WorldWideScience

Sample records for human influenza metapneumovirus

  1. Human Respiratory Syncytial Virus and Human Metapneumovirus

    Directory of Open Access Journals (Sweden)

    Luciana Helena Antoniassi da Silva

    2009-08-01

    Full Text Available The human respiratory syncytial virus (hRSV and the human metapneumovírus (hMPV are main etiological agents of acute respiratory infections (ARI. The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV is the best characterized agent viral of this group, associated with respiratory diseases in lower respiratory tract. Recently, a new human pathogen belonging to the subfamily Pneumovirinae was identified, the human metapneumovirus (hMPV, which is structurally similar to the hRSV, in genomic organization, viral structure, antigenicity and clinical symptoms.  The subfamily Pneumovirinae contains two genera: genus Pneumovirus contains hRSV, the bovine (bRSV, as well as the ovine and caprine respiratory syncytial virus and pneumonia virus of mice, the second genus Metapneumovirus, consists of avian metapneumovirus (aMPV and human metapneumovirus (hMPV. In this work, we present a brief narrative review of the literature on important aspects of the biology, epidemiology and clinical manifestations of infections by two respiratory viruses.

  2. Avian and human metapneumovirus.

    Science.gov (United States)

    Broor, Shobha; Bharaj, Preeti

    2007-04-01

    Pneumovirus infection remains a significant problem for both human and veterinary medicine. Both avian pneumovirus (aMPV, Turkey rhinotracheitis virus) and human metapneumovirus (hMPV) are pathogens of birds and humans, which are associated with respiratory tract infections. Based on their different genomic organization and low level of nucleotide (nt) and amino acid (aa) identity with paramyxoviruses in the genus Pneumovirus, aMPV and hMPV have been classified into a new genus referred to as Metapneumovirus. The advancement of our understanding of pneumovirus biology and pathogenesis of pneumovirus disease in specific natural hosts can provide us with strategies for vaccine formulations and combined antiviral and immunomodulatory therapies.

  3. Human Metapneumovirus in Turkey Poults

    Science.gov (United States)

    Velayudhan, Binu T.; Nagaraja, Kakambi V.; Thachil, Anil J.; Shaw, Daniel P.; Gray, Gregory C.

    2006-01-01

    This study was conducted to reexamine the hypothesis that human metapneumovirus (hMPV) will not infect turkeys. Six groups of 2-week-old turkeys (20 per group) were inoculated oculonasally with 1 of the following: noninfected cell suspension; hMPV genotype A1, A2, B1, or B2; or avian metapneumovirus (aMPV) subtype C. Poults inoculated with hMPV showed nasal discharge days 4–9 postexposure. Specific viral RNA and antigen were detected by reverse-transcription PCR and immunohistochemical evaluation, respectively, in nasal turbinates of birds exposed to hMPV. Nasal turbinates of hMPV-infected turkeys showed inflammatory changes and mucus accumulation. Each of the 4 hMPV genotypes caused a transient infection in turkeys as evidenced by clinical signs, detection of hMPV in turbinates, and histopathologic examination. Detailed investigation of cross-species pathogenicity of hMPV and aMPV and its importance for human and animal health is needed. PMID:17235379

  4. Antigenic and genetic variability of human metapneumoviruses

    NARCIS (Netherlands)

    S. Herfst (Sander); L. Sprong; P.A. Cane; E. Forleo-Neto; A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); R.L. de Swart (Rik); B.G. van den Hoogen (Bernadette)

    2004-01-01

    textabstractHuman metapneumovirus (HMPV) is a member of the subfamily Pneumovirinae within the family Paramyxo- viridae. Other members of this subfamily, respiratory syncytial virus and avian pneumovirus, can be divided into subgroups on the basis of genetic or antigenic differences or both. For

  5. Specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses

    NARCIS (Netherlands)

    M.T. de Graaf (Marieke); S. Herfst (Sander); E.J.A. Schrauwen (Eefje); Y. Choi (Ying); B.G. van den Hoogen (Bernadette); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron)

    2008-01-01

    textabstractHuman metapneumovirus (HMPV) and avian metapneumovirus (AMPV) have a similar genome organization and protein composition, but a different host range. AMPV subgroup C (AMPV-C) is more closely relaled to HMPV than other AMPVs. To investigate the specificity and functional interaction of

  6. Development and optimization of a direct plaque assay for human and avian metapneumoviruses

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Li, Junan; Li, Jianrong

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae and family Paramyxoviridae includes only two viruses, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), which cause respiratory disease in humans and birds, respectively. These two viruses grow poorly in cell culture and other quantitation methods, such as indirect immuno-staining and immuno-fluorescent assays, are expensive, time consuming, and do not allow for plaque purification of the virus. In order to enhance research efforts for studying these two viruses, a direct plaque assay for both hMPV and aMPV has been developed. By optimizing the chemical components of the agarose overlay, it was found that both hMPV with a trypsin-independent F cleavage site and aMPV formed clear and countable plaques in a number of mammalian cell lines (such as Vero-E6 and LLC-MK2 cells) after 5 days of incubation. The plaque forming assay has similar sensitivity and reliability as the currently used immunological methods for viral quantitation. The plaque assay is also a more simple, rapid, and economical method compared to immunological assays, and in addition allows for plaque purification of the viruses. The direct plaque assay will be a valuable method for the quantitation and evaluation of the biological properties of some metapneumoviruses. PMID:22684013

  7. [Human Metapneumovirus (hMPV) associated to severe bronchial asthmatic crisis].

    Science.gov (United States)

    López, M A; Kusznierz, G F; Imaz, M S; Cociglio, R; Tedeschi, F A; Zalazar, F E

    2006-01-01

    Human Metapneumovirus (hMPV) is a recently reported agent of acute infection in the respiratory tract. It has been found in children as well as in young adults and elders. The clinical manifestations produced by hMPV are indistinguishable from those by common respiratory virus, and can evolve from asymptomatic infection into severe pneumonia. On the other hand, some authors have described cases of bronchial asthma exacerbation associated with hMPV infection. In this work we report a case of a child who presented a severe bronchial asthmatic crisis with a suspected viral associated infection. Immunofluorescence tests yielded negative results for sincitial respiratory virus, adenovirus, a-b influenza virus and parainfluenza 1, 2, 3, virus. In an attempt to detect the presence of hMPV, a RT-PCR was carried out to amplify sequences from both N and F genes. Using this approach, a positive result for hMPV was obtained. To our knowledge, this is the first description of a case of asthma exacerbation associated to hMPV in our region. In addition, these results are similar to previous reports where it was hypothesized that, like RSV, hMPV can trigger a respiratory chronic disease as asthma.

  8. Prevalence and clinical symptoms of human metapneumovirus infection in hospitalized patients

    NARCIS (Netherlands)

    B.G. van den Hoogen (Bernadette); G.J.J. van Doornum (Gerard); J.C. Fockens (John); J.J. Cornelissen (Jan); W.E.Ph. Beyer (Walter); R. de Groot (Ronald); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron)

    2003-01-01

    textabstractDuring a 17-month period, we performed retrospective analyses of the prevalence of and clinical symptoms associated with human metapneumovirus (hMPV) infection, among patients in a university hospital in The Netherlands. All available nasal-aspirate, throat-swab, sputum, and

  9. Human metapneumovirus - what we know now [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Nazly Shafagati

    2018-02-01

    Full Text Available Human metapneumovirus (HMPV is a leading cause of acute respiratory infection, particularly in children, immunocompromised patients, and the elderly. HMPV, which is closely related to avian metapneumovirus subtype C, has circulated for at least 65 years, and nearly every child will be infected with HMPV by the age of 5. However, immunity is incomplete, and re-infections occur throughout adult life. Symptoms are similar to those of other respiratory viral infections, ranging from mild (cough, rhinorrhea, and fever to more severe (bronchiolitis and pneumonia. The preferred method for diagnosis is reverse transcription-polymerase chain reaction as HMPV is difficult to culture. Although there have been many advances made in the past 16 years since its discovery, there are still no US Food and Drug Administration-approved antivirals or vaccines available to treat HMPV. Both small animal and non-human primate models have been established for the study of HMPV. This review will focus on the epidemiology, transmission, and clinical manifestations in humans as well as the animal models of HMPV pathogenesis and host immune response.

  10. Recovery of avian metapneumovirus subgroup C from cDNA: cross-recognition of avian and human metapneumovirus support proteins.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Buchholz, Ursula J; Samal, Siba K

    2006-06-01

    Avian metapneumovirus (AMPV) causes an acute respiratory disease in turkeys and is associated with "swollen head syndrome" in chickens, contributing to significant economic losses for the U.S. poultry industry. With a long-term goal of developing a better vaccine for controlling AMPV in the United States, we established a reverse genetics system to produce infectious AMPV of subgroup C entirely from cDNA. A cDNA clone encoding the entire 14,150-nucleotide genome of AMPV subgroup C strain Colorado (AMPV/CO) was generated by assembling five cDNA fragments between the T7 RNA polymerase promoter and the autocatalytic hepatitis delta virus ribozyme of a transcription plasmid, pBR 322. Transfection of this plasmid, along with the expression plasmids encoding the N, P, M2-1, and L proteins of AMPV/CO, into cells stably expressing T7 RNA polymerase resulted in the recovery of infectious AMPV/CO. Characterization of the recombinant AMPV/CO showed that its growth properties in tissue culture were similar to those of the parental virus. The potential of AMPV/CO to serve as a viral vector was also assessed by generating another recombinant virus, rAMPV/CO-GFP, that expressed the enhanced green fluorescent protein (GFP) as a foreign protein. Interestingly, GFP-expressing AMPV and GFP-expressing human metapneumovirus (HMPV) could be recovered using the support plasmids of either virus, denoting that the genome promoters are conserved between the two metapneumoviruses and can be cross-recognized by the polymerase complex proteins of either virus. These results indicate a close functional relationship between AMPV/CO and HMPV.

  11. Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses In Vitro and against Human Metapneumovirus in Hamsters.

    Science.gov (United States)

    Jochmans, D; van Nieuwkoop, S; Smits, S L; Neyts, J; Fouchier, R A M; van den Hoogen, B G

    2016-08-01

    The clinical impact of infections with respiratory viruses belonging to the family Paramyxoviridae argues for the development of antiviral therapies with broad-spectrum activity. Favipiravir (T-705) has demonstrated potent antiviral activity against multiple RNA virus families and is presently in clinical evaluation for the treatment of influenza. Here we demonstrate in vitro activity of T-705 against the paramyxoviruses human metapneumovirus (HMPV), respiratory syncytial virus, human parainfluenza virus, measles virus, Newcastle disease virus, and avian metapneumovirus. In addition, we demonstrate activity against HMPV in hamsters. T-705 treatment inhibited replication of all paramyxoviruses tested in vitro, with 90% effective concentration (EC90) values of 8 to 40 μM. Treatment of HMPV-challenged hamsters with T-705 at 200 mg/kg of body weight/day resulted in 100% protection from infection of the lungs. In all treated and challenged animals, viral RNA remained detectable in the respiratory tract. The observation that T-705 treatment had a significant effect on infectious viral titers, with a limited effect on viral genome titers, is in agreement with its proposed mode of action of viral mutagenesis. However, next-generation sequencing of viral genomes isolated from treated and challenged hamsters did not reveal (hyper)mutation. Polymerase activity assays revealed a specific effect of T-705 on the activity of the HMPV polymerase. With the reported antiviral activity of T-705 against a broad range of RNA virus families, this small molecule is a promising broad-range antiviral drug candidate for limiting the viral burden of paramyxoviruses and for evaluation for treatment of infections with (re)emerging viruses, such as the henipaviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Metapneumovirus humano (hMPV asociado con exacerbación de asma aguda bronquial severa Human Metapneumovirus (hMPV associated to severe bronchial asthmatic crisis

    Directory of Open Access Journals (Sweden)

    M. A. López

    2006-09-01

    Full Text Available El metapneumovirus humano (hMPV es un nuevo agente causal de infección aguda del tracto respiratorio, recientemente reportado tras su hallazgo en niños, jóvenes, adultos y ancianos. Las manifestaciones clínicas producidas por el hMPV son indistinguibles de aquellas provocadas por los virus respiratorios clásicamente conocidos, y varían desde infección asintomática hasta neumonía complicada. Por otro lado, se han descrito casos de exacerbación de asma bronquial asociados a la infección con hMPV. En este trabajo se describe el caso de un niño hospitalizado que presentó una crisis asmática bronquial severa con sospecha de una infección viral asociada. Por el test de inmunofluorescencia indirecta no se detectaron virus sincicial respiratorio (VSR, adenovirus, virus influenza a - b ni virus parainfluenza 1, 2 y 3. En un intento por detectar la presencia de hMPV, se realizó una RT-PCR para la amplificación de los genes N y F con resultado positivo. Conforme a nuestro conocimiento, esta sería la primera descripción de un caso de exacerbación de asma asociado a hMPV en nuestra región. Los resultados de este estudio serían similares a los reportados por otros autores, quienes postulan que, a semejanza de lo que ocurre con el VSR, una infección por hMPV puede gatillar una enfermedad respiratoria crónica, como el asma.Human Metapneumovirus (hMPV is a recently reported agent of acute infection in the respiratory tract. It has been found in children as well as in young adults and elders. The clinical manifestations produced by hMPV are indistinguishable from those by common respiratory virus, and can evolve from asymptomatic infection into severe pneumonia. On the other hand, some authors have described cases of bronchial asthma exacerbation associated with hMPV infection. In this work we report a case of a child who presented a severe bronchial asthmatic crisis with a suspected viral associated infection. Immunofluorescence tests

  13. Metapneumovirus aviar: diagnóstico y control (Avian Metapneumovirus: diagnosis and control)

    OpenAIRE

    Acevedo Beiras, Ana María.

    2011-01-01

    ResumenEl Metapneumovirus aviar (aMPV) causa una infección aguda, altamente contagiosa del tracto respiratorio superior principalmente en pavos y pollos.SummaryAvian metapneumovirus (aMPV) causes an acute highly contagious upper respiratory tract infection primarily of turkeys and chickens.

  14. Laboratory surveillance of influenza-like illness in seven teaching hospitals, South Korea: 2011-2012 season.

    Directory of Open Access Journals (Sweden)

    Ji Yun Noh

    Full Text Available BACKGROUND: A well-constructed and properly operating influenza surveillance scheme is essential for public health. This study was conducted to evaluate the distribution of respiratory viruses in patients with influenza-like illness (ILI through the first teaching hospital-based surveillance scheme for ILI in South Korea. METHODS: Respiratory specimens were obtained from adult patients (≥18 years who visited the emergency department (ED with ILI from week 40, 2011 to week 22, 2012. Multiplex PCR was performed to detect respiratory viruses: influenza virus, adenovirus, coronavirus, respiratory syncytial virus, rhinovirus, human metapneumovirus, parainfluenza virus, bocavirus, and enterovirus. RESULTS: Among 1,983 patients who visited the ED with ILI, 811 (40.9% were male. The median age of patients was 43 years. Influenza vaccination rate was 21.7% (430/1,983 during the 2011-2012 season. At least one comorbidity was found in 18% of patients. The positive rate of respiratory viruses was 52.1% (1,033/1,983 and the total number of detected viruses was 1,100. Influenza A virus was the dominant agent (677, 61.5% in all age groups. The prevalence of human metapneumovirus was higher in patients more than 50 years old, while adenovirus was detected only in younger adults. In 58 (5.6% cases, two or more respiratory viruses were detected. The co-incidence case was identified more frequently in patients with hematologic malignancy or organ transplantation recipients, however it was not related to clinical outcomes. CONCLUSION: This study is valuable as the first extensive laboratory surveillance of the epidemiology of respiratory viruses in ILI patients through a teaching hospital-based influenza surveillance system in South Korea.

  15. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza in Pigs

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-12-01

    Full Text Available Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries for 80 years. In 1998, triple reassortant H3N2 swine influenza viruses that contains genes of human influenza A virus (H3N2, swine influenza virus (H1N1 and avian influenza are reported as cause an outbreaks in pigs in North America. Furthermore, the circulation of triple reassortant H3N2 swine influenza virus resulting reassortant H1N1 swine influenza and reassortant H1N2 swine influenza viruses cause infection in humans. Humans who were infected by triple reassortant swine influenza A virus (H1N1 usually made direct contact with pigs. Although without any clinical symptoms, pigs that are infected by triple reassortant swine influenza A (H1N1 can transmit infection to the humans around them. In June 2009, WHO declared that pandemic influenza of reassortant H1N1 influenza A virus (novel H1N1 has reached phase 6. In Indonesia until 2009, there were 1005 people were infected by H1N1 influenza A and 5 of them died. Novel H1N1 and H5N1 viruses have been circulated in humans and pigs in Indonesia. H5N1 reassortant and H1N1 viruses or the seasonal flu may could arise because of genetic reassortment between avian influenza and humans influenza viruses that infect pigs together.

  16. Fusion protein is the main determinant of metapneumovirus host tropism.

    Science.gov (United States)

    de Graaf, Miranda; Schrauwen, Eefje J A; Herfst, Sander; van Amerongen, Geert; Osterhaus, Albert D M E; Fouchier, Ron A M

    2009-06-01

    Human metapneumovirus (HMPV) and avian metapneumovirus subgroup C (AMPV-C) infect humans and birds, respectively. This study confirmed the difference in host range in turkey poults, and analysed the contribution of the individual metapneumovirus genes to host range in an in vitro cell-culture model. Mammalian Vero-118 cells supported replication of both HMPV and AMPV-C in contrast to avian quail fibroblast (QT6) cells in which only AMPV-C replicated to high titres. Inoculation of Vero-118 and QT6 cells with recombinant HMPV in which genes were exchanged with those of AMPV-C revealed that the metapneumovirus fusion (F) protein is the main determinant for host tropism. Chimeric viruses in which polymerase complex proteins were exchanged between HMPV and AMPV-C replicated less efficiently compared with HMPV in QT6 cells. Using mini-genome systems, it was shown that exchanging these polymerase proteins resulted in reduced replication and transcription efficiency in QT6 cells. Examination of infected Vero-118 and QT6 cells revealed that viruses containing the F protein of AMPV-C yielded larger syncytia compared with viruses containing the HMPV F protein. Cell-content mixing assays revealed that the F protein of AMPV-C was more fusogenic compared with the F protein of HMPV, and that the F2 region is responsible for the difference observed between AMPV-C and HMPV F-promoted fusion in QT6 and Vero-118 cells. This study provides insight into the determinants of host tropism and membrane fusion of metapneumoviruses.

  17. Genetic diversity and evolution of human metapneumovirus fusion protein over twenty years

    Directory of Open Access Journals (Sweden)

    Liem Alexis

    2009-09-01

    Full Text Available Abstract Background Human metapneumovirus (HMPV is an important cause of acute respiratory illness in children. We examined the diversity and molecular evolution of HMPV using 85 full-length F (fusion gene sequences collected over a 20-year period. Results The F gene sequences fell into two major groups, each with two subgroups, which exhibited a mean of 96% identity by predicted amino acid sequences. Amino acid identity within and between subgroups was higher than nucleotide identity, suggesting structural or functional constraints on F protein diversity. There was minimal progressive drift over time, and the genetic lineages were stable over the 20-year period. Several canonical amino acid differences discriminated between major subgroups, and polymorphic variations tended to cluster in discrete regions. The estimated rate of mutation was 7.12 × 10-4 substitutions/site/year and the estimated time to most recent common HMPV ancestor was 97 years (95% likelihood range 66-194 years. Analysis suggested that HMPV diverged from avian metapneumovirus type C (AMPV-C 269 years ago (95% likelihood range 106-382 years. Conclusion HMPV F protein remains conserved over decades. HMPV appears to have diverged from AMPV-C fairly recently.

  18. Genetic diversity and evolution of human metapneumovirus fusion protein over twenty years

    Science.gov (United States)

    Yang, Chin-Fen; Wang, Chiaoyin K; Tollefson, Sharon J; Piyaratna, Rohith; Lintao, Linda D; Chu, Marla; Liem, Alexis; Mark, Mary; Spaete, Richard R; Crowe, James E; Williams, John V

    2009-01-01

    Background Human metapneumovirus (HMPV) is an important cause of acute respiratory illness in children. We examined the diversity and molecular evolution of HMPV using 85 full-length F (fusion) gene sequences collected over a 20-year period. Results The F gene sequences fell into two major groups, each with two subgroups, which exhibited a mean of 96% identity by predicted amino acid sequences. Amino acid identity within and between subgroups was higher than nucleotide identity, suggesting structural or functional constraints on F protein diversity. There was minimal progressive drift over time, and the genetic lineages were stable over the 20-year period. Several canonical amino acid differences discriminated between major subgroups, and polymorphic variations tended to cluster in discrete regions. The estimated rate of mutation was 7.12 × 10-4 substitutions/site/year and the estimated time to most recent common HMPV ancestor was 97 years (95% likelihood range 66-194 years). Analysis suggested that HMPV diverged from avian metapneumovirus type C (AMPV-C) 269 years ago (95% likelihood range 106-382 years). Conclusion HMPV F protein remains conserved over decades. HMPV appears to have diverged from AMPV-C fairly recently. PMID:19740442

  19. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus.

    Science.gov (United States)

    Deng, Qiji; Weng, Yuejin; Lu, Wuxun; Demers, Andrew; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-09-01

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size amongst the different viruses. Human respiratory syncytial virus (HRSV) encodes the smallest SH protein consisting of only 64 amino acids, while metapneumoviruses have the longest SH protein ranging from 174 to 179 amino acids in length. Little is currently known about the cellular localization and topology of the metapneumovirus SH protein. Here we characterize for the first time metapneumovirus SH protein with respect to topology, subcellular localization, and transport using avian metapneumovirus subgroup C (AMPV-C) as a model system. We show that AMPV-C SH is an integral membrane protein with N(in)C(out) orientation located in both the plasma membrane as well as within intracellular compartments, which is similar to what has been described previously for SH proteins of other paramyxoviruses. Furthermore, we demonstrate that AMPV-C SH protein localizes in the endoplasmic reticulum (ER), Golgi, and cell surface, and is transported through ER-Golgi secretory pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Influenza and other respiratory virus infections in outpatients with medically attended acute respiratory infection during the 2011-12 influenza season.

    Science.gov (United States)

    Zimmerman, Richard K; Rinaldo, Charles R; Nowalk, Mary Patricia; Gk, Balasubramani; Thompson, Mark G; Moehling, Krissy K; Bullotta, Arlene; Wisniewski, Stephen

    2014-07-01

    Respiratory tract infections are a major cause of outpatient visits, yet only a portion is tested to determine the etiologic organism. Multiplex reverse transcriptase polymerase chain reaction (MRT-PCR) assays for detection of multiple viruses are being used increasingly in clinical settings. During January-April 2012, outpatients with acute respiratory illness (≤ 7 days) were tested for influenza using singleplex RT-PCR (SRT-PCR). A subset was assayed for 18 viruses using MRT-PCR to compare detection of influenza and examine the distribution of viruses and characteristics of patients using multinomial logistic regression. Among 662 participants (6 months-82 years), detection of influenza was similar between the MRT-PCR and SRT-PCR (κ = 0.83). No virus was identified in 267 (40.3%) samples. Commonly detected viruses were human rhinovirus (HRV, 15.4%), coronavirus (CoV, 10.4%), respiratory syncytial virus (RSV, 8.4%), human metapneumovirus (hMPV, 8.3%), and influenza (6%). Co-detections were infrequent (6.9%) and most commonly occurred among those infections (P = 0.008), nasal congestion was more frequent in CoV, HRV, hMPV, influenza and RSV infections (P = 0.001), and body mass index was higher among those with influenza (P = 0.036). Using MRT-PCR, a viral etiology was found in three-fifths of patients with medically attended outpatient visits for acute respiratory illness during the influenza season; co-detected viruses were infrequent. Symptoms varied by viral etiology. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  1. Visual detection of the human metapneumovirus using reverse transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye

    Directory of Open Access Journals (Sweden)

    Wang Xiang

    2012-07-01

    Full Text Available Abstract Background Human metapneumovirus (hMPV is a major cause of acute respiratory infections ranging from wheezing to bronchiolitis and pneumonia in children worldwide. The objective of this study is to develop a visual reverse transcription loop-mediated isothermal amplification (RT-LAMP assay for the detection of hMPV and applied to the clinical samples. Results In this study, visual RT-LAMP assay for hMPV was performed in one step with the addition of hydroxynaphthol blue (HNB, and were used to detect respiratory samples. Six primers, including two outer primers (F3 and B3, two inner primers (FIP, BIP and two loop primers (LF and LB, were designed for hMPV N gene by the online software. Moreover, the RT-LAMP assay showed good specificity and no cross-reactivity was observed with human rhinovirus (HRV, human respiratory syncytial Virus (RSV, or influenza virus A/PR/8/34 (H1N1. The detection limit of the RT-LAMP assay was approximately ten viral RNA copies, lower than that of traditional reverse transcriptase polymerase chain reaction (RT-PCR 100 RNA copies. In the 176 nasopharyngeal samples, 23 (13.1% were conformed as hMPV positive by RT-LAMP, but 18 (10.2% positive by RT-PCR. Conclusion Compared with conventional RT-PCR, the visual hMPV RT-LAMP assay performed well in the aspect of detect time, sensitivity, specificity and visibility. It is anticipated that the RT-LAMP will be used for clinical tests in hospital or field testing during outbreaks and in emergency.

  2. Clinical Features of Human Metapneumovirus Infection in Ambulatory Children Aged 5-13 Years.

    Science.gov (United States)

    Howard, Leigh M; Edwards, Kathryn M; Zhu, Yuwei; Griffin, Marie R; Weinberg, Geoffrey A; Szilagyi, Peter G; Staat, Mary A; Payne, Daniel C; Williams, John V

    2018-05-15

    We detected human metapneumovirus (HMPV) in 54 (5%) of 1055 children aged 5 to 13 years with acute respiratory illness (ARI) identified by outpatient and emergency department surveillance between November and May 2003-2009. Its clinical features were similar to those of HMPV-negative ARI, except a diagnosis of pneumonia was more likely (13% vs 4%, respectively; P = .005) and a diagnosis of pharyngitis (7% vs 24%, respectively; P = .005) was less likely in patients with HMPV- positive ARI than those with HMPV-negative ARI.

  3. [Respiratory infections caused by metapneumovirus in elderly patients].

    Science.gov (United States)

    Fica C, Alberto; Hernández C, Loreto; Porte T, Lorena; Castro S, Marcelo; Weitzel, Thomas

    2011-04-01

    Human metapneumovirus infections are increasingly recognized among adult patients and the aim of this report is to present a series of 4 cases admitted during the winter of 2010. All were detected by direct fluorescence anti-bodies assay of respiratory samples and all were female patients with an age range of 79 to 95 years, including two bedridden cases, one with dementia and three with chronic obstructive pulmonary disease. One patient presented with parainfluenza 3 virus coinfection. Patients presented with pneumonía in 3 cases (interstitial pattern in 2 and lobar consolidation in the other) or acute exacerbation of chronic bronchitis in the remaining case. Symptoms were present for 3 to 7 days before admission and 3 have wheezing. All had hypoxemic or global respiratory failure and lymphopenia (ventilation. Human metapneumovirus infections can decompensate elderly patients with chronic respiratory diseases generating hospital admission and a prolonged morbidity marked by obstructive manifestations and sometimes can become into death.

  4. Avian influenza viruses in humans.

    Science.gov (United States)

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  5. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    Science.gov (United States)

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  6. Human metapneumovirus and respiratory syncytial virus in hospitalized danish children with acute respiratory tract infection

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Henrik Larsen, Hans; Koch, Anders

    2004-01-01

    The newly discovered human metapneumovirus (hMPV) has been shown to be associated with respiratory illness. We determined the frequencies and clinical features of hMPV and respiratory syncytial virus (RSV) infections in 374 Danish children with 383 episodes of acute respiratory tract infection...... children 1-6 months of age. Asthmatic bronchitis was diagnosed in 66.7% of hMPV and 10.6% of RSV-infected children (p respiratory support. hMPV is present in young...

  7. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system.

    Science.gov (United States)

    Weng, Yuejin; Lu, Wuxun; Harmon, Aaron; Xiang, Xiaoxiao; Deng, Qiji; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-05-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus Metapneumovirus in the family Paramyxoviridae. Little is currently known about the mechanisms involved in the budding of metapneumovirus. By using AMPV as a model system, we showed that the matrix (M) protein by itself was insufficient to form virus-like-particles (VLPs). The incorporation of M into VLPs was shown to occur only when both the viral nucleoprotein (N) and the fusion (F) proteins were co-expressed. Furthermore, we provided evidence indicating that two YSKL and YAGL segments encoded within the M protein were not a functional late domain, and the endosomal sorting complex required for transport (ESCRT) machinery was not involved in metapneumovirus budding, consistent with a recent observation that human respiratory syncytial virus, closely related to HMPV, uses an ESCRT-independent budding mechanism. Taken together, these results suggest that metapneumovirus budding is independent of the ESCRT pathway and the minimal budding machinery described here will aid our future understanding of metapneumovirus assembly and egress.

  8. Influenza and other respiratory viruses: standardizing disease severity in surveillance and clinical trials.

    Science.gov (United States)

    Rath, Barbara; Conrad, Tim; Myles, Puja; Alchikh, Maren; Ma, Xiaolin; Hoppe, Christian; Tief, Franziska; Chen, Xi; Obermeier, Patrick; Kisler, Bron; Schweiger, Brunhilde

    2017-06-01

    Influenza-Like Illness is a leading cause of hospitalization in children. Disease burden due to influenza and other respiratory viral infections is reported on a population level, but clinical scores measuring individual changes in disease severity are urgently needed. Areas covered: We present a composite clinical score allowing individual patient data analyses of disease severity based on systematic literature review and WHO-criteria for uncomplicated and complicated disease. The 22-item ViVI Disease Severity Score showed a normal distribution in a pediatric cohort of 6073 children aged 0-18 years (mean age 3.13; S.D. 3.89; range: 0 to 18.79). Expert commentary: The ViVI Score was correlated with risk of antibiotic use as well as need for hospitalization and intensive care. The ViVI Score was used to track children with influenza, respiratory syncytial virus, human metapneumovirus, human rhinovirus, and adenovirus infections and is fully compliant with regulatory data standards. The ViVI Disease Severity Score mobile application allows physicians to measure disease severity at the point-of care thereby taking clinical trials to the next level.

  9. Avian Metapneumoviruses

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important virus that is the primary causal agent of turkey rhinotracheitis (TRT), also known as avian rhinotracheitis (ART). The virus causes an acute highly contagious infection of the upper respiratory tract in turkeys and was first isolated from tur...

  10. Metapneumovirus infections

    Science.gov (United States)

    Avian metapneumovirus (aMPV) causes turkey rhinotracheitis (TRT), an acute upper respiratory tract infection of turkeys, and is also associated with swollen head syndrome (SHS) in chickens and egg production losses in layers. Since the first TRT reported in the late 1970s in South Africa, the virus...

  11. Animal and human influenzas.

    Science.gov (United States)

    Peiris, M; Yen, H-L

    2014-08-01

    Influenza type A viruses affect humans and other animals and cause significant morbidity, mortality and economic impact. Influenza A viruses are well adapted to cross species barriers and evade host immunity. Viruses that cause no clinical signs in wild aquatic birds may adapt in domestic poultry to become highly pathogenic avian influenza viruses which decimate poultry flocks. Viruses that cause asymptomatic infection in poultry (e.g. the recently emerged A/H7N9 virus) may cause severe zoonotic disease and pose a major pandemic threat. Pandemic influenza arises at unpredictable intervals from animal viruses and, in its global spread, outpaces current technologies for making vaccines against such novel viruses. Confronting the threat of influenza in humans and other animals is an excellent example of a task that requires a One Health approach. Changes in travel, trade in livestock and pets, changes in animal husbandry practices, wet markets and complex marketing chains all contribute to an increased risk of the emergence of novel influenza viruses with the ability to cross species barriers, leading to epizootics or pandemics. Coordinated surveillance at the animal- human interface for pandemic preparedness, risk assessment, risk reduction and prevention at source requires coordinated action among practitioners in human and animal health and the environmental sciences. Implementation of One Health in the field can be challenging because of divergent short-term objectives. Successful implementation requires effort, mutual trust, respect and understanding to ensure that long-term goals are achieved without adverse impacts on agricultural production and food security.

  12. Avian metapneumovirus subgroup C infection in chickens, China.

    Science.gov (United States)

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; Liu, Shuhang; She, Ruiping; Hu, Fengjiao; Quan, Rong; Liu, Jue

    2013-07-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.

  13. Avian Metapneumovirus Subgroup C Infection in Chickens, China

    OpenAIRE

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; Liu, Shuhang; She, Ruiping; Hu, Fengjiao; Quan, Rong; Liu, Jue

    2013-01-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.

  14. Characterization of the Fusion and Attachment Glycoproteins of Human Metapneumovirus and Human Serosurvey to Determine Reinfection Rates

    Science.gov (United States)

    2007-06-27

    Metapneumovirus genus. The Paramyxoviridae are in the taxonomical order Mononegavirales which includes Bornaviridae, Rhabdoviridae and Filoviridae which... Rhabdoviridae plant virus, replicate in the cytoplasm (66). The Paramyxoviridae are enveloped viruses and have been defined by the fusion glycoprotein

  15. Excretion patterns of human metapneumovirus and respiratory syncytial virus among young children

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Eugen-Olsen, Jesper; Koch, A

    2006-01-01

    of the infected children showed to have an upper respiratory tract infection when following up. CONCLUSION: Viral RNA was present in nasal secretions, saliva, sweat, and faeces, but whether or not the virions were infectious and constitute a potential mode of transmission remains to be shown in future studies.......BACKGROUND: As respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause serious respiratory tract infections, the routes of transmission of these viruses are important to elucidate. We examined the modes of virus shedding and shedding duration of RSV and hMPV in young children....... METHODS: From each child in a group of 44 children (37 RSV-positive, 6 hMPV-positive, and 1 co-infected child), aged between 0.5-38 months, hospitalised at Hvidovre Hospital, Copenhagen, Denmark, one nasopharyngeal aspirate (NPA), saliva, urine, and faeces sample were collected at inclusion and weekly...

  16. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    Directory of Open Access Journals (Sweden)

    Claire M. Smith

    2016-08-01

    Full Text Available Defective interfering (DI viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8 was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1; it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral.

  17. Complete nucleotide sequences of avian metapneumovirus subtype B genome.

    Science.gov (United States)

    Sugiyama, Miki; Ito, Hiroshi; Hata, Yusuke; Ono, Eriko; Ito, Toshihiro

    2010-12-01

    Complete nucleotide sequences were determined for subtype B avian metapneumovirus (aMPV), the attenuated vaccine strain VCO3/50 and its parental pathogenic strain VCO3/60616. The genomes of both strains comprised 13,508 nucleotides (nt), with a 42-nt leader at the 3'-end and a 46-nt trailer at the 5'-end. The genome contains eight genes in the order 3'-N-P-M-F-M2-SH-G-L-5', which is the same order shown in the other metapneumoviruses. The genes are flanked on either side by conserved transcriptional start and stop signals and have intergenic sequences varying in length from 1 to 88 nt. Comparison of nt and predicted amino acid (aa) sequences of VCO3/60616 with those of other metapneumoviruses revealed higher homology with aMPV subtype A virus than with other metapneumoviruses. A total of 18 nt and 10 deduced aa differences were seen between the strains, and one or a combination of several differences could be associated with attenuation of VCO3/50.

  18. Serologic evidence of avian metapneumovirus infection among adults occupationally exposed to Turkeys.

    Science.gov (United States)

    Kayali, Ghazi; Ortiz, Ernesto J; Chorazy, Margaret L; Nagaraja, Kakambi V; DeBeauchamp, Jennifer; Webby, Richard J; Gray, Gregory C

    2011-11-01

    Genetically similar, the avian metapneumovirus (aMPV) and the human MPV (hMPV) are the only viruses in the Metapneumovirus genus. Previous research demonstrated the ability of hMPV to cause clinical disease in turkeys. In this controlled, cross-sectional, seroepidemiological study, we examined the hypothesis that aMPV might infect humans. We enrolled 95 adults occupationally exposed to turkeys and 82 nonexposed controls. Sera from study participants were examined for antibodies against aMPV and hMPV. Both in bivariate (OR=3.2; 95% CI: 1.1-9.2) and in multivariate modelling adjusting for antibody to hMPV (OR=4.1; 95% CI: 1.3-13.1), meat-processing workers were found to have an increased odds of previous infection with aMPV compared to controls. While hMPV antibody cross-reactivity is evident, these data suggest that occupational exposure to turkeys is a risk factor for human infection with aMPV. More studies are needed to validate these findings, to identify modes of aMPV transmission, and to determine risk factors associated with infection.

  19. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); M.A. den Bakker (Michael); L.M.E. Leijten (Lonneke); S. Chutinimitkul (Salin); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2010-01-01

    textabstractInfluenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by

  20. Human Metapneumovirus Induces Formation of Inclusion Bodies for Efficient Genome Replication and Transcription.

    Science.gov (United States)

    Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth; Dutch, Rebecca Ellis

    2017-12-15

    Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications. IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to

  1. Structural dissection of human metapneumovirus phosphoprotein using small angle x-ray scattering.

    Science.gov (United States)

    Renner, Max; Paesen, Guido C; Grison, Claire M; Granier, Sébastien; Grimes, Jonathan M; Leyrat, Cédric

    2017-11-01

    The phosphoprotein (P) is the main and essential cofactor of the RNA polymerase (L) of non-segmented, negative-strand RNA viruses. P positions the viral polymerase onto its nucleoprotein-RNA template and acts as a chaperone of the nucleoprotein (N), thereby preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of human metapneumovirus (HMPV) forms homotetramers composed of a stable oligomerization domain (P core ) flanked by large intrinsically disordered regions (IDRs). Here we combined x-ray crystallography of P core with small angle x-ray scattering (SAXS)-based ensemble modeling of the full-length P protein and several of its fragments to provide a structural description of P that captures its dynamic character, and highlights the presence of varyingly stable structural elements within the IDRs. We discuss the implications of the structural properties of HMPV P for the assembly and functioning of the viral transcription/replication machinery.

  2. Avian Metapneumovirus Molecular Biology and Development of Genetically Engineered Vaccines

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important pathogen of turkeys with a worldwide distribution. aMPV is a member of the genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae. The genome of aMPV is a non-segmented, single-stranded, negative-sense RNA of 1...

  3. Deduced amino acid sequence of the small hydrophobic protein of US avian pneumovirus has greater identity with that of human metapneumovirus than those of non-US avian pneumoviruses.

    Science.gov (United States)

    Yunus, Abdul S; Govindarajan, Dhanasekaran; Huang, Zhuhui; Samal, Siba K

    2003-05-01

    We report here the nucleotide and deduced amino acid (aa) sequences of the small hydrophobic (SH) gene of the avian pneumovirus strain Colorado (APV/CO). The SH gene of APV/CO is 628 nucleotides in length from gene-start to gene-end. The longest ORF of the SH gene encoded a protein of 177 aas in length. Comparison of the deduced aa sequence of the SH protein of APV/CO with the corresponding published sequences of other members of genera metapneumovirus showed 28% identity with the newly discovered human metapneumovirus (hMPV), but no discernable identity with the APV subgroup A or B. Collectively, this data supports the hypothesis that: (i) APV/CO is distinct from European APV subgroups and belongs to the novel subgroup APV/C (APV/US); (ii) APV/CO is more closely related to hMPV, a mammalian metapneumovirus, than to either APV subgroup A or B. The SH gene of APV/CO was cloned using a genomic walk strategy which initiated cDNA synthesis from genomic RNA that traversed the genes in the order 3'-M-F-M2-SH-G-5', thus confirming that gene-order of APV/CO conforms in the genus Metapneumovirus. We also provide the sequences of transcription-signals and the M-F, F-M2, M2-SH and SH-G intergenic regions of APV/CO.

  4. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... people has ranged from mild to severe. Avian Influenza Transmission Avian Influenza Transmission Infographic [555 KB, 2 pages] Spanish [ ... important for public health. Signs and Symptoms of Avian Influenza A Virus Infections in Humans The reported signs ...

  6. Clinical Significance of Human Metapneumovirus in Refractory Status Epilepticus and Encephalitis: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Aysel Vehapoglu

    2015-01-01

    Full Text Available Encephalitis is a complex neurological disease that is associated with significant morbidity and mortality, and the etiology of the disease is often not identified. Human metapneumovirus (hMPV is a common cause of upper and lower respiratory tract infections in children. Few reports are available showing possible involvement of hMPV in development of neurologic complications. Here, we describe an infant, the youngest case in literature, with refractory status epilepticus and severe encephalitis in whom hMPV was detected in respiratory samples and review diagnostic workup of patient with encephalitis.

  7. Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Lu, Mijia; Liang, Xueya; Jennings, Ryan; Niewiesk, Stefan; Li, Jianrong

    2016-08-15

    Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus

  8. Influenza as a human disease

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Influenza as a human disease. Commonly perceived as a mild disease, affects every one, sometimes a couple of times in a year. Globally, seasonal influenza epidemics result in about three to five million yearly cases of severe illness and about 250,000 to 500,000 yearly ...

  9. Chimeric Recombinant Human Metapneumoviruses with the Nucleoprotein or Phosphoprotein Open Reading Frame Replaced by That of Avian Metapneumovirus Exhibit Improved Growth In Vitro and Attenuation In Vivo

    Science.gov (United States)

    Pham, Quynh N.; Biacchesi, Stéphane; Skiadopoulos, Mario H.; Murphy, Brian R.; Collins, Peter L.; Buchholz, Ursula J.

    2005-01-01

    Chimeric versions of recombinant human metapneumovirus (HMPV) were generated by replacing the nucleoprotein (N) or phosphoprotein (P) open reading frame with its counterpart from the closely related avian metapneumovirus (AMPV) subgroup C. In Vero cells, AMPV replicated to an approximately 100-fold-higher titer than HMPV. Surprisingly, the N and P chimeric viruses replicated to a peak titer that was 11- and 25-fold higher, respectively, than that of parental HMPV. The basis for this effect is not known but was not due to obvious changes in the efficiency of gene expression. AMPV and the N and P chimeras were evaluated for replication, immunogenicity, and protective efficacy in hamsters. AMPV was attenuated compared to HMPV in this mammalian host on day 5 postinfection, but not on day 3, and only in the nasal turbinates. In contrast, the N and P chimeras were reduced approximately 100-fold in both the upper and lower respiratory tract on day 3 postinfection, although there was little difference by day 5. The N and P chimeras induced a high level of neutralizing serum antibodies and protective efficacy against HMPV; AMPV was only weakly immunogenic and protective against HMPV challenge, reflecting antigenic differences. In African green monkeys immunized intranasally and intratracheally, the mean peak titer of the P chimera was reduced 100- and 1,000-fold in the upper and lower respiratory tracts, whereas the N chimera was reduced only 10-fold in the lower respiratory tract. Both chimeras were comparable to wild-type HMPV in immunogenicity and protective efficacy. Thus, the P chimera is a promising live HMPV vaccine candidate that paradoxically combines improved growth in vitro with attenuation in vivo. PMID:16306583

  10. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    Science.gov (United States)

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  11. Ekaza et al., Afr. J. Infect. Dis.

    African Journals Online (AJOL)

    cadewumi

    Monitoring of influenza viruses must be a priority but other respiratory viruses and .... Invitrogen One Step RT-PCR kits as recommended by the manufacturer. ... human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), ...

  12. Avian metapneumovirus in the USA

    Science.gov (United States)

    In the United States of America (USA), avian metapneumovirus (aMPV) causes an upper respiratory tract infection in turkeys; no outbreaks have been reported in commercial chicken flocks. Typical clinical signs of the disease in turkey poults include coughing, sneezing, nasal discharge, tracheal rale...

  13. Viral etiologies of influenza-like illness and severe acute respiratory infections in Thailand.

    Science.gov (United States)

    Chittaganpitch, Malinee; Waicharoen, Sunthareeya; Yingyong, Thitipong; Praphasiri, Prabda; Sangkitporn, Somchai; Olsen, Sonja J; Lindblade, Kim A

    2018-07-01

    Information on the burden, characteristics and seasonality of non-influenza respiratory viruses is limited in tropical countries. Describe the epidemiology of selected non-influenza respiratory viruses in Thailand between June 2010 and May 2014 using a sentinel surveillance platform established for influenza. Patients with influenza-like illness (ILI; history of fever or documented temperature ≥38°C, cough, not requiring hospitalization) or severe acute respiratory infection (SARI; history of fever or documented temperature ≥38°C, cough, onset respiratory syncytial virus (RSV), metapneumovirus (MPV), parainfluenza viruses (PIV) 1-3, and adenoviruses by polymerase chain reaction (PCR) or real-time reverse transcriptase-PCR. We screened 15 369 persons with acute respiratory infections and enrolled 8106 cases of ILI (5069 cases respiratory viruses tested, while for SARI cases respiratory viruses, particularly seasonality, although adjustments to case definitions may be required. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  14. Human metapneumovirus and respiratory syncytial virus in hospitalized danish children with acute respiratory tract infection

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Larsen, Hans Henrik; Eugen-Olsen, Jesper

    2004-01-01

    The newly discovered human metapneumovirus (hMPV) has been shown to be associated with respiratory illness. We determined the frequencies and clinical features of hMPV and respiratory syncytial virus (RSV) infections in 374 Danish children with 383 episodes of acute respiratory tract infection...... children 1-6 months of age. Asthmatic bronchitis was diagnosed in 66.7% of hMPV and 10.6% of RSV-infected children (p infected children required respiratory support. hMPV is present in young.......6%) ARTI episodes by real-time reverse transcription-polymerase chain reaction using primers targeting the hMPV N gene and the RSV L gene. Two children were co-infected with hMPV and RSV. They were excluded from statistical analysis. Hospitalization for ARTI caused by hMPV was restricted to very young...

  15. Reverse genetics of avian metapneumoviruses

    Science.gov (United States)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  16. A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines.

    Science.gov (United States)

    Zhang, Yu; Sun, Jing; Wei, Yongwei; Li, Jianrong

    2016-01-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.

  17. Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans.

    Science.gov (United States)

    Reperant, Leslie A; Kuiken, Thijs; Osterhaus, Albert D M E

    2012-06-22

    Human influenza viruses have their ultimate origin in avian reservoirs and may adapt, either directly or after passage through another mammalian species, to circulate independently in the human population. Three sets of barriers must be crossed by a zoonotic influenza virus before it can become a human virus: animal-to-human transmission barriers; virus-cell interaction barriers; and human-to-human transmission barriers. Adaptive changes allowing zoonotic influenza viruses to cross these barriers have been studied extensively, generating key knowledge for improved pandemic preparedness. Most of these adaptive changes link acquired genetic alterations of the virus to specific adaptation mechanisms that can be screened for, both genetically and phenotypically, as part of zoonotic influenza virus surveillance programs. Human-to-human transmission barriers are only sporadically crossed by zoonotic influenza viruses, eventually triggering a worldwide influenza outbreak or pandemic. This is the most devastating consequence of influenza virus cross-species transmission. Progress has been made in identifying some of the determinants of influenza virus transmissibility. However, interdisciplinary research is needed to further characterize these ultimate barriers to the development of influenza pandemics, at both the level of the individual host and that of the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Epidemiology and genetic variability of human metapneumovirus during a 4-year-long study in Southeastern Brazil.

    Science.gov (United States)

    Oliveira, Danielle B L; Durigon, Edison L; Carvalho, Ariane C L; Leal, Andréa L; Souza, Thereza S; Thomazelli, Luciano M; Moraes, Claudia T P; Vieira, Sandra E; Gilio, Alfredo E; Stewien, Klaus E

    2009-05-01

    Epidemiological and molecular characteristics of human metapneumovirus (hMPV) were compared with human respiratory syncytial virus (hRSV) in infants and young children admitted for acute lower respiratory tract infections in a prospective study during four consecutive years in subtropical Brazil. GeneScan polymerase chain assays (GeneScan RT-PCR) were used to detect hMPV and hRSV in nasopharyngeal aspirates of 1,670 children during January 2003 to December 2006. hMPV and hRSV were detected, respectively, in 191 (11.4%) and in 702 (42%) of the children admitted with acute lower respiratory tract infections at the Sao Paulo University Hospital. Sequencing data of the hMPV F gene revealed that two groups of the virus, each divided into two subgroups, co-circulated during three consecutive years. It was also shown that a clear dominance of genotype B1 occurred during the years 2004 and 2005, followed by genotype A2 during 2006. Copyright 2009 Wiley-Liss, Inc.

  19. Cross talk between animal and human influenza viruses.

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2013-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the past decade, the first pandemic of the twenty-first century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assess the pandemic potential of H5N1 highly pathogenic avian influenza viruses.

  20. Viruses associated with human and animal influenza - a review ...

    African Journals Online (AJOL)

    In this review, the most important viruses associated with human and animal influenza are reported. These include Influenza A,B and C. Influenza viruses are members of the family Orthomyxoviridae. Influenza A virus being the most pathogenic and wide spread with many subtypes has constantly cause epidemics in several ...

  1. Heterosybtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines

    Directory of Open Access Journals (Sweden)

    Saranya eSridhar

    2016-05-01

    Full Text Available Influenza A virus (IAV remains a significant global health issue causing annual epidemics, pandemics and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the 21st century underlined the urgent need to develop new vaccines capable of protection against a broad range of influenza strains. Such universal influenza vaccines are based on the idea of heterosubtypic immunity wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognising conserved antigens are a key contributor to reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.

  2. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  3. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

  4. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion.

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M; Iorio, Ronald M; Li, Jianrong

    2012-11-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.

  5. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, M. van; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C.A.; Heesterbeek, J.A.P.

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  6. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, van R.M.; Koopmans, M.; Du Ry Beest Holle, van M.; Meijer, A.; Klinkenberg, D.; Donnelly, C.; Heesterbeek, J.A.P.

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  7. Comparative epidemiology of human metapneumovirus- and respiratory syncytial virus-associated hospitalizations in Guatemala

    Science.gov (United States)

    McCracken, John P; Arvelo, Wences; Ortíz, José; Reyes, Lissette; Gray, Jennifer; Estevez, Alejandra; Castañeda, Oscar; Langley, Gayle; Lindblade, Kim A

    2014-01-01

    Background Human metapneumovirus (HMPV) is an important cause of acute respiratory infections (ARI), but little is known about how it compares with respiratory syncytial virus (RSV) in Central America. Objectives In this study, we describe hospitalized cases of HMPV- and RSV-ARI in Guatemala. Methods We conducted surveillance at three hospitals (November 2007–December 2012) and tested nasopharyngeal and oropharyngeal swab specimens for HMPV and RSV using real-time reverse transcription-polymerase chain reaction. We calculated incidence rates, and compared the epidemiology and outcomes of HMPV-positive versus RSV-positive and RSV-HMPV-negative cases. Results We enrolled and tested specimens from 6288 ARI cases; 596 (9%) were HMPV-positive and 1485 (24%) were RSV-positive. We observed a seasonal pattern of RSV but not HMPV. The proportion HMPV-positive was low (3%) and RSV-positive high (41%) for age Guatemala, but HMPV hospitalizations are less frequent than RSV and, in young children, less severe than other etiologies. Preventive interventions should take into account the wide variation in incidence by age and unpredictable timing of incidence peaks. PMID:24761765

  8. Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus.

    Science.gov (United States)

    Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M

    2014-01-07

    The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca²⁺ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca²⁺ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Molecular comparisons of full length metapneumovirus (MPV genomes, including newly determined French AMPV-C and -D isolates, further supports possible subclassification within the MPV Genus.

    Directory of Open Access Journals (Sweden)

    Paul A Brown

    Full Text Available Four avian metapneumovirus (AMPV subgroups (A-D have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias. Results confirmed that subgroup C viruses were more closely related to HMPV than they were to the other AMPV subgroups in the study. This was consistent with previous findings using partial genome sequences. Closer relationships between AMPV-A, B and D were also evident throughout the majority of results. Three metapneumovirus "clusters" HMPV, AMPV-C and AMPV-A, B and D were further supported by codon bias and phylogenetics. The data presented here together with those of previous studies describing antigenic relationships also between AMPV-A, B and D and between AMPV-C and HMPV may call for a subclassification of metapneumoviruses similar to that used for avian paramyxoviruses, grouping AMPV-A, B and D as type I metapneumoviruses and AMPV-C and HMPV as type II.

  10. The role of influenza, RSV and other common respiratory viruses in severe acute respiratory infections and influenza-like illness in a population with a high HIV sero-prevalence, South Africa 2012-2015.

    Science.gov (United States)

    Pretorius, Marthi A; Tempia, Stefano; Walaza, Sibongile; Cohen, Adam L; Moyes, Jocelyn; Variava, Ebrahim; Dawood, Halima; Seleka, Mpho; Hellferscee, Orienka; Treurnicht, Florette; Cohen, Cheryl; Venter, Marietjie

    2016-02-01

    Viruses detected in patients with acute respiratory infections may be the cause of illness or asymptomatic shedding. To estimate the attributable fraction (AF) and the detection rate attributable to illness for each of the different respiratory viruses We compared the prevalence of 10 common respiratory viruses (influenza A and B viruses, parainfluenza virus 1-3; respiratory syncytial virus (RSV); adenovirus, rhinovirus, human metapneumovirus (hMPV) and enterovirus) in both HIV positive and negative patients hospitalized with severe acute respiratory illness (SARI), outpatients with influenza-like illness (ILI), and control subjects who did not report any febrile, respiratory or gastrointestinal illness during 2012-2015 in South Africa. We enrolled 1959 SARI, 3784 ILI and 1793 controls with a HIV sero-prevalence of 26%, 30% and 43%, respectively. Influenza virus (AF: 86.3%; 95%CI: 77.7-91.6%), hMPV (AF: 85.6%; 95%CI: 72.0-92.6%), and RSV (AF: 83.7%; 95%CI: 77.5-88.2%) infections were associated with severe disease., while rhinovirus (AF: 46.9%; 95%CI: 37.6-56.5%) and adenovirus (AF: 36.4%; 95%CI: 20.6-49.0%) were only moderately associated. Influenza, RSV and hMPV can be considered pathogens if detected in ILI and SARI while rhinovirus and adenovirus were commonly identified in controls suggesting that they may cause only a proportion of clinical disease observed in positive patients. Nonetheless, they may be important contributors to disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Human influenza viruses and CD8(+) T cell responses.

    Science.gov (United States)

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Chest radiographic features of human metapneumovirus infection in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Hilmes, Melissa A.; Daniel Dunnavant, F.; Singh, Sudha P.; Ellis, Wendy D. [Vanderbilt University School of Medicine, Department of Radiology, Nashville, TN (United States); Payne, Daniel C. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Zhu, Yuwei [Vanderbilt University School of Medicine, Department of Biostatistics, Nashville, TN (United States); Griffin, Marie R. [Vanderbilt University School of Medicine, Department of Health Policy, Nashville, TN (United States); Edwards, Kathryn M. [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Williams, John V. [University of Pittsburgh School of Medicine, Department of Pediatrics, Pittsburgh, PA (United States); University of Pittsburgh of UPMC, Children' s Hospital of Pittsburgh, Pittsburgh, PA (United States)

    2017-12-15

    Human metapneumovirus (HMPV) was identified in 2001 and is a common cause of acute respiratory illness in young children. The radiologic characteristics of laboratory-confirmed HMPV acute respiratory illness in young children have not been systematically assessed. We systematically evaluated the radiographic characteristics of acute respiratory illness associated with HMPV in a prospective cohort of pediatric patients. We included chest radiographs from children <5 years old with acute respiratory illness who were enrolled in the prospective New Vaccine Surveillance Network (NVSN) study from 2003 to 2009 and were diagnosed with HMPV by reverse transcription-polymerase chain reaction (RT-PCR). Of 215 HMPV-positive subjects enrolled at our tertiary care children's hospital, 68 had chest radiographs obtained by the treating clinician that were available for review. Two fellowship-trained pediatric radiologists, independently and then in consensus, retrospectively evaluated these chest radiographs for their radiographic features. Parahilar opacities were the most commonly observed abnormality, occurring in 87% of children with HMPV. Hyperinflation also occurred frequently (69%). Atelectasis (40%) and consolidation (18%) appeared less frequently. Pleural effusion and pneumothorax were not seen on any radiographs. The clinical presentations of HMPV include bronchiolitis, croup and pneumonia. Dominant chest radiographic abnormalities include parahilar opacities and hyperinflation, with occasional consolidation. Recognition of the imaging patterns seen with common viral illnesses like respiratory syncytial virus (RSV) and HMPV might facilitate diagnosis and limit unnecessary antibiotic treatment. (orig.)

  13. Chest radiographic features of human metapneumovirus infection in pediatric patients

    International Nuclear Information System (INIS)

    Hilmes, Melissa A.; Daniel Dunnavant, F.; Singh, Sudha P.; Ellis, Wendy D.; Payne, Daniel C.; Zhu, Yuwei; Griffin, Marie R.; Edwards, Kathryn M.; Williams, John V.

    2017-01-01

    Human metapneumovirus (HMPV) was identified in 2001 and is a common cause of acute respiratory illness in young children. The radiologic characteristics of laboratory-confirmed HMPV acute respiratory illness in young children have not been systematically assessed. We systematically evaluated the radiographic characteristics of acute respiratory illness associated with HMPV in a prospective cohort of pediatric patients. We included chest radiographs from children <5 years old with acute respiratory illness who were enrolled in the prospective New Vaccine Surveillance Network (NVSN) study from 2003 to 2009 and were diagnosed with HMPV by reverse transcription-polymerase chain reaction (RT-PCR). Of 215 HMPV-positive subjects enrolled at our tertiary care children's hospital, 68 had chest radiographs obtained by the treating clinician that were available for review. Two fellowship-trained pediatric radiologists, independently and then in consensus, retrospectively evaluated these chest radiographs for their radiographic features. Parahilar opacities were the most commonly observed abnormality, occurring in 87% of children with HMPV. Hyperinflation also occurred frequently (69%). Atelectasis (40%) and consolidation (18%) appeared less frequently. Pleural effusion and pneumothorax were not seen on any radiographs. The clinical presentations of HMPV include bronchiolitis, croup and pneumonia. Dominant chest radiographic abnormalities include parahilar opacities and hyperinflation, with occasional consolidation. Recognition of the imaging patterns seen with common viral illnesses like respiratory syncytial virus (RSV) and HMPV might facilitate diagnosis and limit unnecessary antibiotic treatment. (orig.)

  14. Influenza-associated encephalopathy: no evidence for neuroinvasion by influenza virus nor for reactivation of human herpesvirus 6 or 7.

    NARCIS (Netherlands)

    van Zeijl, J.H.; Bakkers, J.; Wilbrink, B.; Melchers, W.J.; Mullaart, R.A.; Galama, J.M.

    2005-01-01

    During 2 consecutive influenza seasons we investigated the presence of influenza virus, human herpesvirus (HHV) type 6, and HHV-7 in cerebrospinal fluid samples from 9 white children suffering from influenza-associated encephalopathy. We conclude that it is unlikely that neuroinvasion by influenza

  15. Molecular Comparisons of Full Length Metapneumovirus (MPV) Genomes, Including Newly Determined French AMPV-C and –D Isolates, Further Supports Possible Subclassification within the MPV Genus

    Science.gov (United States)

    Brown, Paul A.; Lemaitre, Evelyne; Briand, François-Xavier; Courtillon, Céline; Guionie, Olivier; Allée, Chantal; Toquin, Didier; Bayon-Auboyer, Marie-Hélène; Jestin, Véronique; Eterradossi, Nicolas

    2014-01-01

    Four avian metapneumovirus (AMPV) subgroups (A–D) have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively) have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV) sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias. Results confirmed that subgroup C viruses were more closely related to HMPV than they were to the other AMPV subgroups in the study. This was consistent with previous findings using partial genome sequences. Closer relationships between AMPV-A, B and D were also evident throughout the majority of results. Three metapneumovirus “clusters” HMPV, AMPV-C and AMPV-A, B and D were further supported by codon bias and phylogenetics. The data presented here together with those of previous studies describing antigenic relationships also between AMPV-A, B and D and between AMPV-C and HMPV may call for a subclassification of metapneumoviruses similar to that used for avian paramyxoviruses, grouping AMPV-A, B and D as type I metapneumoviruses and AMPV-C and HMPV as type II. PMID:25036224

  16. Rational design of avian metapneumovirus live attenuated vaccines by inhibiting viral messenger RNA cap methyltransferase

    Science.gov (United States)

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...

  17. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.

    Science.gov (United States)

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong

    2016-12-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface.

    Science.gov (United States)

    Nelson, Martha I; Vincent, Amy L

    2015-03-01

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts. Published by Elsevier Ltd.

  19. Continental synchronicity of human influenza virus epidemics despite climactic variation.

    Science.gov (United States)

    Geoghegan, Jemma L; Saavedra, Aldo F; Duchêne, Sebastián; Sullivan, Sheena; Barr, Ian; Holmes, Edward C

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the

  20. Comparative analysis of chest radiological findings between avian human influenza and SARS

    International Nuclear Information System (INIS)

    Cai Mingjin; Mai Weiwen; Xian Jianxing; Zhang Jiayun; Lin Wenjian; Wei Liping; Chen Jincheng

    2008-01-01

    Objective: To study the chest radiological findings of a mortal avian human influenza case. Methods: One patient in our hospital was proved to be infected avian human influenza in Guangdong province on March 1, 2006. The Clinical appearances and chest radiological findings of this case were retrospectively analyzed and compared with that of 3 mortal SARS cases out of 16 cases in 2003. Results: Large consolidated areas in left lower lobe was showed in pulmonary radiological findings of this patient and soon developed into ARDS (adult respiratory distress syndrome). However, the pulmonary radiological findings had no characteristic. Characteristics of soaring size and number during short term appeared in SARS instead of avian human influenza. Final diagnosis was up to the etiology and serology examination. Conclusion: Bronchial dissemination was not observed in this avian human influenza case. Pay attention to the avian human influenza in spite of no history of contract with sick or dead poultry in large city. (authors)

  1. Weighing serological evidence of human exposure to animal influenza viruses - a literature review.

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-11-03

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. This article is copyright of The Authors, 2016.

  2. Changing human mobility and the spreading rate of global influenza outbreaks

    NARCIS (Netherlands)

    Slaa, Jan Willem

    2010-01-01

    Influenza, commonly called the flu, is an infectious disease which causes up to 500,000 deaths annually during seasonal epidemics. Influenza viruses circulate in many different types and in many species, such as birds, swines and humans. When a new human

  3. Human Metapneumovirus Infection is Associated with Severe Respiratory Disease in Preschool Children with History of Prematurity.

    Science.gov (United States)

    Pancham, Krishna; Sami, Iman; Perez, Geovanny F; Huseni, Shehlanoor; Kurdi, Bassem; Rose, Mary C; Rodriguez-Martinez, Carlos E; Nino, Gustavo

    2016-02-01

    Human metapneumovirus (HMPV) is a recently discovered respiratory pathogen of the family Paramyxoviridae, the same family as that of respiratory syncytial virus (RSV). Premature children are at high risk of severe RSV infections, however, it is unclear whether HMPV infection is more severe in hospitalized children with a history of severe prematurity. We conducted a retrospective analysis of the clinical respiratory presentation of all polymerase chain reaction-confirmed HMPV infections in preschool-age children (≤5 years) with and without history of severe prematurity (prematurity. Preschool children with a history of prematurity had more severe HMPV disease as illustrated by longer hospitalizations, new or increased need for supplemental O2, and higher severity scores independently of age, ethnicity, and history of asthma. Our study suggests that HMPV infection causes significant disease burden among preschool children with a history of prematurity leading to severe respiratory infections and increasing health care resource utilization due to prolonged hospitalizations. Copyright © 2016. Published by Elsevier B.V.

  4. Genetic diversity of human metapneumovirus in hospitalized children with acute respiratory infections in Croatia.

    Science.gov (United States)

    Jagušić, Maja; Slović, Anamarija; Ljubin-Sternak, Sunčanica; Mlinarić-Galinović, Gordana; Forčić, Dubravko

    2017-11-01

    Human metapneumovirus (HMPV) is recognized as a global and frequent cause of acute respiratory tract infections among people of all ages. The objectives of this study were molecular epidemiology and evolutionary analysis of HMPV strains which produced moderate and severe acute respiratory tract infections in children in Croatia during four consecutive seasons (2011-2014). A total of 117 HMPV-positive samples collected from hospitalized pediatric patients presenting with acute respiratory tract infections and tested by direct immunofluorescence assay were first analyzed by amplifying a part of the F gene. Sixteen samples were further analyzed based on complete F, G, and SH gene sequences. HMPV genome was identified in 92 of 117 samples (78%) and the circulation of multiple lineages of HMPV was confirmed. In 2011, 2012, and 2014, subgroups A2 and B2 co-circulated, while B1 gained prevalence in 2013 and 2014. The study established the presence of a novel subcluster A2c in Croatia. This subcluster has only recently been detected in East and Southeast Asia. This study provides new insights into epidemiology and genetic diversity of HMPV in this part of Europe. © 2017 Wiley Periodicals, Inc.

  5. Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses.

    Science.gov (United States)

    Lemaitre, E; Allée, C; Vabret, A; Eterradossi, N; Brown, P A

    2018-01-01

    Current molecular methods for the detection of avian and human metapneumovirus (AMPV, HMPV) are specifically targeted towards each virus species or individual subgroups of these. Here a broad range SYBR Green I real time RT-PCR was developed which amplified a highly conserved fragment of sequence in the N open reading frame. This method was sufficiently efficient and specific in detecting all MPVs. Its validation according to the NF U47-600 norm for the four AMPV subgroups estimated low limits of detection between 1000 and 10copies/μL, similar with detection levels described previously for real time RT-PCRs targeting specific subgroups. RNA viruses present a challenge for the design of durable molecular diagnostic test due to the rate of change in their genome sequences which can vary substantially in different areas and over time. The fact that the regions of sequence for primer hybridization in the described method have remained sufficiently conserved since the AMPV and HMPV diverged, should give the best chance of continued detection of current subgroups and of potential unknown or future emerging MPV strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    Science.gov (United States)

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  7. Weighing serological evidence of human exposure to animal influenza viruses − a literature review

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-01-01

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. PMID:27874827

  8. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Junping Ren

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS. Whether M2-2 regulates the innate immunity in human dendritic cells (DC, an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2 produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT, suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88, an essential adaptor for Toll-like receptors (TLRs, plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.

  9. Avian and human influenza A virus receptors in trachea and lung of animals.

    Science.gov (United States)

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  10. Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294.

    Science.gov (United States)

    Yun, Bingling; Guan, Xiaolu; Liu, Yongzhen; Gao, Yanni; Wang, Yongqiang; Qi, Xiaole; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Gao, Li; Li, Kai; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-10-26

    Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.

  11. Human Infection with Avian Influenza A(H7N9) Virus - China

    Science.gov (United States)

    ... response operations Diseases Biorisk reduction Disease outbreak news Human infection with avian influenza A(H7N9) virus – China ... Region (SAR) notified WHO of a laboratory-confirmed human infection with avian influenza A(H7N9) virus and ...

  12. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia

    OpenAIRE

    Mangiri, Amalya; Iuliano, A. Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y.; Lafond, Kathryn E.; Storms, Aaron D.; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M.; Storey, J. Douglas; Uyeki, Timothy M.

    2016-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 vir...

  13. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    Energy Technology Data Exchange (ETDEWEB)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Oshita, Masatoshi; Ideno, Shoji [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Yunoki, Mikihiro [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Kuhara, Motoki [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano 396-0002 (Japan); Yamamoto, Naomasa [Department of Biochemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima 963-8611 (Japan); Okuno, Yoshinobu [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa 768-0061 (Japan); Ikuta, Kazuyoshi, E-mail: ikuta@biken.osaka-u.ac.jp [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan)

    2009-09-11

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  14. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    International Nuclear Information System (INIS)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki; Oshita, Masatoshi; Ideno, Shoji; Yunoki, Mikihiro; Kuhara, Motoki; Yamamoto, Naomasa; Okuno, Yoshinobu; Ikuta, Kazuyoshi

    2009-01-01

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  15. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity

    International Nuclear Information System (INIS)

    Skiadopoulos, Mario H.; Biacchesi, Stephane; Buchholz, Ursula J.; Amaro-Carambot, Emerito; Surman, Sonja R.; Collins, Peter L.; Murphy, Brian R.

    2006-01-01

    We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen

  16. Genetic variability of attachment (G and Fusion (F protein genes of human metapneumovirus strains circulating during 2006-2009 in Kolkata, Eastern India

    Directory of Open Access Journals (Sweden)

    Chawla-Sarkar Mamta

    2011-02-01

    Full Text Available Abstract Background Human metapneumovirus (hMPV is associated with the acute respiratory tract infection (ARTI in all the age groups. However, there is limited information on prevalence and genetic diversity of human metapneumovirus (hMPV strains circulating in India. Objective To study prevalence and genomic diversity of hMPV strains among ARTI patients reporting in outpatient departments of hospitals in Kolkata, Eastern India. Methods Nasal and/or throat swabs from 2309 patients during January 2006 to December 2009, were screened for the presence of hMPV by RT-PCR of nucleocapsid (N gene. The G and F genes of representative hMPV positive samples were sequenced. Results 118 of 2309 (5.11% clinical samples were positive for hMPV. The majority (≈80% of the positive cases were detected during July−November all through the study period. Genetic analysis revealed that 77% strains belong to A2 subgroup whereas rest clustered in B1 subgroup. G sequences showed higher diversity at the nucleotide and amino acid level. In contrast, less than 10% variation was observed in F gene of representative strains of all four years. Sequence analysis also revealed changes in the position of stop codon in G protein, which resulted in variable length (217-231 aa polypeptides. Conclusion The study suggests that approximately 5% of ARTI in the region were caused by hMPV. This is the first report on the genetic variability of G and F gene of hMPV strains from India which clearly shows that the G protein of hMPV is continuously evolving. Though the study partially fulfills lacunae of information, further studies from other regions are necessary for better understanding of prevalence, epidemiology and virus evolution in Indian subcontinent.

  17. Generation of recombinant avian metapneumovirus subgroup C (aMPV-C) viruses containing different length of the G gene.

    Science.gov (United States)

    Genetic variation in length of the G gene among different avian metapneumovirus subgroup C isolates has been reported. However, its biological significance in virus replication, pathogenicity and immunity is unknown. In this study, we developed a reverse genetics system for avian metapneumovirus C a...

  18. Replication of swine and human influenza viruses in juvenile and layer turkey hens.

    Science.gov (United States)

    Ali, Ahmed; Yassine, Hadi; Awe, Olusegun O; Ibrahim, Mahmoud; Saif, Yehia M; Lee, Chang-Won

    2013-04-12

    Since the first reported isolation of swine influenza viruses (SIVs) in turkeys in the 1980s, transmission of SIVs to turkeys was frequently documented. Recently, the 2009 pandemic H1N1 virus, that was thought to be of swine origin, was detected in turkeys with a severe drop in egg production. In this study, we assessed the infectivity of different mammalian influenza viruses including swine, pandemic H1N1 and seasonal human influenza viruses in both juvenile and layer turkeys. In addition, we investigated the potential influenza virus dissemination in the semen of experimentally infected turkey toms. Results showed that all mammalian origin influenza viruses tested can infect turkeys. SIVs were detected in respiratory and digestive tracts of both juvenile and layer turkeys. Variations in replication efficiencies among SIVs were observed especially in the reproductive tract of layer turkeys. Compared to SIVs, limited replication of seasonal human H1N1 and no detectable replication of recent human-like swine H1N2, pandemic H1N1 and seasonal human H3N2 viruses was noticed. All birds seroconverted to all tested viruses regardless of their replication level. In turkey toms, we were able to detect swine H3N2 virus in semen and reproductive tract of infected toms by real-time RT-PCR although virus isolation was not successful. These data suggest that turkey hens could be affected by diverse influenza strains especially SIVs. Moreover, the differences in the replication efficiency we demonstrated among SIVs and between SIV and human influenza viruses in layer turkeys suggest a possible use of turkeys as an animal model to study host tropism and pathogenesis of influenza viruses. Our results also indicate a potential risk of venereal transmission of influenza viruses in turkeys. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Influenza and other respiratory viruses in three Central American countries

    Science.gov (United States)

    Laguna‐Torres, Victor A.; Sánchez‐Largaespada, José F.; Lorenzana, Ivette; Forshey, Brett; Aguilar, Patricia; Jimenez, Mirna; Parrales, Eduardo; Rodriguez, Francisco; García, Josefina; Jimenez, Ileana; Rivera, Maribel; Perez, Juan; Sovero, Merly; Rios, Jane; Gamero, María E.; Halsey, Eric S.; Kochel, Tadeusz J.

    2010-01-01

    Please cite this paper as: Laguna‐Torres et al. (2011) Influenza and other respiratory viruses in three Central American countries. Influenza and Other Respiratory Viruses 5(2), 123–134. Background  Despite the disease burden imposed by respiratory diseases on children in Central America, there is a paucity of data describing the etiologic agents of the disease. Aims  To analyze viral etiologic agents associated with influenza‐like illness (ILI) in participants reporting to one outpatient health center, one pediatric hospital, and three general hospitals in El Salvador, Honduras, and Nicaragua Material & Methods  Between August 2006 and April 2009, pharyngeal swabs were collected from outpatients and inpatients. Patient specimens were inoculated onto cultured cell monolayers, and viral antigens were detected by indirect and direct immunofluorescence staining. Results  A total of 1,756 patients were enrolled, of whom 1,195 (68.3%) were under the age of 5; and 183 (10.4%) required hospitalization. One or more viral agents were identified in 434 (24.7%) cases, of which 17 (3.9%) were dual infections. The most common viruses isolated were influenza A virus (130; 7.4% of cases), respiratory syncytial virus (122; 6.9%), adenoviruses (63; 3.6%), parainfluenza viruses (57; 3.2%), influenza B virus (47; 2.7% of cases), and herpes simplex virus 1 (22; 1.3%). In addition, human metapneumovirus and enteroviruses (coxsackie and echovirus) were isolated from patient specimens. Discussion  When compared to the rest of the population, viruses were isolated from a significantly higher percentage of patients age 5 or younger. The prevalence of influenza A virus or influenza B virus infections was similar between the younger and older age groups. RSV was the most commonly detected pathogen in infants age 5 and younger and was significantly associated with pneumonia (p < 0.0001) and hospitalization (p < 0.0001). Conclusion  Genetic analysis of influenza

  20. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  1. Weighing serological evidence of human exposure to animal influenza viruses − A literature review

    NARCIS (Netherlands)

    Sikkema, R.S. (Reina S.); G.S. Freidl (Gudrun); E.I. de Bruin (Esther); M.P.G. Koopmans D.V.M. (Marion)

    2016-01-01

    textabstractAssessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal

  2. Human influenza A (H5N1): a brief review and recommendations for travelers.

    Science.gov (United States)

    Hurtado, Timothy R

    2006-01-01

    Although avian influenza A (H5N1) is common in birds worldwide, it has only recently led to disease in humans. Humans who are infected with the disease (referred to as human influenza A [H5N1]) have a greater than 50% mortality rate. Currently there has not been documented sustained human-to-human transmission; however, should the virus mutate and make this possible, the world could experience an influenza pandemic. Probable risk factors for infection include slaughtering, defeathering, and butchering fowl; close contact with wild birds or caged poultry; ingestion of undercooked poultry products; direct contact with surfaces contaminated with poultry feces; and close contact with infected humans. Possible risk factors include swimming in or ingesting water contaminated with bird feces or dead birds and the use of unprocessed poultry feces as fertilizer. Clinically, early human influenza A (H5N1) resembles typical influenza illnesses, with fever and a preponderance of lower respiratory tract symptoms. Often, patients develop rapidly progressive respiratory failure and require ventilatory support. Treatment is primarily supportive care with the addition of antiviral medications. Currently, travelers to countries with both human and avian influenza A (H5N1) have a low risk of developing the disease. There are no current recommended travel restrictions. Travelers are advised to avoid contact with all birds, especially poultry; avoid surfaces contaminated with poultry feces; and avoid undercooked poultry products. The use of prophylactic antiviral medications is not recommended.

  3. Analysis of antigenic cross-reactivity between subgroup C avian pneumovirus and human metapneumovirus by using recombinant fusion proteins.

    Science.gov (United States)

    Luo, L; Sabara, M I; Li, Y

    2009-10-01

    Avian pneumovirus subgroup C (APV/C) has recently been reported to be more closely related to human metapneumovirus (hMPV) as determined by sequence analysis. To examine the antigenic relationship between APV/C and hMPV, the APV/C fusion (F) gene was cloned and expressed as an uncleaved glycoprotein in a baculovirus system. The reactivity of the APV/C F protein with antibodies against APV subgroups A, B, C, and hMPV was examined by Western blot analysis. The results showed that the expressed APV/C F protein was not only recognized by APV/C-specific antibodies but also by antibodies raised against hMPV. Previously expressed recombinant hMPV F protein also reacted with APV/C-specific antibodies, suggesting that there was significant antigenic cross-reactivity and a potential evolutionary relationship between hMPV and APV/C. Interestingly, the recombinant F proteins from APV/C and hMPV were not recognized by polyclonal antibodies specific to APV subgroups A and B.

  4. Complete Genome Sequence of an Avian Metapneumovirus Subtype A Strain Isolated from Chicken (Gallus gallus) in Brazil

    OpenAIRE

    Rizotto, La?s S.; Scagion, Guilherme P.; Cardoso, Tereza C.; Sim?o, Raphael M.; Caserta, Leonardo C.; Benassi, Julia C.; Keid, Lara B.; Oliveira, Tr?cia M. F. de S.; Soares, Rodrigo M.; Arns, Clarice W.; Van Borm, Steven; Ferreira, Helena L.

    2017-01-01

    ABSTRACT We report here the complete genome sequence of an avian metapneumovirus (aMPV) isolated from a tracheal tissue sample of a commercial layer flock. The complete genome sequence of aMPV-A/chicken/Brazil-SP/669/2003 was obtained using MiSeq (Illumina, Inc.) sequencing. Phylogenetic analysis of the complete genome classified the isolate as avian metapneumovirus subtype A.

  5. The threshold of a stochastic avian-human influenza epidemic model with psychological effect

    Science.gov (United States)

    Zhang, Fengrong; Zhang, Xinhong

    2018-02-01

    In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.

  6. WHO Regional Office for Europe guidance for influenza surveillance in humans.

    NARCIS (Netherlands)

    Brown, C.S.; Andraghetti, R.; Paget, J.

    2009-01-01

    Recent international mandates, and the emergent circulation of pandemic (H1N1) 2009 virus in human populations, call for strengthening influenza surveillance to better target seasonal influenza control programmes and support pandemic preparedness. This document provides technical guidance to

  7. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2007-01-01

    textabstractViral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses

  8. Reassortment and evolution of current human influenza A and B viruses.

    Science.gov (United States)

    Xu, Xiyan; Lindstrom, Stephen E; Shaw, Michael W; Smith, Catherine B; Hall, Henrietta E; Mungall, Bruce A; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2004-07-01

    During the 2001-2002 influenza season, human influenza A (H1N2) reassortant viruses were detected globally. The hemagglutinin (HA) of these H1N2 viruses was similar to that of the A/New Caledonia/20/99 (H1N1) vaccine strain both antigenically and genetically, while their neuraminidase (NA) was antigenically and genetically related to that of recent human influenza H3N2 reference viruses such as A/Moscow/10/99. All six internal genes of the H1N2 reassortants originated from an H3N2 virus. After being detected only in eastern Asia during the past 10 years, Influenza B/Victoria/2/87 lineage viruses reappeared in many countries outside of Asia in 2001. Additionally, reassortant influenza B viruses possessing an HA similar to that of B/Shandong/7/97, a recent B/Victoria/2/87 lineage reference strain, and an NA closely related to that of B/Sichuan/379/99, a recent B/Yamagata/16/88 lineage reference strain, were isolated globally and became the predominant influenza B epidemic strain. The current influenza vaccine is expected to provide good protection against H1N2 viruses because it contains A/New Caledonia/20/99 (H1N1) and A/Panama/2007/99 (H3N2) like viruses whose H1 HA or N2 NA are antigenically similar to those of recent circulating H1N2 viruses. On the other hand, widespread circulation of influenza B Victoria lineage viruses required inclusion of a strain from this lineage in influenza vaccines for the 2002-2003 season.

  9. The human metapneumovirus matrix protein stimulates the inflammatory immune response in vitro.

    Directory of Open Access Journals (Sweden)

    Audrey Bagnaud-Baule

    Full Text Available Each year, during winter months, human Metapneumovirus (hMPV is associated with epidemics of bronchiolitis resulting in the hospitalization of many infants. Bronchiolitis is an acute illness of the lower respiratory tract with a consequent inflammation of the bronchioles. The rapid onset of inflammation suggests the innate immune response may have a role to play in the pathogenesis of this hMPV infection. Since, the matrix protein is one of the most abundant proteins in the Paramyxoviridae family virion, we hypothesized that the inflammatory modulation observed in hMPV infected patients may be partly associated with the matrix protein (M-hMPV response. By western blot analysis, we detected a soluble form of M-hMPV released from hMPV infected cell as well as from M-hMPV transfected HEK 293T cells suggesting that M-hMPV may be directly in contact with antigen presenting cells (APCs during the course of infection. Moreover, flow cytometry and confocal microscopy allowed determining that M-hMPV was taken up by dendritic cells (moDCs and macrophages inducing their activation. Furthermore, these moDCs enter into a maturation process inducing the secretion of a broad range of inflammatory cytokines when exposed to M-hMPV. Additionally, M-hMPV activated DCs were shown to stimulate IL-2 and IFN-γ production by allogeneic T lymphocytes. This M-hMPV-mediated activation and antigen presentation of APCs may in part explain the marked inflammatory immune response observed in pathology induced by hMPV in patients.

  10. Complete Genome Sequence of an Avian Metapneumovirus Subtype A Strain Isolated from Chicken (Gallus gallus) in Brazil.

    Science.gov (United States)

    Rizotto, Laís S; Scagion, Guilherme P; Cardoso, Tereza C; Simão, Raphael M; Caserta, Leonardo C; Benassi, Julia C; Keid, Lara B; Oliveira, Trícia M F de S; Soares, Rodrigo M; Arns, Clarice W; Van Borm, Steven; Ferreira, Helena L

    2017-07-20

    We report here the complete genome sequence of an avian metapneumovirus (aMPV) isolated from a tracheal tissue sample of a commercial layer flock. The complete genome sequence of aMPV-A/chicken/Brazil-SP/669/2003 was obtained using MiSeq (Illumina, Inc.) sequencing. Phylogenetic analysis of the complete genome classified the isolate as avian metapneumovirus subtype A. Copyright © 2017 Rizotto et al.

  11. A review on the clinical spectrum and natural history of human influenza.

    Science.gov (United States)

    Punpanich, Warunee; Chotpitayasunondh, Tawee

    2012-10-01

    The objective of this review is to provide updated information on the clinical spectrum and natural history of human influenza, including risk factors for severe disease, and to identify the knowledge gap in this area. We searched the MEDLINE database of the recent literature for the period January 2009 to August 17, 2011 with regard to the abovementioned aspects of human influenza, focusing on A(H1N1)pdm09 and seasonal influenza. The clinical spectrum and outcomes of cases of A(H1N1)pdm09 influenza have been mild and rather indistinguishable from those of seasonal influenza. Sporadic cases covering a wide range of neurological complications have been reported. Underlying predisposing conditions considered to be high-risk for A(H1N1)pdm09 infections are generally similar to those of seasonal influenza, but with two additional risk groups: pregnant women and the morbidly obese. Co-infections with bacteria and D222/N variants or 225G substitution of the viral genome have also been reported to be significant factors associated with the severity of disease. The current knowledge gap includes: (1) a lack of clarification regarding the relatively greater severity of the Mexican A(H1N1)pdm09 influenza outbreak in the early phase of the pandemic; (2) insufficient data on the clinical impact, risk factors, and outcomes of human infections caused by resistant strains of influenza; and (3) insufficient data from less developed countries that would enable them to prioritize strategies for influenza prevention and control. Clinical features and risk factors of A(H1N1)pdm09 are comparable to those of seasonal influenza. Emerging risk factors for severe disease with A(H1N1)pdm09 include morbid obesity, pregnancy, bacterial co-infections, and D222/N variants or 225G substitution of the viral genome. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Pandemic influenza: human rights, ethics and duty to treat.

    Science.gov (United States)

    Pahlman, I; Tohmo, H; Gylling, H

    2010-01-01

    The 2009 influenza A/H1N1 pandemic seems to be only moderately severe. In the future, a pandemic influenza with high lethality, such as the Spanish influenza in 1918-1919 or even worse, may emerge. In this kind of scenario, lethality rates ranging roughly from 2% to 30% have been proposed. Legal and ethical issues should be discussed before the incident. This article aims to highlight the legal, ethical and professional aspects that might be relevant to anaesthesiologists in the case of a high-lethality infectious disease such as a severe pandemic influenza. The epidemiology, the role of anaesthesiologists and possible threats to the profession and colleagueship within medical specialties relevant to anaesthesiologists are reviewed. During historical plague epidemics, some doctors have behaved like 'deserters'. However, during the Spanish influenza, physicians remained at their jobs, although many perished. In surveys, more than half of the health-care workers have reported their willingness to work in the case of severe pandemics. Physicians have the same human rights as all citizens: they have to be effectively protected against infectious disease. However, they have a duty to treat. Fair and responsible colleagueship among the diverse medical specialties should be promoted. Until disaster threatens humanity, volunteering to work during a pandemic might be the best way to ensure that physicians and other health-care workers stay at their workplace. Broad discussion in society is needed.

  13. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    Science.gov (United States)

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-23

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.

  14. The immunodominant influenza matrix t cell epitope recognized in human induces influenza protection in HLA-A2/Kb transgenic mice

    International Nuclear Information System (INIS)

    Plotnicky, H.; Cyblat-Chanal, D.; Aubry, J.-P.; Derouet, F.; Klinguer-Hamour, C.; Beck, A.; Bonnefoy, J.-Y.; Corvaiea, N.

    2003-01-01

    The protective efficacy of the influenza matrix protein epitope 58-66 (called M1), recognized in the context of human HLA-A2 molecules, was evaluated in a HLA-A2/K b transgenic mouse model of lethal influenza infection. Repeated subcutaneous immunizations with M1 increased the percentage of survival. This effect was mediated by T cells since protection was abolished following in vivo depletion of all T lymphocytes, CD8 + , or CD4 + T cells. The survival correlated with the detection of memory CD8 + splenocytes able to proliferate in vitro upon stimulation with M1 and to bind M1-loaded HLA-A2 dimers, as well as with M1-specific T cells in the lungs, which were directly cytotoxic to influenza-infected cells following influenza challenge. These results demonstrated for the first time that HLA-A2-restricted cytotoxic T cells specific for the major immunodominant influenza matrix epitope are protective against the infection. They encourage further in vivo evaluation of T cell epitopes recognized in the context of human MHC molecules

  15. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  16. Comparison of initial high resolution computed tomography features in viral pneumonia between metapneumovirus infection and severe acute respiratory syndrome

    International Nuclear Information System (INIS)

    Wong, Cheuk Kei Kathy; Lai, Vincent; Wong, Yiu Chung

    2012-01-01

    Objective: To review and compare initial high resolution computed tomography (HRCT) findings in patients with metapneumovirus pneumonia and severe acute respiratory syndrome (SARS-Coronovirus). Materials and methods: 4 cases of metapneumovirus pneumonia (mean age of 52.3 years) in an institutional outbreak (Castle Peak Hospital) in 2008 and 38 cases of SARS-coronovirus (mean age of 39.6 years) admitted to Tuen Mun hospital during an epidemic outbreak in 2003 were included. HRCT findings of the lungs for all patients were retrospectively reviewed by two independent radiologists. Results: In the metapneumovirus group, common HRCT features were ground glass opacities (100%), consolidation (100%), parenchymal band (100%), bronchiectasis (75%). Crazy paving pattern was absent. They were predominantly subpleural and basal in location and bilateral involvement was observed in 50% of patients. In the SARS group, common HRCT features were ground glass opacities (92.1%), interlobular septal thickening (86.8%), crazy paving pattern (73.7%) and consolidation (68%). Bronchiectasis was not seen. Majority of patient demonstrated segmental or lobar in distribution and bilateral involvement was observed in 44.7% of patients. Pleural effusion and lymphadenopathy were of consistent rare features in both groups. Conclusion: Ground glass opacities, interlobular septal thickening and consolidations were consistent HRCT manifestations in both metapneumovirus infection and SARS. The presence of bronchiectasis (0% in SARS) may point towards metapneumovirus while crazy paving pattern is more suggestive of SARS.

  17. Influenza A Viruses of Human Origin in Swine, Brazil.

    Science.gov (United States)

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance.

  18. Brazilian avian metapneumovirus subtypes A and B: experimental infection of broilers and evaluation of vaccine efficacy

    OpenAIRE

    Márcia B. dos Santos; Matheus C. Martini; Helena L. Ferreira; Luciana H.A. da Silva; Paulo A. Fellipe; Fernando R. Spilki; Clarice W. Arns

    2012-01-01

    Santos M.B., Martini M.C., Ferreira H.L., Silva L.H.A., Fellipe P.A., Spilki F.R. & Arns C.W. 2012. Brazilian avian metapneumovirus subtypes A and B: experimental infection of broilers and evaluation of vaccine efficacy. Pesquisa Veterinaria Brasileira 32(12):1257-1262. Laboratorio de Virologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato s/n, Cx. Postal 6109, Campinas, SP 13083-970, Brazil. E-mail: Avian metapneumovirus (aMPV) is a respirator...

  19. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  20. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Ma, Yuanmei; Sun, Jing; Liang, Xueya; Li, Jianrong

    2015-06-01

    Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute

  1. Influenza A Viruses of Human Origin in Swine, Brazil

    Science.gov (United States)

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  2. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  3. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    International Nuclear Information System (INIS)

    Pan, Yang; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Inoue, Yuji; Yasugi, Mayo; Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha; Du, Anariwa; Boonsathorn, Naphatsawan; Ibrahim, Madiha S.

    2014-01-01

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses

  4. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yang [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Sasaki, Tadahiro [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Inoue, Yuji [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yasugi, Mayo [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Du, Anariwa [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Boonsathorn, Naphatsawan [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Ibrahim, Madiha S. [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour (Egypt); and others

    2014-07-18

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  5. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae.

    Science.gov (United States)

    Qiu, J; Hendrixson, D R; Baker, E N; Murphy, T F; St Geme, J W; Plaut, A G

    1998-10-13

    Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.

  6. Fitness cost of reassortment in human influenza.

    Directory of Open Access Journals (Sweden)

    Mara Villa

    2017-11-01

    Full Text Available Reassortment, which is the exchange of genome sequence between viruses co-infecting a host cell, plays an important role in the evolution of segmented viruses. In the human influenza virus, reassortment happens most frequently between co-existing variants within the same lineage. This process breaks genetic linkage and fitness correlations between viral genome segments, but the resulting net effect on viral fitness has remained unclear. In this paper, we determine rate and average selective effect of reassortment processes in the human influenza lineage A/H3N2. For the surface proteins hemagglutinin and neuraminidase, reassortant variants with a mean distance of at least 3 nucleotides to their parent strains get established at a rate of about 10-2 in units of the neutral point mutation rate. Our inference is based on a new method to map reassortment events from joint genealogies of multiple genome segments, which is tested by extensive simulations. We show that intra-lineage reassortment processes are, on average, under substantial negative selection that increases in strength with increasing sequence distance between the parent strains. The deleterious effects of reassortment manifest themselves in two ways: there are fewer reassortment events than expected from a null model of neutral reassortment, and reassortant strains have fewer descendants than their non-reassortant counterparts. Our results suggest that influenza evolves under ubiquitous epistasis across proteins, which produces fitness barriers against reassortment even between co-circulating strains within one lineage.

  7. Fitness cost of reassortment in human influenza.

    Science.gov (United States)

    Villa, Mara; Lässig, Michael

    2017-11-01

    Reassortment, which is the exchange of genome sequence between viruses co-infecting a host cell, plays an important role in the evolution of segmented viruses. In the human influenza virus, reassortment happens most frequently between co-existing variants within the same lineage. This process breaks genetic linkage and fitness correlations between viral genome segments, but the resulting net effect on viral fitness has remained unclear. In this paper, we determine rate and average selective effect of reassortment processes in the human influenza lineage A/H3N2. For the surface proteins hemagglutinin and neuraminidase, reassortant variants with a mean distance of at least 3 nucleotides to their parent strains get established at a rate of about 10-2 in units of the neutral point mutation rate. Our inference is based on a new method to map reassortment events from joint genealogies of multiple genome segments, which is tested by extensive simulations. We show that intra-lineage reassortment processes are, on average, under substantial negative selection that increases in strength with increasing sequence distance between the parent strains. The deleterious effects of reassortment manifest themselves in two ways: there are fewer reassortment events than expected from a null model of neutral reassortment, and reassortant strains have fewer descendants than their non-reassortant counterparts. Our results suggest that influenza evolves under ubiquitous epistasis across proteins, which produces fitness barriers against reassortment even between co-circulating strains within one lineage.

  8. [Clinical aspects of human infection by the avian influenza virus].

    Science.gov (United States)

    Goubau, P

    2009-01-01

    The species barrier is not perfect for Influenza A and numerous transmissions of the virus from pigs or poultry to humans have been described these years. Appearing in 1997 and becoming epidemic in 2003, influenza A/H5N1 provoked many deadly enzootics in poultry batteries (highly pathogenic avian influenza of HPAI). Starting in Asia, many countries throughout Africa and Europe were affected. Sporadic human cases were described in direct contact with diseased chicken or other poultry. Half of the cases are lethal, but human to human transmission occurs with difficulty. From January 2003 to August 11th 2009, 438 cases were declared worldwide with 262 deaths. Many countries declared cases, but recently most cases occurred in Egypt. Measures in hospital were taken which were copied from the measures for SARS (Severe Acute Respiratory Syndrome), but these were probably excessive in this case, considering the low rate of secondary cases with A/H5N1. In many human infections, signs of severe respiratory distress develop and multi organ failure. It was feared that this deadly virus could become easily transmitted between humans, leading to a new pandemic. This was not the case up to now. The strong pathogenicity of the virus is still not completely explained, but the deep location of infection in the lungs and the deregulation of cytokine production by the target cells, particularly macrophages, may be part of the explanation.

  9. Detection of Nuclear Protein Profile Changes by Human Metapneumovirus M2-2 Protein Using Quantitative Differential Proteomics

    Directory of Open Access Journals (Sweden)

    Yuping Ren

    2017-12-01

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s in the M2-2 protein. These motifs are involved in the interruption of antiviral signaling, namely the interaction between the TNF receptor associated factor (TRAF and mitochondrial antiviral-signaling (MAVS proteins. The aim of this study was to provide insight into the overall and novel impact of M2-2 motifs on cellular responses via an unbiased comparison. Tandem mass tagging, stable isotope labeling, and high-resolution mass spectrometry were used for quantitative proteomic analysis. Using quantitative proteomics and Venn analysis, 1248 common proteins were detected in all infected samples of both technical sets. Hierarchical clustering of the differentiated proteome displayed distinct proteomic signatures that were controlled by the motif(s. Bioinformatics and experimental analysis confirmed the differentiated proteomes, revealed novel cellular biological events, and implicated key pathways controlled by hMPV M2-2 PDZ domain-binding motif(s. This provides further insight for evaluating M2-2 mutants as potent vaccine candidates.

  10. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein.

    Science.gov (United States)

    Deeg, Christoph M; Hassan, Ebrahim; Mutz, Pascal; Rheinemann, Lara; Götz, Veronika; Magar, Linda; Schilling, Mirjam; Kallfass, Carsten; Nürnberger, Cindy; Soubies, Sébastien; Kochs, Georg; Haller, Otto; Schwemmle, Martin; Staeheli, Peter

    2017-05-01

    Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population. © 2017 Deeg et al.

  11. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China

    OpenAIRE

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and...

  12. Solution and crystallographic structures of the central region of the phosphoprotein from human metapneumovirus.

    Directory of Open Access Journals (Sweden)

    Cedric Leyrat

    Full Text Available Human metapneumovirus (HMPV of the family Paramyxoviridae is a major cause of respiratory illness worldwide. Phosphoproteins (P from Paramyxoviridae are essential co-factors of the viral RNA polymerase that form tetramers and possess long intrinsically disordered regions (IDRs. We located the central region of HMPV P (P(ced which is involved in tetramerization using disorder analysis and modeled its 3D structure ab initio using Rosetta fold-and-dock. We characterized the solution-structure of P(ced using small angle X-ray scattering (SAXS and carried out direct fitting to the scattering data to filter out incorrect models. Molecular dynamics simulations (MDS and ensemble optimization were employed to select correct models and capture the dynamic character of P(ced. Our analysis revealed that oligomerization involves a compact central core located between residues 169-194 (P(core, that is surrounded by flexible regions with α-helical propensity. We crystallized this fragment and solved its structure at 3.1 Å resolution by molecular replacement, using the folded core from our SAXS-validated ab initio model. The RMSD between modeled and experimental tetramers is as low as 0.9 Å, demonstrating the accuracy of the approach. A comparison of the structure of HMPV P to existing mononegavirales P(ced structures suggests that P(ced evolved under weak selective pressure. Finally, we discuss the advantages of using SAXS in combination with ab initio modeling and MDS to solve the structure of small, homo-oligomeric protein complexes.

  13. Three mutations switch H7N9 influenza to human-type receptor specificity

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Peng, Wenjie; Grant, Oliver C.; Thompson, Andrew J.; Zhu, Xueyong; Bouwman, Kim M.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Ambepitiya Wickramasinghe, Iresha N.; de Haan, Cornelis A. M.; Yu, Wenli; McBride, Ryan; Sanders, Rogier W.; Woods, Robert J.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.; Fernandez-Sesma, Ana

    2017-06-15

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  14. Three mutations switch H7N9 influenza to human-type receptor specificity.

    Directory of Open Access Journals (Sweden)

    Robert P de Vries

    2017-06-01

    Full Text Available The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA mutation (Q226L that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal to human-type (NeuAcα2-6Gal, as documented for the avian progenitors of the 1957 (H2N2 and 1968 (H3N2 human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  15. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009.

    Science.gov (United States)

    Shinde, Vivek; Bridges, Carolyn B; Uyeki, Timothy M; Shu, Bo; Balish, Amanda; Xu, Xiyan; Lindstrom, Stephen; Gubareva, Larisa V; Deyde, Varough; Garten, Rebecca J; Harris, Meghan; Gerber, Susan; Vagasky, Susan; Smith, Forrest; Pascoe, Neal; Martin, Karen; Dufficy, Deborah; Ritger, Kathy; Conover, Craig; Quinlisk, Patricia; Klimov, Alexander; Bresee, Joseph S; Finelli, Lyn

    2009-06-18

    Triple-reassortant swine influenza A (H1) viruses--containing genes from avian, human, and swine influenza viruses--emerged and became enzootic among pig herds in North America during the late 1990s. We report the clinical features of the first 11 sporadic cases of infection of humans with triple-reassortant swine influenza A (H1) viruses reported to the Centers for Disease Control and Prevention, occurring from December 2005 through February 2009, until just before the current epidemic of swine-origin influenza A (H1N1) among humans. These data were obtained from routine national influenza surveillance reports and from joint case investigations by public and animal health agencies. The median age of the 11 patients was 10 years (range, 16 months to 48 years), and 4 had underlying health conditions. Nine of the patients had had exposure to pigs, five through direct contact and four through visits to a location where pigs were present but without contact. In another patient, human-to-human transmission was suspected. The range of the incubation period, from the last known exposure to the onset of symptoms, was 3 to 9 days. Among the 10 patients with known clinical symptoms, symptoms included fever (in 90%), cough (in 100%), headache (in 60%), and diarrhea (in 30%). Complete blood counts were available for four patients, revealing leukopenia in two, lymphopenia in one, and thrombocytopenia in another. Four patients were hospitalized, two of whom underwent invasive mechanical ventilation. Four patients received oseltamivir, and all 11 recovered from their illness. From December 2005 until just before the current human epidemic of swine-origin influenza viruses, there was sporadic infection with triple-reassortant swine influenza A (H1) viruses in persons with exposure to pigs in the United States. Although all the patients recovered, severe illness of the lower respiratory tract and unusual influenza signs such as diarrhea were observed in some patients, including

  16. Diagnosis of human metapneumovirus infection in immunosuppressed lung transplant recipients and children evaluated for pertussis.

    Science.gov (United States)

    Dare, Ryan; Sanghavi, Sonali; Bullotta, Arlene; Keightley, Maria-Cristina; George, Kirsten St; Wadowsky, Robert M; Paterson, David L; McCurry, Kenneth R; Reinhart, Todd A; Husain, Shahid; Rinaldo, Charles R

    2007-02-01

    Human metapneumovirus (hMPV) is a recently discovered paramyxovirus that is known to cause respiratory tract infections in children and immunocompromised individuals. Given the difficulties of identifying hMPV by conventional culture, molecular techniques could improve the detection of this virus in clinical specimens. In this study, we developed a real-time reverse transcription-PCR (RT-PCR) assay designed to detect the four genetic lineages of hMPV. This assay and a commercial real-time nucleic acid sequence-based amplification (NASBA) assay (bioMérieux, Durham, NC) were used to determine the prevalence of hMPV in 114 immunosuppressed asymptomatic and symptomatic lung transplant recipients and 232 pediatric patients who were being evaluated for pertussis. hMPV was detected in 4.3% of the immunosuppressed lung transplant recipients and in 9.9% of children evaluated for pertussis. Both RT-PCR and NASBA assays were efficient in detection of hMPV infection in respiratory specimens. Even though hMPV was detected in a small number of the lung transplant recipients, it was still the most prevalent etiologic agent detected in patients with respiratory symptoms. In both of these diverse patient populations, hMPV infection was the most frequent viral respiratory tract infection identified. Given our findings, infection with hMPV infection should be determined as part of the differential diagnosis of respiratory illnesses.

  17. Diagnosis of Human Metapneumovirus Infection in Immunosuppressed Lung Transplant Recipients and Children Evaluated for Pertussis▿

    Science.gov (United States)

    Dare, Ryan; Sanghavi, Sonali; Bullotta, Arlene; Keightley, Maria-Cristina; George, Kirsten St.; Wadowsky, Robert M.; Paterson, David L.; McCurry, Kenneth R.; Reinhart, Todd A.; Husain, Shahid; Rinaldo, Charles R.

    2007-01-01

    Human metapneumovirus (hMPV) is a recently discovered paramyxovirus that is known to cause respiratory tract infections in children and immunocompromised individuals. Given the difficulties of identifying hMPV by conventional culture, molecular techniques could improve the detection of this virus in clinical specimens. In this study, we developed a real-time reverse transcription-PCR (RT-PCR) assay designed to detect the four genetic lineages of hMPV. This assay and a commercial real-time nucleic acid sequence-based amplification (NASBA) assay (bioMérieux, Durham, NC) were used to determine the prevalence of hMPV in 114 immunosuppressed asymptomatic and symptomatic lung transplant recipients and 232 pediatric patients who were being evaluated for pertussis. hMPV was detected in 4.3% of the immunosuppressed lung transplant recipients and in 9.9% of children evaluated for pertussis. Both RT-PCR and NASBA assays were efficient in detection of hMPV infection in respiratory specimens. Even though hMPV was detected in a small number of the lung transplant recipients, it was still the most prevalent etiologic agent detected in patients with respiratory symptoms. In both of these diverse patient populations, hMPV infection was the most frequent viral respiratory tract infection identified. Given our findings, infection with hMPV infection should be determined as part of the differential diagnosis of respiratory illnesses. PMID:17065270

  18. [Summary of Guangdong provincial seminar on avian influenza and influenza].

    Science.gov (United States)

    Yu, Shou-yi; Chen, Qing; Hu, Gui-fang

    2005-12-01

    On 8th November 2005, an academic seminar on avian influenza and influenza in Guangdong Province was held by Guangdong Society of Tropical Medicine and the Epidemiology Committee of the Guangdong Preventive Medicine Society in Southern Medical University, addressing the current problems in epidemics of avian influenza. The specialists attending the conference arrived at the common consideration that at present, the avian influenza virus H5N1 has not the capacity to trigger an pandemic in human population, but scattered cases had been reported to increase the suspicions of H5N1 virus transmission between humans. Due attention should be paid to the tendency of expansion of the host range and epidemic area, and the possibility of disastrous influenza pandemic among human populations persists, for which rational consideration is called for, and the role of specialists should be fully recognized who are endeavoring to examine the possible scale of influenza occurrence and devise strategy to deal with the epidemic in Guangdong province according to the practical situation in China. Increased funds and investment in scientific research on avian influenza is urged for influenza prediction and surveillance, rapid and early diagnostic assays, understanding of virus variation, mechanism of H5N1 virus adaptation to human hosts, effective medicines and vaccines for prevention and therapy of avian influenza. Laboratory bio-safety control should be enforced to prevent infections originated from laboratories. The specialists appeal that the media report the news objectively and issue the public warnings against avian influenza after consulting specialists, so as to avoid unnecessary social panic.

  19. Population Dynamics and Rates of Molecular Evolution of a Recently Emerged Paramyxovirus, Avian Metapneumovirus Subtype C▿ †

    OpenAIRE

    Padhi, Abinash; Poss, Mary

    2008-01-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 × 10−3 to 7 × 10−3 substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes exam...

  20. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    Science.gov (United States)

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct

  1. Anti-influenza Hyperimmune Immunoglobulin Enhances Fc-functional Antibody Immunity during Human Influenza Infection.

    Science.gov (United States)

    Vanderven, Hillary A; Wragg, Kathleen; Ana-Sosa-Batiz, Fernanda; Kristensen, Anne B; Jegaskanda, Sinthujan; Wheatley, Adam K; Wentworth, Deborah; Wines, Bruce D; Hogarth, P Mark; Rockman, Steve; Kent, Stephen J

    2018-05-31

    New treatments for severe influenza are needed. Passive transfer of influenza-specific hyperimmune pooled immunoglobulin (Flu-IVIG) boosts neutralising antibody responses to past strains in influenza-infected subjects. The effect of Flu-IVIG on antibodies with Fc-mediated functions, which may target diverse influenza strains, is unclear. We studied the capacity of Flu-IVIG, relative to standard IVIG, to bind to Fc receptors and mediate antibody-dependent cellular cytotoxicity in vitro. The effect of Flu-IVIG infusion, compared to placebo infusion, was examined in serial plasma samples from 24 subjects with confirmed influenza infection in the INSIGHT FLU005 pilot study. Flu-IVIG contains higher concentrations of Fc-functional antibodies than IVIG against a diverse range of influenza hemagglutinins. Following infusion of Flu-IVIG into influenza-infected subjects, a transient increase in Fc-functional antibodies was present for 1-3 days against infecting and non-infecting strains of influenza. Flu-IVIG contains antibodies with Fc-mediated functions against influenza virus and passive transfer of Flu-IVIG increases anti-influenza Fc-functional antibodies in the plasma of influenza-infected subjects. Enhancement of Fc-functional antibodies to a diverse range of influenza strains suggests that Flu-IVIG infusion could prove useful in the context of novel influenza virus infections, when there may be minimal or no neutralising antibodies in the Flu-IVIG preparation.

  2. Demographic and ecological risk factors for human influenza A virus infections in rural Indonesia.

    Science.gov (United States)

    Root, Elisabeth Dowling; Agustian, Dwi; Kartasasmita, Cissy; Uyeki, Timothy M; Simões, Eric A F

    2017-09-01

    Indonesia has the world's highest reported mortality for human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus. Indonesia is an agriculturally driven country where human-animal mixing is common and provides a unique environment for zoonotic influenza A virus transmission. To identify potential demographic and ecological risk factors for human infection with seasonal influenza A viruses in rural Indonesia, a population-based study was conducted in Cileunyi and Soreang subdistricts near Bandung in western Java from 2008 to 2011. Passive influenza surveillance with RT-PCR confirmation of influenza A viral RNA in respiratory specimens was utilized for case ascertainment. A population census and mapping were utilized for population data collection. The presence of influenza A(H3N2) and A(H1N1)pdm09 virus infections in a household was modeled using Generalized Estimating Equations. Each additional child aged <5 years in a household increased the odds of H3N2 approximately 5 times (OR=4.59, 95%CI: 3.30-6.24) and H1N1pdm09 by 3.5 times (OR=3.53, 95%CI: 2.51-4.96). In addition, the presence of 16-30 birds in the house was associated with an increased odds of H3N2 (OR=5.08, 95%CI: 2.00-12.92) and H1N1pdm09 (OR=12.51 95%CI: 6.23-25.13). Our findings suggest an increase in influenza A virus infections in rural Indonesian households with young children and poultry. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  3. Evolution of Therapeutic Antibodies, Influenza Virus Biology, Influenza, and Influenza Immunotherapy

    Directory of Open Access Journals (Sweden)

    Urai Chaisri

    2018-01-01

    Full Text Available This narrative review article summarizes past and current technologies for generating antibodies for passive immunization/immunotherapy. Contemporary DNA and protein technologies have facilitated the development of engineered therapeutic monoclonal antibodies in a variety of formats according to the required effector functions. Chimeric, humanized, and human monoclonal antibodies to antigenic/epitopic myriads with less immunogenicity than animal-derived antibodies in human recipients can be produced in vitro. Immunotherapy with ready-to-use antibodies has gained wide acceptance as a powerful treatment against both infectious and noninfectious diseases. Influenza, a highly contagious disease, precipitates annual epidemics and occasional pandemics, resulting in high health and economic burden worldwide. Currently available drugs are becoming less and less effective against this rapidly mutating virus. Alternative treatment strategies are needed, particularly for individuals at high risk for severe morbidity. In a setting where vaccines are not yet protective or available, human antibodies that are broadly effective against various influenza subtypes could be highly efficacious in lowering morbidity and mortality and controlling unprecedented epidemic/pandemic. Prototypes of human single-chain antibodies to several conserved proteins of influenza virus with no Fc portion (hence, no ADE effect in recipients are available. These antibodies have high potential as a novel, safe, and effective anti-influenza agent.

  4. Published sequences do not support transfer of oseltamivir resistance mutations from avian to human influenza A virus strains.

    Science.gov (United States)

    Norberg, Peter; Lindh, Magnus; Olofsson, Sigvard

    2015-03-28

    Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.

  5. Caveolin-1 influences human influenza A virus (H1N1 multiplication in cell culture

    Directory of Open Access Journals (Sweden)

    Hemgård Gun-Viol

    2010-05-01

    Full Text Available Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1 as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1 strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1 virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK, a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.

  6. Avian influenza: a review.

    Science.gov (United States)

    Thomas, Jennifer K; Noppenberger, Jennifer

    2007-01-15

    A review of the avian influenza A/H5N1 virus, including human cases, viral transmission, clinical features, vaccines and antivirals, surveillance plans, infection control, and emergency response plans, is presented. The World Health Organization (WHO) considers the avian influenza A/H5N1 virus a public health risk with pandemic potential. The next human influenza pandemic, if caused by the avian influenza A/H5N1 virus, is estimated to have a potential mortality rate of more than a hundred million. Outbreaks in poultry have been associated with human transmission. WHO has documented 258 confirmed human infections with a mortality rate greater than 50%. Bird-to-human transmission of the avian influenza virus is likely by the oral-fecal route. The most effective defense against an influenza pandemic would be a directed vaccine to elicit a specific immune response toward the strain or strains of the influenza virus. However, until there is an influenza pandemic, there is no evidence that vaccines or antivirals used in the treatment or prevention of such an outbreak would decrease morbidity or mortality. Surveillance of the bird and human populations for the highly pathogenic H5N1 is being conducted. Infection-control measures and an emergency response plan are discussed. Avian influenza virus A/H5N1 is a public health threat that has the potential to cause serious illness and death in humans. Understanding its pathology, transmission, clinical features, and pharmacologic treatments and preparing for the prevention and management of its outbreak will help avoid its potentially devastating consequences.

  7. Human Metapneumovirus Infection in Jordanian Children: Epidemiology and Risk Factors for Severe Disease

    Science.gov (United States)

    Schuster, Jennifer E.; Khuri-Bulos, Najwa; Faouri, Samir; Shehabi, Asem; Johnson, Monika; Wang, Li; Fonnesbeck, Christopher; Williams, John V.; Halasa, Natasha

    2016-01-01

    Background Human metapneumovirus (HMPV) is a leading cause of acute respiratory tract infection (ARTI) in young children. Our objectives were to define HMPV epidemiology and circulating strains and determine markers of severe disease in Jordanian children. Methods We conducted a prospective study March 16, 2010-March 31, 2013 using quantitative RT-PCR to determine the frequency of HMPV infection among children <2 years old admitted with fever and/or acute respiratory illness to a major government hospital in Amman, Jordan. Results HMPV was present in 273/3168 (8.6%) of children presenting with ARTI. HMPV A2, B1, and B2, but not A1, were detected during the 3-year period. HMPV-infected children were older and more likely to be diagnosed with bronchopneumonia than HMPV-negative children. HMPV-infected children with lower respiratory tract infection (LRTI) had higher rates of cough and shortness of breath than children with LRTI infected with other or no identifiable viruses. Symptoms and severity were not different between children with HMPV only compared with HMPV co-infection. Children with HMPV subgroup A infection were more likely to require supplemental oxygen. In a multivariate analysis, HMPV subgroup A and age <6 months were independently associated with supplemental oxygen requirement. Conclusions HMPV is a leading cause of acute respiratory tract disease in Jordanian children <2 years old. HMPV A and young age were associated with severe disease. Ninety percent of HMPV-infected hospitalized children were full-term and otherwise healthy, in contrast to high-income nations; thus, factors contributing to disease severity likely vary depending on geographic and resource differences. PMID:26372450

  8. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus

    Science.gov (United States)

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size among the different viruses. Hu...

  9. Type 1 Responses of Human Vγ9Vδ2 T Cells to Influenza A Viruses▿

    Science.gov (United States)

    Qin, Gang; Liu, Yinping; Zheng, Jian; Ng, Iris H. Y.; Xiang, Zheng; Lam, Kwok-Tai; Mao, Huawei; Li, Hong; Peiris, J. S. Malik; Lau, Yu-Lung; Tu, Wenwei

    2011-01-01

    γδ T cells are essential constituents of antimicrobial and antitumor defenses. We have recently reported that phosphoantigen isopentenyl pyrophosphate (IPP)-expanded human Vγ9Vδ2 T cells participated in anti-influenza virus immunity by efficiently killing both human and avian influenza virus-infected monocyte-derived macrophages (MDMs) in vitro. However, little is known about the noncytolytic responses and trafficking program of γδ T cells to influenza virus. In this study, we found that Vγ9Vδ2 T cells expressed both type 1 cytokines and chemokine receptors during influenza virus infection, and IPP-expanded cells had a higher capacity to produce gamma interferon (IFN-γ). Besides their potent cytolytic activity against pandemic H1N1 virus-infected cells, IPP-activated γδ T cells also had noncytolytic inhibitory effects on seasonal and pandemic H1N1 viruses via IFN-γ but had no such effects on avian H5N1 or H9N2 virus. Avian H5N1 and H9N2 viruses induced significantly higher CCL3, CCL4, and CCL5 production in Vγ9Vδ2 T cells than human seasonal H1N1 virus. CCR5 mediated the migration of Vγ9Vδ2 T cells toward influenza virus-infected cells. Our findings suggest a novel therapeutic strategy of using phosphoantigens to boost the antiviral activities of human Vγ9Vδ2 T cells against influenza virus infection. PMID:21752902

  10. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals

    NARCIS (Netherlands)

    Lee, Laurel Yong-Hwa; Anh, Ha Do Lien; Simmons, Cameron; de Jong, Menno D.; Chau, Nguyen Van Vinh; Schumacher, Reto; Peng, Yan Chun; McMichael, Andrew J.; Farrar, Jeremy J.; Smith, Geoffrey L.; Townsend, Alain R. M.; Askonas, Brigitte A.; Rowland-Jones, Sarah; Dong, Tao

    2008-01-01

    The threat of avian influenza A (H5N1) infection in humans remains a global health concern. Current influenza vaccines stimulate antibody responses against the surface glycoproteins but are ineffective against strains that have undergone significant antigenic variation. An alternative approach is to

  11. Respiratory viruses involved in influenza-like illness in a Greek pediatric population during the winter period of the years 2005-2008.

    Science.gov (United States)

    Pogka, Vasiliki; Kossivakis, Athanasios; Kalliaropoulos, Antonios; Moutousi, Afroditi; Sgouras, Dionyssios; Panagiotopoulos, Takis; Chrousos, George P; Theodoridou, Maria; Syriopoulou, Vassiliki P; Mentis, Andreas F

    2011-10-01

    Viruses are the major cause of pediatric respiratory tract infection and yet many suspected cases of illness remain uncharacterized. This study aimed to determine the distribution of several respiratory viruses in children diagnosed as having influenza-like illness, over the winter period of 2005-2008. Molecular assays including conventional and real time PCR protocols, were employed to screen respiratory specimens, collected by clinicians of the Influenza sentinel system and of outpatient pediatric clinics, for identification of several respiratory viruses. Of 1,272 specimens tested, 814 (64%) were positive for at least one virus and included 387 influenza viruses, 160 rhinoviruses, 155 respiratory syncytial viruses, 95 adenoviruses, 81 bocaviruses, 47 parainfluenza viruses, 44 metapneumoviruses, and 30 coronaviruses. Simultaneous presence of two or three viruses was observed in 173 of the above positive cases, 21% of which included influenza virus and rhinovirus. The majority of positive cases occurred during January and February. Influenza virus predominated in children older than 1 year old, with type B being the dominant type for the first season and subtypes A/H3N2 and A/H1N1 the following two winter seasons, respectively. Respiratory syncytial virus prevailed in children younger than 2 years old, with subtypes A and B alternating from year to year. This is the most comprehensive study of the epidemiology of respiratory viruses in Greece, indicating influenza, rhinovirus and respiratory syncytial virus as major contributors to influenza-like illness in children. Copyright © 2011 Wiley-Liss, Inc.

  12. Protocol: Transmission and prevention of influenza in Hutterites: Zoonotic transmission of influenza A: swine & swine workers

    Directory of Open Access Journals (Sweden)

    Loeb Mark

    2009-11-01

    Full Text Available Abstract Background Among swine, reassortment of influenza virus genes from birds, pigs, and humans could generate influenza viruses with pandemic potential. Humans with acute infection might also be a source of infection for swine production units. This article describes the study design and methods being used to assess influenza A transmission between swine workers and pigs. We hypothesize that transmission of swine influenza viruses to humans, transmission of human influenza viruses to swine, and reassortment of human and swine influenza A viruses is occurring. The project is part of a Team Grant; all Team Grant studies include active surveillance for influenza among Hutterite swine farmers in Alberta, Canada. This project also includes non-Hutterite swine farms that are experiencing swine respiratory illness. Methods/Design Nurses conduct active surveillance for influenza-like-illness (ILI, visiting participating communally owned and operated Hutterite swine farms twice weekly. Nasopharyngeal swabs and acute and convalescent sera are obtained from persons with any two such symptoms. Swabs are tested for influenza A and B by a real time RT-PCR (reverse transcriptase polymerase chain reaction at the Alberta Provincial Laboratory for Public Health (ProvLab. Test-positive participants are advised that they have influenza. The occurrence of test-positive swine workers triggers sampling (swabbing, acute and convalescent serology of the swine herd by veterinarians. Specimens obtained from swine are couriered to St. Jude Children's Research Hospital, Memphis, TN for testing. Veterinarians and herd owners are notified if animal specimens are test-positive for influenza. If swine ILI occurs, veterinarians obtain samples from the pigs; test-positives from the animals trigger nurses to obtain specimens (swabbing, acute and convalescent serology from the swine workers. ProvLab cultures influenza virus from human specimens, freezes these cultures and

  13. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    Science.gov (United States)

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Los Alamos National Laboratory; Velappan, Nileena [Los Alamos National Laboratory; Schmidt, Jurgen G [Los Alamos National Laboratory

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  15. Effects of closing and reopening live poultry markets on the epidemic of human infection with avian influenza A virus

    OpenAIRE

    Lu, Jian; Liu, Wendong; Xia, Rui; Dai, Qigang; Bao, Changjun; Tang, Fenyang; Zhu, yefei; Wang, Qiao

    2015-01-01

    Abstract Live poultry markets (LPMs) are crucial places for human infection of influenza A (H7N9 virus). In Yangtze River Delta, LPMs were closed after the outbreak of human infection with avian influenza A (H7N9) virus, and then reopened when no case was found. Our purpose was to quantify the effect of LPMs? operations in this region on the transmission of influenza A (H7N9) virus. We obtained information about dates of symptom onset and locations for all human influenza A (H7N9) cases repor...

  16. FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human-Animal Interface.

    Science.gov (United States)

    Anderson, Tara; Capua, Ilaria; Dauphin, Gwenaëlle; Donis, Ruben; Fouchier, Ron; Mumford, Elizabeth; Peiris, Malik; Swayne, David; Thiermann, Alex

    2010-05-01

    For the past 10 years, animal health experts and human health experts have been gaining experience in the technical aspects of avian influenza in mostly separate fora. More recently, in 2006, in a meeting of the small WHO Working Group on Influenza Research at the Human Animal Interface (Meeting report available from: http://www.who.int/csr/resources/publications/influenza/WHO_CDS_EPR_GIP_2006_3/en/index.html) in Geneva allowed influenza experts from the animal and public health sectors to discuss together the most recent avian influenza research. Ad hoc bilateral discussions on specific technical issues as well as formal meetings such as the Technical Meeting on HPAI and Human H5N1 Infection (Rome, June, 2007; information available from: http://www.fao.org/avianflu/en/conferences/june2007/index.html) have increasingly brought the sectors together and broadened the understanding of the topics of concern to each sector. The sectors have also recently come together at the broad global level, and have developed a joint strategy document for working together on zoonotic diseases (Joint strategy available from: ftp://ftp.fao.org/docrep/fao/011/ajl37e/ajl37e00.pdf). The 2008 FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human Animal Interface described here was the first opportunity for a large group of influenza experts from the animal and public health sectors to gather and discuss purely technical topics of joint interest that exist at the human-animal interface. During the consultation, three influenza-specific sessions aimed to (1) identify virological characteristics of avian influenza viruses (AIVs) important for zoonotic and pandemic disease, (2) evaluate the factors affecting evolution and emergence of a pandemic influenza strain and identify existing monitoring systems, and (3) identify modes of transmission and exposure sources for human zoonotic influenza infection (including discussion of specific exposure risks by affected countries). A

  17. Small Animal Models for Human Metapneumovirus: Cotton Rat is More Permissive than Hamster and Mouse

    Science.gov (United States)

    Zhang, Yu; Niewiesk, Stefan; Li, Jianrong

    2014-01-01

    Human metapneumovirus (hMPV) is the second most prevalent causative agent of pediatric respiratory infections worldwide. Currently, there are no vaccines or antiviral drugs against this virus. One of the major hurdles in hMPV research is the difficulty to identify a robust small animal model to accurately evaluate the efficacy and safety of vaccines and therapeutics. In this study, we compared the replication and pathogenesis of hMPV in BALB/c mice, Syrian golden hamsters, and cotton rats. It was found that BALB/c mice are not permissive for hMPV infection despite the use of a high dose (6.5 log10 PFU) of virus for intranasal inoculation. In hamsters, hMPV replicated efficiently in nasal turbinates but demonstrated only limited replication in lungs. In cotton rats, hMPV replicated efficiently in both nasal turbinate and lung when intranasally administered with three different doses (4, 5, and 6 log10 PFU) of hMPV. Lungs of cotton rats infected by hMPV developed interstitial pneumonia with mononuclear cells infiltrates and increased lumen exudation. By immunohistochemistry, viral antigens were detected at the luminal surfaces of the bronchial epithelial cells in lungs. Vaccination of cotton rats with hMPV completely protected upper and lower respiratory tract from wildtype challenge. The immunization also elicited elevated serum neutralizing antibody. Collectively, these results demonstrated that cotton rat is a robust small animal model for hMPV infection. PMID:25438015

  18. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus

    Directory of Open Access Journals (Sweden)

    Stephanie Ascough

    2018-03-01

    Full Text Available Respiratory syncytial virus (RSV and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell

  19. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus

    Science.gov (United States)

    Ascough, Stephanie; Paterson, Suzanna; Chiu, Christopher

    2018-01-01

    Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and

  20. Avian influenza

    Science.gov (United States)

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  1. Emerging influenza

    NARCIS (Netherlands)

    E. de Wit (Emmie); R.A.M. Fouchier (Ron)

    2008-01-01

    textabstractIn 1918 the Spanish influenza pandemic, caused by an avian H1N1 virus, resulted in over 50 million deaths worldwide. Several outbreaks of H7 influenza A viruses have resulted in human cases, including one fatal case. Since 1997, the outbreaks of highly pathogenic avian influenza (HPAI)

  2. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam

    NARCIS (Netherlands)

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D.; Jeeninga, Rienk E.; Rogier van Doorn, H.; Farrar, Jeremy; Wertheim, Heiman F. L.

    2013-01-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern

  3. Clinical features of human metapneumovirus genotypes in children with acute lower respiratory tract infection in Changsha, China.

    Science.gov (United States)

    Zeng, Sai-Zhen; Xiao, Ni-Guang; Zhong, Li-Li; Yu, Tian; Zhang, Bing; Duan, Zhao-Jun

    2015-11-01

    To explore the epidemiological and clinical features of different human metapneumovirus (hMPV) genotypes in hospitalized children. Reverse transcription polymerase chain reaction (RT-PCR) or PCR was employed to screen for both hMPV and other common respiratory viruses in 2613 nasopharyngeal aspirate specimens collected from children with lower respiratory tract infections from September 2007 to February 2011 (a period of 3.5 years). The demographics and clinical presentations of patients infected with different genotypes of hMPV were compared. A total of 135 samples were positive for hMPV (positive detection rate: 5.2%). Co-infection with other viruses was observed in 45.9% (62/135) of cases, and human bocavirus was the most common additional respiratory virus. The most common symptoms included cough, fever, and wheezing. The M gene was sequenced for 135 isolates; of these, genotype A was identified in 72.6% (98/135) of patients, and genotype B was identified in 27.4% (37/135) of patients. The predominant genotype of hMPV changed over the 3.5-year study period from genotype A2b to A2b or B1 and then to predominantly B1. Most of clinical features were similar between patients infected with different hMPV genotypes. These results suggested that hMPV is an important viral pathogen in pediatric patients with acute lower respiratory tract infection in Changsha. The hMPV subtypes A2b and B1 were found to co-circulate. The different hMPV genotypes exhibit similar clinical characteristics. © 2015 Wiley Periodicals, Inc.

  4. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade

    Science.gov (United States)

    Oh, Ding Yuan; Hurt, Aeron C.

    2014-01-01

    Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004–2013), the adamantanes and the neuraminidase inhibitors (NAIs). During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1) viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future. PMID:24800107

  5. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  6. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yi-Mo Deng

    Full Text Available BACKGROUND: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. METHODOLOGY/PRINCIPAL FINDINGS: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. CONCLUSIONS/SIGNIFICANCE: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  7. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Science.gov (United States)

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  8. New methods and reagents to improve the ferret model for human influenza infections

    DEFF Research Database (Denmark)

    Martel, Cyril Jean-Marie; Kirkeby, Svend; Aasted, Bent

    The ferret has been extensively used to study human influenza infections. However, its value as a model has suffered from the limited set of reagents and methods available for this animal. We have recently tested a large number of monoclonal antibodies cross-reacting with ferret CD markers (CD8, ...... improvements of the model will aim at establishing a reliable RT-PCR for ferret cytokines, as well as investigating the location of influenza receptors and viral particles in the upper and lower respiratory tract via immunohistochemistry......The ferret has been extensively used to study human influenza infections. However, its value as a model has suffered from the limited set of reagents and methods available for this animal. We have recently tested a large number of monoclonal antibodies cross-reacting with ferret CD markers (CD8, CD...

  9. The rapid identification of human influenza neuraminidase N1 and N2 subtypes by ELISA.

    Science.gov (United States)

    Barr, I G; McCaig, M; Durrant, C; Shaw, R

    2006-11-10

    An ELISA assay was developed to allow the rapid and accurate identification of human influenza A N1 and N2 neuraminidases. Initial testing using a fetuin pre-coating of wells correctly identified 81.7% of the neuraminidase type from a series of human A(H1N1), A(H1N2) and A(H3N2) viruses. This result could be improved to detect the neuraminidase subtype of almost all human influenza A viruses from a large panel of viruses isolated from 2000 to 2005, if the fetuin pre-coating was removed and the viruses were coated directly onto wells. This method is simple, rapid and can be used to screen large numbers of currently circulating human influenza A viruses for their neurraminidase subtype and is a good alternative to RT-PCR.

  10. IgA and neutralizing antibodies to influenza a virus in human milk: a randomized trial of antenatal influenza immunization.

    Science.gov (United States)

    Schlaudecker, Elizabeth P; Steinhoff, Mark C; Omer, Saad B; McNeal, Monica M; Roy, Eliza; Arifeen, Shams E; Dodd, Caitlin N; Raqib, Rubhana; Breiman, Robert F; Zaman, K

    2013-01-01

    Antenatal immunization of mothers with influenza vaccine increases serum antibodies and reduces the rates of influenza illness in mothers and their infants. We report the effect of antenatal immunization on the levels of specific anti-influenza IgA levels in human breast milk. (ClinicalTrials.gov identifier NCT00142389; http://clinicaltrials.gov/ct2/show/NCT00142389). The Mother's Gift study was a prospective, blinded, randomized controlled trial that assigned 340 pregnant Bangladeshi mothers to receive either trivalent inactivated influenza vaccine, or 23-valent pneumococcal polysaccharide vaccine during the third trimester. We evaluated breast milk at birth, 6 weeks, 6 months, and 12 months, and serum at 10 weeks and 12 months. Milk and serum specimens from 57 subjects were assayed for specific IgA antibody to influenza A/New Caledonia (H1N1) using an enzyme-linked immunosorbent assay (ELISA) and a virus neutralization assay, and for total IgA using ELISA. Influenza-specific IgA levels in breast milk were significantly higher in influenza vaccinees than in pneumococcal controls for at least 6 months postpartum (p = 0.04). Geometric mean concentrations ranged from 8.0 to 91.1 ELISA units/ml in vaccinees, versus 2.3 to 13.7 ELISA units/mL in controls. Virus neutralization titers in milk were 1.2 to 3 fold greater in vaccinees, and correlated with influenza-specific IgA levels (r = 0.86). Greater exclusivity of breastfeeding in the first 6 months of life significantly decreased the expected number of respiratory illness with fever episodes in infants of influenza-vaccinated mothers (p = 0.0042) but not in infants of pneumococcal-vaccinated mothers (p = 0.4154). The sustained high levels of actively produced anti-influenza IgA in breast milk and the decreased infant episodes of respiratory illness with fever suggest that breastfeeding may provide local mucosal protection for the infant for at least 6 months. Studies are needed to determine the

  11. Avian metapneumovirus RT-nested-PCR: a novel false positive reducing inactivated control virus with potential applications to other RNA viruses and real time methods.

    Science.gov (United States)

    Falchieri, Marco; Brown, Paul A; Catelli, Elena; Naylor, Clive J

    2012-12-01

    Using reverse genetics, an avian metapneumovirus (AMPV) was modified for use as a positive control for validating all stages of a popular established RT-nested PCR, used in the detection of the two major AMPV subtypes (A and B). Resultant amplicons were of increased size and clearly distinguishable from those arising from unmodified virus, thus allowing false positive bands, due to control virus contamination of test samples, to be identified readily. Absorption of the control virus onto filter paper and subsequent microwave irradiation removed all infectivity while its function as an efficient RT-nested-PCR template was unaffected. Identical amplicons were produced after storage for one year. The modified virus is likely to have application as an internal standard as well as in real time methods. Additions to AMPV of RNA from other RNA viruses, including hazardous examples such HIV and influenza, are likely to yield similar safe RT-PCR controls. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990-2010.

    Science.gov (United States)

    Shu, Bo; Garten, Rebecca; Emery, Shannon; Balish, Amanda; Cooper, Lynn; Sessions, Wendy; Deyde, Varough; Smith, Catherine; Berman, LaShondra; Klimov, Alexander; Lindstrom, Stephen; Xu, Xiyan

    2012-01-05

    Swine influenza viruses (SIV) have been recognized as important pathogens for pigs and occasional human infections with swine origin influenza viruses (SOIV) have been reported. Between 1990 and 2010, a total of twenty seven human cases of SOIV infections have been identified in the United States. Six viruses isolated from 1990 to 1995 were recognized as classical SOIV (cSOIV) A(H1N1). After 1998, twenty-one SOIV recovered from human cases were characterized as triple reassortant (tr_SOIV) inheriting genes from classical swine, avian and human influenza viruses. Of those twenty-one tr_SOIV, thirteen were of A(H1N1), one of A(H1N2), and seven of A(H3N2) subtype. SOIV characterized were antigenically and genetically closely related to the subtypes of influenza viruses circulating in pigs but distinct from contemporary influenza viruses circulating in humans. The diversity of subtypes and genetic lineages in SOIV cases highlights the importance of continued surveillance at the animal-human interface. Copyright © 2011. Published by Elsevier Inc.

  13. Human-like PB2 627K influenza virus polymerase activity is regulated by importin-α1 and -α7.

    Directory of Open Access Journals (Sweden)

    Ben Hudjetz

    2012-01-01

    Full Text Available Influenza A viruses may cross species barriers and transmit to humans with the potential to cause pandemics. Interplay of human- (PB2 627K and avian-like (PB2 627E influenza polymerase complexes with unknown host factors have been postulated to play a key role in interspecies transmission. Here, we have identified human importin-α isoforms (α1 and α7 as positive regulators of human- but not avian-like polymerase activity. Human-like polymerase activity correlated with efficient recruitment of α1 and α7 to viral ribonucleoprotein complexes (vRNPs without affecting subcellular localization. We also observed that human-like influenza virus growth was impaired in α1 and α7 downregulated human lung cells. Mice lacking α7 were less susceptible to human- but not avian-like influenza virus infection. Thus, α1 and α7 are positive regulators of human-like polymerase activity and pathogenicity beyond their role in nuclear transport.

  14. Generation and testing anti-influenza human monoclonal antibodies in a new humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD).

    Science.gov (United States)

    Mendoza, Mirian; Ballesteros, Angela; Qiu, Qi; Pow Sang, Luis; Shashikumar, Soumya; Casares, Sofia; Brumeanu, Teodor-D

    2018-02-01

    Pandemic outbreaks of influenza type A viruses have resulted in numerous fatalities around the globe. Since the conventional influenza vaccines (CIV) provide less than 20% protection for individuals with weak immune system, it has been considered that broadly cross-neutralizing antibodies may provide a better protection. Herein, we showed that a recently generated humanized mouse (DRAGA mouse; HLA-A2. HLA-DR4. Rag1KO. IL-2Rgc KO. NOD) that lacks the murine immune system and expresses a functional human immune system can be used to generate cross-reactive, human anti-influenza monoclonal antibodies (hu-mAb). DRAGA mouse was also found to be suitable for influenza virus infection, as it can clear a sub-lethal infection and sustain a lethal infection with PR8/A/34 influenza virus. The hu-mAbs were designed for targeting a human B-cell epitope ( 180 WGIHHPPNSKEQ QNLY 195 ) of hemagglutinin (HA) envelope protein of PR8/A/34 (H1N1) virus with high homology among seven influenza type A viruses. A single administration of HA 180-195 specific hu-mAb in PR8-infected DRAGA mice significantly delayed the lethality by reducing the lung damage. The results demonstrated that DRAGA mouse is a suitable tool to (i) generate heterotype cross-reactive, anti-influenza human monoclonal antibodies, (ii) serve as a humanized mouse model for influenza infection, and (iii) assess the efficacy of anti-influenza antibody-based therapeutics for human use.

  15. IDENTIFICATION OF INFLUENZA VIRUSES IN HUMAN AND POULTRY IN THE AREA OF LARANGAN WET MARKET SIDOARJO-EAST JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Edith Frederika

    2013-10-01

    Full Text Available Background: Influenza is a viral infection that attacks the respiratory system (nose, throat, and lungs that commonly known as “flu”. There are 3 types ofinfluenza viruses, such as type A, type B, and type C. Influenza virus type A is the type ofvirus that can infect both human and animals, virus type B are normally found only in human, and Influenza virus type C can cause mild illness in human and not causing any epidemics or pandemics. Among these 3 types of influenza viruses, only influenza A viruses infect birds, particularly wild bird that are the natural host for all subtypes ofinfluenza A virus. Generally, those wild birds do not get sick when they are infected with influenza virus, unlike chickens or ducks which may die from avian influenza. Aim: In this study, we are identifying the influenza viruses among poultry in Larangan wet market. Method: Around 500 kinds ofpoultry were examined from cloacal swab. Result: Those samples were restrained with symptoms ofsuspected H5. The people who worked as the poultry-traders intact with the animal everyday were also examined, by taking nasopharyngeal swab and blood serum. Conclusion: Identification of influenza viruses was obtained to define the type and subtype ofinfluenza virus by PCR.

  16. Respiratory syncytial virus infection induces higher Toll-like receptor-3 expression and TNF-α production than human metapneumovirus infection.

    Directory of Open Access Journals (Sweden)

    Ying Dou

    Full Text Available Respiratory syncytial virus (RSV and human metapneumovirus (hMPV are common causes of respiratory infections in children. Diseases caused by hMPV are generally considered to be less severe than those caused by RSV; the underlying mechanisms, however, remain unknown. In the present study, the expressions of TLRs in airway epithelial cells and lungs of BALB/c mice infected by hMPV or RSV were measured in an attempt to explore the differences in the airway inflammation caused by the two viruses. Our results demonstrate that both hMPV and RSV infection upregulated the expressions of TLRs and inflammatory cytokines. Specifically, the TLR3 expression was revealed to be elevated in vitro and in mouse lungs. IFN-α produced by A549 cells after RSV or hMPV infection remained undistinguishable, whereas production of TNF-α was significantly higher after RSV infection than hMPV infection either in the presence or absence of Poly I:C. This study provides a clue that more severe clinical syndrome of RSV infection may be due to the greater magnitude of induction of airway inflammation by RSV involving TLR3 activation and production of TNF-α.

  17. Co-circulation of genetically distinct human metapneumovirus and human bocavirus strains in young children with respiratory tract infections in Italy.

    Science.gov (United States)

    Zappa, Alessandra; Canuti, Marta; Frati, Elena; Pariani, Elena; Perin, Silvana; Ruzza, Maria Lorena; Farina, Claudio; Podestà, Alberto; Zanetti, Alessandro; Amendola, Antonella; Tanzi, Elisabetta

    2011-01-01

    The discovery of human Metapneumovirus (hMPV) and human Bocavirus (hBoV) identified the etiological causes of several cases of acute respiratory tract infections in children. This report describes the molecular epidemiology of hMPV and hBoV infections observed following viral surveillance of children hospitalized for acute respiratory tract infections in Milan, Italy. Pharyngeal swabs were collected from 240 children ≤3 years of age (130 males, 110 females; median age, 5.0 months; IQR, 2.0-12.5 months) and tested for respiratory viruses, including hMPV and hBoV, by molecular methods. hMPV-RNA and hBoV-DNA positive samples were characterized molecularly and a phylogenetical analysis was performed. PCR analysis identified 131/240 (54.6%) samples positive for at least one virus. The frequency of hMPV and hBoV infections was similar (8.3% and 12.1%, respectively). Both infections were associated with lower respiratory tract infections: hMPV was present as a single infectious agent in 7.2% of children with bronchiolitis, hBoV was associated with 18.5% of pediatric pneumonias and identified frequently as a single etiological agent. Genetically distinct hMPV and hBoV strains were identified in children examined with respiratory tract infections. Phylogenetic analysis showed an increased prevalence of hMPV genotype A (A2b sublineage) compared to genotype B (80% vs. 20%, respectively) and of the hBoV genotype St2 compared to genotype St1 (71.4% vs. 28.6%, respectively). Interestingly, a shift in hMPV infections resulting from A2 strains has been observed in recent years. In addition, the occurrence of recombination events between two hBoV strains with a breakpoint located in the VP1/VP2 region was identified. © 2010 Wiley-Liss, Inc.

  18. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    Science.gov (United States)

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain.

    Science.gov (United States)

    Sun, Jing; Wei, Yongwei; Rauf, Abdul; Zhang, Yu; Ma, Yuanmei; Zhang, Xiaodong; Shilo, Konstantin; Yu, Qingzhong; Saif, Y M; Lu, Xingmeng; Yu, Lian; Li, Jianrong

    2014-11-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen in the poultry industry worldwide. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at guanine N-7 (G-N-7) and ribose 2'-O positions. In this study, we generated a panel of recombinant aMPV (raMPV) Colorado strains carrying mutations in the S-adenosyl methionine (SAM) binding site in the CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O, but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of specific-pathogen-free (SPF) young turkeys. Importantly, turkeys vaccinated with these MTase-defective raMPVs triggered a high level of neutralizing antibody and were completely protected from challenge with homologous aMPV Colorado strain and heterologous aMPV Minnesota strain. Collectively, our results indicate (i) that aMPV lacking 2'-O methylation is highly attenuated in vitro and in vivo and (ii) that inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for aMPV and perhaps other paramyxoviruses. Paramyxoviruses include many economically and agriculturally important viruses such as avian metapneumovirus (aMPV), and Newcastle disease virus (NDV), human pathogens such as human respiratory syncytial virus, human metapneumovirus, human parainfluenza virus type 3, and measles virus, and highly lethal emerging pathogens such as Nipah virus and Hendra virus. For many of them, there is no effective vaccine or antiviral drug. These viruses share common strategies for viral gene

  20. Comparative evaluation of conventional RT-PCR and real-time RT-PCR (RRT-PCR) for detection of avian metapneumovirus subtype A

    OpenAIRE

    Ferreira, HL; Spilki, FR; dos Santos, MMAB; de Almeida, RS; Arns, CW

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  1. Population dynamics and rates of molecular evolution of a recently emerged paramyxovirus, avian metapneumovirus subtype C.

    Science.gov (United States)

    Padhi, Abinash; Poss, Mary

    2009-02-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 x 10(-3) to 7 x 10(-3) substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes examined show a concordant demographic pattern which is characterized by a rapid increase in population size followed by stable population grown until the present.

  2. Modelling the species jump : towards assessing the risk of human infection from novel avian influenzas

    NARCIS (Netherlands)

    Hill, A A; Dewé, T; Kosmider, R; Von Dobschuetz, S; Munoz, O; Hanna, A; Fusaro, A; De Nardi, M; Howard, W; Stevens, K; Kelly, L; Havelaar, A|info:eu-repo/dai/nl/072306122; Stärk, K

    The scientific understanding of the driving factors behind zoonotic and pandemic influenzas is hampered by complex interactions between viruses, animal hosts and humans. This complexity makes identifying influenza viruses of high zoonotic or pandemic risk, before they emerge from animal populations,

  3. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Trevenan Walther

    2013-03-01

    Full Text Available The first step in influenza infection of the human respiratory tract is binding of the virus to sialic (Sia acid terminated receptors. The binding of different strains of virus for the receptor is determined by the α linkage of the sialic acid to galactose and the adjacent glycan structure. In this study the N- and O-glycan composition of the human lung, bronchus and nasopharynx was characterized by mass spectrometry. Analysis showed that there was a wide spectrum of both Sia α2-3 and α2-6 glycans in the lung and bronchus. This glycan structural data was then utilized in combination with binding data from 4 of the published glycan arrays to assess whether these current glycan arrays were able to predict replication of human, avian and swine viruses in human ex vivo respiratory tract tissues. The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung. Our findings indicate that more comprehensive but focused arrays need to be developed to investigate influenza virus binding in an assessment of newly emerging influenza viruses.

  4. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets.

    Science.gov (United States)

    Xu, Lili; Bao, Linlin; Deng, Wei; Dong, Libo; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Li, Xiyan; Huang, Weijuan; Zhao, Xiang; Lan, Yu; Guo, Junfeng; Yong, Weidong; Wei, Qiang; Chen, Honglin; Zhang, Lianfeng; Qin, Chuan

    2014-02-15

    The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.

  5. Syrian Hamster as an Animal Model for the Study of Human Influenza Virus Infection.

    Science.gov (United States)

    Iwatsuki-Horimoto, Kiyoko; Nakajima, Noriko; Ichiko, Yurie; Sakai-Tagawa, Yuko; Noda, Takeshi; Hasegawa, Hideki; Kawaoka, Yoshihiro

    2018-02-15

    Ferrets and mice are frequently used as animal models for influenza research. However, ferrets are demanding in terms of housing space and handling, whereas mice are not naturally susceptible to infection with human influenza A or B viruses. Therefore, prior adaptation of human viruses is required for their use in mice. In addition, there are no mouse-adapted variants of the recent H3N2 viruses, because these viruses do not replicate well in mice. In this study, we investigated the susceptibility of Syrian hamsters to influenza viruses with a view to using the hamster model as an alternative to the mouse model. We found that hamsters are sensitive to influenza viruses, including the recent H3N2 viruses, without adaptation. Although the hamsters did not show weight loss or clinical signs of H3N2 virus infection, we observed pathogenic effects in the respiratory tracts of the infected animals. All of the H3N2 viruses tested replicated in the respiratory organs of the hamsters, and some of them were detected in the nasal washes of infected animals. Moreover, a 2009 pandemic (pdm09) virus and a seasonal H1N1 virus, as well as one of the two H3N2 viruses, but not a type B virus, were transmissible by the airborne route in these hamsters. Hamsters thus have the potential to be a small-animal model for the study of influenza virus infection, including studies of the pathogenicity of H3N2 viruses and other strains, as well as for use in H1N1 virus transmission studies. IMPORTANCE We found that Syrian hamsters are susceptible to human influenza viruses, including the recent H3N2 viruses, without adaptation. We also found that a pdm09 virus and a seasonal H1N1 virus, as well as one of the H3N2 viruses, but not a type B virus tested, are transmitted by the airborne route in these hamsters. Syrian hamsters thus have the potential to be used as a small-animal model for the study of human influenza viruses. Copyright © 2018 American Society for Microbiology.

  6. Swine Influenza Virus Antibodies in Humans, Western Europe, 2009

    Science.gov (United States)

    Gerloff, Nancy A.; Kremer, Jacques R.; Charpentier, Emilie; Sausy, Aurélie; Olinger, Christophe M.; Weicherding, Pierre; Schuh, John; Van Reeth, Kristien

    2011-01-01

    Serologic studies for swine influenza viruses (SIVs) in humans with occupational exposure to swine have been reported from the Americas but not from Europe. We compared levels of neutralizing antibodies against 3 influenza viruses—pandemic (H1N1) 2009, an avian-like enzootic subtype H1N1 SIV, and a 2007–08 seasonal subtype H1N1—in 211 persons with swine contact and 224 matched controls in Luxembourg. Persons whose profession involved contact with swine had more neutralizing antibodies against SIV and pandemic (H1N1) 2009 virus than did the controls. Controls also had antibodies against these viruses although exposure to them was unlikely. Antibodies against SIV and pandemic (H1N1) 2009 virus correlated with each other but not with seasonal subtype H1N1 virus. Sequential exposure to variants of seasonal influenza (H1N1) viruses may have increased chances for serologic cross-reactivity with antigenically distinct viruses. Further studies are needed to determine the extent to which serologic responses correlate with infection. PMID:21392430

  7. Intercontinental circulation of human influenza A(H1N2) reassortant viruses during the 2001-2002 influenza season.

    Science.gov (United States)

    Xu, Xiyan; Smith, Catherine B; Mungall, Bruce A; Lindstrom, Stephen E; Hall, Henrietta E; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2002-11-15

    Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.

  8. Sialylglycan-Assembled Supra-Dots for Ratiometric Probing and Blocking of Human-Infecting Influenza Viruses.

    Science.gov (United States)

    Wang, Chang-Zheng; Han, Hai-Hao; Tang, Xin-Ying; Zhou, Dong-Ming; Wu, Changfeng; Chen, Guo-Rong; He, Xiao-Peng; Tian, He

    2017-08-02

    The seasonal outbreak of influenza causes significant morbidity and mortality worldwide because a number of influenza virus (IV) strains have been shown to infect and circulate in humans. Development of effective means to timely monitor as well as block IVs is still a challenging task. Whereas conventional fluorescence probes rely on a fluorimetric change upon recognizing IVs, here we developed simple "Supra-dots" that are formed through the aqueous supramolecular assembly between a blue-emitting polymer dot and red-emitting sialylglycan probes for the ratiometric detection of IVs. Tuning the Förster resonance energy transfer from polymer dots to glycan probes by selective sialylglycan-virus recognition enables the fluorescence ratiometric determination of IVs, whereas the presence of unselective, control viruses quenched the fluorescence of the Supra-dots. Meanwhile, we show that the Supra-dots can effectively inhibit the invasion of a human-infecting IV toward a human cell line, thereby making possible a unique bifunctional, supramolecular probe for influenza theranostics.

  9. Avian influenza virus transmission to mammals.

    Science.gov (United States)

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  10. MicroRNA Regulation of Human Genes Essential for Influenza A (H7N9 Replication.

    Directory of Open Access Journals (Sweden)

    Stefan Wolf

    Full Text Available Influenza A viruses are important pathogens of humans and animals. While seasonal influenza viruses infect humans every year, occasionally animal-origin viruses emerge to cause pandemics with significantly higher morbidity and mortality rates. In March 2013, the public health authorities of China reported three cases of laboratory confirmed human infection with avian influenza A (H7N9 virus, and subsequently there have been many cases reported across South East Asia and recently in North America. Most patients experience severe respiratory illness, and morbidity with mortality rates near 40%. No vaccine is currently available and the use of antivirals is complicated due the frequent emergence of drug resistant strains. Thus, there is an imminent need to identify new drug targets for therapeutic intervention. In the current study, a high-throughput screening (HTS assay was performed using microRNA (miRNA inhibitors to identify new host miRNA targets that reduce influenza H7N9 replication in human respiratory (A549 cells. Validation studies lead to a top hit, hsa-miR-664a-3p, that had potent antiviral effects in reducing H7N9 replication (TCID50 titers by two logs. In silico pathway analysis revealed that this microRNA targeted the LIF and NEK7 genes with effects on pro-inflammatory factors. In follow up studies using siRNAs, anti-viral properties were shown for LIF. Furthermore, inhibition of hsa-miR-664a-3p also reduced virus replication of pandemic influenza A strains H1N1 and H3N2.

  11. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model.

    Directory of Open Access Journals (Sweden)

    Toru Ichihashi

    Full Text Available BACKGROUND: The virus-specific cytotoxic T lymphocyte (CTL induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1 survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase. CONCLUSIONS/SIGNIFICANCE: This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.

  12. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  13. Estudos experimentais com isolados do metapneumovirus aviário (aMPV) subtipos A e B em frangos de corte

    OpenAIRE

    Márcia Bianchi dos Santos

    2010-01-01

    Resumo: O Metapneumovirus aviário (aMPV) pertence à família Paramyxoviridae, subfamília Pneumovirinae, gênero Metapneumovirus. O vírus, relatado pela primeira vez no Brasil em 1995, é o agente etiológico da Rinotraqueíte em perus (TRT) e está associado também à Síndrome da Cabeça Inchada (SHS) em frangos e poedeiras comerciais. O presente estudo foi dividido em três partes. Na primeira foi avaliada a suscetibilidades de oito sistemas celulares para a propagação de amostras virais do aMPV subt...

  14. A Wild Goose Metapneumovirus Containing a Large Attachment Glycoprotein Is Avirulent but Immunoprotective in Domestic Turkeys

    Science.gov (United States)

    Bennett, Richard S.; LaRue, Rebecca; Shaw, Daniel; Yu, Qingzhong; Nagaraja, K. V.; Halvorson, David A.; Njenga, M. Kariuki

    2005-01-01

    The genomic structure and composition of an avian metapneumovirus (aMPV) recently isolated from wild Canada geese (goose 15a/01) in the United States, together with its replication, virulence, and immunogenicity in domestic turkeys, were investigated. The sizes of seven of the eight genes, sequence identity, and genome organization of goose aMPV were similar to those of turkey aMPV subtype C (aMPV/C) strains, indicating that it belonged to the subtype. However, the goose virus contained the largest attachment (G) gene of any pneumovirus or metapneumovirus, with the predicted G protein of 585 amino acids (aa) more than twice the sizes of G proteins from other subtype C viruses and human metapneumovirus and more than 170 aa larger than the G proteins from the other aMPV subtypes (subtypes A, B, and D). The large G gene resulted from a 1,015-nucleotide insertion at 18 nucleotides upstream of the termination signal of the turkey aMPV/C G gene. Three other aMPV isolates from Canada geese had similarly large G genes, whereas analysis of recent aMPV strains circulating in U.S. turkeys did not indicate the presence of the goose virus-like strain. In vitro, the goose virus replicated to levels (2 × 105 to 5 × 105 50% tissue culture infective dose) comparable to those produced by turkey aMPV/C strains. More importantly, the virus replicated efficiently in the upper respiratory tract of domestic turkeys but with no clinical signs in either day-old or 2-week-old turkeys. The virus was also horizontally transmitted to naïve birds, and turkey infections with goose 15a/01 induced production of aMPV-specific antibodies. Challenging day-old or 2-week-old turkeys vaccinated with live goose aMPV resulted in lower clinical scores in 33% of the birds, whereas the rest of the birds had no detectable clinical signs of the upper respiratory disease, suggesting that the mutant virus may be a safe and effective vaccine against aMPV infection outbreaks in commercial turkeys. PMID:16282483

  15. Incidence and Risk Factors for Respiratory Syncytial Virus and Human Metapneumovirus Infections among Children in the Remote Highlands of Peru

    Science.gov (United States)

    Wu, Andrew; Budge, Philip J.; Williams, John; Griffin, Marie R.; Edwards, Kathryn M.; Johnson, Monika; Zhu, Yuwei; Hartinger, Stella; Verastegui, Hector; Gil, Ana I.; Lanata, Claudio F.; Grijalva, Carlos G.

    2015-01-01

    Introduction The disease burden and risk factors for respiratory syncytial virus (RSV) and human metapneumovirus (MPV) infections among children living in remote, rural areas remain unclear. Materials and Methods We conducted a prospective, household-based cohort study of children aged factors for RSV detection included younger age (RR 1.02, 95% CI: 1.00-1.03), the presence of a smoker in the house (RR 1.63, 95% CI: 1.12-2.38), residing at higher altitudes (RR 1.93, 95% CI: 1.25-3.00 for 2nd compared to 1st quartile residents; RR 1.98, 95% CI: 1.26-3.13 for 3rd compared to 1st quartile residents). Having an unemployed household head was significantly associated with MPV risk (RR 2.11, 95% CI: 1.12-4.01). Conclusion In rural high altitude communities in Peru, childhood ARI due to RSV or MPV were common and associated with higher morbidity than ARI due to other viruses or with no viral detections. The risk factors identified in this study may be considered for interventional studies to control infections by these viruses among young children from developing countries. PMID:26107630

  16. Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region.

    Science.gov (United States)

    Chen, Yongxue; Wen, Yongxian

    2015-02-21

    In 2013 in China a new type of avian influenza virus, H7N9, began to infect humans and had aroused severe fatality in the infected humans. We know that the spread is from poultry to humans, and the H7N9 avian influenza is low pathogenic in the poultry world but highly pathogenic in the human world, but the transmission mechanism is unclear. Since it has no signs of human-to-human transmission and outbreaks are isolated in some cities in China, in order to investigate the transmission mechanism of human infection with H7N9 avian influenza, an eco-epidemiological model in an outbreak region is proposed and analyzed dynamically. Researches and reports show that gene mutation makes the new virus be capable of infecting humans, therefore the mutation factor is taken into account in the model. The global dynamic analysis is conducted, different thresholds are identified, persistence and global qualitative behaviors are obtained. The impact of H7N9 avian influenza on the people population is concerned. Finally, the numerical simulations are carried out to support the theoretical analysis and to investigate the disease control measures. It seems that we may take people׳s hygiene and prevention awareness factor as a significant policy to achieve the aim of both the disease control and the economic returns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; Kayed, Ahmed S; Elabd, Mona A; Zaki, Shaimaa A; Abu Zeid, Dina; El Rifay, Amira S; Mousa, Adel A; Farag, Mohamed M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-01

    Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.

  18. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.

    Directory of Open Access Journals (Sweden)

    Mokhtar R Gomaa

    Full Text Available Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80 among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.

  19. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    Full Text Available Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB, cAMP/calcium signaling (CRE/CREB, and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  20. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Science.gov (United States)

    Meliopoulos, Victoria A; Andersen, Lauren E; Brooks, Paula; Yan, Xiuzhen; Bakre, Abhijeet; Coleman, J Keegan; Tompkins, S Mark; Tripp, Ralph A

    2012-01-01

    Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  1. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    Directory of Open Access Journals (Sweden)

    Matthew J Kesic

    Full Text Available Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs human airway trypsin-like protease (HAT and transmembrane protease, serine 2 (TMPRSS2, whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI. Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.

  2. Expression of urease by Haemophilus influenzae during human respiratory tract infection and role in survival in an acid environment

    Science.gov (United States)

    2011-01-01

    Background Nontypeable Haemophilus influenzae is a common cause of otitis media in children and lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). Prior studies have shown that H. influenzae expresses abundant urease during growth in the middle ear of the chinchilla and in pooled human sputum, suggesting that expression of urease is important for colonization and infection in the hostile environments of the middle ear and in the airways in adults. Virtually nothing else is known about the urease of H. influenzae, which was characterized in the present study. Results Analysis by reverse transcriptase PCR revealed that the ure gene cluster is expressed as a single transcript. Knockout mutants of a urease structural gene (ureC) and of the entire ure operon demonstrated no detectable urease activity indicating that this operon is the only one encoding an active urease. The ure operon is present in all strains tested, including clinical isolates from otitis media and COPD. Urease activity decreased as nitrogen availability increased. To test the hypothesis that urease is expressed during human infection, purified recombinant urease C was used in ELISA with pre acquisition and post infection serum from adults with COPD who experienced infections caused by H. influenzae. A total of 28% of patients developed new antibodies following infection indicating that H. influenzae expresses urease during airway infection. Bacterial viability assays performed at varying pH indicate that urease mediates survival of H. influenzae in an acid environment. Conclusions The H. influenzae genome contains a single urease operon that mediates urease expression and that is present in all clinical isolates tested. Nitrogen availability is a determinant of urease expression. H. influenzae expresses urease during human respiratory tract infection and urease is a target of the human antibody response. Expression of urease enhances viability in an acid

  3. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Yasuha Arai

    2016-04-01

    Full Text Available A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  4. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  5. Avian metapneumovirus subtype A in China and subtypes A and B in Nigeria.

    Science.gov (United States)

    Owoade, A A; Ducatez, M F; Hübschen, J M; Sausy, A; Chen, H; Guan, Y; Muller, C P

    2008-09-01

    In order to detect and characterize avian metapneumovirus, organs or swabs were collected from 697 chicken and 110 turkeys from commercial farms in Southwestern Nigeria and from 107 chickens from live bird markets in Southeastern China. In Nigeria, 15% and 6% of the chicken and turkey samples, respectively, and 39% of the chicken samples from China, were positive for aMPV genome by PCR. The sequence of a 400 nt fragment of the attachment protein gene (G gene) revealed the presence of aMPV subtype A in both Nigeria and Southeastern China. Essentially identical subtype A viruses were found in both countries and were also previously reported from Brazil and the United Kingdom, suggesting a link between these countries or a common source of this subtype. In Nigeria, subtype B was also found, which may be a reflection of chicken importations from most major poultry-producing countries in Europe and Asia. In order to justify countermeasures, further studies are warranted to better understand the metapneumoviruses and their impact on poultry production.

  6. Incidence and etiology of hospitalized acute respiratory infections in the Egyptian Delta

    OpenAIRE

    Rowlinson, Emily; Dueger, Erica; Mansour, Adel; Azzazy, Nahed; Mansour, Hoda; Peters, Lisa; Rosenstock, Summer; Hamid, Sarah; Said, Mayar M.; Geneidy, Mohamed; Abd Allah, Monier; Kandeel, Amr

    2016-01-01

    Introduction Acute Respiratory Infections (ARI) are responsible for nearly two million childhood deaths worldwide. A limited number of studies have been published on the epidemiology of viral respiratory pathogens in Egypt. Methods A total of 6113 hospitalized patients >1?month of age with suspected ARI were enrolled between June 23, 2009 and December 31, 2013. Naso? and oropharyngeal specimens were collected and tested for influenza A and B, respiratory syncytial virus, human metapneumovirus...

  7. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  8. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase.

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan; Li, Jianrong

    2014-10-01

    The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2'-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2'-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine is the most promising

  9. Bird Flu (Avian Influenza)

    Science.gov (United States)

    Bird flu (avian influenza) Overview Bird flu is caused by a type of influenza virus that rarely infects humans. More than a ... for Disease Control and Prevention estimates that seasonal influenza is responsible for ... heat destroys avian viruses, cooked poultry isn't a health threat. ...

  10. Advances in influenza vaccination

    NARCIS (Netherlands)

    L.A. Reperant (Leslie); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    2014-01-01

    textabstractInfluenza virus infections yearly cause high morbidity and mortality burdens in humans, and the development of a new influenza pandemic continues to threaten mankind as a Damoclean sword. Influenza vaccines have been produced by using egg-based virus growth and passaging techniques that

  11. Influenza surveillance

    Directory of Open Access Journals (Sweden)

    Karolina Bednarska

    2016-04-01

    Full Text Available Influenza surveillance was established in 1947. From this moment WHO (World Health Organization has been coordinating international cooperation, with a goal of monitoring influenza virus activity, effective diagnostic of the circulating viruses and informing society about epidemics or pandemics, as well as about emergence of new subtypes of influenza virus type A. Influenza surveillance is an important task, because it enables people to prepare themselves for battle with the virus that is constantly mutating, what leads to circulation of new and often more virulent strains of influenza in human population. As vaccination is the most effective method of fighting the virus, one of the major tasks of GISRS is developing an optimal antigenic composition of the vaccine for the current epidemic season. European Influenza Surveillance Network (EISN has also developed over the years. EISN is running integrated epidemiological and virological influenza surveillance, to provide appropriate data to public health experts in member countries, to enable them undertaking relevant activities based on the current information about influenza activity. In close cooperation with GISRS and EISN are National Influenza Centres - national institutions designated by the Ministry of Health in each country.

  12. Bat lung epithelial cells show greater host species-specific innate resistance than MDCK cells to human and avian influenza viruses.

    Science.gov (United States)

    Slater, Tessa; Eckerle, Isabella; Chang, Kin-Chow

    2018-04-10

    With the recent discovery of novel H17N10 and H18N11 influenza viral RNA in bats and report on high frequency of avian H9 seroconversion in a species of free ranging bats, an important issue to address is the extent bats are susceptible to conventional avian and human influenza A viruses. To this end, three bat species (Eidolon helvum, Carollia perspicillata and Tadarida brasiliensis) of lung epithelial cells were separately infected with two avian and two human influenza viruses to determine their relative host innate immune resistance to infection. All three species of bat cells were more resistant than positive control Madin-Darby canine kidney (MDCK) cells to all four influenza viruses. TB1-Lu cells lacked sialic acid α2,6-Gal receptors and were most resistant among the three bat species. Interestingly, avian viruses were relatively more replication permissive in all three bat species of cells than with the use of human viruses which suggest that bats could potentially play a role in the ecology of avian influenza viruses. Chemical inhibition of the JAK-STAT pathway in bat cells had no effect on virus production suggesting that type I interferon signalling is not a major factor in resisting influenza virus infection. Although all three species of bat cells are relatively more resistant to influenza virus infection than control MDCK cells, they are more permissive to avian than human viruses which suggest that bats could have a contributory role in the ecology of avian influenza viruses.

  13. Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains.

    Science.gov (United States)

    Miotto, Olivo; Heiny, A T; Albrecht, Randy; García-Sastre, Adolfo; Tan, Tin Wee; August, J Thomas; Brusic, Vladimir

    2010-02-03

    There is widespread concern that H5N1 avian influenza A viruses will emerge as a pandemic threat, if they become capable of human-to-human (H2H) transmission. Avian strains lack this capability, which suggests that it requires important adaptive mutations. We performed a large-scale comparative analysis of proteins from avian and human strains, to produce a catalogue of mutations associated with H2H transmissibility, and to detect their presence in avian isolates. We constructed a dataset of influenza A protein sequences from 92,343 public database records. Human and avian sequence subsets were compared, using a method based on mutual information, to identify characteristic sites where human isolates present conserved mutations. The resulting catalogue comprises 68 characteristic sites in eight internal proteins. Subtype variability prevented the identification of adaptive mutations in the hemagglutinin and neuraminidase proteins. The high number of sites in the ribonucleoprotein complex suggests interdependence between mutations in multiple proteins. Characteristic sites are often clustered within known functional regions, suggesting their functional roles in cellular processes. By isolating and concatenating characteristic site residues, we defined adaptation signatures, which summarize the adaptive potential of specific isolates. Most adaptive mutations emerged within three decades after the 1918 pandemic, and have remained remarkably stable thereafter. Two lineages with stable internal protein constellations have circulated among humans without reassorting. On the contrary, H5N1 avian and swine viruses reassort frequently, causing both gains and losses of adaptive mutations. Human host adaptation appears to be complex and systemic, involving nearly all influenza proteins. Adaptation signatures suggest that the ability of H5N1 strains to infect humans is related to the presence of an unusually high number of adaptive mutations. However, these mutations appear

  14. An overview of the recent outbreaks of the avian-origin influenza A (H7N9 virus in the human

    Directory of Open Access Journals (Sweden)

    Ren-Bin Tang

    2013-05-01

    Full Text Available Since the first human infection with influenza A (H7N9 viruses have been identified in Shanghai on March 31, 2013, the latest variant of the avian flu virus has spread across four Chinese provinces recently. Human infections with avian influenza are rare and this is the first time that human infection with a low pathogenic avian influenza A virus has been associated with fatal outcome. To date (May 5th, 2013, China had reported 128 confirmed H7N9 infections in human, among 27 died. Most reported cases have severe respiratory illness resulting in severe pneumonia and in some cases have died. No evidence of sustained human-to -humans at this time, however, there is one family cluster with two confirmed cases for which human-to-human transmission cannot be ruled out. Recent evidence showed that the gene sequences of this novel H7N9 virus is primarily zoonotic and may be better adapted than other avian influenza viruses to infect human. Effective global infection control is urgently needed, and further surveillance and analyses should be undertaken to identify the source and mode of transmission of these viruses.

  15. Pandemic swine influenza virus: Preparedness planning | Ojogba ...

    African Journals Online (AJOL)

    The novel H1N1 influenza virus that emerged in humans in Mexico in early 2009 and transmitted efficiently in the human population with global spread was declared a pandemic strain. The introduction of different avian and human influenza virus genes into swine influenza viruses often result in viruses of increased fitness ...

  16. Genomic analysis of influenza A virus from captive wild boars in Brazil reveals a human-like H1N2 influenza virus.

    Science.gov (United States)

    Biondo, Natalha; Schaefer, Rejane; Gava, Danielle; Cantão, Mauricio E; Silveira, Simone; Mores, Marcos A Z; Ciacci-Zanella, Janice R; Barcellos, David E S N

    2014-01-10

    Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Population Dynamics and Rates of Molecular Evolution of a Recently Emerged Paramyxovirus, Avian Metapneumovirus Subtype C▿ †

    Science.gov (United States)

    Padhi, Abinash; Poss, Mary

    2009-01-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 × 10−3 to 7 × 10−3 substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes examined show a concordant demographic pattern which is characterized by a rapid increase in population size followed by stable population grown until the present. PMID:19052092

  18. Identification of a truncated nucleoprotein in avian metapneumovirus-infected cells encoded by a second AUG, in-frame to the full-length gene

    Science.gov (United States)

    Alvarez, Rene; Seal, Bruce S

    2005-01-01

    Background Avian metapneumoviruses (aMPV) cause an upper respiratory disease with low mortality, but high morbidity primarily in commercial turkeys. There are three types of aMPV (A, B, C) of which the C type is found only in the United States. Viruses related to aMPV include human, bovine, ovine, and caprine respiratory syncytial viruses and pneumonia virus of mice, as well as the recently identified human metapneumovirus (hMPV). The aMPV and hMPV have become the type viruses of a new genus within the Metapneumovirus. The aMPV nucleoprotein (N) amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. Based on predicted antigenicity of consensus protein sequences, five aMPV-specific N peptides were synthesized for development of peptide-antigens and antisera. Results The presence of two aMPV nucleoprotein (N) gene encoded polypeptides was detected in aMPV/C/US/Co and aMPV/A/UK/3b infected Vero cells. Nucleoprotein 1 (N1) encoded from the first open reading frame (ORF) was predicted to be 394 amino acids in length for aMPV/C/US/Co and 391 amino acids in length for aMPV/A/UK/3b with approximate molecular weights of 43.3 kilodaltons and 42.7 kilodaltons, respectively. Nucleoprotein 2 (N2) was hypothesized to be encoded by a second downstream ORF in-frame with ORF1 and encoded a protein predicted to contain 328 amino acids for aMPV/C/US/Co or 259 amino acids for aMPV/A/UK/3b with approximate molecular weights of 36 kilodaltons and 28.3 kilodaltons, respectively. Peptide antibodies to the N-terminal and C-terminal portions of the aMPV N protein confirmed presence of these products in both aMPV/C/US/Co- and aMPV/A/UK/3b-infected Vero cells. N1 and N2 for aMPV/C/US/Co ORFs were molecularly cloned and expressed in Vero cells utilizing eukaryotic expression vectors to confirm identity of the aMPV encoded proteins. Conclusion This is the first reported identification of potential, accessory in-frame N2 ORF gene products among members of the

  19. Identification of a truncated nucleoprotein in avian metapneumovirus-infected cells encoded by a second AUG, in-frame to the full-length gene

    Directory of Open Access Journals (Sweden)

    Alvarez Rene

    2005-04-01

    Full Text Available Abstract Background Avian metapneumoviruses (aMPV cause an upper respiratory disease with low mortality, but high morbidity primarily in commercial turkeys. There are three types of aMPV (A, B, C of which the C type is found only in the United States. Viruses related to aMPV include human, bovine, ovine, and caprine respiratory syncytial viruses and pneumonia virus of mice, as well as the recently identified human metapneumovirus (hMPV. The aMPV and hMPV have become the type viruses of a new genus within the Metapneumovirus. The aMPV nucleoprotein (N amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. Based on predicted antigenicity of consensus protein sequences, five aMPV-specific N peptides were synthesized for development of peptide-antigens and antisera. Results The presence of two aMPV nucleoprotein (N gene encoded polypeptides was detected in aMPV/C/US/Co and aMPV/A/UK/3b infected Vero cells. Nucleoprotein 1 (N1 encoded from the first open reading frame (ORF was predicted to be 394 amino acids in length for aMPV/C/US/Co and 391 amino acids in length for aMPV/A/UK/3b with approximate molecular weights of 43.3 kilodaltons and 42.7 kilodaltons, respectively. Nucleoprotein 2 (N2 was hypothesized to be encoded by a second downstream ORF in-frame with ORF1 and encoded a protein predicted to contain 328 amino acids for aMPV/C/US/Co or 259 amino acids for aMPV/A/UK/3b with approximate molecular weights of 36 kilodaltons and 28.3 kilodaltons, respectively. Peptide antibodies to the N-terminal and C-terminal portions of the aMPV N protein confirmed presence of these products in both aMPV/C/US/Co- and aMPV/A/UK/3b-infected Vero cells. N1 and N2 for aMPV/C/US/Co ORFs were molecularly cloned and expressed in Vero cells utilizing eukaryotic expression vectors to confirm identity of the aMPV encoded proteins. Conclusion This is the first reported identification of potential, accessory in-frame N2 ORF gene products among

  20. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    Science.gov (United States)

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  1. Human mobility and the spatial transmission of influenza in the United States

    DEFF Research Database (Denmark)

    Charu, Vivek; Zeger, Scott; Gog, Julia

    2017-01-01

    Seasonal influenza epidemics offer unique opportunities to study the invasion and re-invasion waves of a pathogen in a partially immune population. Detailed patterns of spread remain elusive, however, due to lack of granular disease data. Here we model high-volume city-level medical claims data...... and human mobility proxies to explore the drivers of influenza spread in the US during 2002–2010. Although the speed and pathways of spread varied across seasons, seven of eight epidemics likely originated in the Southern US. Each epidemic was associated with 1–5 early long-range transmission events, half...... of which sparked onward transmission. Gravity model estimates indicate a sharp decay in influenza transmission with the distance between infectious and susceptible cities, consistent with spread dominated by work commutes rather than air traffic. Two early-onset seasons associated with antigenic novelty...

  2. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  3. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy.

    Science.gov (United States)

    Kuo, Shu-Ming; Chen, Chi-Jene; Chang, Shih-Cheng; Liu, Tzu-Jou; Chen, Yi-Hsiang; Huang, Sheng-Yu; Shih, Shin-Ru

    2017-06-13

    Avian influenza A viruses generally do not replicate efficiently in human cells, but substitution of glutamic acid (Glu, E) for lysine (Lys, K) at residue 627 of avian influenza virus polymerase basic protein 2 (PB2) can serve to overcome host restriction and facilitate human infectivity. Although PB2 residue 627 is regarded as a species-specific signature of influenza A viruses, host restriction factors associated with PB2 627 E have yet to be fully investigated. We conducted immunoprecipitation, followed by differential proteomic analysis, to identify proteins associating with PB2 627 K (human signature) and PB2 627 E (avian signature) of influenza A/WSN/1933(H1N1) virus, and the results indicated that Tu elongation factor, mitochondrial (TUFM), had a higher binding affinity for PB2 627 E than PB2 627 K in transfected human cells. Stronger binding of TUFM to avian-signature PB2 590 G/ 591 Q and PB2 627 E in the 2009 swine-origin pandemic H1N1 and 2013 avian-origin H7N9 influenza A viruses was similarly observed. Viruses carrying avian-signature PB2 627 E demonstrated increased replication in TUFM-deficient cells, but viral replication decreased in cells overexpressing TUFM. Interestingly, the presence of TUFM specifically inhibited the replication of PB2 627 E viruses, but not PB2 627 K viruses. In addition, enhanced levels of interaction between TUFM and PB2 627 E were noted in the mitochondrial fraction of infected cells. Furthermore, TUFM-dependent autophagy was reduced in TUFM-deficient cells infected with PB2 627 E virus; however, autophagy remained consistent in PB2 627 K virus-infected cells. The results suggest that TUFM acts as a host restriction factor that impedes avian-signature influenza A virus replication in human cells in a manner that correlates with autophagy. IMPORTANCE An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both

  4. Genetic analysis of human and swine influenza A viruses isolated in Northern Italy during 2010-2015.

    Science.gov (United States)

    Chiapponi, C; Ebranati, E; Pariani, E; Faccini, S; Luppi, A; Baioni, L; Manfredi, R; Carta, V; Merenda, M; Affanni, P; Colucci, M E; Veronesi, L; Zehender, G; Foni, E

    2018-02-01

    Influenza A virus (IAV) infection in swine plays an important role in the ecology of influenza viruses. The emergence of new IAVs comes through different mechanisms, with the genetic reassortment of genes between influenza viruses, also originating from different species, being common. We performed a genetic analysis on 179 IAV isolates from humans (n. 75) and pigs (n. 104) collected in Northern Italy between 2010 and 2015, to monitor the genetic exchange between human and swine IAVs. No cases of human infection with swine strains were noticed, but direct infections of swine with H1N1pdm09 strains were detected. Moreover, we pointed out a continuous circulation of H1N1pdm09 strains in swine populations evidenced by the introduction of internal genes of this subtype. These events contribute to generating new viral variants-possibly endowed with pandemic potential-and emphasize the importance of continuous surveillance at both animal and human level. © 2017 The Authors. Zoonoses and Public Health published by Blackwell Verlag GmbH.

  5. Contribution of the major and minor subunits to fimbria-mediated adherence of Haemophilus influenzae to human epithelial cells and erythrocytes

    NARCIS (Netherlands)

    van Ham, S. M.; van Alphen, L.; Mooi, F. R.; van Putten, J. P.

    1995-01-01

    Fimbriae are colonization factors of the human pathogen Haemophilus influenzae in that they mediate bacterial adherence to human eukaryotic cells. The contribution of the major (HifA) and putative minor (HifD and HifE) subunits of H. influenzae fimbriae to fimbria-specific adherence was studied by

  6. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Wong Emily HM

    2010-08-01

    Full Text Available Abstract Background The influenza A virus is an important infectious cause of morbidity and mortality in humans and was responsible for 3 pandemics in the 20th century. As the replication of the influenza virus is based on its host's machinery, codon usage of its viral genes might be subject to host selection pressures, especially after interspecies transmission. A better understanding of viral evolution and host adaptive responses might help control this disease. Results Relative Synonymous Codon Usage (RSCU values of the genes from segment 1 to segment 6 of avian and human influenza viruses, including pandemic H1N1, were studied via Correspondence Analysis (CA. The codon usage patterns of seasonal human influenza viruses were distinct among their subtypes and different from those of avian viruses. Newly isolated viruses could be added to the CA results, creating a tool to investigate the host origin and evolution of viral genes. It was found that the 1918 pandemic H1N1 virus contained genes with mammalian-like viral codon usage patterns, indicating that the introduction of this virus to humans was not through in toto transfer of an avian influenza virus. Many human viral genes had directional changes in codon usage over time of viral isolation, indicating the effect of host selection pressures. These changes reduced the overall GC content and the usage of G at the third codon position in the viral genome. Limited evidence of translational selection pressure was found in a few viral genes. Conclusions Codon usage patterns from CA allowed identification of host origin and evolutionary trends in influenza viruses, providing an alternative method and a tool to understand the evolution of influenza viruses. Human influenza viruses are subject to selection pressure on codon usage which might assist in understanding the characteristics of newly emerging viruses.

  7. Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Hee-Dong; Cheong, Hyang-Min; Lee, Anna; Lee, Nam-Joo; Chu, Hyuk; Lee, Joo-Yeon; Kim, Sung Soon; Choi, Jang-Hoon

    2018-07-01

    The prevalence of eight respiratory viruses detected in patients with acute respiratory infections (ARIs) in Korea was investigated through analysis of data recorded by the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS) from 2013 to 2015. Nasal aspirate and throat swabs specimens were collected from 36 915 patients with ARIs, and viral nucleic acids were detected by real-time (reverse-transcription) polymerase chain reaction for eight respiratory viruses, including human respiratory syncytial viruses (HRSVs), influenza viruses (IFVs), human parainfluenza viruses (HPIVs), human coronaviruses (HCoVs), human rhinovirus (HRV), human adenovirus (HAdV), human bocavirus (HBoV), and human metapneumovirus (HMPV). The overall positive rate of patient specimens was 49.4% (18 236/36 915), 5% of which carried two or more viruses simultaneously. HRV (15.6%) was the most predominantly detected virus, followed by IFVs (14.6%), HAdV (7.5%), HPIVs (5.8%), HCoVs (4.2%), HRSVs (3.6%), HBoV (1.9%), and HMPV (1.6%). Most of the ARIs were significantly correlated with clinical symptoms of fever, cough, and runny nose. Although HRV and HAdV were frequently detected throughout the year in patients, other respiratory viruses showed apparent seasonality. HRSVs and IFVs were the major causative agents of acute respiratory diseases in infants and young children. Overall, this study demonstrates a meaningful relationship between viral infection and typical manifestations of known clinical features as well as seasonality, age distribution, and co-infection among respiratory viruses. Therefore, these data could provide useful information for public health management and to enhance patient care for primary clinicians. © 2018 Wiley Periodicals, Inc.

  8. An overview of the recent outbreaks of the avian-origin influenza A (H7N9) virus in the human.

    Science.gov (United States)

    Tang, Ren-Bin; Chen, Hui-Lan

    2013-05-01

    Since the first human infection with influenza A (H7N9) viruses have been identified in Shanghai on March 31, 2013, the latest variant of the avian flu virus has spread across four Chinese provinces recently. Human infections with avian influenza are rare and this is the first time that human infection with a low pathogenic avian influenza A virus has been associated with fatal outcome. To date (May 5(th), 2013), China had reported 128 confirmed H7N9 infections in human, among 27 died. Most reported cases have severe respiratory illness resulting in severe pneumonia and in some cases have died. No evidence of sustained human-to -humans at this time, however, there is one family cluster with two confirmed cases for which human-to-human transmission cannot be ruled out. Recent evidence showed that the gene sequences of this novel H7N9 virus is primarily zoonotic and may be better adapted than other avian influenza viruses to infect human. Effective global infection control is urgently needed, and further surveillance and analyses should be undertaken to identify the source and mode of transmission of these viruses. Copyright © 2013. Published by Elsevier B.V.

  9. Production of monoclonal antibodies for Avian Metapneumovirus (SHS-BR-121 isolated in Brazil

    Directory of Open Access Journals (Sweden)

    LT Coswig

    2007-12-01

    Full Text Available Avian Metapneumovirus (aMPV, also called Turkey Rhinotracheitis Virus (TRTV, is an upper respiratory tract infection of turkeys, chickens and other avian species. Five monoclonal antibodies (MAbs were created against the Brazilian isolate (SHS-BR-121 of aMPV, MAbs 1A5B8; 1C1C4; 2C2E9 and 2A4C3 of IgG1 and MAb 1C1F8 of IgG2a. Four Mabs (1A5B8; 1C1C4; 2C2E9 and 2A4C3 showed neutralizing activity and three (1A5B8; 1C1C4 and 2A4C3 inhibited cellular fusion in vitro. These MAbs were used to investigate antigenic relationship among three strains (SHS-BR-121, STG 854/88 and TRT 1439/91 of aMPV subtypes A and B using cross-neutralization test. The results confirm that the monoclonal antibodies described can be used as a valuable tool in the epizootiological and serological studies, and also for the specific diagnosis of the subtypes in the infection for Avian Metapneumovirus.

  10. Improving pandemic influenza risk assessment

    Science.gov (United States)

    Assessing the pandemic risk posed by specific non-human influenza A viruses remains a complex challenge. As influenza virus genome sequencing becomes cheaper, faster and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk asses...

  11. Avian and human influenza virus compatible sialic acid receptors in little brown bats.

    Science.gov (United States)

    Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V

    2017-04-06

    Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.

  12. Avian and human influenza virus compatible sialic acid receptors in little brown bats

    OpenAIRE

    Shubhada K. Chothe; Gitanjali Bhushan; Ruth H. Nissly; Yin-Ting Yeh; Justin Brown; Gregory Turner; Jenny Fisher; Brent J. Sewall; DeeAnn M. Reeder; Mauricio Terrones; Bhushan M. Jayarao; Suresh V. Kuchipudi

    2017-01-01

    Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA ?2,3-Gal and SA ?2,6-Gal receptors could facilit...

  13. Influenza Pandemic Infrastructure Response in Thailand

    Centers for Disease Control (CDC) Podcasts

    Influenza viruses change antigenic properties, or drift, every year and they create seasonal outbreaks. Occasionally, influenza viruses change in a major way, called a “shift." If an influenza virus shifts, the entire human population is susceptible to the new influenza virus, creating the potential for a pandemic. On this podcast, CDC's Dr. Scott Dowell discusses responding to an influenza pandemic.

  14. Comparative distribution of human and avian type sialic acid influenza receptors in the pig

    Directory of Open Access Journals (Sweden)

    Perez Belinda

    2010-01-01

    Full Text Available Abstract Background A major determinant of influenza infection is the presence of virus receptors on susceptible host cells to which the viral haemagglutinin is able to bind. Avian viruses preferentially bind to sialic acid α2,3-galactose (SAα2,3-Gal linked receptors, whereas human strains bind to sialic acid α2,6-galactose (SAα2,6-Gal linked receptors. To date, there has been no detailed account published on the distribution of SA receptors in the pig, a model host that is susceptible to avian and human influenza subtypes, thus with potential for virus reassortment. We examined the relative expression and spatial distribution of SAα2,3-GalG(1-3GalNAc and SAα2,6-Gal receptors in the major organs from normal post-weaned pigs by binding with lectins Maackia amurensis agglutinins (MAA II and Sambucus nigra agglutinin (SNA respectively. Results Both SAα2,3-Gal and SAα2,6-Gal receptors were extensively detected in the major porcine organs examined (trachea, lung, liver, kidney, spleen, heart, skeletal muscle, cerebrum, small intestine and colon. Furthermore, distribution of both SA receptors in the pig respiratory tract closely resembled the published data of the human tract. Similar expression patterns of SA receptors between pig and human in other major organs were found, with exception of the intestinal tract. Unlike the limited reports on the scarcity of influenza receptors in human intestines, we found increasing presence of SAα2,3-Gal and SAα2,6-Gal receptors from duodenum to colon in the pig. Conclusions The extensive presence of SAα2,3-Gal and SAα2,6-Gal receptors in the major organs examined suggests that each major organ may be permissive to influenza virus entry or infection. The high similarity of SA expression patterns between pig and human, in particular in the respiratory tract, suggests that pigs are not more likely to be potential hosts for virus reassortment than humans. Our finding of relative abundance of SA receptors

  15. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  16. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  17. Structural analysis of the complex between influenza B nucleoprotein and human importin-α.

    Science.gov (United States)

    Labaronne, Alice; Milles, Sigrid; Donchet, Amélie; Jensen, Malene Ringkjøbing; Blackledge, Martin; Bourhis, Jean-Marie; Ruigrok, Rob W H; Crépin, Thibaut

    2017-12-07

    Influenza viruses are negative strand RNA viruses that replicate in the nucleus of the cell. The viral nucleoprotein (NP) is the major component of the viral ribonucleoprotein. In this paper we show that the NP of influenza B has a long N-terminal tail of 70 residues with intrinsic flexibility. This tail contains the Nuclear Location Signal (NLS). The nuclear trafficking of the viral components mobilizes cellular import factors at different stages, making these host-pathogen interactions promising targets for new therapeutics. NP is imported into the nucleus by the importin-α/β pathway, through a direct interaction with importin-α isoforms. Here we provide a combined nuclear magnetic resonance and small-angle X-ray scattering (NMR/SAXS) analysis to describe the dynamics of the interaction between influenza B NP and the human importin-α. The NP of influenza B does not have a single NLS nor a bipartite NLS but our results suggest that the tail harbors several adjacent NLS sequences, located between residues 30 and 71.

  18. (Highly pathogenic) avian influenza as a zoonotic agent.

    Science.gov (United States)

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.

  19. The public health impact of avian influenza viruses.

    Science.gov (United States)

    Katz, J M; Veguilla, V; Belser, J A; Maines, T R; Van Hoeven, N; Pappas, C; Hancock, K; Tumpey, T M

    2009-04-01

    Influenza viruses with novel hemagglutinin and 1 or more accompanying genes derived from avian influenza viruses sporadically emerge in humans and have the potential to result in a pandemic if the virus causes disease and spreads efficiently in a population that lacks immunity to the novel hemagglutinin. Since 1997, multiple avian influenza virus subtypes have been transmitted directly from domestic poultry to humans and have caused a spectrum of human disease, from asymptomatic to severe and fatal. To assess the pandemic risk that avian influenza viruses pose, we have used multiple strategies to better understand the capacity of avian viruses to infect, cause disease, and transmit among mammals, including humans. Seroepidemiologic studies that evaluate the frequency and risk of human infection with avian influenza viruses in populations with exposure to domestic or wild birds can provide a better understanding of the pandemic potential of avian influenza subtypes. Investigations conducted in Hong Kong following the first H5N1 outbreak in humans in 1997 determined that exposure to poultry in live bird markets was a key risk factor for human disease. Among poultry workers, butchering and exposure to sick poultry were risk factors for antibody to H5 virus, which provided evidence for infection. A second risk assessment tool, the ferret, can be used to evaluate the level of virulence and potential for host-to-host transmission of avian influenza viruses in this naturally susceptible host. Avian viruses isolated from humans exhibit a level of virulence and transmissibility in ferrets that generally reflects that seen in humans. The ferret model thus provides a means to monitor emerging avian influenza viruses for pandemic risk, as well as to evaluate laboratory-generated reassortants and mutants to better understand the molecular basis of influenza virus transmissibility. Taken together, such studies provide valuable information with which we can assess the public

  20. Field avian metapneumovirus evolution avoiding vaccine induced immunity.

    Science.gov (United States)

    Catelli, Elena; Lupini, Caterina; Cecchinato, Mattia; Ricchizzi, Enrico; Brown, Paul; Naylor, Clive J

    2010-01-22

    Live avian metapneumovirus (AMPV) vaccines have largely brought turkey rhinotracheitis (TRT) under control in Europe but unexplained outbreaks still occur. Italian AMPV longitudinal farm studies showed that subtype B AMPVs were frequently detected in turkeys some considerable period after subtype B vaccination. Sequencing showed these to be unrelated to the previously applied vaccine. Sequencing of the entire genome of a typical later isolate showed numerous SH and G protein gene differences when compared to both a 1987 Italian field isolate and the vaccine in common use. Experimental challenge of vaccinated birds with recent virus showed that protection was inferior to that seen after challenge with the earlier 1987 isolate. Field virus had changed in key antigenic regions allowing replication and leading to disease in well vaccinated birds.

  1. Prevalence of human influenza virus in Iran: Evidence from a systematic review and meta-analysis.

    Science.gov (United States)

    Mozhgani, Sayed-Hamidreza; Zarei Ghobadi, Mohadeseh; Moeini, Sina; Pakzad, Reza; Kananizadeh, Pegah; Behzadian, Farida

    2018-02-01

    This systematic review and meta-analysis was conducted to consolidate the information on the prevalence of the human influenza virus, including H1N1 and H3N2 as well as B-type influenza across Iran from 2000 to December 2016. The literature search was based on keywords including "influenza and Iran", "human influenza", "prevalence", "relative frequency", "incidence", and "drug" in MEDLINE (PubMed), Web of Science, Scopus, ScienceDirect, the Iranian Research Institute for Information Science and Technology (IranDoc), the Regional Information Centre for Science & Technology (RICeST), and the Scientific Information Database (SID). The literature search revealed 25 prevalence and seven drug resistance studies. In order to investigate the publication bias among studies, funnel plots and Egger's test were used. Additionally, the statistical tests of I 2 , Chi 2 , and Tau 2 were computed, and the results were visualized with forest plots. A high level of I 2 and Chi 2 were obtained among studies, which are representative of the high variation and remarkable heterogeneity between studies. This may be because of various methodologies applied in the studies such as study design, age groups, and different populations. The prevalence of influenza H1N1, H3N2, and B in Iran have not yet been well evaluated. The heterogeneity among studies reveals that more attention should be paid to considering various factors, including gender, population size, and underlying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors

    NARCIS (Netherlands)

    Zhang, Heng; de Vries, Robert P; Tzarum, Netanel; Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C; Wilson, Ian A

    2015-01-01

    Recent avian-origin H10N8 influenza A viruses that have infected humans pose a potential pandemic threat. Alterations in the viral surface glycoprotein, hemagglutinin (HA), typically are required for influenza A viruses to cross the species barrier for adaptation to a new host, but whether H10N8

  3. viruses associated with human and animal influenza - a review 40

    African Journals Online (AJOL)

    DR. AMINU

    These include Influenza A,B and C. Influenza viruses are members of the family. Orthomyxoviridae. .... low pathogenicity avian influenza may be as mild as ruffled feathers, a ... influenza A viruses are zoonotic agents recognized as continuing ...

  4. 75 FR 10268 - Pandemic Influenza Vaccines-Amendment

    Science.gov (United States)

    2010-03-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of the Secretary Pandemic Influenza Vaccines... potential to cause, sporadic human infections or have mutated to cause pandemics in humans; Whereas, these viruses may evolve into virus strains capable of causing a pandemic of human influenza because these...

  5. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure

    Science.gov (United States)

    2018-01-01

    Influenza A viruses (IAVs) are genetically diverse and variable pathogens that share various hosts including human, swine, and domestic poultry. Interspecies and intercontinental viral spreads make the ecology of IAV more complex. Beside endemic IAV infections, human has been exposed to pandemic and zoonotic threats from avian and swine influenza viruses. Animal health also has been threatened by high pathogenic avian influenza viruses (in domestic poultry) and reverse zoonosis (in swine). Considering its dynamic interplay between species, prevention and control against IAV should be conducted effectively in both humans and animal sectors. Vaccination is one of the most efficient tools against IAV. Numerous vaccines against animal IAVs have been developed by a variety of vaccine technologies and some of them are currently commercially available. We summarize several challenges in control of IAVs faced by human and animals and discuss IAV vaccines for animal use with those application in susceptible populations. PMID:29399575

  6. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weibin [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen, Aizhong [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Miao, Yi [Shanghai Xuhui Central Hospital, Shanghai 200031 (China); Xia, Shengli [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Ling, Zhiyang; Xu, Ke; Wang, Tongyan [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shu, Yuelong [Chinese Center for Disease Control and Prevention, Beijing 102206 (China); Ma, Xiaowei [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Xu, Bianli; Zhang, Jin [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Lin, Xiaojun, E-mail: linxiaojun@hualan.com [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Bian, Chao, E-mail: cbian@sibs.ac.cn [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Sun, Bing, E-mail: bsun@sibs.ac.cn [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2013-01-20

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  7. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    International Nuclear Information System (INIS)

    Hu, Weibin; Chen, Aizhong; Miao, Yi; Xia, Shengli; Ling, Zhiyang; Xu, Ke; Wang, Tongyan; Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling; Shu, Yuelong; Ma, Xiaowei; Xu, Bianli; Zhang, Jin; Lin, Xiaojun; Bian, Chao; Sun, Bing

    2013-01-01

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  8. Biochemical characterization of the small hydrophobic protein of avian metapneumovirus.

    Science.gov (United States)

    Deng, Qiji; Song, Minxun; Demers, Andrew; Weng, Yuejin; Lu, Wuxun; Wang, Dan; Kaushik, Radhey S; Yu, Qingzhong; Li, Feng

    2012-08-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that has three membrane proteins (G, F, and SH). Among them, the SH protein is a small type II integral membrane protein that is incorporated into virions and is only present in certain paramyxoviruses. In the present study, we show that the AMPV SH protein is modified by N-linked glycans and can be released into the extracellular environment. Furthermore, we demonstrate that glycosylated AMPV SH proteins form homodimers through cysteine-mediated disulfide bonds, which has not been reported previously for SH proteins of paramyxoviruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness

    Directory of Open Access Journals (Sweden)

    Uyeki Timothy M

    2010-01-01

    Full Text Available Abstract Background Influenza is a major cause of morbidity and hospitalization among children. While less often reported in adults, gastrointestinal symptoms have been associated with influenza in children, including abdominal pain, nausea, vomiting, and diarrhea. Methods From September 2005 and April 2008, pediatric patients in Indonesia presenting with concurrent diarrhea and influenza-like illness were enrolled in a study to determine the frequency of influenza virus infection in young patients presenting with symptoms less commonly associated with an upper respiratory tract infection (URTI. Stool specimens and upper respiratory swabs were assayed for the presence of influenza virus. Results Seasonal influenza A or influenza B viral RNA was detected in 85 (11.6% upper respiratory specimens and 21 (2.9% of stool specimens. Viable influenza B virus was isolated from the stool specimen of one case. During the time of this study, human infections with highly pathogenic avian influenza A (H5N1 virus were common in the survey area. However, among 733 enrolled subjects, none had evidence of H5N1 virus infection. Conclusions The detection of influenza viral RNA and viable influenza virus from stool suggests that influenza virus may be localized in the gastrointestinal tract of children, may be associated with pediatric diarrhea and may serve as a potential mode of transmission during seasonal and epidemic influenza outbreaks.

  10. Human Respiratory Syncytial Virus and Human Metapneumovirus

    OpenAIRE

    Luciana Helena Antoniassi da Silva; Fernando Rosado Spilki; Adriana Gut Lopes Riccetto; Emilio Elias Baracat; Clarice Weis Arns

    2009-01-01

    The human respiratory syncytial virus (hRSV) and the human metapneumovírus (hMPV) are main etiological agents of acute respiratory infections (ARI). The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV) is the best characterized agent viral of this group, associated with respiratory diseases in...

  11. H9N2 avian influenza virus antibody titers in human population in fars province, Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-09-01

    Full Text Available Among the avian influenza A virus subtypes, H5N1 and H9N2 viruses have the potential to cause an influenza pandemic because they are widely prevalent in avian species in Asia and have demonstrated the ability to infect humans. This study was carried out to determined the seroprevalence of H9N2 avian influenza virus in different human populations in Fars province, which is situated in the south of Iran. Antibodies against H9N2 avian influenza virus were measured using hemagglutination-inhibition (HI test in sera from 300 individuals in five different population in Fars province, including poultry-farm workers, slaughter-house workers, veterinarians, patients with clinical signs of respiratory disease, and clinically normal individuals, who were not or rarely in contact with poultry. Mean antibody titers of 7.3, 6.8, 6.1, 4.5, and 2.9 and seroprevalences of 87%, 76.2%, 72.5%, 35.6%, and 23% were determined in those groups, respectively. Higher prevalences were detected in poultry-farm workers, slaughter-house workers, and veterinarians, possibly due to their close and frequent contact with poultry.

  12. Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein.

    Science.gov (United States)

    Yun, Bingling; Gao, Yanni; Liu, Yongzhen; Guan, Xiaolu; Wang, Yongqiang; Qi, Xiaole; Gao, Honglei; Liu, Changjun; Cui, Hongyu; Zhang, Yanping; Gao, Yulong; Wang, Xiaomei

    2015-10-01

    The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein.

  13. Absence of detectable influenza RNA transmitted via aerosol during various human respiratory activities--experiments from Singapore and Hong Kong.

    Directory of Open Access Journals (Sweden)

    Julian W Tang

    Full Text Available Two independent studies by two separate research teams (from Hong Kong and Singapore failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth-breathing manikin. Aerosolised droplets exhaled from the volunteers and entering the manikin's mouth were collected with PTFE filters and an aerosol sampler, in separate experiments. Virus detection was performed using an in-house influenza RNA reverse-transcription polymerase chain reaction (RT-PCR assay. No influenza RNA was detected from any of the PTFE filters or air samples. For the Singapore experiments, 6 influenza-infected volunteers were asked to breathe (nasal/mouth breathing, talk (counting in English/second language, cough (from 1 m/0.1 m away and laugh, onto a thermal, breathing manikin. The manikin's face was swabbed at specific points (around both eyes, the nostrils and the mouth before and after exposure to each of these respiratory activities, and was cleaned between each activity with medical grade alcohol swabs. Shadowgraph imaging was used to record the generation of these respiratory aerosols from the infected volunteers and their impact onto the target manikin. No influenza RNA was detected from any of these swabs with either team's in-house diagnostic influenza assays. All the influenza-infected volunteers had diagnostic swabs taken at recruitment that confirmed influenza (A/H1, A/H3 or B infection with high viral loads, ranging from 10(5-10(8 copies/mL (Hong Kong volunteers/assay and 10(4-10(7 copies/mL influenza viral RNA (Singapore volunteers/assay. These findings suggest that influenza RNA may not be readily transmitted from naturally-infected human source to susceptible recipients via these natural respiratory activities, within

  14. Anti-influenza drugs: the development of sialidase inhibitors.

    Science.gov (United States)

    von Itzstein, Mark; Thomson, Robin

    2009-01-01

    Viruses, particularly those that are harmful to humans, are the 'silent terrorists' of the twenty-first century. Well over four million humans die per annum as a result of viral infections alone. The scourge of influenza virus has plagued mankind throughout the ages. The fact that new viral strains emerge on a regular basis, particularly out of Asia, establishes a continual socio-economic threat to mankind. The arrival of the highly pathogenic avian influenza H5N1 heightened the threat of a potential human pandemic to the point where many countries have put in place 'preparedness plans' to defend against such an outcome. The discovery of the first designer influenza virus sialidase inhibitor and anti-influenza drug Relenza, and subsequently Tamiflu, has now inspired a number of continuing efforts towards the discovery of next generation anti-influenza drugs. Such drugs may act as 'first-line-of-defence' against the spread of influenza infection and buy time for necessary vaccine development particularly in a human pandemic setting. Furthermore, the fact that influenza virus can develop resistance to therapeutics makes these continuing efforts extremely important. An overview of the role of the virus-associated glycoprotein sialidase (neuraminidase) and some of the most recent developments towards the discovery of anti-influenza drugs based on the inhibition of influenza virus sialidase is provided in this chapter.

  15. Molecular Determinants of Influenza Virus Pathogenesis in Mice

    Science.gov (United States)

    Katz, Jaqueline M.; York, Ian A.

    2015-01-01

    Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account. PMID:25038937

  16. Contact variables for exposure to avian influenza H5N1 virus at the human-animal interface.

    Science.gov (United States)

    Rabinowitz, P; Perdue, M; Mumford, E

    2010-06-01

    Although the highly pathogenic avian influenza H5N1 virus continues to cause infections in both avian and human populations, the specific zoonotic risk factors remain poorly understood. This review summarizes available evidence regarding types of contact associated with transmission of H5N1 virus at the human-animal interface. A systematic search of the published literature revealed five analytical studies and 15 case reports describing avian influenza transmission from animals to humans for further review. Risk factors identified in analytical studies were compared, and World Health Organization-confirmed cases, identified in case reports, were classified according to type of contact reported using a standardized algorithm. Although cases were primarily associated with direct contact with sick/unexpectedly dead birds, some cases reported only indirect contact with birds or contaminated environments or contact with apparently healthy birds. Specific types of contacts or activities leading to exposure could not be determined from data available in the publications reviewed. These results support previous reports that direct contact with sick birds is not the only means of human exposure to avian influenza H5N1 virus. To target public health measures and disease awareness messaging for reducing the risk of zoonotic infection with avian influenza H5N1 virus, the specific types of contacts and activities leading to transmission need to be further understood. The role of environmental virus persistence, shedding of virus by asymptomatic poultry and disease pathophysiology in different avian species relative to human zoonotic risk, as well as specific modes of zoonotic transmission, should be determined.

  17. Whole-Genome Characterization of a Novel Human Influenza A(H1N2) Virus Variant, Brazil.

    Science.gov (United States)

    Resende, Paola Cristina; Born, Priscila Silva; Matos, Aline Rocha; Motta, Fernando Couto; Caetano, Braulia Costa; Debur, Maria do Carmo; Riediger, Irina Nastassja; Brown, David; Siqueira, Marilda M

    2017-01-01

    We report the characterization of a novel reassortant influenza A(H1N2) virus not previously reported in humans. Recovered from a a pig farm worker in southeast Brazil who had influenza-like illness, this virus is a triple reassortant containing gene segments from subtypes H1N2 (hemagglutinin), H3N2 (neuraminidase), and pandemic H1N1 (remaining genes).

  18. A reverse genetic analysis of human Influenza A virus H1N2

    OpenAIRE

    Anton, Aline

    2010-01-01

    Reassortment between influenza A viruses of different subtypes rarely appears. Even in a community where H1N1 and H3N2 viruses co-circulate, reassortment to produce persistent viruses of mixed gene segments does not readily occur. H1N2 viruses, that circulated between 2001-2003 were considered to have arisen through the reassortment of the two human influenza subtypes H1N1 and H3N2. Due to the fact they make such a rare appearance, H1N2 viruses used to have new characteristics compared to the...

  19. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    Science.gov (United States)

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CROSSREACTIVE ANTIBODIES AND MEMORY T CELLS TO HUMAN AND ZOONOTIC INFLUENZA A VIRUSES IN VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    I. V. Losev

    2015-01-01

    Full Text Available There exists a real hazard of transferring zoonotic influenza A viruses, either swine, or avian, into human population. In such case, severity of such pandemics depends on the pathogen-specific immunity in the population. Virtual absence of such immunity in humans was declared in the literature. In this work, we assessed systemic, local, and T-cell immunity to potentially pandemic H3N2sw, H5N1, H5N2, H7N3, H7N9 and H2N2 influenza A viruses in a group of healthy adults of different age. Our results indicate that these subjects develop the following immune reactions: (i local (i.e., nasal IgA and cellular (CD4+ and CD8v memory T cells heterosubtypic immunity, in absence of detectable virus-specific serum antibodies to avian influenza A viruses; (ii Local immune responses (as nasal IgA to human A (H2N2 virus which circulated in 1957-1968 were detected both in subjects who could be primed at that time, but also in subjects born after 1968; (iii full-scale systemic and local immunity to potentially pandemic А (H3N2sw swine virus was found in the group. Conclusion. In order of proper epidemiological forecasts and planning appropriate preventive measures for potentially pandemic Influenza A viruses, a regular monitoring of collective immunity should be performed using different adaptive markers. In this respect, any conclusion based on molecular analysis only could lead to considerable mistakes, and should be accomplished by the mentioned immunological studies.

  1. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome.

    NARCIS (Netherlands)

    Fouchier, R.A.M.; Schneeberger, P.M.; Rozendaal, F.W.; Broekman, J.M.; Kemink, S.A.G.; Munnster, V.; Kuiken, T.; Rimmelzwaan, G.F.; Schutten, M.; Doornum, van G.J.J.; Koch, G.; Bosman, A.; Koopmans, M.; Osterhaus, A.D.M.E.

    2004-01-01

    Highly pathogenic avian influenza A viruses of subtypes H5 and H7 are the causative agents of fowl plague in poultry. Influenza A viruses of subtype H5N1 also caused severe respiratory disease in humans in Hong Kong in 1997 and 2003, including at least seven fatal cases, posing a serious human

  2. [An overview on swine influenza viruses].

    Science.gov (United States)

    Yang, Shuai; Zhu, Wen-Fei; Shu, Yue-Long

    2013-05-01

    Swine influenza viruses (SIVs) are respiratory pathogens of pigs. They cause both economic bur den in livestock-dependent industries and serious global public health concerns in humans. Because of their dual susceptibility to human and avian influenza viruses, pigs are recognized as intermediate hosts for genetic reassortment and interspecies transmission. Subtypes H1N1, H1N2, and H3N2 circulate in swine populations around the world, with varied origin and genetic characteristics among different continents and regions. In this review, the role of pigs in evolution of influenza A viruses, the genetic evolution of SIVs and interspecies transmission of SIVs are described. Considering the possibility that pigs might produce novel influenza viruses causing more outbreaks and pandemics, routine epidemiological surveillance of influenza viruses in pig populations is highly recommended.

  3. Nonlinear dynamics of avian influenza epidemic models.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Influenza Pandemic Infrastructure Response in Thailand

    Centers for Disease Control (CDC) Podcasts

    2009-03-05

    Influenza viruses change antigenic properties, or drift, every year and they create seasonal outbreaks. Occasionally, influenza viruses change in a major way, called a “shift." If an influenza virus shifts, the entire human population is susceptible to the new influenza virus, creating the potential for a pandemic. On this podcast, CDC's Dr. Scott Dowell discusses responding to an influenza pandemic.  Created: 3/5/2009 by Emerging Infectious Diseases.   Date Released: 3/5/2009.

  5. Host adaptation and transmission of influenza A viruses in mammals

    Science.gov (United States)

    Schrauwen, Eefje JA; Fouchier, Ron AM

    2014-01-01

    A wide range of influenza A viruses of pigs and birds have infected humans in the last decade, sometimes with severe clinical consequences. Each of these so-called zoonotic infections provides an opportunity for virus adaptation to the new host. Fortunately, most of these human infections do not yield viruses with the ability of sustained human-to-human transmission. However, animal influenza viruses have acquired the ability of sustained transmission between humans to cause pandemics on rare occasions in the past, and therefore, influenza virus zoonoses continue to represent threats to public health. Numerous recent studies have shed new light on the mechanisms of adaptation and transmission of avian and swine influenza A viruses in mammals. In particular, several studies provided insights into the genetic and phenotypic traits of influenza A viruses that may determine airborne transmission. Here, we summarize recent studies on molecular determinants of virulence and adaptation of animal influenza A virus and discuss the phenotypic traits associated with airborne transmission of newly emerging influenza A viruses. Increased understanding of the determinants and mechanisms of virulence and transmission may aid in assessing the risks posed by animal influenza viruses to human health, and preparedness for such risks. PMID:26038511

  6. Emergence in China of human disease due to avian influenza A(H10N8)--cause for concern?

    Science.gov (United States)

    To, Kelvin K W; Tsang, Alan K L; Chan, Jasper F W; Cheng, Vincent C C; Chen, Honglin; Yuen, Kwok-Yung

    2014-03-01

    In December 2013, China reported the first human case of avian influenza A(H10N8). A 73-year-old female with chronic diseases who had visited a live poultry market succumbed with community-acquired pneumonia. While human infections with avian influenza viruses are usually associated with subtypes prevalent in poultries, A(H10N8) isolates were mostly found in migratory birds and only recently in poultries. Although not possible to predict whether this single intrusion by A(H10N8) is an accident or the start of another epidemic like the preceding A(H7N9) and A(H5N1), several features suggest that A(H10N8) is a potential threat to humans. Recombinant H10 could attach to human respiratory epithelium, and A(H10N4) virus could cause severe infections in minks and chickens. A(H10N8) viruses contain genetic markers for mammalian adaptation and virulence in the haemagglutinin (A135T, S138A[H3 numbering]), M1(N30D, T215A), NS1(P42S) and PB2(E627K) protein. Studies on this human A(H10N8) isolate will reveal its adaptability to humans. Clinicians should alert the laboratory to test for A(H5,6,7,9,10) viruses in patients with epidemiological exposure in endemic geographical areas especially when human influenza A(H1,3) and B are negative. Vigilant virological and serological surveillance for A(H10N8) in human, poultry and wild bird is important for following the trajectory of this emerging influenza virus. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  7. The evolution of human influenza A viruses from 1999 to 2006: A complete genome study

    Directory of Open Access Journals (Sweden)

    Fomsgaard Anders

    2008-03-01

    Full Text Available Abstract Background Knowledge about the complete genome constellation of seasonal influenza A viruses from different countries is valuable for monitoring and understanding of the evolution and migration of strains. Few complete genome sequences of influenza A viruses from Europe are publicly available at the present time and there have been few longitudinal genome studies of human influenza A viruses. We have studied the evolution of circulating human H3N2, H1N1 and H1N2 influenza A viruses from 1999 to 2006, we analysed 234 Danish human influenza A viruses and characterised 24 complete genomes. Results H3N2 was the prevalent strain in Denmark during the study period, but H1N1 dominated the 2000–2001 season. H1N2 viruses were first observed in Denmark in 2002–2003. After years of little genetic change in the H1N1 viruses the 2005–2006 season presented H1N1 of greater variability than before. This indicates that H1N1 viruses are evolving and that H1N1 soon is likely to be the prevalent strain again. Generally, the influenza A haemagglutinin (HA of H3N2 viruses formed seasonal phylogenetic clusters. Different lineages co-circulating within the same season were also observed. The evolution has been stochastic, influenced by small "jumps" in genetic distance rather than constant drift, especially with the introduction of the Fujian-like viruses in 2002–2003. Also evolutionary stasis-periods were observed which might indicate well fit viruses. The evolution of H3N2 viruses have also been influenced by gene reassortments between lineages from different seasons. None of the influenza genes were influenced by strong positive selection pressure. The antigenic site B in H3N2 HA was the preferred site for genetic change during the study period probably because the site A has been masked by glycosylations. Substitutions at CTL-epitopes in the genes coding for the neuraminidase (NA, polymerase acidic protein (PA, matrix protein 1 (M1, non

  8. The evolution of human influenza A viruses from 1999 to 2006: a complete genome study.

    Science.gov (United States)

    Bragstad, Karoline; Nielsen, Lars P; Fomsgaard, Anders

    2008-03-07

    Knowledge about the complete genome constellation of seasonal influenza A viruses from different countries is valuable for monitoring and understanding of the evolution and migration of strains. Few complete genome sequences of influenza A viruses from Europe are publicly available at the present time and there have been few longitudinal genome studies of human influenza A viruses. We have studied the evolution of circulating human H3N2, H1N1 and H1N2 influenza A viruses from 1999 to 2006, we analysed 234 Danish human influenza A viruses and characterised 24 complete genomes. H3N2 was the prevalent strain in Denmark during the study period, but H1N1 dominated the 2000-2001 season. H1N2 viruses were first observed in Denmark in 2002-2003. After years of little genetic change in the H1N1 viruses the 2005-2006 season presented H1N1 of greater variability than before. This indicates that H1N1 viruses are evolving and that H1N1 soon is likely to be the prevalent strain again. Generally, the influenza A haemagglutinin (HA) of H3N2 viruses formed seasonal phylogenetic clusters. Different lineages co-circulating within the same season were also observed. The evolution has been stochastic, influenced by small "jumps" in genetic distance rather than constant drift, especially with the introduction of the Fujian-like viruses in 2002-2003. Also evolutionary stasis-periods were observed which might indicate well fit viruses. The evolution of H3N2 viruses have also been influenced by gene reassortments between lineages from different seasons. None of the influenza genes were influenced by strong positive selection pressure. The antigenic site B in H3N2 HA was the preferred site for genetic change during the study period probably because the site A has been masked by glycosylations. Substitutions at CTL-epitopes in the genes coding for the neuraminidase (NA), polymerase acidic protein (PA), matrix protein 1 (M1), non-structural protein 1 (NS1) and especially the nucleoprotein (NP

  9. Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017.

    Science.gov (United States)

    Kang, Min; Lau, Eric H Y; Guan, Wenda; Yang, Yuwei; Song, Tie; Cowling, Benjamin J; Wu, Jie; Peiris, Malik; He, Jianfeng; Mok, Chris Ka Pun

    2017-07-06

    We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics. This article is copyright of The Authors, 2017.

  10. Evaluating the combined effectiveness of influenza control strategies and human preventive behavior.

    Directory of Open Access Journals (Sweden)

    Liang Mao

    Full Text Available Control strategies enforced by health agencies are a major type of practice to contain influenza outbreaks. Another type of practice is the voluntary preventive behavior of individuals, such as receiving vaccination, taking antiviral drugs, and wearing face masks. These two types of practices take effects concurrently in influenza containment, but little attention has been paid to their combined effectiveness. This article estimates this combined effectiveness using established simulation models in the urbanized area of Buffalo, NY, USA. Three control strategies are investigated, including: Targeted Antiviral Prophylaxis (TAP, workplace/school closure, community travel restriction, as well as the combination of the three. All control strategies are simulated with and without regard to individual preventive behavior, and the resulting effectiveness are compared. The simulation outcomes suggest that weaker control strategies could suffice to contain influenza epidemics, because individuals voluntarily adopt preventive behavior, rendering these weaker strategies more effective than would otherwise have been expected. The preventive behavior of individuals could save medical resources for control strategies and avoid unnecessary socio-economic interruptions. This research adds a human behavioral dimension into the simulation of control strategies and offers new insights into disease containment. Health policy makers are recommended to review current control strategies and comprehend preventive behavior patterns of local populations before making decisions on influenza containment.

  11. Considerable progress in European preparations for a potential influenza pandemic.

    NARCIS (Netherlands)

    Paget, J.

    2005-01-01

    The threat of an influenza pandemic has been heightened in the past two years by outbreaks of avian influenza concentrated in South East Asia which have resulted in human deaths. So far, the avian influenza virus seems difficult to transmit from human to human, but changes in the virus genome may

  12. Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with hemagglutinin protein

    Directory of Open Access Journals (Sweden)

    Bushnell Ruth V

    2010-08-01

    Full Text Available Abstract Background Recent and previous studies have shown that guinea pigs can be infected with, and transmit, human influenza viruses. Therefore guinea pig may be a useful animal model for better understanding influenza infection and assessing vaccine strategies. To more fully characterize the model, antibody responses following either infection/re-infection with human influenza A/Wyoming/03/2003 H3N2 or immunization with its homologous recombinant hemagglutinin (HA protein were studied. Results Serological samples were collected and tested for anti-HA immunoglobulin by ELISA, antiviral antibodies by hemagglutination inhibition (HI, and recognition of linear epitopes by peptide scanning (PepScan. Animals inoculated with infectious virus demonstrated pronounced viral replication and subsequent serological conversion. Animals either immunized with the homologous HA antigen or infected, showed a relatively rapid rise in antibody titers to the HA glycoprotein in ELISA assays. Antiviral antibodies, measured by HI assay, were detectable after the second inoculation. PepScan data identified both previously recognized and newly defined linear epitopes. Conclusions Infection and/or recombinant HA immunization of guinea pigs with H3N2 Wyoming influenza virus resulted in a relatively rapid production of viral-specific antibody thus demonstrating the strong immunogenicity of the major viral structural proteins in this animal model for influenza infection. The sensitivity of the immune response supports the utility of the guinea pig as a useful animal model of influenza infection and immunization.

  13. A mathematical model of avian influenza with half-saturated incidence.

    Science.gov (United States)

    Chong, Nyuk Sian; Tchuenche, Jean Michel; Smith, Robert J

    2014-03-01

    The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant H m for humans with mutant strain. The quantity H m plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate β m at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease β m, while isolation will increase H m. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak.

  14. Haemophilus influenzae pneumonia in human immunodeficiency virus-infected patients. The Grupo Andaluz para el Estudio de las Enfermedades Infecciosas.

    Science.gov (United States)

    Cordero, E; Pachón, J; Rivero, A; Girón, J A; Gómez-Mateos, J; Merino, M D; Torres-Tortosa, M; González-Serrano, M; Aliaga, L; Collado, A; Hernández-Quero, J; Barrera, A; Nuño, E

    2000-03-01

    Although Haemophilus influenzae is a common etiologic agent of pneumonia in patients infected with human immunodeficiency virus (HIV), the characteristics of this pneumonia have not been adequately assessed. We have prospectively studied features of H. influenzae pneumonia in 26 consecutive HIV-infected inpatients. Most of these patients were severely immunosuppressed; 73.1% had a CD4+ cell count caused by H. influenzae affects mainly patients with advanced HIV disease, and since its clinical and radiological features may be diverse, this etiology should be considered when pneumonia occurs in patients with advanced HIV infection. The mortality rate associated with H. influenzae pneumonia is not higher than that occurring in the general population.

  15. Mutations to PB2 and NP proteins of an avian influenza virus combine to confer efficient growth in primary human respiratory cells.

    Science.gov (United States)

    Danzy, Shamika; Studdard, Lydia R; Manicassamy, Balaji; Solorzano, Alicia; Marshall, Nicolle; García-Sastre, Adolfo; Steel, John; Lowen, Anice C

    2014-11-01

    Influenza pandemics occur when influenza A viruses (IAV) adapted to other host species enter humans and spread through the population. Pandemics are relatively rare due to host restriction of IAV: strains adapted to nonhuman species do not readily infect, replicate in, or transmit among humans. IAV can overcome host restriction through reassortment or adaptive evolution, and these are mechanisms by which pandemic strains arise in nature. To identify mutations that facilitate growth of avian IAV in humans, we have adapted influenza A/duck/Alberta/35/1976 (H1N1) (dk/AB/76) virus to a high-growth phenotype in differentiated human tracheo-bronchial epithelial (HTBE) cells. Following 10 serial passages of three independent lineages, the bulk populations showed similar growth in HTBE cells to that of a human seasonal virus. The coding changes present in six clonal isolates were determined. The majority of changes were located in the polymerase complex and nucleoprotein (NP), and all isolates carried mutations in the PB2 627 domain and regions of NP thought to interact with PB2. Using reverse genetics, the impact on growth and polymerase activity of individual and paired mutations in PB2 and NP was evaluated. The results indicate that coupling of the mammalian-adaptive mutation PB2 E627K or Q591K to selected mutations in NP further augments the growth of the corresponding viruses. In addition, minimal combinations of three (PB2 Q236H, E627K, and NP N309K) or two (PB2 Q591K and NP S50G) mutations were sufficient to recapitulate the efficient growth in HTBE cells of dk/AB/76 viruses isolated after 10 passages in this substrate. Influenza A viruses adapted to birds do not typically grow well in humans. However, as has been seen recently with H5N1 and H7N9 subtype viruses, productive and virulent infection of humans with avian influenza viruses can occur. The ability of avian influenza viruses to adapt to new host species is a consequence of their high mutation rate that

  16. Functional testing of an inhalable nanoparticle based influenza vaccine using a human precision cut lung slice technique.

    Directory of Open Access Journals (Sweden)

    Vanessa Neuhaus

    Full Text Available Annual outbreaks of influenza infections, caused by new influenza virus subtypes and high incidences of zoonosis, make seasonal influenza one of the most unpredictable and serious health threats worldwide. Currently available vaccines, though the main prevention strategy, can neither efficiently be adapted to new circulating virus subtypes nor provide high amounts to meet the global demand fast enough. New influenza vaccines quickly adapted to current virus strains are needed. In the present study we investigated the local toxicity and capacity of a new inhalable influenza vaccine to induce an antigen-specific recall response at the site of virus entry in human precision-cut lung slices (PCLS. This new vaccine combines recombinant H1N1 influenza hemagglutinin (HAC1, produced in tobacco plants, and a silica nanoparticle (NP-based drug delivery system. We found no local cellular toxicity of the vaccine within applicable concentrations. However higher concentrations of NP (≥10(3 µg/ml dose-dependently decreased viability of human PCLS. Furthermore NP, not the protein, provoked a dose-dependent induction of TNF-α and IL-1β, indicating adjuvant properties of silica. In contrast, we found an antigen-specific induction of the T cell proliferation and differentiation cytokine, IL-2, compared to baseline level (152±49 pg/mg vs. 22±5 pg/mg, which could not be seen for the NP alone. Additionally, treatment with 10 µg/ml HAC1 caused a 6-times higher secretion of IFN-γ compared to baseline (602±307 pg/mg vs. 97±51 pg/mg. This antigen-induced IFN-γ secretion was further boosted by the adjuvant effect of silica NP for the formulated vaccine to a 12-fold increase (97±51 pg/mg vs. 1226±535 pg/mg. Thus we were able to show that the plant-produced vaccine induced an adequate innate immune response and re-activated an established antigen-specific T cell response within a non-toxic range in human PCLS at the site of virus entry.

  17. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil.

    Science.gov (United States)

    Schaefer, Rejane; Rech, Raquel Rubia; Gava, Danielle; Cantão, Mauricio Egídio; da Silva, Marcia Cristina; Silveira, Simone; Zanella, Janice Reis Ciacci

    2015-01-01

    Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.

  18. Influenza: the next pandemic?: a review | Adungo, | East African ...

    African Journals Online (AJOL)

    Due to the diversity of susceptible reservoirs of influenza viruses and the interspecies transmission recently reported, a mutated strain of the virus to which people have no immunity could cause an influenza pandemic once the virus gains efficient and sustained human-to-human transmission. The fear that avian influenza ...

  19. Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas.

    Science.gov (United States)

    Thacker, Eileen; Janke, Bruce

    2008-02-15

    Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic.

  20. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    Science.gov (United States)

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Influenza B viruses : not to be discounted

    NARCIS (Netherlands)

    van de Sandt, Carolien E; Bodewes, Rogier; Rimmelzwaan, Guus F; de Vries, Rory D

    2015-01-01

    In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and

  2. [Differences in oligomerization of nucleocapsid protein of epidemic human influenza A(H1N1), A(H1N2) and B viruses].

    Science.gov (United States)

    Prokudina, E N; Semenova, N P; Chumakov, V M; Burtseva, E I; Slepushkin, A N

    2003-01-01

    A comparative analysis of involving the nucleocapsid protein (NP) into shaping-up of SDS-resistant oligomers was carried out presently in circulating epidemic strains of human influenza, viruses A and B. The study results of viral isolates obtained from clinical samples and recent standard strains revealed that the involvement of NP in the SDS-resistant oligomers, which are different in various subtypes of influenza A viruses. According to this sign, the human viruses A(9H3N2) are close to the avian ones, in which, as proved by us previously, virtually the entire NP transforms itself into the oligomers resistant to SDS. About 10-20% of NP are involved in shaping-up the virus influenza A(H1N1) of SDS-resistant oligomers. No SDS-resistant NP-oligomers were detected in influenza of type B. It is suggested that the prevalence of human viruses A(H3N2) in NP-oligomers are the peculiarities of NP structure and of the presence of the PB1 protein from avian influenza virus.

  3. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus.

    Science.gov (United States)

    Juozapaitis, Mindaugas; Aguiar Moreira, Étori; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2014-07-23

    In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.

  4. Anti-influenza M2e antibody

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  5. On avian influenza epidemic models with time delay.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  6. 77 FR 13329 - Pandemic Influenza Vaccines-Amendment

    Science.gov (United States)

    2012-03-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of the Secretary Pandemic Influenza Vaccines... Secretary issued a declaration for pandemic influenza vaccines, which has been amended a number of times. The original pandemic influenza vaccine declaration was published on January 26, 2007,\\1\\ and was...

  7. Influenza virus and endothelial cells: a species specific relationship

    Directory of Open Access Journals (Sweden)

    Kirsty Renfree Short

    2014-12-01

    Full Text Available Influenza A virus infection is an important cause of respiratory disease in humans. The original reservoirs of influenza A virus are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target of infection. However, influenza virus can spread from wild bird species to terrestrial poultry. Here, the virus can evolve into highly pathogenic avian influenza (HPAI. Part of this evolution involves increased viral tropism for endothelial cells. HPAI virus infections not only cause severe disease in chickens and other terrestrial poultry species but can also spread to humans and back to wild bird populations. Here, we review the role of the endothelium in the pathogenesis of influenza virus infection in wild birds, terrestrial poultry and humans with a particular focus on HPAI viruses. We demonstrate that whilst the endothelium is an important target of virus infection in terrestrial poultry and some wild bird species, in humans the endothelium is more important in controlling the local inflammatory milieu. Thus, the endothelium plays an important, but species-specific, role in the pathogenesis of influenza virus infection.

  8. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Domann Eugen

    2011-02-01

    Full Text Available Abstract Background Black elderberries (Sambucus nigra L. are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product.

  9. Methods for molecular surveillance of influenza

    OpenAIRE

    Wang, Ruixue; Taubenberger, Jeffery K

    2010-01-01

    Molecular-based techniques for detecting influenza viruses have become an integral component of human and animal surveillance programs in the last two decades. The recent pandemic of the swine-origin influenza A virus (H1N1) and the continuing circulation of highly pathogenic avian influenza A virus (H5N1) further stress the need for rapid and accurate identification and subtyping of influenza viruses for surveillance, outbreak management, diagnosis and treatment. There has been remarkable pr...

  10. The expression of essential components for human influenza virus internalisation in Vero and MDCK cells.

    Science.gov (United States)

    Ugiyadi, Maharani; Tan, Marselina I; Giri-Rachman, Ernawati A; Zuhairi, Fawzi R; Sumarsono, Sony H

    2014-05-01

    MDCK and Vero cell lines have been used as substrates for influenza virus replication. However, Vero cells produced lower influenza virus titer yield compared to MDCK. Influenza virus needs molecules for internalisation of the virus into the host cell, such as influenza virus receptor and clathrin. Human influenza receptor is usually a membrane protein containing Sia(α2,6) Gal, which is added into the protein in the golgi apparatus by α2,6 sialyltransferase (SIAT1). Light clathrin A (LCA), light clathrin B (LCB) and heavy clathrin (HC) are the main components needed for virus endocytosis. Therefore, it is necessary to compare the expression of SIAT1 and clathrin in Vero and MDCK cells. This study is reporting the expression of SIAT1 and clathrin observed in both cells with respect to the levels of (1) RNA by using RT-PCR, (2) protein by using dot blot analysis and confocal microscope. The results showed that Vero and MDCK cells expressed both SIAT1 and clathrin proteins, and the expression of SIAT1 in MDCK was higher compared to Vero cells. On the other hand, the expressions of LCA, LCB and HC protein in MDCK cells were not significantly different to Vero cells. This result showed that the inability of Vero cells to internalize H1N1 influenza virus was possibly due to the lack of transmembrane protein receptor which contained Sia(α2,6) Gal.

  11. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus.

    Science.gov (United States)

    Gingerich, Aaron; Pang, Lan; Hanson, Jarod; Dlugolenski, Daniel; Streich, Rebecca; Lafontaine, Eric R; Nagy, Tamás; Tripp, Ralph A; Rada, Balázs

    2016-01-01

    Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.

  12. Competitive fitness of influenza B viruses with neuraminidase inhibitor-resistant substitutions in a coinfection model of the human airway epithelium.

    Science.gov (United States)

    Burnham, Andrew J; Armstrong, Jianling; Lowen, Anice C; Webster, Robert G; Govorkova, Elena A

    2015-04-01

    Influenza A and B viruses are human pathogens that are regarded to cause almost equally significant disease burdens. Neuraminidase (NA) inhibitors (NAIs) are the only class of drugs available to treat influenza A and B virus infections, so the development of NAI-resistant viruses with superior fitness is a public health concern. The fitness of NAI-resistant influenza B viruses has not been widely studied. Here we examined the replicative capacity and relative fitness in normal human bronchial epithelial (NHBE) cells of recombinant influenza B/Yamanashi/166/1998 viruses containing a single amino acid substitution in NA generated by reverse genetics (rg) that is associated with NAI resistance. The replication in NHBE cells of viruses with reduced inhibition by oseltamivir (recombinant virus with the E119A mutation generated by reverse genetics [rg-E119A], rg-D198E, rg-I222T, rg-H274Y, rg-N294S, and rg-R371K, N2 numbering) or zanamivir (rg-E119A and rg-R371K) failed to be inhibited by the presence of the respective NAI. In a fluorescence-based assay, detection of rg-E119A was easily masked by the presence of NAI-susceptible virus. We coinfected NHBE cells with NAI-susceptible and -resistant viruses and used next-generation deep sequencing to reveal the order of relative fitness compared to that of recombinant wild-type (WT) virus generated by reverse genetics (rg-WT): rg-H274Y > rg-WT > rg-I222T > rg-N294S > rg-D198E > rg-E119A ≫ rg-R371K. Based on the lack of attenuated replication of rg-E119A in NHBE cells in the presence of oseltamivir or zanamivir and the fitness advantage of rg-H274Y over rg-WT, we emphasize the importance of these substitutions in the NA glycoprotein. Human infections with influenza B viruses carrying the E119A or H274Y substitution could limit the therapeutic options for those infected; the emergence of such viruses should be closely monitored. Influenza B viruses are important human respiratory pathogens contributing to a significant portion

  13. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus in ferrets

    Science.gov (United States)

    The influenza H1N1 pandemic of 1918 was one of the worst medical disasters in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus, the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV),...

  14. Combination Chemotherapy for Influenza

    Directory of Open Access Journals (Sweden)

    Robert G. Webster

    2010-07-01

    Full Text Available The emergence of pandemic H1N1 influenza viruses in April 2009 and the continuous evolution of highly pathogenic H5N1 influenza viruses underscore the urgency of novel approaches to chemotherapy for human influenza infection. Anti-influenza drugs are currently limited to the neuraminidase inhibitors (oseltamivir and zanamivir and to M2 ion channel blockers (amantadine and rimantadine, although resistance to the latter class develops rapidly. Potential targets for the development of new anti-influenza agents include the viral polymerase (and endonuclease, the hemagglutinin, and the non-structural protein NS1. The limitations of monotherapy and the emergence of drug-resistant variants make combination chemotherapy the logical therapeutic option. Here we review the experimental data on combination chemotherapy with currently available agents and the development of new agents and therapy targets.

  15. Conventional influenza vaccines influence the performance of a universal influenza vaccine in mice.

    Science.gov (United States)

    Rowell, Janelle; Lo, Chia-Yun; Price, Graeme E; Misplon, Julia A; Epstein, Suzanne L; Garcia, Mayra

    2018-02-08

    Universal influenza vaccines are designed to protect against diverse strains of influenza virus. Preclinical testing of new vaccine candidates is usually done in naïve animals, despite intended use in the human population with its varied immune history including responses to previous vaccinations. As an approach more relevant to human use, we tested a candidate universal influenza vaccine in mice with a history of conventional vaccination. Female BALB/c mice were given two intramuscular doses of inactivated influenza vaccine (IIV) or diphtheria and tetanus toxoids vaccine (DT), one month apart. Another group was given two intranasal doses of live attenuated influenza virus (LAIV). One month after the second dose, mice were given the universal influenza vaccine: recombinant adenoviruses expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) (A/NP + M2-rAd). Immune responses to universal vaccine antigens A/NP and M2 were assessed by ELISA and interferon-γ ELISPOT. Protection was tested by challenge with mouse-adapted A/FM/1/47 (H1N1) and monitoring for weight loss and survival. Universal vaccine performance was enhanced, inhibited or unaffected by particular prior vaccinations. Mice given Afluria IIV and LAIV had greater antibody and T-cell response to A/NP than mice without prior vaccination, providing examples of enhanced A/NP + M2-rAd performance. Though Fluvirin IIV partially inhibited, the universal vaccine still provided considerable protection unlike conventional vaccination. Fluzone IIV and DT had no effect on A/NP + M2-rAd performance. Thus our results demonstrate that universal vaccine candidate A/NP + M2-rAd was at least partially effective in mice with diverse prior histories. However, the degree of protection and nature of the immune responses may be affected by a history of conventional vaccination and suggests that performance in humans would be influenced by immune history. Published by Elsevier Ltd.

  16. New treatments for influenza.

    Science.gov (United States)

    Barik, Sailen

    2012-09-13

    Influenza has a long history of causing morbidity and mortality in the human population through routine seasonal spread and global pandemics. The high mutation rate of the RNA genome of the influenza virus, combined with assortment of its multiple genomic segments, promote antigenic diversity and new subtypes, allowing the virus to evade vaccines and become resistant to antiviral drugs. There is thus a continuing need for new anti-influenza therapy using novel targets and creative strategies. In this review, we summarize prospective future therapeutic regimens based on recent molecular and genomic discoveries.

  17. No serological evidence that harbour porpoises are additional hosts of influenza B viruses.

    Directory of Open Access Journals (Sweden)

    Rogier Bodewes

    Full Text Available Influenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses that are antigenetically distinct from influenza B viruses circulating among humans suggest that influenza B viruses have been introduced into this seal population by another, non-human, host. Harbour porpoises (Phocoena phocoena are sympatric with seals in these waters and are also occasionally in close contact with humans after stranding and subsequent rehabilitation. In addition, virus attachment studies demonstrated that influenza B viruses can bind to cells of the respiratory tract of these animals. Therefore, we hypothesized that harbour porpoises might be a reservoir of influenza B viruses. In the present study, an unique set of serum samples from 79 harbour porpoises, stranded alive on the Dutch coast between 2003 and 2013, was tested for the presence of antibodies against influenza B viruses by use of the hemagglutination inhibition test and for antibodies against influenza A viruses by use of a competitive influenza A nucleoprotein ELISA. No antibodies were detected against either virus, suggesting that influenza A and B virus infections of harbour porpoises in Dutch coastal waters are not common, which was supported by statistical analysis of the dataset.

  18. Randomized controlled trials for influenza drugs and vaccines: a review of controlled human infection studies

    Directory of Open Access Journals (Sweden)

    Shobana Balasingam

    2016-08-01

    Conclusions: Controlled human infection studies are an important research tool in assessing promising influenza vaccines and antivirals. These studies are performed quickly and are cost-effective and safe, with a low incidence of serious adverse events.

  19. [Phylogenetic analysis of human/swine/avian gene reassortant H1N2 influenza A virus isolated from a pig in China].

    Science.gov (United States)

    Chen, Yixiang; Meng, Xueqiong; Liu, Qi; Huang, Xia; Huang, Shengbin; Liu, Cuiquan; Shi, Kaichuang; Guo, Jiangang; Chen, Fangfang; Hu, Liping

    2008-04-01

    Our aim in this study was to determine the genetic characterization and probable origin of the H1N2 swine influenza virus (A/Swine/Guangxi/13/2006) (Sw/GX/13/06) from lung tissue of a pig in Guangxi province, China. Eight genes of Sw/GX/13/06 were cloned and genetically analyzed. The hemagglutinin (HA), nucleoprotein (NP), matrix (M) and non-structural (NS) genes of Sw/GX/13/06 were most closely related to genes from the classical swine H1N1 influenza virus lineage. The neuraminidase (NA) and PB1 genes were most closely related to the corresponding genes from the human influenza H3N2 virus lineage. The remaining two genes PA and PB2 polymerase genes were most closely related to the genes from avian influenza virus lineage. Phylogenetic analyses revealed that Sw/GX/13/06 was a human/swine/avian H1N2 virus, and closely related to H1N2 viruses isolated from pigs in United States (1999-2001) and Korea (2002). To our knowledge, Sw/GX/13/06 was the first triple-reassortant H1N2 influenza A virus isolated from a pig in China. Whether the Sw/GX/13/06 has a potential threat to breeding farm and human health remains to be further investigated.

  20. History of Swine influenza viruses in Asia.

    Science.gov (United States)

    Zhu, Huachen; Webby, Richard; Lam, Tommy T Y; Smith, David K; Peiris, Joseph S M; Guan, Yi

    2013-01-01

    The pig is one of the main hosts of influenza A viruses and plays important roles in shaping the current influenza ecology. The occurrence of the 2009 H1N1 pandemic influenza virus demonstrated that pigs could independently facilitate the genesis of a pandemic influenza strain. Genetic analyses revealed that this virus was derived by reassortment between at least two parent swine influenza viruses (SIV), from the northern American triple reassortant H1N2 (TR) and European avian-like H1N1 (EA) lineages. The movement of live pigs between different continents and subsequent virus establishment are preconditions for such a reassortment event to occur. Asia, especially China, has the largest human and pig populations in the world, and seems to be the only region frequently importing pigs from other continents. Virological surveillance revealed that not only classical swine H1N1 (CS), and human-origin H3N2 viruses circulated, but all of the EA, TR and their reassortant variants were introduced into and co-circulated in pigs in this region. Understanding the long-term evolution and history of SIV in Asia would provide insights into the emergence of influenza viruses with epidemic potential in swine and humans.

  1. (Highly pathogenic) Avian Influenza as a zoonotic agent

    OpenAIRE

    Kalthoff , Donata; Globig , Anja; Beer , Martin

    2010-01-01

    Summary Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence b...

  2. Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2

    NARCIS (Netherlands)

    P. Lemey (Philippe); A. Rambaut (Andrew); T. Bedford (Trevor); R. Faria (Rui); F. Bielejec (Filip); G. Baele (Guy); C.A. Russell (Colin); D.J. Smith (Derek James); O. Pybus (Oliver); K. Brockmann; M.A. Suchard (Marc)

    2014-01-01

    textabstractInformation on global human movement patterns is central to spatial epidemiological models used to predict the behavior of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at various geographic scales using standard

  3. Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian influenza virus A(H7N7) infection as determined by Illumina ultra-deep sequencing

    NARCIS (Netherlands)

    Jonges, Marcel; Welkers, Matthijs R. A.; Jeeninga, Rienk E.; Meijer, Adam; Schneeberger, Peter; Fouchier, Ron A. M.; de Jong, Menno D.; Koopmans, Marion

    2014-01-01

    Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus

  4. Influenza or not influenza: Analysis of a case of high fever that happened 2000 years ago in Biblical time

    Directory of Open Access Journals (Sweden)

    Leung Ting F

    2010-07-01

    Full Text Available Abstract The Bible describes the case of a woman with high fever cured by our Lord Jesus Christ. Based on the information provided by the gospels of Mark, Matthew and Luke, the diagnosis and the possible etiology of the febrile illness is discussed. Infectious diseases continue to be a threat to humanity, and influenza has been with us since the dawn of human history. If the postulation is indeed correct, the woman with fever in the Bible is among one of the very early description of human influenza disease. Infectious diseases continue to be a threat to humanity, and influenza has been with us since the dawn of human history. We analysed a case of high fever that happened 2000 years ago in Biblical time and discussed possible etiologies.

  5. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  6. Productive infection of human skeletal muscle cells by pandemic and seasonal influenza A(H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Marion Desdouits

    Full Text Available Besides the classical respiratory and systemic symptoms, unusual complications of influenza A infection in humans involve the skeletal muscles. Numerous cases of acute myopathy and/or rhabdomyolysis have been reported, particularly following the outbreak of pandemic influenza A(H1N1 in 2009. The pathogenesis of these influenza-associated myopathies (IAM remains unkown, although the direct infection of muscle cells is suspected. Here, we studied the susceptibility of cultured human primary muscle cells to a 2009 pandemic and a 2008 seasonal influenza A(H1N1 isolate. Using cells from different donors, we found that differentiated muscle cells (i. e. myotubes were highly susceptible to infection by both influenza A(H1N1 isolates, whereas undifferentiated cells (i. e. myoblasts were partially resistant. The receptors for influenza viruses, α2-6 and α2-3 linked sialic acids, were detected on the surface of myotubes and myoblasts. Time line of viral nucleoprotein (NP expression and nuclear export showed that the first steps of the viral replication cycle could take place in muscle cells. Infected myotubes and myoblasts exhibited budding virions and nuclear inclusions as observed by transmission electron microscopy and correlative light and electron microscopy. Myotubes, but not myoblasts, yielded infectious virus progeny that could further infect naive muscle cells after proteolytic treatment. Infection led to a cytopathic effect with the lysis of muscle cells, as characterized by the release of lactate dehydrogenase. The secretion of proinflammatory cytokines by muscle cells was not affected following infection. Our results are compatible with the hypothesis of a direct muscle infection causing rhabdomyolysis in IAM patients.

  7. No serological evidence that harbour porpoises are additional hosts of influenza B viruses

    NARCIS (Netherlands)

    R. Bodewes (Rogier); M.W.G. van de Bildt (Marco); C.E. van Elk; P.E. Bunskoek (Paulien); D.A.M.C. van de Vijver (David); S.L. Smits (Saskia); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses

  8. A human monoclonal antibody with neutralizing activity against highly divergent influenza subtypes.

    Directory of Open Access Journals (Sweden)

    Nicola Clementi

    Full Text Available The interest in broad-range anti-influenza A monoclonal antibodies (mAbs has recently been strengthened by the identification of anti-hemagglutinin (HA mAbs endowed with heterosubtypic neutralizing activity to be used in the design of "universal" prophylactic or therapeutic tools. However, the majority of the single mAbs described to date do not bind and neutralize viral isolates belonging to highly divergent subtypes clustering into the two different HA-based influenza phylogenetic groups: the group 1 including, among others, subtypes H1, H2, H5 and H9 and the group 2 including, among others, H3 subtype. Here, we describe a human mAb, named PN-SIA28, capable of binding and neutralizing all tested isolates belonging to phylogenetic group 1, including H1N1, H2N2, H5N1 and H9N2 subtypes and several isolates belonging to group 2, including H3N2 isolates from the first period of the 1968 pandemic. Therefore, PN-SIA28 is capable of neutralizing isolates belonging to subtypes responsible of all the reported pandemics, as well as other subtypes with pandemic potential. The region recognized by PN-SIA28 has been identified on the stem region of HA and includes residues highly conserved among the different influenza subtypes. A deep characterization of PN-SIA28 features may represent a useful help in the improvement of available anti-influenza therapeutic strategies and can provide new tools for the development of universal vaccinal strategies.

  9. La influenza, un problema vigente de salud pública Influenza, an existing public health problem

    Directory of Open Access Journals (Sweden)

    Juan García-García

    2006-06-01

    particular, during winter months and having an elevated effect on public health worldwide. The disease has high morbidity rates for people of all ages and particularly high mortality rates for children, adults over 60 years old, patients with chronic illnesses and pregnant women. Prevention control strategies include vaccination using inactivated, subunit or genetically modified virus vaccines. Influenza in humans is caused by two subtypes of influenza virus A and one of influenza virus B. The influenza virus A that affects humans mutates easily, thereby often causing new antigenic variants of each subtype to emerge, requiring the inclusion of such variants in annual vaccines in order to assure proper immunization of the population. The influenza pandemic refers to the introduction and later worldwide spread of a new influenza virus in the human population, which occurs sporadically. Due to the lack of immunity in humans against the new virus, serious epidemics can be provoked resulting in high morbidity and mortality rates. Historically, influenza pandemics are a result of the transmission of the virus from birds to humans, or the transfer of such genes to seasonal influenza. Wild waterfowl -both migratory and shore birds- carry a large diversity of influenza virus subtypes, which are eventually transmitted to domestic birds. Some of those viruses cross the species barrier and infect mammals, including humans. The adaptation process of the avian virus to mammal hosts requires time. Therefore, the presentation of these cases can take several years. Since December 2003, in several Southeast Asian countries a large proportion of domestic birds have been affected by an avian influenza epidemic (subtype H5N1. By Februrary 2006, the epidemic had already affected countries in Europe and Africa, having a significant economic impact on commercial poultry due to the more than 180 million birds that were sacrificed. Some strains of this avian influenza virus have directly, although

  10. Sialic acid tissue distribution and influenza virus tropism

    OpenAIRE

    Kumlin, Urban; Olofsson, Sigvard; Dimock, Ken; Arnberg, Niklas

    2008-01-01

    Abstract? Avian influenza A viruses exhibit a strong preference for using ?2,3?linked sialic acid as a receptor. Until recently, the presumed lack of this receptor in human airways was believed to constitute an efficient barrier to avian influenza A virus infection of humans. Recent zoonotic outbreaks of avian influenza A virus have triggered researchers to analyse tissue distribution of sialic acid in further detail. Here, we review and extend the current knowledge about sialic acid distribu...

  11. Migration and persistence of human influenza A viruses, Vietnam, 2001-2008.

    Science.gov (United States)

    Le, Mai Quynh; Lam, Ha Minh; Cuong, Vuong Duc; Lam, Tommy Tsan-Yuk; Halpin, Rebecca A; Wentworth, David E; Hien, Nguyen Tran; Thanh, Le Thi; Phuong, Hoang Vu Mai; Horby, Peter; Boni, Maciej F

    2013-11-01

    Understanding global influenza migration and persistence is crucial for vaccine strain selection. Using 240 new human influenza A virus whole genomes collected in Vietnam during 2001-2008, we looked for persistence patterns and migratory connections between Vietnam and other countries. We found that viruses in Vietnam migrate to and from China, Hong Kong, Taiwan, Cambodia, Japan, South Korea, and the United States. We attempted to reduce geographic bias by generating phylogenies subsampled at the year and country levels. However, migration events in these phylogenies were still driven by the presence or absence of sequence data, indicating that an epidemiologic study design that controls for prevalence is required for robust migration analysis. With whole-genome data, most migration events are not detectable from the phylogeny of the hemagglutinin segment alone, although general migratory relationships between Vietnam and other countries are visible in the hemagglutinin phylogeny. It is possible that virus lineages in Vietnam persisted for >1 year.

  12. Effects of Cyclosporin A induced T-lymphocyte depletion on the course of avian Metapneumovirus (aMPV) infection in turkeys

    DEFF Research Database (Denmark)

    Rubbenstroth, Dennis; Dalgaard, Tina S; Kothlow, Sonja

    2010-01-01

    The avian Metapneumovirus (aMPV) causes an economically important acute respiratory disease in turkeys (turkey rhinotracheitis, TRT).While antibodies were shownto be insufficient for protection against a MPV-infection, the role of T-lymphocytes in the control of aMPV-infection is not clear...... to untreated controls (P infection...

  13. Thermal inactivation of avian viral and bacterial pathogens in an effluent treatment system within a biosafety level 2 and 3 enhanced facility

    Science.gov (United States)

    Avian influenza (AI) virus, avian paramyxovirus Type 1 (APMV-1 or Newcastle disease virus [NDV]), reovirus, rotavirus, turkey astrovirus (TAstV), avian metapneumovirus (aMPV), Marek’s disease virus (MDV-1), avian parvovirus (ChPV) and Salmonella enterica serovar Enteritidis are significant biosafety...

  14. On the epidemiology of influenza

    Directory of Open Access Journals (Sweden)

    Scragg Robert

    2008-02-01

    Full Text Available Abstract The epidemiology of influenza swarms with incongruities, incongruities exhaustively detailed by the late British epidemiologist, Edgar Hope-Simpson. He was the first to propose a parsimonious theory explaining why influenza is, as Gregg said, "seemingly unmindful of traditional infectious disease behavioral patterns." Recent discoveries indicate vitamin D upregulates the endogenous antibiotics of innate immunity and suggest that the incongruities explored by Hope-Simpson may be secondary to the epidemiology of vitamin D deficiency. We identify – and attempt to explain – nine influenza conundrums: (1 Why is influenza both seasonal and ubiquitous and where is the virus between epidemics? (2 Why are the epidemics so explosive? (3 Why do they end so abruptly? (4 What explains the frequent coincidental timing of epidemics in countries of similar latitude? (5 Why is the serial interval obscure? (6 Why is the secondary attack rate so low? (7 Why did epidemics in previous ages spread so rapidly, despite the lack of modern transport? (8 Why does experimental inoculation of seronegative humans fail to cause illness in all the volunteers? (9 Why has influenza mortality of the aged not declined as their vaccination rates increased? We review recent discoveries about vitamin D's effects on innate immunity, human studies attempting sick-to-well transmission, naturalistic reports of human transmission, studies of serial interval, secondary attack rates, and relevant animal studies. We hypothesize that two factors explain the nine conundrums: vitamin D's seasonal and population effects on innate immunity, and the presence of a subpopulation of "good infectors." If true, our revision of Edgar Hope-Simpson's theory has profound implications for the prevention of influenza.

  15. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Directory of Open Access Journals (Sweden)

    David Metzgar

    Full Text Available For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based or remarkably insensitive (antibody-based. Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A

  16. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Science.gov (United States)

    Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark

    2010-02-03

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence

  17. Poultry food products--a source of avian influenza virus transmission to humans?

    Science.gov (United States)

    Harder, T C; Buda, S; Hengel, H; Beer, M; Mettenleiter, T C

    2016-02-01

    Global human mobility and intercontinental connectivity, expansion of livestock production and encroachment of wildlife habitats by invasive agricultural land use contribute to shape the complexity of influenza epidemiology. The OneHealth approach integrates these and further elements into considerations to improve disease control and prevention. Food of animal origin for human consumption is another integral aspect; if produced from infected livestock such items may act as vehicles of spread of animal pathogens, and, in case of zoonotic agents, as a potential human health hazard. Notifiable zoonotic avian influenza viruses (AIV) have become entrenched in poultry populations in several Asian and northern African countries since 2003. Highly pathogenic (HP) AIV (e.g. H5N1) cause extensive poultry mortality and severe economic losses. HPAIV and low pathogenic AIV (e.g. H7N9) with zoonotic propensities pose risks for human health. More than 1500 human cases of AIV infection have been reported, mainly from regions with endemically infected poultry. Intense human exposure to AIV-infected poultry, e.g. during rearing, slaughtering or processing of poultry, is a major risk factor for acquiring AIV infection. In contrast, human infections through consumption of AIV-contaminated food have not been substantiated. Heating poultry products according to kitchen standards (core temperatures ≥70°C, ≥10 s) rapidly inactivates AIV infectivity and renders fully cooked products safe. Nevertheless, concerted efforts must ensure that poultry products potentially contaminated with zoonotic AIV do not reach the food chain. Stringent and sustained OneHealth measures are required to better control and eventually eradicate, HPAIV from endemic regions. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  19. New treatments for influenza

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2012-09-01

    Full Text Available Abstract Influenza has a long history of causing morbidity and mortality in the human population through routine seasonal spread and global pandemics. The high mutation rate of the RNA genome of the influenza virus, combined with assortment of its multiple genomic segments, promote antigenic diversity and new subtypes, allowing the virus to evade vaccines and become resistant to antiviral drugs. There is thus a continuing need for new anti-influenza therapy using novel targets and creative strategies. In this review, we summarize prospective future therapeutic regimens based on recent molecular and genomic discoveries.

  20. High conservation level of CD8(+) T cell immunogenic regions within an unusual H1N2 human influenza variant.

    Science.gov (United States)

    Komadina, Naomi; Quiñones-Parra, Sergio M; Kedzierska, Katherine; McCaw, James M; Kelso, Anne; Leder, Karin; McVernon, Jodie

    2016-10-01

    Current seasonal influenza vaccines require regular updates due to antigenic drift causing loss of effectiveness and therefore providing little or no protection against novel influenza A subtypes. Next generation vaccines capable of eliciting CD8(+) T cell (CTL) mediated cross-protective immunity may offer a long-term alternative strategy. However, measuring pre- and existing levels of CTL cross-protection in humans is confounded by differences in infection histories across individuals. During 2000-2003, H1N2 viruses circulated persistently in the human population for the first time and we hypothesized that the viral nucleoprotein (NP) contained novel CTL epitopes that may have contributed to the survival of the viruses. This study describes the immunogenic NP peptides of H1N1, H2N2, and H3N2 influenza viruses isolated from humans over the past century, 1918-2003, by comparing this historical dataset to reference NP peptides from H1N2 that circulated in humans during 2000-2003. Observed peptides sequences ranged from highly conserved (15%) to highly variable (12%), with variation unrelated to reported immunodominance. No unique NP peptides which were exclusive to the H1N2 viruses were noted. However, the virus had inherited the NP from a recently emerged H3N2 variant containing novel peptides, which may have assisted its persistence. Any advantage due to this novelty was subsequently lost with emergence of a newer H3N2 variant in 2003. Our approach has potential to provide insight into the population context in which influenza viruses emerge, and may help to inform immunogenic peptide selection for CTL-inducing influenza vaccines. J. Med. Virol. 88:1725-1732, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Infección por metapneumovirus humano en niños hospitalizados por una enfermedad respiratoria aguda grave: Descripción clínico- epidemiológica A human metapneumovirus infection in hospitalized infant patients with severe acute respiratory tract infection: A clinical and epidemiological view

    OpenAIRE

    JAIME LOZANO C; LETICIA YÁÑEZ P; MICHELANGELO LAPADULA A; MÓNICA LAFOURCADE R; FELIPE BURGOS F; LUIS HERRADA H; ISOLDA BUDNIK O

    2009-01-01

    El metapneumovirus humano (hMPV) es un virus de reciente diagnóstico. Se asocia con infecciones respiratorias agudas altas y bajas (IRAb). Se efectuó un estudio prospectivo durante dos años con el objetivo de evaluar la tasa de circulación y los hallazgos clínicos asociados a la infección por hMPV en niños hospitalizados por una IRAb grave. Resultados: hMPV fue demostrado en 24 (10,5%) de los 229 niños enrolados. 42% de los pacientes con hMPV eran menores de 12 meses de edad y el 58% tenía al...

  2. Influenza A (H3N2) virus in swine at agricultural fairs and transmission to humans, Michigan and Ohio, USA, 2016

    Science.gov (United States)

    An 18 case outbreak of variant H3N2 influenza A occurred during 2016 after exposure to influenza-infected swine at seven agricultural fairs. Sixteen cases were infected with a reassortant between 2010-2011 human seasonal H3N2 strains and viruses endemic in North American swine, a viral lineage incre...

  3. Influenza em animais heterotérmicos Influenza in heterothermics

    Directory of Open Access Journals (Sweden)

    Dalva Assunção Portari Mancini

    2004-06-01

    Full Text Available O objetivo foi pesquisar Ortomyxovirus em animais heterotérmicos. Coletou-se sangue de serpentes dos gêneros Bothrops e Crotalus e de sapo e rãs dos gêneros Bufo e Rana, para a detecção dos receptores de hemácias e anticorpos específicos, ao vírus influenza, pelos testes de hemaglutinação e inibição da hemaglutinação, respectivamente. Pelo teste de hemaglutinação, verificou-se que serpentes e sapos em cativeiro apresentaram receptores em suas hemácias para o vírus influenza, humano e eqüino do tipo A e tipo B. O mesmo ocorreu com serpentes recém chegadas. Quanto ao teste de inibição da hemaglutinação dos soros dos répteis observou-se títulos protetores de anticorpos aos vírus influenza tipo A (origens humana e eqüina e tipo B. Com soro de sapo não se observou reação de inibição da hemaglutinação porém, 83,3% das rãs obtiveram médias de 40UIH para algumas cepas. Conclui-se que animais heterotérmicos podem oferecer condições de hospedeiros aos vírus influenza, assim como susceptibilidade à infecção.The objective was to study Orthomyxovirus in heterothermic animals. Blood samples from snakes (genus Bothrops and Crotalus and from toads and frogs (genus Bufo and Rana were collected to evaluate the red cell receptors and antibodies specific to influenza virus by the hemagglutination and hemagglutination inhibition tests, respectively. Both snakes and toads kept in captivity presented receptors in their red cells and antibodies specific to either influenza virus type A (human and equine origin or influenza type B. The same was observed with recently captured snakes. Concerning the influenza hemagglutination inhibition antibodies protective levels were observed in the reptiles' serum, against influenza type A and type B. Unlike the toads, 83.3% of the frogs presented mean levels of Ab 40HIU for some influenza strains. It was concluded that heterothermic animals could offer host conditions to the influenza

  4. Wipes coated with a singlet-oxygen-producing photosensitizer are effective against human influenza virus but not against norovirus

    NARCIS (Netherlands)

    Verhaelen, Katharina; Bouwknegt, Martijn; Rutjes, Saskia; de Roda Husman, Ana Maria; Duizer, Erwin

    2014-01-01

    Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses,

  5. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells.

    Science.gov (United States)

    Hussain, Althaf I; Cordeiro, Melissa; Sevilla, Elizabeth; Liu, Jonathan

    2010-05-14

    Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006-2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced

  6. [Swine influenza virus: evolution mechanism and epidemic characterization--a review].

    Science.gov (United States)

    Qi, Xian; Lu, Chengping

    2009-09-01

    Pigs may play an important role in the evolution and ecology of influenza A virus. The tracheal epithelium of pigs contain both SA alpha 2,6 Gal and SA alpha 2,3 Gal receptors and can be infected with swine, human and avian viruses, therefore, pigs have been considered as an intermediate host for the adaptation of avian influenza viruses to humans or as mixing vessels for the generation of genetically reassortant viruses. Evolution patterns among swine influenza viruses including evolution of host adaptation, antigenic drift and genetic reassortment, and the latter is the main one. Unlike human influenza viruses, swine viruses have different epizootiological patterns in different areas of world, which is enzootic and geographic dependence. Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2, and these include classical swine H1N1, avian-like H1N1, human-like H3N2, reassortant H3N2 and various genotype H1N2 viruses. In Europe, North America and China, influenza A viruses circulating in pigs are distinct in the genetic characteristics and genetic sources. Since 1979, three subtypes, avian-like H1N1, reassortant H1N2 and H3N2 viruses, have been co-circulating in European swine. Before 1998, classical H1N1 viruses were the exclusive cause of swine influenza in North America. However, after that, three triple-reassortant H1N2, H3N2 and H1N1 viruses with genes of human, swine and avian virus began to emerge in pigs. Genetically, the pandemic viruses emerging in human, so called influenza A (H1N1) viruses, contain genes from both Europe and North American SIV lineages. SIV is not the same as Europe and the United States in the prevalence and genetic background in China, mainly classical swine H1N1 and human-like H3N2 type virus. However, in recent years, SIV from Europe and North America have been introduced into Chinese pig herds, so more attention should be given on the evolutionary of SIV in China

  7. Detección de virus influenza A, B y subtipos A (H1N1 pdm09, A (H3N2 por múltiple RT-PCR en muestras clínicas

    Directory of Open Access Journals (Sweden)

    Pool Marcos

    Full Text Available Objetivos. Estandarizar la técnica de reacción en cadena de la polimerasa en tiempo real (RT-PCR múltiple para la detección de virus influenza A, B y tipificación de subtipos A (H1N1 pdm09, A (H3N2 en muestras clínicas. Materiales y métodos. Se analizaron 300 muestras de hisopado nasofaríngeo. Esta metodología fue estandarizada en dos pasos: la primera reacción detectó el gen de la matriz del virus de influenza A, gen de la nucleoproteína del virus influenza B y el gen GAPDH de las células huésped. La segunda reacción detectó el gen de la hemaglutinina de los subtipos A (H1N1 pandémico (pdm09 y A (H3N2. Resultados. Se identificaron 109 muestras positivas a influenza A y B, de las cuales 72 fueron positivas a influenza A (36 positivas a influenza A (H1N1 pdm09 y 36 positivos a influenza A (H3N2 y 37 muestras positivas a influenza B. 191 fueron negativas a ambos virus mediante RT-PCR en tiempo real multiplex. Se encontró una sensibilidad y especificidad del 100% al analizar los resultados de ambas reacciones. El límite de detección viral fue del rango de 7 a 9 copias/µL por virus. Los resultados no mostraron ninguna reacción cruzada con otros virus tales como adenovirus, virus sincitial respiratorio, parainfluenza (1,2 y 3, metapneumovirus, subtipos A (H1N1 estacional, A (H5N2 y VIH. Conclusiones. La RT-PCR múltiple demostró ser una prueba muy sensible y específica para la detección de virus influenza A, B y subtipos A (H1N1, H3N2 y su uso puede ser conveniente en brotes estacionales.

  8. Avaliação in vitro da atividade antiviral de extratos de plantas frente ao metapneumovirus aviário (AMPV) e vírus respiratório sincicial bovino (BRSV)

    OpenAIRE

    Matheus Cavalheiro Martini

    2010-01-01

    Resumo: Para avaliar a atividade antiviral dos extratos de plantas brasileiras foram eleitos o Metapneumovirus aviário (aMPV) e o vírus Respiratório sincicial bovino (BRSV) pertences à família Paramyxoviridae, subfamília Pneumovirinae, gêneros Metapneumovirus e Pneumovirus respectivamente. Tanto o aMPV quanto o BRSV são vírus semelhantes aos que causam doenças em humanos como o vírus respiratório sincicial humano (HRSV) e metapneumovírus humano (hMPV). O objetivo do presente trabalho foi aval...

  9. MANAGEMENT PATIENT OF SWINE INFLUENZA

    Directory of Open Access Journals (Sweden)

    Endra Gunawan

    2015-05-01

    Full Text Available Influenza is an acute respiratory diseases caused by various influenza virus which infect the upper and lower respiratory tract and often accompanied by systemic symptoms such as fever, headache and muscle pain. Influenza spreads through the air. Swine influenza comes from swine and can cause an outbreaks in pig flocks. Even this is a kind of a rare case but the swine influenza could be transmitted to human by direct contact with infected swine or through environment that already being contaminated by swine influenza virus. There are 3 types of swine influenza virus namely H1N1, H3N2 and H1N2. Type H1N1 swine-virus had been known since 1918. Avian influenza virus infection is transmitted from one person to another through secret containing virus. Virus is binded into the mucous cells of respiratory tract before it is finally infecting the cells itself. Management patients with H1N1 influenza is based on the complications and the risk. Besides, it is also need to consider the clinical criteria of the patient. Therapy medicamentosa is applied to the patients by giving an antiviral, antibiotics and symptomatic therapy. Prevention can be done by avoid contact with infected animal or environment, having antiviral prophylaxis and vaccination.

  10. Molecular characterization and phylogenetic analysis of human influenza A viruses isolated in Iran during the 2014-2015 season.

    Science.gov (United States)

    Moasser, Elham; Behzadian, Farida; Moattari, Afagh; Fotouhi, Fatemeh; Rahimi, Amir; Zaraket, Hassan; Hosseini, Seyed Younes

    2017-07-01

    Influenza A viruses are an important cause of severe infectious diseases in humans and are characterized by their fast evolution rate. Global monitoring of these viruses is critical to detect newly emerging variants during annual epidemics. Here, we sought to genetically characterize influenza A/H1N1pdm09 and A/H3N2 viruses collected in Iran during the 2014-2015 influenza season. A total of 200 nasopharyngeal swabs were collected from patients with influenza-like illnesses. Swabs were screened for influenza A and B using real-time PCR. Furthermore, positive specimens with high virus load underwent virus isolation and genetic characterization of their hemagglutinin (HA) and M genes. Of the 200 specimens, 80 were influenza A-positive, including 44 A/H1N1pdm09 and 36 A/H3N2, while 18 were influenza B-positive. Phylogenetic analysis of the HA genes of the A/H1N1pdm09 viruses revealed the circulation of clade 6C, characterized by amino acid substitutions D97N, V234I and K283E. Analysis of the A/H3N2 viruses showed a genetic drift from the vaccine strain A/Texas/50/2012 with 5 mutations (T128A, R142G, N145S, P198S and S219F) belonging to the antigenic sites A, B, and D of the HA protein. The A/H3N2 viruses belonged to phylogenetic clades 3C.2 and 3C.3. The M gene trees of the Iranian A/H1N1pdm09 and A/H3N2 mirrored the clustering patterns of their corresponding HA trees. Our results reveal co-circulation of several influenza A virus strains in Iran during the 2014-2015 influenza season.

  11. The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue.

    Science.gov (United States)

    Knepper, Jessica; Schierhorn, Kristina L; Becher, Anne; Budt, Matthias; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Gruber, Achim D; Suttorp, Norbert; Schweiger, Brunhilde; Hippenstiel, Stefan; Hocke, Andreas C; Wolff, Thorsten

    2013-10-08

    A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-β promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to

  12. The Relationship of Avian Influenza and Waterbirds in Creating Genetic Diversity and the Role of Waterbirds as Reservoir for Avian Influenza

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-03-01

    Full Text Available Outbreaks of Avian Influenza (AI has enormous implications for poultry and human health.These outbreaks are caused by influenza A virus that belongS to the family of Orthomyxoviridae. These viruses are RNA viruses, negative polarity, and the envelope has segmented genom. Generally, Avian Influenza is a disease which originally occurred in birds with complex ecology including reassortment and transmission among different species of birds and mammals. The gene of AI virus can be transmitted among human and avian species as shown by the virus reasortantment that caused pandemic human influenza in 1957 and 1968. Pandemi in 1957 and 1968 were different from previously human viruses because the substitution of several genes are derived from avian viruses. Wild waterfowls especially Anseriformes (duck, muscovy duck and geese and Charadriiformes (gulls, seabirds, wild birds are the natural reservoirs for influenza type A viruses and play important role on the ecology and propagation of the virus. From this reservoir, influenza type A virus usually can be transmitted to other birds, mammals (including human and caused outbreak of lethal diseases. Waterfowl that is infected with influenza A virus usually does not show any clinical symptoms. However, several reports stated that HPAI viruses can cause severe disease with neurogical disorders led to death in waterfowl. Migration of birds including waterfowls have active role in transmitting and spreading the disease. Movement of wild birds and inappropriate poultry trade transportation play a greater role as vector in spreading HPAI to humans. Ecological change of environment has also a great effect in spreading AI viruses. The spreading pattern of AI viruses is usually influenced by seasons, where the prevalence of AI was reported to be in the fall, winter and rainy seasons. Finally, the effective control strategies against the spreading of AI viruses is required. Programs of monitoring, surveilence and

  13. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    Science.gov (United States)

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  14. A first-generation physiologically based pharmacokinetic (PBPK) model of alpha-tocopherol in human influenza vaccine adjuvant.

    Science.gov (United States)

    Tegenge, Million A; Mitkus, Robert J

    2015-04-01

    Alpha (α)-tocopherol is a component of a new generation of squalene-containing oil-in-water (SQ/W) emulsion adjuvants that have been licensed for use in certain influenza vaccines. Since regulatory pharmacokinetic studies are not routinely required for influenza vaccines, the in vivo fate of this vaccine constituent is largely unknown. In this study, we constructed a physiologically based pharmacokinetic (PBPK) model for emulsified α-tocopherol in human adults and infants. An independent sheep PBPK model was also developed to inform the local preferential lymphatic transfer and for the purpose of model evaluation. The PBPK model predicts that α-tocopherol will be removed from the injection site within 24h and rapidly transfer predominantly into draining lymph nodes. A much lower concentration of α-tocopherol was estimated to peak in plasma within 8h. Any systemically absorbed α-tocopherol was predicted to accumulate slowly in adipose tissue, but not in other tissues. Model evaluation and uncertainty analyses indicated acceptable fit, with the fraction of dose taken up into the lymphatics as most influential on plasma concentration. In summary, this study estimates the in vivo fate of α-tocopherol in adjuvanted influenza vaccine, may be relevant in explaining its immunodynamics in humans, and informs current regulatory risk-benefit analyses. Published by Elsevier Inc.

  15. Pathogenesis, Transmissibility, and Tropism of a Highly Pathogenic Avian Influenza A(H7N7) Virus Associated With Human Conjunctivitis in Italy, 2013.

    Science.gov (United States)

    Belser, Jessica A; Creager, Hannah M; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M

    2017-09-15

    H7 subtype influenza viruses represent a persistent public health threat because of their continued detection in poultry and ability to cause human infection. An outbreak of highly pathogenic avian influenza H7N7 virus in Italy during 2013 resulted in 3 cases of human conjunctivitis. We determined the pathogenicity and transmissibility of influenza A/Italy/3/2013 virus in mouse and ferret models and examined the replication kinetics of this virus in several human epithelial cell types. The moderate virulence observed in mammalian models and the capacity for transmission in a direct contact model underscore the need for continued study of H7 subtype viruses. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Public Health and Epidemiological Considerations For Avian Influenza Risk Mapping and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Joseph P. Dudley

    2008-12-01

    Full Text Available Avian influenza viruses are now widely recognized as important threats to agricultural biosecurity and public health, and as the potential source for pandemic human influenza viruses. Human infections with avian influenza viruses have been reported from Asia (H5N1, H5N2, H9N2, Africa (H5N1, H10N7, Europe (H7N7, H7N3, H7N2, and North America (H7N3, H7N2, H11N9. Direct and indirect public health risks from avian influenzas are not restricted to the highly pathogenic H5N1 "bird flu" virus, and include low pathogenic as well as high pathogenic strains of other avian influenza virus subtypes, e.g., H1N1, H7N2, H7N3, H7N7, and H9N2. Research has shown that the 1918 Spanish Flu pandemic was caused by an H1N1 influenza virus of avian origins, and during the past decade, fatal human disease and human-to-human transmission has been confirmed among persons infected with H5N1 and H7N7 avian influenza viruses. Our ability to accurately assess and map the potential economic and public health risks associated with avian influenza outbreaks is currently constrained by uncertainties regarding key aspects of the ecology and epidemiology of avian influenza viruses in birds and humans, and the mechanisms by which highly pathogenic avian influenza viruses are transmitted between and among wild birds, domestic poultry, mammals, and humans. Key factors needing further investigation from a risk management perspective include identification of the driving forces behind the emergence and persistence of highly pathogenic avian influenza viruses within poultry populations, and a comprehensive understanding of the mechanisms regulating transmission of highly pathogenic avian influenza viruses between industrial poultry farms and backyard poultry flocks. More information is needed regarding the extent to which migratory bird populations to contribute to the transnational and transcontinental spread of highly pathogenic avian influenza viruses, and the potential for wild bird

  17. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    Science.gov (United States)

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Pandemic influenza: certain uncertainties

    Science.gov (United States)

    Morens, David M.; Taubenberger, Jeffery K.

    2011-01-01

    SUMMARY For at least five centuries, major epidemics and pandemics of influenza have occurred unexpectedly and at irregular intervals. Despite the modern notion that pandemic influenza is a distinct phenomenon obeying such constant (if incompletely understood) rules such as dramatic genetic change, cyclicity, “wave” patterning, virus replacement, and predictable epidemic behavior, much evidence suggests the opposite. Although there is much that we know about pandemic influenza, there appears to be much more that we do not know. Pandemics arise as a result of various genetic mechanisms, have no predictable patterns of mortality among different age groups, and vary greatly in how and when they arise and recur. Some are followed by new pandemics, whereas others fade gradually or abruptly into long-term endemicity. Human influenza pandemics have been caused by viruses that evolved singly or in co-circulation with other pandemic virus descendants and often have involved significant transmission between, or establishment of, viral reservoirs within other animal hosts. In recent decades, pandemic influenza has continued to produce numerous unanticipated events that expose fundamental gaps in scientific knowledge. Influenza pandemics appear to be not a single phenomenon but a heterogeneous collection of viral evolutionary events whose similarities are overshadowed by important differences, the determinants of which remain poorly understood. These uncertainties make it difficult to predict influenza pandemics and, therefore, to adequately plan to prevent them. PMID:21706672

  19. Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility

    DEFF Research Database (Denmark)

    Belser, Jessica A; Blixt, Ola; Chen, Li-Mei

    2008-01-01

    Avian H7 influenza viruses from both the Eurasian and North American lineage have caused outbreaks in poultry since 2002, with confirmed human infection occurring during outbreaks in The Netherlands, British Columbia, and the United Kingdom. The majority of H7 infections have resulted in self-lim...

  20. Influenza A virus infection of healthy piglets in an abattoir in Brazil: animal-human interface and risk for interspecies transmission

    Directory of Open Access Journals (Sweden)

    Ariane Ribeiro Amorim

    2013-08-01

    Full Text Available Asymptomatic influenza virus infections in pigs are frequent and the lack of measures for controlling viral spread facilitates the circulation of different virus strains between pigs. The goal of this study was to demonstrate the circulation of influenza A virus strains among asymptomatic piglets in an abattoir in Brazil and discuss the potential public health impacts. Tracheal samples (n = 330 were collected from asymptomatic animals by a veterinarian that also performed visual lung tissue examinations. No slaughtered animals presented with any noticeable macroscopic signs of influenza infection following examination of lung tissues. Samples were then analysed by reverse transcription-polymerase chain reaction that resulted in the identification of 30 (9% influenza A positive samples. The presence of asymptomatic pig infections suggested that these animals could facilitate virus dissemination and act as a source of infection for the herd, thereby enabling the emergence of influenza outbreaks associated with significant economic losses. Furthermore, the continuous exposure of the farm and abattoir workers to the virus increases the risk for interspecies transmission. Monitoring measures of swine influenza virus infections and vaccination and monitoring of employees for influenza infection should also be considered. In addition regulatory agencies should consider the public health ramifications regarding the potential zoonotic viral transmission between humans and pigs.

  1. siRNA for Influenza Therapy

    Directory of Open Access Journals (Sweden)

    Sailen Barik

    2010-07-01

    Full Text Available Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA, has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  2. siRNA for Influenza Therapy.

    Science.gov (United States)

    Barik, Sailen

    2010-07-01

    Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  3. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    Directory of Open Access Journals (Sweden)

    Sanhong Liu

    2015-01-01

    Full Text Available Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  4. Global dynamics of avian influenza epidemic models with psychological effect.

    Science.gov (United States)

    Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  5. Avian Metapneumovirus circulation in Italian broiler farms.

    Science.gov (United States)

    Tucciarone, Claudia Maria; Franzo, Giovanni; Lupini, Caterina; Alejo, Carolina Torres; Listorti, Valeria; Mescolini, Giulia; Brandão, Paulo Eduardo; Martini, Marco; Catelli, Elena; Cecchinato, Mattia

    2018-02-01

    With increasing frequency, avian Metapneumovirus (aMPV) is reported to induce respiratory signs in chickens. An adequate knowledge of current aMPV prevalence among Italian broilers is lacking, with little information available on its economical and health impact on the poultry industry. In order to collect preliminary data on the epidemiological context of aMPV in broiler flocks, a survey was performed in areas of Northern Italy with high poultry density from 2014 to 2016. Upper respiratory tract swabs were collected and processed by A and B subtype-specific multiplex real-time reverse transcription PCR (RT-PCR). Samples were also screened for infectious bronchitis virus (IBV) by generic RT-PCR and sequencing. Productive data and respiratory signs were detailed where possible. The high prevalence of aMPV was confirmed in broilers older than 26 d and also attested in IBV-negative farms. All aMPV detections belonged to subtype B. Italian strain genetic variability was evaluated by the partial attachment (G) gene sequencing of selected strains and compared with contemporary turkey strains and previously published aMPV references, revealing no host specificity and the progressive evolution of this virus in Italy. © 2017 Poultry Science Association Inc.

  6. Migration and Persistence of Human Influenza A Viruses, Vietnam, 2001–2008

    Science.gov (United States)

    Le, Mai Quynh; Lam, Ha Minh; Cuong, Vuong Duc; Lam, Tommy Tsan-Yuk; Halpin, Rebecca A; Wentworth, David E; Hien, Nguyen Tran; Thanh, Le Thi; Phuong, Hoang Vu Mai; Horby, Peter

    2013-01-01

    Understanding global influenza migration and persistence is crucial for vaccine strain selection. Using 240 new human influenza A virus whole genomes collected in Vietnam during 2001–2008, we looked for persistence patterns and migratory connections between Vietnam and other countries. We found that viruses in Vietnam migrate to and from China, Hong Kong, Taiwan, Cambodia, Japan, South Korea, and the United States. We attempted to reduce geographic bias by generating phylogenies subsampled at the year and country levels. However, migration events in these phylogenies were still driven by the presence or absence of sequence data, indicating that an epidemiologic study design that controls for prevalence is required for robust migration analysis. With whole-genome data, most migration events are not detectable from the phylogeny of the hemagglutinin segment alone, although general migratory relationships between Vietnam and other countries are visible in the hemagglutinin phylogeny. It is possible that virus lineages in Vietnam persisted for >1 year. PMID:24188643

  7. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.

    Science.gov (United States)

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik

    2017-07-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.

  8. Clinical characteristics and viral load of respiratory syncytial virus and human metapneumovirus in children hospitaled for acute lower respiratory tract infection.

    Science.gov (United States)

    Yan, Xiao-Li; Li, Yu-Ning; Tang, Yi-Jie; Xie, Zhi-Ping; Gao, Han-Chun; Yang, Xue-Mei; Li, Yu-Mei; Liu, Li-Jun; Duan, Zhao-Jun

    2017-04-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are two common viral pathogens in acute lower respiratory tract infections (ALRTI). However, the association of viral load with clinical characteristics is not well-defined in ALRTI. To explore the correlation between viral load and clinical characteristics of RSV and HMPV in children hospitalized for ALRTI in Lanzhou, China. Three hundred and eighty-seven children hospitalized for ALRTI were enrolled. Nasopharyngeal aspirates (NPAs) were sampled from each children. Real-time PCR was used to screen RSV, HMPV, and twelve additional respiratory viruses. Bronchiolitis was the leading diagnoses both in RSV and HMPV positive patients. A significantly greater frequency of wheezing (52% vs. 33.52%, P = 0.000) was noted in RSV positive and negative patients. The RSV viral load was significant higher in children aged infections (P = 0.000). No difference was found in the clinical features of HMPV positive and negative patients. The HMPV viral load had no correlation with any clinical characteristics. The incidences of severe disease were similar between single infection and coinfection for the two viruses (RSV, P = 0.221; HMPV, P = 0.764) and there has no statistical significance between severity and viral load (P = 0.166 and P = 0.721). Bronchiolitis is the most common disease caused by RSV and HMPV. High viral load or co-infection may be associated with some symptoms but neither has a significant impact on disease severity for the two viruses. J. Med. Virol. 89:589-597, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Transmission of influenza A viruses between pigs and people, Iowa, 2002-2004.

    Science.gov (United States)

    Terebuh, Pauline; Olsen, Christopher W; Wright, Jennifer; Klimov, Alexander; Karasin, Alexander; Todd, Karla; Zhou, Hong; Hall, Henrietta; Xu, Xiyan; Kniffen, Tim; Madsen, David; Garten, Rebecca; Bridges, Carolyn B

    2010-11-01

    Triple-reassortant (tr) viruses of human, avian, and swine origin, including H1N1, H1N2, and H3N2 subtypes, emerged in North American swine herds in 1998 and have become predominant. While sporadic human infections with classical influenza A (H1N1) and with tr-swine influenza viruses have been reported, relatively few have been documented in occupationally exposed swine workers (SW). We conducted a 2-year (2002-2004) prospective cohort study of transmission of influenza viruses between pigs and SW from a single pork production company in Iowa. Respiratory samples were collected and tested for influenza viruses from SW and from pigs under their care through surveillance for influenza-like illnesses (ILI). Serial blood samples from study participants were tested by hemagglutination inhibition (HI) for antibody seroconversion against human and swine influenza viruses (SIV), and antibody seroprevalence was compared to age-matched urban Iowa blood donors. During the first year, 15 of 88 SW had ILI and were sampled; all were culture-negative for influenza. During the second year, 11 of 76 SW had ILI and were sampled; one was culture-positive for a human seasonal H3N2 virus. Among 20 swine herd ILI outbreaks sampled, influenza A virus was detected by rRT-PCR from 17 with 11 trH1N1 and five trH3N2 virus isolates cultured. During both years, HI geometric mean titers were significantly higher among SW compared to blood donor controls for three SIV: classical swine Sw/WI/238/97 (H1N1), tr Sw/IN/9K035/99 (H1N2), and trSw/IA/H02NJ56371/02 (H1N1)] (P influenza viruses and were exposed to diverse influenza virus strains circulating in pigs. Influenza virus surveillance among pigs and SW should be encouraged to better understand cross-species transmission and diversity of influenza viruses at the human-swine interface. © 2010 Blackwell Publishing Ltd.

  10. Characterisation and Identification of Avian Influenza Virus (AI

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  11. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline

    2015-01-01

    such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine......The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute...... to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages...

  12. Predicting Hotspots for Influenza Virus Reassortment

    Science.gov (United States)

    Gilbert, Marius; Martin, Vincent; Cappelle, Julien; Hosseini, Parviez; Njabo, Kevin Y.; Abdel Aziz, Soad; Xiao, Xiangming; Daszak, Peter; Smith, Thomas B.

    2013-01-01

    The 1957 and 1968 influenza pandemics, each of which killed ≈1 million persons, arose through reassortment events. Influenza virus in humans and domestic animals could reassort and cause another pandemic. To identify geographic areas where agricultural production systems are conducive to reassortment, we fitted multivariate regression models to surveillance data on influenza A virus subtype H5N1 among poultry in China and Egypt and subtype H3N2 among humans. We then applied the models across Asia and Egypt to predict where subtype H3N2 from humans and subtype H5N1 from birds overlap; this overlap serves as a proxy for co-infection and in vivo reassortment. For Asia, we refined the prioritization by identifying areas that also have high swine density. Potential geographic foci of reassortment include the northern plains of India, coastal and central provinces of China, the western Korean Peninsula and southwestern Japan in Asia, and the Nile Delta in Egypt. PMID:23628436

  13. Host-Specific and Segment-Specific Evolutionary Dynamics of Avian and Human Influenza A Viruses: A Systematic Review

    KAUST Repository

    Kim, Kiyeon

    2016-01-13

    Understanding the evolutionary dynamics of influenza viruses is essential to control both avian and human influenza. Here, we analyze host-specific and segment-specific Tajima’s D trends of influenza A virus through a systematic review using viral sequences registered in the National Center for Biotechnology Information. To avoid bias from viral population subdivision, viral sequences were stratified according to their sampling locations and sampling years. As a result, we obtained a total of 580 datasets each of which consists of nucleotide sequences of influenza A viruses isolated from a single population of hosts at a single sampling site within a single year. By analyzing nucleotide sequences in the datasets, we found that Tajima’s D values of viral sequences were different depending on hosts and gene segments. Tajima’s D values of viruses isolated from chicken and human samples showed negative, suggesting purifying selection or a rapid population growth of the viruses. The negative Tajima’s D values in rapidly growing viral population were also observed in computer simulations. Tajima’s D values of PB2, PB1, PA, NP, and M genes of the viruses circulating in wild mallards were close to zero, suggesting that these genes have undergone neutral selection in constant-sized population. On the other hand, Tajima’s D values of HA and NA genes of these viruses were positive, indicating HA and NA have undergone balancing selection in wild mallards. Taken together, these results indicated the existence of unknown factors that maintain viral subtypes in wild mallards.

  14. Host-Specific and Segment-Specific Evolutionary Dynamics of Avian and Human Influenza A Viruses: A Systematic Review

    KAUST Repository

    Kim, Kiyeon; Omori, Ryosuke; Ueno, Keisuke; Iida, Sayaka; Ito, Kimihito

    2016-01-01

    Understanding the evolutionary dynamics of influenza viruses is essential to control both avian and human influenza. Here, we analyze host-specific and segment-specific Tajima’s D trends of influenza A virus through a systematic review using viral sequences registered in the National Center for Biotechnology Information. To avoid bias from viral population subdivision, viral sequences were stratified according to their sampling locations and sampling years. As a result, we obtained a total of 580 datasets each of which consists of nucleotide sequences of influenza A viruses isolated from a single population of hosts at a single sampling site within a single year. By analyzing nucleotide sequences in the datasets, we found that Tajima’s D values of viral sequences were different depending on hosts and gene segments. Tajima’s D values of viruses isolated from chicken and human samples showed negative, suggesting purifying selection or a rapid population growth of the viruses. The negative Tajima’s D values in rapidly growing viral population were also observed in computer simulations. Tajima’s D values of PB2, PB1, PA, NP, and M genes of the viruses circulating in wild mallards were close to zero, suggesting that these genes have undergone neutral selection in constant-sized population. On the other hand, Tajima’s D values of HA and NA genes of these viruses were positive, indicating HA and NA have undergone balancing selection in wild mallards. Taken together, these results indicated the existence of unknown factors that maintain viral subtypes in wild mallards.

  15. Cytokine release from human peripheral blood leucocytes incubated with endotoxin with and without prior infection with influenza virus

    DEFF Research Database (Denmark)

    Banner, Jytte; Smith, H; Sweet, C

    1993-01-01

    Previous work with a neonatal ferret model for human SIDS had indicated that inflammation caused by a combination of influenza virus and bacterial endotoxin may be a cause of human SIDS. To determine whether cytokines may be involved in this inflammatory response, levels of interleukin (IL)-1 beta......, IL-6 and tumour necrosis factor (TNF)-alpha were examined, using ELISA assays, in culture supernatants of human peripheral blood leucocytes infected with influenza virus and subsequently incubated with endotoxin. Levels of TNF-alpha were increased compared to cells incubated with virus or endotoxin...... alone. Levels of IL-1 beta were also increased whereas levels of IL-6 were generally not enhanced. Cytokines appeared within 1-2 h of stimulation with virus or endotoxin and increased subsequently to reach maximum titres between 16 and 20 h post treatment. While levels of cytokine were much lower when...

  16. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

    Science.gov (United States)

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Villanueva, Julie M; Stevens, James

    2015-04-01

    During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Protective measures and human antibody response during an avian influenza H7N3 outbreak in poultry in British Columbia, Canada.

    Science.gov (United States)

    Skowronski, Danuta M; Li, Yan; Tweed, S Aleina; Tam, Theresa W S; Petric, Martin; David, Samara T; Marra, Fawziah; Bastien, Nathalie; Lee, Sandra W; Krajden, Mel; Brunham, Robert C

    2007-01-02

    In 2004 an outbreak of avian influenza of the H7N3 subtype occurred among poultry in British Columbia, Canada. We report compliance with recommended protective measures and associated human infections during this outbreak. We sought voluntary participation by anyone (cullers, farmers and their families) involved in efforts to control the poultry outbreak. Recruitment was by advertisements at the worker deployment site, in local media and through newsletters sent directly to farmers. Sera were tested for antibody to H7N3 by microneutralization assay. A subset of 16 sera (including convalescent sera from 2 unprotected workers with conjunctivitis from whom virus had been isolated) was further tested by Western blot and routine and modified hemagglutination inhibition assays. A total of 167 people (20% to 25% of all workers) participated between May 7 and July 26, 2004. Of these, 19 had experienced influenza-like illness and 21 had experienced red or watery eyes. There was no significant association between illness reports and exposure to infected birds. Among 65 people who entered barns with infected birds, 55 (85%) had received influenza vaccine, 48 (74%) had received oseltamivir, and 55 (85%), 54 (83%) and 36 (55%) reported always wearing gloves, mask or goggles, respectively. Antibody to the H7 subtype was not detected in any sera. During the BC outbreak, compliance with recommended protective measures, especially goggles, was incomplete. Multiple back-up precautions, including oseltamivir prophylaxis, may prevent human infections and should be readily accessible and consistently used by those involved in the control of future outbreaks of avian influenza in poultry. Localized human avian influenza infections may not result in serologic response despite confirmed viral detection and culture.

  18. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1

    Directory of Open Access Journals (Sweden)

    Sosna William A

    2010-09-01

    Full Text Available Abstract Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1 virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1 through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1. The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1 is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.

  19. Oseltamivir (Tamiflu® in the environment, resistance development in influenza A viruses of dabbling ducks and the risk of transmission of an oseltamivir-resistant virus to humans – a review

    Directory of Open Access Journals (Sweden)

    Josef D. Järhult

    2012-06-01

    Full Text Available The antiviral drug oseltamivir (Tamiflu® is a cornerstone in influenza pandemic preparedness plans worldwide. However, resistance to the drug is a growing concern. The active metabolite oseltamivir carboxylate (OC is not degraded in surface water or sewage treatment plants and has been detected in river water during seasonal influenza outbreaks. The natural influenza reservoir, dabbling ducks, can thus be exposed to OC in aquatic environments. Environmental-like levels of OC induce resistance development in influenza A/H1N1 virus in mallards. There is a risk of resistance accumulation in influenza viruses circulating among wild birds when oseltamivir is used extensively. By reassortment or direct transmission, oseltamivir resistance can be transmitted to humans potentially causing a resistant pandemic or human-adapted highly-pathogenic avian influenza virus. There is a need for more research on resistance development in the natural influenza reservoir and for a prudent use of antivirals.

  20. Polymerase Discordance in Novel Swine Influenza H3N2v Constellations Is Tolerated in Swine but Not Human Respiratory Epithelial Cells

    Science.gov (United States)

    Powell, Joshua D.; Dlugolenski, Daniel; Nagy, Tamas; Gabbard, Jon; Lee, Christopher; Tompkins, Stephen M.; Tripp, Ralph A.

    2014-01-01

    Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection. PMID:25330303

  1. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Swine Influenza/Variant Influenza Virus Language: English (US) Español Recommend ...

  2. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential...

  3. A commercial ELISA detects high levels of human H5 antibody but cross-reacts with influenza A antibodies.

    Science.gov (United States)

    Stelzer-Braid, Sacha; Wong, Bruce; Robertson, Peter; Lynch, Garry W; Laurie, Karen; Shaw, Robert; Barr, Ian; Selleck, Paul W; Baleriola, Cristina; Escott, Ros; Katsoulotos, Gregory; Rawlinson, William D

    2008-10-01

    Commercial serological assays to determine influenza A H5N1 infection are available, although the accuracy and reproducibility of these are not reported in detail. This study aimed to assess the validity of a commercial ELISA H5 hemagglutinin (HA) antibody kit. A commercial ELISA for detection of antibodies towards influenza A H5 HA was evaluated using human sera from vaccinated individuals. The ELISA was used to screen 304 sera with elevated influenza A complement fixation titres collected between the period 1995-2007. The ELISA was found to be accurate for sera with high levels of anti-H5 antibodies, and would be useful in clinical settings where a rapid result is required. Thirteen of the stored sera were positive using the ELISA, but were confirmed as negative for H5N1 exposure using further serological tests. Absorption studies suggested that antibodies towards seasonal H3N2 and H1N1 influenza may cross-react with H5 antigen, giving false positive results with the ELISA.

  4. Development of a vaccine-challenge model for avian metapneumovirus subtype C in turkeys.

    Science.gov (United States)

    Velayudhan, Binu T; Noll, Sally L; Thachil, Anil J; Shaw, Daniel P; Goyal, Sagar M; Halvorson, David A; Nagaraja, Kakambi V

    2007-02-26

    The objective of this study was to evaluate different preparations of avian metapneumovirus (aMPV) subtype C as vaccine challenge in turkeys. Two aMPV isolates and their respective nasal turbinate homogenates after propagation in turkeys were used in the study. Significantly higher clinical sign scores were recorded in birds inoculated with 20 or 2% turbinate homogenate of recent isolate. Birds in the above groups showed more pronounced histopathological lesions, and a higher percentage of birds showed viral RNA and antigen in tissues. The data demonstrated that nasal turbinate homogenate of recent isolate produced severe clinical signs and lesions in turkeys and could be an ideal candidate for vaccine-challenge studies.

  5. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein.

    Directory of Open Access Journals (Sweden)

    Benjamin Mänz

    2013-03-01

    Full Text Available The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive mutations in the nucleoprotein (NP of pandemic strains A/Brevig Mission/1/1918 (1918 and A/Hamburg/4/2009 (pH1N1 that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918 cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the MxA-sensitive influenza virus A/Thailand/1(KAN-1/04 (H5N1 resulted in a gain of MxA resistance coupled with a decrease in viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses and that adaptive mutations in the viral NP should be carefully monitored.

  6. Memory T Cells Generated by Prior Exposure to Influenza Cross React with the Novel H7N9 Influenza Virus and Confer Protective Heterosubtypic Immunity

    Science.gov (United States)

    McMaster, Sean R.; Gabbard, Jon D.; Koutsonanos, Dimitris G.; Compans, Richard W.; Tripp, Ralph A.; Tompkins, S. Mark; Kohlmeier, Jacob E.

    2015-01-01

    Influenza virus is a source of significant health and economic burden from yearly epidemics and sporadic pandemics. Given the potential for the emerging H7N9 influenza virus to cause severe respiratory infections and the lack of exposure to H7 and N9 influenza viruses in the human population, we aimed to quantify the H7N9 cross-reactive memory T cell reservoir in humans and mice previously exposed to common circulating influenza viruses. We identified significant cross-reactive T cell populations in humans and mice; we also found that cross-reactive memory T cells afforded heterosubtypic protection by reducing morbidity and mortality upon lethal H7N9 challenge. In context with our observation that PR8-primed mice have limited humoral cross-reactivity with H7N9, our data suggest protection from H7N9 challenge is indeed mediated by cross-reactive T cell populations established upon previous priming with another influenza virus. Thus, pre-existing cross-reactive memory T cells may limit disease severity in the event of an H7N9 influenza virus pandemic. PMID:25671696

  7. Memory T cells generated by prior exposure to influenza cross react with the novel H7N9 influenza virus and confer protective heterosubtypic immunity.

    Directory of Open Access Journals (Sweden)

    Sean R McMaster

    Full Text Available Influenza virus is a source of significant health and economic burden from yearly epidemics and sporadic pandemics. Given the potential for the emerging H7N9 influenza virus to cause severe respiratory infections and the lack of exposure to H7 and N9 influenza viruses in the human population, we aimed to quantify the H7N9 cross-reactive memory T cell reservoir in humans and mice previously exposed to common circulating influenza viruses. We identified significant cross-reactive T cell populations in humans and mice; we also found that cross-reactive memory T cells afforded heterosubtypic protection by reducing morbidity and mortality upon lethal H7N9 challenge. In context with our observation that PR8-primed mice have limited humoral cross-reactivity with H7N9, our data suggest protection from H7N9 challenge is indeed mediated by cross-reactive T cell populations established upon previous priming with another influenza virus. Thus, pre-existing cross-reactive memory T cells may limit disease severity in the event of an H7N9 influenza virus pandemic.

  8. Virulent PB1-F2 residues: effects on fitness of H1N1 influenza A virus in mice and changes during evolution of human influenza A viruses.

    Science.gov (United States)

    Alymova, Irina V; McCullers, Jonathan A; Kamal, Ram P; Vogel, Peter; Green, Amanda M; Gansebom, Shane; York, Ian A

    2018-05-10

    Specific residues of influenza A virus (IAV) PB1-F2 proteins may enhance inflammation or cytotoxicity. In a series of studies, we evaluated the function of these virulence-associated residues in the context of different IAV subtypes in mice. Here, we demonstrate that, as with the previously assessed pandemic 1968 (H3N2) IAV, PB1-F2 inflammatory residues increase the virulence of H1N1 IAV, suggesting that this effect might be a universal feature. Combining both inflammatory and cytotoxic residues in PB1-F2 enhanced virulence further, compared to either motif alone. Residues from these virulent motifs have been present in natural isolates from human seasonal IAV of all subtypes, but there has been a trend toward a gradual reduction in the number of virulent residues over time. However, human IAV of swine and avian origin tend to have more virulent residues than do the human-adapted seasonal strains, raising the possibility that donation of PB1 segments from these zoonotic viruses may increase the severity of some seasonal human strains. Our data suggest the value of surveillance of virulent residues in both human and animal IAV to predict the severity of influenza season.

  9. Avian and pandemic human influenza policy in South-East Asia: the interface between economic and public health imperatives.

    Science.gov (United States)

    Pongcharoensuk, Petcharat; Adisasmito, Wiku; Sat, Le Minh; Silkavute, Pornpit; Muchlisoh, Lilis; Cong Hoat, Pham; Coker, Richard

    2012-08-01

    The aim of this study was to analyse the contemporary policies regarding avian and human pandemic influenza control in three South-East Asia countries: Thailand, Indonesia and Vietnam. An analysis of poultry vaccination policy was used to explore the broader policy of influenza A H5N1 control in the region. The policy of antiviral stockpiling with oseltamivir, a scarce regional resource, was used to explore human pandemic influenza preparedness policy. Several policy analysis theories were applied to analyse the debate on the use of vaccination for poultry and stockpiling of antiviral drugs in each country case study. We conducted a comparative analysis across emergent themes. The study found that whilst Indonesia and Vietnam introduced poultry vaccination programmes, Thailand rejected this policy approach. By contrast, all three countries adopted similar strategic policies for antiviral stockpiling in preparation. In relation to highly pathogenic avian influenza, economic imperatives are of critical importance. Whilst Thailand's poultry industry is large and principally an export economy, Vietnam's and Indonesia's are for domestic consumption. The introduction of a poultry vaccination policy in Thailand would have threatened its potential to trade and had a major impact on its economy. Powerful domestic stakeholders in Vietnam and Indonesia, by contrast, were concerned less about international trade and more about maintaining a healthy domestic poultry population. Evidence on vaccination was drawn upon differently depending upon strategic economic positioning either to support or oppose the policy. With influenza A H5N1 endemic in some countries of the region, these policy differences raise questions around regional coherence of policies and the pursuit of an agreed overarching goal, be that eradication or mitigation. Moreover, whilst economic imperatives have been critically important in guiding policy formulation in the agriculture sector, questions arise

  10. MicroRNA-Based Attenuation of Influenza Virus across Susceptible Hosts.

    Science.gov (United States)

    Waring, Barbara M; Sjaastad, Louisa E; Fiege, Jessica K; Fay, Elizabeth J; Reyes, Ismarc; Moriarity, Branden; Langlois, Ryan A

    2018-01-15

    Influenza A virus drives significant morbidity and mortality in humans and livestock. Annual circulation of the virus in livestock and waterfowl contributes to severe economic disruption and increases the risk of zoonotic transmission of novel strains into the human population, where there is no preexisting immunity. Seasonal vaccinations in humans help prevent infection and can reduce symptoms when infection does occur. However, current vaccination regimens available for livestock are limited in part due to safety concerns regarding reassortment/recombination with circulating strains. Therefore, inactivated vaccines are used instead of the more immunostimulatory live attenuated vaccines. MicroRNAs (miRNAs) have been used previously to generate attenuated influenza A viruses for use as a vaccine. Here, we systematically targeted individual influenza gene mRNAs using the same miRNA to determine the segment(s) that yields maximal attenuation potential. This analysis demonstrated that targeting of NP mRNA most efficiently ablates replication. We further increased the plasticity of miRNA-mediated attenuation of influenza A virus by exploiting a miRNA, miR-21, that is ubiquitously expressed across influenza-susceptible hosts. In order to construct this targeted virus, we used CRISPR/Cas9 to eliminate the universally expressed miR-21 from MDCK cells. miR-21-targeted viruses were attenuated in human, mouse, canine, and avian cells and drove protective immunity in mice. This strategy has the potential to enhance the safety of live attenuated vaccines in humans and zoonotic reservoirs. IMPORTANCE Influenza A virus circulates annually in both avian and human populations, causing significant morbidity, mortality, and economic burden. High incidence of zoonotic infections greatly increases the potential for transmission to humans, where no preexisting immunity or vaccine exists. There is a critical need for new vaccine strategies to combat emerging influenza outbreaks. Micro

  11. Human Infection in Wild Mountain Gorillas

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses a study about the transmission of Human Metapneumovirus Infection to wild mountain gorillas in Rwanda in 2009, published in the April 2011 issue of Emerging Infectious Diseases. Dr. Ian Lipkin, Director of the Center for Infection and Immunity and Dr. Gustavo Palacios, investigator in the Center of Infection & Immunity share details of this study.

  12. Bestrijding van aviaire influenza onder pluimvee: vaccinatie als aanvullende mogelijkheid

    NARCIS (Netherlands)

    Aarle, P van; Breytenbach, J; Schueller, S

    2006-01-01

    Since mid-December 2003, highly pathogenic avian influenza (HPAI) has caused an epidemic in the Asian poultry sector and avian influenza cases have been reported in Europe, the Middle East and Africa. Human fatalities catapulted avian influenza into the public arena with fears of a possible global

  13. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens.

    Directory of Open Access Journals (Sweden)

    Dominick J Laddy

    Full Text Available BACKGROUND: The persistent evolution of highly pathogenic avian influenza (HPAI highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. METHODS AND FINDINGS: Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA, N1 neuraminidase (pN1NA, and nucleoprotein antigen (pNP. Dramatic IFN-gamma-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40 were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. CONCLUSIONS: By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the

  14. [A case of human highly pathogenic avian influenza in Shenzhen, China: application of field epidemiological study].

    Science.gov (United States)

    Zhang, Shun-Xiang; Cheng, Jin-Quan; Ma, Han-Wu; He, Jian-Fan; Cheng, Xiao-Wen; Jiang, Li-Juan; Mou, Jin; Wu, Chun-Li; Lv, Xing; Zhang, Shao-Hua; Zhang, Ya-De; Wu, Yong-Sheng; Wang, Xin

    2008-03-01

    Based on analyzing the characteristics of a case with human avian influenza and the effects of field epidemiological study. An emergency-response-system was started up to follow the probable human Highly Pathogenic Avian Influenza case initially detected by the "Undefined Pneumonia Surveillance System of Shenzhen". Public health professionals administered several epidemiologic investigations and giving all the contacts of the patient with a 7-day-long medical observation for temporally related influenza-like illness. Reverse transcriptase-polymerase chain reaction (RT-PCR) with primers for H5 and N1 was applied to test respiratory tract samples and/or throat swabs of the patient and all his contacts specific for the hemagglutinin gene of influenza A H5N1. Activities and strategies such as media response,notification in the public, communications with multiple related sectors, social participation and information exchange with Hong Kong were involved in field control and management. The patient was a male, 31 years old,with an occupation as a truck driver in a factory,and had been residing in Shenzhen for 7 years. Started with an influenza-like syndrome, the patient received treatment on the 4th day of the onset, from a clinic and on the 6th day from a regular hospital. On the 8th day of the disease course, he was confirmed by Shenzhen Center for Disease Control and Prevention as human avian flu case and was then transferred to Intensive Care Unit (ICU). On the 83rd day of commence, the patients was healed and released from the hospital. The patient had no significant exposure to sick poultry or poultry that died from the illness before the onset of the disease. The patient and five family members lived together, but no family member was affected and no contact showed positive results for H5N1. A small food market with live poultry, which was under formal supervision and before illness the patient once visited, located near his apartment. Totally, 35 swabs from live

  15. 76 FR 51374 - Direct Discovery of HLA Associated Influenza Epitopes Isolated From Human Cells for Vaccine and...

    Science.gov (United States)

    2011-08-18

    ... direct-discovery technology for use in FDA laboratories. C. Eligibility Information The technology...] Direct Discovery of HLA Associated Influenza Epitopes Isolated From Human Cells for Vaccine and... technology to molecularly characterize peptide epitopes that are processed and presented on soluble HLA...

  16. Sparse evidence for equine or avian influenza virus infections among Mongolian adults with animal exposures.

    Science.gov (United States)

    Khurelbaatar, Nyamdavaa; Krueger, Whitney S; Heil, Gary L; Darmaa, Badarchiin; Ulziimaa, Daramragchaa; Tserennorov, Damdindorj; Baterdene, Ariungerel; Anderson, Benjamin D; Gray, Gregory C

    2013-11-01

    In recent years, Mongolia has experienced recurrent epizootics of equine influenza virus (EIV) among its 2·1 million horses and multiple incursions of highly pathogenic avian influenza (HPAI) virus via migrating birds. No human EIV or HPAI infections have been reported. In 2009, 439 adults in Mongolia were enrolled in a population-based study of zoonotic influenza transmission. Enrollment sera were examined for serological evidence of infection with nine avian, three human, and one equine influenza virus strains. Seroreactivity was sparse among participants suggesting little human risk of zoonotic influenza infection. © 2013 John Wiley & Sons Ltd.

  17. Influenza in solid organ transplant recipients.

    Science.gov (United States)

    Martin, Spencer T; Torabi, Mina J; Gabardi, Steven

    2012-02-01

    To review available data describing the epidemiology, outcomes, prevention, and treatment of influenza virus in the solid organ transplant population and to evaluate the strengths and limitations of the current literature, with a focus on literature reviewing annual influenza strains and the recent pandemic novel influenza A/H1N1 strain. A systematic literature search (July 1980-June 2011) was performed via PubMed using the following key words: influenza, human; influenza; novel influenza A H1/N1; transplantation; solid organ transplantation; kidney transplant; renal transplant; lung transplant; heart transplant; and liver transplant. Papers were excluded if they were not written in English or were animal studies or in vitro studies. Data from fully published studies and recent reports from international conferences were included. The influenza virus presents a constant challenge to immunocompromised patients and their health care providers. The annual influenza strain introduces a highly infectious and pathogenic risk to solid organ transplant recipients. In 2009, the World Health Organization declared a pandemic as a result of a novel influenza A/H1N1 strain. The pandemic introduced an additional viral threat to solid organ transplant patients at increased risk for infectious complications. The mainstay for prevention of influenza infection in all at-risk populations is appropriate vaccination. Antiviral therapies against influenza for chemoprophylaxis and treatment of infection are available; however, dosing strategies in the solid organ transplant population are not well defined. The solid organ transplant population is at an increased risk of severe complications from influenza infection. Identifying risks, preventing illness, and appropriately treating active infection is essential in this patient population.

  18. Using the ferret as an animal model for investigating influenza antiviral effectiveness

    Directory of Open Access Journals (Sweden)

    Ding Yuan Oh

    2016-02-01

    Full Text Available The concern of the emergence of a pandemic influenza virus has sparked an increased effort towards the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titre of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness.

  19. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.

    Science.gov (United States)

    Xu, Wen; Li, Hong; Jiang, Li

    2016-01-01

    Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases.

  20. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... August 7, 2017 Increase in Human Infections with Avian Influenza A(H7N9) Virus During the Fifth Epidemic — China, October 2016–February 2017 Antigenic and genetic characteristics of zoonotic influenza viruses and candidate vaccine viruses developed for ...

  1. Implementation of the community network of reference laboratories for human influenza in Europe.

    NARCIS (Netherlands)

    Meijer, A.; Valette, M.; Manuguerra, J.C.; Perez-Brena, P.; Paget, J.; Brown, C.; Velden, K. van der

    2005-01-01

    BACKGROUND: The increased need for accurate influenza laboratory surveillance data in the European Union required formalisation of the existing network of collaborating national influenza reference laboratories participating in the European Influenza Surveillance Scheme (EISS). OBJECTIVE: To

  2. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    Science.gov (United States)

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  3. Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

    Science.gov (United States)

    2007-05-30

    Intercontinental circulation of human influenza A( H1N2 ) reassortant viruses during the 2001–2002 influenza season. J Infect Dis 186: 1490–1493. 6. Taubenberger...Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry Rangarajan Sampath1*, Kevin L. Russell2, Christian Massire1, Mark W...Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America Background. Effective influenza surveillance requires

  4. Immunomodulatory Activity of Red Ginseng against Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2014-01-01

    Full Text Available Ginseng herbal medicine has been known to have beneficial effects on improving human health. We investigated whether red ginseng extract (RGE has preventive effects on influenza A virus infection in vivo and in vitro. RGE was found to improve survival of human lung epithelial cells upon influenza virus infection. Also, RGE treatment reduced the expression of pro-inflammatory genes (IL-6, IL-8 probably in part through interference with the formation of reactive oxygen species by influenza A virus infection. Long-term oral administration of mice with RGE showed multiple immunomodulatory effects such as stimulating antiviral cytokine IFN-γ production after influenza A virus infection. In addition, RGE administration in mice inhibited the infiltration of inflammatory cells into the bronchial lumens. Therefore, RGE might have the potential beneficial effects on preventing influenza A virus infections via its multiple immunomodulatory functions.

  5. Efficacy and safety of treatment with an anti-m2e monoclonal antibody in experimental human influenza.

    Science.gov (United States)

    Ramos, Eleanor L; Mitcham, Jennifer L; Koller, Teri D; Bonavia, Aurelio; Usner, Dale W; Balaratnam, Ganesh; Fredlund, Paul; Swiderek, Kristine M

    2015-04-01

    The efficacy of TCN-032, a human monoclonal antibody targeting a conserved epitope on M2e, was explored in experimental human influenza. Healthy volunteers were inoculated with influenza A/Wisconsin/67/2005 (H3N2) and received a single dose of the study drug, TCN-032, or placebo 24 hours later. Subjects were monitored for symptoms, viral shedding, and safety, including cytokine measurements. Oseltamivir was administered 7 days after inoculation. Although the primary objective of reducing the proportion of subjects developing any grade ≥2 influenza symptom or pyrexia, was not achieved, TCN-032-treated subjects showed 35% reduction (P = .047) in median total symptom area under the curve (days 1-7) and 2.2 log reduction in median viral load area under the curve (days 2-7) by quantitative polymerase chain reaction (P = .09) compared with placebo-treated subjects. TCN-032 was safe and well tolerated with no additional safety signals after administration of oseltamivir. Serum cytokine levels (interferon γ, tumor necrosis factor α, and interleukin 8 and 10) were similar in both groups. Genotypic and phenotypic analyses showed no difference between virus derived from subjects after TCN-032 treatment and parental strain. These data indicate that TCN-032 may provide immediate immunity and therapeutic benefit in influenza A infection, with no apparent emergence of resistant virus. TCN-032 was safe with no evidence of immune exacerbation based on serum cytokine expression. Clinicaltrials.gov registry number. NCT01719874. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. [Molecular analyses of human influenza viruses. Circulation of new variants since 1995/96].

    Science.gov (United States)

    Biere, B; Schweiger, B

    2008-09-01

    The evolution of influenza viruses is increasingly pursued by molecular analyses that complement classical methods. The analyses focus on the two surface proteins hemagglutinin (HA) and neuraminidase (NA) which determine the viral antigenic profile. Influenza A(H3N2) viruses are exceptionally variable, so that usually at least two virus variants cocirculate at the same time. Together with influenza B viruses they caused approximately 90% of influenza virus infections in Germany during the last 12 seasons, while influenza A(H1N1) viruses only played a subordinate part. Unexpectedly, reassorted viruses of subtype A(H1N2) appeared during the seasons 2001/02 and 2002/03, but were isolated only rarely and gained no epidemiological significance. Furthermore, during the season 2001/02 influenza B viruses of the Victoria-lineage reappeared in Germany and other countries of the northern hemisphere after 10 years of absence. These viruses reassorted with the cocirculating Yamagata-like influenza B viruses, as could be seen by the appearance of viruses with a Victoria-like HA and a Yamagata-like NA.

  7. Neuraminidase inhibitor susceptibility profile of human influenza viruses during the 2016-2017 influenza season in Mainland China.

    Science.gov (United States)

    Huang, Weijuan; Cheng, Yanhui; Li, Xiyan; Tan, Minju; Wei, Hejiang; Zhao, Xiang; Xiao, Ning; Dong, Jie; Wang, Dayan

    2018-06-01

    To understand the current situation of antiviral-resistance of influenza viruses to neuraminidase inhibitors (NAIs) in Mainland China, The antiviral-resistant surveillance data of the circulating influenza viruses in Mainland China during the 2016-2017 influenza season were analyzed. The total 3215 influenza viruses were studied to determine 50% inhibitory concentration (IC 50 ) for oseltamivir and zanamivir using a fluorescence-based assay. Approximately 0.3% (n = 10) of viruses showed either highly reduced inhibition (HRI) or reduced inhibition (RI) against at least one NAI. The most common neuraminidase (NA) amino acid substitution was H275Y in A (H1N1)pdm09 virus, which confers HRI by oseltamivir. Two A (H1N1)pdm09 viruses contained a new NA amino acid substitution respectively, S110F and D151E, which confers RI by oseltamivir or/and zanamivir. Two B/Victoria-lineage viruses harbored a new NA amino acid substitution respectively, H134Q and S246P, which confers RI by zanamivir. One B/Victoria-lineage virus contained dual amino acid substitution NA P124T and V422I, which confers HRI by zanamivir. One B/Yamagata-lineage virus was a reassortant virus that haemagglutinin (HA) from B/Yamagata-lineage virus and NA from B/Victoria-lineage virus, defined as B/Yamagata-lineage virus confers RI by oseltamivir, but as B/Victoria-lineage virus confers normal inhibition by oseltamivir. All new substitutions that have not been reported before, the correlation of these substitutions and observed changes in IC 50 should be further assessed. During the 2016-2017 influenza season in Mainland China the majority tested viruses were susceptible to oseltamivir and zanamivir. Hence, NAIs remain the recommended antiviral for treatment and prophylaxis of influenza virus infections. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Economic and policy implications of pandemic influenza.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Braeton J.; Starks, Shirley J.; Loose, Verne W.; Brown, Theresa Jean; Warren, Drake E.; Vargas, Vanessa N.

    2010-03-01

    Pandemic influenza has become a serious global health concern; in response, governments around the world have allocated increasing funds to containment of public health threats from this disease. Pandemic influenza is also recognized to have serious economic implications, causing illness and absence that reduces worker productivity and economic output and, through mortality, robs nations of their most valuable assets - human resources. This paper reports two studies that investigate both the short- and long-term economic implications of a pandemic flu outbreak. Policy makers can use the growing number of economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. Experts recognize that pandemic influenza has serious global economic implications. The illness causes absenteeism, reduced worker productivity, and therefore reduced economic output. This, combined with the associated mortality rate, robs nations of valuable human resources. Policy makers can use economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. In this paper economists examine two studies which investigate both the short- and long-term economic implications of a pandemic influenza outbreak. Resulting policy implications are also discussed. The research uses the Regional Economic Modeling, Inc. (REMI) Policy Insight + Model. This model provides a dynamic, regional, North America Industrial Classification System (NAICS) industry-structured framework for forecasting. It is supported by a population dynamics model that is well-adapted to investigating macro-economic implications of pandemic influenza, including possible demand side effects. The studies reported in this paper exercise all of these capabilities.

  9. Control of highly pathogenic avian influenza in Quang Tri province, Vietnam: voices from the human-animal interface.

    Science.gov (United States)

    Farrell, Penny C; Hunter, Cynthia; Truong, Bui; Bunning, Michel

    2015-01-01

    Highly pathogenic avian influenza (HPAI) is caused by the haemagglutinin 5, neuraminidase 1 (H5N1) influenza A virus. Around 80% of households in rural Vietnam raise poultry, which provides food security and nutrition to their households and beyond. Of these, around 15-20% are semi-commercial producers, producing at least 28% of the country's chicken. Through learning the experiences of these semi-commercial farmers, this study aimed to explore the local understandings and sociocultural aspects of HPAI's impact, particularly the aetiology, diagnosis, and the prevention and control methods in one Vietnamese rural province. This study was conducted in Quang Tri province, Vietnam. Quang Tri province has eight districts. Five of these districts were at high risk of HPAI during the study period, of which three were selected for the present study. Within these three districts, six communes were randomly selected for the study from the list of intervention communes in Quang Tri province. Six out of the 26 intervention communes in Quang Tri were therefore selected. Participants were randomly selected and recruited from lists of semi-commercial farmers, village animal health workers, village human health workers and local authorities so that the study population (representative population) included an amount of variability similar to that of the wider population. A key benefit of this village-level control program was the residential proximity of animal and human health professionals. Participants were well aware of the typical clinical signs for avian influenza and of the reporting process for suspect cases. However there was extensive room for improvement in Quang Tri province regarding access to the HPAI vaccine, essential medical equipment for animal use, and available financial support. This qualitative research study provided an important insight for in-country policy makers and international stakeholders. It is vital that there are continued efforts to prevent and

  10. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  11. Polymerase discordance in novel swine influenza H3N2v constellations is tolerated in swine but not human respiratory epithelial cells.

    Directory of Open Access Journals (Sweden)

    Joshua D Powell

    Full Text Available Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09 in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA segment occurred within swine H3N2 with ∼ 80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.

  12. Swine-origin influenza A (H3N2) virus infection in two children--Indiana and Pennsylvania, July-August 2011.

    Science.gov (United States)

    2011-09-09

    Influenza A viruses are endemic in many animal species, including humans, swine, and wild birds, and sporadic cases of transmission of influenza A viruses between humans and animals do occur, including human infections with avian-origin influenza A viruses (i.e., H5N1 and H7N7) and swine-origin influenza A viruses (i.e., H1N1, H1N2, and H3N2). Genetic analysis can distinguish animal origin influenza viruses from the seasonal human influenza viruses that circulate widely and cause annual epidemics. This report describes two cases of febrile respiratory illness caused by swine-origin influenza A (H3N2) viruses identified on August 19 and August 26, 2011, and the current investigations. No epidemiologic link between the two cases has been identified, and although investigations are ongoing, no additional confirmed human infections with this virus have been detected. These viruses are similar to eight other swine-origin influenza A (H3N2) viruses identified from previous human infections over the past 2 years, but are unique in that one of the eight gene segments (matrix [M] gene) is from the 2009 influenza A (H1N1) virus. The acquisition of the M gene in these two swine-origin influenza A (H3N2) viruses indicates that they are "reassortants" because they contain genes of the swine-origin influenza A (H3N2) virus circulating in North American pigs since 1998 and the 2009 influenza A (H1N1) virus that might have been transmitted to pigs from humans during the 2009 H1N1 pandemic. However, reassortments of the 2009 influenza A (H1N1) virus with other swine influenza A viruses have been reported previously in swine. Clinicians who suspect influenza virus infection in humans with recent exposure to swine should obtain a nasopharyngeal swab from the patient for timely diagnosis at a state public health laboratory and consider empiric neuraminidase inhibitor antiviral treatment to quickly limit potential human transmission.

  13. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    Science.gov (United States)

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  14. High Inter-Individual Diversity of Point Mutations, Insertions, and Deletions in Human Influenza Virus Nucleoprotein-Specific Memory B Cells.

    Directory of Open Access Journals (Sweden)

    Sven Reiche

    Full Text Available The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs originated from 26 and the kappa light chains (LCs from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4% in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses.

  15. Interspecies Interactions and Potential Influenza A Virus Risk in Small Swine Farms in Peru

    Science.gov (United States)

    2012-03-15

    and swine influenza viruses : our current understanding of the zoonotic risk. Vet Res 2007, 38(2):243–260. 4. Wertheim JO: When pigs fly: the avian ...first authors. Abstract Background The recent avian influenza epidemic in Asia and the H1N1 pandemic demonstrated that influenza A viruses pose a...prime “mixing vessels” due to the dual receptivity of their trachea to human and avian strains. Additionally, avian and human influenza viruses

  16. Educating youth swine exhibitors on influenza A virus transmission at agricultural fairs.

    Science.gov (United States)

    Nolting, J M; Midla, J; Whittington, M S; Scheer, S D; Bowman, A S

    2018-02-01

    Influenza A virus (IAV) is a major zoonotic pathogen that threatens global public health. Novel strains of influenza A viruses pose a significant risk to public health due to their pandemic potential, and transmission of influenza A viruses from animals to humans is an important mechanism in the generation and introduction of IAVs that threaten human health. The purpose of this descriptive correlational study was to develop real-life training scenarios to better inform swine exhibitors of the risks they may encounter when influenza A viruses are present in swine. Educational activities were implemented in five Ohio counties where exhibition swine had historically been shedding influenza A viruses during the county fair. A total of 146 youth swine exhibitors participated in the educational programme, and an increase in the knowledge base of these youth was documented. It is expected that educating youth exhibitors about exposure to influenza A virus infections in the swine they are exhibiting will result in altered behaviours and animal husbandry practices that will improve both human and animal health. © 2017 Blackwell Verlag GmbH.

  17. Survival of influenza virus on banknotes.

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-05-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness.

  18. Survival of Influenza Virus on Banknotes▿

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-01-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness. PMID:18359825

  19. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses.

    Science.gov (United States)

    Taylor, Janette; McPhie, Kenneth; Druce, Julian; Birch, Chris; Dwyer, Dominic E

    2009-11-01

    Twenty rapid antigen assays were compared for their ability to detect influenza using dilutions of virus culture supernatants from human isolates of influenza A H5N1 (clade 1 and 2 strains), H3N2 and H1N1 viruses, and influenza B. There was variation amongst the rapid antigen assays in their ability to detect different influenza viruses. Six of the 12 assays labeled as distinguishing between influenza A and B had comparable analytical sensitivities for detecting both influenza A H5N1 strains, although their ability to detect influenza A H3N2 and H1N1 strains varied. The two assays claiming H5 specificity did not detect either influenza A H5N1 strains, and the two avian influenza-specific assays detected influenza A H5N1, but missed some influenza A H3N2 virus supernatants. Clinical trials of rapid antigen tests for influenza A H5N1 are limited. For use in a pandemic where novel influenza strains are circulating (such as the current novel influenza A H1N1 09 virus), rapid antigen tests should ideally have comparable sensitivity and specificity for the new strains as for co-circulating seasonal influenza strains.

  20. Troop education and avian influenza surveillance in military barracks in Ghana, 2011

    Directory of Open Access Journals (Sweden)

    Odoom John

    2012-11-01

    Full Text Available Abstract Background Influenza A viruses that cause highly pathogenic avian influenza (HPAI also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Method Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Results Of the 1028 participants that took part in the seminars, 668 (65% showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Conclusion Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen

  1. Efficacy of gamithromycin against Ornithobacterium rhinotracheale in turkey poults pre-infected with avian metapneumovirus.

    Science.gov (United States)

    Watteyn, Anneleen; Devreese, Mathias; Plessers, Elke; Wyns, Heidi; Garmyn, An; Reddy, Vishwanatha R A P; Pasmans, Frank; Martel, An; Haesebrouck, Freddy; De Backer, Patrick; Croubels, Siska

    2016-10-01

    Ornithobacterium rhinotracheale is an avian respiratory pathogen that affects turkeys. The objective of this study was to evaluate the clinical efficacy of gamithromycin (GAM) against O. rhinotracheale in turkeys. The birds were inoculated oculonasally with 10(8) colony-forming units (cfu) of O. rhinotracheale, preceded by infection with avian metapneumovirus. In addition to a negative (CONTR-) and a positive control group (CONTR+) there were two treated groups administered GAM (6 mg/kg) either subcutaneously (GAM SC) or orally (GAM PO) by administration as a single bolus at one-day post-bacterial infection (p.b.i.). From the start of the avian metapneumovirus infection until the end of the experiment, the turkeys were examined clinically and scored daily. In addition, tracheal swabs were collected at several days p.b.i. Necropsy was performed at 4, 8 and 12 days p.b.i. to evaluate the presence of gross lesions, and to collect trachea and lung tissue samples and air sac swabs for O. rhinotracheale quantification. The clinical score of the GAM SC group showed slightly lower values and birds recovered earlier than those in the GAM PO and CONTR+ groups. O. rhinotracheale cfus were significantly reduced in tracheal swabs of the SC group between 2 and 4 days p.b.i. At necropsy, CONTR+ showed higher O. rhinotracheale cfu in lung tissues compared to the treated groups. Moreover, at 8 days p.b.i. only the lung samples of CONTR+ were positive. In conclusion, the efficacy of GAM against O. rhinotracheale was demonstrated, especially in the lung tissue. However, the PO bolus administration of the commercially available product was not as efficacious as the SC bolus.

  2. Burden and Seasonality of Viral Acute Respiratory Tract Infections among Outpatients in Southern Sri Lanka.

    Science.gov (United States)

    Shapiro, David; Bodinayake, Champica K; Nagahawatte, Ajith; Devasiri, Vasantha; Kurukulasooriya, Ruvini; Hsiang, Jeremy; Nicholson, Bradley; De Silva, Aruna Dharshan; Østbye, Truls; Reller, Megan E; Woods, Christopher W; Tillekeratne, L Gayani

    2017-07-01

    In tropical and subtropical settings, the epidemiology of viral acute respiratory tract infections varies widely between countries. We determined the etiology, seasonality, and clinical presentation of viral acute respiratory tract infections among outpatients in southern Sri Lanka. From March 2013 to January 2015, we enrolled outpatients presenting with influenza-like illness (ILI). Nasal/nasopharyngeal samples were tested in duplicate using antigen-based rapid influenza testing and multiplex polymerase chain reaction (PCR) for respiratory viruses. Monthly proportion positive was calculated for each virus. Bivariable and multivariable logistic regression were used to identify associations between sociodemographic/clinical information and viral detection. Of 571 subjects, most (470, 82.3%) were ≥ 5 years of age and 53.1% were male. A respiratory virus was detected by PCR in 63.6% ( N = 363). Common viral etiologies included influenza (223, 39%), human enterovirus/rhinovirus (HEV/HRV, 14.5%), respiratory syncytial virus (RSV, 4.2%), and human metapneumovirus (hMPV, 3.9%). Both ILI and influenza showed clear seasonal variation, with peaks from March to June each year. RSV and hMPV activity peaked from May to July, whereas HEV/HRV was seen year-round. Patients with respiratory viruses detected were more likely to report pain with breathing (odds ratio [OR] = 2.60, P = 0.003), anorexia (OR = 2.29, P respiratory viruses detected. ILI showed clear seasonal variation in southern Sri Lanka, with most activity during March to June; peak activity was largely due to influenza. Targeted infection prevention activities such as influenza vaccination in January-February may have a large public health impact in this region.

  3. Generation of recombinant newcastle disease viruses, expressing the glycoprotein (G) of avian metapneumovirus, subtype A, or B, for use as bivalent vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, or B, as bivalent vaccines. These recombinant viruses, rLS/aMPV-A G and rLS/aMPV-B G, were slightly att...

  4. Deletion of the M2-2 Gene from Avian Metapneumovirus Subgroup C (aMPV-C) Impairs Virus Replication and Immunogenicity in Turkeys

    Science.gov (United States)

    The second matrix (M2) gene of avian metapneumovirus subgroup C (aMPV-C) virus contains two overlapping open reading frames (ORFs), encoding two putative proteins, M2-1 and M2-2. Both proteins are believed to be involved in either viral RNA transcription or replication. To further characterize the f...

  5. Influenza A viruses of avian origin circulating in pigs and other mammals.

    Science.gov (United States)

    Urbaniak, Kinga; Kowalczyk, Andrzej; Markowska-Daniel, Iwona

    2014-01-01

    Influenza A viruses (IAVs) are zoonotic agents, capable of crossing the species barriers. Nowadays, they still constitute a great challenge worldwide. The natural reservoir of all influenza A viruses are wild aquatic birds, despite the fact they have been isolated from a number of avian and mammalian species, including humans. Even when influenza A viruses are able to get into another than waterfowl population, they are often unable to efficiently adapt and transmit between individuals. Only in rare cases, these viruses are capable of establishing a new lineage. To succeed a complete adaptation and further transmission between species, influenza A virus must overcome a species barrier, including adaptation to the receptors of a new host, which would allow the virus-cell binding, virus replication and, then, animal-to-animal transmission. For many years, pigs were thought to be intermediate host for adaptation of avian influenza viruses to humans, because of their susceptibility to infection with both, avian and human influenza viruses, which supported hypothesis of pigs as a 'mixing vessel'. In this review, the molecular factors necessary for interspecies transmission are described, with special emphasis on adaptation of avian influenza viruses to the pig population. In addition, this review gives the information about swine influenza viruses circulating around the world with special emphasis on Polish strains.

  6. Reverse zoonosis of influenza to swine: new perspectives on the human–animal interface

    Science.gov (United States)

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to sw...

  7. Avian Influenza: a global threat needing a global solution

    Directory of Open Access Journals (Sweden)

    Koh GCH

    2008-11-01

    Full Text Available Abstract There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI is endemic in Asia as a result of unregulated poultry rearing in rural areas. Such birds often live in close proximity to humans and this increases the chance of genetic re-assortment between avian and human influenza viruses which may produce a mutant strain that is easily transmitted between humans. Once this happens, a global pandemic is likely. Unlike SARS, a person with influenza infection is contagious before the onset of case-defining symptoms which limits the effectiveness of case isolation as a control strategy. Researchers have shown that carefully orchestrated of public health measures could potentially limit the spread of an AI pandemic if implemented soon after the first cases appear. To successfully contain and control an AI pandemic, both national and global strategies are needed. National strategies include source surveillance and control, adequate stockpiles of anti-viral agents, timely production of flu vaccines and healthcare system readiness. Global strategies such as early integrated response, curbing the disease outbreak at source, utilization of global resources, continuing research and open communication are also critical.

  8. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs

    International Nuclear Information System (INIS)

    Mochalova, Larisa; Gambaryan, Alexandra; Romanova, Julia; Tuzikov, Alexander; Chinarev, Alexander; Katinger, Dietmar; Katinger, Herman; Egorov, Andrej; Bovin, Nicolai

    2003-01-01

    To study the receptor specificity of modern human influenza H1N1 and H3N2 viruses, the analogs of natural receptors, namely sialyloligosaccharides conjugated with high molecular weight (about 1500 kDa) polyacrylamide as biotinylated and label-free probes, have been used. Viruses isolated from clinical specimens were grown in African green monkey kidney (Vero) or Madin-Darby canine kidney (MDCK) cells and chicken embryonated eggs. All Vero-derived viruses had hemagglutinin (HA) sequences indistinguishable from original viruses present in clinical samples, but HAs of three of seven tested MDCK-derived isolates had one or two amino acid substitutions. Despite these host-dependent mutations and differences in the structure of HA molecules of individual strains, all studied Vero- and MDCK-isolated viruses bound to Neu5Ac α2-6Galβ1-4GlcNAc (6'SLN) essentially stronger than to Neu5Acα2-6Galβ1-4Glc (6'SL). Such receptor-binding specificity has been typical for earlier isolated H1N1 human influenza viruses, but there is a new property of H3N2 viruses that has been circulating in the human population during recent years. Propagation of human viruses in chicken embryonated eggs resulted in a selection of variants with amino acid substitutions near the HA receptor-binding site, namely Gln226Arg or Asp225Gly for H1N1 viruses and Leu194Ile and Arg220Ser for H3N2 viruses. These HA mutations disturb the observed strict 6'SLN specificity of recent human influenza viruses

  9. Stability of the glycoprotein gene of avian metapneumovirus (Canada goose isolate 15a/01) after serial passages in cell cultures.

    Science.gov (United States)

    Chockalingam, Ashok K; Chander, Yogesh; Halvorson, David A; Goyal, Sagar M

    2010-06-01

    The glycoprotein (G) gene sequences of avian metapneumovirus (aMPV) subtypes A, B, C, and D are variable in size and number of nucleotides. The G gene of early U.S. turkey isolates of aMPV-C have been reported to be 1798 nucleotides (nt) (585 aa) in length, whereas the G genes of more recent turkey isolates have been reported to be 783 nucleotides. In some studies, the G gene of aMPV-C turkey isolates was found to be truncated to a smaller G gene of 783 nt (261 aa) upon serial passages in Vero cells. This is believed to be due to the deletion of 1015 nt near the end of the open reading frame. The purpose of this study was to determine variation, if any, in the G gene of an aMPV-C isolated from a wild bird (Canada goose [Branta canadensis]) following serial passages in Vero cells. No size variation was observed for up to 50 passages, except for a few amino acid changes in the extracellular domain at the 50th passage level. The G gene of this wild bird isolate appears to be unique from subtype C metapneumoviruses of turkeys.

  10. Tobacco Smoke Exposure and Altered Nasal Responses to Live Attenuated Influenza Virus

    Science.gov (United States)

    Background: Epidemiologic evidence links tobacco smoke and increased risk for influenza in humans, but the specific host defense pathways involved are unclear. Objective. Develop a model to examine influenza-induced innate immune responses in humans and test the hypothesis that ...

  11. Mapping of the US Domestic Influenza Virologic Surveillance Landscape.

    Science.gov (United States)

    Jester, Barbara; Schwerzmann, Joy; Mustaquim, Desiree; Aden, Tricia; Brammer, Lynnette; Humes, Rosemary; Shult, Pete; Shahangian, Shahram; Gubareva, Larisa; Xu, Xiyan; Miller, Joseph; Jernigan, Daniel

    2018-07-17

    Influenza virologic surveillance is critical each season for tracking influenza circulation, following trends in antiviral drug resistance, detecting novel influenza infections in humans, and selecting viruses for use in annual seasonal vaccine production. We developed a framework and process map for characterizing the landscape of US influenza virologic surveillance into 5 tiers of influenza testing: outpatient settings (tier 1), inpatient settings and commercial laboratories (tier 2), state public health laboratories (tier 3), National Influenza Reference Center laboratories (tier 4), and Centers for Disease Control and Prevention laboratories (tier 5). During the 2015-16 season, the numbers of influenza tests directly contributing to virologic surveillance were 804,000 in tiers 1 and 2; 78,000 in tier 3; 2,800 in tier 4; and 3,400 in tier 5. With the release of the 2017 US Pandemic Influenza Plan, the proposed framework will support public health officials in modeling, surveillance, and pandemic planning and response.

  12. Detection and subtyping avian metapneumovirus from turkeys in Iran.

    Science.gov (United States)

    Mayahi, Mansour; Momtaz, Hassan; Jafari, Ramezan Ali; Zamani, Pejman

    2017-01-01

    Avian metapneumovirus (aMPV) causes diseases like rhinotracheitis in turkeys, swollen head syndrome in chickens and avian rhinotracheitis in other birds. Causing respiratory problems, aMPV adversely affects production and inflicts immense economic losses and mortalities, especially in turkey flocks. In recent years, several serological and molecular studies have been conducted on this virus, especially in poultry in Asia and Iran. The purpose of the present study was detecting and subtyping aMPV by reverse transcriptase polymerase chain reaction (RT-PCR) from non-vaccinated, commercial turkey flocks in Iran for the first time. Sixty three meat-type unvaccinated turkey flocks from several provinces of Iran were sampled in major turkey abattoirs. Samples were tested by RT-PCR for detecting and subtyping aMPV. The results showed that 26 samples from three flocks (4.10%) were positive for viral RNA and all of the viruses were found to be subtype B of aMPV. As a result, vaccination especially against subtype B of aMPV should be considered in turkey flocks in Iran to control aMPV infections.

  13. Molecular detection and isolation of avian metapneumovirus in Mexico.

    Science.gov (United States)

    Rivera-Benitez, José Francisco; Martínez-Bautista, Rebeca; Ríos-Cambre, Francisco; Ramírez-Mendoza, Humberto

    2014-01-01

    We conducted a longitudinal study to detect and isolate avian metapneumovirus (aMPV) in two highly productive poultry areas in Mexico. A total of 968 breeder hens and pullets from 2 to 73 weeks of age were analysed. Serology was performed to detect aMPV antibodies and 105 samples of tracheal tissue were collected, pooled by age, and used for attempted virus isolation and aMPV nested reverse transcriptase-polymerase chain reaction (nRT-PCR). The serological analysis indicated that 100% of the sampled chickens showed aMPV antibodies by 12 weeks of age. Five pools of pullet samples collected at 3 to 8 weeks of age were positive by nRT-PCR and the sequences obtained indicated 98 to 99% similarity with the reported sequences for aMPV subtype A. Virus isolation of nRT-PCR-positive samples was successfully attempted using chicken embryo lung and trachea mixed cultures with subsequent adaptation to Vero cells. This is the first report of detection and isolation of aMPV in Mexico.

  14. The evolving history of influenza viruses and influenza vaccines.

    Science.gov (United States)

    Hannoun, Claude

    2013-09-01

    The isolation of influenza virus 80 years ago in 1933 very quickly led to the development of the first generation of live-attenuated vaccines. The first inactivated influenza vaccine was monovalent (influenza A). In 1942, a bivalent vaccine was produced after the discovery of influenza B. It was later discovered that influenza viruses mutated leading to antigenic changes. Since 1973, the WHO has issued annual recommendations for the composition of the influenza vaccine based on results from surveillance systems that identify currently circulating strains. In 1978, the first trivalent vaccine included two influenza A strains and one influenza B strain. Currently, there are two influenza B lineages circulating; in the latest WHO recommendations, it is suggested that a second B strain could be added to give a quadrivalent vaccine. The history of influenza vaccine and the associated technology shows how the vaccine has evolved to match the evolution of influenza viruses.

  15. Travellers and influenza: risks and prevention.

    Science.gov (United States)

    Goeijenbier, M; van Genderen, P; Ward, B J; Wilder-Smith, A; Steffen, R; Osterhaus, A D M E

    2017-01-01

    Influenza viruses are among the major causes of serious human respiratory tract infection worldwide. In line with the high disease burden attributable to influenza, these viruses play an important, but often neglected, role in travel medicine. Guidelines and recommendations regarding prevention and management of influenza in travellers are scarce. Of special interest for travel medicine are risk populations and also circumstances that facilitate influenza virus transmission and spread, like travel by airplane or cruise ship and mass gatherings. We conducted a PUBMED/MEDLINE search for a combination of the MeSH terms Influenza virus, travel, mass gathering, large scale events and cruise ship. In addition we gathered guidelines and recommendations from selected countries and regarding influenza prevention and management in travellers. By reviewing these search results in the light of published knowledge in the fields of influenza prevention and management, we present best practice advice for the prevention and management of influenza in travel medicine. Seasonal influenza is among the most prevalent infectious diseases in travellers. Known host-associated risk factors include extremes of age and being immune-compromised, while the most relevant environmental factors are associated with holiday cruises and mass gatherings. Pre-travel advice should address influenza and its prevention for travellers, whenever appropriate on the basis of the epidemiological situation concerned. Preventative measures should be strongly recommended for travellers at high-risk for developing complications. In addition, seasonal influenza vaccination should be considered for any traveller wishing to reduce the risk of incapacitation, particularly cruise ship crew and passengers, as well as those participating in mass gatherings. Besides advice concerning preventive measures and vaccination, advice on the use of antivirals may be considered for some travellers. © International Society of

  16. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    Science.gov (United States)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  17. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    2014-10-01

    Full Text Available Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV. Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1. This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2 showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  18. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Science.gov (United States)

    Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun

    2014-10-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  19. Antiviral Activity of Peanut (Arachis hypogaea L.) Skin Extract Against Human Influenza Viruses.

    Science.gov (United States)

    Makau, Juliann Nzembi; Watanabe, Ken; Mohammed, Magdy M D; Nishida, Noriyuki

    2018-05-30

    The high propensity of influenza viruses to develop resistance to antiviral drugs necessitates the continuing search for new therapeutics. Peanut skins, which are low-value byproducts of the peanut industry, are known to contain high levels of polyphenols. In this study, we investigated the antiviral activity of ethanol extracts of peanut skins against various influenza viruses using cell-based assays. Extracts with a higher polyphenol content exhibited higher antiviral activities, suggesting that the active components are the polyphenols. An extract prepared from roasted peanut skins effectively inhibited the replication of influenza virus A/WSN/33 with a half maximal inhibitory concentration of 1.3 μg/mL. Plaque assay results suggested that the extract inhibits the early replication stages of the influenza virus. It demonstrated activity against both influenza type A and type B viruses. Notably, the extract exhibited a potent activity against a clinical isolate of the 2009 H1N1 pandemic, which had reduced sensitivity to oseltamivir. Moreover, a combination of peanut skin extract with the anti-influenza drugs, oseltamivir and amantadine, synergistically increased their antiviral activity. These data demonstrate the potential application of peanut skin extract in the development of new therapeutic options for influenza management.

  20. The role of host genetics in susceptibility to influenza: a systematic review.

    Directory of Open Access Journals (Sweden)

    Peter Horby

    Full Text Available The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380.PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven.The fundamental question "Is susceptibility to severe influenza in humans heritable?" remains unanswered. Not because of a lack of genotyping or analytic tools, nor because of insufficient severe influenza cases, but because of the absence of a coordinated effort to define and assemble cohorts of cases. The recent pandemic and the ongoing epizootic of H5N1 both represent rapidly closing windows of opportunity to increase understanding of the pathogenesis of severe influenza through multi-national host genetic studies.

  1. Haemophilus haemolyticus: A Human Respiratory Tract Commensal to Be Distinguished from Haemophilus influenzae

    DEFF Research Database (Denmark)

    Murphy, T.F.; Brauer, A.L.; Sethi, S.

    2007-01-01

    Background. Haemophilus influenzae is a common pathogen in adults with chronic obstructive pulmonary disease (COPD). In a prospective study, selected isolates of apparent H. influenzae had an altered phenotype. We tested the hypothesis that these variant strains were genetically different from...... typical H. influenzae.Methods. A prospective study of adults with COPD was conducted. Strains of apparent H. influenzae obtained from a range of clinical sources were evaluated by ribosomal DNA sequence analysis, multilocus sequence analysis, DNA-DNA hybridization, and sequencing of the conserved P6 gene.......Results. Variant strains were determined to be Haemophilus haemolyticus by means of 4 independent methods. Analysis of 490 apparent H. influenzae strains, identified by standard methods, revealed that 39.5% of sputum isolates and 27.3% of nasopharyngeal isolates were H. haemolyticus. Isolates obtained from...

  2. Virus genetic variations and evade from immune system, the present influenza challenges: review article

    Directory of Open Access Journals (Sweden)

    Shahla Shahsavandi

    2015-10-01

    Full Text Available The spread of influenza viruses in multiple bird and mammalian species is a worldwide serious threat to human and animal populations' health and raise major concern for ongoing pandemic in humans. Direct transmission of the avian viruses which have sialic acid specific receptors similar to human influenza viruses are a warning to the emergence of a new mutant strain that is likely to share molecular determinants to facilitate their replication in human host. So the emerge virus can be transmitted easily through person to person. The genetic variations of the influenza viruses, emerge and re-emerge of new antigenic variants, and transmission of avian influenza viruses to human may raise wide threat to public health and control of pandemic influenza. Vaccination, chemoprophylaxis with specific antiviral drugs, and personal protective non-pharmacological measures are tools to treat influenza virus infection. The emergence of drug resistant strains of influenza viruses under drug selective pressure and their limited efficacy in severe cases of influenza infections highlight the need to development of new therapies with alternative modes. In recent years several studies have been progressed to introduce components to be act at different stages of the viral life cycle with broad spectrum reactivity against mammalian and bird influenza subtypes. A wide variety of different antiviral strategies include inhibition of virus entry, blocking of viral replication or targeting of cellular signaling pathways have been explored. The current inactivated influenza vaccines are eliciting only B-cell responses. Application of the vaccines has been limited due to the emergence of the new virus antigenic variants. In recent decade development of gene vaccines by targeting various influenza virus proteins have been interested because significant potential for induction of both humoral and cell mediated immunity responses. Enhanced and directed immune responses to

  3. Prospects of HA-Based Universal Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    Anwar M. Hashem

    2015-01-01

    Full Text Available Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs. Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA. Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.

  4. Transmission of Influenza A Viruses

    Science.gov (United States)

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  5. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  6. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein–staphylococcal nuclease hybrid

    International Nuclear Information System (INIS)

    Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke; Fujita, Yusuke; Morisada, Ryosuke; Mori, Koichi; Tobimatsu, Takamasa; Sera, Takashi

    2016-01-01

    Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to construct an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.

  7. A Model for the Ordering and Distribution of the Influenza Vaccine

    Science.gov (United States)

    2006-06-01

    virus. The three types of human influenza viruses are H1N1, H1N2 , and H3N2. Influenza type A viruses are constantly changing and this requires...ORDERING AND DISTRIBUTION OF THE INFLUENZA VACCINE by James Richard Gurr June 2006 Thesis Advisor: Walter Owen Second Reader: Moshe...Ordering and Distribution of the Influenza Vaccine 6. AUTHOR(S) James Richard Gurr 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND

  8. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2012-11-01

    Full Text Available The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.

  9. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes

    DEFF Research Database (Denmark)

    Gannagé, Monique; Dormann, Dorothee; Albrecht, Randy

    2009-01-01

    Influenza A virus is an important human pathogen causing significant morbidity and mortality every year and threatening the human population with epidemics and pandemics. Therefore, it is important to understand the biology of this virus to develop strategies to control its pathogenicity. Here, we...... demonstrate that influenza A virus inhibits macroautophagy, a cellular process known to be manipulated by diverse pathogens. Influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes, and one viral protein, matrix protein 2, is necessary and sufficient...... for this inhibition of autophagosome degradation. Macroautophagy inhibition by matrix protein 2 compromises survival of influenza virus-infected cells but does not influence viral replication. We propose that influenza A virus, which also encodes proapoptotic proteins, is able to determine the death of its host cell...

  10. Investigation of avian influenza infections in wild birds, poultry and humans in Eastern Dongting Lake, China.

    Science.gov (United States)

    Shi, Jinghong; Gao, Lidong; Zhu, Yun; Chen, Tao; Liu, Yunzhi; Dong, Libo; Liu, Fuqiang; Yang, Hao; Cai, Yahui; Yu, Mingdong; Yao, Yi; Xu, Cuilin; Xiao, Xiangming; Shu, Yuelong

    2014-01-01

    We investigated avian influenza infections in wild birds, poultry, and humans at Eastern Dongting Lake, China. We analyzed 6,621 environmental samples, including fresh fecal and water samples, from wild birds and domestic ducks that were collected from the Eastern Dongting Lake area from November 2011 to April 2012. We also conducted two cross-sectional serological studies in November 2011 and April 2012, with 1,050 serum samples collected from people exposed to wild birds and/or domestic ducks. Environmental samples were tested for the presence of avian influenza virus (AIV) using quantitative PCR assays and virus isolation techniques. Hemagglutination inhibition assays were used to detect antibodies against AIV H5N1, and microneutralization assays were used to confirm these results. Among the environmental samples from wild birds and domestic ducks, AIV prevalence was 5.19 and 5.32%, respectively. We isolated 39 and 5 AIVs from the fecal samples of wild birds and domestic ducks, respectively. Our analysis indicated 12 subtypes of AIV were present, suggesting that wild birds in the Eastern Dongting Lake area carried a diverse array of AIVs with low pathogenicity. We were unable to detect any antibodies against AIV H5N1 in humans, suggesting that human infection with H5N1 was rare in this region.

  11. Influenza Virus and Glycemic Variability in Diabetes: A Killer Combination?

    Directory of Open Access Journals (Sweden)

    Katina D. Hulme

    2017-05-01

    Full Text Available Following the 2009 H1N1 influenza virus pandemic, numerous studies identified the striking link between diabetes mellitus and influenza disease severity. Typically, influenza virus is a self-limiting infection but in individuals who have a pre-existing chronic illness, such as diabetes mellitus, severe influenza can develop. Here, we discuss the latest clinical and experimental evidence for the role of diabetes in predisposing the host to severe influenza. We explore the possible mechanisms that underlie this synergy and highlight the, as yet, unexplored role that blood glucose oscillations may play in disease development. Diabetes is one of the world’s fastest growing chronic diseases and influenza virus represents a constant and pervasive threat to human health. It is therefore imperative that we understand how diabetes increases influenza severity in order to mitigate the burden of future influenza epidemics and pandemics.

  12. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918

    Directory of Open Access Journals (Sweden)

    Carter Robert W

    2012-10-01

    Full Text Available Abstract Background The H1N1 influenza A virus has been circulating in the human population for over 95 years, first manifesting itself in the pandemic of 1917–1918. Initial mortality was extremely high, but dropped exponentially over time. Influenza viruses have high mutation rates, and H1N1 has undergone significant genetic changes since 1918. The exact nature of H1N1 mutation accumulation over time has not been fully explored. Methods We have made a comprehensive historical analysis of mutational changes within H1N1 by examining over 4100 fully-sequenced H1N1 genomes. This has allowed us to examine the genetic changes arising within H1N1 from 1918 to the present. Results We document multiple extinction events, including the previously known extinction of the human H1N1 lineage in the 1950s, and an apparent second extinction of the human H1N1 lineage in 2009. These extinctions appear to be due to a continuous accumulation of mutations. At the time of its disappearance in 2009, the human H1N1 lineage had accumulated over 1400 point mutations (more than 10% of the genome, including approximately 330 non-synonymous changes (7.4% of all codons. The accumulation of both point mutations and non-synonymous amino acid changes occurred at constant rates (μ = 14.4 and 2.4 new mutations/year, respectively, and mutations accumulated uniformly across the entire influenza genome. We observed a continuous erosion over time of codon-specificity in H1N1, including a shift away from host (human, swine, and bird [duck] codon preference patterns. Conclusions While there have been numerous adaptations within the H1N1 genome, most of the genetic changes we document here appear to be non-adaptive, and much of the change appears to be degenerative. We suggest H1N1 has been undergoing natural genetic attenuation, and that significant attenuation may even occur during a single pandemic. This process may play a role in natural pandemic cessation and has apparently

  13. Genotypes of Pestivirus RNA detected n anti influenza virus vaccines for human use

    Directory of Open Access Journals (Sweden)

    M. Giangaspero

    2004-02-01

    Full Text Available Nine polyvalent human influenza virus vaccines were tested by reverse transcriptase-polymerase chain reaction (RT-PCR for the presence of pestivirus RNA. Samples were selected from manufacturers in Europe and the USA. Three samples of the nine vaccines tested (33.3% gave positive results for pestivirus RNA. The 5´-untranslated genomic region sequence of the contaminant pestivirus RNA was analysed based on primary nucleotide sequence homology and on secondary sequence structures characteristic to genotypes. Two sequences belonged to Pestivirus type-1 (bovine viral diarrhoea virus [BVDV] species, genotypes BVDV-1b and BVDV-1e. These findings confirm previous reports, suggesting an improvement in preventive measures against contamination of biological products for human use.

  14. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    Science.gov (United States)

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  15. Biological assessment of recombinant avian metapneumovirus subgroup C (aMPV-C) viruses containing different length of the G gene in cultured cells and SPF turkeys.

    Science.gov (United States)

    Genetic variation in length of the glycoprotein (G) gene among different avian metapneumovirus subgroup C (aMPV-C) isolates has been reported. However, its biological significance in virus replication and pathogenicity is unknown. In this study, we generated two Colorado (CO) strain-based recombinan...

  16. Vaccinia-based influenza vaccine overcomes previously induced immunodominance hierarchy for heterosubtypic protection.

    Science.gov (United States)

    Kwon, Ji-Sun; Yoon, Jungsoon; Kim, Yeon-Jung; Kang, Kyuho; Woo, Sunje; Jung, Dea-Im; Song, Man Ki; Kim, Eun-Ha; Kwon, Hyeok-Il; Choi, Young Ki; Kim, Jihye; Lee, Jeewon; Yoon, Yeup; Shin, Eui-Cheol; Youn, Jin-Won

    2014-08-01

    Growing concerns about unpredictable influenza pandemics require a broadly protective vaccine against diverse influenza strains. One of the promising approaches was a T cell-based vaccine, but the narrow breadth of T-cell immunity due to the immunodominance hierarchy established by previous influenza infection and efficacy against only mild challenge condition are important hurdles to overcome. To model T-cell immunodominance hierarchy in humans in an experimental setting, influenza-primed C57BL/6 mice were chosen and boosted with a mixture of vaccinia recombinants, individually expressing consensus sequences from avian, swine, and human isolates of influenza internal proteins. As determined by IFN-γ ELISPOT and polyfunctional cytokine secretion, the vaccinia recombinants of influenza expanded the breadth of T-cell responses to include subdominant and even minor epitopes. Vaccine groups were successfully protected against 100 LD50 challenges with PR/8/34 and highly pathogenic avian influenza H5N1, which contained the identical dominant NP366 epitope. Interestingly, in challenge with pandemic A/Cal/04/2009 containing mutations in the dominant epitope, only the group vaccinated with rVV-NP + PA showed improved protection. Taken together, a vaccinia-based influenza vaccine expressing conserved internal proteins improved the breadth of influenza-specific T-cell immunity and provided heterosubtypic protection against immunologically close as well as distant influenza strains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA.

    Science.gov (United States)

    Riegger, David; Hai, Rong; Dornfeld, Dominik; Mänz, Benjamin; Leyva-Grado, Victor; Sánchez-Aparicio, Maria T; Albrecht, Randy A; Palese, Peter; Haller, Otto; Schwemmle, Martin; García-Sastre, Adolfo; Kochs, Georg; Schmolke, Mirco

    2015-02-01

    Interferon-induced Mx proteins show strong antiviral activity against influenza A viruses (IAVs). We recently demonstrated that the viral nucleoprotein (NP) determines resistance of seasonal and pandemic human influenza viruses to Mx, while avian isolates retain Mx sensitivity. We identified a surface-exposed cluster of amino acids in NP of pandemic A/BM/1/1918 (H1N1), comprising isoleucine-100, proline-283, and tyrosine-313, that is essential for reduced Mx sensitivity in cell culture and in vivo. This cluster has been maintained in all descendant seasonal strains, including A/PR/8/34 (PR/8). Accordingly, two substitutions in the NP of PR/8 [PR/8(mut)] to the Mx-sensitive amino acids (P283L and Y313F) led to attenuation in Mx1-positive mice. Serial lung passages of PR/8(mut) in Mx1 mice resulted in a single exchange of tyrosine to asparagine at position 52 in NP (in close proximity to the amino acid cluster at positions 100, 283, and 313), which partially compensates loss of Mx resistance in PR/8(mut). Intriguingly, the NP of the newly emerged avian-origin H7N9 virus also contains an asparagine at position 52 and shows reduced Mx sensitivity. N52Y substitution in NP results in increased sensitivity of the H7N9 virus to human Mx, indicating that this residue is a determinant of Mx resistance in mammals. Our data strengthen the hypothesis that the human Mx protein represents a potent barrier against zoonotic transmission of avian influenza viruses. However, the H7N9 viruses overcome this restriction by harboring an NP that is less sensitive to Mx-mediated host defense. This might contribute to zoonotic transmission of H7N9 and to the severe to fatal outcome of H7N9 infections in humans. The natural host of influenza A viruses (IAVs) are aquatic birds. Occasionally, these viruses cross the species barrier, as in early 2013 when an avian H7N9 virus infected humans in China. Since then, multiple transmissions of H7N9 viruses to humans have occurred, leaving experts

  18. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    Science.gov (United States)

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  19. Isolation strategy of a two-strain avian influenza model using optimal control

    Science.gov (United States)

    Mardlijah, Ariani, Tika Desi; Asfihani, Tahiyatul

    2017-08-01

    Avian influenza has killed many victims of both birds and humans. Most cases of avian influenza infection in humans have resulted transmission from poultry to humans. To prevent or minimize the patients of avian influenza can be done by pharmaceutical and non-pharmaceutical measures such as the use of masks, isolation, etc. We will be analyzed two strains of avian influenza models that focus on treatment of symptoms with insulation, then investigate the stability of the equilibrium point by using Routh-Hurwitz criteria. We also used optimal control to reduce the number of humans infected by making the isolation level as the control then proceeds optimal control will be simulated. The completion of optimal control used in this study is the Pontryagin Minimum Principle and for simulation we are using Runge Kutta method. The results obtained showed that the application of two control is more optimal compared to apply one control only.

  20. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  1. Impact of Human Immunodeficiency Virus on the Burden and Severity of Influenza Illness in Malawian Adults: A Prospective Cohort and Parallel Case-Control Study.

    Science.gov (United States)

    Ho, Antonia; Aston, Stephen J; Jary, Hannah; Mitchell, Tamara; Alaerts, Maaike; Menyere, Mavis; Mallewa, Jane; Nyirenda, Mulinda; Everett, Dean; Heyderman, Robert S; French, Neil

    2018-03-05

    The impact of human immunodeficiency virus (HIV) infection on influenza incidence and severity in adults in sub-Saharan Africa is unclear. Seasonal influenza vaccination is recommended for HIV-infected persons in developed settings but is rarely implemented in Africa. We conducted a prospective cohort study to compare the incidence of laboratory-confirmed influenza illness between HIV-infected and HIV-uninfected adults in Blantyre, Malawi. In a parallel case-control study, we explored risk factors for severe influenza presentation of severe (hospitalized) lower respiratory tract infection, and mild influenza (influenza-like illness [ILI]). The cohort study enrolled 608 adults, of whom 360 (59%) were HIV infected. Between April 2013 and March 2015, 24 of 229 ILI episodes (10.5%) in HIV-infected and 5 of 119 (4.2%) in HIV-uninfected adults were positive for influenza by means of polymerase chain reaction (incidence rate, 46.0 vs 14.5 per 1000 person-years; incidence rate ratio, 2.75; 95% confidence interval, 1.02-7.44; P = .03; adjusted for age, sex, household crowding, and food security). In the case-control study, influenza was identified in 56 of 518 patients (10.8%) with hospitalized lower respiratory tract infection, and 88 or 642 (13.7%) with ILI. The HIV prevalence was 69.6% and 29.6%, respectively, among influenza-positive case patients and controls. HIV was a significant risk factor for severe influenza (odds ratio, 4.98; 95% confidence interval, 2.09-11.88; P factor for influenza-associated ILI and severe presentation in this high-HIV prevalence African setting. Targeted influenza vaccination of HIV-infected African adults should be reevaluated, and the optimal mechanism for vaccine introduction in overstretched health systems needs to be determined. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  2. Treatment and Prevention of Pandemic H1N1 Influenza.

    Science.gov (United States)

    Rewar, Suresh; Mirdha, Dashrath; Rewar, Prahlad

    2015-01-01

    Swine influenza is a respiratory infection common to pigs worldwide caused by type A influenza viruses, principally subtypes H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses also can cause moderate to severe illness in humans and affect persons of all age groups. People in close contact with swine are at especially high risk. Until recently, epidemiological study of influenza was limited to resource-rich countries. The World Health Organization declared an H1N1 pandemic on June 11, 2009, after more than 70 countries reported 30,000 cases of H1N1 infection. In 2015, incidence of swine influenza increased substantially to reach a 5-year high. In India in 2015, 10,000 cases of swine influenza were reported with 774 deaths. The Centers for Disease Control and Prevention recommend real-time polymerase chain reaction as the method of choice for diagnosing H1N1. Antiviral drugs are the mainstay of clinical treatment of swine influenza and can make the illness milder and enable the patient to feel better faster. Antiviral drugs are most effective when they are started within the first 48 hours after the clinical signs begin, although they also may be used in severe or high-risk cases first seen after this time. The Centers for Disease Control and Prevention recommends use of oseltamivir (Tamiflu, Genentech) or zanamivir (Relenza, GlaxoSmithKline). Prevention of swine influenza has 3 components: prevention in swine, prevention of transmission to humans, and prevention of its spread among humans. Because of limited treatment options, high risk for secondary infection, and frequent need for intensive care of individuals with H1N1 pneumonia, environmental control, including vaccination of high-risk populations and public education are critical to control of swine influenza out breaks. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Nguyen, Phi Hung; Lee, Hong Sik

    2011-01-01

    The emergence of highly pathogenic influenza A virus strains, such as the new H1N1 swine influenza (novel influenza), represents a serious threat to global human health. During our course of an anti-influenza screening program on natural products, one new licochalcone G (1) and seven known (2-8) ...

  4. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  5. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...

  6. Respiratory virus laboratory pandemic planning and surveillance in central Viet Nam, 2008-2010.

    Science.gov (United States)

    Tran, Thomas; Chien, Bui Trong; Papadakis, Georgina; Druce, Julian; Birch, Chris; Chibo, Doris; An, Truong Phuoc; Trang, Le Thi Kim; Trieu, Nguyen Bao; Thuy, Doan Thi Thanh; Catton, Mike; Mai, Trinh Xuan

    2012-07-01

    Laboratory capacity is needed in central Viet Nam to provide early warning to public health authorities of respiratory outbreaks of importance to human health, for example the outbreak of influenza A(H1N1) pandemic in 2009. Polymerase chain reaction (PCR) procedures established as part of a capacity-building process were used to conduct prospective respiratory surveillance in a region where few previous studies have been undertaken. Between October 2008 and September 2010, nose and throat swabs from adults and children (approximately 20 per week) presenting with an acute respiratory illness to the Ninh Hoa General Hospital were collected. Same-day PCR testing and result reporting for 13 respiratory viruses were carried out by locally trained scientists. Of 2144 surveillance samples tested, 1235 (57.6%) were positive for at least one virus. The most common were influenza A strains (17.9%), with pandemic influenza A(H1N1) 2009 and seasonal H3N2 strain accounting for 52% and 43% of these, respectively. Other virus detections included: rhinovirus (12.4%), enterovirus (8.9%), influenza B (8.3%), adenovirus (5.3%), parainfluenza (4.7%), respiratory syncytial virus (RSV) (3.9%), human coronavirus (3.0%) and human metapneumovirus (0.3%). The detection rate was greatest in the 0-5 year age group. Viral co-infections were identified in 148 (6.9%) cases. The outbreak in 2009 of the influenza A(H1N1) pandemic strain provided a practical test of the laboratory's pandemic plan. This study shows that the availability of appropriate equipment and molecular-based testing can contribute to important individual and public health outcomes in geographical locations susceptible to emerging infections.

  7. In vitro antiviral activity of chestnut and quebracho woods extracts against avian reovirus and metapneumovirus.

    Science.gov (United States)

    Lupini, C; Cecchinato, M; Scagliarini, A; Graziani, R; Catelli, E

    2009-12-01

    Field evidences have suggested that a natural extract, containing tannins, could be effective against poultry enteric viral infections. Moreover previous studies have shown that vegetable tannins can have antiviral activity against human viruses. Based on this knowledge three different Chestnut (Castanea spp.) wood extracts and one Quebracho (Schinopsis spp.) wood extract, all containing tannins and currently used in the animal feed industry, were tested for in vitro antiviral activity against avian reovirus (ARV) and avian metapneumovirus (AMPV). The MTT assay was used to evaluate the 50% cytotoxic compounds concentration (CC(50)) on Vero cells. The antiviral properties were tested before and after the adsorption of the viruses to Vero cells. Antiviral activities were expressed as IC(50) (concentration required to inhibit 50% of viral cytopathic effect). CC(50)s of tested compounds were > 200 microg/ml. All compounds had an extracellular antiviral effect against both ARV and AMPV with IC(50) values ranging from 25 to 66 microg/ml. Quebracho extract had also evident intracellular anti-ARV activity (IC(50) 24 microg/ml). These preliminary results suggest that the examined vegetable extracts might be good candidates in the control of some avian virus infections. Nevertheless further in vivo experiments are required to confirm these findings.

  8. Avian influenza: the political economy of disease control in Cambodia.

    Science.gov (United States)

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations.

  9. The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893-2014.

    Science.gov (United States)

    Davis, A Sally; Taubenberger, Jeffery K; Bray, Mike

    2015-05-01

    Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer's study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research. Published by Elsevier B.V.

  10. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed......Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro...... that SAP bound to HA trimers, monomers and HA1 and HA2 subunits of influenza A virus. Binding studies indicated that galactose, mannose and fucose moieties contributed to the SAP reacting site(s). Intranasal administration of human SAP to mice induced no demonstrable toxic reactions, and circulating...

  11. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  12. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    International Nuclear Information System (INIS)

    Syha, R.; Beck, R.; Hetzel, J.; Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M.

    2012-01-01

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  13. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    Energy Technology Data Exchange (ETDEWEB)

    Syha, R., E-mail: roland.syha@med.uni-tuebingen.de [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany); Beck, R. [Institute of Medical Virology, Eberhard-Karls-University, Elfriede-Authorn-Str. 6, 72076 Tübingen (Germany); Hetzel, J. [Department of Medical Oncology and Hematology, Eberhard-Karls-University, Otfried-Müller-Str. 10, 72070 Tübingen (Germany); Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M. [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany)

    2012-12-15

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  14. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    Science.gov (United States)

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed

  15. Activation of cross-reactive mucosal T and B cell responses in human nasopharynx-associated lymphoid tissue in vitro by Modified Vaccinia Ankara-vectored influenza vaccines.

    Science.gov (United States)

    Mullin, Jennifer; Ahmed, Muhammed S; Sharma, Ravi; Upile, Navdeep; Beer, Helen; Achar, Priya; Puksuriwong, Suttida; Ferrara, Francesca; Temperton, Nigel; McNamara, Paul; Lambe, Teresa; Gilbert, Sarah C; Zhang, Qibo

    2016-03-29

    Recent efforts have been focused on the development of vaccines that could induce broad immunity against influenza virus, either through T cell responses to conserved internal antigens or B cell response to cross-reactive haemagglutinin (HA). We studied the capacity of Modified Vaccinia Ankara (MVA)-vectored influenza vaccines to induce cross-reactive immunity to influenza virus in human nasopharynx-associated lymphoid tissue (NALT) in vitro. Adenotonsillar cells were isolated and stimulated with MVA vaccines expressing either conserved nucleoprotein (NP) and matrix protein 1 (M1) (MVA-NP-M1) or pandemic H1N1 HA (MVA-pdmH1HA). The MVA vaccine uptake and expression, and T and B cell responses were analyzed. MVA-vectored vaccines were highly efficient infecting NALT and vaccine antigens were highly expressed by B cells. MVA-NP-M1 elicited T cell response with greater numbers of IFNγ-producing CD4+ T cells and tissue-resident memory T cells than controls. MVA-pdmH1HA induced cross-reactive anti-HA antibodies to a number of influenza subtypes, in an age-dependent manner. The cross-reactive antibodies include anti-avian H5N1 and mainly target HA2 domain. MVA vaccines are efficient in infecting NALT and the vaccine antigen is highly expressed by B cells. MVA vaccines expressing conserved influenza antigens induce cross-reactive T and B cell responses in human NALT in vitro, suggesting the potential as mucosal vaccines for broader immunity against influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Novel reassortant of swine influenza H1N2 virus in Germany.

    Science.gov (United States)

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  17. Etiology and Factors Associated with Pneumonia in Children under 5 Years of Age in Mali: A Prospective Case-Control Study

    Science.gov (United States)

    Messaoudi, Mélina; Sánchez Picot, Valentina; Telles, Jean-Noël; Diakite, Abdoul-Aziz; Komurian-Pradel, Florence; Endtz, Hubert; Diallo, Souleymane; Paranhos-Baccalà, Gláucia; Vanhems, Philippe

    2015-01-01

    Background There are very limited data on children with pneumonia in Mali. The objective was to assess the etiology and factors associated with community-acquired pneumonia in hospitalized children pneumonia; Controls were hospitalized children without respiratory features, matched for age and period. Respiratory specimens, were collected to identify 19 viruses and 5 bacteria. Whole blood was collected from cases only. Factors associated with pneumonia were assessed by multivariate logistic regression. Results Overall, 118 cases and 98 controls were analyzed; 44.1% were female, median age was 11 months. Among pneumonia cases, 30.5% were hypoxemic at admission, mortality was 4.2%. Pneumonia cases differed from the controls regarding clinical signs and symptoms but not in terms of past medical history. Multivariate analysis of nasal swab findings disclosed that S. pneumoniae (adjusted odds ratio [aOR] = 3.4, 95% confidence interval [95% CI]: 1.6–7.0), human metapneumovirus (aOR = 17.2, 95% CI: 2.0–151.4), respiratory syncytial virus [RSV] (aOR = 7.4, 95% CI: 2.3–23.3), and influenza A virus (aOR = 10.7, 95% CI: 1.0–112.2) were associated with pneumonia, independently of patient age, gender, period, and other pathogens. Distribution of S. pneumoniae and RSV differed by season with higher rates of S. pneumoniae in January-June and of RSV in July-September. Pneumococcal serotypes 1 and 5 were more frequent in pneumonia cases than in the controls (P = 0.009, and P = 0.04, respectively). Conclusions In this non-PCV population from Mali, pneumonia in children was mainly attributed to S. pneumoniae, RSV, human metapneumovirus, and influenza A virus. Increased pneumococcal conjugate vaccine coverage in children could significantly reduce the burden of pneumonia in sub-Saharan African countries. PMID:26696249

  18. Respiratory infections in elderly people: Viral role in a resident population of elderly care centers in Lisbon, winter 2013–2014

    Directory of Open Access Journals (Sweden)

    Maria-Jesus Chasqueira

    2018-04-01

    Full Text Available Objective: The aim of this study was to analyze the etiology and clinical consequences of viral respiratory infections in 18 elderly care centers (ECC in Lisbon, which housed a total of 1022 residents. Methods: Nasopharyngeal swabs were collected whenever an elderly had symptoms of acute respiratory infections (ARI. PCR and RT-PCR were performed for influenza A/B, human parainfluenza virus 1–4, adenovirus, human metapneumovirus (HMPV, respiratory syncytial virus (RSV, rhinovirus, enterovirus, human coronavirus and human Bocavirus (HBoV. Array cards for atypical bacteria were also used in severe cases. Results: In total, 188 episodes of ARI were reported, being rhinovirus the most frequently detected (n = 53, followed by influenza A(H3 (n = 19 and HBoV (n = 14. Severe infections were reported in 19 patients, 11 of which were fatal, Legionela pneumophila, rhinovirus, HMPV and RSV associated with these fatalities. Nine influenza strains were analyzed, all antigenically dissimilar from vaccine strain 2013/14. “Age”, “HMPV” and “Respiratory disease” showed an association with severe infection. Conclusions: In this study an etiologic agent could be found in 60% of the acute respiratory episodes. These data provides information about the circulating viruses in ECC and highlights the importance of searching both viruses and atypical bacteria in severe ARI. Keywords: Elderly, Respiratory infections, Respiratory viruses, Legionella pneumophila, Elderly care centers, Real time PCR

  19. Universal immunity to influenza must outwit immune evasion

    Directory of Open Access Journals (Sweden)

    Sergio Manuel Quinones-Parra

    2014-06-01

    Full Text Available Although an influenza vaccine has been available for 70 years, influenza virus still causes seasonal epidemics and worldwide pandemics. Currently available vaccines elicit strain-specific antibody responses to the surface haemagglutinin (HA and neuraminidase (NA proteins, but these can be ineffective against serologically-distinct viral variants and novel subtypes. Thus, there is a need for cross-protective or universal influenza vaccines to overcome the necessity for annual immunisation against seasonal influenza and to provide immunity to reduce the severity of infection with pandemic or outbreak viruses. It is well established that natural influenza infection can provide cross-reactive immunity that can reduce the impact of infection with distinct influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1 and H7N9. The key to generating universal influenza immunity via vaccination is to target functionally-conserved regions of the virus, which include epitopes on the internal proteins for cross-reactive T cell immunity or on the HA stem for broadly reactive antibody responses. In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies have been characterized and isolated from convalescent and vaccinated individuals, inspiring development of new vaccination techniques to elicit such responses. Induction of influenza-specific T cell responses through vaccination has also been examined in clinical trials. Strong evidence is available from human and animal models of influenza to show that established influenza-specific T cell memory can reduce viral shedding and symptom severity. However, the published evidence also shows that CD8+ T cells can efficiently select immune escape mutants early after influenza virus infection. Here, we discuss universal immunity to influenza viruses mediated by both cross-reactive T cells and antibodies, the mechanisms of immune evasion in influenza, and how to counteract commonly occurring

  20. Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality.

    Directory of Open Access Journals (Sweden)

    Wan Yang

    Full Text Available Humidity has been associated with influenza's seasonality, but the mechanisms underlying the relationship remain unclear. There is no consistent explanation for influenza's transmission patterns that applies to both temperate and tropical regions. This study aimed to determine the relationship between ambient humidity and viability of the influenza A virus (IAV during transmission between hosts and to explain the mechanisms underlying it. We measured the viability of IAV in droplets consisting of various model media, chosen to isolate effects of salts and proteins found in respiratory fluid, and in human mucus, at relative humidities (RH ranging from 17% to 100%. In all media and mucus, viability was highest when RH was either close to 100% or below ∼50%. When RH decreased from 84% to 50%, the relationship between viability and RH depended on droplet composition: viability decreased in saline solutions, did not change significantly in solutions supplemented with proteins, and increased dramatically in mucus. Additionally, viral decay increased linearly with salt concentration in saline solutions but not when they were supplemented with proteins. There appear to be three regimes of IAV viability in droplets, defined by humidity: physiological conditions (∼100% RH with high viability, concentrated conditions (50% to near 100% RH with lower viability depending on the composition of media, and dry conditions (<50% RH with high viability. This paradigm could help resolve conflicting findings in the literature on the relationship between IAV viability in aerosols and humidity, and results in human mucus could help explain influenza's seasonality in different regions.

  1. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA.

    Directory of Open Access Journals (Sweden)

    Orr Ashenberg

    2017-03-01

    Full Text Available The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP. Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors.

  2. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  3. Avian influenza overview September–November 2017

    DEFF Research Database (Denmark)

    Brown, Ian; Kuiken, Thijs; Mulatti, Paolo

    2017-01-01

    Between 1 September and 15 November 2017, 48 A(H5N8) highly pathogenic avian influenza (HPAI) outbreaks in poultry holdings and 9 H5 HPAI wild bird events were reported within Europe. A second epidemic HPAI A(H5N8) wave started in Italy on the third week of July and is still ongoing on 15November...... to focus in order to achieve the most effective testing of dead birds for detection of H5 HPAI viruses. Monitoring the avian influenza situation in other continents revealed the same risks as in the previous report (October 2016-August 2017): the recent human case of HPAI A(H5N6) in China underlines...... the continuing threat of this avian influenza virus to human health and possible introduction via migratory wild birds into Europe. Close monitoring is required of the situation in Africa with regards to HPAI of the subtypes A(H5N1) and A(H5N8), given the rapidity of the evolution and the uncertainty...

  4. Viral etiologies of hospitalized acute lower respiratory infection patients in China, 2009-2013.

    Directory of Open Access Journals (Sweden)

    Luzhao Feng

    Full Text Available BACKGROUND: Acute lower respiratory infections (ALRIs are an important cause of acute illnesses and mortality worldwide and in China. However, a large-scale study on the prevalence of viral infections across multiple provinces and seasons has not been previously reported from China. Here, we aimed to identify the viral etiologies associated with ALRIs from 22 Chinese provinces. METHODS AND FINDINGS: Active surveillance for hospitalized ALRI patients in 108 sentinel hospitals in 24 provinces of China was conducted from January 2009-September 2013. We enrolled hospitalized all-age patients with ALRI, and collected respiratory specimens, blood or serum collected for diagnostic testing for respiratory syncytial virus (RSV, human influenza virus, adenoviruses (ADV, human parainfluenza virus (PIV, human metapneumovirus (hMPV, human coronavirus (hCoV and human bocavirus (hBoV. We included 28,369 ALRI patients from 81 (of the 108 sentinel hospitals in 22 (of the 24 provinces, and 10,387 (36.6% were positive for at least one etiology. The most frequently detected virus was RSV (9.9%, followed by influenza (6.6%, PIV (4.8%, ADV (3.4%, hBoV (1.9, hMPV (1.5% and hCoV (1.4%. Co-detections were found in 7.2% of patients. RSV was the most common etiology (17.0% in young children aged <2 years. Influenza viruses were the main cause of the ALRIs in adults and elderly. PIV, hBoV, hMPV and ADV infections were more frequent in children, while hCoV infection was distributed evenly in all-age. There were clear seasonal peaks for RSV, influenza, PIV, hBoV and hMPV infections. CONCLUSIONS: Our findings could serve as robust evidence for public health authorities in drawing up further plans to prevent and control ALRIs associated with viral pathogens. RSV is common in young children and prevention measures could have large public health impact. Influenza was most common in adults and influenza vaccination should be implemented on a wider scale in China.

  5. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  6. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide.

    Science.gov (United States)

    Tilmanis, Danielle; van Baalen, Carel; Oh, Ding Yuan; Rossignol, Jean-Francois; Hurt, Aeron C

    2017-11-01

    Nitazoxanide is a thiazolide compound that was originally developed as an anti-parasitic agent, but has recently been repurposed for the treatment of influenza virus infections. Thought to exert its anti-influenza activity via the inhibition of hemagglutinin maturation and intracellular trafficking in infected cells, the effectiveness of nitazoxanide in treating patients with non-complicated influenza is currently being assessed in phase III clinical trials. Here, we describe the susceptibility of 210 seasonal influenza viruses to tizoxanide, the active circulating metabolite of nitazoxanide. An optimised cell culture-based focus reduction assay was used to determine the susceptibility of A(H1N1)pdm09, A(H3N2), and influenza B viruses circulating in the southern hemisphere from the period March 2014 to August 2016. Tizoxanide showed potent in vitro antiviral activity against all influenza viruses tested, including neuraminidase inhibitor-resistant viruses, allowing the establishment of a baseline level of susceptibility for each subtype. Median EC 50 values (±IQR) of 0.48 μM (0.33-0.71), 0.62 μM (0.56-0.75), 0.66 μM (0.62-0.69), and 0.60 μM (0.51-0.67) were obtained for A(H1N1)pdm09, A(H3N2), B(Victoria lineage), and B(Yamagata lineage) influenza viruses respectively. There was no significant difference in the median baseline tizoxanide susceptibility for each influenza subtype tested. This is the first report on the susceptibility of circulating viruses to tizoxanide. The focus reduction assay format described is sensitive, robust, and less laborious than traditional cell based antiviral assays, making it highly suitable for the surveillance of tizoxanide susceptibility in circulating seasonal influenza viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Production of monoclonal antibodies for Avian Metapneumovirus (SHS-BR-121) isolated in Brazil

    OpenAIRE

    Coswig,LT; Stach-Machado,DR; Arns,CW

    2007-01-01

    Avian Metapneumovirus (aMPV), also called Turkey Rhinotracheitis Virus (TRTV), is an upper respiratory tract infection of turkeys, chickens and other avian species. Five monoclonal antibodies (MAbs) were created against the Brazilian isolate (SHS-BR-121) of aMPV, MAbs 1A5B8; 1C1C4; 2C2E9 and 2A4C3 of IgG1 and MAb 1C1F8 of IgG2a. Four Mabs (1A5B8; 1C1C4; 2C2E9 and 2A4C3) showed neutralizing activity and three (1A5B8; 1C1C4 and 2A4C3) inhibited cellular fusion in vitro. These MAbs were used to ...

  8. Considerations for sustainable influenza vaccine production in developing countries.

    Science.gov (United States)

    Nannei, Claudia; Chadwick, Christopher; Fatima, Hiba; Goldin, Shoshanna; Grubo, Myriam; Ganim, Alexandra

    2016-10-26

    Through its Global Action Plan for Influenza Vaccines (GAP), the World Health Organization (WHO) in collaboration with the United States Department of Health and Human Services has produced a checklist to support policy-makers and influenza vaccine manufacturers in identifying key technological, political, financial, and logistical issues affecting the sustainability of influenza vaccine production. This checklist highlights actions in five key areas that are beneficial for establishing successful local vaccine manufacturing. These five areas comprise: (1) the policy environment and health-care systems; (2) surveillance systems and influenza evidence; (3) product development and manufacturing; (4) product approval and regulation; and (5) communication to support influenza vaccination. Incorporating the checklist into national vaccine production programmes has identified the policy gaps and next steps for countries involved in GAP's Technology Transfer Initiative. Lessons learnt from country experiences provide context and insight that complement the checklist's goal of simplifying the complexities of influenza prevention, preparedness, and vaccine manufacturing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Lina Sun

    Full Text Available BACKGROUND: The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs, AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model. CONCLUSIONS/SIGNIFICANCE: Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.

  10. Protection by recombinant Newcastle disease viruses (NDV) expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subtype A or B against challenge with virulent NDV and aMPV

    Science.gov (United States)

    Avian metapneumovirus (aMPV) and Newcastle disease virus (NDV) are threatening avian pathogens that cause sporadic but serious respiratory diseases in poultry worldwide. Although, vaccination, combined with strict biosecurity practices, has been the recommendation for controlling these diseases in t...

  11. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile.

    Science.gov (United States)

    Bravo-Vasquez, Nicolás; Karlsson, Erik A; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A; Hamilton-West, Christopher; Schultz-Cherry, Stacey

    2017-02-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America.

  12. In-Vitro Antiviral Activities of Extracts of Plants of The Brazilian Cerrado against the Avian Metapneumovirus (aMPV

    Directory of Open Access Journals (Sweden)

    LK Kohn

    2015-09-01

    Full Text Available ABSTRACTAvian metapneumovirus (aMPV is a negative-sense single-stranded RNA enveloped virus of the Metapneumovirus genus belonging to theParamyxoviridae family. This virus may cause significant economic losses to the poultry industry, despite vaccination, which is the main tool for controlling and preventing aMPV. The aim of this study was to evaluate the antiviral activity of extracts of four different native plants of the Brazilian Cerrado against aMPV. The antiviral activity against aMPV was determined by titration. This technique measures the ability of plant extract dilutions (25 to 2.5 µg mL-1 to inhibit the cytopathic effect (CPE of the virus, expressed as inhibition percentage (IP. The maximum nontoxic concentration (MNTC of the extracts used in antiviral assay was 25 µg mL-1for Aspidosperma tomentosumand Gaylussacia brasiliensis, and 2.5 µg mL-1for Arrabidaea chicaand Virola sebifera. Twelve different extracts derived from four plant species collected from the Brazilian Cerrado were screened for antiviral activity against aMPV. G. brasiliensis, A. chica,and V. sebifera extracts presented inhibition rates of 99% in the early viral replication stages, suggesting that these extracts act during the adsorption phase. On the other hand, A. tomentosum inhibited 99% virus replication after the virus entered the cell. The biomonitored fractioning of extracts active against aMPV may be a tool to identify the active compounds of plant extracts and to determine their precise mode of action.

  13. The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893–2014

    Science.gov (United States)

    Davis, A. Sally; Taubenberger, Jeffery K.; Bray, Mike

    2015-01-01

    Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer’s study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research. PMID:25746173

  14. Avian Influenza Pandemic May Expand the Military Role in Disaster Relief

    National Research Council Canada - National Science Library

    Sherod, II, Frank W

    2006-01-01

    .... The next national disaster facing the U.S. could be an influenza pandemic. The bird flu virus H5N1 currently threatening Asia and Europe can potentially mutate into a deadly human influenza pandemic with global consequences...

  15. Screening for influenza viruses in 7804 patients with influenza-like symptoms

    International Nuclear Information System (INIS)

    Xuehui Li; Nan Lv; Chen Hangwe; Lanhua You; Huimin Wang

    2010-01-01

    To screen a large number of patients with influenza-like symptoms by using the gold-immunochromatographic assay kit. All patients with influenza-like symptoms visiting the outpatient department of the General Hospital of Beijing Military Region, Beijing, China between May 2009 and January 2010 were enrolled in the study. Nasopharyngeal swabs were collected immediately after the patient visited, then a gold-immunochromatographic assay was performed for screening of influenza A and B viruses according to the kit protocol. Among the 7804 patients enrolled in this study, 202 patients were influenza virus-positive; the positive cases accounted for 2.6% of all cases detected. Among the 202 influenza virus-positive patients, 171 patients were influenza virus A-positive, 24 were influenza virus B-positive, and 7 were co-infected with influenza virus A and B. More than 57% of the virus-positive patients were younger than 30 years old. Symptoms such as fever, sore throat, nasal congestion, sneezing, runny nose, and joint pain were more frequently observed in influenza virus A-positive patients than in influenza virus B-positive and influenza virus-negative patients. The gold immunochromatographic assay kit is very useful for screening a large number of patients with influenza-like symptoms. A higher number of influenza virus A-positive patients have sore throat, nasal congestion, sneezing, runny nose, and joint pain than influenza virus B-positive and influenza virus-negative patients (Author).

  16. Identification of Human H1N2 and Human-Swine Reassortant H1N2 and H1N1 Influenza A Viruses among Pigs in Ontario, Canada (2003 to 2005)†

    OpenAIRE

    Karasin, Alexander I.; Carman, Suzanne; Olsen, Christopher W.

    2006-01-01

    Since 2003, three novel genotypes of H1 influenza viruses have been recovered from Canadian pigs, including a wholly human H1N2 virus and human-swine reassortants. These isolates demonstrate that human-lineage H1N2 viruses are infectious for pigs and that viruses with a human PB1/swine PA/swine PB2 polymerase complex can replicate in pigs.

  17. Analytical detection of influenza A(H3N2)v and other A variant viruses from the USA by rapid influenza diagnostic tests.

    Science.gov (United States)

    Balish, Amanda; Garten, Rebecca; Klimov, Alexander; Villanueva, Julie

    2013-07-01

    The performance of rapid influenza diagnostic tests (RIDTs) that detect influenza viral nucleoprotein (NP) antigen has been reported to be variable. Recent human infections with variant influenza A viruses that are circulating in pigs prompted the investigation of the analytical reactivity of RIDTs with these variant viruses. To determine analytical reactivity of seven FDA-cleared RIDTs with influenza A variant viruses in comparison with the reactivity with recently circulating seasonal influenza A viruses. Tenfold serial dilutions of cell culture-grown seasonal and variant influenza A viruses were prepared and tested in duplicate with seven RIDTs. All RIDTs evaluated in this study detected the seasonal influenza A(H3N2) virus, although detection limits varied among assays. All but one examined RIDT identified the influenza A(H1N1)pdm09 virus. However, only four of seven RIDTs detected all influenza A(H3N2)v, A(H1N2)v, and A(H1N1)v viruses. Reduced sensitivity of RIDTs to variant influenza viruses may be due to amino acid differences between the NP proteins of seasonal viruses and the NP proteins from viruses circulating in pigs. Clinicians should be aware of the limitations of RIDTs to detect influenza A variant viruses. Specimens from patients with influenza-like illness in whom H3N2v is suspected should be sent to public health laboratories for additional diagnostic testing. Published 2012. This article is a US Government work and is in the public domain in the USA.

  18. Influenza vaccination accelerates recovery of ferrets from lymphopenia.

    Directory of Open Access Journals (Sweden)

    Nedzad Music

    Full Text Available Ferrets are a useful animal model for human influenza virus infections, since they closely mimic the pathogenesis of influenza viruses observed in humans. However, a lack of reagents, especially for flow cytometry of immune cell subsets, has limited research in this model. Here we use a panel of primarily species cross-reactive antibodies to identify ferret T cells, cytotoxic T lymphocytes (CTL, B cells, and granulocytes in peripheral blood. Following infection with seasonal H3N2 or H1N1pdm09 influenza viruses, these cell types showed rapid and dramatic changes in frequency, even though clinically the infections were mild. The loss of B cells and CD4 and CD8 T cells, and the increase in neutrophils, were especially marked 1-2 days after infection, when about 90% of CD8+ T cells disappeared from the peripheral blood. The different virus strains led to different kinetics of leukocyte subset alterations. Vaccination with homologous vaccine reduced clinical symptoms slightly, but led to a much more rapid return to normal leukocyte parameters. Assessment of clinical symptoms may underestimate the effectiveness of influenza vaccine in restoring homeostasis.

  19. Influenza vaccination accelerates recovery of ferrets from lymphopenia.

    Science.gov (United States)

    Music, Nedzad; Reber, Adrian J; Lipatov, Aleksandr S; Kamal, Ram P; Blanchfield, Kristy; Wilson, Jason R; Donis, Ruben O; Katz, Jacqueline M; York, Ian A

    2014-01-01

    Ferrets are a useful animal model for human influenza virus infections, since they closely mimic the pathogenesis of influenza viruses observed in humans. However, a lack of reagents, especially for flow cytometry of immune cell subsets, has limited research in this model. Here we use a panel of primarily species cross-reactive antibodies to identify ferret T cells, cytotoxic T lymphocytes (CTL), B cells, and granulocytes in peripheral blood. Following infection with seasonal H3N2 or H1N1pdm09 influenza viruses, these cell types showed rapid and dramatic changes in frequency, even though clinically the infections were mild. The loss of B cells and CD4 and CD8 T cells, and the increase in neutrophils, were especially marked 1-2 days after infection, when about 90% of CD8+ T cells disappeared from the peripheral blood. The different virus strains led to different kinetics of leukocyte subset alterations. Vaccination with homologous vaccine reduced clinical symptoms slightly, but led to a much more rapid return to normal leukocyte parameters. Assessment of clinical symptoms may underestimate the effectiveness of influenza vaccine in restoring homeostasis.

  20. A prospective study of Romanian agriculture workers for zoonotic influenza infections.

    Directory of Open Access Journals (Sweden)

    Alexandru Coman

    Full Text Available In this prospective study we sought to examine seroepidemiological evidence for acute zoonotic influenza virus infection among Romanian agricultural workers.Sera were drawn upon enrollment (2009 and again at 12 and 24 months from 312 adult agriculture workers and 51 age-group matched controls. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI. Cohort members meeting ILI criteria permitted respiratory swab collections as well as acute and convalescent serum collection. Serologic assays were performed against 9 avian, 3 swine, and 3 human influenza viruses.During the two-year follow-up, a total of 23 ILI events were reported. Two subjects' specimens were identified as influenza A by rRT-PCR. During the follow-up period, three individuals experienced elevated microneutralization antibody titers ≥1∶80 against three (one each avian influenza viruses: A/Teal/Hong Kong/w312/97(H6N1, A/Hong Kong/1073/1999(H9N2, or A/Duck/Alberta/60/1976(H12N5. However, none of these participants met the criteria for poultry exposure. A number of subjects demonstrated four-fold increases over time in hemagglutination inhibition (HI assay titers for at least one of the three swine influenza viruses (SIVs; however, it seems likely that two of these three responses were due to cross-reacting antibody against human influenza. Only elevated antibody titers against A/Swine/Flanders/1/1998(H3N2 lacked evidence for such confounding. In examining risk factors for elevated antibody against this SIV with multiple logistic regression, swine exposure (adjusted OR = 1.8, 95% CI 1.1-2.8 and tobacco use (adjusted OR = 1.8; 95% CI 1.1-2.9 were important predictors.While Romania has recently experienced multiple incursions of highly pathogenic avian influenza among domestic poultry, this cohort of Romanian agriculture workers had sparse evidence of avian influenza virus infections. In contrast, there was

  1. Update: Increase in Human Infections with Novel Asian Lineage Avian Influenza A(H7N9) Viruses During the Fifth Epidemic - China, October 1, 2016-August 7, 2017.

    Science.gov (United States)

    Kile, James C; Ren, Ruiqi; Liu, Liqi; Greene, Carolyn M; Roguski, Katherine; Iuliano, A Danielle; Jang, Yunho; Jones, Joyce; Thor, Sharmi; Song, Ying; Zhou, Suizan; Trock, Susan C; Dugan, Vivien; Wentworth, David E; Levine, Min Z; Uyeki, Timothy M; Katz, Jacqueline M; Jernigan, Daniel B; Olsen, Sonja J; Fry, Alicia M; Azziz-Baumgartner, Eduardo; Davis, C Todd

    2017-09-08

    Among all influenza viruses assessed using CDC's Influenza Risk Assessment Tool (IRAT), the Asian lineage avian influenza A(H7N9) virus (Asian H7N9), first reported in China in March 2013,* is ranked as the influenza virus with the highest potential pandemic risk (1). During October 1, 2016-August 7, 2017, the National Health and Family Planning Commission of China; CDC, Taiwan; the Hong Kong Centre for Health Protection; and the Macao CDC reported 759 human infections with Asian H7N9 viruses, including 281 deaths, to the World Health Organization (WHO), making this the largest of the five epidemics of Asian H7N9 infections that have occurred since 2013 (Figure 1). This report summarizes new viral and epidemiologic features identified during the fifth epidemic of Asian H7N9 in China and summarizes ongoing measures to enhance pandemic preparedness. Infections in humans and poultry were reported from most areas of China, including provinces bordering other countries, indicating extensive, ongoing geographic spread. The risk to the general public is very low and most human infections were, and continue to be, associated with poultry exposure, especially at live bird markets in mainland China. Throughout the first four epidemics of Asian H7N9 infections, only low pathogenic avian influenza (LPAI) viruses were detected among human, poultry, and environmental specimens and samples. During the fifth epidemic, mutations were detected among some Asian H7N9 viruses, identifying the emergence of high pathogenic avian influenza (HPAI) viruses as well as viruses with reduced susceptibility to influenza antiviral medications recommended for treatment. Furthermore, the fifth-epidemic viruses diverged genetically into two separate lineages (Pearl River Delta lineage and Yangtze River Delta lineage), with Yangtze River Delta lineage viruses emerging as antigenically different compared with those from earlier epidemics. Because of its pandemic potential, candidate vaccine viruses

  2. Chiropteran influenza viruses: flu from bats or a relic from the past?

    Science.gov (United States)

    Brunotte, Linda; Beer, Martin; Horie, Masayuki; Schwemmle, Martin

    2016-02-01

    The identification of influenza A-like genomic sequences in bats suggests the existence of distinct lineages of chiropteran influenza viruses in South and Central America. These viruses share similarities with conventional influenza A viruses but lack the canonical receptor-binding property and neuraminidase function. The inability to isolate infectious bat influenza viruses impeded further studies, however, reverse genetic analysis provided new insights into the molecular biology of these viruses. In this review, we highlight the recent developments in the field of the newly discovered bat-derived influenza A-like viruses. We also discuss whether bats are a neglected natural reservoir of influenza viruses, the risk associated with bat influenza viruses for humans and whether these viruses originate from the pool of avian IAV or vice versa. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influenza and other respiratory viruses detected by influenza-like illness surveillance in Leyte Island, the Philippines, 2010-2013.

    Directory of Open Access Journals (Sweden)

    Hirono Otomaru

    Full Text Available This study aimed to determine the role of influenza-like illness (ILI surveillance conducted on Leyte Island, the Philippines, including involvement of other respiratory viruses, from 2010 to 2013. ILI surveillance was conducted from January 2010 to March 2013 with 3 sentinel sites located in Tacloban city, Palo and Tanauan of Leyte Island. ILI was defined as fever ≥38°C or feverish feeling and either cough or running nose in a patient of any age. Influenza virus and other 5 respiratory viruses were searched. A total of 5,550 ILI cases visited the 3 sites and specimens were collected from 2,031 (36.6% cases. Among the cases sampled, 1,637 (75.6% were children aged <5 years. 874 (43.0% cases were positive for at least one of the respiratory viruses tested. Influenza virus and respiratory syncytial virus (RSV were predominantly detected (both were 25.7% followed by human rhinovirus (HRV (17.5%. The age distributions were significantly different between those who were positive for influenza, HRV, and RSV. ILI cases were reported throughout the year and influenza virus was co-detected with those viruses on approximately half of the weeks of study period (RSV in 60.5% and HRV 47.4%. In terms of clinical manifestations, only the rates of headache and sore throat were significantly higher in influenza positive cases than cases positive to other viruses. In conclusion, syndromic ILI surveillance in this area is difficult to detect the start of influenza epidemic without laboratory confirmation which requires huge resources. Age was an important factor that affected positive rates of influenza and other respiratory viruses. Involvement of older age children may be useful to detect influenza more effectively.

  4. A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2.

    Directory of Open Access Journals (Sweden)

    Christopher W Woods

    Full Text Available There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1 or A/Wisconsin/67/2005 (H3N2, and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44% developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003, H1N1 and 38 hours (p-value = 0.005, H3N2 before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009 infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent.

  5. Meningitis - H. influenzae

    Science.gov (United States)

    H. influenzae meningitis; H. flu meningitis; Haemophilus influenzae type b meningitis ... H. influenzae meningitis is caused by Haemophilus influenzae type b bacteria. This illness is not the same ...

  6. Investigation of influenza in migrating birds, the primordial reservoir and transmitters of influenza in Brazil Investigação de influenza em aves migratórias, principal reservatório e transporte de influenza no Brasil

    Directory of Open Access Journals (Sweden)

    Adélia Hiroko Nagamori Kawamoto

    2005-03-01

    Full Text Available Birds are the most important reservoirs of the influenza virus. Its maintenance in its natural hosts, including man, allows the influenza virus to reassorts its strains. The recent report of an avian influenza A (H5N1 virus in humans, was in a child with fatal respiratory illness in China, 1997. The current study was conducted to elucidate the transportation of the influenza by birds that migrate, annually, through the both Northern and Southern hemispheres, with special attention paid to the Vireo olivaceus [Juruviara(BR or Red-eyed vireo(USA] species, which travels from the USA to Brazil, and vice versa, and the Elaenia mesoleuca [Tuque(BR or (USA] species that flies over the entire Southern Hemisphere. There are two species of birds, which breed and migrate in São Paulo State, Brazil, and which were demonstrated to carry Influenza virus, were selected. The viral particles isolated were observed by electron microscopy. The influenza virus was detected by the House Duplex/PCR and Gloria molecular biology tests. The results demonstrated that the Elaenia mesoleuca and Vireo olivaceus bird species are carrying the Influenza virus whilst crossing both the Northern and Southern hemispheres. To understand the role that these migrating birds may play in epidemic influenza, in Brazil, characterization of avian influenza subtypes will be done.Os mais importantes reservatórios do vírus influenza são os pássaros. A manutenção do vírus influenza em hospedeiros naturais, inclusive o homem, permite que esse vírus realize rearranjos entre as suas cepas. O recente relato de uma cepa influenza aviária A(H5N1, em humanos, se deu em uma criança com doença respiratória fatal, na China em 1977. O presente estudo foi conduzido para elucidar o transporte da influenza por pássaros que migram, anualmente, através de ambos hemisférios o do Norte e do Sul, com especial atenção voltada à espécies Vireo olivaceo [Juruviara(BR e Red-eyed vireo(USA] que

  7. Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L; White, Mitchell R; Tecle, Tesfaldet

    2007-01-01

    BACKGROUND: Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection. Common human polymorphisms of SP-D have been found in many human populations and associated with increased risk of certain infections. We recently reported that the Thr...... on the CRD of SP-D were found to have differing effects on antiviral activity. Using an mAb that did not interfere with antiviral activity of SP-D, we confirm that natural SP-D trimers had reduced ability to bind to IAV. In addition, the trimers had reduced ability to neutralize IAV as compared to natural...... indicate that a common human polymorphic form of SP-D may modulate host defense against IAV and give impetus to clinical studies correlating this genotype with risk for IAV infection in susceptible groups. We also show that mAbs directed against different areas on the carbohydrate recognition domain of SP...

  8. Intravenous Immunoglobulin Protects Against Severe Pandemic Influenza Infection

    Directory of Open Access Journals (Sweden)

    Steven Rockman

    2017-05-01

    Full Text Available Influenza is a highly contagious, acute, febrile respiratory infection that can have fatal consequences particularly in individuals with chronic illnesses. Sporadic reports suggest that intravenous immunoglobulin (IVIg may be efficacious in the influenza setting. We investigated the potential of human IVIg to ameliorate influenza infection in ferrets exposed to either the pandemic H1N1/09 virus (pH1N1 or highly pathogenic avian influenza (H5N1. IVIg administered at the time of influenza virus exposure led to a significant reduction in lung viral load following pH1N1 challenge. In the lethal H5N1 model, the majority of animals given IVIg survived challenge in a dose dependent manner. Protection was also afforded by purified F(ab′2 but not Fc fragments derived from IVIg, supporting a specific antibody-mediated mechanism of protection. We conclude that pre-pandemic IVIg can modulate serious influenza infection-associated mortality and morbidity. IVIg could be useful prophylactically in the event of a pandemic to protect vulnerable population groups and in the critical care setting as a first stage intervention.

  9. Influenza Photos

    Science.gov (United States)

    ... Polio Whooping cough Influenza (flu) Rabies Yellow fever Influenza Photos Photographs accompanied by text that reads "Courtesy ... of these photos are quite graphic. Shows how influenza germs spread through the air when someone coughs ...

  10. The 2009 A (H1N1) influenza virus pandemic: A review.

    Science.gov (United States)

    Girard, Marc P; Tam, John S; Assossou, Olga M; Kieny, Marie Paule

    2010-07-12

    In March and early April 2009 a new swine-origin influenza virus (S-OIV), A (H1N1), emerged in Mexico and the USA. The virus quickly spread worldwide through human-to-human transmission. In view of the number of countries and communities which were reporting human cases, the World Health Organization raised the influenza pandemic alert to the highest level (level 6) on June 11, 2009. The propensity of the virus to primarily affect children, young adults and pregnant women, especially those with an underlying lung or cardiac disease condition, and the substantial increase in rate of hospitalizations, prompted the efforts of the pharmaceutical industry, including new manufacturers from China, Thailand, India and South America, to develop pandemic H1N1 influenza vaccines. All currently registered vaccines were tested for safety and immunogenicity in clinical trials on human volunteers. All were found to be safe and to elicit potentially protective antibody responses after the administration of a single dose of vaccine, including split inactivated vaccines with or without adjuvant, whole-virion vaccines and live-attenuated vaccines. The need for an increased surveillance of influenza virus circulation in swine is outlined. Copyright 2010. Published by Elsevier Ltd.

  11. Comparison of neutralizing and hemagglutination-inhibiting antibody responses to influenza A virus vaccination of human immunodeficiency virus-infected individuals

    NARCIS (Netherlands)

    Benne, CA; Harmsen, M; Tavares, L; Kraaijeveld, CA; De Jong, JC

    A neutralization enzyme immunoassay (N-EIA) was used to determine the neutralizing serum antibody titers to influenza A/Taiwan/1/86 (H1N1) and Beijing/353/89 (H3N2) viruses after vaccination of 51 human immunodeficiency virus (HIV) type 1-infected individuals and 10 healthy noninfected controls

  12. Outbreaks of influenza A virus in farmed mink (Neovison vison) in Denmark: molecular characterization of the viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    2012-01-01

    that the virus was a human/swine reassortant, with the H and N gene most related to human H3N2 viruses circulating in 2005. The remaining 6 genes were most closely related to H1N2 influenza viruses circulating in Danish swine. This virus had not previously been described in swine, mink or humans. PCRs assays...... specifically targeting the new reassortant were developed and used to screen influenza positive samples from humans and swine in Denmark with negative results. Thus, there was no evidence that this virus had spread to humans or was circulating in Danish pigs. In 2010 and 2011, influenza virus was again...... diagnosed in diseased mink in a few farms. The genetic typing showed that the virus was similar to the pandemic H1N1 virus circulating in humans and swine. The H3N2 virus was not detected in 2010 and 2011. Taken together, these findings indicate that mink is highly susceptible for influenza A virus of human...

  13. The role of genomics in tracking the evolution of influenza A virus.

    Directory of Open Access Journals (Sweden)

    Alice Carolyn McHardy

    2009-10-01

    Full Text Available Influenza A virus causes annual epidemics and occasional pandemics of short-term respiratory infections associated with considerable morbidity and mortality. The pandemics occur when new human-transmissible viruses that have the major surface protein of influenza A viruses from other host species are introduced into the human population. Between such rare events, the evolution of influenza is shaped by antigenic drift: the accumulation of mutations that result in changes in exposed regions of the viral surface proteins. Antigenic drift makes the virus less susceptible to immediate neutralization by the immune system in individuals who have had a previous influenza infection or vaccination. A biannual reevaluation of the vaccine composition is essential to maintain its effectiveness due to this immune escape. The study of influenza genomes is key to this endeavor, increasing our understanding of antigenic drift and enhancing the accuracy of vaccine strain selection. Recent large-scale genome sequencing and antigenic typing has considerably improved our understanding of influenza evolution: epidemics around the globe are seeded from a reservoir in East-Southeast Asia with year-round prevalence of influenza viruses; antigenically similar strains predominate in epidemics worldwide for several years before being replaced by a new antigenic cluster of strains. Future in-depth studies of the influenza reservoir, along with large-scale data mining of genomic resources and the integration of epidemiological, genomic, and antigenic data, should enhance our understanding of antigenic drift and improve the detection and control of antigenically novel emerging strains.

  14. Comparison of mucosal lining fluid sampling methods and influenza-specific IgA detection assays for use in human studies of influenza immunity.

    Science.gov (United States)

    de Silva, Thushan I; Gould, Victoria; Mohammed, Nuredin I; Cope, Alethea; Meijer, Adam; Zutt, Ilse; Reimerink, Johan; Kampmann, Beate; Hoschler, Katja; Zambon, Maria; Tregoning, John S

    2017-10-01

    We need greater understanding of the mechanisms underlying protection against influenza virus to develop more effective vaccines. To do this, we need better, more reproducible methods of sampling the nasal mucosa. The aim of the current study was to compare levels of influenza virus A subtype-specific IgA collected using three different methods of nasal sampling. Samples were collected from healthy adult volunteers before and after LAIV immunization by nasal wash, flocked swabs and Synthetic Absorptive Matrix (SAM) strips. Influenza A virus subtype-specific IgA levels were measured by haemagglutinin binding ELISA or haemagglutinin binding microarray and the functional response was assessed by microneutralization. Nasosorption using SAM strips lead to the recovery of a more concentrated sample of material, with a significantly higher level of total and influenza H1-specific IgA. However, an equivalent percentage of specific IgA was observed with all sampling methods when normalized to the total IgA. Responses measured using a recently developed antibody microarray platform, which allows evaluation of binding to multiple influenza strains simultaneously with small sample volumes, were compared to ELISA. There was a good correlation between ELISA and microarray values. Material recovered from SAM strips was weakly neutralizing when used in an in vitro assay, with a modest correlation between the level of IgA measured by ELISA and neutralization, but a greater correlation between microarray-measured IgA and neutralizing activity. In conclusion we have tested three different methods of nasal sampling and show that flocked swabs and novel SAM strips are appropriate alternatives to traditional nasal washes for assessment of mucosal influenza humoral immunity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influenza (Flu) Viruses

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Pandemic Other Influenza (Flu) Viruses Language: English (US) Español Recommend on Facebook ... influenza circulate and cause illness. More Information about Flu Viruses Types of Influenza Viruses Influenza A and ...

  16. Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry

    Science.gov (United States)

    Miles, John J.; Tan, Mai Ping; Dolton, Garry; Galloway, Sarah A.E.; Laugel, Bruno; Makinde, Julia; Matthews, Katherine K.; Watkins, Thomas S.; Wong, Yide; Clark, Richard J.; Pentier, Johanne M.; Attaf, Meriem; Lissina, Anya; Ager, Ann; Gallimore, Awen; Gras, Stephanie; Rossjohn, Jamie; Burrows, Scott R.; Cole, David K.; Price, David A.

    2018-01-01

    Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic “mimics” using subunits that do not exist in the natural world. We developed a platform based on D–amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus–specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery. PMID:29528337

  17. Influenza A and B viruses in the population of Vojvodina, Serbia

    Directory of Open Access Journals (Sweden)

    Radovanov J.

    2014-01-01

    Full Text Available At present, two influenza A viruses, H1N1pdm09 and H3N2, along with influenza B virus co-circulate in the human population, causing endemic and seasonal epidemic acute febrile respiratory infections, sometimes with life-threatening complications. Detection of influenza viruses in nasopharyngeal swab samples was done by real-time RT-PCR. There were 60.2% (53/88 positive samples in 2010/11, 63.4% (52/82 in 2011/12, and 49.9% (184/369 in 2012/13. Among the positive patients, influenza A viruses were predominant during the first two seasons, while influenza B type was more active during 2012/13. Subtyping of influenza A positive samples revealed the presence of A (H1N1pdm09 in 2010/11, A (H3N2 in 2011/12, while in 2012/13, both subtypes were detected. The highest seroprevalence against influenza A was in the age-group 30-64, and against influenza B in adults aged 30-64 and >65. [Projekat Ministarstva nauke Republike Srbije, br. TR31084

  18. Sparse evidence for equine or avian influenza virus infections among Mongolian adults with animal exposures

    OpenAIRE

    Khurelbaatar, Nyamdavaa; Krueger, Whitney S.; Heil, Gary L.; Darmaa, Badarchiin; Ulziimaa, Daramragchaa; Tserennorov, Damdindorj; Baterdene, Ariungerel; Anderson, Benjamin D.; Gray, Gregory C.

    2013-01-01

    In recent years, Mongolia has experienced recurrent epizootics of equine influenza virus (EIV) among its 2?1 million horses and multiple incursions of highly pathogenic avian influenza (HPAI) virus via migrating birds. No human EIV or HPAI infections have been reported. In 2009, 439 adults in Mongolia were enrolled in a population?based study of zoonotic influenza transmission. Enrollment sera were examined for serological evidence of infection with nine avian, three human, and one equine inf...

  19. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    Science.gov (United States)

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  20. Avian influenza

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon; Bicout, Dominique

    2017-01-01

    Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become ...... of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures....