoto, Koji; Murata, Hideki; Kuga, Daisuke; Akagi, Yojiro; Sangatsuda, Yuhei; Suzuki, Satoshi O; Iwaki, Toru; Mizoguchi, Masahiro; Iihara, Koji

    2017-06-01

    Isocitrate dehydrogenase (IDH) mutation is a good prognostic marker for glioblastoma (GBM). Although it is infrequent in primary tumors, it is found in most lower-grade gliomas. Thus, it is unclear whether IDH mutation is a marker for a specific phenotype of apparently primary de novo GBMs (pGBMs), or a marker for secondary tumors (sGBMs). We addressed this issue by analyzing clinical, radiographic and molecular findings in our institutional case series. Our cases included 92 pGBMs, with five cases of IDH1 mutations at R132 and no IDH2 mutations. The median overall survival of these five patients was 29 months (range: 4 to >40 months), which is considered good prognoses. Clinical and radiographic characteristics were distinct from IDH-wildtype (IDH-wt) pGBMs. IDH-mutant (IDH-mut) tumors consistently involved insular lesions and were subdivided into: (i) the two cases of elderly patients with long clinical histories and features implying multistep tumor development; and (ii) the three cases of younger patients with diffusely swelling insular tumors, slight contrast enhancement and no necrosis. Genetic and expression analyses of IDH-mut pGBMs were similar to those of sGBMs, suggesting that they are indeed distinct from their IDH-wt counterparts. TERT promoter mutation, a genetic marker of oligodendroglial derivation, was detected in one long-surviving case, but genetic alterations in the astrocyte-sGBM pathway were generally prevalent in IDH-mut pGBMs. Our results present a unique phenotype of IDH-mut pGBMs arising from insular cortex region, the molecular backgrounds of which are similar to sGBMs. © 2017 Japanese Society of Neuropathology.

  4. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  5. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    Science.gov (United States)

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  6. In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex.

    Science.gov (United States)

    Trampel, Robert; Bazin, Pierre-Louis; Pine, Kerrin; Weiskopf, Nikolaus

    2017-09-20

    The human neocortex is organized radially into six layers which differ in their myelination and the density and arrangement of neuronal cells. This cortical cyto- and myeloarchitecture plays a central role in the anatomical and functional neuroanatomy but is primarily accessible through invasive histology only. To overcome this limitation, several non-invasive MRI approaches have been, and are being, developed to resolve the anatomical cortical layers. As a result, recent studies on large populations and structure-function relationships at the laminar level became possible. Early proof-of-concept studies targeted conspicuous laminar structures such as the stria of Gennari in the primary visual cortex. Recent work characterized the laminar structure outside the visual cortex, investigated the relationship between laminar structure and function, and demonstrated layer-specific maturation effects. This paper reviews the methods and in-vivo MRI studies on the anatomical layers in the human cortex based on conventional and quantitative MRI (excluding diffusion imaging). A focus is on the related challenges, promises and potential future developments. The rapid development of MRI scanners, motion correction techniques, analysis methods and biophysical modeling promise to overcome the challenges of spatial resolution, precision and specificity of systematic imaging of cortical laminae. Copyright © 2017. Published by Elsevier Inc.

  7. Mapping tonotopic organization in human temporal cortex: Representational similarity analysis in EMEG source space

    Directory of Open Access Journals (Sweden)

    Li eSu

    2014-11-01

    Full Text Available A wide variety of evidence, from neurophysiology, neuroanatomy, and imaging studies in humans and animals, suggests that human auditory cortex is in part tonotopically organized. Here we present a new means of resolving this spatial organization using a combination of non-invasive observables (EEG, MEG and MRI, model-based estimates of spectrotemporal patterns of neural activation, and multivariate pattern analysis. The method exploits both the fine-grained temporal patterning of auditory cortical responses and the millisecond scale temporal resolution of EEG and MEG. Participants listened to 400 English words while MEG and scalp EEG were measured simultaneously. We estimated the location of cortical sources using the MRI anatomically constrained minimum norm estimate (MNE procedure. We then combined a form of multivariate pattern analysis (representational similarity analysis with a spatiotemporal searchlight approach to successfully decode information about patterns of neuronal frequency preference and selectivity in bilateral superior temporal cortex. Observed frequency preferences in and around Heschl’s gyrus matched current proposals for the organisation of tonotopic gradients in primary acoustic cortex, while the distribution of narrow frequency selectivity similarly matched results from the fMRI literature. The spatial maps generated by this novel combination of techniques seem comparable to those that have emerged from fMRI or ECOG studies, and a considerable advance over earlier MEG results.

  8. Time-compressed preplay of anticipated events in human primary visual cortex.

    Science.gov (United States)

    Ekman, Matthias; Kok, Peter; de Lange, Floris P

    2017-05-23

    Perception is guided by the anticipation of future events. It has been hypothesized that this process may be implemented by pattern completion in early visual cortex, in which a stimulus sequence is recreated after only a subset of the visual input is provided. Here we test this hypothesis using ultra-fast functional magnetic resonance imaging to measure BOLD activity at precisely defined receptive field locations in visual cortex (V1) of human volunteers. We find that after familiarizing subjects with a spatial sequence, flashing only the starting point of the sequence triggers an activity wave in V1 that resembles the full stimulus sequence. This preplay activity is temporally compressed compared to the actual stimulus sequence and remains present even when attention is diverted from the stimulus sequence. Preplay might therefore constitute an automatic prediction mechanism for temporal sequences in V1.

  9. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  10. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  11. Dynamic expression of calretinin in embryonic and early fetal human cortex

    Directory of Open Access Journals (Sweden)

    Miriam eGonzalez-Gomez

    2014-06-01

    Full Text Available Calretinin (CR is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS 17 to 23, calbindin (CB and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem. By contrast, CR is confined to the subventricular zone (SVZ of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem, from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the monolayer of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the pioneer cortical plate appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW. At CS 21-23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial steps

  12. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex

    Directory of Open Access Journals (Sweden)

    Florian Müller-Dahlhaus

    2010-07-01

    Full Text Available Spike-timing dependent plasticity (STDP has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behaviour such as learning and memory.

  13. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  14. Human ovarian tissue from cortex surrounding benign cysts: a model to study ovarian tissue cryopreservation.

    Science.gov (United States)

    Schubert, Benoît; Canis, Michel; Darcha, Claude; Artonne, Christine; Pouly, Jean-Luc; Déchelotte, Pierre; Boucher, Daniel; Grizard, Geneviève

    2005-07-01

    The scarcity of human ovarian tissue is a major problem in developing research on ovarian cryopreservation. We were interested in ovarian cortex surrounding benign ovarian cysts harvested during their requisite operations. Ovarian tissue was collected from 25 women (mean age = 27.7 +/- 1.0 SEM) and frozen in serum-free cryoprotective medium. Histological and viability analysis were performed on fresh and frozen-thawed slices of tissue. Dermoid (n = 7), endometriosis (n = 13) and serous (n = 5) cysts were observed. Follicular densities (expressed per mm3) in ovarian cortex surrounding dermoid cysts were higher than in endometriosis and serous cysts for both histological (median of follicular densities: 13.04, 0.31 and 0.89 respectively) and viability analysis (2.93, 0.05 and 0.71 respectively). Freezing-thawing did not result in gross abnormality of follicle population either in number or morphology (80% of follicles preserved a normal pattern). However, a slight decrease of the density of living follicles (expressed per mm2) was reported. Ovarian cortex surrounding ovarian cysts, especially dermoid cysts, could be considered a source of ovarian tissue for future research. In our study, the cryopreservation procedure resulted in high follicular survival assessed by both histological and viability analysis. Nevertheless, further studies of in vivo and in vitro follicular maturation are needed to strengthen this model.

  15. Alpha stimulation of the human parietal cortex attunes tactile perception to external space.

    Science.gov (United States)

    Ruzzoli, Manuela; Soto-Faraco, Salvador

    2014-02-03

    An intriguing question in neuroscience concerns how somatosensory events on the skin are represented in the human brain. Since Head and Holmes' [1] neuropsychological dissociation between localizing touch on the skin and localizing body parts in external space, touch is considered to operate in a variety of spatial reference frames [2]. At least two representations of space are in competition during orienting to touch: a somatotopic one, reflecting the organization of the somatosensory cortex (S1) [3], and a more abstract, external reference frame that factors postural changes in relation to body parts and/or external space [4, 5]. Previous transcranial magnetic stimulation (TMS) studies suggest that the posterior parietal cortex (PPC) plays a key role in supporting representations as well as orienting attention in an external reference frame [4, 6]. Here, we capitalized on the TMS entrainment approach [7, 8], targeting the intraparietal sulcus (IPS). We found that frequency-specific (10 Hz) tuning of the PPC induced spatially specific enhancement of tactile detection that was expressed in an external reference frame. This finding establishes a tight causal link between a concrete form of brain activity (10 Hz oscillation) and a specific type of spatial representation, revealing a fundamental property of how the parietal cortex encodes information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Speaking modifies voice-evoked activity in the human auditory cortex.

    Science.gov (United States)

    Curio, G; Neuloh, G; Numminen, J; Jousmäki, V; Hari, R

    2000-04-01

    The voice we most often hear is our own, and proper interaction between speaking and hearing is essential for both acquisition and performance of spoken language. Disturbed audiovocal interactions have been implicated in aphasia, stuttering, and schizophrenic voice hallucinations, but paradigms for a noninvasive assessment of auditory self-monitoring of speaking and its possible dysfunctions are rare. Using magnetoencephalograpy we show here that self-uttered syllables transiently activate the speaker's auditory cortex around 100 ms after voice onset. These phasic responses were delayed by 11 ms in the speech-dominant left hemisphere relative to the right, whereas during listening to a replay of the same utterances the response latencies were symmetric. Moreover, the auditory cortices did not react to rare vowel changes interspersed randomly within a series of repetitively spoken vowels, in contrast to regular change-related responses evoked 100-200 ms after replayed rare vowels. Thus, speaking primes the human auditory cortex at a millisecond time scale, dampening and delaying reactions to self-produced "expected" sounds, more prominently in the speech-dominant hemisphere. Such motor-to-sensory priming of early auditory cortex responses during voicing constitutes one element of speech self-monitoring that could be compromised in central speech disorders.

  17. The parietal cortex and saccade planning: lessons from human lesion studies

    Directory of Open Access Journals (Sweden)

    Radek ePtak

    2013-06-01

    Full Text Available The parietal cortex is considered a critical interface for attention and integration of multiple sensory signals that can be used for the implementation of motor plans. Many neurons in these regions exhibit strong attention-, reach-, grasp- or saccade-related activity. Here, we review human lesion studies supporting the critical role of the parietal cortex in saccade programming planning. Studies of patients with unilateral parietal damage and spatial neglect reveal characteristic spatially lateralized deficits of saccade programming when multiple stimuli compete for attention. However, these patients also show bilateral impairments of saccade initiation and control that are difficult to explain in the context of their lateralized deficits of visual attention. These findings are reminiscent of the deficits of oculomotor control observed in patients with Bálint’s syndrome consecutive to bilateral parietal damage. We propose that some oculomotor deficits following parietal damage are compatible with a decisive role of the parietal cortex in saccade planning under conditions of sensory competition, while other deficits reflect disinhibition of low-level structures of the oculomotor network in the absence of top-down parietal modulation.

  18. The parietal cortex and saccade planning: lessons from human lesion studies.

    Science.gov (United States)

    Ptak, Radek; Müri, René M

    2013-01-01

    The parietal cortex is a critical interface for attention and integration of multiple sensory signals that can be used for the implementation of motor plans. Many neurons in this region exhibit strong attention-, reach-, grasp- or saccade-related activity. Here, we review human lesion studies supporting the critical role of the parietal cortex in saccade planning. Studies of patients with unilateral parietal damage and spatial neglect reveal characteristic spatially lateralized deficits of saccade programming when multiple stimuli compete for attention. However, these patients also show bilateral impairments of saccade initiation and control that are difficult to explain in the context of their lateralized deficits of visual attention. These findings are reminiscent of the deficits of oculomotor control observed in patients with Bálint's syndrome consecutive to bilateral parietal damage. We propose that some oculomotor deficits following parietal damage are compatible with a decisive role of the parietal cortex in saccade planning under conditions of sensory competition, while other deficits reflect disinhibition of low-level structures of the oculomotor network in the absence of top-down parietal modulation.

  19. Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates - Towards Artificial Tactile Sensation

    Science.gov (United States)

    Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L.; Nurmikko, Arto V.

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest. PMID:25541938

  20. Attention Priority Map of Face Images in Human Early Visual Cortex.

    Science.gov (United States)

    Mo, Ce; He, Dongjun; Fang, Fang

    2018-01-03

    Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as

  1. Microglia in the Cerebral Cortex in Autism

    Science.gov (United States)

    Tetreault, Nicole A.; Hakeem, Atiya Y.; Jiang, Sue; Williams, Brian A.; Allman, Elizabeth; Wold, Barbara J.; Allman, John M.

    2012-01-01

    We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had…

  2. Human Dorsolateral Prefrontal Cortex Is Not Necessary for Spatial Working Memory.

    Science.gov (United States)

    Mackey, Wayne E; Devinsky, Orrin; Doyle, Werner K; Meager, Michael R; Curtis, Clayton E

    2016-03-09

    A dominant theory, based on electrophysiological and lesion evidence from nonhuman primate studies, posits that the dorsolateral prefrontal cortex (dlPFC) stores and maintains working memory (WM) representations. Yet, neuroimaging studies have consistently failed to translate these results to humans; these studies normally find that neural activity persists in the human precentral sulcus (PCS) during WM delays. Here, we attempt to resolve this discrepancy. To test the degree to which dlPFC is necessary for WM, we compared the performance of patients with dlPFC lesions and neurologically healthy controls on a memory-guided saccade task that was used in the monkey studies to measure spatial WM. We found that dlPFC damage only impairs the accuracy of memory-guided saccades if the damage impacts the PCS; lesions to dorsolateral dlPFC that spare the PCS have no effect on WM. These results identify the necessary subregion of the frontal cortex for WM and specify how this influential animal model of human cognition must be revised. Copyright © 2016 the authors 0270-6474/16/362847-10$15.00/0.

  3. Insular Epilepsy: Semiology and Noninvasive Investigations.

    Science.gov (United States)

    Obaid, Sami; Zerouali, Younes; Nguyen, Dang Khoa

    2017-07-01

    In this review, authors discuss the semiology and noninvasive investigations of insular epilepsy, an underrecognized type of epilepsy, which may mimic other focal epilepsies. In line with the various functions of the insula and its widespread network of connections, insular epilepsy may feature a variety of early ictal manifestations from somatosensory, visceral, olfactory, gustatory, or vestibular manifestations. Depending on propagation pathways, insular seizures may also include altered consciousness, dystonic posturing, complex motor behaviors, and even autonomic features. Considering the variability in seizure semiology, recognition of insular epilepsy may be challenging and confirmation by noninvasive tests is warranted although few studies have assessed their value. Detection of an insular lesion on MRI greatly facilitates the diagnosis. Scalp EEG findings in frontocentral and/or temporal derivations will generally allow lateralization of the seizure focus. Ictal single-photon computed tomography has moderate sensitivity, whereas positron emission tomography has lower sensitivity. Among newer techniques, magnetoencephalography is highly beneficial, whereas proton magnetic resonance spectroscopy currently has limited value.

  4. Altered insular activation and increased insular functional connectivity during sad and happy face processing in adolescent major depressive disorder.

    Science.gov (United States)

    Henje Blom, Eva; Connolly, Colm G; Ho, Tiffany C; LeWinn, Kaja Z; Mobayed, Nisreen; Han, Laura; Paulus, Martin P; Wu, Jing; Simmons, Alan N; Yang, Tony T

    2015-06-01

    Major depressive disorder (MDD) is a leading cause of disability worldwide and occurs commonly first during adolescence. The insular cortex (IC) plays an important role in integrating emotion processing with interoception and has been implicated recently in the pathophysiology of adult and adolescent MDD. However, no studies have yet specifically examined the IC in adolescent MDD during processing of faces in the sad-happy continuum. Thus, the aim of the present study is to investigate the IC during sad and happy face processing in adolescents with MDD compared to healthy controls (HCL). Thirty-one adolescents (22 female) with MDD and 36 (23 female) HCL underwent a well-validated emotional processing fMRI paradigm that included sad and happy face stimuli. The MDD group showed significantly less differential activation of the anterior/middle insular cortex (AMIC) in response to sad versus happy faces compared to the HCL group. AMIC also showed greater functional connectivity with right fusiform gyrus, left middle frontal gyrus, and right amygdala/parahippocampal gyrus in the MDD compared to HCL group. Moreover, differential activation to sad and happy faces in AMIC correlated negatively with depression severity within the MDD group. Small age-range and cross-sectional nature precluded assessment of development of the AMIC in adolescent depression. Given the role of the IC in integrating bodily stimuli with conscious cognitive and emotional processes, our findings of aberrant AMIC function in adolescent MDD provide a neuroscientific rationale for targeting the AMIC in the development of new treatment modalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Sensorimotor organization in double cortex syndrome.

    Science.gov (United States)

    Jirsch, Jeffrey D; Bernasconi, Neda; Villani, Flavio; Vitali, Paolo; Avanzini, Giuliano; Bernasconi, Andrea

    2006-06-01

    Subcortical band heterotopia is a diffuse malformation of cortical development related to pharmacologically intractable epilepsy. On magnetic resonance imaging (MRI), patients with "double cortex" syndrome (DCS) present with a band of heterotopic gray matter separated from the overlying cortex by a layer of white matter. The function and connectivity of the subcortical heterotopic band in humans is only partially understood. We studied six DCS patients with bilateral subcortical band heterotopias and six healthy controls using functional MRI (fMRI). In controls, simple motor task elicited contralateral activation of the primary motor cortex (M1) and ipsilateral activation of the cerebellum and left supplementary motor area (SMA). All DCS patients showed task-related contralateral activation of both M1 and the underlying heterotopic band. Ipsilateral motor activation was seen in 4/6 DCS patients. Furthermore, there were additional activations of nonprimary normotopic cortical areas. The sensory stimulus resulted in activation of the contralateral primary sensory cortex (SI) and the thalamus in all healthy subjects. The left sensory task also induced a contralateral activation of the insular cortex. Sensory activation of the contralateral SI was seen in all DCS patients and secondary somatosensory areas in 5/6. The heterotopic band beneath SI became activated in 3/6 DCS patients. Activations were also seen in subcortical structures for both paradigms. In DCS, motor and sensory tasks induce an activation of the subcortical heterotopic band. The recruitment of bilateral primary areas and higher-order association normotopic cortices indicates the need for a widespread network to perform simple tasks. Copyright 2005 Wiley-Liss, Inc.

  6. Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex

    Directory of Open Access Journals (Sweden)

    Ming-Kuei eLu

    2012-09-01

    Full Text Available The cerebellum is crucially important for motor control and motor adaptation. Recent non-invasive brain stimulation studies have indicated the possibility to alter the excitability of the cerebellum and its projections to the contralateral motor cortex, with behavioral consequences on motor control and motor adaptation. Here we sought to induce bidirectional spike-timing dependent plasticity (STDP-like modifications of motor cortex (M1 excitability by application of paired associative stimulation (PAS in healthy subjects. Conditioning stimulation over the right lateral cerebellum (CB preceded focal TMS of the left M1 hand area at an interstimulus interval of 2 ms (CB→M1 PAS2ms, 6 ms (CB→M1 PAS6ms or 10 ms (CB→M1 PAS10ms or randomly alternating intervals of 2 and 10 ms (CB→M1 PASControl. Effects of PAS on M1 excitability were assessed by the motor evoked potential (MEP amplitude, short-interval intracortical inhibition (SICI, intracortical facilitation (ICF and cerebellar-motor cortex inhibition (CBI in the first dorsal interosseous muscle of the right hand. CB→M1 PAS2ms resulted in MEP potentiation, CB→M1 PAS6ms and CB→M1 PAS10ms in MEP depression, and CB→M1 PASControl in no change. The MEP changes lasted for 30-60 min after PAS. SICI and CBI decreased non-specifically after all PAS protocols, while ICF remained unaltered. The physiological mechanisms underlying these MEP changes are carefully discussed. Findings support the notion of bidirectional STDP-like plasticity in M1 mediated by associative stimulation of the cerebello-dentato-thalamo-cortical pathway and M1. Future studies may investigate the behavioral significance of this plasticity.

  7. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex.

    Science.gov (United States)

    Perge, János A; Zhang, Shaomin; Malik, Wasim Q; Homer, Mark L; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N; Donoghue, John P; Hochberg, Leigh R

    2014-08-01

    Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs, along with action potentials, a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. We conducted intracortical multi-electrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200-400 Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70-400 Hz), and increasing disparity with lower frequency bands (0-7, 10-40 and 50-65 Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike-based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p = 0.27[0.03]). Field potentials provided comparable offline decoding performance to unsorted spikes. Thus

  8. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex

    Science.gov (United States)

    Di Lazzaro, Vincenzo; Rothwell, John C

    2014-01-01

    A number of methods have been developed recently that stimulate the human brain non-invasively through the intact scalp. The most common are transcranial magnetic stimulation (TMS), transcranial electric stimulation (TES) and transcranial direct current stimulation (TDCS). They are widely used to probe function and connectivity of brain areas as well as therapeutically in a variety of conditions such as depression or stroke. They are much less focal than conventional invasive methods which use small electrodes placed on or in the brain and are often thought to activate all classes of neurones in the stimulated area. However, this is not true. A large body of evidence from experiments on the motor cortex shows that non-invasive methods of brain stimulation can be surprisingly selective and that adjusting the intensity and direction of stimulation can activate different classes of inhibitory and excitatory inputs to the corticospinal output cells. Here we review data that have elucidated the action of TMS and TES, concentrating mainly on the most direct evidence available from spinal epidural recordings of the descending corticospinal volleys. The results show that it is potentially possible to test and condition specific neural circuits in motor cortex that could be affected differentially by disease, or be used in different forms of natural behaviour. However, there is substantial interindividual variability in the specificity of these protocols. Perhaps in the future it will be possible, with the advances currently being made to model the electrical fields induced in individual brains, to develop forms of stimulation that can reliably target more specific populations of neurones, and open up the internal circuitry of the motor cortex for study in behaving humans. PMID:25172954

  9. Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans.

    Science.gov (United States)

    Tsuchida, Ami; Fellows, Lesley K

    2009-12-01

    Although prefrontal cortex is clearly important in executive function, the specific processes carried out by particular regions within human prefrontal cortex remain a matter of debate. A rapidly growing corpus of functional imaging work now implicates various areas within prefrontal cortex in a wide range of "executive" tasks. Loss-of-function studies can help constrain the interpretation of such evidence by testing to what extent particular brain areas are necessary for a given cognitive process. Here we apply a component process analysis to understand prefrontal contributions to the n-back task, a widely used test of working memory, in a cohort of patients with focal prefrontal damage. We investigated letter 2-back task performance in 27 patients with focal damage to various regions within prefrontal cortex, compared to 29 demographically matched control subjects. Both "behavior-defined" approaches, using qualitative lesion analyses and voxel-based lesion-symptom mapping methods, and more conventional "lesion-defined" groupwise comparisons were undertaken to determine the relationships between specific sites of damage within prefrontal cortex and particular aspects of n-back task performance. We confirmed a critical role for left lateral prefrontal cortex in letter 2-back performance. We also identified a critical role for medial prefrontal cortex in this task: Damage to dorsal anterior cingulate cortex and adjacent dorsal fronto-medial cortex led to a pattern of impairment marked by high false alarm rates, distinct from the impairment associated with lateral prefrontal damage. These findings provide converging support for regionally specific models of human prefrontal function.

  10. Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys

    National Research Council Canada - National Science Library

    Grefkes, Christian; Weiss, Peter H; Zilles, Karl; Fink, Gereon R

    2002-01-01

    ...). Using functional MRI, we tested the hypothesis that an area in human anterior intraparietal cortex is activated when healthy subjects perform a crossmodal visuo-tactile delayed matching-to-sample task with objects...

  11. Neuronal Network Pharmacodynamics of GABAergic Modulation in the Human Cortex Determined Using Pharmaco-Magnetoencephalography

    Science.gov (United States)

    Hall, Stephen D; Barnes, Gareth R; Furlong, Paul L; Seri, Stefano; Hillebrand, Arjan

    2010-01-01

    Neuronal network oscillations are a unifying phenomenon in neuroscience research, with comparable measurements across scales and species. Cortical oscillations are of central importance in the characterization of neuronal network function in health and disease and are influential in effective drug development. Whilst animal in vitro and in vivo electrophysiology is able to characterize pharmacologically induced modulations in neuronal activity, present human counterparts have spatial and temporal limitations. Consequently, the potential applications for a human equivalent are extensive. Here, we demonstrate a novel implementation of contemporary neuroimaging methods called pharmaco-magnetoencephalography. This approach determines the spatial profile of neuronal network oscillatory power change across the cortex following drug administration and reconstructs the time course of these modulations at focal regions of interest. As a proof of concept, we characterize the nonspecific GABAergic modulator diazepam, which has a broad range of therapeutic applications. We demonstrate that diazepam variously modulates θ (4–7 Hz), α (7–14 Hz), β (15–25 Hz), and γ (30–80 Hz) frequency oscillations in specific regions of the cortex, with a pharmacodynamic profile consistent with that of drug uptake. We examine the relevance of these results with regard to the spatial and temporal observations from other modalities and the various therapeutic consequences of diazepam and discuss the potential applications of such an approach in terms of drug development and translational neuroscience. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. PMID:19937723

  12. Expression of sarcoglycans in the human cerebral cortex: an immunohistochemical and molecular study.

    Science.gov (United States)

    Anastasi, Giuseppe; Tomasello, Francesco; Di Mauro, Debora; Cutroneo, Giuseppina; Favaloro, Angelo; Conti, Alfredo; Ruggeri, Alessia; Rinaldi, Carmela; Trimarchi, Fabio

    2012-01-01

    The sarcoglycan (SG) complex (SGC) is a subcomplex within the dystrophin-glycoprotein complex (DGC) and is composed of several transmembrane proteins (α, β, δ, γ, ε and ζ). The DGC supplies a transmembranous connection between the subsarcolemmal cytoskeleton networks and the basal lamina in order to protect the lipid bilayer and to provide a scaffold for signaling molecules in all muscle cells. In addition to its role in muscle tissue, dystrophin and some DGC components are expressed in neurons and glia. Very little is known about the SG subunits in the central nervous system (CNS) and some data suggested the presence of ε and ζ subunits only. In fact, mutations in the ε-SG gene cause myoclonus-dystonia, indicating its importance for brain function. To determine the presence and localization of SGC in the human cerebral cortex, we performed an investigation using immunofluorescence, immunoblotting and reverse transcriptase polymerase chain reaction. The results showed that all SG subunits are expressed in the human cerebral cortex, particularly in large neurons but also in astrocytes. These data suggest that the SG subcomplex may be involved in the organization of CNS synapses. Copyright © 2012 S. Karger AG, Basel.

  13. Electrocorticographic activation within human auditory cortex during dialogue-based language and cognitive testing

    Directory of Open Access Journals (Sweden)

    Kirill Vadimovich Nourski

    2016-05-01

    Full Text Available Current models of cortical speech and language processing include multiple regions within the temporal lobe of both hemispheres. Human communication, by necessity, involves complex interactions between regions subserving speech and language processing with those involved in more general cognitive functions. To assess these interactions, we utilized an ecologically salient conversation-based approach. This approach mandates that we first clarify activity patterns at the earliest stages of cortical speech processing. Therefore, we examined high gamma (70-150 Hz responses within the electrocorticogram (ECoG recorded simultaneously from Heschl’s gyrus (HG and lateral surface of the superior temporal gyrus (STG. Subjects were neurosurgical patients undergoing evaluation for treatment of medically intractable epilepsy. They performed an expanded version of the Mini-mental state examination (MMSE, which included additional spelling, naming, and memory-based tasks. ECoG was recorded from HG and the STG using multicontact depth and subdural electrode arrays, respectively. Differences in high gamma activity during listening to the interviewer and the subject's self-generated verbal responses were quantified for each recording site and across sites within HG and STG. The expanded MMSE produced widespread activation in auditory cortex of both hemispheres. No significant difference was found between activity during listening to the interviewer's questions and the subject's answers in posteromedial HG (auditory core cortex. A different pattern was observed throughout anterolateral HG and posterior and middle portions of lateral STG (non-core auditory cortical areas, where activity was significantly greater during listening compared to speaking. No systematic task-specific differences in the degree of suppression during speaking relative to listening were found in posterior and middle STG. Individual sites could, however, exhibit task-related variability in

  14. Reward feedback stimuli elicit high-beta EEG oscillations in human dorsolateral prefrontal cortex.

    Science.gov (United States)

    HajiHosseini, Azadeh; Hosseini, Azadeh Haji; Holroyd, Clay B

    2015-08-17

    Reward-related feedback stimuli have been observed to elicit a burst of power in the beta frequency range over frontal areas of the human scalp. Recent discussions have suggested possible neural sources for this activity but there is a paucity of empirical evidence on the question. Here we recorded EEG from participants while they navigated a virtual T-maze to find monetary rewards. Consistent with previous studies, we found that the reward feedback stimuli elicited an increase in beta power (20-30 Hz) over a right-frontal area of the scalp. Source analysis indicated that this signal was produced in the right dorsolateral prefrontal cortex (DLPFC). These findings align with previous observations of reward-related beta oscillations in the DLPFC in non-human primates. We speculate that increased power in the beta frequency range following reward receipt reflects the activation of task-related neural assemblies that encode the stimulus-response mapping in working memory.

  15. Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective

    Science.gov (United States)

    Rosa, Andreia Martins; Silva, Maria Fátima; Murta, Joaquim

    2013-01-01

    Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic connectivity. There is also a downside of plasticity, that is, maladaptive plasticity, in which there are behavioral losses resulting from plasticity changes in the human brain. Understanding plasticity mechanisms could have major implications in the diagnosis and treatment of ocular diseases, such as retinal disorders, cataract and refractive surgery, amblyopia, and in the evaluation of surgical materials and techniques. Furthermore, eliciting plasticity could open new perspectives in the development of strategies that trigger plasticity for better medical and surgical outcomes. PMID:24205505

  16. 75 FR 20237 - Interagency Group on Insular Areas

    Science.gov (United States)

    2010-04-19

    ... on Insular Areas By the authority vested in me as President by the Constitution and the laws of the United States of America, it is hereby ordered as follows: Section 1. Interagency Group on Insular Areas... Interagency Group on Insular Areas (IGIA) to address policies concerning Guam, American Samoa, the United...

  17. Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.

    Science.gov (United States)

    Reid, Andrew T; Bzdok, Danilo; Langner, Robert; Fox, Peter T; Laird, Angela R; Amunts, Katrin; Eickhoff, Simon B; Eickhoff, Claudia R

    2016-06-01

    Working memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of

  18. Cingulo-insular structural alterations associated with psychogenic symptoms, childhood abuse and PTSD in functional neurological disorders.

    Science.gov (United States)

    Perez, David L; Matin, Nassim; Barsky, Arthur; Costumero-Ramos, Victor; Makaretz, Sara J; Young, Sigrid S; Sepulcre, Jorge; LaFrance, W Curt; Keshavan, Matcheri S; Dickerson, Bradford C

    2017-06-01

    Adverse early-life events are predisposing factors for functional neurological disorder (FND) and post-traumatic stress disorder (PTSD). Cingulo-insular regions are implicated in the biology of both conditions and are sites of stress-mediated neuroplasticity. We hypothesised that functional neurological symptoms and the magnitude of childhood abuse would be associated with overlapping anterior cingulate cortex (ACC) and insular volumetric reductions, and that FND and PTSD symptoms would map onto distinct cingulo-insular areas. This within-group voxel-based morphometry study probes volumetric associations with self-report measures of functional neurological symptoms, adverse life events and PTSD symptoms in 23 mixed-gender FND patients. Separate secondary analyses were also performed in the subset of 18 women with FND to account for gender-specific effects. Across the entire cohort, there were no statistically significant volumetric associations with self-report measures of functional neurological symptom severity or childhood abuse. In women with FND, however, parallel inverse associations were observed between left anterior insular volume and functional neurological symptoms as measured by the Patient Health Questionnaire-15 and the Screening for Somatoform Symptoms Conversion Disorder subscale. Similar inverse relationships were also appreciated between childhood abuse burden and left anterior insular volume. Across all subjects, PTSD symptom severity was inversely associated with dorsal ACC volume, and the magnitude of lifetime adverse events was inversely associated with left hippocampal volume. This study reveals distinct cingulo-insular alterations for FND and PTSD symptoms and may advance our understanding of FND. Potential biological convergence between stress-related neuroplasticity, functional neurological symptoms and reduced insular volume was identified. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017

  19. Forest fires in the insular Caribbean.

    Science.gov (United States)

    Robbins, A Marcus J; Eckelmann, Claus-Martin; Quiñones, Maya

    2008-12-01

    This paper presents a summary of the forest fire reports in the insular Caribbean derived from both management reports and an analysis of publicly available Moderate Resolution Imaging Spectrodiometer (MODIS) satellite active fire products from the region. A vast difference between the amount of fires reported by land managers and fire points in the MODIS Fire Information for Resource Management System data can be observed. Future research is recommended to better understand the nature of these differences. While there is a general lack of available statistical data on forest fires in the Caribbean, a few general observations can be made: Forest fires occur mainly in dry forest types (500 to 1000 mm of mean annual rainfall). These are also the areas where most human settlements are located. Lowland high forests and montane forests with higher rainfall (1000 and more mm y(-1)) are less susceptible to forest fire, but they can burn in exceptionally dry years. Most of the dry forest ecosystems in the Caribbean can be considered to be fire-sensitive ecosystems, while the pine forests in the Caribbean (Cuba, Dominican Republic, and the Bahamas) are maintained by wildfires. In fire-sensitive ecosystems, uncontrolled burning often encourages the spread of alien invasive species. A Caribbean Fire Management Cooperation Strategy was developed between 2005 and 2006 under auspices of the Food and Agriculture Organization of the United Nations. This regional strategy aims to strengthen Caribbean fire management networking by encouraging closer collaboration among countries with similar ecological conditions. The strategy for the Caribbean identifies a number of research, training, and management activities to improve wildfire management capacity in the Caribbean.

  20. Processing of natural sounds: characterization of multipeak spectral tuning in human auditory cortex.

    Science.gov (United States)

    Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2013-07-17

    We examine the mechanisms by which the human auditory cortex processes the frequency content of natural sounds. Through mathematical modeling of ultra-high field (7 T) functional magnetic resonance imaging responses to natural sounds, we derive frequency-tuning curves of cortical neuronal populations. With a data-driven analysis, we divide the auditory cortex into five spatially distributed clusters, each characterized by a spectral tuning profile. Beyond neuronal populations with simple single-peaked spectral tuning (grouped into two clusters), we observe that ∼60% of auditory populations are sensitive to multiple frequency bands. Specifically, we observe sensitivity to multiple frequency bands (1) at exactly one octave distance from each other, (2) at multiple harmonically related frequency intervals, and (3) with no apparent relationship to each other. We propose that beyond the well known cortical tonotopic organization, multipeaked spectral tuning amplifies selected combinations of frequency bands. Such selective amplification might serve to detect behaviorally relevant and complex sound features, aid in segregating auditory scenes, and explain prominent perceptual phenomena such as octave invariance.

  1. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex

    Directory of Open Access Journals (Sweden)

    Florian Mormann

    2008-05-01

    Full Text Available Theta oscillations in the medial temporal lobe (MTL of mammals are involved in various functions such as spatial navigation, sensorimotor integration, and cognitive processing. While the theta rhythm was originally assumed to originate in the medial septum, more recent studies suggest autonomous theta generation in the MTL. Although coherence between entorhinal and hippocampal theta activity has been found to influence memory formation, it remains unclear whether these two structures can generate theta independently. In this study we analyzed intracranial electroencephalographic (EEG recordings from 22 patients with unilateral hippocampal sclerosis undergoing presurgical evaluation prior to resection of the epileptic focus. Using a wavelet-based, frequency-band-specific measure of phase synchronization, we quantified synchrony between 10 different recording sites along the longitudinal axis of the hippocampal formation in the non-epileptic brain hemisphere. We compared EEG synchrony between adjacent recording sites (i within the entorhinal cortex, (ii within the hippocampus, and (iii between the hippocampus and entorhinal cortex. We observed a significant interregional gap in synchrony for the delta and theta band, indicating the existence of independent delta/theta rhythms in different subregions of the human MTL. The interaction of these rhythms could represent the temporal basis for the information processing required for mnemonic encoding and retrieval.

  2. Human perception of electrical stimulation on the surface of somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    Full Text Available Recent advancement in electrocorticography (ECoG-based brain-computer interface technology has sparked a new interest in providing somatosensory feedback using ECoG electrodes, i.e., cortical surface electrodes. We conducted a 28-day study of cortical surface stimulation in an individual with arm paralysis due to brachial plexus injury to examine the sensation produced by electrical stimulation of the somatosensory cortex. A high-density ECoG grid was implanted over the somatosensory and motor cortices. Stimulation through cortical surface electrodes over the somatosensory cortex successfully elicited arm and hand sensations in our participant with chronic paralysis. There were three key findings. First, the intensity of perceived sensation increased monotonically with both pulse amplitude and pulse frequency. Second, changing pulse width changed the type of sensation based on qualitative description provided by the human participant. Third, the participant could distinguish between stimulation applied to two neighboring cortical surface electrodes, 4.5 mm center-to-center distance, for three out of seven electrode pairs tested. Taken together, we found that it was possible to modulate sensation intensity, sensation type, and evoke sensations across a range of locations from the fingers to the upper arm using different stimulation electrodes even in an individual with chronic impairment of somatosensory function. These three features are essential to provide effective somatosensory feedback for neuroprosthetic applications.

  3. Selective attention increases both gain and feature selectivity of the human auditory cortex.

    Directory of Open Access Journals (Sweden)

    Jaakko Kauramäki

    2007-09-01

    Full Text Available An experienced car mechanic can often deduce what's wrong with a car by carefully listening to the sound of the ailing engine, despite the presence of multiple sources of noise. Indeed, the ability to select task-relevant sounds for awareness, whilst ignoring irrelevant ones, constitutes one of the most fundamental of human faculties, but the underlying neural mechanisms have remained elusive. While most of the literature explains the neural basis of selective attention by means of an increase in neural gain, a number of papers propose enhancement in neural selectivity as an alternative or a complementary mechanism.Here, to address the question whether pure gain increase alone can explain auditory selective attention in humans, we quantified the auditory cortex frequency selectivity in 20 healthy subjects by masking 1000-Hz tones by continuous noise masker with parametrically varying frequency notches around the tone frequency (i.e., a notched-noise masker. The task of the subjects was, in different conditions, to selectively attend to either occasionally occurring slight increments in tone frequency (1020 Hz, tones of slightly longer duration, or ignore the sounds. In line with previous studies, in the ignore condition, the global field power (GFP of event-related brain responses at 100 ms from the stimulus onset to the 1000-Hz tones was suppressed as a function of the narrowing of the notch width. During the selective attention conditions, the suppressant effect of the noise notch width on GFP was decreased, but as a function significantly different from a multiplicative one expected on the basis of simple gain model of selective attention.Our results suggest that auditory selective attention in humans cannot be explained by a gain model, where only the neural activity level is increased, but rather that selective attention additionally enhances auditory cortex frequency selectivity.

  4. The role of the human entorhinal cortex in a representational account of memory

    Directory of Open Access Journals (Sweden)

    Heidrun eSchultz

    2015-11-01

    Full Text Available Connectivity studies in animals form the basis for a representational view of medial temporal lobe (MTL subregions. In this view, distinct subfields of the entorhinal cortex (EC relay object-related and spatial information from the perirhinal and parahippocampal cortices (PRC, PHC to the hippocampus. Relatively recent advances in fMRI methodology allow examining properties of human EC subregions directly. Antero-lateral and posterior-medial EC subfields show remarkable consistency to their putative rodent and nonhuman primate homologues with regard to intra- and extra-MTL functional connectivity. Accordingly, there is now evidence for a dissociation of object-related vs. spatial processing in human EC subfields. Here, variance in localization may be integrated in the antero-lateral vs. posterior-medial distinction, but may additionally reflect process differences. Functional results in rodents further suggest material-specific representations may be more integrated in EC compared to PRC/PHC. In humans, however, evidence for such a dissociation between EC and PRC/PHC is lacking. Future research may elucidate on the unique contributions of human EC to memory, especially in light of its high degree of intrinsic and extrinsic connectivity. A thorough characterization of EC subfield function may not only advance our understanding of human memory, but also have important clinical implications.

  5. SNAP-25a/b Isoform Levels in Human Brain Dorsolateral Prefrontal Cortex and Anterior Cingulate Cortex.

    Science.gov (United States)

    Thompson, Peter M; Cruz, Dianne A; Fucich, Elizabeth A; Olukotun, Dianna Y; Takahashi, Masami; Itakura, Makoto

    2015-12-01

    SNAP-25 is a neurotransmitter vesicular docking protein which has been associated with brain disorders such as attention deficit hyperactivity disorder, bipolar disorder and schizophrenia. In this project, we were interested if clinical factors are associated with differential SNAP-25 expression. We examined the SNAP-25 isoform mRNA and protein levels in postmortem cortex Brodmann's area 9 (BA9) and BA24 (n = 29). Subjects were divided by psychiatric diagnosis, clinical variables including mood state in the last week of life and lifetime impulsiveness. We found affected subjects with a diagnosis of alcohol use disorder (AUD) had a lower level of SNAP-25b BA24 protein compared to those without AUD. Hispanic subjects had lower levels of SNAP-25a, b and BA9 mRNA than Anglo-American subjects. Subjects who smoked had a total pan (total) SNAP-25 BA9/BA24 ratio. Subjects in the group with a low level of anxious-psychotic symptoms had higher SNAP-25a BA24 mRNA compared to normal controls, and both the high and low symptoms groups had higher pan (total) SNAP-25 BA9/BA24 ratios than normal controls. These data expand our understanding of clinical factors associated with SNAP-25. They suggest that SNAP-25 total and isoform levels may be useful biomarkers beyond limited neurological and psychiatric diagnostic categories.

  6. Functional mapping of the human visual cortex with intravoxel incoherent motion MRI.

    Directory of Open Access Journals (Sweden)

    Christian Federau

    Full Text Available Functional imaging with intravoxel incoherent motion (IVIM magnetic resonance imaging (MRI is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.

  7. Reward expectation and prediction error in human medial frontal cortex: an EEG study.

    Science.gov (United States)

    Silvetti, Massimo; Nuñez Castellar, Elena; Roger, Clémence; Verguts, Tom

    2014-01-01

    The mammalian medial frontal cortex (MFC) is involved in reward-based decision making. In particular, in nonhuman primates this area constructs expectations about upcoming rewards, given an environmental state or a choice planned by the animal. At the same time, in both humans and nonhuman primates, the MFC computes the difference between such predictions and actual environmental outcomes (reward prediction errors). However, there is a paucity of evidence about the time course of MFC-related activity during reward prediction and prediction error in humans. Here we experimentally investigated this by recording the EEG during a reinforcement learning task. Our results support the hypothesis that human MFC codes for reward prediction during the cue period and for prediction error during the outcome period. Further, reward expectation (cue period) was positively correlated with prediction error (outcome period) in error trials but negatively in correct trials, consistent with updating of reward expectation by prediction error. This demonstrates in humans, like in nonhuman primates, a role of the MFC in the rapid updating of reward expectations through prediction errors. © 2013.

  8. Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception

    Science.gov (United States)

    Jones, Christina B.; Lulic, Tea; Bailey, Aaron Z.; Mackenzie, Tanner N.; Mi, Yi Qun; Tommerdahl, Mark

    2016-01-01

    Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively. PMID:26984422

  9. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Science.gov (United States)

    Cuaya, Laura V; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  10. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Directory of Open Access Journals (Sweden)

    Laura V Cuaya

    Full Text Available Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI. We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  11. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    Science.gov (United States)

    Takaya, Shigetoshi; Kuperberg, Gina R.; Liu, Hesheng; Greve, Douglas N.; Makris, Nikos; Stufflebeam, Steven M.

    2015-01-01

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. The unique feature of the left AF is discussed in the context of the human capacity for language. PMID:26441551

  12. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC, University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, CA Rotterdam (Netherlands); K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium); Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium)

    2007-01-15

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  13. Isolation of functionally active and highly purified neuronal mitochondria from human cortex.

    Science.gov (United States)

    Khattar, Nicolas K; Yablonska, Svitlana; Baranov, Sergei V; Baranova, Oxana V; Kretz, Eric S; Larkin, Timothy M; Carlisle, Diane L; Richardson, R Mark; Friedlander, Robert M

    2016-04-01

    Functional and structural properties of mitochondria are highly tissue and cell dependent, but isolation of highly purified human neuronal mitochondria is not currently available. We developed and validated a procedure to isolate purified neuronal mitochondria from brain tissue. The method combines Percoll gradient centrifugation to obtain synaptosomal fraction with nitrogen cavitation mediated synaptosome disruption and extraction of mitochondria using anti mitochondrial outer membrane protein antibodies conjugated to magnetic beads. The final products of isolation are non-synaptosomal mitochondria, which are a mixture of mitochondria isolated from different brain cells (i.e. neurons, astrocytes, oligodendrocytes, microglia) and synaptic mitochondria, which are of neuronal origin. This method is well suited for preparing functional mitochondria from human cortex tissue that is surgically extracted. The procedure produces mitochondria with minimal cytoplasmic contaminations that are functionally active based on measurements of mitochondrial respiration as well as mitochondrial protein import. The procedure requires approximately four hours for the isolation of human neuronal mitochondria and can also be used to isolate mitochondria from mouse/rat/monkey brains. This method will allow researchers to study highly enriched neuronal mitochondria without the confounding effect of cellular and organelle contaminants. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Dissociation of retinal and headcentric disparity signals in dorsal human cortex

    Science.gov (United States)

    Arnoldussen, David M.; Goossens, Jeroen; van Den Berg, Albert V.

    2015-01-01

    Recent fMRI studies have shown fusion of visual motion and disparity signals for shape perception (Ban et al., 2012), and unmasking camouflaged surfaces (Rokers et al., 2009), but no such interaction is known for typical dorsal motion pathway tasks, like grasping and navigation. Here, we investigate human speed perception of forward motion and its representation in the human motion network. We observe strong interaction in medial (V3ab, V6) and lateral motion areas (MT+), which differ significantly. Whereas the retinal disparity dominates the binocular contribution to the BOLD activity in the anterior part of area MT+, headcentric disparity modulation of the BOLD response dominates in area V3ab and V6. This suggests that medial motion areas not only represent rotational speed of the head (Arnoldussen et al., 2011), but also translational speed of the head relative to the scene. Interestingly, a strong response to vergence eye movements was found in area V1, which showed a dependency on visual direction, just like vertical-size disparity. This is the first report of a vertical-size disparity correlate in human striate cortex. PMID:25759642

  15. Dissociation of retinal and headcentric disparity signals in dorsal human cortex

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2015-02-01

    Full Text Available Recent fMRI studies have shown fusion of visual motion and disparity signals for shape perception (Ban et al., 2012, and unmasking camouflaged surfaces (Rokers et al., 2009, but no such interaction is known for typical dorsal motion pathway tasks, like grasping and navigation. Here, we investigate human speed perception of forward motion and its representation in the human motion network. We observe strong interaction in medial (V3ab, V6 and lateral motion areas (MT+, which differ significantly. Whereas the retinal disparity dominates the binocular contribution to the BOLD activity in the anterior part of area MT+, headcentric disparity modulation of the BOLD response dominates in area V3ab and V6. This suggests that medial motion areas not only represent rotational speed of the head (Arnoldussen et al., 2011, but also translational speed of the head relative to the scene.Interestingly, a strong response to vergence eye movements was found in area V1, which showed a dependency on visual direction, just like vertical-size disparity. This is the first report of a vertical-size disparity correlate in human striate cortex.

  16. Analysis of Gene Expression Profiles in the Human Brain Stem, Cerebellum and Cerebral Cortex.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available The human brain is one of the most mysterious tissues in the body. Our knowledge of the human brain is limited due to the complexity of its structure and the microscopic nature of connections between brain regions and other tissues in the body. In this study, we analyzed the gene expression profiles of three brain regions-the brain stem, cerebellum and cerebral cortex-to identify genes that are differentially expressed among these different brain regions in humans and to obtain a list of robust, region-specific, differentially expressed genes by comparing the expression signatures from different individuals. Feature selection methods, specifically minimum redundancy maximum relevance and incremental feature selection, were employed to analyze the gene expression profiles. Sequential minimal optimization, a machine-learning algorithm, was employed to examine the utility of selected genes. We also performed a literature search, and we discuss the experimental evidence for the important physiological functions of several highly ranked genes, including NR2E1, DAO, and LRRC7, and we give our analyses on a gene (TFAP2B that have not been investigated or experimentally validated. As a whole, the results of our study will improve our ability to predict and understand genes related to brain regionalization and function.

  17. Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Stanley I Rapoport

    Full Text Available Phosphoinositides, lipid-signaling molecules, participate in diverse brain processes within a wide metabolic cascade.Gene transcriptional networks coordinately regulate the phosphoinositide cascade during human brain Development and Aging.We used the public BrainCloud database for human dorsolateral prefrontal cortex to examine age-related expression levels of 49 phosphoinositide metabolic genes during Development (0 to 20+ years and Aging (21+ years.We identified three groups of partially overlapping genes in each of the two intervals, with similar intergroup correlations despite marked phenotypic differences between Aging and Development. In each interval, ITPKB, PLCD1, PIK3R3, ISYNA1, IMPA2, INPPL1, PI4KB, and AKT1 are in Group 1, PIK3CB, PTEN, PIK3CA, and IMPA1 in Group 2, and SACM1L, PI3KR4, INPP5A, SYNJ1, and PLCB1 in Group 3. Ten of the genes change expression nonlinearly during Development, suggesting involvement in rapidly changing neuronal, glial and myelination events. Correlated transcription for some gene pairs likely is facilitated by colocalization on the same chromosome band.Stable coordinated gene transcriptional networks regulate brain phosphoinositide metabolic pathways during human Development and Aging.

  18. Distributed Neural Plasticity for Shape Learning in the Human Visual Cortex

    Science.gov (United States)

    Betts, Lisa R; Sarkheil, Pegah; Welchman, Andrew E

    2005-01-01

    Expertise in recognizing objects in cluttered scenes is a critical skill for our interactions in complex environments and is thought to develop with learning. However, the neural implementation of object learning across stages of visual analysis in the human brain remains largely unknown. Using combined psychophysics and functional magnetic resonance imaging (fMRI), we show a link between shape-specific learning in cluttered scenes and distributed neuronal plasticity in the human visual cortex. We report stronger fMRI responses for trained than untrained shapes across early and higher visual areas when observers learned to detect low-salience shapes in noisy backgrounds. However, training with high-salience pop-out targets resulted in lower fMRI responses for trained than untrained shapes in higher occipitotemporal areas. These findings suggest that learning of camouflaged shapes is mediated by increasing neural sensitivity across visual areas to bolster target segmentation and feature integration. In contrast, learning of prominent pop-out shapes is mediated by associations at higher occipitotemporal areas that support sparser coding of the critical features for target recognition. We propose that the human brain learns novel objects in complex scenes by reorganizing shape processing across visual areas, while taking advantage of natural image correlations that determine the distinctiveness of target shapes. PMID:15934786

  19. Neuropeptide Y-immunoreactive neurons in the cerebral cortex of humans and other haplorrhine primates

    Science.gov (United States)

    Raghanti, Mary Ann; Conley, Tiffini; Sudduth, Jessica; Erwin, Joseph M.; Stimpson, Cheryl D.; Hof, Patrick R.; Sherwood, Chet C.

    2012-01-01

    We examined the distribution of neurons immunoreactive for neuropeptide Y (NPY) in the posterior part of the superior temporal cortex (Brodmann's area 22 or area Tpt) of humans and nonhuman haplorrhine primates. NPY has been implicated in learning and memory and the density of NPY-expressing cortical neurons and axons is reduced in depression, bipolar disorder, schizophrenia, and Alzheimer's disease. Due to the role that NPY plays in both cognition and neurodegenerative diseases, we tested the hypothesis that the density of cortical and interstitial neurons expressing NPY was increased in humans relative to other primate species. The study sample included great apes (chimpanzee and gorilla), Old World monkeys (pigtailed macaque, moor macaque, and baboon) and New World monkeys (squirrel monkey and capuchin). Stereologic methods were used to estimate the density of NPY-immunoreactive (-ir) neurons in layers I-VI of area Tpt and the subjacent white matter. Adjacent Nissl-stained sections were used to calculate local densities of all neurons. The ratio of NPY-ir neurons to total neurons within area Tpt and the total density of NPY-ir neurons within the white matter were compared among species. Overall, NPY-ir neurons represented only an average of 0.006% of the total neuron population. While there were significant differences among species, phylogenetic trends in NPY-ir neuron distributions were not observed and humans did not differ from other primates. However, variation among species warrants further investigation into the distribution of this neuromodulator system. PMID:23042407

  20. Surface-based atlases of cerebellar cortex in the human, macaque, and mouse

    Science.gov (United States)

    Van Essen, David C.

    2002-01-01

    This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).

  1. Localization of brain activation by umami taste in humans.

    Science.gov (United States)

    Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori

    2011-08-11

    There are no credible data to support the notion that individual taste qualities have dedicated pathways leading from the tongue to the end of the pathway in the brain. Moreover, the insular cortex is activated not only by taste but also by non-taste information from oral stimuli. These responses are invariably excitatory, and it is difficult to determine whether they are sensory, motor, or proprioceptive in origin. Furthermore, umami is a more unfamiliar and complex taste than other basic tastes. Considering these issues, it may be effective to minimize somatosensory stimuli, oral movement, and psychological effects in a neuroimaging study to elicit cerebral activity by pure umami on the human tongue. For this purpose, we developed an original taste delivery system for functional magnetic resonance imaging (fMRI) studies for umami. Then, we compared the results produced by two authorized models, namely, the block design model and event-related design model, to decide the appropriate model for detecting activation by umami. Activation by the umami taste was well localized in the insular cortex using our new system and block design model analysis. The peaks of the activated areas in the middle insular cortex by umami were very close to another prototypical taste quality (salty). Although we have to carefully interpret the perceiving intensities and brain activations by taste from different sessions, this study design might be effective for detecting the accession area in the cortex of pure umami taste on the tongue. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Visual Prediction Error Spreads Across Object Features in Human Visual Cortex.

    Science.gov (United States)

    Jiang, Jiefeng; Summerfield, Christopher; Egner, Tobias

    2016-12-14

    Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might "spread" from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of

  3. Non-uniform phase sensitivity in spatial frequency maps of the human visual cortex.

    Science.gov (United States)

    Farivar, Reza; Clavagnier, Simon; Hansen, Bruce C; Thompson, Ben; Hess, Robert F

    2017-02-15

    Just as a portrait painting can come from a collection of coarse and fine details, natural vision can be decomposed into coarse and fine components. Previous studies have shown that the early visual areas in the brain represent these components in a map-like fashion. Other studies have shown that these same visual areas can be sensitive to how coarse and fine features line up in space. We found that the brain actually jointly represents both the scale of the feature (fine, medium, or coarse) and the alignment of these features in space. The results suggest that the visual cortex has an optimized representation particularly for the alignment of fine details, which are crucial in understanding the visual scene. Complex natural scenes can be decomposed into their oriented spatial frequency (SF) and phase relationships, both of which are represented locally at the earliest stages of cortical visual processing. The SF preference map in the human cortex, obtained using synthetic stimuli, is orderly and correlates strongly with eccentricity. In addition, early visual areas show sensitivity to the phase information that describes the relationship between SFs and thereby dictates the structure of the image. Taken together, two possibilities arise for the joint representation of SF and phase: either the entirety of the cortical SF map is uniformly sensitive to phase, or a particular set of SFs is selectively phase sensitive - for example, greater phase sensitivity for higher SFs that define fine-scale edges in a complex scene. To test between these two possibilities, we constructed a novel continuous natural scene video whereby phase information was maintained in one SF band but scrambled elsewhere. By shifting the central frequency of the phase-aligned band in time, we mapped the phase-sensitive SF preference of the visual cortex. Using functional magnetic resonance imaging, we found that phase sensitivity in early visual areas is biased toward higher SFs. Compared to a SF

  4. Multi-template analysis of human perirhinal cortex in brain MRI: Explicitly accounting for anatomical variability

    Science.gov (United States)

    Xie, Long; Pluta, John B.; Das, Sandhitsu R.; Wisse, Laura E.M.; Wang, Hongzhi; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Manjón, José V.; Wolk, David A.; Yushkevich, Paul A.

    2016-01-01

    Rational The human perirhinal cortex (PRC) plays critical roles in episodic and semantic memory and visual perception. The PRC consists of Brodmann areas 35 and 36 (BA35, BA36). In Alzheimer's disease (AD), BA35 is the first cortical site affected by neurofibrillary tangle pathology, which is closely linked to neural injury in AD. Large anatomical variability, manifested in the form of different cortical folding and branching patterns, makes it difficult to segment the PRC in MRI scans. Pathology studies have found that in ~97% of specimens, the PRC falls into one of three discrete anatomical variants. However, current methods for PRC segmentation and morphometry in MRI are based on single-template approaches, which may not be able to accurately model these discrete variants Methods A multi-template analysis pipeline that explicitly accounts for anatomical variability is used to automatically label the PRC and measure its thickness in T2-weighted MRI scans. The pipeline uses multi-atlas segmentation to automatically label medial temporal lobe cortices including entorhinal cortex, PRC and the parahippocampal cortex. Pairwise registration between label maps and clustering based on residual dissimilarity after registration are used to construct separate templates for the anatomical variants of the PRC. An optimal path of deformations linking these templates is used to establish correspondences between all the subjects. Experimental evaluation focuses on the ability of single-template and multi-template analyses to detect differences in the thickness of medial temporal lobe cortices between patients with amnestic mild cognitive impairment (aMCI, n=41) and age-matched controls (n=44). Results The proposed technique is able to generate templates that recover the three dominant discrete variants of PRC and establish more meaningful correspondences between subjects than a single-template approach. The largest reduction in thickness associated with aMCI, in absolute terms

  5. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Alva Engell

    Full Text Available Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency, followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  6. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Science.gov (United States)

    Engell, Alva; Junghöfer, Markus; Stein, Alwina; Lau, Pia; Wunderlich, Robert; Wollbrink, Andreas; Pantev, Christo

    2016-01-01

    Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  7. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex.

    Directory of Open Access Journals (Sweden)

    Jeremy D W Greenlee

    Full Text Available The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents pitch perturbations in their voice auditory feedback (speaking task. ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP and event-related band power (ERBP responses, primarily in the high gamma (70-150 Hz range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG. The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.

  8. Dissociation in human prefrontal cortex of affective influences on working memory-related activity.

    Science.gov (United States)

    Perlstein, William M; Elbert, Thomas; Stenger, V Andrew

    2002-02-05

    Although neural activity associated with emotion is becoming better understood, the influence of affective parameters on brain activity reflecting cognitive functioning in humans remains poorly characterized. We examined affective influences on working memory (WM) and tested the hypotheses that (i) dorsolateral prefrontal cortex (DLPFC) activity reflecting WM is influenced by the emotion-evoking qualities of task-relevant stimuli, but only when brought "on-line" by task demands, and (ii) DLPFC and orbitofrontal cortex (OFC) activities are inversely related as a function of emotional valence. Participants performed two tasks while event-related functional MRI measured brain activity; one task required active maintenance of stimulus representations in WM, and the other task required target detection responses with no demand for WM. Stimuli were standardized emotional (pleasant and unpleasant) and neutral pictures. Emotional stimuli differentially influenced DPFC and OFC activity during WM; DLPFC was influenced by emotional valence, enhanced by pleasant and reduced by unpleasant, compared to neutral stimuli, only when task conditions required WM. OFC was valence-sensitive during both tasks, greater to arousing than neutral stimuli when WM demand was low and in inverse relationship to DLPFC with high WM demand. Further, DLPFC and OFC activities are inversely related with respect to emotional valence during the WM task. The results are consistent with the hypothesis that the intrinsic valence of task-relevant stimuli maintained in WM modulates DLPFC activity but only when the DLPFC is required for task demands. Findings suggest a conceptualization of DLPFC and its involvement in WM that takes into account a role for affective parameters.

  9. Broadened population-level frequency tuning in human auditory cortex of portable music player users.

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    Full Text Available Nowadays, many people use portable players to enrich their daily life with enjoyable music. However, in noisy environments, the player volume is often set to extremely high levels in order to drown out the intense ambient noise and satisfy the appetite for music. Extensive and inappropriate usage of portable music players might cause subtle damages in the auditory system, which are not behaviorally detectable in an early stage of the hearing impairment progress. Here, by means of magnetoencephalography, we objectively examined detrimental effects of portable music player misusage on the population-level frequency tuning in the human auditory cortex. We compared two groups of young people: one group had listened to music with portable music players intensively for a long period of time, while the other group had not. Both groups performed equally and normally in standard audiological examinations (pure tone audiogram, speech test, and hearing-in-noise test. However, the objective magnetoencephalographic data demonstrated that the population-level frequency tuning in the auditory cortex of the portable music player users was significantly broadened compared to the non-users, when attention was distracted from the auditory modality; this group difference vanished when attention was directed to the auditory modality. Our conclusion is that extensive and inadequate usage of portable music players could cause subtle damages, which standard behavioral audiometric measures fail to detect in an early stage. However, these damages could lead to future irreversible hearing disorders, which would have a huge negative impact on the quality of life of those affected, and the society as a whole.

  10. Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex

    Directory of Open Access Journals (Sweden)

    Caitlin R Siu

    2015-04-01

    Full Text Available Traditionally myelin is viewed as insulation around axons however more recent studies have shown it plays an important role in plasticity, axonal metabolism and neuroimmune signalling. Myelin is a complex multi-protein structure composed of hundreds of proteins, with Myelin Basic Protein (MBP being the most studied. MBP has two families: Classic-MBP that is necessary for activity driven compaction of myelin around axons, and Golli-MBP that is found in neurons, oligodendrocytes, and T cells, and has been called a 'molecular link' between the nervous and immune systems. In visual cortex myelin proteins interact with immune processes to affect experience-dependent plasticity. We studied myelin in human visual cortex using Western blotting to quantify Classic- and Golli-MBP expression in post-mortem tissue samples ranging in age from 20 days to 80 years. We found that Classic- and Golli-MBP have different patterns of change across the lifespan: Classic-MBP gradually increases to 42 years and then declines into aging; Golli-MBP has changes that are coincident with milestones in visual system sensitive period, before gradually increasing into aging. There are 3 stages in the balance between Classic- and Golli-MBP expression, with Golli-MBP dominating early, then shifting to Classic-MBP, and back to Golli-MBP in aging. Also Golli-MBP has a wave of high inter-individual variability during childhood. These results about cortical MBP expression are timely because they compliment recent advances in MRI techniques that produce high resolution maps of cortical myelin in normal and diseased brain. In addition the unique pattern of Golli-MBP expression across the lifespan suggests that it supports high levels of neuroimmune interaction in cortical development and in aging.

  11. Gustatory and olfactory responses to stimulation of the human insula.

    Science.gov (United States)

    Mazzola, Laure; Royet, Jean-Pierre; Catenoix, Hélène; Montavont, Alexandra; Isnard, Jean; Mauguière, François

    2017-09-01

    Despite numerous studies suggesting the role of insular cortex in the processing of gustatory and olfactory inputs, the exact location of olfactogustatory representation in the insula remains controversial. Here we provide a functional mapping of olfactory-gustatory responses to stimulation of the human insular cortex. We reviewed 651 electrical stimulations of the insula that were performed in 221 patients, using stereotactically implanted depth electrodes, during the presurgical evaluation of drug-refractory epilepsy. Gustatory sensations were evoked in 15 (2.7%) of the 550 stimulations that elicited a clinical response. They were exclusively obtained after stimulation of a relatively delimited zone of insula, located in its mid-dorsal part (posterior short gyrus). Six olfactory sensations (1.1%) could be obtained during stimulations of an insular region that partially overlapped with the gustatory representation. Our study provides a functional mapping of gustatory representation in the insular posterior short gyrus and the first detailed description of olfactory sensations obtained by direct stimulation of mid-dorsal insula. Our data also show a spatial overlap between gustatory, olfactory, and oral somatosensory representation in the mid-dorsal insula, and suggest that this part of the insula may be an integrated oral sensory region that plays a key role in flavor perception. It also indicates that dysfunction in this region should be considered during the evaluation of gustatory and olfactory epileptic seizures. Ann Neurol 2017;82:360-370. © 2017 American Neurological Association.

  12. Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan.

    Science.gov (United States)

    Siu, Caitlin R; Beshara, Simon P; Jones, David G; Murphy, Kathryn M

    2017-06-21

    Traditionally, human primary visual cortex (V1) has been thought to mature within the first few years of life, based on anatomical studies of synapse formation, and establishment of intracortical and intercortical connections. Human vision, however, develops well beyond the first few years. Previously, we found prolonged development of some GABAergic proteins in human V1 (Pinto et al., 2010). Yet as >80% of synapses in V1 are excitatory, it remains unanswered whether the majority of synapses regulating experience-dependent plasticity and receptive field properties develop late, like their inhibitory counterparts. To address this question, we used Western blotting of postmortem tissue from human V1 (12 female, 18 male) covering a range of ages. Then we quantified a set of postsynaptic glutamatergic proteins (PSD-95, GluA2, GluN1, GluN2A, GluN2B), calculated indices for functional pairs that are developmentally regulated (GluA2:GluN1; GluN2A:GluN2B), and determined interindividual variability. We found early loss of GluN1, prolonged development of PSD-95 and GluA2 into late childhood, protracted development of GluN2A until ∼40 years, and dramatic loss of GluN2A in aging. The GluA2:GluN1 index switched at ∼1 year, but the GluN2A:GluN2B index continued to shift until ∼40 year before changing back to GluN2B in aging. We also identified young childhood as a stage of heightened interindividual variability. The changes show that human V1 develops gradually through a series of five orchestrated stages, making it likely that V1 participates in visual development and plasticity across the lifespan. SIGNIFICANCE STATEMENT Anatomical structure of human V1 appears to mature early, but vision changes across the lifespan. This discrepancy has fostered two hypotheses: either other aspects of V1 continue changing, or later changes in visual perception depend on extrastriate areas. Previously, we showed that some GABAergic synaptic proteins change across the lifespan, but most

  13. Comparison of (/sup 125/I)iodolysergic acid diethylamide binding in human frontal cortex and platelet tissue

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.M.; Kent, A.

    1989-07-01

    The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative (125I)iodolysergic acid diethylamide ((125I)iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, (125I)iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific (125I)iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using (3H)ketanserin. However, (125I)iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than (3H)ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, (125I)iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by (125I)iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of (125I)iodoLSD and (3H)ketanserin raises a question about the absolute nature of this receptor.

  14. Aging Affects Adaptation to Sound-Level Statistics in Human Auditory Cortex.

    Science.gov (United States)

    Herrmann, Björn; Maess, Burkhard; Johnsrude, Ingrid S

    2018-01-22

    Optimal perception requires efficient and adaptive neural processing of sensory input. Neurons in nonhuman mammals adapt to the statistical properties of acoustic feature distributions such that they become sensitive to sounds that are most likely to occur in the environment. However, whether human auditory responses adapt to stimulus statistical distributions and how aging affects adaptation to stimulus statistics is unknown. We used magnetoencephalography to study how exposure to different distributions of sound levels affects adaptation in auditory cortex of younger (mean: 25 years; N=19) and older (mean: 64 years; N=20) adults (male and female). Participants passively listened to two sound-level distributions with different modes (either 15 or 45 dB sensation level). In a control block with long inter-stimulus intervals, allowing neural populations to recover from adaptation, neural response magnitudes were similar between younger and older adults. Critically, both age groups demonstrated adaptation to sound-level stimulus statistics, but adaptation was altered for older compared to younger people: in the older group, neural responses continued to be sensitive to sound level under conditions where responses were fully adapted in the younger group. The lack of full adaptation to the statistics of the sensory environment may be a physiological mechanism underlying the known difficulty older adults have with filtering out irrelevant sensory information.Significance statementBehavior requires efficient processing of acoustic stimulation. Animal work suggests that neurons accomplish efficient processing by adjusting their response sensitivity depending on statistical properties of the acoustic environment. Little is known about the extent to which this adaptation to stimulus statistics generalizes to humans, particularly to older humans. We used magnetoencephalography to investigate how aging influences adaptation to sound-level statistics. Listeners were presented

  15. Experience Shapes the Development of Neural Substrates of Face Processing in Human Ventral Temporal Cortex.

    Science.gov (United States)

    Golarai, Golijeh; Liberman, Alina; Grill-Spector, Kalanit

    2017-02-01

    In adult humans, the ventral temporal cortex (VTC) represents faces in a reproducible topology. However, it is unknown what role visual experience plays in the development of this topology. Using functional magnetic resonance imaging in children and adults, we found a sequential development, in which the topology of face-selective activations across the VTC was matured by age 7, but the spatial extent and degree of face selectivity continued to develop past age 7 into adulthood. Importantly, own- and other-age faces were differentially represented, both in the distributed multivoxel patterns across the VTC, and also in the magnitude of responses of face-selective regions. These results provide strong evidence that experience shapes cortical representations of faces during development from childhood to adulthood. Our findings have important implications for the role of experience and age in shaping the neural substrates of face processing in the human VTC. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Sensitivity to an Illusion of Sound Location in Human Auditory Cortex.

    Science.gov (United States)

    Higgins, Nathan C; McLaughlin, Susan A; Da Costa, Sandra; Stecker, G Christopher

    2017-01-01

    Human listeners place greater weight on the beginning of a sound compared to the middle or end when determining sound location, creating an auditory illusion known as the Franssen effect. Here, we exploited that effect to test whether human auditory cortex (AC) represents the physical vs. perceived spatial features of a sound. We used functional magnetic resonance imaging (fMRI) to measure AC responses to sounds that varied in perceived location due to interaural level differences (ILD) applied to sound onsets or to the full sound duration. Analysis of hemodynamic responses in AC revealed sensitivity to ILD in both full-cue (veridical) and onset-only (illusory) lateralized stimuli. Classification analysis revealed regional differences in the sensitivity to onset-only ILDs, where better classification was observed in posterior compared to primary AC. That is, restricting the ILD to sound onset-which alters the physical but not the perceptual nature of the spatial cue-did not eliminate cortical sensitivity to that cue. These results suggest that perceptual representations of auditory space emerge or are refined in higher-order AC regions, supporting the stable perception of auditory space in noisy or reverberant environments and forming the basis of illusions such as the Franssen effect.

  17. Sensitivity to an Illusion of Sound Location in Human Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Nathan C. Higgins

    2017-05-01

    Full Text Available Human listeners place greater weight on the beginning of a sound compared to the middle or end when determining sound location, creating an auditory illusion known as the Franssen effect. Here, we exploited that effect to test whether human auditory cortex (AC represents the physical vs. perceived spatial features of a sound. We used functional magnetic resonance imaging (fMRI to measure AC responses to sounds that varied in perceived location due to interaural level differences (ILD applied to sound onsets or to the full sound duration. Analysis of hemodynamic responses in AC revealed sensitivity to ILD in both full-cue (veridical and onset-only (illusory lateralized stimuli. Classification analysis revealed regional differences in the sensitivity to onset-only ILDs, where better classification was observed in posterior compared to primary AC. That is, restricting the ILD to sound onset—which alters the physical but not the perceptual nature of the spatial cue—did not eliminate cortical sensitivity to that cue. These results suggest that perceptual representations of auditory space emerge or are refined in higher-order AC regions, supporting the stable perception of auditory space in noisy or reverberant environments and forming the basis of illusions such as the Franssen effect.

  18. Activations of human auditory cortex to phonemic and nonphonemic vowels during discrimination and memory tasks.

    Science.gov (United States)

    Harinen, Kirsi; Rinne, Teemu

    2013-08-15

    We used fMRI to investigate activations within human auditory cortex (AC) to vowels during vowel discrimination, vowel (categorical n-back) memory, and visual tasks. Based on our previous studies, we hypothesized that the vowel discrimination task would be associated with increased activations in the anterior superior temporal gyrus (STG), while the vowel memory task would enhance activations in the posterior STG and inferior parietal lobule (IPL). In particular, we tested the hypothesis that activations in the IPL during vowel memory tasks are associated with categorical processing. Namely, activations due to categorical processing should be higher during tasks performed on nonphonemic (hard to categorize) than on phonemic (easy to categorize) vowels. As expected, we found distinct activation patterns during vowel discrimination and vowel memory tasks. Further, these task-dependent activations were different during tasks performed on phonemic or nonphonemic vowels. However, activations in the IPL associated with the vowel memory task were not stronger during nonphonemic than phonemic vowel blocks. Together these results demonstrate that activations in human AC to vowels depend on both the requirements of the behavioral task and the phonemic status of the vowels. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Controllability modulates the anticipatory response in the human ventromedial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Deborah Lucille Kerr

    2012-12-01

    Full Text Available Research has consistently shown that control is critical to psychological functioning, with perceived lack of control considered to play a crucial role in the manifestation of symptoms in psychiatric disorders. In a model of behavioral control based on nonhuman animal work, Maier and colleagues posited that the presence of control activates areas of the ventromedial prefrontal cortex (vmPFC, which in turn inhibit the normative stress response in the dorsal raphe nucleus and amygdala. To test Maier’s model in humans, we investigated the effects of control over potent aversive stimuli by presenting video clips of snakes to 21 snake phobics who were otherwise healthy with no comorbid psychopathologies. Based on prior research documenting that disrupted neural processing during the anticipation of adverse events can be influenced by different forms of cognitive processing such as perceptions of control, analyses focused on the anticipatory activity preceding the videos. We found that phobics exhibited greater vmPFC activity during the anticipation of snake videos when they had control over whether the videos were presented as compared to when they had no control over the presentation of the videos. In addition, observed functional connectivity between the vmPFC and the amygdala is consistent with previous work documenting vmPFC inhibition of the amygdala. Our results provide evidence to support the extension of Maier’s model of behavioral control to include anticipatory function in humans.

  20. Cellular and synaptic localization of EAAT2a in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Marcello eMelone

    2011-01-01

    Full Text Available We used light and electron microscopic immunocytochemical techniques to analyze the distribution, cellular and synaptic localization of EAAT2, the main glutamate transporter, in normal human neocortex. EAAT2a immunoreactivity was in all layers and consisted of small neuropilar puncta and rare cells. In white matter EAAT2a+ cells were numerous. Electron microscopic studies showed that in gray matter ∼77% of immunoreactive elements were astrocytic processes, ∼14% axon terminals, ∼2.8% dendrites, whereas ∼5% were unidentifiable. In white matter, ∼81% were astrocytic processes, ∼17% were myelinated axons and ∼2.0% were unidentified. EAAT2a immunoreactivity was never in microglial cells and oligodendrocytes. Pre-embedding electron microscopy showed that ∼67% of EAAT2a expressed at (or in the vicinity of asymmetric synapses was in astrocytes, ∼17% in axon terminals, while ∼13% was both in astrocytes and in axons. Post-embeddeding electron microscopy studies showed that in astrocytic processes contacting asymmetric synapses and in axon terminals, gold particle density was ∼25.1 and ∼2.8 particles/µm2, respectively, and was concentrated in a membrane region extending for ∼300 nm from the active zone edge. Besides representing the first detailed description of EAAT2a in human cerebral cortex, these findings may contribute to understanding its role in the pathophysiology of neuropsychiatric diseases.

  1. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  2. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    Science.gov (United States)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.

  3. Learning new color names produces rapid increase in gray matter in the intact adult human cortex.

    Science.gov (United States)

    Kwok, Veronica; Niu, Zhendong; Kay, Paul; Zhou, Ke; Mo, Lei; Jin, Zhen; So, Kwok-Fai; Tan, Li Hai

    2011-04-19

    The human brain has been shown to exhibit changes in the volume and density of gray matter as a result of training over periods of several weeks or longer. We show that these changes can be induced much faster by using a training method that is claimed to simulate the rapid learning of word meanings by children. Using whole-brain magnetic resonance imaging (MRI) we show that learning newly defined and named subcategories of the universal categories green and blue in a period of 2 h increases the volume of gray matter in V2/3 of the left visual cortex, a region known to mediate color vision. This pattern of findings demonstrates that the anatomical structure of the adult human brain can change very quickly, specifically during the acquisition of new, named categories. Also, prior behavioral and neuroimaging research has shown that differences between languages in the boundaries of named color categories influence the categorical perception of color, as assessed by judgments of relative similarity, by response time in alternative forced-choice tasks, and by visual search. Moreover, further behavioral studies (visual search) and brain imaging studies have suggested strongly that the categorical effect of language on color processing is left-lateralized, i.e., mediated by activity in the left cerebral hemisphere in adults (hence "lateralized Whorfian" effects). The present results appear to provide a structural basis in the brain for the behavioral and neurophysiologically observed indices of these Whorfian effects on color processing.

  4. Inter- and intra-individual covariations of hemodynamic and oscillatory gamma responses in the human cortex

    Directory of Open Access Journals (Sweden)

    Tino Zaehle

    2009-06-01

    Full Text Available The time course of local field potentials displaying typical discharge frequencies in the gamma frequency range highly correlates with the BOLD signal in response to rotating checkerboard stimuli in animals. In humans, oscillatory gamma-band responses (GBRs show strong inter-individual variations in frequency and amplitude but considerable intra-individual reliability indicating that individual gamma activity reflects a personal trait. While the functional role of these GBRs is still debated, investigations combining EEG–fMRI measurements provide a tool to obtain further insights into the underlying functional architecture of the human brain and will shed light onto the understanding of the dynamic relation between the BOLD signal and the properties of the electrical activity recorded on the scalp. We investigated the relation between the hemodynamic response and evoked gamma-band response (eGBR to visual stimulation. We tested the hypothesis that the amplitude of human eGBRs and BOLD responses covary intra-individually as a function of stimulation as well as inter-individually as a function of gamma-trait. 17 participants performed visual discrimination tasks during separate EEG and fMRI recordings. Results revealed that visual stimuli that evoked high GBRs also elicited strong BOLD responses in the human V1/V2 complex. Furthermore, inter-individual variations of BOLD responses to visual stimuli in the bilateral primary (Area 17 and secondary (Area V5/MT visual cortex and the right hippocampal formation were correlated with the individual gamma-trait of the subjects. The present study further supports the notion that neural oscillations in the gamma frequency range are involved in the cascade of neural processes that underlie the hemodynamic responses measured with fMRI.

  5. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  6. Augmenting LTP-Like Plasticity in Human Motor Cortex by Spaced Paired Associative Stimulation.

    Science.gov (United States)

    Müller-Dahlhaus, Florian; Lücke, Caroline; Lu, Ming-Kuei; Arai, Noritoshi; Fuhl, Anna; Herrmann, Eva; Ziemann, Ulf

    2015-01-01

    Paired associative stimulation (PASLTP) of the human primary motor cortex (M1) can induce LTP-like plasticity by increasing corticospinal excitability beyond the stimulation period. Previous studies showed that two consecutive PASLTP protocols interact by homeostatic metaplasticity, but animal experiments provided evidence that LTP can be augmented by repeated stimulation protocols spaced by ~30 min. Here we tested in twelve healthy selected PASLTP responders the possibility that LTP-like plasticity can be augmented in the human M1 by systematically varying the interval between two consecutive PASLTP protocols. The first PASLTP protocol (PAS1) induced strong LTP-like plasticity lasting for 30-60 min. The effect of a second identical PASLTP protocol (PAS2) critically depended on the time between PAS1 and PAS2. At 10 min, PAS2 prolonged the PAS1-induced LTP-like plasticity. At 30 min, PAS2 augmented the LTP-like plasticity induced by PAS1, by increasing both magnitude and duration. At 60 min and 180 min, PAS2 had no effect on corticospinal excitability. The cumulative LTP-like plasticity after PAS1 and PAS2 at 30 min exceeded significantly the effect of PAS1 alone, and the cumulative PAS1 and PAS2 effects at 60 min and 180 min. In summary, consecutive PASLTP protocols interact in human M1 in a time-dependent manner. If spaced by 30 min, two consecutive PASLTP sessions can augment LTP-like plasticity in human M1. Findings may inspire further research on optimized therapeutic applications of non-invasive brain stimulation in neurological and psychiatric diseases.

  7. Contrasting Effects of Medial and Lateral Orbitofrontal Cortex Lesions on Credit Assignment and Decision-Making in Humans.

    Science.gov (United States)

    Noonan, MaryAnn P; Chau, Bolton K H; Rushworth, Matthew F S; Fellows, Lesley K

    2017-07-19

    The orbitofrontal cortex is critical for goal-directed behavior. Recent work in macaques has suggested the lateral orbitofrontal cortex (lOFC) is relatively more concerned with assignment of credit for rewards to particular choices during value-guided learning, whereas the medial orbitofrontal cortex (often referred to as ventromedial prefrontal cortex in humans; vmPFC/mOFC) is involved in constraining the decision to the relevant options. We examined whether people with damage restricted to subregions of prefrontal cortex showed the patterns of impairment observed in prior investigations of the effects of lesions to homologous regions in macaques. Groups of patients with either lOFC (predominantly right hemisphere), mOFC/vmPFC, or dorsomedial prefrontal (DMF), and a comparison group of healthy age- and education-matched controls performed a probabilistic 3-choice decision-making task. We report anatomically specific patterns of impairment. We found that credit assignment, as indexed by the normal influence of contingent relationships between choice and reward, is reduced in lOFC patients compared with Controls and mOFC/vmPFC patients. Moreover, the effects of reward contingency on choice were similar for patients with lesions in DMF or mOFC/vmPFC, compared with Controls. By contrast, mOFC/vmPFC-lesioned patients made more stochastic choices than Controls when the decision was framed by valuable distracting alternatives, suggesting that value comparisons were no longer independent of irrelevant options. Once again, there was evidence of regional specialization: patients with lOFC lesions were unimpaired relative to Controls. As in macaques, human lOFC and mOFC/vmPFC are necessary for contingent learning and value-guided decision-making, respectively.SIGNIFICANCE STATEMENT The lateral and medial regions of the orbitofrontal cortex are cytoarchitectonically distinct and have different anatomical connections. Previous investigations in macaques have shown these

  8. Canine and human visual cortex intact and responsive despite early retinal blindness from RPE65 mutation.

    Directory of Open Access Journals (Sweden)

    Geoffrey K Aguirre

    2007-06-01

    Full Text Available RPE65 is an essential molecule in the retinoid-visual cycle, and RPE65 gene mutations cause the congenital human blindness known as Leber congenital amaurosis (LCA. Somatic gene therapy delivered to the retina of blind dogs with an RPE65 mutation dramatically restores retinal physiology and has sparked international interest in human treatment trials for this incurable disease. An unanswered question is how the visual cortex responds after prolonged sensory deprivation from retinal dysfunction. We therefore studied the cortex of RPE65-mutant dogs before and after retinal gene therapy. Then, we inquired whether there is visual pathway integrity and responsivity in adult humans with LCA due to RPE65 mutations (RPE65-LCA.RPE65-mutant dogs were studied with fMRI. Prior to therapy, retinal and subcortical responses to light were markedly diminished, and there were minimal cortical responses within the primary visual areas of the lateral gyrus (activation amplitude mean +/- standard deviation [SD] = 0.07% +/- 0.06% and volume = 1.3 +/- 0.6 cm(3. Following therapy, retinal and subcortical response restoration was accompanied by increased amplitude (0.18% +/- 0.06% and volume (8.2 +/- 0.8 cm(3 of activation within the lateral gyrus (p < 0.005 for both. Cortical recovery occurred rapidly (within a month of treatment and was persistent (as long as 2.5 y after treatment. Recovery was present even when treatment was provided as late as 1-4 y of age. Human RPE65-LCA patients (ages 18-23 y were studied with structural magnetic resonance imaging. Optic nerve diameter (3.2 +/- 0.5 mm was within the normal range (3.2 +/- 0.3 mm, and occipital cortical white matter density as judged by voxel-based morphometry was slightly but significantly altered (1.3 SD below control average, p = 0.005. Functional magnetic resonance imaging in human RPE65-LCA patients revealed cortical responses with a markedly diminished activation volume (8.8 +/- 1.2 cm(3 compared to controls

  9. The biogeography of threatened insular iguanas and opportunities for invasive vertebrate management

    Science.gov (United States)

    Tershy, Bernie R.; Newton, Kelly M.; Spatz, Dena R.; Swinnerton, Kirsty; Iverson, John B.; Fisher, Robert N.; Harlow, Peter S.; Holmes, Nick D.; Croll, Donald A.; Iverson, J.B.; Grant, T. D.; Knapp, C. R.; Pasachnik, S. A.

    2016-01-01

    Iguanas are a particularly threatened group of reptiles, with 61% of species at risk of extinction. Primary threats to iguanas include habitat loss, direct and indirect impacts by invasive vertebrates, overexploitation, and human disturbance. As conspicuous, charismatic vertebrates, iguanas also represent excellent flagships for biodiversity conservation. To assist planning for invasive vertebrate management and thus benefit threatened iguana recovery, we identified all islands with known extant or extirpated populations of Critically Endangered and Endangered insular iguana taxa as recognized by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. For each island, we determined total area, sovereignty, the presence of invasive alien vertebrates, and human population. For the 23 taxa of threatened insular iguanas we identified 230 populations, of which iguanas were extant on 185 islands and extirpated from 45 islands. Twenty-one iguana taxa (91% of all threatened insular iguana taxa) occurred on at least one island with invasive vertebrates present; 16 taxa had 100% of their population(s) on islands with invasive vertebrates present. Rodents, cats, ungulates, and dogs were the most common invasive vertebrates. We discuss biosecurity, eradication, and control of invasive vertebrates to benefit iguana recovery: (1) on islands already free of invasive vertebrates; (2) on islands with high iguana endemicity; and (3) for species and subspecies with small total populations occurring across multiple small islands. Our analyses provide an important first step toward understanding how invasive vertebrate management can be planned effectively to benefit threatened insular iguanas.

  10. Selective increases of AMPA, NMDA and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics

    Directory of Open Access Journals (Sweden)

    Zhe eJin

    2014-01-01

    Full Text Available Glutamate is the main excitatory transmitter in the human brain. Drugs that affect the glutamatergic signaling will alter neuronal excitability. Ethanol inhibits glutamate receptors. We examined the expression level of glutamate receptor subunit mRNAs in human post-mortem samples from alcoholics and compared the results to brain samples from control subjects. RNA from hippocampal dentate gyrus (HP-DG, orbitofrontal cortex (OFC, and dorso-lateral prefrontal cortex (DL-PFC samples from 21 controls and 19 individuals with chronic alcohol dependence were included in the study. Total RNA was assayed using quantitative RT-PCR. Out of the 16 glutamate receptor subunits, mRNAs encoding two AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-ylpropanoic acid receptor subunits GluA2 and GluA3; three kainate receptor subunits GluK2, GluK3 and GluK5 and five NMDA (N-methyl-D-aspartate receptor subunits GluN1, GluN2A, GluN2C, GluN2D and GluN3A were significantly increased in the HP-DG region in alcoholics. In the OFC, mRNA encoding the NMDA receptor subunit GluN3A was increased, whereas in the DL-PFC, no differences in mRNA levels were observed. Our laboratory has previously shown that the expression of genes encoding inhibitory GABA-A receptors is altered in the HP-DG and OFC of alcoholics (Jin et al., 2011. Whether the changes in one neurotransmitter system drives changes in the other or if they change independently is currently not known. The results demonstrate that excessive long-term alcohol consumption is associated with altered expression of genes encoding glutamate receptors in a brain region-specific manner. It is an intriguing possibility that genetic predisposition to alcoholism may contribute to these gene expression changes.

  11. Insular neural system controls decision-making in healthy and methamphetamine-treated rats

    Science.gov (United States)

    Mizoguchi, Hiroyuki; Katahira, Kentaro; Inutsuka, Ayumu; Fukumoto, Kazuya; Nakamura, Akihiro; Wang, Tian; Nagai, Taku; Sato, Jun; Sawada, Makoto; Ohira, Hideki; Yamanaka, Akihiro; Yamada, Kiyofumi

    2015-01-01

    Patients suffering from neuropsychiatric disorders such as substance-related and addictive disorders exhibit altered decision-making patterns, which may be associated with their behavioral abnormalities. However, the neuronal mechanisms underlying such impairments are largely unknown. Using a gambling test, we demonstrated that methamphetamine (METH)-treated rats chose a high-risk/high-reward option more frequently and assigned higher value to high returns than control rats, suggestive of changes in decision-making choice strategy. Immunohistochemical analysis following the gambling test revealed aberrant activation of the insular cortex (INS) and nucleus accumbens in METH-treated animals. Pharmacological studies, together with in vivo microdialysis, showed that the insular neural system played a crucial role in decision-making. Moreover, manipulation of INS activation using designer receptor exclusively activated by designer drug technology resulted in alterations to decision-making. Our findings suggest that the INS is a critical region involved in decision-making and that insular neural dysfunction results in risk-taking behaviors associated with altered decision-making. PMID:26150496

  12. Right insular damage decreases heartbeat awareness and alters cardio-visual effects on bodily self-consciousness.

    Science.gov (United States)

    Ronchi, Roberta; Bello-Ruiz, Javier; Lukowska, Marta; Herbelin, Bruno; Cabrilo, Ivan; Schaller, Karl; Blanke, Olaf

    2015-04-01

    Recent evidence suggests that multisensory integration of bodily signals involving exteroceptive and interoceptive information modulates bodily aspects of self-consciousness such as self-identification and self-location. In the so-called Full Body Illusion subjects watch a virtual body being stroked while they perceive tactile stimulation on their own body inducing illusory self-identification with the virtual body and a change in self-location towards the virtual body. In a related illusion, it has recently been shown that similar changes in self-identification and self-location can be observed when an interoceptive signal is used in association with visual stimulation of the virtual body (i.e., participants observe a virtual body illuminated in synchrony with their heartbeat). Although brain imaging and neuropsychological evidence suggest that the insular cortex is a core region for interoceptive processing (such as cardiac perception and awareness) as well as for self-consciousness, it is currently not known whether the insula mediates cardio-visual modulation of self-consciousness. Here we tested the involvement of insular cortex in heartbeat awareness and cardio-visual manipulation of bodily self-consciousness in a patient before and after resection of a selective right neoplastic insular lesion. Cardio-visual stimulation induced an abnormally enhanced state of bodily self-consciousness; in addition, cardio-visual manipulation was associated with an experienced loss of the spatial unity of the self (illusory bi-location and duplication of his body), not observed in healthy subjects. Heartbeat awareness was found to decrease after insular resection. Based on these data we propose that the insula mediates interoceptive awareness as well as cardio-visual effects on bodily self-consciousness and that insular processing of interoceptive signals is an important mechanism for the experienced unity of the self. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity.

    Science.gov (United States)

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2012-10-10

    Auditory cortical processing of complex meaningful sounds entails the transformation of sensory (tonotopic) representations of incoming acoustic waveforms into higher-level sound representations (e.g., their category). However, the precise neural mechanisms enabling such transformations remain largely unknown. In the present study, we use functional magnetic resonance imaging (fMRI) and natural sounds stimulation to examine these two levels of sound representation (and their relation) in the human auditory cortex. In a first experiment, we derive cortical maps of frequency preference (tonotopy) and selectivity (tuning width) by mathematical modeling of fMRI responses to natural sounds. The tuning width maps highlight a region of narrow tuning that follows the main axis of Heschl's gyrus and is flanked by regions of broader tuning. The narrowly tuned portion on Heschl's gyrus contains two mirror-symmetric frequency gradients, presumably defining two distinct primary auditory areas. In addition, our analysis indicates that spectral preference and selectivity (and their topographical organization) extend well beyond the primary regions and also cover higher-order and category-selective auditory regions. In particular, regions with preferential responses to human voice and speech occupy the low-frequency portions of the tonotopic map. We confirm this observation in a second experiment, where we find that speech/voice selective regions exhibit a response bias toward the low frequencies characteristic of human voice and speech, even when responding to simple tones. We propose that this frequency bias reflects the selective amplification of relevant and category-characteristic spectral bands, a useful processing step for transforming a sensory (tonotopic) sound image into higher level neural representations.

  14. Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Long Leonora E

    2012-07-01

    Full Text Available Abstract Background Endocannabinoids provide control over cortical neurotransmission. We investigated the developmental expression of key genes in the endocannabinoid system across human postnatal life and determined whether they correspond to the development of markers for inhibitory interneurons, which shape cortical development. We used microarray with qPCR validation and in situ hybridisation to quantify mRNA for the central endocannabinoid receptor CB1R, endocannabinoid synthetic enzymes (DAGLα for 2-arachidonylglycerol [2-AG] and NAPE-PLD for anandamide, and inactivating enzymes (MGL and ABHD6 for 2-AG and FAAH for anandamide in human dorsolateral prefrontal cortex (39 days - 49 years. Results CB1R mRNA decreases until adulthood, particularly in layer II, after peaking between neonates and toddlers. DAGLα mRNA expression is lowest in early life and adulthood, peaking between school age and young adulthood. MGL expression declines after peaking in infancy, while ABHD6 increases from neonatal age. NAPE-PLD and FAAH expression increase steadily after infancy, peaking in adulthood. Conclusions Stronger endocannabinoid regulation of presynaptic neurotransmission in both supragranular and infragranular cortical layers as indexed through higher CB1R mRNA may occur within the first few years of human life. After adolescence, higher mRNA levels of the anandamide synthetic and inactivating enzymes NAPE-PLD and FAAH suggest that a late developmental switch may occur where anandamide is more strongly regulated after adolescence than earlier in life. Thus, expression of key genes in the endocannabinoid system changes with maturation of cortical function.

  15. Fine-grained stimulus representations in body selective areas of human occipito-temporal cortex.

    Science.gov (United States)

    Caspari, Natalie; Popivanov, Ivo D; De Mazière, Patrick A; Vanduffel, Wim; Vogels, Rufin; Orban, Guy A; Jastorff, Jan

    2014-11-15

    Neurophysiological and functional imaging studies have investigated the representation of animate and inanimate stimulus classes in monkey inferior temporal (IT) and human occipito-temporal cortex (OTC). These studies proposed a distributed representation of stimulus categories across IT and OTC and at the same time highlighted category specific modules for the processing of bodies, faces and objects. Here, we investigated whether the stimulus representation within the extrastriate (EBA) and the fusiform (FBA) body areas differed from the representation across OTC. To address this question, we performed an event-related fMRI experiment, evaluating the pattern of activation elicited by 200 individual stimuli that had already been extensively tested in our earlier monkey imaging and single cell studies (Popivanov et al., 2012, 2014). The set contained achromatic images of headless monkey and human bodies, two sets of man-made objects, monkey and human faces, four-legged mammals, birds, fruits, and sculptures. The fMRI response patterns within EBA and FBA primarily distinguished bodies from non-body stimuli, with subtle differences between the areas. However, despite responding on average stronger to bodies than to other categories, classification performance for preferred and non-preferred categories was comparable. OTC primarily distinguished animate from inanimate stimuli. However, cluster analysis revealed a much more fine-grained representation with several homogeneous clusters consisting entirely of stimuli of individual categories. Overall, our data suggest that category representation varies with location within OTC. Nevertheless, body modules contain information to discriminate also non-preferred stimuli and show an increasing specificity in a posterior to anterior gradient. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Dual origins of measured phase-amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the human cortex.

    Science.gov (United States)

    Vaz, Alex P; Yaffe, Robert B; Wittig, John H; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Phase-amplitude coupling (PAC) is hypothesized to coordinate neural activity, but its role in successful memory formation in the human cortex is unknown. Measures of PAC are difficult to interpret, however. Both increases and decreases in PAC have been linked to memory encoding, and PAC may arise due to different neural mechanisms. Here, we use a waveform analysis to examine PAC in the human cortex as participants with intracranial electrodes performed a paired associates memory task. We found that successful memory formation exhibited significant decreases in left temporal lobe and prefrontal cortical PAC, and these two regions exhibited changes in PAC within different frequency bands. Two underlying neural mechanisms, nested oscillations and sharp waveforms, were responsible for the changes in these regions. Our data therefore suggest that decreases in measured cortical PAC during episodic memory reflect two distinct underlying mechanisms that are anatomically segregated in the human brain. Published by Elsevier Inc.

  17. [Morphological and laminar distribution of cholecystokinin-immunoreactive neurons in cortex of human inferior parietal lobe and their clinical significance].

    Science.gov (United States)

    Puskas, Laslo; Draganić-Gajić, Saveta; Malobabić, Slobodan; Puskas, Nela; Krivokuća, Dragan; Stanković, Gordana

    2008-01-01

    Cholecystocinine is a neuropeptide whose function in the cortex has not yet been clarified, although its relation with some psychic disorders has been noticed. Previous studies have not provided detailed data about types, or arrangement of neurons that contain those neuropeptide in the cortex of human inferior parietal lobe. The aim of this study was to examine precisely the morphology and typography of neurons containing cholecytocinine in the human cortex of inferior parietal lobule. There were five human brains on which we did the immunocystochemical research of the shape and laminar distribution of cholecystocinine immunoreactive neurons on serial sections of supramarginal gyrus and angular gyrus. The morphological analysis of cholecystocinine-immunoreactive neurons was done on frozen sections using avidin-biotin technique, by antibody to cholecystocinine diluted in the proportion 1:6000 using diamine-benzedine. Cholecystocinine immunoreactive neurons were found in the first three layers of the cortex of inferior parietal lobule, and their densest concentration was in the 2nd and 3rd layer. The following types of neurons were found: bipolar neurons, then its fusiform subtype, Cajal-Retzius neurons (in the 1st layer), reverse pyramidal (triangular) and unipolar neurons. The diameters of some types of neurons were from 15 to 35 microm, and the diameters of dendritic arborization were from 85-207 microm. A special emphasis is put on the finding of Cajal-Retzius neurons that are immunoreactive to cholecystocinine, which demands further research. Bearing in mind numerous clinical studies pointing out the role of cholecystokinine in the pathogenesis of schizophrenia, the presence of a great number of cholecystokinine immunoreactive neurons in the cortex of inferior parietal lobule suggests their role in the pathogenesis of schizophrenia.

  18. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    Science.gov (United States)

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  19. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  20. Pupil size directly modulates the feedforward response in human primary visual cortex independently of attention.

    Science.gov (United States)

    Bombeke, Klaas; Duthoo, Wout; Mueller, Sven C; Hopf, Jens-Max; Boehler, C Nico

    2016-02-15

    Controversy revolves around the question of whether psychological factors like attention and emotion can influence the initial feedforward response in primary visual cortex (V1). Although traditionally, the electrophysiological correlate of this response in humans (the C1 component) has been found to be unaltered by psychological influences, a number of recent studies have described attentional and emotional modulations. Yet, research into psychological effects on the feedforward V1 response has neglected possible direct contributions of concomitant pupil-size modulations, which are known to also occur under various conditions of attentional load and emotional state. Here we tested the hypothesis that such pupil-size differences themselves directly affect the feedforward V1 response. We report data from two complementary experiments, in which we used procedures that modulate pupil size without differences in attentional load or emotion while simultaneously recording pupil-size and EEG data. Our results confirm that pupil size indeed directly influences the feedforward V1 response, showing an inverse relationship between pupil size and early V1 activity. While it is unclear in how far this effect represents a functionally-relevant adaptation, it identifies pupil-size differences as an important modulating factor of the feedforward response of V1 and could hence represent a confounding variable in research investigating the neural influence of psychological factors on early visual processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The effect of precision and power grips on activations in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Patrik Alexander Wikman

    2015-10-01

    Full Text Available The neuroanatomical pathways interconnecting auditory and motor cortices play a key role in current models of human auditory cortex (AC. Evidently, auditory-motor interaction is important in speech and music production, but the significance of these cortical pathways in other auditory processing is not well known. We investigated the general effects of motor responding on AC activations to sounds during auditory and visual tasks. During all task blocks, subjects detected targets in the designated modality, reported the relative number of targets at the end of the block, and ignored the stimuli presented in the opposite modality. In each block, they were also instructed to respond to targets either using a precision grip, power grip, or to give no overt target responses. We found that motor responding strongly modulated AC activations. First, during both visual and auditory tasks, activations in widespread regions of AC decreased when subjects made precision and power grip responses to targets. Second, activations in AC were modulated by grip type during the auditory but not during the visual task. Further, the motor effects were distinct from the strong attention-related modulations in AC. These results are consistent with the idea that operations in AC are shaped by its connections with motor cortical regions.

  2. Limits on perceptual encoding can be predicted from known receptive field properties of human visual cortex.

    Science.gov (United States)

    Cohen, Michael A; Rhee, Juliana Y; Alvarez, George A

    2016-01-01

    Human cognition has a limited capacity that is often attributed to the brain having finite cognitive resources, but the nature of these resources is usually not specified. Here, we show evidence that perceptual interference between items can be predicted by known receptive field properties of the visual cortex, suggesting that competition within representational maps is an important source of the capacity limitations of visual processing. Across the visual hierarchy, receptive fields get larger and represent more complex, high-level features. Thus, when presented simultaneously, high-level items (e.g., faces) will often land within the same receptive fields, while low-level items (e.g., color patches) will often not. Using a perceptual task, we found long-range interference between high-level items, but only short-range interference for low-level items, with both types of interference being weaker across hemifields. Finally, we show that long-range interference between items appears to occur primarily during perceptual encoding and not during working memory maintenance. These results are naturally explained by the distribution of receptive fields and establish a link between perceptual capacity limits and the underlying neural architecture. (c) 2015 APA, all rights reserved).

  3. Human Cerebral Cortex Cajal-Retzius Neuron: Development, Structure and Function. A Golgi Study

    Directory of Open Access Journals (Sweden)

    Miguel eMarín-Padilla

    2015-02-01

    Full Text Available The development, morphology and possible functional activity of the Cajal-Retzius cell of the developing human cerebral cortex have been explored herein. The C-RC, of extracortical origin, is the essential neuron of the neocortex first lamina. It receives inputs from subcortical afferent fibers that reach the first lamina early in development. Although the origin and function of these original afferent fibers remain unknown, they target the first lamina sole neuron: the C-RC. The neuron’ orchestrates the arrival, size and stratification of all pyramidal neurons (from ependymal origin of the neocortex gray matter. Its axonic terminals spread radially and horizontally throughout the entire first lamina establishing contacts with the dendritic terminals of all gray matter pyramidal cells regardless of size, location and/or eventual functional roles. While the neuron axonic terminals spread radially and horizontally throughout the first lamina, the neuron’ bodies undergoes progressive developmental dilution and locating any of them in the adult brain become quite difficult. The neuron bodies are probably retained in the older regions of the developing neocortex while their axonic collaterals will spread throughout its more recent ones that, eventually, will represent the great majority of the brain surface. This will explain their bodies progressive dilution in the developing neocortex and, later, in the adult brain. Although quite difficult to locate the body of any of them, they have been described in the adult brain.

  4. Determinants of Global Color-Based Selection in Human Visual Cortex.

    Science.gov (United States)

    Bartsch, Mandy V; Boehler, Carsten N; Stoppel, Christian M; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Hopf, Jens-Max

    2015-09-01

    Feature attention operates in a spatially global way, with attended feature values being prioritized for selection outside the focus of attention. Accounts of global feature attention have emphasized feature competition as a determining factor. Here, we use magnetoencephalographic recordings in humans to test whether competition is critical for global feature selection to arise. Subjects performed a color/shape discrimination task in one visual field (VF), while irrelevant color probes were presented in the other unattended VF. Global effects of color attention were assessed by analyzing the response to the probe as a function of whether or not the probe's color was a target-defining color. We find that global color selection involves a sequence of modulations in extrastriate cortex, with an initial phase in higher tier areas (lateral occipital complex) followed by a later phase in lower tier retinotopic areas (V3/V4). Importantly, these modulations appeared with and without color competition in the focus of attention. Moreover, early parts of the modulation emerged for a task-relevant color not even present in the focus of attention. All modulations, however, were eliminated during simple onset-detection of the colored target. These results indicate that global color-based attention depends on target discrimination independent of feature competition in the focus of attention. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Dietary fat induces sustained reward response in the human brain without primary taste cortex discrimination

    Directory of Open Access Journals (Sweden)

    Hélène eTzieropoulos

    2013-02-01

    Full Text Available To disentangle taste from reward responses in the human gustatory cortex, we combined high density electro-encephalography with a gustometer delivering tastant puffs to the tip of the tongue. Stimuli were pure tastants (salt solutions at two concentrations, caloric emulsions of identical taste (two milk preparations differing in fat content and a mixture of high fat milk with the lowest salt concentration. Early event-related potentials showed a dose-response effect for increased taste intensity, with higher amplitude and shorter latency for high compared to low salt concentration, but not for increased fat content. However, the amplitude and distribution of late potentials were modulated by fat content independently of reported intensity and discrimination. Neural source estimation revealed a sustained activation of reward areas to the two high-fat stimuli. The results suggest calorie detection through specific sensors on the tongue independent of perceived taste. Finally, amplitude variation of the first peak in the event-related potential to the different stimuli correlated with papilla density, suggesting a higher discrimination power for subjects with more fungiform papillae.

  6. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs

    DEFF Research Database (Denmark)

    Pötter-Nerger, Monika; Fischer, Sarah; Mastroeni, Claudia

    2009-01-01

    Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand area of the human primary motor cortex (M1(HAND)) that controls stimulation-induced changes in corticospinal excitability. Here we combined two interventional protocols that induce long-term depression...... (LTD)-like or long-term potentiation (LTP)-like plasticity in left M1(HAND) through different afferents. We hypothesized that the left M1(HAND) would integrate LTP- and LTD-like plasticity in a homeostatic fashion. In ten healthy volunteers, low-intensity repetitive transcranial magnetic stimulation (r...... and left M1(HAND) to induce spike-time-dependent plasticity in sensory-to-motor inputs to left M1(HAND). We adjusted the interstimulus interval to the N20 latency of the median nerve somatosensory-evoked cortical potential to produce an LTP-like increase (PAS(N20+2ms)) or an LTD-like decrease (PAS(N20-5ms...

  7. Genetically dependent modulation of serotonergic inactivation in the human prefrontal cortex.

    Science.gov (United States)

    Passamonti, Luca; Cerasa, Antonio; Gioia, Maria Cecilia; Magariello, Angela; Muglia, Maria; Quattrone, Aldo; Fera, Francesco

    2008-04-15

    Previous research suggests that genetic variations regulating serotonergic neurotransmission mediate individual differences in the neural network underlying impulsive and aggressive behaviour. Although with conflicting findings, the monoamine oxidase-A (MAOA) and the serotonin transporter (5HTT) gene polymorphisms have been associated with an increased risk to develop impulsive and aggressive behaviour. Double knock-out mice studies have also demonstrated that MAOA and 5HTT genes strongly interact in the metabolic pathway leading to the serotonergic inactivation; however, their potential interactive effect in human brain remains uninvestigated. We used blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to assess the independent and interactive effects of both MAOA and 5HTT polymorphisms on the brain activity elicited by a response inhibition task in healthy volunteers. Multivariate analysis demonstrated an individual effect of both MAOA and 5HTT polymorphisms and a strong allele-allele interaction in the anterior cingulate cortex (ACC), a key region implicated in cognitive control and in the pathophysiology of impulsive and aggressive behaviour. These findings suggest that the MAOAx5HTT allelic interaction exerts a significant modulation on the BOLD response associated with response inhibition and contribute to validate haplotype models as useful tools for a better understanding of the neurobiology underlying complex cognitive functions.

  8. Evidence for distinct human auditory cortex regions for sound location versus identity processing.

    Science.gov (United States)

    Ahveninen, Jyrki; Huang, Samantha; Nummenmaa, Aapo; Belliveau, John W; Hung, An-Yi; Jääskeläinen, Iiro P; Rauschecker, Josef P; Rossi, Stephanie; Tiitinen, Hannu; Raij, Tommi

    2013-01-01

    Neurophysiological animal models suggest that anterior auditory cortex (AC) areas process sound identity information, whereas posterior ACs specialize in sound location processing. In humans, inconsistent neuroimaging results and insufficient causal evidence have challenged the existence of such parallel AC organization. Here we transiently inhibit bilateral anterior or posterior AC areas using MRI-guided paired-pulse transcranial magnetic stimulation (TMS) while subjects listen to Reference/Probe sound pairs and perform either sound location or identity discrimination tasks. The targeting of TMS pulses, delivered 55-145 ms after Probes, is confirmed with individual-level cortical electric-field estimates. Our data show that TMS to posterior AC regions delays reaction times (RT) significantly more during sound location than identity discrimination, whereas TMS to anterior AC regions delays RTs significantly more during sound identity than location discrimination. This double dissociation provides direct causal support for parallel processing of sound identity features in anterior AC and sound location in posterior AC.

  9. Task-dependent activations of human auditory cortex during spatial discrimination and spatial memory tasks.

    Science.gov (United States)

    Rinne, Teemu; Koistinen, Sonja; Talja, Suvi; Wikman, Patrik; Salonen, Oili

    2012-02-15

    In the present study, we applied high-resolution functional magnetic resonance imaging (fMRI) of the human auditory cortex (AC) and adjacent areas to compare activations during spatial discrimination and spatial n-back memory tasks that were varied parametrically in difficulty. We found that activations in the anterior superior temporal gyrus (STG) were stronger during spatial discrimination than during spatial memory, while spatial memory was associated with stronger activations in the inferior parietal lobule (IPL). We also found that wide AC areas were strongly deactivated during the spatial memory tasks. The present AC activation patterns associated with spatial discrimination and spatial memory tasks were highly similar to those obtained in our previous study comparing AC activations during pitch discrimination and pitch memory (Rinne et al., 2009). Together our previous and present results indicate that discrimination and memory tasks activate anterior and posterior AC areas differently and that this anterior-posterior division is present both when these tasks are performed on spatially invariant (pitch discrimination vs. memory) or spatially varying (spatial discrimination vs. memory) sounds. These results also further strengthen the view that activations of human AC cannot be explained only by stimulus-level parameters (e.g., spatial vs. nonspatial stimuli) but that the activations observed with fMRI are strongly dependent on the characteristics of the behavioral task. Thus, our results suggest that in order to understand the functional structure of AC a more systematic investigation of task-related factors affecting AC activations is needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Probabilistic map of critical functional regions of the human cerebral cortex: Broca's area revisited.

    Science.gov (United States)

    Tate, Matthew C; Herbet, Guillaume; Moritz-Gasser, Sylvie; Tate, Joseph E; Duffau, Hugues

    2014-10-01

    The organization of basic functions of the human brain, particularly in the right hemisphere, remains poorly understood. Recent advances in functional neuroimaging have improved our understanding of cortical organization but do not allow for direct interrogation or determination of essential (versus participatory) cortical regions. Direct cortical stimulation represents a unique opportunity to provide novel insights into the functional distribution of critical epicentres. Direct cortical stimulation (bipolar, 60 Hz, 1-ms pulse) was performed in 165 consecutive patients undergoing awake mapping for resection of low-grade gliomas. Tasks included motor, sensory, counting, and picture naming. Stimulation sites eliciting positive (sensory/motor) or negative (speech arrest, dysarthria, anomia, phonological and semantic paraphasias) findings were recorded and mapped onto a standard Montreal Neurological Institute brain atlas. Montreal Neurological Institute-space functional data were subjected to cluster analysis algorithms (K-means, partition around medioids, hierarchical Ward) to elucidate crucial network epicentres. Sensorimotor function was observed in the pre/post-central gyri as expected. Articulation epicentres were also found within the pre/post-central gyri. However, speech arrest localized to ventral premotor cortex, not the classical Broca's area. Anomia/paraphasia data demonstrated foci not only within classical Wernicke's area but also within the middle and inferior frontal gyri. We report the first bilateral probabilistic map for crucial cortical epicentres of human brain functions in the right and left hemispheres, including sensory, motor, and language (speech, articulation, phonology and semantics). These data challenge classical theories of brain organization (e.g. Broca's area as speech output region) and provide a distributed framework for future studies of neural networks. © The Author (2014). Published by Oxford University Press on behalf of the

  11. Direction of movement is encoded in the human primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Carolien M Toxopeus

    Full Text Available The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1. Using functional magnetic resonance imaging (fMRI and a manual step-tracking task we found that activation patterns related to movement in different directions were spatially disjoint within the representation area of the hand on M1. Foci of activation related to specific movement directions were segregated within the M1 hand area; activation related to direction 0° (right was located most laterally/superficially, whereas directions 180° (left and 270° (down elicited activation more medially within the hand area. Activation related to direction 90° was located between the other directions. Moreover, by investigating differences between activations related to movement along the horizontal (0°+180° and vertical (90°+270° axis, we found that activation related to the horizontal axis was located more anterolaterally/dorsally in M1 than for the vertical axis, supporting that activations related to individual movement directions are direction- and not muscle related. Our results of spatially segregated direction-related activations in M1 are in accordance with findings of recent fMRI studies on neural encoding of direction in human M1. Our results thus provide further evidence for a direct link between direction as an organizational principle in sensorimotor transformation and movement execution coded by effector representations in M1.

  12. Memory accumulation mechanisms in human cortex are independent of motor intentions.

    Science.gov (United States)

    Sestieri, Carlo; Tosoni, Annalisa; Mignogna, Valeria; McAvoy, Mark P; Shulman, Gordon L; Corbetta, Maurizio; Romani, Gian Luca

    2014-05-14

    Previous studies on perceptual decision-making have often emphasized a tight link between decisions and motor intentions. Human decisions, however, also depend on memories or experiences that are not closely tied to specific motor responses. Recent neuroimaging findings have suggested that, during episodic retrieval, parietal activity reflects the accumulation of evidence for memory decisions. It is currently unknown, however, whether these evidence accumulation signals are functionally linked to signals for motor intentions coded in frontoparietal regions and whether activity in the putative memory accumulator tracks the amount of evidence for only previous experience, as reflected in "old" reports, or for both old and new decisions, as reflected in the accuracy of memory judgments. Here, human participants used saccadic-eye and hand-pointing movements to report recognition judgments on pictures defined by different degrees of evidence for old or new decisions. A set of cortical regions, including the middle intraparietal sulcus, showed a monotonic variation of the fMRI BOLD signal that scaled with perceived memory strength (older > newer), compatible with an asymmetrical memory accumulator. Another set, including the hippocampus and the angular gyrus, showed a nonmonotonic response profile tracking memory accuracy (higher > lower evidence), compatible with a symmetrical accumulator. In contrast, eye and hand effector-specific regions in frontoparietal cortex tracked motor intentions but were not modulated by the amount of evidence for the effector outcome. We conclude that item recognition decisions are supported by a combination of symmetrical and asymmetrical accumulation signals largely segregated from motor intentions. Copyright © 2014 the authors 0270-6474/14/346993-14$15.00/0.

  13. Effect of serotonin on paired associative stimulation-induced plasticity in the human motor cortex.

    Science.gov (United States)

    Batsikadze, Giorgi; Paulus, Walter; Kuo, Min-Fang; Nitsche, Michael A

    2013-10-01

    Serotonin modulates diverse brain functions. Beyond its clinical antidepressant effects, it improves motor performance, learning and memory formation. These effects might at least be partially caused by the impact of serotonin on neuroplasticity, which is thought to be an important foundation of the respective functions. In principal accordance, selective serotonin reuptake inhibitors enhance long-term potentiation-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. As other neuromodulators have discernable effects on different kinds of plasticity in humans, here we were interested to explore the impact of serotonin on paired associative stimulation (PAS)-induced plasticity, which induces a more focal kind of plasticity, as compared with tDCS, shares some features with spike timing-dependent plasticity, and is thought to be relative closely related to learning processes. In this single-blinded, placebo-controlled, randomized crossover study, we administered a single dose of 20 mg citalopram or placebo medication and applied facilitatory- and excitability-diminishing PAS to the left motor cortex of 14 healthy subjects. Cortico-spinal excitability was explored via single-pulse transcranial magnetic stimulation-elicited MEP amplitudes up to the next evening after plasticity induction. After citalopram administration, inhibitory PAS-induced after-effects were abolished and excitatory PAS-induced after-effects were enhanced trendwise, as compared with the respective placebo conditions. These results show that serotonin modulates PAS-induced neuroplasticity by shifting it into the direction of facilitation, which might help to explain mechanism of positive therapeutic effects of serotonin in learning and medical conditions characterized by enhanced inhibitory or reduced facilitatory plasticity, including depression and stroke.

  14. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS

    Directory of Open Access Journals (Sweden)

    Paul Fredrick Sowman

    2014-06-01

    Full Text Available Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS -induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.

  15. Apolipoprotein-E forms dimers in human frontal cortex and hippocampus

    Directory of Open Access Journals (Sweden)

    Halliday Glenda M

    2010-02-01

    Full Text Available Abstract Background Apolipoprotein-E (apoE plays important roles in neurobiology and the apoE4 isoform increases risk for Alzheimer's disease (AD. ApoE3 and apoE2 are known to form disulphide-linked dimers in plasma and cerebrospinal fluid whereas apoE4 cannot form these dimers as it lacks a cysteine residue. Previous in vitro research indicates dimerisation of apoE3 has a significant impact on its functions related to cholesterol homeostasis and amyloid-beta peptide degradation. The possible occurrence of apoE dimers in cortical tissues has not been examined and was therefore assessed. Human frontal cortex and hippocampus from control and AD post-mortem samples were homogenised and analysed for apoE by western blotting under both reducing and non-reducing conditions. Results In apoE3 homozygous samples, ~12% of apoE was present as a homodimer and ~2% was detected as a 43 kDa heterodimer. The level of dimerisation was not significantly different when control and AD samples were compared. As expected, these dimerised forms of apoE were not detected in apoE4 homozygous samples but were detected in apoE3/4 heterozygotes at a level approximately 60% lower than seen in the apoE3 homozygous samples. Similar apoE3 dimers were also detected in lysates of SK-N-SH neuroblastoma cells and in freshly prepared rabbit brain homogenates. The addition of the thiol trapping agent, iodoacetamide, to block reactive thiols during both human and rabbit brain sample homogenisation and processing did not reduce the amount of apoE homodimer recovered. These data indicate that the apoE dimers we detected in the human brain are not likely to be post-mortem artefacts. Conclusion The identification of disulphide-linked apoE dimers in human cortical and hippocampal tissues represents a distinct structural difference between the apoE3 and apoE4 isoforms that may have functional consequences.

  16. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates.

    Science.gov (United States)

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-07-20

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys.

  17. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex.

    Science.gov (United States)

    Mars, Rogier B; Sallet, Jérôme; Neubert, Franz-Xaver; Rushworth, Matthew F S

    2013-06-25

    The human ability to infer the thoughts and beliefs of others, often referred to as "theory of mind," as well as the predisposition to even consider others, are associated with activity in the temporoparietal junction (TPJ) area. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain areas in other nonhuman primates. It is not possible to address this question by looking for similar task-related activations in nonhuman primates because there is no evidence that nonhuman primates engage in theory-of-mind tasks in the same manner as humans. Here, instead, we explore the relationship by searching for areas in the macaque brain that interact with other macaque brain regions in the same manner as human TPJ interacts with other human brain regions. In other words, we look for brain regions with similar positions within a distributed neural circuit in the two species. We exploited the fact that human TPJ has a unique functional connectivity profile with cortical areas with known homologs in the macaque. For each voxel in the macaque temporal and parietal cortex we evaluated the similarity of its functional connectivity profile to that of human TPJ. We found that areas in the middle part of the superior temporal cortex, often associated with the processing of faces and other social stimuli, have the most similar connectivity profile. These results suggest that macaque face processing areas and human mentalizing areas might have a similar precursor.

  18. Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition

    OpenAIRE

    Bohi, Amine; Prandi, Dario; Guis, Vincente; Bouchara, Frédéric; Gauthier, Jean-Paul

    2016-01-01

    International audience; In this paper we propose a supervised object recognition method using new global features and inspired by the model of the human primary visual cortex V1 as the semidiscrete roto-translation group $SE(2,N)=\\mathbb Z_N\\rtimes \\mathbb{R}^2$. The proposed technique is based on generalized Fourier descriptors on the latter group, which are invariant to natural geometric transformations (rotations, translations). These descriptors are then used to feed an SVM classifier. We...

  19. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    Science.gov (United States)

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  20. Stem/progenitor cells in the cerebral cortex of the human preterm: a resource for an endogenous regenerative neuronal medicine?

    Directory of Open Access Journals (Sweden)

    Laura Vinci

    2016-04-01

    Full Text Available The development of the central nervous system represents a very delicate period of embryogenesis. Premature interruption of neurogenesis in human preterm newborns can lead to motor deficits, including cerebral palsy, and significant cognitive, behavioral or sensory deficits in childhood. Preterm infants also have a higher risk of developing neurodegenerative diseases later in life. In the last decade, great importance has been given to stem/progenitor cells and their possible role in the development and treatment of several neurological disorders. Several studies, mainly carried out on experimental models, evidenced that immunohistochemistry may allow the identification of different neural and glial precursors inside the developing cerebral cortex. However, only a few studies have been performed on markers of human stem cells in the embryonic period.This review aims at illustrating the importance of stem/progenitor cells in cerebral cortex during pre- and post-natal life. Defining the immunohistochemical markers of stem/progenitor cells in the human cerebral cortex during development may be important to develop an “endogenous” target therapy in the perinatal period. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  1. Oscillatory Beta Activity Mediates Neuroplastic Effects of Motor Cortex Stimulation in Humans

    Science.gov (United States)

    McAllister, Craig J.; Rönnqvist, Kim C.; Stanford, Ian M.; Woodhall, Gavin L.; Furlong, Paul L.; Hall, Stephen D.

    2013-01-01

    Continuous theta burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation protocol that can inhibit human motor cortex (M1) excitability and impair movement for ≤1 h. While offering valuable insights into brain function and potential therapeutic benefits, these neuroplastic effects are highly variable between individuals. The source of this variability, and the electrophysiological mechanisms underlying the inhibitory after-effects, are largely unknown. In this regard, oscillatory activity at beta frequency (15–35 Hz) is of particular interest as it is elevated in motor disorders such as Parkinson’s disease and modulated during the generation of movements. Here, we used a source-level magnetoencephalography approach to investigate the hypothesis that the presence of neuroplastic effects following cTBS is associated with concurrent changes in oscillatory M1 beta activity. M1 cortices were localized with a synthetic aperture magnetometry beamforming analysis of visually cued index finger movements. Virtual electrode analysis was used to reconstruct the spontaneous and movement-related oscillatory activity in bilateral M1 cortices, before and from 10 to 45 min after cTBS. We demonstrate that 40 s of cTBS applied over left M1 reduced corticospinal excitability in the right index finger of 8/16 participants. In these responder participants only, cTBS increased the power of the spontaneous beta oscillations in stimulated M1 and delayed reaction times in the contralateral index finger. No further changes were observed in the latency or power of movement-related beta oscillations. These data provide insights into the electrophysiological mechanisms underlying cTBS-mediated impairment of motor function and demonstrate the association between spontaneous oscillatory beta activity in M1 and the inhibition of motor function. PMID:23637183

  2. Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex.

    Science.gov (United States)

    Stecker, G Christopher; McLaughlin, Susan A; Higgins, Nathan C

    2015-10-15

    Whole-brain functional magnetic resonance imaging was used to measure blood-oxygenation-level-dependent (BOLD) responses in human auditory cortex (AC) to sounds with intensity varying independently in the left and right ears. Echoplanar images were acquired at 3 Tesla with sparse image acquisition once per 12-second block of sound stimulation. Combinations of binaural intensity and stimulus presentation rate were varied between blocks, and selected to allow measurement of response-intensity functions in three configurations: monaural 55-85 dB SPL, binaural 55-85 dB SPL with intensity equal in both ears, and binaural with average binaural level of 70 dB SPL and interaural level differences (ILD) ranging ±30 dB (i.e., favoring the left or right ear). Comparison of response functions equated for contralateral intensity revealed that BOLD-response magnitudes (1) generally increased with contralateral intensity, consistent with positive drive of the BOLD response by the contralateral ear, (2) were larger for contralateral monaural stimulation than for binaural stimulation, consistent with negative effects (e.g., inhibition) of ipsilateral input, which were strongest in the left hemisphere, and (3) also increased with ipsilateral intensity when contralateral input was weak, consistent with additional, positive, effects of ipsilateral stimulation. Hemispheric asymmetries in the spatial extent and overall magnitude of BOLD responses were generally consistent with previous studies demonstrating greater bilaterality of responses in the right hemisphere and stricter contralaterality in the left hemisphere. Finally, comparison of responses to fast (40/s) and slow (5/s) stimulus presentation rates revealed significant rate-dependent adaptation of the BOLD response that varied across ILD values. Copyright © 2015. Published by Elsevier Inc.

  3. Spatio-temporal correlates of taste processing in the human primary gustatory cortex.

    Science.gov (United States)

    Iannilli, E; Noennig, N; Hummel, T; Schoenfeld, A M

    2014-07-25

    In humans the identification of the primary gustatory cortex (PGC) is still under debate. Neuroimaging studies indicate insula and overlying opercula as the best candidates but the exact position of the PGC within this region is not entirely clear. Moreover, inconsistencies appear when comparing results from studies using functional magnetic resonance imaging (fMRI), and gustatory event-related potentials (gERP), or gustatory event-related magnetic fields (gERMF). fMRI indicates activations in the anterior part of the insula and frontal operculum, while gERP and/or gERMF indicate activations at the transition between the parietal operculum and insula in its posterior part. Here it is important to note that for gERP and gERMF temporal and spatial characteristics of the stimulus must be well controlled to evoke a useful brain response. In the present study gERMF and gERP were recorded simultaneously using a whole-head system with 249 magnetometers and 32 electrodes, respectively; taste stimuli were applied using a stimulator providing excellent temporal and spatial control of the stimulus. Separate ERP and ERMF averaged waveforms were derived time-locked to the onset of the taste stimuli. The source analysis for the early time range revealed activity in the left and right anterior and mid part of the insula, where in the later time range the sources were located more in the posterior part of the insula. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Relationships between spike-free local field potentials and spike timing in human temporal cortex.

    Science.gov (United States)

    Zanos, Stavros; Zanos, Theodoros P; Marmarelis, Vasilis Z; Ojemann, George A; Fetz, Eberhard E

    2012-04-01

    Intracortical recordings comprise both fast events, action potentials (APs), and slower events, known as local field potentials (LFPs). Although it is believed that LFPs mostly reflect local synaptic activity, it is unclear which of their signal components are most closely related to synaptic potentials and would therefore be causally related to the occurrence of individual APs. This issue is complicated by the significant contribution from AP waveforms, especially at higher LFP frequencies. In recordings of single-cell activity and LFPs from the human temporal cortex, we computed quantitative, nonlinear, causal dynamic models for the prediction of AP timing from LFPs, at millisecond resolution, before and after removing AP contributions to the LFP. In many cases, the timing of a significant number of single APs could be predicted from spike-free LFPs at different frequencies. Not surprisingly, model performance was superior when spikes were not removed. Cells whose activity was predicted by the spike-free LFP models generally fell into one of two groups: in the first group, neuronal spike activity was associated with specific phases of low LFP frequencies, lower spike activity at high LFP frequencies, and a stronger linear component in the spike-LFP model; in the second group, neuronal spike activity was associated with larger amplitude of high LFP frequencies, less frequent phase locking, and a stronger nonlinear model component. Spike timing in the first group was better predicted by the sign and level of the LFP preceding the spike, whereas spike timing in the second group was better predicted by LFP power during a certain time window before the spike.

  5. Prandial states modify the reactivity of the gustatory cortex using gustatory evoked potentials in humans

    Directory of Open Access Journals (Sweden)

    Agnès eJACQUIN-PIQUES

    2016-01-01

    Full Text Available Previous functional Magnetic Resonance Imaging studies evaluated the role of satiety on cortical taste area activity and highlighted decreased activation in the orbito-frontal cortex when food was eaten until satiation. The modulation of orbito-frontal neurons (secondary taste area by ad libitum food intake has been associated with the pleasantness of the food’s flavor. The insula and frontal operculum (primary taste area are also involved in reward processing. The aim was to compare human gustatory evoked potentials (GEP recorded in the primary and secondary gustatory cortices in a fasted state with those after food intake. Fifteen healthy volunteers were enrolled in this observational study. In each of two sessions, two GEP recordings were performed (at 11:00 am and 1:30 pm in response to sucrose gustatory stimulation, and a sucrose-gustatory threshold was determined. During one session, a standard lunch was provided between the two GEP recordings. During the other session, subjects had nothing to eat. Hunger sensation, wanting, liking and the perception of the solution’s intensity were evaluated with visual analogue scales. GEP latencies measured in the Pz (p<0.001, Cz (p<0.01, Fz (p<0.001 recordings (primary taste area were longer after lunch than in the pre-prandial condition. Fp1 and Fp2 latencies (secondary taste area tended to be longer after lunch, but the difference was not significant. No difference was observed for the sucrose-gustatory threshold regardless of the session and time. Modifications in the primary taste area activity during the post-prandial period occurred regardless of the nature of the food eaten and could represent the activity of the frontal operculum and insula, which was recently shown to be modulated by gut signals (GLP-1, CCK, ghrelin, or insulin through vagal afferent neurons or metabolic changes of the internal milieu after nutrient absorption. This trial was registered at clinicalstrials.gov as NCT

  6. 38 CFR 3.40 - Philippine and Insular Forces.

    Science.gov (United States)

    2010-07-01

    ... Forces. 3.40 Section 3.40 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS... Insular Forces. (a) Regular Philippine Scouts. Service in the Philippine Scouts (except that described in paragraph (b) of this section), the Insular Force of the Navy, Samoan Native Guard, and Samoan Native Band...

  7. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development

    Directory of Open Access Journals (Sweden)

    Mariella eErrede

    2014-10-01

    Full Text Available This study was conducted on human developing brain by laser confocal and transmission electron microscopy to make a detailed analysis of important features of blood-brain barrier microvessels and possible control mechanisms of vessel growth and differentiation during cerebral cortex vascularization. The blood-brain barrier status of cortex microvessels was examined at a defined stage of cortex development, at the end of neuroblast waves of migration and before cortex lamination, with blood-brain barrier-endothelial cell markers, namely tight junction proteins (occludin and claudin-5 and influx and efflux transporters (Glut-1 and P-glycoprotein, the latter supporting evidence for functional effectiveness of the fetal blood-brain barrier. According to the well-known roles of astroglia cells on microvessel growth and differentiation, the early composition of astroglia/endothelial cell relationships was analysed by detecting the appropriate astroglia, endothelial, and pericyte markers. GFAP, chemokine CXCL12, and connexin 43 (Cx43 were utilized as markers of radial glia cells, CD105 (endoglin as a marker of angiogenically activated endothelial cells, and proteoglycan NG2 as a marker of immature pericytes. Immunolabeling for CXCL12 showed the highest level of the ligand in radial glial fibres in contact with the growing cortex microvessels. These specialized contacts, recognizable on both perforating radial vessels and growing collaterals, appeared as CXCL12-reactive en passant, symmetrical and asymmetrical vessel-specific RG fibre swellings. At the highest confocal resolution, these RG varicosities showed a CXCL12-reactive dot-like content whose microvesicular nature was confirmed by ultrastructural observations. A further analysis of radial glial varicosities reveals colocalization of CXCL12 with connexin Cx43, which is possibly implicated in vessel-specific chemokine signalling.

  8. No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex.

    Science.gov (United States)

    Kufner, Marco; Brückner, Sabrina; Kammer, Thomas

    Recently, it was reported that the application of a static magnetic field by placing a strong permanent magnet over the scalp for 10 min led to an inhibition of motor cortex excitability for at least 6 min after removing the magnet. When placing the magnet over the somatosensory cortex, a similar inhibitory after effect could be observed as well. Our aim was to replicate the inhibitory effects of transcranial static magnetic field stimulation in the motor and somatosensory system. The modulatory effect of static magnetic field stimulation was investigated in three experiments. In two experiments motor cortex excitability was measured before and after 10 or 15 min of magnet application, respectively. The second experiment included a sham condition and was designed in a double-blinded manner. In a third experiment, paired-pulse SSEPs were measured pre and four times post positioning the magnet over the somatosensory cortex for 10 min on both hemispheres, respectively. The SSEPs of the non stimulated hemisphere served as control condition. We did not observe any systematic effect of the static magnetic field neither on motor cortex excitability nor on SSEPs. Moreover, no SSEP paired-pulse suppression was found. We provide a detailed analysis of possible confounding factors and differences to previous studies on tSMS. After all, our results could not confirm the static magnetic field effect. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography

    OpenAIRE

    Masayuki Kobayashi; Tetsuya Sasabe; Yoshihito Shigihara; Masaaki Tanaka; Yasuyoshi Watanabe

    2011-01-01

    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the 'top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). Howe...

  10. Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging (fMRI research.

    Directory of Open Access Journals (Sweden)

    Diane eSliz

    2012-12-01

    Full Text Available Major depressive disorder (MDD is characterized by a dysregulated fronto-limbic network. The hyperactivation of limbic regions leads to increased attention and processing of emotional information, with a bias toward negative stimuli. Pathological ruminative behavior is a common symptom of depressive disorder whereby the individual is unable to disengage from internal mental processing of emotionally-salient events. In fact, lower deactivations of the neural baseline resting state may account for the increased internal self-focus. The insular cortex, with its extensive connections to fronto-limbic and association areas has recently also been implicated to be a part of this network. Given its wide-reaching connectivity, it has been putatively implicated as an integration center of autonomic, visceromotor, emotional and interoceptive information. The following paper will review recent imaging findings of altered insular function and connectivity in depressive pathology.

  11. Changes in thickness and surface area of the human cortex and their relationship with intelligence.

    Science.gov (United States)

    Schnack, Hugo G; van Haren, Neeltje E M; Brouwer, Rachel M; Evans, Alan; Durston, Sarah; Boomsma, Dorret I; Kahn, René S; Hulshoff Pol, Hilleke E

    2015-06-01

    Changes in cortical thickness over time have been related to intelligence, but whether changes in cortical surface area are related to general cognitive functioning is unknown. We therefore examined the relationship between intelligence quotient (IQ) and changes in cortical thickness and surface over time in 504 healthy subjects. At 10 years of age, more intelligent children have a slightly thinner cortex than children with a lower IQ. This relationship becomes more pronounced with increasing age: with higher IQ, a faster thinning of the cortex is found over time. In the more intelligent young adults, this relationship reverses so that by the age of 42 a thicker cortex is associated with higher intelligence. In contrast, cortical surface is larger in more intelligent children at the age of 10. The cortical surface is still expanding, reaching its maximum area during adolescence. With higher IQ, cortical expansion is completed at a younger age; and once completed, surface area decreases at a higher rate. These findings suggest that intelligence may be more related to the magnitude and timing of changes in brain structure during development than to brain structure per se, and that the cortex is never completed but shows continuing intelligence-dependent development. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Double representation of the wrist and elbow in human motor cortex

    NARCIS (Netherlands)

    Strother, L.; Medendorp, W.P.; Coros, A.M.; Vilis, T.

    2012-01-01

    Movements of the fingers, hand and arm involve overlapping neural representations in primary motor cortex (M1). Monkey M1 exhibits a coresurround organisation in which cortical representation of the hand and fingers is surrounded by representations of the wrist, elbow and shoulder. A potentially

  13. Novel Architectures for Image Processing Based on Computer Simulation and Psychophysical Studies of Human Visual Cortex.

    Science.gov (United States)

    1986-01-02

    1f E PROCESSING BASED ON COMPUTER SIMULATION AND PSYCHOPHYSICAL STUD Professor Eric L. Schwartz 13a. TYPE OF REPORT I136, TIME COVE RED 114. OAT ...monkey," Z. Neur2ys., vol. 40, pp. 1392-1405, 1977. . Pollen , D., J. R. Lee, and J. H. Taylor, "How does the striate cortex begin the reconstruction

  14. Category Selectivity of Human Visual Cortex in Perception of Rubin Face–Vase Illusion

    Directory of Open Access Journals (Sweden)

    Xiaogang Wang

    2017-09-01

    Full Text Available When viewing the Rubin face–vase illusion, our conscious perception spontaneously alternates between the face and the vase; this illusion has been widely used to explore bistable perception. Previous functional magnetic resonance imaging (fMRI studies have studied the neural mechanisms underlying bistable perception through univariate and multivariate pattern analyses; however, no studies have investigated the issue of category selectivity. Here, we used fMRI to investigate the neural mechanisms underlying the Rubin face–vase illusion by introducing univariate amplitude and multivariate pattern analyses. The results from the amplitude analysis suggested that the activity in the fusiform face area was likely related to the subjective face perception. Furthermore, the pattern analysis results showed that the early visual cortex (EVC and the face-selective cortex could discriminate the activity patterns of the face and vase perceptions. However, further analysis of the activity patterns showed that only the face-selective cortex contains the face information. These findings indicated that although the EVC and face-selective cortex activities could discriminate the visual information, only the activity and activity pattern in the face-selective areas contained the category information of face perception in the Rubin face–vase illusion.

  15. Tracking cortical entrainment in neural activity: Auditory processes in human temporal cortex

    Directory of Open Access Journals (Sweden)

    Andrew eThwaites

    2015-02-01

    Full Text Available A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such models (loudness-sones and loudness-phons, varying in their psychophysiological realism, to predict the instantaneous loudness contours produced by 480 isolated words. These two sets of 480 contours were used to search for electrophysiological evidence of loudness processing in whole-brain recordings of electro- and magneto-encephalographic (EMEG activity, recorded while subjects listened to the words. The technique identified a bilateral sequence of loudness processes, predicted by the more realistic loudness-sones model, that begin in auditory cortex at ~80 ms and subsequently reappear, tracking progressively down the superior temporal sulcus (STS at lags from 230 to 330 ms. The technique was then extended to search for regions sensitive to the fundamental frequency (F0 of the voiced parts of the speech. It identified a bilateral F0 process in auditory cortex at a lag of ~90 ms, which was not followed by activity in STS. The results suggest that loudness information is being used to guide the analysis of the speech stream as it proceeds beyond auditory cortex down STS towards the temporal pole.

  16. Neuroimaging Weighs In: Humans Meet Macaques in “Primate” Visual Cortex

    OpenAIRE

    Tootell, Roger B.H.; Tsao, Doris; Vanduffel, Wim

    2003-01-01

    It has been only a decade since functional magnetic resonance imaging (fMRI) was introduced, but approximately four fMRI papers are now published every working day. Here we review this progress in a well studied system: primate visual cortex.

  17. Independent or integrated processing of interaural time and level differences in human auditory cortex?

    Science.gov (United States)

    Altmann, Christian F; Terada, Satoshi; Kashino, Makio; Goto, Kazuhiro; Mima, Tatsuya; Fukuyama, Hidenao; Furukawa, Shigeto

    2014-06-01

    Sound localization in the horizontal plane is mainly determined by interaural time differences (ITD) and interaural level differences (ILD). Both cues result in an estimate of sound source location and in many real-life situations these two cues are roughly congruent. When stimulating listeners with headphones it is possible to counterbalance the two cues, so called ITD/ILD trading. This phenomenon speaks for integrated ITD/ILD processing at the behavioral level. However, it is unclear at what stages of the auditory processing stream ITD and ILD cues are integrated to provide a unified percept of sound lateralization. Therefore, we set out to test with human electroencephalography for integrated versus independent ITD/ILD processing at the level of preattentive cortical processing by measuring the mismatch negativity (MMN) to changes in sound lateralization. We presented a series of diotic standards (perceived at a midline position) that were interrupted by deviants that entailed either a change in a) ITD only, b) ILD only, c) congruent ITD and ILD, or d) counterbalanced ITD/ILD (ITD/ILD trading). The sound stimuli were either i) pure tones with a frequency of 500 Hz, or ii) amplitude modulated tones with a carrier frequency of 4000 Hz and a modulation frequency of 125 Hz. We observed significant MMN for the ITD/ILD traded deviants in case of the 500 Hz pure tones, and for the 4000 Hz amplitude-modulated tone. This speaks for independent processing of ITD and ILD at the level of the MMN within auditory cortex. However, the combined ITD/ILD cues elicited smaller MMN than the sum of the MMN induced in response to ITD and ILD cues presented in isolation for 500 Hz, but not 4000 Hz, suggesting independent processing for the higher frequency only. Thus, the two markers for independent processing - additivity and cue-conflict - resulted in contradicting conclusions with a dissociation between the lower (500 Hz) and higher frequency (4000 Hz) bands. Copyright © 2014

  18. Porosity, Mineralization, Tissue Type and Morphology Interactions at the Human Tibial Cortex

    Science.gov (United States)

    Hampson, Naomi A.

    Prior research has shown a relationship between tibia robustness (ratio of cross-sectional area to bone length) and stress fracture risk, with less robust bones having a higher risk, which may indicate a compensatory increase in elastic modulus to increase bending strength. Previous studies of human tibiae have shown higher ash content in slender bones. In this study, the relationships between variations in volumetric porosity, ash content, tissue mineral density, secondary bone tissue, and cross sectional geometry, were investigated in order to better understand the tissue level adaptations that may occur in the establishment of cross-sectional properties. In this research, significant differences were found between porosity, ash content, and tissue type around the cortex between robust and slender bones, suggesting that there was a level of co-adaption occurring. Variation in porosity correlated with robustness, and explained large parts of the variation in tissue mineral density. The nonlinear relationship between porosity and ash content may support that slender bones compensate for poor geometry by increasing ash content through reduced remodeling, while robust individuals increase porosity to decrease mass, but only to a point. These results suggest that tissue level organization plays a compensatory role in the establishment of adult bone mass, and may contribute to differences in bone aging between different bone phenotypes. The results suggest that slender individuals have significantly less remodeled bone, however the proportion of remodeled bone was not uniform around the tibia. In the complex results of the study of 38% vs. 66% sites the distal site was subject to higher strains than the 66% site, indicating both local and global regulators may be affecting overall remodeling rates and need to be teased apart in future studies. This research has broad clinical implications on the diagnosis and treatment of fragility fractures. The relationships that

  19. Detection of optogenetic stimulation in somatosensory cortex by non-human primates--towards artificial tactile sensation.

    Directory of Open Access Journals (Sweden)

    Travis May

    Full Text Available Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.

  20. Analysis for distinctive activation patterns of pain and itchy in the human brain cortex measured using near infrared spectroscopy (NIRS.

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lee

    Full Text Available Pain and itch are closely related sensations, yet qualitatively quite distinct. Despite recent advances in brain imaging techniques, identifying the differences between pain and itch signals in the brain cortex is difficult due to continuous temporal and spatial changes in the signals. The high spatial resolution of positron emission tomography (PET and functional magnetic resonance imaging (fMRI has substantially advanced research of pain and itch, but these are uncomfortable because of expensiveness, importability and the limited operation in the shielded room. Here, we used near infrared spectroscopy (NIRS, which has more conventional usability. NIRS can be used to visualize dynamic changes in oxygenated hemoglobin and deoxyhemoglobin concentrations in the capillary networks near activated neural circuits in real-time as well as fMRI. We observed distinct activation patterns in the frontal cortex for acute pain and histamine-induced itch. The prefrontal cortex exhibited a pain-related and itch-related activation pattern of blood flow in each subject. Although it looked as though that activation pattern for pain and itching was different in each subject, further cross correlation analysis of NIRS signals between each channels showed an overall agreement with regard to prefrontal area involvement. As a result, pain-related and itch-related blood flow responses (delayed responses in prefrontal area were found to be clearly different between pain (τ = +18.7 sec and itch (τ = +0.63 sec stimulation. This is the first pilot study to demonstrate the temporal and spatial separation of a pain-induced blood flow and an itch-induced blood flow in human cortex during information processing.

  1. Analysis for distinctive activation patterns of pain and itchy in the human brain cortex measured using near infrared spectroscopy (NIRS).

    Science.gov (United States)

    Lee, Chih-Hung; Sugiyama, Takashi; Kataoka, Aiko; Kudo, Ayako; Fujino, Fukue; Chen, Yu-Wen; Mitsuyama, Yuki; Nomura, Shinobu; Yoshioka, Tohru

    2013-01-01

    Pain and itch are closely related sensations, yet qualitatively quite distinct. Despite recent advances in brain imaging techniques, identifying the differences between pain and itch signals in the brain cortex is difficult due to continuous temporal and spatial changes in the signals. The high spatial resolution of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) has substantially advanced research of pain and itch, but these are uncomfortable because of expensiveness, importability and the limited operation in the shielded room. Here, we used near infrared spectroscopy (NIRS), which has more conventional usability. NIRS can be used to visualize dynamic changes in oxygenated hemoglobin and deoxyhemoglobin concentrations in the capillary networks near activated neural circuits in real-time as well as fMRI. We observed distinct activation patterns in the frontal cortex for acute pain and histamine-induced itch. The prefrontal cortex exhibited a pain-related and itch-related activation pattern of blood flow in each subject. Although it looked as though that activation pattern for pain and itching was different in each subject, further cross correlation analysis of NIRS signals between each channels showed an overall agreement with regard to prefrontal area involvement. As a result, pain-related and itch-related blood flow responses (delayed responses in prefrontal area) were found to be clearly different between pain (τ = +18.7 sec) and itch (τ = +0.63 sec) stimulation. This is the first pilot study to demonstrate the temporal and spatial separation of a pain-induced blood flow and an itch-induced blood flow in human cortex during information processing.

  2. Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans.

    Science.gov (United States)

    Caselli, R J

    1993-04-01

    Five somatosensory cortices have distinctive somatotopic representations, cytoarchitecture, and connectivity: primary somatosensory cortex (SI), ventrolateral association cortices (SII, SIII, and SIV), and dorsomedial association cortex (supplementary sensory area). Patients with focal lesions of ventrolateral (n = 5) and dorsomedial (n = 6) somatosensory association cortices (SACs) and hemiparetic (n = 8) and neurologically normal control patients (n = 14) underwent detailed somesthetic testing that encompassed basic, intermediate, and complex (tactile object recognition) somesthetic functions. Dorsomedial lesions acutely caused severe disruption of somesthetic processing and severe apraxia when the area of damage was extensive and involved anterior and posterior cortices. In contrast, ventrolateral lesions caused tactile agnosia. Chronically, sensorimotor function following dorsomedial damage improved considerably. Tactile agnosia following ventrolateral damage, however, was readily detectable for years following onset. Functional differences between ventrolateral and dorsomedial SACs may reflect parallel processing in dual somatosensory systems.

  3. Recovery of slow potentials in AC-coupled electrocorticography: application to spreading depolarizations in rat and human cerebral cortex

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Dreier, Jens P

    2009-01-01

    Cortical spreading depolarizations (spreading depressions and peri-infarct depolarizations) are a pathology intrinsic to acute brain injury, generating large negative extracellular slow potential changes (SPCs) that, lasting on the order of minutes, are studied with DC-coupled recordings in animals....... The spreading SPCs of depolarization waves are observed in human cortex with AC-coupled electrocorticography (ECoG), although SPC morphology is distorted by the high-pass filter stage of the amplifiers. Here, we present a signal processing method to reverse these distortions and recover approximate full...

  4. Toward an integrative science of the developing human mind and brain: Focus on the developing cortex ?

    OpenAIRE

    Jernigan, Terry L.; Brown, Timothy T.; Bartsch, Hauke; Dale, Anders M.

    2015-01-01

    © 2015 The Authors. Based on the Huttenlocher lecture, this article describes the need for a more integrative scientific paradigm for addressing important questions raised by key observations made over 2 decades ago. Among these are the early descriptions by Huttenlocher of variability in synaptic density in cortex of postmortem brains of children of different ages and the almost simultaneous reports of cortical volume reductions on MR imaging in children and adolescents. In spite of much pro...

  5. The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex

    Science.gov (United States)

    Weiner, Kevin S.; Golarai, Golijeh; Caspers, Julian; Chuapoco, Miguel R.; Mohlberg, Hartmut; Zilles, Karl; Amunts, Katrin; Grill-Spector, Kalanit

    2014-01-01

    Human ventral temporal cortex (VTC) plays a pivotal role in high-level vision. An under-studied macroanatomical feature of VTC is the mid-fusiform sulcus (MFS), a shallow longitudinal sulcus separating the lateral and medial fusiform gyrus (FG). Here, we quantified the morphological features of the MFS in 69 subjects (ages 7–40), and investigated its relationship to both cytoarchitectonic and functional divisions of VTC with four main findings. First, despite being a minor sulcus, we found that the MFS is a stable macroanatomical structure present in all 138 hemispheres with morphological characteristics developed by age 7. Second, the MFS is the locus of a lateral-medial cytoarchitechtonic transition within the posterior FG serving as the boundary between cytoarchitectonic regions FG1 and FG2. Third, the MFS predicts a lateral-medial functional transition in eccentricity bias representations in children, adolescents, and adults. Fourth, the anterior tip of the MFS predicts the location of a face-selective region, mFus-faces/FFA-2. These findings are the first to illustrate that a macroanatomical landmark identifies both cytoarchitectonic and functional divisions of high-level sensory cortex in humans and have important implications for understanding functional and structural organization in the human brain. PMID:24021838

  6. Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex.

    Science.gov (United States)

    Rivadulla, Casto; Foffani, Guglielmo; Oliviero, Antonio

    2014-07-01

    The application of transcranial static magnetic field stimulation (tSMS) in humans reduces the excitability of the motor cortex for a few minutes after the end of stimulation. However, when tSMS is applied in humans, the cortex is at least 2 cm away, so most of the strength of the magnetic field will not reach the target. The main objective of the study was to measure the strength and reproducibility of static magnetic fields produced by commercial neodymium magnets. We measured the strength and reproducibility of static magnetic fields produced by four different types of neodymium cylindrical magnets using a magnetic field-to-voltage transducer. Magnetic field strength depended on magnet size. At distances magnetic field strength was affected by the presence of central holes (potentially useful for recording electroencephalograms). At distances >1.5 cm, the measurements made on the cylinder axis and 1.5 cm off the axis were comparable. The reproducibility of the results (i.e., the consistency of the field strength across magnets of the same size) was very high. These measurements offer a quantitative empirical reference for developing devices useful for tSMS protocols in both humans and animals. © 2013 International Neuromodulation Society.

  7. Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T.

    Science.gov (United States)

    Hoffmann, Michael B; Stadler, Jörg; Kanowski, Martin; Speck, Oliver

    2009-01-01

    fMRI-based retinotopic mapping data obtained at a magnetic field strength of 7T are evaluated and compared to 3T acquisitions. With established techniques retinotopic mapping data were obtained in four subjects for 25 slices parallel to the calcarine sulcus at 7 and 3T for three voxel sizes (2.5(3), 1.4(3), and 1.1(3)mm(3)) and in two subjects for 49 slices at 7T for 2.5(3)mm(3) voxels. The data were projected to the flattened representation of T1 weighted images acquired at 3T. The obtained retinotopic maps allowed for the identification of visual areas in the occipito-parietal cortex. The mean coherence increased with magnetic field strength and with voxel size. At 7T, the occipital cortex could be sampled with high sensitivity in a short single session at high resolution. Alternatively, at lower resolution simultaneous mapping of a great expanse of occipito-parietal cortex was possible. Retinotopic mapping at 7T aids a detailed description of the visual areas. Here, recent findings of multiple stimulus-driven retinotopic maps along the intraparietal sulcus are supported. Retinotopic mapping at 7T opens the possibility to detail our understanding of the cortical visual field representations in general and of their plasticity in visual system pathologies.

  8. Electrocorticography of Spatial Shifting and Attentional Selection in Human Superior Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Maarten Schrooten

    2017-05-01

    Full Text Available Spatial-attentional reorienting and selection between competing stimuli are two distinct attentional processes of clinical and fundamental relevance. In the past, reorienting has been mainly associated with inferior parietal cortex. In a patient with a subdural grid covering the upper and lower bank of the left anterior and middle intraparietal sulcus (IPS and the superior parietal lobule (SPL, we examined the involvement of superior parietal cortex using a hybrid spatial cueing paradigm identical to that previously applied in stroke and in healthy controls. In SPL, as early as 164 ms following target onset, an invalidly compared to a validly cued target elicited a positive event-related potential (ERP and an increase in intertrial coherence (ITC in the theta band, regardless of the direction of attention. From around 400–650 ms, functional connectivity [weighted phase lag index (wPLI analysis] between SPL and IPS briefly inverted such that SPL activity was driving IPS activity. In contrast, the presence of a competing distracter elicited a robust change mainly in IPS from 300 to 600 ms. Within superior parietal cortex reorienting of attention is associated with a distinct and early electrophysiological response in SPL while attentional selection is indexed by a relatively late electrophysiological response in the IPS. The long latency suggests a role of IPS in working memory or cognitive control rather than early selection.

  9. Reproducibility of T2 * mapping in the human cerebral cortex in vivo at 7 tesla MRI.

    Science.gov (United States)

    Govindarajan, Sindhuja T; Cohen-Adad, Julien; Sormani, Maria Pia; Fan, Audrey P; Louapre, Céline; Mainero, Caterina

    2015-08-01

    To assess the test-retest reproducibility of cortical mapping of T2 * relaxation rates at 7 Tesla (T) MRI. T2 * maps have been used for studying cortical myelo-architecture patterns in vivo and for characterizing conditions associated with changes in iron and/or myelin concentration. T2 * maps were calculated from 7T multi-echo T2 *-weighted images acquired during separate scanning sessions on 8 healthy subjects. The reproducibility of surface-based cortical T2 * mapping was assessed at different depths of the cortex; from pial surface (0% depth) towards gray/white matter boundary (100% depth), across cortical regions and hemispheres, using coefficients of variation (COVs = SD/mean) between each couple (scan-rescan) of average T2 * measurements. Average cortical T2 * was significantly different among 25%, 50%, and 75% depths (analysis of variance, P < 0.001). Coefficient of variations were very low within cortical regions, and whole cortex (average COV = 0.83-1.79%), indicating a high degree of reproducibility in T2 * measures. Surface-based mapping of T2 * relaxation rates as a function of cortical depth is reproducible and could prove useful for studying the laminar architecture of the cerebral cortex in vivo, and for investigating physiological and pathological states associated with changes in iron and/or myelin concentration. © 2014 Wiley Periodicals, Inc.

  10. Long timescale fMRI neuronal adaptation effects in human amblyopic cortex.

    Directory of Open Access Journals (Sweden)

    Xingfeng Li

    Full Text Available An investigation of long timescale (5 minutes fMRI neuronal adaptation effects, based on retinotopic mapping and spatial frequency stimuli, is presented in this paper. A hierarchical linear model was developed to quantify the adaptation effects in the visual cortex. The analysis of data involved studying the retinotopic mapping and spatial frequency adaptation effects in the amblyopic cortex. Our results suggest that, firstly, there are many cortical regions, including V1, where neuronal adaptation effects are reduced in the cortex in response to amblyopic eye stimulation. Secondly, our results show the regional contribution is different, and it seems to start from V1 and spread to the extracortex regions. Thirdly, our results show that there is greater adaptation to broadband retinotopic mapping as opposed to narrowband spatial frequency stimulation of the amblyopic eye, and we find significant correlation between fMRI response and the magnitude of the adaptation effect, suggesting that the reduced adaptation may be a consequence of the reduced response to different stimuli reported for amblyopic eyes.

  11. Susceptibility to infection and immune response in insular and continental populations of Egyptian vulture: implications for conservation.

    Directory of Open Access Journals (Sweden)

    Laura Gangoso

    Full Text Available BACKGROUND: A generalized decline in populations of Old World avian scavengers is occurring on a global scale. The main cause of the observed crisis in continental populations of these birds should be looked for in the interaction between two factors -- changes in livestock management, including the increased use of pharmaceutical products, and disease. Insular vertebrates seem to be especially susceptible to diseases induced by the arrival of exotic pathogens, a process often favored by human activities, and sedentary and highly dense insular scavengers populations may be thus especially exposed to infection by such pathogens. Here, we compare pathogen prevalence and immune response in insular and continental populations of the globally endangered Egyptian vulture under similar livestock management scenarios, but with different ecological and evolutionary perspectives. METHODS/PRINCIPAL FINDINGS: Adult, immature, and fledgling vultures from the Canary Islands and the Iberian Peninsula were sampled to determine a the prevalence of seven pathogen taxa and b their immunocompetence, as measured by monitoring techniques (white blood cells counts and immunoglobulins. In the Canarian population, pathogen prevalence was higher and, in addition, an association among pathogens was apparent, contrary to the situation detected in continental populations. Despite that, insular fledglings showed lower leukocyte profiles than continental birds and Canarian fledglings infected by Chlamydophila psittaci showed poorer cellular immune response. CONCLUSIONS/SIGNIFICANCE: A combination of environmental and ecological factors may contribute to explain the high susceptibility to infection found in insular vultures. The scenario described here may be similar in other insular systems where populations of carrion-eaters are in strong decline and are seriously threatened. Higher susceptibility to infection may be a further factor contributing decisively to the extinction

  12. Using state-trace analysis to dissociate the functions of the human hippocampus and perirhinal cortex in recognition memory.

    Science.gov (United States)

    Staresina, Bernhard P; Fell, Juergen; Dunn, John C; Axmacher, Nikolai; Henson, Richard N

    2013-02-19

    A recurring issue in neuroscience concerns evidence as to whether two or more brain regions implement qualitatively different functions. Here we introduce the application of state-trace analysis to measures of neural activity, illustrating how this analysis can furnish compelling evidence for qualitatively different functions, even when the precise "neurometric" mapping between function and brain measure is unknown. In doing so, we address a long-standing debate about the brain systems supporting human memory: whether the hippocampus and the perirhinal cortex, two key components of the medial temporal lobe memory system, provide qualitatively different contributions to recognition memory. An alternative account has been that both regions support a single shared function, such as memory strength, with the apparent dissociations obtained by previous neuroimaging studies merely reflecting different, nonlinear neurometric mappings across regions. To adjudicate between these scenarios, we analyze intracranial electroencephalographic data obtained directly from human hippocampus and perirhinal cortex during a recognition paradigm and apply state-trace analysis to responses evoked by the retrieval cue as a function of different types of memory judgment. Assuming only that the neurometric mapping in each region is monotonic, any unidimensional theory (such as the memory-strength account) will produce a monotonic state trace. Critically, results showed a nonmonotonic state trace; that is, activity levels in the two regions did not show the same relative ordering across memory conditions. This nonmonotonic state trace demonstrates that there are at least two different functions implemented across the hippocampus and perirhinal cortex, allowing formal rejection of a single-process account of medial temporal lobe contributions to recognition memory.

  13. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex.

    Science.gov (United States)

    Lim, Andrew S P; Srivastava, Gyan P; Yu, Lei; Chibnik, Lori B; Xu, Jishu; Buchman, Aron S; Schneider, Julie A; Myers, Amanda J; Bennett, David A; De Jager, Philip L

    2014-11-01

    Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues, including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of methylation preceding peak transcript expression by 1-3 hours. Weak ante-mortem rest-activity rhythms were associated with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer's disease. These findings support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role in driving 24-hour rhythms of gene expression in the human dorsolateral prefrontal

  14. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Andrew S P Lim

    2014-11-01

    Full Text Available Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues, including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of methylation preceding peak transcript expression by 1-3 hours. Weak ante-mortem rest-activity rhythms were associated with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer's disease. These findings support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role in driving 24-hour rhythms of gene expression in the human

  15. Investigation of human visual cortex responses to flickering light using functional near infrared spectroscopy and constrained ICA

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Thang

    2014-11-01

    Full Text Available The human visual sensitivity to the flickering light has been under investigation for decades. The finding of research in this area can contribute to the understanding of human visual system mechanism and visual disorders, and establishing diagnosis and treatment of diseases. The aim of this study is to investigate the effects of the flickering light to the visual cortex by monitoring the hemodynamic responses of the brain with the functional near infrared spectroscopy (fNIRS method. Since the acquired fNIRS signals are affected by physiological factors and measurement artifacts, constrained independent component analysis (cICA was applied to extract the actual fNIRS responses from the obtained data. The experimental results revealed significant changes (p < 0.0001 of the hemodynamic responses of the visual cortex from the baseline when the flickering stimulation was activated. With the uses of cICA, the contrast to noise ratio (CNR, reflecting the contrast of hemodynamic concentration between rest and task, became larger. This indicated the improvement of the fNIRS signals when the noise was eliminated. In subsequent studies, statistical analysis was used to infer the correlation between the fNIRS signals and the visual stimulus. We found that there was a slight decrease of the oxygenated hemoglobin concentration (about 5.69% over four frequencies when the modulation increased. However, the variations of oxy and deoxy-hemoglobin were not statistically significant.

  16. Lipid Profile in Human Frontal Cortex is Sustained Throughout Healthy Adult Lifespan to Decay at Advanced Ages.

    Science.gov (United States)

    Cabré, Rosanna; Naudí, Alba; Dominguez-Gonzalez, Mayelin; Jové, Mariona; Ayala, Victòria; Mota-Martorell, Natalia; Pradas, Irene; Nogueras, Lara; Rué, Montserrat; Portero-Otín, Manuel; Ferrer, Isidro; Pamplona, Reinald

    2017-08-31

    Fatty acids are key components in the structural diversity of lipids and play a strategic role in the functional properties of lipids which determine the structural and functional integrity of neural cell membranes, the generation of lipid signaling mediators, and the chemical reactivity of acyl chains. The present study analyzes the profile of lipid fatty acid composition of membranes of human frontal cortex area 8 in individuals ranging from 40 to 90 years old. Different components involved in polyunsaturated fatty acid (PUFA) biosynthesis pathways, as well as adaptive defense mechanisms involved in the lipid-mediated modulation of inflammation, are also assessed. Our results show that the lipid profile in human frontal cortex is basically preserved through the adult lifespan to decay at advanced ages, which is accompanied by an adaptive pro-active anti-inflammatory response possibly geared to ensuring cell survival and function. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans.

    Directory of Open Access Journals (Sweden)

    Niall W Duncan

    Full Text Available Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc, dorsomedial thalamus (DMT, and periaqueductal grey (PAG. It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.

  18. Altered GABAA Receptor Subunit Expression and Pharmacology in Human Angelman Syndrome Cortex

    Science.gov (United States)

    Roden, William H.; Peugh, Lindsey D.; Jansen, Laura A.

    2011-01-01

    The neurodevelopmental disorder Angelman syndrome is most frequently caused by deletion of the maternally-derived chromosome 15q11-q13 region, which includes not only the causative UBE3A gene, but also the β3-α5-γ3 GABAA receptor subunit gene cluster. GABAergic dysfunction has been hypothesized to contribute to the occurrence of epilepsy and cognitive and behavioral impairments in this condition. In the present study, analysis of GABAA receptor subunit expression and pharmacology was performed in cerebral cortex from four subjects with Angelman syndrome and compared to that from control tissue. The membrane fraction of frozen postmortem neocortical tissue was isolated and subjected to quantitative Western blot analysis. The ratios of β3/β2 and α5/α1 subunit protein expression in Angelman syndrome cortex were significantly decreased when compared with controls. An additional membrane fraction was injected into Xenopus oocytes, resulting in incorporation of the brain membrane vesicles with their associated receptors into the oocyte cellular membrane. Two-electrode voltage clamp analysis of GABAA receptor currents was then performed. Studies of GABAA receptor pharmacology in Angelman syndrome cortex revealed increased current enhancement by the α1-selective benzodiazepine site agonist zolpidem and by the barbiturate phenobarbital, while sensitivity to current inhibition by zinc was decreased. GABAA receptor affinity and modulation by neurosteroids were unchanged. This shift in GABAA receptor subunit expression and pharmacology in Angelman syndrome is consistent with impaired extrasynaptic but intact to augmented synaptic cortical GABAergic inhibition, which could contribute to the epileptic, behavioral, and cognitive phenotypes of the disorder. PMID:20692323

  19. Predicting the location of human perirhinal cortex, Brodmann's area 35, from MRI

    DEFF Research Database (Denmark)

    Augustinack, Jean C.; Huber, Kristen E.; Stevens, Allison A.

    2013-01-01

    in mild cognitive impairment and Alzheimer's disease compared to controls in the predicted perirhinal area 35. Our ex vivo probabilistic mapping of the perirhinal cortex provides histologically validated, automated and accurate labeling of architectonic regions in the medial temporal lobe, and facilitates...... Hausdorff distance was 4.0mm for the left hemispheres (n=7) and 3.2mm for the right hemispheres (n=7) across subjects. To show the utility of perirhinal localization, we mapped our labels to a subset of the Alzheimer's Disease Neuroimaging Initiative dataset and found decreased cortical thickness measures...

  20. Impairment of social and moral behavior related to early damage in human prefrontal cortex.

    Science.gov (United States)

    Anderson, S W; Bechara, A; Damasio, H; Tranel, D; Damasio, A R

    1999-11-01

    The long-term consequences of early prefrontal cortex lesions occurring before 16 months were investigated in two adults. As is the case when such damage occurs in adulthood, the two early-onset patients had severely impaired social behavior despite normal basic cognitive abilities, and showed insensitivity to future consequences of decisions, defective autonomic responses to punishment contingencies and failure to respond to behavioral interventions. Unlike adult-onset patients, however, the two patients had defective social and moral reasoning, suggesting that the acquisition of complex social conventions and moral rules had been impaired. Thus early-onset prefrontal damage resulted in a syndrome resembling psychopathy.

  1. Functional role for suppression of the insular-striatal circuit in modulating interoceptive effects of alcohol.

    Science.gov (United States)

    Jaramillo, Anel A; Agan, Verda E; Makhijani, Viren H; Pedroza, Stephen; McElligott, Zoe A; Besheer, Joyce

    2017-09-27

    The insular cortex (IC) is a region proposed to modulate, in part, interoceptive states and motivated behavior. Interestingly, IC dysfunction and deficits in interoceptive processing are often found among individuals with substance-use disorders. Furthermore, the IC projects to the nucleus accumbens core (AcbC), a region known to modulate the discriminative stimulus/interoceptive effects of alcohol and other drug-related behaviors. Therefore, the goal of the present work was to investigate the possible role of the IC ➔ AcbC circuit in modulating the interoceptive effects of alcohol. Thus, we utilized a chemogenetic technique (hM4Di designer receptor activation by designer drugs) to silence neuronal activity in the IC of rats trained to discriminate alcohol (1 g/kg, IG) versus water using an operant or Pavlovian alcohol discrimination procedure. Chemogenetic silencing of the IC or IC ➔ AcbC neuronal projections resulted in potentiated sensitivity to the interoceptive effects of alcohol in both the operant and Pavlovian tasks. Together, these data provide critical evidence for the nature of the complex IC circuitry and, specifically, suppression of the insular-striatal circuit in modulating behavior under a drug stimulus control. © 2017 Society for the Study of Addiction.

  2. Syntactic and auditory spatial processing in the human temporal cortex: an MEG study.

    Science.gov (United States)

    Herrmann, Björn; Maess, Burkhard; Hahne, Anja; Schröger, Erich; Friederici, Angela D

    2011-07-15

    Processing syntax is believed to be a higher cognitive function involving cortical regions outside sensory cortices. In particular, previous studies revealed that early syntactic processes at around 100-200 ms affect brain activations in anterior regions of the superior temporal gyrus (STG), while independent studies showed that pure auditory perceptual processing is related to sensory cortex activations. However, syntax-related modulations of sensory cortices were reported recently, thereby adding diverging findings to the previous studies. The goal of the present magnetoencephalography study was to localize the cortical regions underlying early syntactic processes and those underlying perceptual processes using a within-subject design. Sentences varying the factors syntax (correct vs. incorrect) and auditory space (standard vs. change of interaural time difference (ITD)) were auditorily presented. Both syntactic and auditory spatial anomalies led to very early activations (40-90 ms) in the STG. Around 135 ms after violation onset, differential effects were observed for syntax and auditory space, with syntactically incorrect sentences leading to activations in the anterior STG, whereas ITD changes elicited activations more posterior in the STG. Furthermore, our observations strongly indicate that the anterior and the posterior STG are activated simultaneously when a double violation is encountered. Thus, the present findings provide evidence of a dissociation of speech-related processes in the anterior STG and the processing of auditory spatial information in the posterior STG, compatible with the view of different processing streams in the temporal cortex. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Top-down modulation in human visual cortex predicts the stability of a perceptual illusion

    Science.gov (United States)

    Meindertsma, Thomas; Hillebrand, Arjan; van Dijk, Bob W.; Lamme, Victor A. F.; Donner, Tobias H.

    2014-01-01

    Conscious perception sometimes fluctuates strongly, even when the sensory input is constant. For example, in motion-induced blindness (MIB), a salient visual target surrounded by a moving pattern suddenly disappears from perception, only to reappear after some variable time. Whereas such changes of perception result from fluctuations of neural activity, mounting evidence suggests that the perceptual changes, in turn, may also cause modulations of activity in several brain areas, including visual cortex. In this study, we asked whether these latter modulations might affect the subsequent dynamics of perception. We used magnetoencephalography (MEG) to measure modulations in cortical population activity during MIB. We observed a transient, retinotopically widespread modulation of beta (12–30 Hz)-frequency power over visual cortex that was closely linked to the time of subjects' behavioral report of the target disappearance. This beta modulation was a top-down signal, decoupled from both the physical stimulus properties and the motor response but contingent on the behavioral relevance of the perceptual change. Critically, the modulation amplitude predicted the duration of the subsequent target disappearance. We propose that the transformation of the perceptual change into a report triggers a top-down mechanism that stabilizes the newly selected perceptual interpretation. PMID:25411458

  4. Multivariate Neural Representations of Value during Reward Anticipation and Consummation in the Human Orbitofrontal Cortex

    Science.gov (United States)

    Yan, Chao; Su, Li; Wang, Yi; Xu, Ting; Yin, Da-zhi; Fan, Ming-xia; Deng, Ci-ping; Hu, Yang; Wang, Zhao-xin; Cheung, Eric F. C.; Lim, Kelvin O.; Chan, Raymond C. K.

    2016-01-01

    The role of the orbitofrontal cortex (OFC) in value processing is a focus of research. Conventional imaging analysis, where smoothing and averaging are employed, may not be sufficiently sensitive in studying the OFC, which has heterogeneous anatomical structures and functions. In this study, we employed representational similarity analysis (RSA) to reveal the multi-voxel fMRI patterns in the OFC associated with value processing during the anticipatory and the consummatory phases. We found that multi-voxel activation patterns in the OFC encoded magnitude and partial valence information (win vs. loss) but not outcome (favourable vs. unfavourable) during reward consummation. Furthermore, the lateral OFC rather than the medial OFC encoded loss information. Also, we found that OFC encoded values in a similar way to the ventral striatum (VS) or the anterior insula (AI) during reward anticipation regardless of motivated response and to the medial prefrontal cortex (MPFC) and the VS in reward consummation. In contrast, univariate analysis did not show changes of activation in the OFC. These findings suggest an important role of the OFC in value processing during reward anticipation and consummation. PMID:27378417

  5. Solar Forecasting in a Challenging Insular Context

    Directory of Open Access Journals (Sweden)

    Philippe Lauret

    2016-01-01

    Full Text Available This paper aims at assessing the accuracy of different solar forecasting methods in the case of an insular context. Two sites of La Réunion Island, Le Tampon and Saint-Pierre, are chosen to do the benchmarking exercise. Réunion Island is a tropical island with a complex orography where cloud processes are mainly governed by local dynamics. As a consequence, Réunion Island exhibits numerous micro-climates. The two aforementioned sites are quite representative of the challenging character of solar forecasting in the case of a tropical island with complex orography. Hence, although distant from only 10 km, these two sites exhibit very different sky conditions. This work focuses on day-ahead and intra-day solar forecasting. Day-ahead solar forecasts are provided by the European Center for Medium-Range Weather Forecast (ECMWF. This organization maintains and runs the Numerical Weather Prediction (NWP model named Integrated Forecast System (IFS. In this work, post-processing techniques are applied to refine the output of the IFS model for day-ahead forecasting. Statistical models like a recursive linear model or a nonlinear model such as an artificial neural network are used to produce the intra-day solar forecasts. It is shown that a combination of the IFS model and the neural network model further improves the accuracy of the forecasts.

  6. Association of CD33 polymorphism rs3865444 with Alzheimer's disease pathology and CD33 expression in human cerebral cortex.

    Science.gov (United States)

    Walker, Douglas G; Whetzel, Alexis M; Serrano, Geidy; Sue, Lucia I; Beach, Thomas G; Lue, Lih-Fen

    2015-02-01

    Recent findings identified the minor A allele present in the single-nucleotide polymorphism rs3865444 in the CD33 gene as being associated with the reduced risk of developing Alzheimer's disease (AD). CD33 (Siglec-3) is an immune function protein with anti-inflammatory signaling, cell adhesion, and endocytosis functions with sialic acid-modified proteins or lipids as ligands. Its involvement in AD pathologic mechanisms is still unclear; so, the goal of this study was to investigate if the rs3865444 polymorphism affects the development of AD pathology and the expression of CD33 messenger RNA (mRNA) and protein. For this study, we used DNA from 96 nondemented (ND) and 97 AD neuropathologically diagnosed cases to identify the different rs3865444 alleles and correlate with different measures of AD pathology. Using semiquantitative histologic measures of plaque and tangle pathology, we saw no significant differences between the different genotypes within these disease groups. However, increased expression of CD33 mRNA was associated with increasing AD pathology in temporal cortex brain samples. We also showed that cases with A/A alleles had reduced levels of CD33 protein in temporal cortex but increased levels of the microglia protein IBA-1. Using immunohistochemistry on temporal cortex sections, CD33 was selectively localized to microglia, with greater expression in activated microglia. The factors causing increased CD33 expression by microglia in brain are still unclear, although both genetic and disease factors are involved. Treatment of human microglia isolated from autopsy brains with amyloid-beta peptide and a range of other inflammatory activating agents resulted in reduced CD33 mRNA and protein levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evidence for a contribution of the motor cortex to the long-latency stretch reflex of the human thumb.

    Science.gov (United States)

    Capaday, C; Forget, R; Fraser, R; Lamarre, Y

    1991-01-01

    1. In normal subjects, transcranial magnetic stimulation of the hand region of the motor cortex evokes motor responses only in contralateral hand muscles at a latency of about 19-24 ms. In contrast, stimulation of the motor cortex of three mirror movement subjects evoked, nearly simultaneously, motor responses in hand muscles on both sides of the body at latencies similar to those of normal subjects. In these subjects no other neuroanatomical pathways appear to be abnormally directed across the mid-line. Thus, their mirror movements are probably due to a projection of the corticospinal tract to homologous motoneurone pools on each side of the body. 2. We reasoned that if the motor cortex contributes to the generation of long-latency stretch reflex responses then in these mirror movement subjects stretching a muscle on one side of the body should produce long-latency reflex responses in the ipsilateral and the homologous contralateral muscle. 3. To test this idea experiments were done on normal human subjects and on the subjects with mirror movements. The electromyographic (EMG) activity of the flexor pollicis longus muscle (FPL) on each side of the body was recorded. Stretch of the distal phalanx of the thumb of one hand produced a series of distinct reflex EMG responses in the ipsilateral FPL. The earliest response, when present, began at 25 ms (S.D. = 3.5 ms) and was followed by responses at 40 (S.D. = 3.9 ms) and 56 ms (S.D. = 4.3 ms). There was no difference, either in timing or intensity, between the ipsilateral FPL EMG responses of normal subjects and those of the mirror movement subjects. 4. No response of any kind was observed in the contralateral (unstretched) FPL of normal subjects. In contrast, we observed in all three mirror movement subjects EMG responses in the contralateral (unstretched) FPL beginning at 45-50 ms. The latency of this response is considerably shorter than the fastest voluntary kinaesthetic reaction time, which was on average 130 ms (S

  8. Reconstructing Tone Sequences from Functional Magnetic Resonance Imaging Blood-Oxygen Level Dependent Responses within Human Primary Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Kelly H. Chang

    2017-11-01

    Full Text Available Here we show that, using functional magnetic resonance imaging (fMRI blood-oxygen level dependent (BOLD responses in human primary auditory cortex, it is possible to reconstruct the sequence of tones that a person has been listening to over time. First, we characterized the tonotopic organization of each subject’s auditory cortex by measuring auditory responses to randomized pure tone stimuli and modeling the frequency tuning of each fMRI voxel as a Gaussian in log frequency space. Then, we tested our model by examining its ability to work in reverse. Auditory responses were re-collected in the same subjects, except this time they listened to sequences of frequencies taken from simple songs (e.g., “Somewhere Over the Rainbow”. By finding the frequency that minimized the difference between the model’s prediction of BOLD responses and actual BOLD responses, we were able to reconstruct tone sequences, with mean frequency estimation errors of half an octave or less, and little evidence of systematic biases.

  9. Phasic REM Transiently Approaches Wakefulness in the Human Cortex-A Single-Pulse Electrical Stimulation Study.

    Science.gov (United States)

    Usami, Kiyohide; Matsumoto, Riki; Kobayashi, Katsuya; Hitomi, Takefumi; Matsuhashi, Masao; Shimotake, Akihiro; Kikuchi, Takayuki; Yoshida, Kazumichi; Kunieda, Takeharu; Mikuni, Nobuhiro; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio

    2017-08-01

    To investigate the changes in cortical neural responses induced by external inputs during phasic rapid eye movement (p-REM) sleep. Single-pulse electrical stimulation (SPES) was directly applied to the human cortex during REM sleep through subdural electrodes, in seven patients who underwent invasive presurgical evaluation for intractable partial epilepsy. SPES was applied to parts of the cortex through the subdural electrodes, and induced cortical responses were recorded from adjacent and remote cortical areas. Phase-locked corticocortical-evoked potentials (CCEPs) and nonphase-locked or induced CCEP-related high gamma activity (CCEP-HGA, 100-200 Hz), which are considered proxies for cortical connectivity and cortical excitability, respectively, were compared among wakefulness, p-REM (within ±2 seconds of significant bursts of REM), and tonic REM (t-REM) (periphasic REM) periods. During REM sleep, SPES elicited a transient increase in CCEP-HGA, followed by a subsequent decrease or suppression. The HGA suppression during both p-REM and t-REM was stronger than during wakefulness. However, its suppression during p-REM was weaker than during t-REM. On the other hand, the CCEP waveform did not show any significant difference between the two REM periods. Cortical excitability to exogenous input was different between p-REM and t-REM. The change of the cortical excitability in p-REM was directed toward wakefulness, which may produce incomplete short bursts of consciousness, leading to dreams.

  10. Gustatory imagery reveals functional connectivity from the prefrontal to insular cortices traced with magnetoencephalography.

    Science.gov (United States)

    Kobayashi, Masayuki; Sasabe, Tetsuya; Shigihara, Yoshihito; Tanaka, Masaaki; Watanabe, Yasuyoshi

    2011-01-01

    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the "top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7±34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2±56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC.

  11. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation.

    Science.gov (United States)

    Monte-Silva, Katia; Kuo, Min-Fang; Hessenthaler, Silvia; Fresnoza, Shane; Liebetanz, David; Paulus, Walter; Nitsche, Michael A

    2013-05-01

    Non-invasive brain stimulation enables the induction of neuroplasticity in humans, however, with so far restricted duration of the respective cortical excitability modifications. Conventional anodal transcranial direct current stimulation (tDCS) protocols including one stimulation session induce NMDA receptor-dependent excitability enhancements lasting for about 1 h. We aimed to extend the duration of tDCS effects by periodic stimulation, consisting of two stimulation sessions, since periodic stimulation protocols are able to induce neuroplastic excitability alterations stable for days or weeks, termed late phase long term potentiation (l-LTP), in animal slice preparations. Since both, l-LTP and long term memory formation, require gene expression and protein synthesis, and glutamatergic receptor activity modifications, l-LTP might be a candidate mechanism for the formation of long term memory. The impact of two consecutive tDCS sessions on cortical excitability was probed in the motor cortex of healthy humans, and compared to that of a single tDCS session. The second stimulation was applied without an interval (temporally contiguous tDCS), during the after-effects of the first stimulation (during after-effects; 3, or 20 min interval), or after the after-effects of the first stimulation had vanished (post after-effects; 3 or 24 h interval). The during after-effects condition resulted in an initially reduced, but then relevantly prolonged excitability enhancement, which was blocked by an NMDA receptor antagonist. The other conditions resulted in an abolishment, or a calcium channel-dependent reversal of neuroplasticity. Repeated tDCS within a specific time window is able to induce l-LTP-like plasticity in the human motor cortex. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Representation of auditory-filter phase characteristics in the cortex of human listeners

    DEFF Research Database (Denmark)

    Rupp, A.; Sieroka, N.; Gutschalk, A.

    2008-01-01

    , which differently affect the flat envelopes of the Schroeder-phase maskers. We examined the influence of auditory-filter phase characteristics on the neural representation in the auditory cortex by investigating cortical auditory evoked fields ( AEFs). We found that the P1m component exhibited larger...... amplitudes when a long-duration tone was presented in a repeating linearly downward sweeping ( Schroeder positive, or m(+)) masker than in a repeating linearly upward sweeping ( Schroeder negative, or m(-)) masker. We also examined the neural representation of short-duration tone pulses presented...... at different temporal positions within a single period of three maskers differing in their component phases ( m(+), m(-), and sine phase m(0)). The P1m amplitude varied with the position of the tone pulse in the masker and depended strongly on the masker waveform. The neuromagnetic results in all cases were...

  13. Toward an integrative science of the developing human mind and brain: Focus on the developing cortex.

    Science.gov (United States)

    Jernigan, Terry L; Brown, Timothy T; Bartsch, Hauke; Dale, Anders M

    2016-04-01

    Based on the Huttenlocher lecture, this article describes the need for a more integrative scientific paradigm for addressing important questions raised by key observations made over 2 decades ago. Among these are the early descriptions by Huttenlocher of variability in synaptic density in cortex of postmortem brains of children of different ages and the almost simultaneous reports of cortical volume reductions on MR imaging in children and adolescents. In spite of much progress in developmental neurobiology, developmental cognitive neuroscience, and behavioral and imaging genetics, we still do not know how these early observations relate to each other. It is argued that large scale, collaborative research programs are needed to establish the associations between behavioral differences among children and imaging biomarkers, and to link the latter to cellular changes in the developing brain. Examples of progress and challenges remaining are illustrated with data from the Pediatric Imaging, Neurocognition, and Genetics Project (PING). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Scene-selective coding by single neurons in the human parahippocampal cortex.

    Science.gov (United States)

    Mormann, Florian; Kornblith, Simon; Cerf, Moran; Ison, Matias J; Kraskov, Alexander; Tran, Michelle; Knieling, Simeon; Quian Quiroga, Rodrigo; Koch, Christof; Fried, Itzhak

    2017-01-31

    Imaging, electrophysiological, and lesion studies have shown a relationship between the parahippocampal cortex (PHC) and the processing of spatial scenes. Our present knowledge of PHC, however, is restricted to the macroscopic properties and dynamics of bulk tissue; the behavior and selectivity of single parahippocampal neurons remains largely unknown. In this study, we analyzed responses from 630 parahippocampal neurons in 24 neurosurgical patients during visual stimulus presentation. We found a spatially clustered subpopulation of scene-selective units with an associated event-related field potential. These units form a population code that is more distributed for scenes than for other stimulus categories, and less sparse than elsewhere in the medial temporal lobe. Our electrophysiological findings provide insight into how individual units give rise to the population response observed with functional imaging in the parahippocampal place area.

  15. Influence of position and stimulation parameters on intracortical inhibition and facilitation in human tongue motor cortex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk

    Paired-pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-interval intracortical inhibitory (SICI) and facilitatory (ICF) networks. The aim of the study was to examine the influence of body positions (recline and supine), inter-stimulus intervals (ISI) between the test...... stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. In study 1 and 2, fourteen and seventeen healthy volunteers participated respectively. ppTMS was applied over the “hot-spot” of the tongue motor cortex and motor evoked potentials (MEPs) were...... recorded from contralateral tongue muscles. In study 1, single pulse and three ppTMS ISIs: 2, 10, 15 ms were applied 8 times each in three blocks (TS: 120%, 140% and 160% of resting motor threshold (rMT); CS: 80% of rMT) in two different body positions (recline and supine) randomly. In study 2, single...

  16. Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex

    NARCIS (Netherlands)

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, R.; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain

  17. Eusocial Apidae in tropical insular region

    Directory of Open Access Journals (Sweden)

    Maria Cristina Affonso Lorenzon

    2006-09-01

    Full Text Available This study examined species richness and relative abundance of eusocial Apidae in an insular region of rain-forest, southeastern Brazil. Sampling took place during one year, using an standardized method with entomological net, at sites of secondary growth habitats surrounded by Atlantic rain-forest. Thirteen species of eusocial Apidae were netted at flowers, over 80% of the captured individuals were meliponine species, although the presence of Apis mellifera, commonly dominant in Brazilian habitats. Foraging activity of these bee species were essentially non-seasonal, apparently affected by high humidity. The patterns in abundance and species richness observed in Ilha Grande differed with other studies conducted at tropical islands, which were characterized by the poverty of meliponine species.Esta pesquisa foi realizada em uma Ilha tropical do Sudeste brasileiro, onde se examinou a riqueza em espécies e sua abundância relativa de abelhas Apidae eussocias. A amostragem foi feita durante um ano, com pulçás entomológicos, utilizando-se método padrão de coleta em regiões de habitat secundário, cercado por floresta de mata Atlântica. Treze espécies de abelhas eussociais foram capturadas nas flores, mais de 80% do total de espécimes eram meliponíneos, apesar da presença de Apis mellifera, comumente dominante nos hábitats brasileiros. O forrageamento das espécies de abelhas apresentou-se asazonal, com forte influência de períodos muito úmidos. Na Ilha Grande, padrões de abundância e riqueza em espécies contrastam com estudos realizados em outras ilhas, que se caracterizam pela baixa ocorrência de meliponíneos.

  18. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    Science.gov (United States)

    Andoh, Jamila; Zatorre, Robert J

    2012-09-12

    Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS. However, this

  19. Report to Congress on Insular Area energy vulnerability

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was prepared in response to Section 1406 of the Energy Policy Act of 1992 (Public Law 102-486), which directed the Department of Energy (DOE) to ``conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption,`` and to ``outline how the insular areas shall gain access to vital oil supplies during times of national emergency.`` The Act defines the insular areas to be the US Virgin Islands and Puerto Rico in the Caribbean, and Guam, American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI), and Palau in the Pacific. In the study, ``unique vulnerabilities`` were defined as susceptibility to: (1) more frequent or more likely interruptions of oil supplies compared to the US Mainland, and/or (2) disproportionately larger or more likely economic losses in the event of an oil supply disruption. In order to assess unique vulnerabilities, the study examined the insular areas` experience during past global disruptions of oil supplies and during local emergencies caused by natural disasters. The effects of several possible future global disruptions and local emergencies were also analyzed. Analyses were based on historical data, simulations using energy and economic models, and interviews with officials in the insular governments and the energy industry.

  20. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    Directory of Open Access Journals (Sweden)

    Christo ePantev

    2012-06-01

    Full Text Available Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG. Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for three hours inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus - tailor-made notched music training (TMNMT. By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs were significantly reduced after training. The subsequent short-term (5 days training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies > 8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy are planned. A goal is to transfer this novel, completely non-invasive, and low-cost treatment approach for tonal tinnitus into routine clinical practice.

  1. Ghrelin mimics fasting to enhance human hedonic, orbitofrontal cortex, and hippocampal responses to food.

    Science.gov (United States)

    Goldstone, Anthony P; Prechtl, Christina G; Scholtz, Samantha; Miras, Alexander D; Chhina, Navpreet; Durighel, Giuliana; Deliran, Seyedeh S; Beckmann, Christian; Ghatei, Mohammad A; Ashby, Damien R; Waldman, Adam D; Gaylinn, Bruce D; Thorner, Michael O; Frost, Gary S; Bloom, Stephen R; Bell, Jimmy D

    2014-06-01

    Ghrelin, which is a stomach-derived hormone, increases with fasting and energy restriction and may influence eating behaviors through brain hedonic reward-cognitive systems. Therefore, changes in plasma ghrelin might mediate counter-regulatory responses to a negative energy balance through changes in food hedonics. We investigated whether ghrelin administration (exogenous hyperghrelinemia) mimics effects of fasting (endogenous hyperghrelinemia) on the hedonic response and activation of brain-reward systems to food. In a crossover design, 22 healthy, nonobese adults (17 men) underwent a functional magnetic resonance imaging (fMRI) food-picture evaluation task after a 16-h overnight fast (Fasted-Saline) or after eating breakfast 95 min before scanning (730 kcal, 14% protein, 31% fat, and 55% carbohydrate) and receiving a saline (Fed-Saline) or acyl ghrelin (Fed-Ghrelin) subcutaneous injection before scanning. One male subject was excluded from the fMRI analysis because of excess head motion, which left 21 subjects with brain-activation data. Compared with the Fed-Saline visit, both ghrelin administration to fed subjects (Fed-Ghrelin) and fasting (Fasted-Saline) significantly increased the appeal of high-energy foods and associated orbitofrontal cortex activation. Both fasting and ghrelin administration also increased hippocampus activation to high-energy- and low-energy-food pictures. These similar effects of endogenous and exogenous hyperghrelinemia were not explicable by consistent changes in glucose, insulin, peptide YY, and glucagon-like peptide-1. Neither ghrelin administration nor fasting had any significant effect on nucleus accumbens, caudate, anterior insula, or amygdala activation during the food-evaluation task or on auditory, motor, or visual cortex activation during a control task. Ghrelin administration and fasting have similar acute stimulatory effects on hedonic responses and the activation of corticolimbic reward-cognitive systems during food

  2. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans

    Directory of Open Access Journals (Sweden)

    Zhuang Cui

    2017-08-01

    Full Text Available The arrival of sound signals in the auditory cortex (AC triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC and extrinsic functional connectivity (eFC of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices. Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  3. Human anterolateral entorhinal cortex volumes are associated with cognitive decline in aging prior to clinical diagnosis.

    Science.gov (United States)

    Olsen, Rosanna K; Yeung, Lok-Kin; Noly-Gandon, Alix; D'Angelo, Maria C; Kacollja, Arber; Smith, Victoria M; Ryan, Jennifer D; Barense, Morgan D

    2017-09-01

    We investigated whether older adults without subjective memory complaints, but who present with cognitive decline in the laboratory, demonstrate atrophy in medial temporal lobe (MTL) subregions associated with Alzheimer's disease. Forty community-dwelling older adults were categorized based on Montreal Cognitive Assessment (MoCA) performance. Total gray/white matter, cerebrospinal fluid, and white matter hyperintensity load were quantified from whole-brain T1-weighted and fluid-attenuated inversion recovery magnetic resonance imaging scans, whereas hippocampal subfields and MTL cortical subregion volumes (CA1, dentate gyrus/CA2/3, subiculum, anterolateral and posteromedial entorhinal, perirhinal, and parahippocampal cortices) were quantified using high-resolution T2-weighted scans. Cognitive status was evaluated using standard neuropsychological assessments. No significant differences were found in the whole-brain measures. However, MTL volumetry revealed that anterolateral entorhinal cortex (alERC) volume-the same region in which Alzheimer's pathology originates-was strongly associated with MoCA performance. This is the first study to demonstrate that alERC volume is related to cognitive decline in undiagnosed community-dwelling older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Interactions of top-down and bottom-up mechanisms in human visual cortex.

    Science.gov (United States)

    McMains, Stephanie; Kastner, Sabine

    2011-01-12

    Multiple stimuli present in the visual field at the same time compete for neural representation by mutually suppressing their evoked activity throughout visual cortex, providing a neural correlate for the limited processing capacity of the visual system. Competitive interactions among stimuli can be counteracted by top-down, goal-directed mechanisms such as attention, and by bottom-up, stimulus-driven mechanisms. Because these two processes cooperate in everyday life to bias processing toward behaviorally relevant or particularly salient stimuli, it has proven difficult to study interactions between top-down and bottom-up mechanisms. Here, we used an experimental paradigm in which we first isolated the effects of a bottom-up influence on neural competition by parametrically varying the degree of perceptual grouping in displays that were not attended. Second, we probed the effects of directed attention on the competitive interactions induced with the parametric design. We found that the amount of attentional modulation varied linearly with the degree of competition left unresolved by bottom-up processes, such that attentional modulation was greatest when neural competition was little influenced by bottom-up mechanisms and smallest when competition was strongly influenced by bottom-up mechanisms. These findings suggest that the strength of attentional modulation in the visual system is constrained by the degree to which competitive interactions have been resolved by bottom-up processes related to the segmentation of scenes into candidate objects.

  5. Occlusion of LTP-like plasticity in human primary motor cortex by action observation.

    Directory of Open Access Journals (Sweden)

    Jean-François Lepage

    Full Text Available Passive observation of motor actions induces cortical activity in the primary motor cortex (M1 of the onlooker, which could potentially contribute to motor learning. While recent studies report modulation of motor performance following action observation, the neurophysiological mechanism supporting these behavioral changes remains to be specifically defined. Here, we assessed whether the observation of a repetitive thumb movement--similarly to active motor practice--would inhibit subsequent long-term potentiation-like (LTP plasticity induced by paired-associative stimulation (PAS. Before undergoing PAS, participants were asked to either 1 perform abductions of the right thumb as fast as possible; 2 passively observe someone else perform thumb abductions; or 3 passively observe a moving dot mimicking thumb movements. Motor evoked potentials (MEP were used to assess cortical excitability before and after motor practice (or observation and at two time points following PAS. Results show that, similarly to participants in the motor practice group, individuals observing repeated motor actions showed marked inhibition of PAS-induced LTP, while the "moving dot" group displayed the expected increase in MEP amplitude, despite differences in baseline excitability. Interestingly, LTP occlusion in the action-observation group was present even if no increase in cortical excitability or movement speed was observed following observation. These results suggest that mere observation of repeated hand actions is sufficient to induce LTP, despite the absence of motor learning.

  6. Sustained responses for pitch and vowels map to similar sites in human auditory cortex.

    Science.gov (United States)

    Gutschalk, Alexander; Uppenkamp, Stefan

    2011-06-01

    Several studies have shown enhancement of auditory evoked sustained responses for periodic over non-periodic sounds and for vowels over non-vowels. Here, we directly compared pitch and vowels using synthesized speech with a "damped" amplitude modulation. These stimuli were parametrically varied to yield four classes of matched stimuli: (1) periodic vowels (2) non-periodic vowels, (3) periodic non-vowels, and (4) non-periodic non-vowels. 12 listeners were studied with combined MEG and EEG. Sustained responses were reliably enhanced for vowels and periodicity. Dipole source analysis revealed that a vowel contrast (vowel-non-vowel) and the periodicity-pitch contrast (periodic-non-periodic) mapped to the same site in antero-lateral Heschl's gyrus. In contrast, the non-periodic, non-vowel condition mapped to a more medial and posterior site. The sustained enhancement for vowels was significantly more prominent when the vowel identity was varied, compared to a condition where only one vowel was repeated, indicating selective adaptation of the response. These results render it unlikely that there are spatially distinct fields for vowel and pitch processing in the auditory cortex. However, the common processing of vowels and pitch raises the possibility that there is an early speech-specific field in Heschl's gyrus. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. High-resolution optical functional mapping of the human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Stefan P Koch

    2010-06-01

    Full Text Available Non-invasive optical imaging of brain function has been promoted in a number of fields in which functional magnetic resonance imaging (fMRI is limited due to constraints induced by the scanning environment. Beyond physiological and psychological research, bedside monitoring and neurorehabilitation may be relevant clinical applications that are yet little explored. A major obstacle to advocate the tool in clinical research is insufficient spatial resolution. Based on a multi-distance high-density optical imaging setup, we here demonstrate a dramatic increase in sensitivity of the method. We show that optical imaging allows for the differentiation between activations of single finger representations in the primary somatosensory cortex (SI. Methodologically our findings confirm results in a pioneering study by Zeff et al. (2007 and extend them to the homuncular organization of SI. After performing a motor task, 8 subjects underwent vibrotactile stimulation of the little finger and the thumb. We used a high-density diffuse-optical sensing array in conjunction with optical tomographic reconstruction. Optical imaging disclosed three discrete activation foci one for motor and 2 discrete foci for vibrotactile stimulation of the 1st and 5th finger respectively. The results were co-registered to the individual anatomical brain anatomy (MRI which confirmed the localization in the expected cortical gyri in 4 subjects. This advance in spatial resolution opens new perspectives to apply optical imaging in the research on plasticity notably in patients undergoing neurorehabilitation.

  8. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.

    Science.gov (United States)

    Di Lazzaro, V; Pilato, F; Saturno, E; Oliviero, A; Dileone, M; Mazzone, P; Insola, A; Tonali, P A; Ranieri, F; Huang, Y Z; Rothwell, J C

    2005-06-15

    In four conscious patients who had electrodes implanted in the cervical epidural space for the control of pain, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex before and after a 20 s period of continuous theta-burst stimulation (cTBS). It has previously been reported that this form of repetitive TMS reduces the amplitude of motor-evoked potentials (MEPs), with the maximum effect occurring at 5-10 min after the end of stimulation. The present results show that cTBS preferentially decreases the amplitude of the corticospinal I1 wave, with approximately the same time course. This is consistent with a cortical origin of the effect on the MEP. However, other protocols that lead to MEP suppression, such as short-interval intracortical inhibition, are characterized by reduced excitability of late I waves (particularly I3), suggesting that cTBS suppresses MEPs through different mechanisms, such as long-term depression in excitatory synaptic connections.

  9. Insular endemism in Recent Southern Ocean benthic Ostracoda from Marion Island: palaeozoogeographical and evolutionary implications

    DEFF Research Database (Denmark)

    Dingle, R.V.

    2002-01-01

    benthic ostracods, subantarctic, endemism, insularity, Marion Island, Southern Ocean, colonisation, quaternary, eyes, ocular-rejuvenation, dormant genes, evolution......benthic ostracods, subantarctic, endemism, insularity, Marion Island, Southern Ocean, colonisation, quaternary, eyes, ocular-rejuvenation, dormant genes, evolution...

  10. Dynamical Representation of Dominance Relationships in the Human Rostromedial Prefrontal Cortex

    NARCIS (Netherlands)

    Ligneul, R.V.A.; Obeso, I.; Ruff, C.C.; Dreher, J.C.

    2016-01-01

    Summary Humans and other primates have evolved the ability to represent their status in the group’s social hierarchy, which is essential for avoiding harm and accessing resources. Yet it remains unclear how the human brain learns dominance status and adjusts behavior accordingly during dynamic

  11. Role of posterior parietal cortex in reaching movements in humans. Clinical implication for ‘optic ataxia’

    Science.gov (United States)

    Inouchi, Morito; Matsumoto, Riki; Taki, Junya; Kikuchi, Takayuki; Mitsueda-Ono, Takahiro; Mikuni, Nobuhiro; Wheaton, Lewis; Hallett, Mark; Fukuyama, Hidenao; Shibasaki, Hiroshi; Takahashi, Ryosuke; Ikeda, Akio

    2014-01-01

    Objective To clarify the spatio-temporal profile of cortical activity related to reaching movement in the posterior parietal cortex (PPC) in humans. Methods Four patients with intractable partial epilepsy who underwent subdural electrode implantation were studied as a part of pre-surgical evaluation. We investigated the Bereitschaftspotential (BP) associated with reaching and correlated the findings with the effect of electrical stimulation of the same cortical area. Results BPs specific for reaching, as compared with BPs for simple movements by the hand or arm contralateral to the implanted hemisphere, were recognized in all patients, mainly around the intraparietal sulcus (IPS), the superior parietal lobule (SPL) and the precuneus. BPs near the IPS had the earlier onset than BPs in the SPL. Electrical stimulation of a part of the PPC, where the reach-specific BPs were recorded, selectively impaired reaching. Conclusions Intracranial BP recording and cortical electrical stimulation delineated human reach-related areas in the PPC. Significance The present study for the first time by direct cortical recording in humans demonstrates that parts of the cortices around the IPS and SPL play a crucial role in visually-guided reaching. PMID:23831168

  12. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  13. Repetitive TMS Suggests a Role of the Human Dorsal Premotor Cortex in Action Prediction

    Science.gov (United States)

    Stadler, Waltraud; Ott, Derek V. M.; Springer, Anne; Schubotz, Ricarda I.; Schütz-Bosbach, Simone; Prinz, Wolfgang

    2012-01-01

    Predicting the actions of other individuals is crucial for our daily interactions. Recent evidence suggests that the prediction of object-directed arm and full-body actions employs the dorsal premotor cortex (PMd). Thus, the neural substrate involved in action control may also be essential for action prediction. Here, we aimed to address this issue and hypothesized that disrupting the PMd impairs action prediction. Using fMRI-guided coil navigation, rTMS (five pulses, 10 Hz) was applied over the left PMd and over the vertex (control region) while participants observed everyday actions in video clips that were transiently occluded for 1 s. The participants detected manipulations in the time course of occluded actions, which required them to internally predict the actions during occlusion. To differentiate between functional roles that the PMd could play in prediction, rTMS was either delivered at occluder-onset (TMS-early), affecting the initiation of action prediction, or 300 ms later during occlusion (TMS-late), affecting the maintenance of an ongoing prediction. TMS-early over the left PMd produced more prediction errors than TMS-early over the vertex. TMS-late had no effect on prediction performance, suggesting that the left PMd might be involved particularly during the initiation of internally guided action prediction but may play a subordinate role in maintaining ongoing prediction. These findings open a new perspective on the role of the left PMd in action prediction which is in line with its functions in action control and in cognitive tasks. In the discussion, the relevance of the left PMd for integrating external action parameters with the observer’s motor repertoire is emphasized. Overall, the results are in line with the notion that premotor functions are employed in both action control and action observation. PMID:22363279

  14. Affective and cognitive prefrontal cortex projections to the lateral habenula in humans.

    Directory of Open Access Journals (Sweden)

    Karin eVadovičová

    2014-10-01

    Full Text Available Anterior insula (AI and dorsal ACC (dACC are known to process information about pain, loss, adversities, bad, harmful or suboptimal choices and consequences that threaten survival or well-being. Also pregenual ACC (pgACC is linked to loss and pain, being activated by sad thoughts and regrets. Lateral habenula (LHb is stimulated by predicted and received pain, discomfort, aversive outcome, loss. Its chronic stimulation makes us feel worse/low and gradually stops us choosing and moving for the suboptimal or punished choices, by direct and indirect (via rostromedial tegmental nucleus RMTg inhibition of DRN and VTA/SNc. The response selectivity of LHb neurons suggests their cortical input from affective and cognitive evaluative regions that make expectations about bad, unpleasant or suboptimal outcomes. Based on these facts we predicted direct dACC, pgACC and AI projections to LHb, which form part of an adversity processing circuit that learns to avoid bad outcomes by suppressing dopamine and serotonin signal. To test this connectivity we used Diffusion Tensor Imaging (DTI. We found dACC, pgACC, AI and caudolateral OFC projections to LHb. We predicted no corticohabenular projections from the reward processing regions: medial OFC (mOFC and ventral ACC (vACC because both respond most strongly to good, high valued stimuli and outcomes, inducing dopamine and serotonin release. This lack of LHb projections was confirmed for vACC and likely for mOFC. The surprising findings were the corticohabenular projections from the cognitive prefrontal cortex regions, known for flexible reasoning, planning and combining whatever information are relevant for reaching current goals. We propose that the prefrontohabenular projections provide a teaching signal for value-based choice behaviour, to learn to deselect, avoid or inhibit the potentially harmful, low valued or wrong choices, goals, strategies, predictions and ways of doing things, to prevent bad or suboptimal

  15. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    Science.gov (United States)

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fox, P.T.; Raichle, M.E.

    1984-05-01

    The purpose of this investigation was to determine the relationship between the repetition rate of a simple sensory stimulus and regional cerebral blood flow (rCBF) in the human brain. Positron emission tomography (PET), using intravenously administered H/sub 2/(/sup 15/)O as the diffusible blood-flow tracer, was employed for all CBF measurements. The use of H/sub 2/(/sup 15/)O with PET allowed eight CBF measurements to be made in rapid sequence under multiple stimulation conditions without removing the subject from the tomograph. Nine normal volunteers each underwent a series of eight H2(/sup 15/)O PET measurements of CBF. Initial and final scans were made during visual deprivation. The six intervening scans were made during visual activation with patterned-flash stimuli given in random order at 1.0-, 3.9-, 7.8-, 15.5-, 33.1-, and 61-Hz repetition rates. The region of greatest rCBF increase was determined. Within this region the rCBF was determined for every test condition and then expressed as the percentage change from the value of the initial unstimulated scan (rCBF% delta). In every subject, striate cortex rCBF% delta varied systematically with stimulus rate. Between 0 and 7.8 Hz, rCBF% delta was a linear function of stimulus repetition rate. The rCBF response peaked at 7.8 Hz and then declined. The rCBF% delta during visual stimulation was significantly greater than that during visual deprivation for every stimulus rate except 1.0 Hz. The anatomical localization of the region of peak rCBF response was determined for every subject to be the mesial occipital lobes along the calcarine fissure, primary visual cortex. Stimulus rate is a significant determinant of rCBF response in the visual cortex. Investigators of brain responses to selective activation procedures should be aware of the potential effects of stimulus rate on rCBF and other measurements of cerebral metabolism.

  17. High-sensitivity TMS/fMRI of the Human Motor Cortex Using a Dedicated Multichannel MR Coil.

    Science.gov (United States)

    Navarro de Lara, Lucia I; Tik, Martin; Woletz, Michael; Frass-Kriegl, Roberta; Moser, Ewald; Laistler, Elmar; Windischberger, Christian

    2017-04-15

    To validate a novel setup for concurrent TMS/fMRI in the human motor cortex based on a dedicated, ultra-thin, multichannel receive MR coil positioned between scalp and TMS system providing greatly enhanced sensitivity compared to the standard birdcage coil setting. A combined TMS/fMRI design was applied over the primary motor cortex based on 1Hz stimulation with stimulation levels of 80%, 90%, 100%, and 110% of the individual active motor threshold, respectively. Due to the use of a multichannel receive coil we were able to use multiband-accelerated (MB=2) EPI sequences for the acquisition of functional images. Data were analysed with SPM12 and BOLD-weighted signal intensity time courses were extracted in each subject from two local maxima (individual functional finger tapping localiser, fixed MNI coordinate of the hand knob) next to the hand area of the primary motor cortex (M1) and from the global maximum. We report excellent image quality without noticeable signal dropouts or image distortions. Parameter estimates in the three peak voxels showed monotonically ascending activation levels over increasing stimulation intensities. Across all subjects, mean BOLD signal changes for 80%, 90%, 100%, 110% of the individual active motor threshold were 0.43%, 0.63%, 1.01%, 2.01% next to the individual functional finger tapping maximum, 0.73%, 0.91%, 1.34%, 2.21% next to the MNI-defined hand knob and 0.88%, 1.09%, 1.65%, 2.77% for the global maximum, respectively. Our results show that the new setup for concurrent TMS/fMRI experiments using a dedicated MR coil array allows for high-sensitivity fMRI particularly at the site of stimulation. Contrary to the standard birdcage approach, the results also demonstrate that the new coil can be successfully used for multiband-accelerated EPI acquisition. The gain in flexibility due to the new coil can be easily combined with neuronavigation within the MR scanner to allow for accurate targeting in TMS/fMRI experiments. Copyright

  18. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback.

    Science.gov (United States)

    Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna

    2017-08-01

    One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. High antipredatory efficiency of insular lizards: a warning signal of excessive specimen collection?

    Directory of Open Access Journals (Sweden)

    Miguel Delibes

    Full Text Available We live-captured lizards on islands in the Gulf of California and the Baja California peninsula mainland, and compared their ability to escape predation. Contrary to expectations, endemic lizard species from uninhabited islands fled from humans earlier and more efficiently than those from peninsular mainland areas. In fact, 58.2% (n=146 of the lizards we tried to capture on the various islands escaped successfully, while this percentage was only 14.4% (n=160 on the peninsular mainland. Separate evidence (e.g., proportion of regenerated tails, low human population at the collection areas, etc. challenges several potential explanations for the higher antipredatory efficiency of insular lizards (e.g., more predation pressure on islands, habituation to humans on the peninsula, etc.. Instead, we suggest that the ability of insular lizards to avoid predators may be related to harvesting by humans, perhaps due to the value of endemic species as rare taxonomic entities. If this hypothesis is correct, predation-related behavioral changes in rare species could provide early warning signals of their over-exploitation, thus encouraging the adoption of conservation measures.

  20. 19 CFR 7.2 - Insular possessions of the United States other than Puerto Rico.

    Science.gov (United States)

    2010-04-01

    ... than Puerto Rico. 7.2 Section 7.2 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... NAVAL STATION § 7.2 Insular possessions of the United States other than Puerto Rico. (a) Insular possessions of the United States other than Puerto Rico are also American territory but, because those insular...

  1. Multi-echo EPI of human fear conditioning reveals improved BOLD detection in ventromedial prefrontal cortex.

    Science.gov (United States)

    Fernandez, Brice; Leuchs, Laura; Sämann, Philipp G; Czisch, Michael; Spoormaker, Victor I

    2017-08-01

    Standard T2(*) weighted functional magnetic resonance imaging (fMRI) performed with echo-planar imaging (EPI) suffers from signal loss in the ventromedial prefrontal cortex (vmPFC) due to macroscopic field inhomogeneity. However, this region is of special interest to affective neuroscience and psychiatry. The Multi-echo EPI (MEPI) approach has several advantages over EPI but its performance against EPI in the vmPFC has not yet been examined in a study with sufficient statistical power using a task specifically eliciting activity in this region. We used a fear conditioning task with MEPI to compare the performance of MEPI and EPI in vmPFC and control regions in 32 healthy young subjects. We analyzed activity associated with short (12ms), standard (29ms) and long (46ms) echo times, and a voxel-wise combination of these three echo times. Behavioral data revealed successful differentiation of the conditioned versus safety stimulus; activity in the vmPFC was shown by the contrast "safety stimulus > conditioned stimulus" as in previous research and proved significantly stronger with the combined MEPI than standard single-echo EPI. Then, we aimed to demonstrate that the additional cluster extent (ventral extension) detected in the vmPFC with MEPI reflects activation in a relevant cluster (i.e., not just non-neuronal noise). To do this, we used resting state data from the same subjects to show that the time-course of this region was both connected to bilateral amygdala and the default mode network. Overall, we demonstrate that MEPI (by means of the weighted sum combination approach) outperforms standard EPI in vmPFC; MEPI performs always at least as good as the best echo time for a given brain region but provides all necessary echo times for an optimal BOLD sensitivity for the whole brain. This is relevant for affective neuroscience and psychiatry given the critical role of the vmPFC in emotion regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Auditory evoked fields elicited by spectral, temporal, and spectral-temporal changes in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Hidehiko eOkamoto

    2012-05-01

    Full Text Available Natural sounds contain complex spectral components, which are temporally modulated as time-varying signals. Recent studies have suggested that the auditory system encodes spectral and temporal sound information differently. However, it remains unresolved how the human brain processes sounds containing both spectral and temporal changes. In the present study, we investigated human auditory evoked responses elicited by spectral, temporal, and spectral-temporal sound changes by means of magnetoencephalography (MEG. The auditory evoked responses elicited by the spectral-temporal change were very similar to those elicited by the spectral change, but those elicited by the temporal change were delayed by 30 – 50 ms and differed from the others in morphology. The results suggest that human brain responses corresponding to spectral sound changes precede those corresponding to temporal sound changes, even when the spectral and temporal changes occur simultaneously.

  3. Sixty years old is the breakpoint of human frontal cortex aging.

    Science.gov (United States)

    Cabré, Rosanna; Naudí, Alba; Dominguez-Gonzalez, Mayelin; Ayala, Victòria; Jové, Mariona; Mota-Martorell, Natalia; Piñol-Ripoll, Gerard; Gil-Villar, Maria Pilar; Rué, Montserrat; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2017-02-01

    Human brain aging is the physiological process which underlies as cause of cognitive decline in the elderly and the main risk factor for neurodegenerative diseases such as Alzheimer's disease. Human neurons are functional throughout a healthy adult lifespan, yet the mechanisms that maintain function and protect against neurodegenerative processes during aging are unknown. Here we show that protein oxidative and glycoxidative damage significantly increases during human brain aging, with a breakpoint at 60 years old. This trajectory is coincident with a decrease in the content of the mitochondrial respiratory chain complex I-IV. We suggest that the deterioration in oxidative stress homeostasis during aging induces an adaptive response of stress resistance mechanisms based on the sustained expression of REST, and increased or decreased expression of Akt and mTOR, respectively, over the adult lifespan in order to preserve cell neural survival and function. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Reaching with the sixth sense: Vestibular contributions to voluntary motor control in the human right parietal cortex.

    Science.gov (United States)

    Reichenbach, Alexandra; Bresciani, Jean-Pierre; Bülthoff, Heinrich H; Thielscher, Axel

    2016-01-01

    The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support voluntary control of movements by complementing the other senses to accomplish the movement goal. Investigations into the neural correlates of vestibular contribution to voluntary action in humans are challenging and have progressed far less than research on corresponding visual and proprioceptive involvement. Here, we demonstrate for the first time with event-related TMS that the posterior part of the right medial intraparietal sulcus processes vestibular signals during a goal-directed reaching task with the dominant right hand. This finding suggests a qualitative difference between the processing of vestibular vs. visual and proprioceptive signals for controlling voluntary movements, which are pre-dominantly processed in the left posterior parietal cortex. Furthermore, this study reveals a neural pathway for vestibular input that might be distinct from the processing for reflexive or cognitive functions, and opens a window into their investigation in humans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Polarity-specific cortical effects of transcranial direct current stimulation in primary somatosensory cortex of healthy humans

    Directory of Open Access Journals (Sweden)

    Robert eRehmann

    2016-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is a noninvasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1. We measured paired-pulse suppression (PPS of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by paired-pulse suppression. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS.

  6. Differential activity in the premotor cortex subdivisions in humans during mental calculation and verbal rehearsal tasks: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi

    2003-08-28

    To investigate a possible role of the lateral premotor cortex in human cognitive processes, we compared brain activity during mental-operation numeral (MO-numeral) and verbal rehearsal (VR) tasks, using block-design functional MRI. Sixteen healthy subjects serially added a series of single-digit numbers during the MO-numeral task and silently rehearsed a memorized seven-digit number during the VR task. Each task condition was contrasted with a visual fixation task. Both MO-numeral and VR tasks revealed activity within the lateral premotor cortex among others. The rostral and dorsal part of the lateral premotor cortex (PMdr) showed significantly greater activity during the MO-numeral task than the VR task whereas its caudal part (PMdc) was similarly active during the two tasks. The present study suggests that the PMdr and PMdc are involved in different non-motor cognitive processes.

  7. Functional Neuroanatomy of Human Cortex Cerebri in Relation to Wanting Sex and Having It

    NARCIS (Netherlands)

    Georgiadis, Janniko R.

    Neuroanatomical textbooks typically restrict the central nervous system control of sexual responsiveness to the hypothalamus, brainstem and spinal cord. However, for all its primitive functions human sex is surprisingly complex and versatile. This review aims to extend the neuroanatomy of sexual

  8. Animate and Inanimate Objects in Human Visual Cortex: Evidence for Task-Independent Category Effects

    Science.gov (United States)

    Wiggett, Alison J.; Pritchard, Iwan C.; Downing, Paul E.

    2009-01-01

    Evidence from neuropsychology suggests that the distinction between animate and inanimate kinds is fundamental to human cognition. Previous neuroimaging studies have reported that viewing animate objects activates ventrolateral visual brain regions, whereas inanimate objects activate ventromedial regions. However, these studies have typically…

  9. Characterization of CD34+ thymic stromal cells located in the subcapsular cortex of the human thymus

    NARCIS (Netherlands)

    Martínez-Cáceres, E.; Jaleco, A. C.; Res, P.; Noteboom, E.; Weijer, K.; Spits, H.

    1998-01-01

    In this paper we report that suspensions of human fetal thymocytes contain cells that express high levels of CD34 and Thy-1. These cells were characterized with regard to location within the thymus, phenotype, and function. Confocal laser scan analysis of frozen sections of fetal thymus with

  10. Macular pigment carotenoids in the retina and occipital cortex are related in humans

    Science.gov (United States)

    Objectives: Lutein and zeaxanthin are dietary carotenoids that preferentially accumulate in the macular region of the retina. Together with mesozeaxanthin, a conversion product of lutein in the macula, they form the macular pigment. Lutein is also the predominant carotenoid in human brain tissue and...

  11. Laminar imaging of positive and negative BOLD in human visual cortex at 7T

    NARCIS (Netherlands)

    Fracasso, Alessio; Luijten, Peter R; Dumoulin, Serge O; Petridou, Natalia

    2017-01-01

    Deciphering the direction of information flow is critical to understand the brain. Data from non-human primate histology shows that connections between lower to higher areas (e.g. retina→V1), and between higher to lower areas (e.g. V1←V2) can be dissociated based upon the distribution of afferent

  12. The predicting brain: anticipation of moving objects in human visual cortex

    NARCIS (Netherlands)

    Schellekens, W.

    2015-01-01

    The human brain is nearly constantly subjected to visual motion signals originating from a large variety of external sources. It is the job of the central nervous system to determine correspondence among visual motion input across spatially distant locations within certain time frames. In order to

  13. Two eyes, one vision: binocular motion perception in human visual cortex

    NARCIS (Netherlands)

    Barendregt, M.

    2016-01-01

    An important aspect of human vision is the fact that it is binocular, i.e. that we have two eyes. As a result, the brain nearly always receives two slightly different images of the same visual scene. Yet, we only perceive a single image and thus our brain has to actively combine the binocular visual

  14. In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex

    NARCIS (Netherlands)

    Trampel, Robert; Bazin, Pierre-Louis; Pine, Kerrin; Weiskopf, Nikolaus

    2018-01-01

    The human neocortex is organized radially into six layers which differ in their myelination and the density and arrangement of neuronal cells. This cortical cyto- and myeloarchitecture plays a central role in the anatomical and functional neuroanatomy but is primarily accessible through invasive

  15. Neuromagnetic Representation of Musical Register Information in HumaN Auditory Cortex

    NARCIS (Netherlands)

    Andermann, M.; Van Dinther, C.H.B.A.; Patterson, R.D.; Rupp, A.

    2011-01-01

    Pulse-resonance sounds like vowels or instrumental tones contain acoustic information about the physical size of the sound source (pulse rate) and body resonators (resonance scale). Previous research has revealed correlates of these variables in humans using functional neuroimaging. Here, we report

  16. Attraction of position preference by spatial attention throughout human visual cortex

    NARCIS (Netherlands)

    Klein, Barrie P.|info:eu-repo/dai/nl/36939755X; Harvey, Ben M.|info:eu-repo/dai/nl/318755319; Dumoulin, Serge O.|info:eu-repo/dai/nl/314406514

    2014-01-01

    Voluntary spatial attention concentrates neural resources at the attended location. Here, we examined the effects of spatial attention on spatial position selectivity in humans. We measured population receptive fields (pRFs) using high-field functional MRI (fMRI) (7T) while subjects performed an

  17. Second Surgery in Insular Low-Grade Gliomas

    Directory of Open Access Journals (Sweden)

    Tamara Ius

    2015-01-01

    Full Text Available Background. Given the technical difficulties, a limited number of works have been published on insular gliomas surgery and risk factors for tumor recurrence (TR are poorly documented. Objective. The aim of the study was to determine TR in adult patients with initial diagnosis of insular Low-Grade Gliomas (LGGs that subsequently underwent second surgery. Methods. A consecutive series of 53 patients with insular LGGs was retrospectively reviewed; 23 patients had two operations for TR. Results. At the time of second surgery, almost half of the patients had experienced progression into high-grade gliomas (HGGs. Univariate analysis showed that TR is influenced by the following: extent of resection (EOR (P<0.002, ΔVT2T1 value (P<0.001, histological diagnosis of oligodendroglioma (P=0.017, and mutation of IDH1 (P=0.022. The multivariate analysis showed that EOR at first surgery was the independent predictor for TR (P<0.001. Conclusions. In patients with insular LGG the EOR at first surgery represents the major predictive factor for TR. At time of TR, more than 50% of cases had progressed in HGG, raising the question of the oncological management after the first surgery.

  18. Freshwater resources in the insular Caribbean: an environmental perspective

    Science.gov (United States)

    T. Heartsill Scalley

    2012-01-01

    From islands with no permanent flowing streams to those with navigable inland waters, the insular Caribbean contains a great range of conditions regarding the access to freshwater resources. Because of the variation in topography and size, the ability of islands to retain freshwater also varies widely. The usage of freshwater in this region is being led by two major...

  19. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    Science.gov (United States)

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus—tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  20. The anterior insular and anterior cingulate cortices in emotional processing for self-face recognition.

    Science.gov (United States)

    Morita, Tomoyo; Tanabe, Hiroki C; Sasaki, Akihiro T; Shimada, Koji; Kakigi, Ryusuke; Sadato, Norihiro

    2014-05-01

    Individuals can experience embarrassment when exposed to self-feedback images, depending on the extent of the divergence from the internal representation of the standard self. Our previous work implicated the anterior insular cortex (AI) and the anterior cingulate cortex (ACC) in the processing of embarrassment; however, their exact functional contributions have remained uncertain. Here, we explored the effects of being observed by others while viewing self-face images on the extent of embarrassment, and the activation and connectivity patterns in the AI and ACC. We conducted functional magnetic resonance imaging hyperscanning in pairs of healthy participants using an interaction system that allowed an individual to be observed by a partner in real time. Being observed increased the extent of embarrassment reported when viewing self-face images; a corresponding increase in self-related activity in the right AI suggested that this region played a direct role in the subjective experience. Being observed also increased the functional connectivity between the caudal ACC and prefrontal regions, which are involved in processing the reflective self. The ACC might therefore serve as a hub, integrating information about the reflective self that is used in evaluating perceptual self-face images.

  1. Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex

    DEFF Research Database (Denmark)

    Walløe, Solveig; Pakkenberg, Bente; Fabricius, Katrine

    2014-01-01

    Our knowledge of the relationship between brain structure and cognitive function is still limited. Human brains and individual cortical areas vary considerably in size and shape. Studies of brain cell numbers have historically been based on biased methods, which did not always result in correct...... brain cell populations, and disease-related changes associated with a loss of function. In that this article concerns normal brain rather than brain disorders, it focuses on normal brain development in humans and age related changes in terms of cell numbers. For comparative purposes a few examples...... estimates and were often very time-consuming. Within the last 20-30 years, it has become possible to rely on more advanced and unbiased methods. These methods have provided us with information about fetal brain development, differences in cell numbers between men and women, the effect of age on selected...

  2. Fast-scale network dynamics in human cortex have specific spectral covariance patterns

    OpenAIRE

    Freudenburg, Zachary V.; Gaona, Charles M.; Sharma, Mohit; Bundy, David T.; Breshears, Jonathan D.; Robert B Pless; Leuthardt, Eric C.

    2014-01-01

    How different cortical regions are coordinated during a cognitive task is fundamentally important to understanding brain function. At rest, the brain is subdivided into different functional networks that are bound together at very slow oscillating time scales. Less is understood about how this networked behavior operates during the brief moments of a cognitive operation. By recording brain signals directly from the surface of the human brain, we find that, when performing a simple speech task...

  3. Dynamical Representation of Dominance Relationships in the Human Rostromedial Prefrontal Cortex.

    Science.gov (United States)

    Ligneul, Romain; Obeso, Ignacio; Ruff, Christian C; Dreher, Jean-Claude

    2016-12-05

    Humans and other primates have evolved the ability to represent their status in the group's social hierarchy, which is essential for avoiding harm and accessing resources. Yet it remains unclear how the human brain learns dominance status and adjusts behavior accordingly during dynamic social interactions. Here we address this issue with a combination of fMRI and transcranial direct current stimulation (tDCS). In a first fMRI experiment, participants learned an implicit dominance hierarchy while playing a competitive game against three opponents of different skills. Neural activity in the rostromedial PFC (rmPFC) dynamically tracked and updated the dominance status of the opponents, whereas the ventromedial PFC and ventral striatum reacted specifically to competitive victories and defeats. In a second experiment, we applied anodal tDCS over the rmPFC to enhance neural excitability while subjects performed a similar competitive task. The stimulation enhanced the relative weight of victories over defeats in learning social dominance relationships and exacerbated the influence of one's own dominance over competitive strategies. Importantly, these tDCS effects were specific to trials in which subjects learned about dominance relationships, as they were not present for control choices associated with monetary incentives but no competitive feedback. Taken together, our findings elucidate the role of rmPFC computations in dominance learning and unravel a fundamental mechanism that governs the emergence and maintenance of social dominance relationships in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Coordinated Gene Expression of Neuroinflammatory and Cell Signaling Markers in Dorsolateral Prefrontal Cortex during Human Brain Development and Aging

    Science.gov (United States)

    Primiani, Christopher T.; Ryan, Veronica H.; Rao, Jagadeesh S.; Cam, Margaret C.; Ahn, Kwangmi; Modi, Hiren R.; Rapoport, Stanley I.

    2014-01-01

    Background Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Hypothesis Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. Methods We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Results Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Conclusions Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable

  5. MEG-based identification of the epileptogenic zone in occult peri-insular epilepsy.

    Science.gov (United States)

    Heers, Marcel; Rampp, Stefan; Stefan, Hermann; Urbach, Horst; Elger, Christian E; von Lehe, Marec; Wellmer, Jörg

    2012-03-01

    Presurgical work-ups of patients with pharmacoresistant epileptic seizures can require multiple diagnostic methods if magnetic resonance imaging (MRI) combined with video-EEG monitoring fails to show an epileptogenic lesion. Yet, the added value of available methods is not clear. In particular, only a minority of epilepsy centres apply magnetoencephalography (MEG). This study explores the potential of MEG for patients whose previous sophisticated work-ups missed deep-seated, peri-insular epileptogenic lesions. Three patients with well documented, frequent, stereotypical hypermotor seizures without clear focus hypotheses after repeated presurgical work-ups including video-EEG-monitoring, 3Tesla (3T) magnetic resonance imaging (MRI), morphometric MRI analysis, PET and SPECT were referred to MEG source localisation. In two out of three patients, MEG source localisation identified very subtle morphological abnormalities formerly missed in MRI or classified as questionable pathology. In the third patient, MEG was not reliable due to insufficient detection of epileptic patterns. Here, a 1 mm × 1 mm × 1 mm 3T fluid-attenuated inversion recovery (FLAIR) MRI revealed a potential epileptogenic lesion. A minimal invasive work-up via lesion-focused depth electrodes confirmed the intralesional seizure onset in all patients, and histology revealed dysplastic lesions. Seizure outcomes were Engel 1a in two patients, and Engel 1d in the third. MEG can contribute to the identification of epileptogenic lesions even when multiple previous methods failed, and when the lesions are located in deep anatomical structures such as peri-insular cortex. For epilepsy centres without MEG capability, referral of patients with cryptogenic focal epilepsies to centres with MEG systems may be indicated. Copyright © 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  6. Screening of human chromosome 21 genes in the dorsolateral prefrontal cortex of individuals with Down syndrome.

    Science.gov (United States)

    Kong, Xiang-Dong; Liu, Ning; Xu, Xue-Ju; Zhao, Zhen-Hua; Jiang, Miao

    2015-02-01

    The aim of the current study was to identify the genes on human chromosome 21 (HC21) that may serve important functions in the pathogenesis of Down syndrome (DS). The microarray data GSE5390 were obtained from the Gene Expression Omnibus database, which contained 7 DS and 8 healthy normal samples. The data were then normalized and the differentially expressed genes (DEGs) were identified using the LIMMA package and Bonferroni correction. Furthermore, the DEGs underwent clustering and gene ontology analysis. Additionally, the locations of the DEGs on HC21 were confirmed using human genome 19 in the University of California, Santa Cruz Interaction Browser. A total of 25 upregulated and 275 downregulated genes were screened between DS and healthy samples with a false discovery rate of 1. The expression levels of these genes in the two samples were different. In addition, the up‑ and downregulated genes were markedly enriched in organic substance biological processes (P=4.48x10‑10) and cell‑cell signaling (P=0.000227). Furthermore, 17 overexpressed genes were identified on the 21q21‑22 area, including COL6A2, TTC3 and ABCG1. Together, these observations suggest that 17 upregulated genes on HC21 may be involved in the development of DS and provide the basis for understanding this disability.

  7. Local field potentials primarily reflect inhibitory neuron activity in human and monkey cortex.

    Science.gov (United States)

    Teleńczuk, Bartosz; Dehghani, Nima; Le Van Quyen, Michel; Cash, Sydney S; Halgren, Eric; Hatsopoulos, Nicholas G; Destexhe, Alain

    2017-01-11

    The local field potential (LFP) is generated by large populations of neurons, but unitary contribution of spiking neurons to LFP is not well characterised. We investigated this contribution in multi-electrode array recordings from human and monkey neocortex by examining the spike-triggered LFP average (st-LFP). The resulting st-LFPs were dominated by broad spatio-temporal components due to ongoing activity, synaptic inputs and recurrent connectivity. To reduce the spatial reach of the st-LFP and observe the local field related to a single spike we applied a spatial filter, whose weights were adapted to the covariance of ongoing LFP. The filtered st-LFPs were limited to the perimeter of 800 μm around the neuron, and propagated at axonal speed, which is consistent with their unitary nature. In addition, we discriminated between putative inhibitory and excitatory neurons and found that the inhibitory st-LFP peaked at shorter latencies, consistently with previous findings in hippocampal slices. Thus, in human and monkey neocortex, the LFP reflects primarily inhibitory neuron activity.

  8. Resilient protein co-expression network in male orbitofrontal cortex layer 2/3 during human aging.

    Science.gov (United States)

    Pabba, Mohan; Scifo, Enzo; Kapadia, Fenika; Nikolova, Yuliya S; Ma, Tianzhou; Mechawar, Naguib; Tseng, George C; Sibille, Etienne

    2017-10-01

    The orbitofrontal cortex (OFC) is vulnerable to normal and pathologic aging. Currently, layer resolution large-scale proteomic studies describing "normal" age-related alterations at OFC are not available. Here, we performed a large-scale exploratory high-throughput mass spectrometry-based protein analysis on OFC layer 2/3 from 15 "young" (15-43 years) and 18 "old" (62-88 years) human male subjects. We detected 4193 proteins and identified 127 differentially expressed (DE) proteins (p-value ≤0.05; effect size >20%), including 65 up- and 62 downregulated proteins (e.g., GFAP, CALB1). Using a previously described categorization of biological aging based on somatic tissues, that is, peripheral "hallmarks of aging," and considering overlap in protein function, we show the highest representation of altered cell-cell communication (54%), deregulated nutrient sensing (39%), and loss of proteostasis (35%) in the set of OFC layer 2/3 DE proteins. DE proteins also showed a significant association with several neurologic disorders; for example, Alzheimer's disease and schizophrenia. Notably, despite age-related changes in individual protein levels, protein co-expression modules were remarkably conserved across age groups, suggesting robust functional homeostasis. Collectively, these results provide biological insight into aging and associated homeostatic mechanisms that maintain normal brain function with advancing age. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Joint Spectral Decomposition for the Parcellation of the Human Cerebral Cortex Using Resting-State fMRI.

    Science.gov (United States)

    Arslan, Salim; Parisot, Sarah; Rueckert, Daniel

    2015-01-01

    Identification of functional connections within the human brain has gained a lot of attention due to its potential to reveal neural mechanisms. In a whole-brain connectivity analysis, a critical stage is the computation of a set of network nodes that can effectively represent cortical regions. To address this problem, we present a robust cerebral cortex parcellation method based on spectral graph theory and resting-state fMRI correlations that generates reliable parcellations at the single-subject level and across multiple subjects. Our method models the cortical surface in each hemisphere as a mesh graph represented in the spectral domain with its eigenvectors. We connect cortices of different subjects with each other based on the similarity of their connectivity profiles and construct a multi-layer graph, which effectively captures the fundamental properties of the whole group as well as preserves individual subject characteristics. Spectral decomposition of this joint graph is used to cluster each cortical vertex into a subregion in order to obtain whole-brain parcellations. Using rs-fMRI data collected from 40 healthy subjects, we show that our proposed algorithm computes highly reproducible parcellations across different groups of subjects and at varying levels of detail with an average Dice score of 0.78, achieving up to 9% better reproducibility compared to existing approaches. We also report that our group-wise parcellations are functionally more consistent, thus, can be reliably used to represent the population in network analyses.

  10. Sequencing biological and physical events affects specific frequency bands within the human premotor cortex: an intracerebral EEG study.

    Directory of Open Access Journals (Sweden)

    Fausto Caruana

    Full Text Available Evidence that the human premotor cortex (PMC is activated by cognitive functions involving the motor domain is classically explained as the reactivation of a motor program decoupled from its executive functions, and exploited for different purposes by means of a motor simulation. In contrast, the evidence that PMC contributes to the sequencing of non-biological events cannot be explained by the simulationist theory. Here we investigated how motor simulation and event sequencing coexist within the PMC and how these mechanisms interact when both functions are executed. We asked patients with depth electrodes implanted in the PMC to passively observe a randomized arrangement of images depicting biological actions and physical events and, in a second block, to sequence them in the correct order. This task allowed us to disambiguate between the simple observation of actions, their sequencing (recruiting different motor simulation processes, as well as the sequencing of non-biological events (recruiting a sequencer mechanism non dependant on motor simulation. We analysed the response of the gamma, alpha and beta frequency bands to evaluate the contribution of each brain rhythm to the observation and sequencing of both biological and non-biological stimuli. We found that motor simulation (biological>physical and event sequencing (sequencing>observation differently affect the three investigated frequency bands: motor simulation was reflected on the gamma and, partially, in the beta, but not in the alpha band. In contrast, event sequencing was also reflected on the alpha band.

  11. Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation.

    Science.gov (United States)

    Karabanov, Anke; Ziemann, Ulf; Hamada, Masashi; George, Mark S; Quartarone, Angelo; Classen, Joseph; Massimini, Marcello; Rothwell, John; Siebner, Hartwig Roman

    2015-01-01

    Homeostatic plasticity is thought to stabilize neural activity around a set point within a physiologically reasonable dynamic range. Over the last ten years, a wide range of non-invasive transcranial brain stimulation (NTBS) techniques have been used to probe homeostatic control of cortical plasticity in the intact human brain. Here, we review different NTBS approaches to study homeostatic plasticity on a systems level and relate the findings to both, physiological evidence from in vitro studies and to a theoretical framework of homeostatic function. We highlight differences between homeostatic and other non-homeostatic forms of plasticity and we examine the contribution of sleep in restoring synaptic homeostasis. Finally, we discuss the growing number of studies showing that abnormal homeostatic plasticity may be associated to a range of neuropsychiatric diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.

    Science.gov (United States)

    Suner, Selim; Fellows, Matthew R; Vargas-Irwin, Carlos; Nakata, Gordon Kenji; Donoghue, John P

    2005-12-01

    Multiple-electrode arrays are valuable both as a research tool and as a sensor for neuromotor prosthetic devices, which could potentially restore voluntary motion and functional independence to paralyzed humans. Long-term array reliability is an important requirement for these applications. Here, we demonstrate the reliability of a regular array of 100 microelectrodes to obtain neural recordings from primary motor cortex (MI) of monkeys for at least three months and up to 1.5 years. We implanted Bionic (Cyberkinetics, Inc., Foxboro, MA) silicon probe arrays in MI of three Macaque monkeys. Neural signals were recorded during performance of an eight-direction, push-button task. Recording reliability was evaluated for 18, 35, or 51 sessions distributed over 83, 179, and 569 days after implantation, respectively, using qualitative and quantitative measures. A four-point signal quality scale was defined based on the waveform amplitude relative to noise. A single observer applied this scale to score signal quality for each electrode. A mean of 120 (+/- 17.6 SD), 146 (+/- 7.3), and 119 (+/- 16.9) neural-like waveforms were observed from 65-85 electrodes across subjects for all recording sessions of which over 80% were of high quality. Quantitative measures demonstrated that waveforms had signal-to-noise ratio (SNR) up to 20 with maximum peak-to-peak amplitude of over 1200 microv with a mean SNR of 4.8 for signals ranked as high quality. Mean signal quality did not change over the duration of the evaluation period (slope 0.001, 0.0068 and 0.03; NS). By contrast, neural waveform shape varied between, but not within days in all animals, suggesting a shifting population of recorded neurons over time. Arm-movement related modulation was common and 66% of all recorded neurons were tuned to reach direction. The ability for the array to record neural signals from parietal cortex was also established. These results demonstrate that neural recordings that can provide movement

  13. Modulatory effects of spectral energy contrasts on lateral inhibition in the human auditory cortex: an MEG study.

    Directory of Open Access Journals (Sweden)

    Alwina Stein

    Full Text Available We investigated the modulation of lateral inhibition in the human auditory cortex by means of magnetoencephalography (MEG. In the first experiment, five acoustic masking stimuli (MS, consisting of noise passing through a digital notch filter which was centered at 1 kHz, were presented. The spectral energy contrasts of four MS were modified systematically by either amplifying or attenuating the edge-frequency bands around the notch (EFB by 30 dB. Additionally, the width of EFB amplification/attenuation was varied (3/8 or 7/8 octave on each side of the notch. N1m and auditory steady state responses (ASSR, evoked by a test stimulus with a carrier frequency of 1 kHz, were evaluated. A consistent dependence of N1m responses upon the preceding MS was observed. The minimal N1m source strength was found in the narrowest amplified EFB condition, representing pronounced lateral inhibition of neurons with characteristic frequencies corresponding to the center frequency of the notch (NOTCH CF in secondary auditory cortical areas. We tested in a second experiment whether an even narrower bandwidth of EFB amplification would result in further enhanced lateral inhibition of the NOTCH CF. Here three MS were presented, two of which were modified by amplifying 1/8 or 1/24 octave EFB width around the notch. We found that N1m responses were again significantly smaller in both amplified EFB conditions as compared to the NFN condition. To our knowledge, this is the first study demonstrating that the energy and width of the EFB around the notch modulate lateral inhibition in human secondary auditory cortical areas. Because it is assumed that chronic tinnitus is caused by a lack of lateral inhibition, these new insights could be used as a tool for further improvement of tinnitus treatments focusing on the lateral inhibition of neurons corresponding to the tinnitus frequency, such as the tailor-made notched music training.

  14. Modulatory effects of spectral energy contrasts on lateral inhibition in the human auditory cortex: an MEG study.

    Science.gov (United States)

    Stein, Alwina; Engell, Alva; Okamoto, Hidehiko; Wollbrink, Andreas; Lau, Pia; Wunderlich, Robert; Rudack, Claudia; Pantev, Christo

    2013-01-01

    We investigated the modulation of lateral inhibition in the human auditory cortex by means of magnetoencephalography (MEG). In the first experiment, five acoustic masking stimuli (MS), consisting of noise passing through a digital notch filter which was centered at 1 kHz, were presented. The spectral energy contrasts of four MS were modified systematically by either amplifying or attenuating the edge-frequency bands around the notch (EFB) by 30 dB. Additionally, the width of EFB amplification/attenuation was varied (3/8 or 7/8 octave on each side of the notch). N1m and auditory steady state responses (ASSR), evoked by a test stimulus with a carrier frequency of 1 kHz, were evaluated. A consistent dependence of N1m responses upon the preceding MS was observed. The minimal N1m source strength was found in the narrowest amplified EFB condition, representing pronounced lateral inhibition of neurons with characteristic frequencies corresponding to the center frequency of the notch (NOTCH CF) in secondary auditory cortical areas. We tested in a second experiment whether an even narrower bandwidth of EFB amplification would result in further enhanced lateral inhibition of the NOTCH CF. Here three MS were presented, two of which were modified by amplifying 1/8 or 1/24 octave EFB width around the notch. We found that N1m responses were again significantly smaller in both amplified EFB conditions as compared to the NFN condition. To our knowledge, this is the first study demonstrating that the energy and width of the EFB around the notch modulate lateral inhibition in human secondary auditory cortical areas. Because it is assumed that chronic tinnitus is caused by a lack of lateral inhibition, these new insights could be used as a tool for further improvement of tinnitus treatments focusing on the lateral inhibition of neurons corresponding to the tinnitus frequency, such as the tailor-made notched music training.

  15. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  16. Genetic network properties of the human cortex based on regional thickness and surface area measures

    Directory of Open Access Journals (Sweden)

    Anna R. Docherty

    2015-08-01

    Full Text Available We examined network properties of genetic covariance between average cortical thickness (CT and surface area (SA within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques—biometrical genetic modeling, cluster analysis, and graph theory—to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function.

  17. Variability in neural excitability and plasticity induction in the human cortex: A brain stimulation study.

    Science.gov (United States)

    Hordacre, Brenton; Goldsworthy, Mitchell R; Vallence, Ann-Maree; Darvishi, Sam; Moezzi, Bahar; Hamada, Masashi; Rothwell, John C; Ridding, Michael C

    The potential of non-invasive brain stimulation (NIBS) for both probing human neuroplasticity and the induction of functionally relevant neuroplastic change has received significant interest. However, at present the utility of NIBS is limited due to high response variability. One reason for this response variability is that NIBS targets a diffuse cortical population and the net outcome to stimulation depends on the relative levels of excitability in each population. There is evidence that the relative excitability of complex oligosynaptic circuits (late I-wave circuits) as assessed by transcranial magnetic stimulation (TMS) is useful in predicting NIBS response. Here we examined whether an additional marker of cortical excitability, MEP amplitude variability, could provide additional insights into response variability following application of the continuous theta burst stimulation (cTBS) NIBS protocol. Additionally we investigated whether I-wave recruitment was associated with MEP variability. Thirty-four healthy subjects (15 male, aged 18-35 years) participated in two experiments. Experiment 1 investigated baseline MEP variability and cTBS response. Experiment 2 determined if I-wave recruitment was associated with MEP variability. Data show that both baseline MEP variability and late I-wave recruitment are associated with cTBS response, but were independent of each other; together, these variables predict 31% of the variability in cTBS response. This study provides insight into the physiological mechanisms underpinning NIBS plasticity responses and may facilitate development of more reliable NIBS protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Attraction of position preference by spatial attention throughout human visual cortex.

    Science.gov (United States)

    Klein, Barrie P; Harvey, Ben M; Dumoulin, Serge O

    2014-10-01

    Voluntary spatial attention concentrates neural resources at the attended location. Here, we examined the effects of spatial attention on spatial position selectivity in humans. We measured population receptive fields (pRFs) using high-field functional MRI (fMRI) (7T) while subjects performed an attention-demanding task at different locations. We show that spatial attention attracts pRF preferred positions across the entire visual field, not just at the attended location. This global change in pRF preferred positions systematically increases up the visual hierarchy. We model these pRF preferred position changes as an interaction between two components: an attention field and a pRF without the influence of attention. This computational model suggests that increasing effects of attention up the hierarchy result primarily from differences in pRF size and that the attention field is similar across the visual hierarchy. A similar attention field suggests that spatial attention transforms different neural response selectivities throughout the visual hierarchy in a similar manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. [Retinotopic organization of the human visual cortex: a 3T fMRI study].

    Science.gov (United States)

    Hoffart, L; Conrath, J; Matonti, F; Galland, F; Wotawa, N; Chavane, F; Castet, E; Ridings, B; Masson, G S

    2007-10-01

    INTRODUCTION. We used high-field (3T) functional magnetic resonance imaging (fMRI) to map the retinotopic organization of human cortical areas. Retinotopic maps were reconstructed using existing mapping techniques. Stimuli were made of a rotating wedge stimulus, which provided angular coordinate maps, and an expanding or contracting ring, which provided eccentricity coordinate maps. Stimuli consisted of a grey background alternating with a flickering checkerboard. A Brucker 3T scanner equipped with a head coil and a custom optical system was used to acquire sets of echoplanar images of 20 occipital coronal slices within a RT of 2.111 ms and an 8 mm3 voxel resolution. Surface models of each subject's occipital lobes were constructed using the Brainvisa software from a sagittal T1-weighted image with a 1 mm3 voxel resolution. The cortical models were then inflated to obtain unfolded surfaces. Statistical analyses of the functional data were made under SPM99, and the response amplitudes were finally assigned to the cortical reconstructed surfaces. We identified boundaries between different early visual areas (V1, V2, V3) using eccentricity and polar angle retinotopic maps and detection of reversals in the representation of the polar angle. Both complete maps and reversals corresponding to the V1/V2 borders were clearly visible with a single recording session. Also, we were able to compare data from subjects across various fMRI acquisitions and found that there was a strong correlation between maps acquired at different sessions for the same subject. We developed a quick (mapping method at 3T, which makes it possible to study the cortical remapping in patients with retinal scotomas.

  20. Task-concurrent anodal tDCS modulates bilateral plasticity in the human suprahyoid motor cortex

    Directory of Open Access Journals (Sweden)

    Shaofeng eZhao

    2015-06-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive method to modulate cortical excitability in humans. Here, we examined the effects of anodal tDCS on suprahyoid motor evoked potentials (MEP when applied over the hemisphere with stronger and weaker suprahyoid/submental projections, respectively, while study participants performed a swallowing task. 30 healthy volunteers were invited to two experimental sessions and randomly assigned to one of two different groups. While in the first group stimulation was targeted over the hemisphere with stronger suprahyoid projections, the second group received stimulation over the weaker suprahyoid projections. tDCS was applied either as anodal or sham stimulation in a random cross-over design. Suprahyoid MEPs were assessed immediately before intervention, as well as 5, 30, 60, and 90 min after discontinuation of stimulation from both the stimulated and non-stimulated contralateral hemisphere. We found that anodal tDCS (a-tDCS had long-lasting effects on suprahyoid MEPs on the stimulated side in both groups (tDCS targeting the stronger projections: F(1,14 = 96.2, p < 0.001; tDCS targeting the weaker projections: F(1,14 = 37.45, p < 0.001. While MEPs did not increase when elicited from the non-targeted hemisphere after stimulation of the stronger projections (F(1,14 = 0.69, p = 0.42, we found increased MEPs elicited from the non-targeted hemisphere after stimulating the weaker projections (at time points 30 to 90 min (F(1,14 = 18.26, p = 0.001. We conclude that anodal tDCS has differential effects on suprahyoid MEPs elicited from the targeted and non-targeted hemisphere depending on the site of stimulation. This finding may be important for the application of a-tDCS in patients with dysphagia, for example after stroke.

  1. Body Size Evolution in Insular Speckled Rattlesnakes (Viperidae: Crotalus mitchellii)

    Science.gov (United States)

    Meik, Jesse M.; Lawing, A. Michelle; Pires-daSilva, André

    2010-01-01

    Background Speckled rattlesnakes (Crotalus mitchellii) inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size) evolving in response to shifts in prey size. Methodology/Principal Findings Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Ángel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC) showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively. Conclusions/Significance Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics

  2. Body size evolution in insular speckled rattlesnakes (Viperidae: Crotalus mitchellii.

    Directory of Open Access Journals (Sweden)

    Jesse M Meik

    Full Text Available BACKGROUND: Speckled rattlesnakes (Crotalus mitchellii inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size evolving in response to shifts in prey size. METHODOLOGY/PRINCIPAL FINDINGS: Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Angel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively. CONCLUSIONS/SIGNIFICANCE: Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in

  3. Body size evolution in insular speckled rattlesnakes (Viperidae: Crotalus mitchellii).

    Science.gov (United States)

    Meik, Jesse M; Lawing, A Michelle; Pires-daSilva, André

    2010-03-04

    Speckled rattlesnakes (Crotalus mitchellii) inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size) evolving in response to shifts in prey size. Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Angel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC) showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively. Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics that are related to graded differences in area over what are

  4. Object Representations in Human Visual Cortex Formed Through Temporal Integration of Dynamic Partial Shape Views.

    Science.gov (United States)

    Orlov, Tanya; Zohary, Ehud

    2018-01-17

    We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on

  5. Multivariate pattern analysis of the human medial temporal lobe revealed representationally categorical cortex and representationally agnostic hippocampus.

    Science.gov (United States)

    Huffman, Derek J; Stark, Craig E L

    2014-11-01

    Contemporary theories of the medial temporal lobe (MTL) suggest that there are functional differences between the MTL cortex and the hippocampus. High-resolution functional magnetic resonance imaging and multivariate pattern analysis were utilized to study whether MTL subregions could classify categories of images, with the hypothesis that the hippocampus would be less representationally categorical than the MTL cortex. Results revealed significant classification accuracy for faces versus objects and faces versus scenes in MTL cortical regions-parahippocampal cortex (PHC) and perirhinal cortex (PRC)-with little evidence for category discrimination in the hippocampus. MTL cortical regions showed significantly greater classification accuracy than the hippocampus. The hippocampus showed significant classification accuracy for images compared to a nonmnemonic baseline task, suggesting that it responded to the images. Classification accuracy in a region of interest encompassing retrosplenial cortex (RSC) and the posterior cingulate cortex (PCC) posterior to RSC, showed a similar pattern of results to PHC, supporting the hypothesis that these regions are functionally related. The results suggest that PHC, PRC, and RSC/PCC are representationally categorical and the hippocampus is more representationally agnostic, which is concordant with the hypothesis of the role of the hippocampus in pattern separation. Copyright © 2014 Wiley Periodicals, Inc.

  6. Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.

    Science.gov (United States)

    Frank, Sebastian M; Sun, Liwei; Forster, Lisa; Tse, Peter U; Greenlee, Mark W

    2016-12-14

    The midposterior fundus of the Sylvian fissure in the human brain is central to the cortical processing of vestibular cues. At least two vestibular areas are located at this site: the parietoinsular vestibular cortex (PIVC) and the posterior insular cortex (PIC). It is now well established that activity in sensory systems is subject to cross-modal attention effects. Attending to a stimulus in one sensory modality enhances activity in the corresponding cortical sensory system, but simultaneously suppresses activity in other sensory systems. Here, we wanted to probe whether such cross-modal attention effects also target the vestibular system. To this end, we used a visual multiple-object tracking task. By parametrically varying the number of tracked targets, we could measure the effect of attentional load on the PIVC and the PIC while holding the perceptual load constant. Participants performed the tracking task during functional magnetic resonance imaging. Results show that, compared with passive viewing of object motion, activity during object tracking was suppressed in the PIVC and enhanced in the PIC. Greater attentional load, induced by increasing the number of tracked targets, was associated with a corresponding increase in the suppression of activity in the PIVC. Activity in the anterior part of the PIC decreased with increasing load, whereas load effects were absent in the posterior PIC. Results of a control experiment show that attention-induced suppression in the PIVC is stronger than any suppression evoked by the visual stimulus per se. Overall, our results suggest that attention has a cross-modal modulatory effect on the vestibular cortex during visual object tracking. In this study we investigate cross-modal attention effects in the human vestibular cortex. We applied the visual multiple-object tracking task because it is known to evoke attentional load effects on neural activity in visual motion-processing and attention-processing areas. Here we

  7. Coregistration of digital photography of the human cortex and cranial magnetic resonance imaging for visualization of subdural electrodes in epilepsy surgery.

    Science.gov (United States)

    Mahvash, Mehran; König, Roy; Wellmer, Jörg; Urbach, Horst; Meyer, Bernhard; Schaller, Karl

    2007-11-01

    To develop a method for the coregistration of digital photographs of the human cortex with head magnetic resonance imaging (MRI) scans for invasive diagnostics and resective neocortical epilepsy surgery. Six chronically epileptic patients (two women, four men; mean age, 34 yr; age range, 20-43 yr) underwent preoperative three-dimensional (3D) T1-weighted MRI scans. Digital photographs of the exposed cortex were taken during implantation of subdural grid electrodes. Rendering software (Analyze 3.1; Biomedical Imaging Resource, Mayo Foundation, Rochester, MN) was used to create an MRI-based 3D model of the brain surface. Digital photographs were manually coregistered with the brain surface MRI model using the registration tool in the Analyze software. By matching the digital photograph and the brain surface model, the position of the subdural electrodes was integrated into the coordinate system of the preoperatively acquired 3D MRI dataset. In all patients, the position of the labeled electrode contacts in relation to the cortical anatomy could be visualized on the 3D models of the cortical surface. At the time of resection, the resulting image of the coregistration process provides a realistic view of the cortex and the position of the subdural electrode. The coregistration of digital photographs of the brain cortex with the results of 3D MRI data sets is possible. This allows for identification of anatomic details underlying the subdural grid electrodes and enhances the orientation of the surgeon.

  8. Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex.

    Science.gov (United States)

    Ojemann, George A; Ojemann, Jeffrey; Ramsey, Nick F

    2013-01-01

    The relation between changes in the blood oxygen dependent metabolic changes imaged by functional magnetic resonance imaging (fMRI) and neural events directly recorded from human cortex from single neurons, local field potentials (LFPs) and electrocorticogram (ECoG) is critically reviewed, based on the published literature including findings from the authors' laboratories. All these data are from special populations, usually patients with medically refractory epilepsy, as this provides the major opportunity for direct cortical neuronal recording in humans. For LFP and ECoG changes are often sought in different frequency bands, for single neurons in frequency of action potentials. Most fMRI studies address issues of functional localization. The relation of those findings to localized changes in neuronal recordings in humans has been established in several ways. Only a few studies have directly compared changes in activity from the same sites in the same individual, using the same behavioral measure. More often the comparison has been between fMRI and electrophysiologic changes in populations recorded from the same functional anatomic system as defined by lesion effects; in a few studies those systems have been defined by fMRI changes such as the "default" network. The fMRI-electrophysiologic relationships have been evaluated empirically by colocalization of significant changes, and by quantitative analyses, often multiple linear regression. There is some evidence that the fMRI-electrophysiology relationships differ in different cortical areas, particularly primary motor and sensory cortices compared to association cortex, but also within areas of association cortex. Although crucial for interpretation of fMRI changes as reflecting neural activity in human cortex, controversy remains as to these relationships. Supported by: Dutch Technology Foundation and University of Utrecht Grant UGT7685, ERC-Advanced grant 320708 (NR) and NIH grant NS065186 (JO).

  9. Insular Dysfunction in People at Risk for Psychotic Disorders

    Directory of Open Access Journals (Sweden)

    Gianna Sepede

    2015-06-01

    Full Text Available In response to the review article written by Pavuluri and May [1] and to the original article by Tomasino et al [2] we will comment the recent neuroimaging findings of insular dysfunctions in Schizophrenia and Bipolar Disorders, focusing on people at genetic risk for developing psychotic symptoms. A disrupted insular functioning was reported in several studies, even though the results were not univocal with respect to the direction of the effect (some studies reported a reduced activation, other an augmented activation and the lateralization of the observed alterations (left, right or bilateral. We will conclude that an altered function of the insula during both cognitive and emotional task may be a candidate vulnerability marker for psychotic disorders.

  10. Functional Architecture of Noise Correlations in Human Early Visual Cortex and its Relationship with Coherent Spontaneous Activity

    Directory of Open Access Journals (Sweden)

    Jungwon Ryu

    2012-10-01

    Full Text Available Responses of single sensory neurons to stimuli are ‘noisy’, varying substantially across repeated trials of identical stimulation. Intriguingly, these individual ‘noise responses’ (NR—deviations from their means—are not isolated; rather they are highly correlated, referred to as ‘noise correlation’ (NC. From a computational viewpoint, the presence and nature of NC exert great impacts on the information processing capacity of neurons as they encode sensory events as a population, decode those encoded neural responses, and contribute to perceptual choices for action. Regarding the origin of NR, on the other hand, there has been growing evidence pointing to its tight linkage with ‘spontaneous responses’ (SR—fluctuations of neural activity in the absence of external input or tasks. To investigate the functional structure of NC and its relationship with ‘correlations in SR’ (SC, we defined population receptive fields (pRFs of unit volumes of gray matter (UV in human early visual cortex and computed NRs and SRs using fMRI. NC increased with an increasing degree of similarity in pRF tuning properties such as orientation, spatial frequency, and visuotopic position, particularly between UV pairs close in cortical distance. This ‘like-to-like’ structure of NC remained unaltered across scan runs with different stimuli, even among between-area UV pairs. SC was higher than NC, and its functional and temporal structures were quite similar to those of NC. Furthermore, the partial correlation analysis revealed that NC between a given pair of UVs was best predicted by their SC than by any other factors examined in the current study.

  11. Insular volume reduction in patients with social anxiety disorder

    Directory of Open Access Journals (Sweden)

    Akiko eKawaguchi

    2016-01-01

    Full Text Available Despite the fact that social anxiety disorder (SAD is highly prevalent, there have been only a few structural imaging studies. Moreover, most of them reported about a volume reduction in amygdala which plays a key role in the neural function of SAD. Insula is another region of interest. Its hyperactivity in regard to processing negative emotional information or interoceptive awareness has been detected in patients with SAD. Referring to these studies, we hypothesized that insular volumes might reduce in patients with SAD and made a comparison of insular volumes between 13 patients with SAD and 18 healthy controls with matched age and gender using voxel-based morphometry. As a result, we found a significant volume reduction in insula in the SAD group. Our results suggest that the patients with SAD might have an insular volume reduction apart from amygdala. Since insula plays a critical role in the pathology of SAD, more attention should be paid not only to functional study but also morphometrical study of insula.

  12. Insular epilepsy: similarities to temporal lobe epilepsy case report Epilepsia insular: similaridades à epilepsia do lobo temporal - relato de caso

    Directory of Open Access Journals (Sweden)

    ARTHUR CUKIERT

    1998-03-01

    Full Text Available Insular epilepsy has been rarely reported and its clinical and electrographic features are poorly understood. The electrographic study of the insula is difficult since it is hidden from the brain surface by the frontal and temporal lobe. A 48 years-old woman started having simple partial autonomic and complex partial seizures with automatisms and ictal left arm paresis 8 years prior to admission. Seizure's frequency was 1 per week. Pre-operative EEG showed a right temporal lobe focus. Neuropsychological testing disclosed right fronto-temporal dysfunction. MRI showed a right anterior insular cavernous angioma. Intraoperative ECoG obtained after spliting of the sylvian fissure showed independent spiking from the insula and temporal lobe and insular spikes that spread to the temporal lobe. The cavernous angioma and the surrounding gliotic tissue were removed and the temporal lobe was left in place. Post-resection ECoG still disclosed independent temporal and insular spiking with a lower frequency. The patient has been seizure-free since surgery. Insular epilepsy may share many clinical and electroencephalographic features with temporal lobe epilepsy.A epilepsia insular tem sido raramente relatada e suas características clínicas e eletrencefalográficas são pobremente conhecidas. O estudo eletrográfico da ínsula é difícil já que ela se encontra recoberta pelos lobos frontal e temporal. Uma paciente, de 48 anos, começou a ter crises parciais simples autonômicas e crises parciais complexas com automatismos e paresia crítica de membro superior esquerdo 8 anos antes desta internação. A frequência de crises era de 1/semana . O EEG pré-operatório mostrou foco temporal direito. Testagem neuropsicológica demonstrou disfunção fronto-temporal direita. RMN demonstrou cavernoma insular anterior direito. A eletrocorticografia intraoperatória obtida após a abertura da fissura sylviana demonstrou a presença de espículas independentes na

  13. Understanding Human Original Actions Directed at Real-World Goals: The Role of the Lateral Prefrontal Cortex

    Science.gov (United States)

    Sitnikova, Tatiana; Rosen, Bruce R.; Lord, Louis-David; West, W. Caroline

    2014-01-01

    Adaptive, original actions, which can succeed in multiple contextual situations, require understanding of what is relevant to a goal. Recognizing what is relevant may also help in predicting kinematics of observed, original actions. During action observation, comparisons between sensory input and expected action kinematics have been argued critical to accurate goal inference. Experimental studies with laboratory tasks, both in humans and nonhuman primates, demonstrated that the lateral prefrontal cortex (LPFC) can learn, hierarchically organize, and use goal-relevant information. To determine whether this LPFC capacity is generalizable to real-world cognition, we recorded functional magnetic resonance imaging (fMRI) data in the human brain during comprehension of original and usual object-directed actions embedded in video-depictions of real-life behaviors. We hypothesized that LPFC will contribute to forming goal-relevant representations necessary for kinematic predictions of original actions. Additionally, resting-state fMRI was employed to examine functional connectivity between the brain regions delineated in the video fMRI experiment. According to behavioral data, original videos could be understood by identifying elements relevant to real-life goals at different levels of abstraction. Patterns of enhanced activity in four regions in the left LPFC, evoked by original, relative to usual, video scenes, were consistent with previous neuroimaging findings on representing abstract and concrete stimuli dimensions relevant to laboratory goals. In the anterior left LPFC, the activity increased selectively when representations of broad classes of objects and actions, which could achieve the perceived overall behavioral goal, were likely to bias kinematic predictions of original actions. In contrast, in the more posterior regions, the activity increased even when concrete properties of the target object were more likely to bias the kinematic prediction. Functional

  14. Transcranial direct current stimulation of right dorsolateral prefrontal cortex does not affect model-based or model-free reinforcement learning in humans.

    Directory of Open Access Journals (Sweden)

    Peter Smittenaar

    Full Text Available There is broad consensus that the prefrontal cortex supports goal-directed, model-based decision-making. Consistent with this, we have recently shown that model-based control can be impaired through transcranial magnetic stimulation of right dorsolateral prefrontal cortex in humans. We hypothesized that an enhancement of model-based control might be achieved by anodal transcranial direct current stimulation of the same region. We tested 22 healthy adult human participants in a within-subject, double-blind design in which participants were given Active or Sham stimulation over two sessions. We show Active stimulation had no effect on model-based control or on model-free ('habitual' control compared to Sham stimulation. These null effects are substantiated by a power analysis, which suggests that our study had at least 60% power to detect a true effect, and by a Bayesian model comparison, which favors a model of the data that assumes stimulation had no effect over models that assume stimulation had an effect on behavioral control. Although we cannot entirely exclude more trivial explanations for our null effect, for example related to (faults in our experimental setup, these data suggest that anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex does not improve model-based control, despite existing evidence that transcranial magnetic stimulation can disrupt such control in the same brain region.

  15. Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness.

    Science.gov (United States)

    Riccelli, Roberta; Passamonti, Luca; Toschi, Nicola; Nigro, Salvatore; Chiarella, Giuseppe; Petrolo, Claudio; Lacquaniti, Francesco; Staab, Jeffrey P; Indovina, Iole

    2017-01-01

    Persistent postural-perceptual dizziness (PPPD) is a common functional vestibular disorder characterized by persistent symptoms of non-vertiginous dizziness and unsteadiness that are exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Recent physiologic and neuroimaging data suggest that greater reliance on visual cues for postural control (as opposed to vestibular cues-a phenomenon termed visual dependence) and dysfunction in central visuo-vestibular networks may be important pathophysiologic mechanisms underlying PPPD. Dysfunctions are thought to involve insular regions that encode recognition of the visual effects of motion in the gravitational field. We tested for altered activity in vestibular and visual cortices during self-motion simulation obtained via a visual virtual-reality rollercoaster stimulation using functional magnetic resonance imaging in 15 patients with PPPD and 15 healthy controls (HCs). We compared between groups differences in brain responses to simulated displacements in vertical vs horizontal directions and correlated the difference in directional responses with dizziness handicap in patients with PPPD. HCs showed increased activity in the anterior bank of the central insular sulcus during vertical relative to horizontal motion, which was not seen in patients with PPPD. However, for the same comparison, dizziness handicap correlated positively with activity in the visual cortex (V1, V2, and V3) in patients with PPPD. We provide novel insight into the pathophysiologic mechanisms underlying PPPD, including functional alterations in brain processes that affect balance control and reweighting of space-motion inputs to favor visual cues. For patients with PPPD, difficulties using visual data to discern the effects of gravity on self-motion may adversely affect balance control, particularly for individuals who simultaneously rely too heavily on visual stimuli. In addition, increased activity in the

  16. Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness

    Directory of Open Access Journals (Sweden)

    Roberta Riccelli

    2017-10-01

    Full Text Available BackgroundPersistent postural-perceptual dizziness (PPPD is a common functional vestibular disorder characterized by persistent symptoms of non-vertiginous dizziness and unsteadiness that are exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Recent physiologic and neuroimaging data suggest that greater reliance on visual cues for postural control (as opposed to vestibular cues—a phenomenon termed visual dependence and dysfunction in central visuo-vestibular networks may be important pathophysiologic mechanisms underlying PPPD. Dysfunctions are thought to involve insular regions that encode recognition of the visual effects of motion in the gravitational field.MethodsWe tested for altered activity in vestibular and visual cortices during self-motion simulation obtained via a visual virtual-reality rollercoaster stimulation using functional magnetic resonance imaging in 15 patients with PPPD and 15 healthy controls (HCs. We compared between groups differences in brain responses to simulated displacements in vertical vs horizontal directions and correlated the difference in directional responses with dizziness handicap in patients with PPPD.ResultsHCs showed increased activity in the anterior bank of the central insular sulcus during vertical relative to horizontal motion, which was not seen in patients with PPPD. However, for the same comparison, dizziness handicap correlated positively with activity in the visual cortex (V1, V2, and V3 in patients with PPPD.ConclusionWe provide novel insight into the pathophysiologic mechanisms underlying PPPD, including functional alterations in brain processes that affect balance control and reweighting of space-motion inputs to favor visual cues. For patients with PPPD, difficulties using visual data to discern the effects of gravity on self-motion may adversely affect balance control, particularly for individuals who simultaneously rely too heavily on visual

  17. Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla

    NARCIS (Netherlands)

    Siero, JCW; Hendrikse, J; Hoogduin, Hans; Petridou, N; Luijten, Peter; Donahue, Manus J.

    PurposeOwing to variability in vascular dynamics across cerebral cortex, blood-oxygenation-level-dependent (BOLD) spatial and temporal characteristics should vary as a function of cortical-depth. Here, the positive response, initial dip (ID), and post-stimulus undershoot (PSU) of the BOLD response

  18. Alterations in the steroid biosynthetic pathways in the human prefrontal cortex in mood disorders: a postmortem study

    NARCIS (Netherlands)

    Qi, Xin-Rui; Luchetti, S.; Verwer, Ronald W H; Sluiter, Arja A; Mason, Matthew R J; Zhou, Jiang-Ning; Swaab, Dick F

    Altered levels of steroids have been reported in the brain, cerebral spinal fluid and plasma of patients with mood disorders. Neuroimaging studies have reported both functional and structural alterations in mood disorders, for instance in the anterior cingulate cortex (ACC) and dorsolateral

  19. The preparation of anastomosis site at the insular segment of middle cerebral artery.

    Science.gov (United States)

    Katsuno, Makoto; Tanikawa, Rokuya; Izumi, Naoto; Hashimoto, Masaaki

    2014-01-01

    An anastomosis at the insular segment of the middle cerebral artery (M2) is often required in cerebral reconstruction with high- or low-flow bypass. It is necessary to create a shallow, wide, fixed, and bloodless anastomosis field to achieve a safe and quick anastomosis for low surgical morbidity. We describe a method to perform a safe and quick anastomosis. From 2009 to 2013, the technique was used in 20 procedures to create an extracranial M2 high-flow bypass. The Sylvian fissure was dissected wide open to expose the M2. A silicon sheet was laid under M2 and the absorbable gelatin-compressed sponges were inserted between M2 and the insula cortex to lift up the M2 and fix it. The rolling surgical sheets were placed at each edge of the dissected Sylvian fissure, instead of brain spatulas. Finally, a small suction tube was placed at the Sylvian fissure and cerebrospinal fluid was continuously sucked. The postoperative patency of the bypass was evaluated by three-dimensional computed tomographic angiography (3D-CTA) in the acute and chronic stages. In all cases, the operation field acquired for the anastomosis was adequate. The average time required for the procedure was 19 min 27 s. Good patency of all high-flow grafts was confirmed by postoperative three-dimensional computed tomography angiography (3D-CTA). In our series, there were no technical complications related to the anastomosis at M2 performed according to our method.

  20. Glutathione S-transferases in human renal cortex and neoplastic tissue: enzymatic activity, isoenzyme profile and immunohistochemical localization.

    Science.gov (United States)

    Rodilla, V; Benzie, A A; Veitch, J M; Murray, G I; Rowe, J D; Hawksworth, G M

    1998-05-01

    1. Glutathione S-transferase (GST) activity in the cytosol of renal cortex and tumours from eight men and eight women was measured using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate. GST activities ranged from 685 to 2192 nmol/min/mg protein in cortex (median 1213) and from non-detectable (minimum 45) to 2424 nmol/min/mg protein in tumours (median 469). The activities in the tumours were lower than those in the normal cortices (p 0.05). 3. The age of the patients ranged from 42 to 81 years (median 62) and was not found to play a role in the levels of GST activity observed in cortex or in renal tumours from either sex. 4. Immunoblotting and immunohistochemical studies confirmed that GST-alpha was the predominant form expressed both in normal cortex and tumour and probably accounted for most of the GST activity present in these samples. GST-mu and GST-phi were expressed in both tumours and normal cortex and, while in some cases the level of expression in the cortices was higher than that found in the tumours, the reverse was also observed. Within the GST-mu class, GST M1/M2 was only detected in one sample (tumour), which showed the highest overall expression of GST-mu. GSTM3 was the predominant isoenzyme of the mu class in normal and tumour tissue, whereas GTM4 and GSTM5 were not detected. 5. These differences could have functional significance where xenobiotics or cytotoxic drugs are specific substrates for the different classes of GSTs.

  1. The distribution and diversity of insular ants

    DEFF Research Database (Denmark)

    Roura-Pascual, Núria; Sanders, Nate; Hui, Cang

    2016-01-01

    Aim: To examine the relationship between island characteristics (area, distance to the nearest continent, climate and human population size) and ant species richness, as well as the factors underlying global geographical clustering of native and exotic ant composition on islands. Location: One...... hundred and two islands from 20 island groups around the world. Methods: We used spatial linear models that consider the spatial structure of islands to examine patterns of ant species richness. We also performed modularity analyses to identify clusters of islands hosting a similar suite of species...... and constructed conditional inference trees to assess the characteristics of islands that explain the formation of these island-ant groups. Results: Island area was the best predictor of ant species richness. However, distance to the nearest continent was an important predictor of native ant species richness...

  2. The thalamocortical vestibular system in animals and humans.

    Science.gov (United States)

    Lopez, Christophe; Blanke, Olaf

    2011-06-24

    The vestibular system provides the brain with sensory signals about three-dimensional head rotations and translations. These signals are important for postural and oculomotor control, as well as for spatial and bodily perception and cognition, and they are subtended by pathways running from the vestibular nuclei to the thalamus, cerebellum and the "vestibular cortex." The present review summarizes current knowledge on the anatomy of the thalamocortical vestibular system and discusses data from electrophysiology and neuroanatomy in animals by comparing them with data from neuroimagery and neurology in humans. Multiple thalamic nuclei are involved in vestibular processing, including the ventroposterior complex, the ventroanterior-ventrolateral complex, the intralaminar nuclei and the posterior nuclear group (medial and lateral geniculate nuclei, pulvinar). These nuclei contain multisensory neurons that process and relay vestibular, proprioceptive and visual signals to the vestibular cortex. In non-human primates, the parieto-insular vestibular cortex (PIVC) has been proposed as the core vestibular region. Yet, vestibular responses have also been recorded in the somatosensory cortex (area 2v, 3av), intraparietal sulcus, posterior parietal cortex (area 7), area MST, frontal cortex, cingulum and hippocampus. We analyze the location of the corresponding regions in humans, and especially the human PIVC, by reviewing neuroimaging and clinical work. The widespread vestibular projections to the multimodal human PIVC, somatosensory cortex, area MST, intraparietal sulcus and hippocampus explain the large influence of vestibular signals on self-motion perception, spatial navigation, internal models of gravity, one's body perception and bodily self-consciousness. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A Combined Metabonomic and Proteomic Approach Identifies Frontal Cortex Changes in a Chronic Phencyclidine Rat Model in Relation to Human Schizophrenia Brain Pathology

    Science.gov (United States)

    Wesseling, Hendrik; Chan, Man K; Tsang, T M; Ernst, Agnes; Peters, Fabian; Guest, Paul C; Holmes, Elaine; Bahn, Sabine

    2013-01-01

    Current schizophrenia (SCZ) treatments fail to treat the broad range of manifestations associated with this devastating disorder. Thus, new translational models that reproduce the core pathological features are urgently needed to facilitate novel drug discovery efforts. Here, we report findings from the first comprehensive label-free liquid-mass spectrometry proteomic- and proton nuclear magnetic resonance-based metabonomic profiling of the rat frontal cortex after chronic phencyclidine (PCP) intervention, which induces SCZ-like symptoms. The findings were compared with results from a proteomic profiling of post-mortem prefrontal cortex from SCZ patients and with relevant findings in the literature. Through this approach, we identified proteomic alterations in glutamate-mediated Ca2+ signaling (Ca2+/calmodulin-dependent protein kinase II, PPP3CA, and VISL1), mitochondrial function (GOT2 and PKLR), and cytoskeletal remodeling (ARP3). Metabonomic profiling revealed changes in the levels of glutamate, glutamine, glycine, pyruvate, and the Ca2+ regulator taurine. Effects on similar pathways were also identified in the prefrontal cortex tissue from human SCZ subjects. The discovery of similar but not identical proteomic and metabonomic alterations in the chronic PCP rat model and human brain indicates that this model recapitulates only some of the molecular alterations of the disease. This knowledge may be helpful in understanding mechanisms underlying psychosis, which, in turn, can facilitate improved therapy and drug discovery for SCZ and other psychiatric diseases. Most importantly, these molecular findings suggest that the combined use of multiple models may be required for more effective translation to studies of human SCZ. PMID:23942359

  4. Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action

    OpenAIRE

    Binkofski, F.; Fink, Gereon R.; Geyer, Stefan; Buccino, G.; Gruber, Oliver; Shah, N. Jon; Taylor, John G.; Seitz, Rüdiger J.; Zilles, Karl; Freund, Hans-Joachim

    2002-01-01

    The mechanisms underlying attention to action are poorly understood. Although distracted by something else, we often maintain the accuracy of a movement, which suggests that differential neural mechanisms for the control of attended and nonattended action exist. Using functional magnetic resonance imaging (fMRI) in normal volunteers and probabilistic cytoarchitectonic maps, we observed that neural activity in subarea 4p (posterior) within the primary motor cortex was modulated by attention to...

  5. The hemodynamic changes in the human prefrontal cortex during the Flanker and Simon tasks: a fNIRS study

    Science.gov (United States)

    Yuan, Zhen; Lin, Xiaohong

    2016-03-01

    Functional near-infrared spectroscopy (fNIRS) is a low-cost, portable and noninvasive functional neuroimaging technique by measuring the change in the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR). The aim of present study is to reveal the different brain activity pattern of adult subjects during the completion of flanker and Simon tasks underlying the congruent and incongruent test conditions so as to identify the basic neural mechanism of inhibitory control in executive function. In the study, we utilized fNIRS to explore the hemodynamic changes in the prefrontal cortex and our imaging results suggested that there were notable differences for the hemodynamic responses between the flank and Simon task. A striking difference is that for the flank task, the increase in the HbO concentration during incongruent trials was larger than that during congruent trials for the channels across middle frontal cortex while for the Simon task, the hemodynamic response was stronger for the congruent condition compared to that from the incongruent one. Interestingly, the hemodynamic response exhibited similar task-related activation in the superior frontal cortex for both the congruent and incongruent conditions. Further, independent component analysis showed that different brain activation patterns were identified to accomplish different inhibitory control tasks underlying the congruent and incongruent conditions.

  6. 19 CFR 191.5 - Guantanamo Bay, insular possessions, trust territories.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Guantanamo Bay, insular possessions, trust... SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) DRAWBACK General Provisions § 191.5 Guantanamo Bay, insular possessions, trust territories. Guantanamo Bay Naval Station shall be considered foreign territory...

  7. 19 CFR 7.4 - Watches and watch movements from U.S. insular possessions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Watches and watch movements from U.S. insular possessions. 7.4 Section 7.4 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS RELATIONS WITH INSULAR POSSESSIONS AND GUANTANAMO BAY NAVAL...

  8. The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding

    Science.gov (United States)

    Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Gabi, Mariana; Mota, Bruno; Grinberg, Lea T.; Farfel, José M.; Ferretti-Rebustini, Renata E. L.; Leite, Renata E. P.; Filho, Wilson J.; Herculano-Houzel, Suzana

    2013-01-01

    The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex) the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital) that differ in how neurons are distributed across their gray matter volume and in three zones (prefrontal, occipital, and non-occipital) that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non-occipital areas. PMID

  9. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the grey matter, three in the white matter, and explains local variations in cortical folding

    Directory of Open Access Journals (Sweden)

    Pedro F. M. Ribeiro

    2013-09-01

    Full Text Available The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital that differ in how neurons distributed across their grey matter volume and in three zones (prefrontal, occipital, and non-occipital that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non

  10. Increased low- and high-frequency oscillatory activity in the prefrontal cortex of fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Manyoel eLim

    2016-03-01

    Full Text Available Recent human neuroimaging studies have suggested that fibromyalgia (FM, a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC and orbitofrontal cortex (OFC. Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM.

  11. fMR-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex

    Directory of Open Access Journals (Sweden)

    Blomert Leo

    2010-02-01

    Full Text Available Abstract Background Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional Magnetic Resonance Imaging (fMRI studies propose the (posterior superior temporal cortex (STC as the key structure for integrating meaningful multisensory information. However, a still unanswered question is how superior temporal cortex encodes content-based associations, especially in light of inconsistent results from studies comparing brain activation to semantically matching (congruent versus nonmatching (incongruent multisensory inputs. Here, we used fMR-adaptation (fMR-A in order to circumvent potential problems with standard fMRI approaches, including spatial averaging and amplitude saturation confounds. We presented repetitions of audiovisual stimuli (letter-speech sound pairs and manipulated the associative relation between the auditory and visual inputs (congruent/incongruent pairs. We predicted that if multisensory neuronal populations exist in STC and encode audiovisual content relatedness, adaptation should be affected by the manipulated audiovisual relation. Results The results revealed an occipital-temporal network that adapted independently of the audiovisual relation. Interestingly, several smaller clusters distributed over superior temporal cortex within that network, adapted stronger to congruent than to incongruent audiovisual repetitions, indicating sensitivity to content congruency. Conclusions These results suggest that the revealed clusters contain multisensory neuronal populations that encode content relatedness by selectively responding to congruent audiovisual inputs, since unisensory neuronal populations are assumed to be insensitive to the audiovisual relation. These findings extend our previously revealed mechanism for

  12. The impact of culture conditions on early follicle recruitment and growth from human ovarian cortex biopsies in vitro.

    Science.gov (United States)

    Liebenthron, Jana; Köster, Maria; Drengner, Christina; Reinsberg, Jochen; van der Ven, Hans; Montag, Markus

    2013-08-01

    To investigate the effects of a dynamic fluidic culture system on early in vitro folliculogenesis in standardized ovarian cortex biopsies. Cortical small strips were cultured for 6 days in a conventional static or in a dynamic fluidic culture system. University-affiliated laboratory with an associated cryobank facility. Ovarian cortex from postpuberal female cancer patients (26.1 ± 1.3 y) who opted for cryopreservation of their tissue for fertility protection before gonadotoxic cancer therapy. With informed consent of the Institutional Ethics Committee, part of the tissue was available for patient-related research studies. None. The viability and proliferative capacity of the cortex biopsies were evaluated by chemiluminescent microparticle immunoassay for detection of in vitro produced E2 and P in the supernate, by viable follicle counting via calcein staining, by histologic analyses, and by total RNA preparation and reverse transcription for real-time polymerase chain reaction of selected early folliculogenesis genes. The data support the notion that early follicle development can be better achieved in vitro in a dynamic fluidic culture system. The findings are based on the presence of more viable follicles, higher expression levels of early folliculogenesis genes KIT-L, INHB, and GDF9, and the absence of premature luteinization of follicles. This study provides evidence that dynamic fluidic culture is a promising approach for investigating early follicular recruitment and growth in cortical biopsies. It may serve as a first step in a multistep culture system to design a complex in vitro system for complete folliculogenesis. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Investigation of human frontal cortex under noxious thermal stimulation of temporo-mandibular joint using functional near infrared spectroscopy

    Science.gov (United States)

    Yennu, Amarnath; Rawat, Rohit; Manry, Michael T.; Gatchel, Robert; Liu, Hanli

    2013-03-01

    According to American Academy of Orofacial Pain, 75% of the U.S. population experiences painful symptoms of temporo-mandibular joint and muscle disorder (TMJMD) during their lifetime. Thus, objective assessment of pain is crucial for efficient pain management. We used near infrared spectroscopy (NIRS) as a tool to explore hemodynamic responses in the frontal cortex to noxious thermal stimulation of temporomadibular joint (TMJ). NIRS experiments were performed on 9 healthy volunteers under both low pain stimulation (LPS) and high pain stimulation (HPS), using a temperature-controlled thermal stimulator. To induce thermal pain, a 16X16 mm2 thermode was strapped onto the right TMJ of each subject. Initially, subjects were asked to rate perceived pain on a scale of 0 to 10 for the temperatures from 41°C to 47°C. For the NIRS measurement, two magnitudes of temperatures, one rated as 3 and another rated as 7, were chosen as LPS and HPS, respectively. By analyzing the temporal profiles of changes in oxy-hemoglobin concentration (HbO) using cluster-based statistical tests, we were able to identify several regions of interest (ROI), (e.g., secondary somatosensory cortex and prefrontal cortex), where significant differences (ppain, a neural-network-based classification algorithm was used. With leave-one-out cross validation from 9 subjects, the two levels of pain were identified with 100% mean sensitivity, 98% mean specificity and 99% mean accuracy to high pain. From the receiver operating characteristics curve, 0.99 mean area under curve was observed.

  14. Sound identification in human auditory cortex: Differential contribution of local field potentials and high gamma power as revealed by direct intracranial recordings.

    Science.gov (United States)

    Nourski, Kirill V; Steinschneider, Mitchell; Rhone, Ariane E; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob

    2015-09-01

    High gamma power has become the principal means of assessing auditory cortical activation in human intracranial studies, albeit at the expense of low frequency local field potentials (LFPs). It is unclear whether limiting analyses to high gamma impedes ability of clarifying auditory cortical organization. We compared the two measures obtained from posterolateral superior temporal gyrus (PLST) and evaluated their relative utility in sound categorization. Subjects were neurosurgical patients undergoing invasive monitoring for medically refractory epilepsy. Stimuli (consonant-vowel syllables varying in voicing and place of articulation and control tones) elicited robust evoked potentials and high gamma activity on PLST. LFPs had greater across-subject variability, yet yielded higher classification accuracy, relative to high gamma power. Classification was enhanced by including temporal detail of LFPs and combining LFP and high gamma. We conclude that future studies should consider utilizing both LFP and high gamma when investigating the functional organization of human auditory cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex

    DEFF Research Database (Denmark)

    Jung, Nikolai H; Gleich, Bernhard; Gattinger, Norbert

    2016-01-01

    Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex ...... in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1....... was set to 666 Hz to mimic the rhythmicity of the descending cortico-spinal volleys that are elicited by TMS (i.e., I-wave periodicity). In a second experiment, burst frequency was set to 200 Hz to maximize postsynaptic Ca2+ influx using a temporal pattern unrelated to I-wave periodicity. The second phase...