WorldWideScience

Sample records for human influenza h1n1

  1. H1N1 Influenza

    Science.gov (United States)

    ... Nutrient Shortfall Questionnaire Home Diseases and Conditions H1N1 Influenza H1N1 Influenza Condition Family HealthKids and Teens Share H1N1 ... Contents1. Overview2. Symptoms3. Prevention4. Treatment What is H1N1 influenza?H1N1 influenza (also known as swine flu) is an ...

  2. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.

  3. Genetic correlation between current circulating H1N1 swine and human influenza viruses.

    Science.gov (United States)

    Lu, Lu; Yin, Yanbo; Sun, Zhongsheng; Gao, Lei; Gao, George F; Liu, Sidang; Sun, Lei; Liu, Wenjun

    2010-11-01

    H1N1 is the main subtype influenza A virus circulating in human and swine population, and has long been a threat to economy and public health. To explore the genetic correlation between current circulating H1N1 swine and human influenza viruses. Three new H1N1 swine influenza viruses (SIVs) were isolated and genomes sequencing were conducted followed by phylogenetic and molecular analysis of all swine and human H1N1 influenza viruses isolated in China in the past five years. Homology and phylogenetic analysis revealed that the three isolates possessed different characteristics: the genome of A/Swine/Shandong/1112/2008 was closely related to that of classical H1N1 SIV, while A/Swine/Shandong/1123/2008 was a reassortant with NS gene from the human-like H3N2 influenza virus and other genes from the classical H1N1 SIV, and A/Swine/Fujian/0325/2008 fell into a lineage of seasonal human H1N1 influenza viruses. Genetically, 2009 H1N1 influenza A viruses (2009 H1N1) in China were contiguous to the SIV lineages rather than the seasonal H1N1 human influenza virus's lineage. Furthermore, molecular analysis among human and swine influenza viruses provided more detail information for understanding their genetic correlation. These results suggested that in China in the past five years, the classical, avian-like and human-like H1N1 SIV existed in swine herds and the reassortment between H1N1 swine and H3N2 human influenza viruses was identified. In addition, the present data showed no evidence to support a strong correlation between the 2009 H1N1 and the swine influenza virus circulating in China. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus.

    Science.gov (United States)

    Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao

    2015-09-28

    The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control.

  5. Genome evolution of novel influenza A (H1N1)viruses in humans

    Institute of Scientific and Technical Information of China (English)

    KOU Zheng; HU SongNian; LI TianXian

    2009-01-01

    The epidemic situation of A H1N1 flu arose in North America in April 2009,which rapidly expanded to three continents of Europe,Asia and Africa,with the risk ranking up to 5.Until May 13th,the flu virus of A H1N1 had spread into 33 countries and regions,with a laboratory confirmed case number of 5728,including 61 deaths.Based on IRV and EpiFluDB database,425 parts of A H1N1 flu virus sequence were achieved,followed by sequenced comparison and evolution analysis.The results showed that the current predominant A H1N1 flu virus was a kind of triple reassortment A flu virus:(i) HA,NA,MP,NP and NS originated from swine influenza virus;PB2 and PA originated from bird influenza virus;PB1 originated from human influenza virus.(ii) The origin of swine influenza virus could be subdivided as follows:HA,NP and NS originated from classic swine influenza virus of H1N1 subtype;NA and MP originated from bird origin swine influenza virus of H1N1 subtype.(iii) A H1N1 flu virus experienced no significant mutation during the epidemic spread,accompanied with no reassortment of the virus genome.In the paper,the region of the representative strains for sequence analysis (A/California/04/2009 (H1N1) and A/Mexico/4486/2009 (H1N1)) included USA and Mexico and was relatively wide,which suggested that the analysis results were convincing.

  6. Severe swine influenza A (H1N1) versus severe human seasonal influenza A (H3N2): clinical comparisons.

    Science.gov (United States)

    Cunha, Burke A; Pherez, Francisco M; Strollo, Stephanie; Syed, Uzma; Laguerre, Marianne

    2011-01-01

    At the beginning of the swine influenza (H1N1) pandemic in the spring of 2009, there were still stories of human seasonal influenza A circulating in the New York area. Adult patients admitted with influenza-like illnesses (ILIs) (fever > 102°F, dry cough, and myalgias) presented diagnostic problems. First, clinicians had to differentiate ILIs from influenza, and then differentiate human seasonal influenza A from H1N1 in hospitalized adults with ILIs and negative chest films (no focal segmental/lobar infiltrates). Human seasonal influenza A was diagnosed by rapid influenza diagnostic tests (RIDTs), but H1N1 was often RIDT negative. Reverse transcriptase-polymerase chain reaction for H1N1 was restricted or not available. The Winthrop-University Hospital Infectious Disease Division developed clinical diagnostic criteria (a diagnostic weighted point score system) to rapidly and clinically diagnose H1N1 in patients with negative RIDTs. The point score system was modified and shortened for ease of use, that is, the diagnostic H1N1 triad (any 3 of 4) (ILI, see above) plus thrombocytopenia, relative lymphopenia, elevated serum transaminases, or an elevated creatine phosphokinase. Our clinical experience during the pandemic allowed us to develop the swine diagnostic H1N1 triad. In the process, similarities and differences between human seasonal influenza A and H1N1 were noted. We present 2 illustrative cases of severe influenza, one due to human seasonal influenza A and one due to H1N1, for clinical consideration reflective of our experiences early in the H1N1 pandemic in 2009.

  7. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses.

    Science.gov (United States)

    Sun, Shisheng; Wang, Qinzhe; Zhao, Fei; Chen, Wentian; Li, Zheng

    2012-01-01

    Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data.

  8. Caveolin-1 influences human influenza A virus (H1N1 multiplication in cell culture

    Directory of Open Access Journals (Sweden)

    Hemgård Gun-Viol

    2010-05-01

    Full Text Available Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1 as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1 strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1 virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK, a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.

  9. Molecular characterization of H1N1 influenza A viruses from human cases in North America

    Institute of Scientific and Technical Information of China (English)

    WU Bin; WANG ChengMin; DONG GuoYing; LUO Jing; ZHAO BaoHua; HE HongXuan

    2009-01-01

    Subtypes of H1N1 influenza virus can be found in humans in North America,while they are also associated with the infection of swine.Characterization of the genotypes of viral strains in human populations is important to understand the source and distribution of viral strains.Genomic and protein sequences of 10 isolates of the 2009 outbreak of influenza A (H1N1) virus in North America were obtained from GenBank database.To characterize the genotypes of these viruses,phylogenetic trees of genes PB2,PB1,PA,HA,NP,NA,NS and M were constructed by Phylip3.67 program and N-Linked glycosylation sites of HA,NA,PB2,NS1 and M2 proteins were analyzed online by NetNGIyc1.0 program.Phylogenetic analysis indicated that these isolates are virtually identical but may be recombinant viruses because their genomic fragments come from different viruses.The isolates also contain a characteristic lowly pathogenic amino acid motif at their HA cleavage sites (IPSIQSR↓GL),and an E residue at position 627 of the PB2 protein which shows its high affinity to humans.The homologous model of M proteins showed that the viruses had obtained the ability of anti-amantadine due to the mutation at the drug-sensitive site,while sequence analysis of NA proteins indicated that the viruses are still susceptible to the neuraminidase inhibitor drug (i.e.oseltamivir and zanamivir) because no mutations have been observed.Our results strongly suggested that the viruses responsible for the 2009 outbreaks of influenza A (H1N1) virus have the ability to cross species barriers to infect human and mammalian animals based on molecular analysis.These findings may further facilitate the therapy and prevention of possible transmission from North America to other countries.

  10. Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses.

    Science.gov (United States)

    Hartmann, Boris M; Thakar, Juilee; Albrecht, Randy A; Avey, Stefan; Zaslavsky, Elena; Marjanovic, Nada; Chikina, Maria; Fribourg, Miguel; Hayot, Fernand; Schmolke, Mirco; Meng, Hailong; Wetmur, James; García-Sastre, Adolfo; Kleinstein, Steven H; Sealfon, Stuart C

    2015-10-01

    Influenza viruses continue to present global threats to human health. Antigenic drift and shift, genetic reassortment, and cross-species transmission generate new strains with differences in epidemiology and clinical severity. We compared the temporal transcriptional responses of human dendritic cells (DC) to infection with two pandemic (A/Brevig Mission/1/1918, A/California/4/2009) and two seasonal (A/New Caledonia/20/1999, A/Texas/36/1991) H1N1 influenza viruses. Strain-specific response differences included stronger activation of NF-κB following infection with A/New Caledonia/20/1999 and a unique cluster of genes expressed following infection with A/Brevig Mission/1/1918. A common antiviral program showing strain-specific timing was identified in the early DC response and found to correspond with reported transcript changes in blood during symptomatic human influenza virus infection. Comparison of the global responses to the seasonal and pandemic strains showed that a dramatic divergence occurred after 4 h, with only the seasonal strains inducing widespread mRNA loss. Continuously evolving influenza viruses present a global threat to human health; however, these host responses display strain-dependent differences that are incompletely understood. Thus, we conducted a detailed comparative study assessing the immune responses of human DC to infection with two pandemic and two seasonal H1N1 influenza strains. We identified in the immune response to viral infection both common and strain-specific features. Among the stain-specific elements were a time shift of the interferon-stimulated gene response, selective induction of NF-κB signaling by one of the seasonal strains, and massive RNA degradation as early as 4 h postinfection by the seasonal, but not the pandemic, viruses. These findings illuminate new aspects of the distinct differences in the immune responses to pandemic and seasonal influenza viruses. Copyright © 2015, American Society for Microbiology. All

  11. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    Science.gov (United States)

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis.IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  12. [Colorimetric detection of human influenza A H1N1 virus by reverse transcription loop mediated isothermal amplification].

    Science.gov (United States)

    Nie, Kai; Wang, Da-Yan; Qin, Meng; Gao, Rong-Bao; Wang, Miao; Zou, Shu-Mei; Han, Feng; Zhao, Xiang; Li, Xi-Yan; Shu, Yue-Long; Ma, Xue-Jun

    2010-03-01

    A simple, rapid and sensitive colorimetric Reverse Transcription Loop Mediated Isothermal Amplification (RT-LAMP) method was established to detect human influenza A H1N1 virus. The method employed a set of six specially designed primers that recognized eight distinct sequences of the HA gene for amplification of nucleic acid under isothermal conditions at 65 degrees C for one and half hour. The amplification process of RT-LAMP was monitored by the addition of HNB (Hydroxy naphthol blue) dye prior to amplification. A positive reaction was indicated by a color change from violet to sky blue and confirmed by agarose electrophoresis. The specificity of the RT-LAMP assay was validated by cross-reaction with different swine and human influenza virus including human seasonal influenza A /H1N1 A /H3N2, influenza B and swine A /H1N1. The sensitivity of this assay was evaluated by serial dilutions of RNA molecules from in vitro transcription of human influenza A H1N1 HA gene. The assay was further evaluated with 30 clinical specimens with suspected pandemic influenza A H1N1 virus infection in parallel with RT-PCR detection and 26 clinical specimens with seasonal influenza virus infection. Our results showed that the RT-LAMP was able to achieve a sensitivity of 60 RNA copies with high specificity, and detection rate was comparable to that of the RT-PCR with the clinical samples of pandemic influenza A H1N1 infection. The RT-LAMP reaction with HNB could also be measured at 650nm in a microplate reader for quantitative analysis. Thus, we concluded that this colorimetric RT-LAMP assay had potential for the rapid screening of the human influenza A H1N1 virus infection in National influenza monitoring network laboratories and sentinel hospitals of provincial and municipal region in China.

  13. Effect of the novel influenza A (H1N1 virus in the human immune system.

    Directory of Open Access Journals (Sweden)

    Evangelos J Giamarellos-Bourboulis

    Full Text Available BACKGROUND: The pandemic by the novel H1N1 virus has created the need to study any probable effects of that infection in the immune system of the host. METHODOLOGY/PRINCIPAL FINDINGS: Blood was sampled within the first two days of the presentation of signs of infection from 10 healthy volunteers; from 18 cases of flu-like syndrome; and from 31 cases of infection by H1N1 confirmed by reverse RT-PCR. Absolute counts of subtypes of monocytes and of lymphocytes were determined after staining with monoclonal antibodies and analysis by flow cytometry. Peripheral blood mononuclear cells (PBMCs were isolated from patients and stimulated with various bacterial stimuli. Concentrations of tumour necrosis factor-alpha, interleukin (IL-1beta, IL-6, IL-18, interferon (FN-alpha and of IFN-gamma were estimated in supernatants by an enzyme immunoassay. Infection by H1N1 was accompanied by an increase of monocytes. PBMCs of patients evoked strong cytokine production after stimulation with most of bacterial stimuli. Defective cytokine responses were shown in response to stimulation with phytohemagglutin and with heat-killed Streptococcus pneumoniae. Adaptive immune responses of H1N1-infected patients were characterized by decreases of CD4-lymphocytes and of B-lymphocytes and by increase of T-regulatory lymphocytes (Tregs. CONCLUSIONS/SIGNIFICANCE: Infection by the H1N1 virus is accompanied by a characteristic impairment of the innate immune responses characterized by defective cytokine responses to S.pneumoniae. Alterations of the adaptive immune responses are predominated by increase of Tregs. These findings signify a predisposition for pneumococcal infections after infection by H1N1 influenza.

  14. Differentiation of human influenza A viruses including the pandemic subtype H1N1/2009 by conventional multiplex PCR.

    Science.gov (United States)

    Furuse, Yuki; Odagiri, Takashi; Okada, Takashi; Khandaker, Irona; Shimabukuro, Kozue; Sawayama, Rumi; Suzuki, Akira; Oshitani, Hitoshi

    2010-09-01

    April 2009 witnessed the emergence of a novel H1N1 influenza A virus infecting the human population. Currently, pandemic and seasonal influenza viruses are co-circulating in human populations. Understanding the course of the emerging pandemic virus is important. It is still unknown how the novel virus co-circulates with or outcompetes seasonal viruses. Sustainable and detailed influenza surveillance is required throughout the world including developing countries. In the present study, a multiplex PCR using four primers was developed, which was designed to differentiate the pandemic H1N1 virus from the seasonal H1N1 and H3N2 viruses, to obtain amplicons of different sizes. Multiplex PCR analysis could clearly differentiate the three subtypes of human influenza A virus. This assay was performed using 206 clinical samples collected in 2009 in Japan. Between February and April, four samples were subtyped as seasonal H1N1 and four as seasonal H3N2. All samples collected after July were subtyped as pandemic H1N1. Currently, pandemic viruses seem to have replaced seasonal viruses almost completely in Japan. This is a highly sensitive method and its cost is low. Influenza surveillance using this assay would provide significant information on the epidemiology of both pandemic and seasonal influenza.

  15. Agglutination of human O erythrocytes by influenza A(H1N1) viruses freshly isolated from patients.

    Science.gov (United States)

    Murakami, T; Haruki, K; Seto, Y; Kimura, T; Minoshiro, S; Shibe, K

    1991-04-01

    The hemagglutinin titers of 10 influenza A (H1N1) viruses were examined using the erythrocytes of several species. Human O erythrocytes showed the highest agglutination titer to the viruses, whereas chicken erythrocytes showed a low titer. These findings were noted for at least 10 passages by serial dilutions of the viruses in Madin-Darby canine kidney (MDCK) cells. All influenza A(H1N1) viruses, plaque-cloned directly from throat-washing specimens of patients, also agglutinated human O but not chicken erythrocytes. The results of a hemadsorption test indicated that chicken erythrocytes possess less affinity to MDCK cells infected with the A/Osaka City/2/88(H1N1) stain than to those infected with the A/Yamagata/120/86(H1N1) strain which is used as an inactivated influenza vaccine in Japan. However, there were no significant differences between the A/Osaka City/2/88 and the A/Yamagata/120/86 strains in the hemagglutination inhibition test. Since human O erythrocytes have high agglutination activity to influenza A(H1N1) and also to A(H3N2) and B viruses in MDCK cells, these erythrocytes may be useful for the serological diagnosis of influenza.

  16. Infectious Progeny of 2009 A (H1N1) Influenza Virus Replicated in and Released from Human Neutrophils.

    Science.gov (United States)

    Zhang, Zhang; Huang, Tao; Yu, Feiyuan; Liu, Xingmu; Zhao, Conghui; Chen, Xueling; Kelvin, David J; Gu, Jiang

    2015-12-07

    Various reports have indicated that a number of viruses could infect neutrophils, but the multiplication of viruses in neutrophils was abortive. Based on our previous finding that avian influenza viral RNA and proteins were present in the nucleus of infected human neutrophils in vivo, we investigated the possibility of 2009 A (H1N1) influenza viral synthesis in infected neutrophils and possible release of infectious progeny from host cells. In this study we found that human neutrophils in vitro without detectable level of sialic acid expression could be infected by this virus strain. We also show that the infected neutrophils can not only synthesize 2009 A (H1N1) viral mRNA and proteins, but also produce infectious progeny. These findings suggest that infectious progeny of 2009 A (H1N1) influenza virus could be replicated in and released from human neutrophils with possible clinical implications.

  17. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Stéphane G. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Banner, David [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Chi, Le Thi Bao [Department of Microbiology, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Carlo Urbani Centre, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Leon, Alberto J. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); Xu, Luoling; Ran, Longsi [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Huang, Stephen S.H. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Farooqui, Amber [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  18. Cuba vs H1N1 Influenza

    Directory of Open Access Journals (Sweden)

    Gail Reed

    2011-04-01

    Full Text Available El Comité Editorial de MediSur agradece a Gail Reed, editora de Medicc Review la autorización expresa, para reproducir el artículo titulado “Cuba vs H1N1 Influenza”. Este trabajo resume el esfuerzo realizado por todos los organismos en Cuba y en especial el Ministerio de Salud Pública en la lucha para disminuir los efectos de la influenza H1N1 en la población. El artículo original se puede encontrar en: Reed G. Faceoff: Cuba vs H1N1 Influenza. MEDICC Review. 2010; 12(1:6-12. Disponible en: http://www.medicc.org/mediccreview/index.php?issue=11

  19. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection

    OpenAIRE

    2011-01-01

    The 2009 pandemic H1N1 influenza pandemic demonstrated the global health threat of reassortant influenza strains. Herein, we report a detailed analysis of plasmablast and monoclonal antibody responses induced by pandemic H1N1 infection in humans. Unlike antibodies elicited by annual influenza vaccinations, most neutralizing antibodies induced by pandemic H1N1 infection were broadly cross-reactive against epitopes in the hemagglutinin (HA) stalk and head domain of multiple influenza strains. T...

  20. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion.

    Science.gov (United States)

    Paquette, Stéphane G; Banner, David; Chi, Le Thi Bao; Leόn, Alberto J; Xu, Luoling; Ran, Longsi; Huang, Stephen S H; Farooqui, Amber; Kelvin, David J; Kelvin, Alyson A

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.

  1. Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses.

    Science.gov (United States)

    Zaraket, Hassan; Saito, Reiko; Suzuki, Yasushi; Baranovich, Tatiana; Dapat, Clyde; Caperig-Dapat, Isolde; Suzuki, Hiroshi

    2010-04-01

    The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the

  2. Reassortment ability of the 2009 pandemic H1N1 influenza virus with circulating human and avian influenza viruses: public health risk implications.

    Science.gov (United States)

    Stincarelli, Maria; Arvia, Rosaria; De Marco, Maria Alessandra; Clausi, Valeria; Corcioli, Fabiana; Cotti, Claudia; Delogu, Mauro; Donatelli, Isabella; Azzi, Alberta; Giannecchini, Simone

    2013-08-01

    Exploring the reassortment ability of the 2009 pandemic H1N1 (A/H1N1pdm09) influenza virus with other circulating human or avian influenza viruses is the main concern related to the generation of more virulent or new variants having implications for public health. After different coinfection experiments in human A549 cells, by using the A/H1N1pdm09 virus plus one of human seasonal influenza viruses of H1N1 and H3N2 subtype or one of H11, H10, H9, H7 and H1 avian influenza viruses, several reassortant viruses were obtained. Among these, the HA of H1N1 was the main segment of human seasonal influenza virus reassorted in the A/H1N1pdm09 virus backbone. Conversely, HA and each of the three polymerase segments, alone or in combination, of the avian influenza viruses mainly reassorted in the A/H1N1pdm09 virus backbone. Of note, A/H1N1pdm09 viruses that reassorted with HA of H1N1 seasonal human or H11N6 avian viruses or carried different combination of avian origin polymerase segments, exerted a higher replication effectiveness than that of the parental viruses. These results confirm that reassortment of the A/H1N1pdm09 with circulating low pathogenic avian influenza viruses should not be misjudged in the prediction of the next pandemic. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Characterization of the 2009 pandemic A/Beijing/501/2009 H1N1 influenza strain in human airway epithelial cells and ferrets.

    Directory of Open Access Journals (Sweden)

    Penghui Yang

    Full Text Available BACKGROUND: A novel 2009 swine-origin influenza A H1N1 virus (S-OIV H1N1 has been transmitted among humans worldwide. However, the pathogenesis of this virus in human airway epithelial cells and mammals is not well understood. METHODOLOGY/PRINCIPAL FINDING: In this study, we showed that a 2009 A (H1N1 influenza virus strain, A/Beijing/501/2009, isolated from a human patient, caused typical influenza-like symptoms including weight loss, fluctuations in body temperature, and pulmonary pathological changes in ferrets. We demonstrated that the human lung adenocarcinoma epithelial cell line A549 was susceptible to infection and that the infected cells underwent apoptosis at 24 h post-infection. In contrast to the seasonal H1N1 influenza virus, the 2009 A (H1N1 influenza virus strain A/Beijing/501/2009 induced more cell death involving caspase-3-dependent apoptosis in A549 cells. Additionally, ferrets infected with the A/Beijing/501/2009 H1N1 virus strain exhibited increased body temperature, greater weight loss, and higher viral titers in the lungs. Therefore, the A/Beijing/501/2009 H1N1 isolate successfully infected the lungs of ferrets and caused more pathological lesions than the seasonal influenza virus. Our findings demonstrate that the difference in virulence of the 2009 pandemic H1N1 influenza virus and the seasonal H1N1 influenza virus in vitro and in vivo may have been mediated by different mechanisms. CONCLUSION/SIGNIFICANCE: Our understanding of the pathogenesis of the 2009 A (H1N1 influenza virus infection in both humans and animals is broadened by our findings that apoptotic cell death is involved in the cytopathic effect observed in vitro and that the pathological alterations in the lungs of S-OIV H1N1-infected ferrets are much more severe.

  4. Hemagglutinin protein of Asian strains of human influenza virus A H1N1 binds to sialic acid--a major component of human airway receptors.

    Science.gov (United States)

    Chua, K H; Chai, H C

    2012-03-16

    Hemagglutinin (HA) protein plays an important role in binding the influenza virus to infected cells and therefore mediates infection. Deposited HA sequences of 86 Asian strains of influenza A (H1N1) viruses during the first outbreak were obtained from the NCBI database and compared. Interaction of the HA protein of influenza A (H1N1) virus with the human sialic acid receptor was also studied using bioinformatics. Overall, not more than three single-point amino acid variants/changes were observed in the HA protein region of influenza A (H1N1) virus from Asian countries when a selected group sequence comparison was made. The bioinformatics study showed that the HA protein of influenza A (H1N1) binds to the sialic acid receptor in human airway receptors, possibly key to air-borne infection in humans.

  5. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    Science.gov (United States)

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-02-28

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 2009 H1N1 Influenza 2009 H1N1 Influenza

    Directory of Open Access Journals (Sweden)

    Seth J. Sullivan, MD; Robert M. Jacobson, MD; Walter R. Dowdle, PhD; and Gregory A. Poland

    2011-04-01

    Full Text Available Within 2 months of its discovery last spring, a novel influenza A (H1N1 virus, currently referred to as 2009 H1N1, caused the first influenza pandemic in decades. The virus has caused disproportionate disease among young people with early reports of virulence similar to that of seasonal influenza. This clinical review provides an update encompassing the virology, epidemiology, clinical manifestations, diagnosis, treatment, and prevention of the 2009 H1N1 virus. Because information about this virus, its prevention,and treatment are rapidly evolving, readers are advised to seek additional information. We performed a literature search of PubMed using the following keywords: H1N1, influenza, vaccine, pregnancy, children, treatment, epidemiology, and review. Studies were selected for inclusion in this review on the basis of their relevance. Recent studies and articles were preferred.

    El Editor de este número especial agradece la autorización expresa, mediante comunicación escrita en nuestro poder, de los autores del trabajo “2009 H1N1 Influenza”, así como de los editores de la revista Mayo Clinic Proceedings, para su reproducción, como publicación secundaria en Medisur, artículo de revisión seleccionado por nosotros, que resume buena parte de los nuevos conocimientos adquiridos a partir de la literatura médica reciente relacionada con esta pandemia, durante el año 2009.

    De este modo, el artículo que a continuación de reproduce para los lectores de Medisur, está basado íntegramente en el estudio previamente publicado como: Sullivan SJ, Jacobson RM, Dowdle WR, Poland GA. 2009 H1N1 Influenza. Mayo Clin Proc. 2010;85(1:64-76.

    A continuación el resumen:

    Within 2 months of its discovery last spring, a novel influenza A (H1N1 virus, currently referred to as 2009 H1N1, caused the first influenza pandemic in decades. The virus has caused disproportionate disease among young people with early reports of virulence similar

  7. A Host Transcriptional Signature for Presymptomatic Detection of Infection in Humans Exposed to Influenza H1N1 or H3N2

    Science.gov (United States)

    2013-01-09

    A Host Transcriptional Signature for Presymptomatic Detection of Infection in Humans Exposed to Influenza H1N1 or H3N2 Christopher W. Woods1,2,3...patients where it discriminates between swine-origin influenza A/ H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic... Influenza H1N1 or H3N2. PLoS ONE 8(1): e52198. doi:10.1371/journal.pone.0052198 Editor: Herman Tse, The University of Hong Kong, Hong Kong Received

  8. Effect of human rhinovirus infection in pediatric patients with influenza-like illness on the 2009 pandemic influenza A(H1N1) virus

    Institute of Scientific and Technical Information of China (English)

    Sun Yu; Zhu Ru'nan; Zhao Linqing; Deng Jie; Wang Fang; Ding Yaxin; Yuan Yi

    2014-01-01

    Background Some research groups have hypothesized that human rhinoviruses (HRVs) delayed the circulation of the 2009 pandemic influenza A(H1N1) virus (A(H1N1)pdm09) at the beginning of Autumn 2009 in France.This study aimed to evaluate the relationship between HRV and A(H1N1)pdm09 in pediatric patients with influenza-like illness in Beijing,China.Methods A systematic analysis to detect A(H1N1)pdm09 and seasonal influenza A virus (FLU A) was performed on 4 349 clinical samples from pediatric patients with influenza-like illness during the period June 1,2009 to February 28,2010,while a one-step real-time RT-PCR (rRT-PCR) assay was used to detect HRV in 1 146 clinical specimens selected from those 4 349 specimens.Results During the survey period,only one wave of A(H1N1)pdm09 was observed.The percentage of positive cases for A(H1N1)pdm09 increased sharply in September with a peak in November 2009 and then declined in February 2010.Data on the monthly distribution of HRVs indicated that more HRV-positive samples were detected in September (2.2%) and October (3.3%),revealing that the peak of HRV infection in 2009 was similar to that of other years.Among the 1 146 specimens examined for HRVs,21 (1.8%) were HRV-positive,which was significantly lower than that reported previously in Beijing (15.4% to 19.2%) (P <0.01).Overall,6 samples were positive for both A(H1N1)pdm09 and HRV,which represented a positive relative frequency of 1.60% and 2.08% HRV,considering the A(H1N1)pdm09-positive and-negative specimens,respectively.The odds ratio was 0.87 (95% CI 0.32; 2.44,P=0.80).Conclusions HRVs and A (H1N1)pdm09 co-circulated in this Chinese population during September and October 2009,and the HRV epidemic in 2009 did not affect A(H1N1)pdm09 infection rates in Beijing,China as suggested by other studies.However,the presence of A(H1N1)pdm09 might explain the unexpected reduction in the percentage of HRV positive cases during the period studied.

  9. 人季节性H1N1流感病毒小鼠感染模型的建立%Establishment of a mouse infection model of human seasonal H1N1 influenza virus

    Institute of Scientific and Technical Information of China (English)

    郑倩倩; 毕振强; 赵丽; 谢克勤; 刘倜; 姚萍; 李忠; 温红玲; 宋艳艳; 王显军; 徐爱强

    2012-01-01

    目的 制备人季节性H1N1流感病毒的小鼠感染模型,为研究流感病毒致病性、研发抗病毒药物提供模型动物.方法 将人季节性H1N1流感病毒在鸡胚尿囊腔扩增后,滴鼻接种小鼠,4d后将小鼠处死,挑选感染体征严重者进行实时荧光PCR(FQ-PCR)检测肺中的流感病毒,将检测阳性的肺上清在鸡胚尿囊腔扩增,接种于下一代小鼠.比较各代小鼠对流感病毒的适应情况,直至小鼠出现明显的感染体征,取肺研磨制成匀浆,获得流感病毒鼠肺适应株并检测其半数致死量( LD50).将10 LD50的病毒液接种于小鼠,建立人季节性H1N1流感病毒的小鼠感染模型,观察模型小鼠的一般活动状态、体质量变化、肺部病变,HE染色观察肺部病理切片,计算肺指数,FQ-PCR检测病毒RNA.结果 人季节性流感病毒在小鼠体内传代4次后,鼠肺适应株制备完成,其经鼻的LD50为10-2.41/0.05 mL.人季节性流感病毒的小鼠感染模型,一般状态差,体质量明显减轻,肺指数增大,70%出现死亡.病理切片观察病变明显,FQ-PCR显示流感病毒阳性.结论 成功建立了人季节性H1N1流感病毒的小鼠感染模型.%Objective To establish a mouse infection model of human seasonal influenza virus ( HINl), and make preparations for the study on influenza viral pathogenicity and new antiviral drugs. Methods Mice were inoculated with influenza virus (H1 N1) by the nasal cavity. After 4 days, mice with serious infectious signs were killed. A pneumonic homogenate that was confirmed with influenza virus infection by real time fluorescence quantitative polymerase chain reaction (FQ-PCR) was injected into the chick embryo allantoic cavity. Allantoic fluid was inoculated in to the next generation of mice. When infected mice presented obvious infectious signs, the 50% lethal dose (LD50) was calculated. The virus of 10LD50 was inoculated into mice to establish the infection model. Then, general condition, weight

  10. Fatal acute myocarditis and fulminant hepatic failure in an infant with pandemic human influenza A, H1N1 (2009 virus infection

    Directory of Open Access Journals (Sweden)

    Mortada H.F. El-Shabrawi

    2011-04-01

    Full Text Available We report the clinical presentation of a 10 month-old infant who succumbed with acute myocarditis and fulminant hepatic failure associated with a virologically confirmed human influenza A, H1N1 (2009 virus infection. To date, this is the first pediatric patient presenting with this fatal combination of complications during the current H1N1 pandemic. Therefore, we recommend meticulous assessment and follow up of the cardiac status, liver enzymes and coagulation profile in all pediatric patients with severe H1N1 influenza infection.

  11. 儿童甲型H1N1流感的现状、临床特点及处理%Current situation, clinical characteristics and management of human swine influenza A H1N1) in children

    Institute of Scientific and Technical Information of China (English)

    覃肇源; 陈丽植; 张玲

    2010-01-01

    目前在全球呈现大流行趋势的甲型H1N1流感病毒是具备高度传染性的病毒,儿童和年轻成年人是主要易患人群,其临床表现相对轻微,但仍有部分病例因出现严重并发症而需要住院治疗.儿童,尤其是小于5岁者,是此次甲型H1N1流感流行中较易成为重症病例的高危人群,容易发生严重并发症,尤其是伴有慢性呼吸道、心血管疾病及免疫缺陷的儿童可能面临更大的死亡危险.神经氨酸酶抑制剂奥司他韦和扎那米韦是目前推荐使用的用于预防和治疗的抗病毒药物.疫苗被认为是控制流行的有效手段.%Human swine influenza A (H1N1) is a highly transmissible infectious disease, which has spreaded globally and represented a continuous pandemic threat. The novel virus has predominantly affected the children and young adults. Clinical manifestations generally appear mild, but there are still many patients with severe complications leading to hospitalization. According to the current reports, the mortality in the early stages of the pandemic appears no more than seasonal influenza A . Children (especially less than 5years) are considered to be at higher risk of infection and complications. Pediatric patients with a underlying significant chronic disease such as chronic respiratory disease,cardiovascular disease and immunodeficiency disease, are at a higher risk of death. The neuraminidase inhibitors Oseltamivir and Zanamivir are effective for prophylaxis and treatment. Effective vaccines are regarded to be crucial for the control of influenza pandemics. This review focuses on the epidemiological situation, clinical characteristics and management of human swine influenza A (H1N1), so as to provide practical advice for clinicians.

  12. Fatal acute myocarditis and fulminant hepatic failure in an infant with pandemic human influenza A, H1N1 (2009) virus infection

    OpenAIRE

    Mortada H.F. El-Shabrawi; Bazaraa, Hafez M; Hanan Zekri; Hanaa I. Rady

    2011-01-01

    We report the clinical presentation of a 10 month-old infant who succumbed with acute myocarditis and fulminant hepatic failure associated with a virologically confirmed human influenza A, H1N1 (2009) virus infection. To date, this is the first pediatric patient presenting with this fatal combination of complications during the current H1N1 pandemic. Therefore, we recommend meticulous assessment and follow up of the cardiac status, liver enzymes and coagulation profile in all pediatric patien...

  13. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weibin [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen, Aizhong [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Miao, Yi [Shanghai Xuhui Central Hospital, Shanghai 200031 (China); Xia, Shengli [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Ling, Zhiyang; Xu, Ke; Wang, Tongyan [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shu, Yuelong [Chinese Center for Disease Control and Prevention, Beijing 102206 (China); Ma, Xiaowei [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Xu, Bianli; Zhang, Jin [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Lin, Xiaojun, E-mail: linxiaojun@hualan.com [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Bian, Chao, E-mail: cbian@sibs.ac.cn [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Sun, Bing, E-mail: bsun@sibs.ac.cn [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2013-01-20

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  14. Efficacy of soap and water and alcohol-based hand-rub preparations against live H1N1 influenza virus on the hands of human volunteers.

    Science.gov (United States)

    Grayson, M Lindsay; Melvani, Sharmila; Druce, Julian; Barr, Ian G; Ballard, Susan A; Johnson, Paul D R; Mastorakos, Tasoula; Birch, Christopher

    2009-02-01

    Although pandemic and avian influenza are known to be transmitted via human hands, there are minimal data regarding the effectiveness of routine hand hygiene (HH) protocols against pandemic and avian influenza. Twenty vaccinated, antibody-positive health care workers had their hands contaminated with 1 mL of 10(7) tissue culture infectious dose (TCID)(50)/0.1 mL live human influenza A virus (H1N1; A/New Caledonia/20/99) before undertaking 1 of 5 HH protocols (no HH [control], soap and water hand washing [SW], or use of 1 of 3 alcohol-based hand rubs [61.5% ethanol gel, 70% ethanol plus 0.5% chlorhexidine solution, or 70% isopropanol plus 0.5% chlorhexidine solution]). H1N1 concentrations were assessed before and after each intervention by viral culture and real-time reverse-transcriptase polymerase chain reaction (PCR). The natural viability of H1N1 on hands for >60 min without HH was also assessed. There was an immediate reduction in culture-detectable and PCR-detectable H1N1 after brief cutaneous air drying--14 of 20 health care workers had H1N1 detected by means of culture (mean reduction, 10(3-4) TCID(50)/0.1 mL), whereas 6 of 20 had no viable H1N1 recovered; all 20 health care workers had similar changes in PCR test results. Marked antiviral efficacy was noted for all 4 HH protocols, on the basis of culture results (14 of 14 had no culturable H1N1; (Peffective in reducing influenza A virus on human hands, although SW is the most effective intervention. Appropriate HH may be an important public health initiative to reduce pandemic and avian influenza transmission.

  15. Perfil epidemiológico de la mortalidad por influenza humana A (H1N1 en México Epidemiological profile of mortality due to human influenza A (H1N1 in Mexico

    Directory of Open Access Journals (Sweden)

    Germán E Fajardo-Dolci

    2009-10-01

    Full Text Available OBJETIVO: Efectuar el análisis epidemiológico de 122 defunciones por influenza A (H1N1 confirmadas por laboratorio y contribuir a mejorar el diagnóstico y atención oportuna de casos. MATERIAL Y MÉTODOS: Se Analizaron 122 expedientes de pacientes fallecidos por influenza A (H1N1. RESULTADOS: Una proporción de 51% correspondió a mujeres y 49% a varones. Hasta 45.1% ocurrió entre los 20 y 39 años. La letalidad general fue de 2.2% y varió entre 0.3% en el grupo de 10 a 19 años y 6.3% en el de 50 a 59. Una cifra de 43% de las defunciones se concentró en dos de las 32 entidades federativas y 5l% se atendió en instituciones de seguridad social. Sólo 17% recibió atención hospitalaria en las primeras 72 horas y 42% falleció en las primeras 72 horas de hospitalización. En 58.2% de los fallecidos había algún padecimiento asociado. DISCUSIÓN: El Nuevo virus A (H1N1 produce mayor mortalidad en personas jóvenes, al contrario de lo que sucede con la influenza estacional que muestra un mayor impacto en niños pequeños y personas de edad avanzada. El retraso de la atención médica y la morbilidad asociada fueron factores relevantes del fallecimiento.OBJECTIVE: To carry out the epidemiological analysis of 122 influenza A (H1N1 deaths confirmed by laboratory and help to improve the diagnosis and timely managing of cases. MATERIAL AND METHODS: A total of 122 clinical records were analyzed of patients with confirmed influenza A (H1N1 virus infection who died. RESULTS: Fifty-one percent of patients were female and 49% were male. A total of 45.l% who died were between 20 and 39 years old. Overall fatality was 2.2% and ranged between 0.3% for the l0 to l9 year-old group to 6.3% for the 50 to 59 year-old group. Forty-three percent of deaths were concentrated in only two of the thirty-two states and 5l% received medical attention in social security institutions. Only l7% received hospital attention within 72 hours and 42% died within 72 hours of

  16. Continual Reintroduction of Human Pandemic H1N1 Influenza A Viruses into Swine in the United States, 2009 to 2014.

    Science.gov (United States)

    Nelson, Martha I; Stratton, Jered; Killian, Mary Lea; Janas-Martindale, Alicia; Vincent, Amy L

    2015-06-01

    The diversity of influenza A viruses in swine (swIAVs) presents an important pandemic threat. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. Through phylogenetic analysis of contemporary swIAVs in the United States, we demonstrate that human-to-swine transmission of pandemic H1N1 (pH1N1) viruses has occurred continuously in the years following the 2009 H1N1 pandemic and has been an important contributor to the genetic diversity of U.S. swIAVs. Although pandemic H1 and N1 segments had been largely removed from the U.S. swine population by 2013 via reassortment with other swIAVs, these antigens reemerged following multiple human-to-swine transmission events during the 2013-2014 seasonal epidemic. These findings indicate that the six internal gene segments from pH1N1 viruses are likely to be sustained long term in the U.S. swine population, with periodic reemergence of pandemic hemagglutinin (HA) and neuraminidase (NA) segments in association with seasonal pH1N1 epidemics in humans. Vaccinating U.S. swine workers may reduce infection of both humans and swine and in turn limit the role of humans as sources of influenza virus diversity in pigs. Swine are important hosts in the evolution of influenza A viruses with pandemic potential. Here, we analyze influenza virus sequence data generated by the U.S. Department of Agriculture's national surveillance system to identify the central role of humans in the reemergence of pandemic H1N1 (pH1N1) influenza viruses in U.S. swine herds in 2014. These findings emphasize the important role of humans as continuous sources of influenza virus diversity in swine and indicate that influenza viruses with pandemic HA and NA segments are likely to continue to reemerge in U.S. swine in association with seasonal pH1N1 epidemics in humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Specific Recognition of Influenza A/H1N1/2009 Antibodies in Human Serum: A Simple Virus-Free ELISA Method

    Science.gov (United States)

    Alvarez, Mario M.; López-Pacheco, Felipe; Aguilar-Yañez, José M.; Portillo-Lara, Roberto; Mendoza-Ochoa, Gonzalo I.; García-Echauri, Sergio; Freiden, Pamela; Schultz-Cherry, Stacey; Zertuche-Guerra, Manuel I.; Bulnes-Abundis, David; Salgado-Gallegos, Johari; Elizondo-Montemayor, Leticia; Hernández-Torre, Martín

    2010-01-01

    Background Although it has been estimated that pandemic Influenza A H1N1/2009 has infected millions of people from April to October 2009, a more precise figure requires a worldwide large-scale diagnosis of the presence of Influenza A/H1N1/2009 antibodies within the population. Assays typically used to estimate antibody titers (hemagglutination inhibition and microneutralization) would require the use of the virus, which would seriously limit broad implementation. Methodology/Principal Findings An ELISA method to evaluate the presence and relative concentration of specific Influenza A/H1N1/2009 antibodies in human serum samples is presented. The method is based on the use of a histidine-tagged recombinant fragment of the globular region of the hemagglutinin (HA) of the Influenza A H1N1/2009 virus expressed in E. coli. Conclusions/Significance The ELISA method consistently discerns between Inf A H1N1 infected and non-infected subjects, particularly after the third week of infection/exposure. Since it does not require the use of viral particles, it can be easily and quickly implemented in any basic laboratory. In addition, in a scenario of insufficient vaccine availability, the use of this ELISA could be useful to determine if a person has some level of specific antibodies against the virus and presumably at least partial protection. PMID:20418957

  18. Specific recognition of influenza A/H1N1/2009 antibodies in human serum: a simple virus-free ELISA method.

    Directory of Open Access Journals (Sweden)

    Mario M Alvarez

    Full Text Available BACKGROUND: Although it has been estimated that pandemic Influenza A H1N1/2009 has infected millions of people from April to October 2009, a more precise figure requires a worldwide large-scale diagnosis of the presence of Influenza A/H1N1/2009 antibodies within the population. Assays typically used to estimate antibody titers (hemagglutination inhibition and microneutralization would require the use of the virus, which would seriously limit broad implementation. METHODOLOGY/PRINCIPAL FINDINGS: An ELISA method to evaluate the presence and relative concentration of specific Influenza A/H1N1/2009 antibodies in human serum samples is presented. The method is based on the use of a histidine-tagged recombinant fragment of the globular region of the hemagglutinin (HA of the Influenza A H1N1/2009 virus expressed in E. coli. CONCLUSIONS/SIGNIFICANCE: The ELISA method consistently discerns between Inf A H1N1 infected and non-infected subjects, particularly after the third week of infection/exposure. Since it does not require the use of viral particles, it can be easily and quickly implemented in any basic laboratory. In addition, in a scenario of insufficient vaccine availability, the use of this ELISA could be useful to determine if a person has some level of specific antibodies against the virus and presumably at least partial protection.

  19. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    Science.gov (United States)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  20. Pityriasis rosea following influenza (H1N1 vaccination

    Directory of Open Access Journals (Sweden)

    Jeng-Feng Chen

    2011-06-01

    Full Text Available Pityriasis rosea is a distinct papulosquamous skin eruption that has been attributed to viral reactivation, certain drug exposures or rarely, vaccination. Herein, we reported a clinicopathlogically typical case of pityriasis rosea that developed after the H1N1 vaccination. With a global H1N1 vaccination program against the pandemic H1N1 influenza, patients should be apprised of the possibility of such rare but benign skin reaction to avoid unnecessary fear. Furthermore, a brief review of the current reported skin adverse events related to the novel H1N1 vaccination in Taiwan is presented here.

  1. PD-L1 expression induced by the 2009 pandemic influenza A(H1N1) virus impairs the human T cell response.

    Science.gov (United States)

    Valero-Pacheco, Nuriban; Arriaga-Pizano, Lourdes; Ferat-Osorio, Eduardo; Mora-Velandia, Luz María; Pastelin-Palacios, Rodolfo; Villasís-Keever, Miguel Ángel; Alpuche-Aranda, Celia; Sánchez-Torres, Luvia Enid; Isibasi, Armando; Bonifaz, Laura; López-Macías, Constantino

    2013-01-01

    PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1)pdm09), and its effects on the T cell response have not been widely explored. We found that A(H1N1)pdm09 virus induced PD-L1 expression on human dendritic cells (DCs) and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1)pdm09 by promoting CD8⁺ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8⁺ T cells correlated inversely with T cell proportions in patients infected with A(H1N1)pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1)pdm09 virus.

  2. PD-L1 Expression Induced by the 2009 Pandemic Influenza A(H1N1 Virus Impairs the Human T Cell Response

    Directory of Open Access Journals (Sweden)

    Nuriban Valero-Pacheco

    2013-01-01

    Full Text Available PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1pdm09, and its effects on the T cell response have not been widely explored. We found that A(H1N1pdm09 virus induced PD-L1 expression on human dendritic cells (DCs and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1pdm09 virus.

  3. PD-L1 Expression Induced by the 2009 Pandemic Influenza A(H1N1) Virus Impairs the Human T Cell Response

    Science.gov (United States)

    Arriaga-Pizano, Lourdes; Ferat-Osorio, Eduardo; Mora-Velandia, Luz María; Pastelin-Palacios, Rodolfo; Villasís-Keever, Miguel Ángel; Alpuche-Aranda, Celia; Sánchez-Torres, Luvia Enid; Isibasi, Armando; Bonifaz, Laura; López-Macías, Constantino

    2013-01-01

    PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1)pdm09), and its effects on the T cell response have not been widely explored. We found that A(H1N1)pdm09 virus induced PD-L1 expression on human dendritic cells (DCs) and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1)pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1)pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1)pdm09 virus. PMID:24187568

  4. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    Science.gov (United States)

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  5. Genetic diversity of the haemagglutinin (HA) of human influenza a (H1N1) virus in montenegro: Focus on its origin and evolution.

    Science.gov (United States)

    Mugosa, Boban; Vujosevic, Danijela; Ciccozzi, Massimo; Valli, Maria Beatrice; Capobianchi, Maria Rosaria; Lo Presti, Alessandra; Cella, Eleonora; Giovanetti, Marta; Lai, Alessia; Angeletti, Silvia; Scarpa, Fabio; Terzić, Dragica; Vratnica, Zoran

    2016-11-01

    In 2009 an influenza A epidemic caused by a swine origin H1N1strain, unusual in human hosts, has been described. The present research is aimed to perform the first phylogenetic investigation on the influenza virus A (H1N1) strains circulating in Montenegro, from December 1, 2009, when the first case of death due to H1N1 was confirmed, and the epidemic began causing a total of four fatalities. The phylogenetic analysis of the strains circulating showed the absence of a pure Montenegrin cluster, suggesting the occurrence of multiple re-introductions in that population from different areas till as far as the early 2010. The time to most recent common ancestor (TMRCA) for the complete dataset has been dated in early 2008, pre-dating the first Montenegrin identification of H1N1 infection. These data suggest that virus was spreading undetected, may be as a consequence of unidentified infections in returning travelers. Anyhow, the estimated TMRCA of Montenegrin strains is fully consistent to that found in different areas. Compatibly with the time coverage of the study period here analyzed, molecular dynamic of Montenegrin strains follows similar trend as in other countries. J. Med. Virol. 88:1905-1913, 2016. © 2016 Wiley Periodicals, Inc.

  6. Influenza A(H1N1pdm09 virus suppresses RIG-I initiated innate antiviral responses in the human lung.

    Directory of Open Access Journals (Sweden)

    Wenxin Wu

    Full Text Available Influenza infection is a major cause of morbidity and mortality. Retinoic acid-inducible gene I (RIG-I is believed to play an important role in the recognition of, and response to, influenza virus and other RNA viruses. Our study focuses on the hypothesis that pandemic H1N1/09 influenza virus alters the influenza-induced proinflammatory response and suppresses host antiviral activity. We first compared the innate response to a clinical isolate of influenza A(H1N1pdm09 virus, OK/09, a clinical isolate of seasonal H3N2 virus, OK/06, and to a laboratory adapted seasonal H1N1 virus, PR8, using a unique human lung organ culture model. Exposure of human lung tissue to either pandemic or seasonal influenza virus resulted in infection and replication in alveolar epithelial cells. Pandemic virus induces a diminished RIG-I mRNA and antiviral cytokine response than seasonal virus in human lung. The suppression of antiviral response and RIG-I mRNA expression was confirmed at the protein level by ELISA and western blot. We performed a time course of RIG-I and interferon-β (IFN-β mRNA induction by the two viruses. RIG-I and IFN-β induction by OK/09 was of lower amplitude and shorter duration than that caused by PR8. In contrast, the pandemic virus OK/09 caused similar induction of proinflammatory cytokines, IL-8 and IL-6, at both the transcriptional and translational level as PR8 in human lung. Differential antiviral responses did not appear to be due to a difference in cellular infectivity as immunohistochemistry showed that both viruses infected alveolar macrophages and epithelial cells. These findings show that influenza A(H1N1pdm09 virus suppresses anti-viral immune responses in infected human lung through inhibition of viral-mediated induction of the pattern recognition receptor, RIG-I, though proinflammatory cytokine induction was unaltered. This immunosuppression of the host antiviral response by pandemic virus may have contributed to the more

  7. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    Science.gov (United States)

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza.

  8. The progress of research on influenza A(H1N1)%甲型H1N1流感的研究进展

    Institute of Scientific and Technical Information of China (English)

    雷晓燕; 孙永红

    2010-01-01

    Influenza A(H1N1)virus is a re-mixed strains of human influenza virus genes,avian influenza virus gene and swine influenza virus gene.Influenza A(H1N1)pandemic influenza has spread around the world,which has drawn worldwide attention.In order to early discovery,early diagnosis,early treatment and effective prevention of Influenza A(H1N1),we describe the characteristics of linfluenza A(H1N1)virus,epidemiology,pathogenesis,clinical manifestations,laboratory examination and effective treatment and preventive measures.%甲型H1N1流感病毒是人流感病毒基因、禽流感病毒基因和猪流感病毒基因混合的重配株,其造成的疫情来势凶猛,引起世界各国的广泛关注.为了早发现、早诊断、早治疗及有效地预防甲型H1N1流感,本文综述了甲型H1N1流感病毒的特点、流行病学、致人发病的机制、甲型H1N1流感患者的临床表现、实验室检查及有效的治疗和预防措施.

  9. H1N1 Influenza A hos mennesker og svin

    DEFF Research Database (Denmark)

    Larsen, Lars Erik

    2009-01-01

    Den nye pandemiske influenza A stamme H1N1 er hovedsagelig et nyt virus, som spredes mellem mennesker, men virusset er formodentlig opstået ved blanding af to svineinfluenza-virus og har derfor bibeholdt evnen til at kunne smitte fra mennesker til svin og fra svin til svin. Det er derfor vigtigt...

  10. H1N1 Influenza A hos mennesker og svin

    DEFF Research Database (Denmark)

    Larsen, Lars Erik

    2009-01-01

    Den nye pandemiske influenza A stamme H1N1 er hovedsagelig et nyt virus, som spredes mellem mennesker, men virusset er formodentlig opstået ved blanding af to svineinfluenza-virus og har derfor bibeholdt evnen til at kunne smitte fra mennesker til svin og fra svin til svin. Det er derfor vigtigt...

  11. Narcolepsy and H1N1 Influenza Vaccination

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-07-01

    Full Text Available The incidence of narcolepsy between January 2000 and December 2010 in children in western Sweden and its relation to the Pandemrix H1N1 influenza vaccination were assessed by collection of data from hospital and clinic medical records and by parent telephone interviews.

  12. Systems-level comparison of host responses induced by pandemic and seasonal influenza A H1N1 viruses in primary human type I-like alveolar epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Guan Yi

    2010-10-01

    Full Text Available Abstract Background Pandemic influenza H1N1 (pdmH1N1 virus causes mild disease in humans but occasionally leads to severe complications and even death, especially in those who are pregnant or have underlying disease. Cytokine responses induced by pdmH1N1 viruses in vitro are comparable to other seasonal influenza viruses suggesting the cytokine dysregulation as seen in H5N1 infection is not a feature of the pdmH1N1 virus. However a comprehensive gene expression profile of pdmH1N1 in relevant primary human cells in vitro has not been reported. Type I alveolar epithelial cells are a key target cell in pdmH1N1 pneumonia. Methods We carried out a comprehensive gene expression profiling using the Affymetrix microarray platform to compare the transcriptomes of primary human alveolar type I-like alveolar epithelial cells infected with pdmH1N1 or seasonal H1N1 virus. Results Overall, we found that most of the genes that induced by the pdmH1N1 were similarly regulated in response to seasonal H1N1 infection with respect to both trend and extent of gene expression. These commonly responsive genes were largely related to the interferon (IFN response. Expression of the type III IFN IL29 was more prominent than the type I IFN IFNβ and a similar pattern of expression of both IFN genes was seen in pdmH1N1 and seasonal H1N1 infection. Genes that were significantly down-regulated in response to seasonal H1N1 but not in response to pdmH1N1 included the zinc finger proteins and small nucleolar RNAs. Gene Ontology (GO and pathway over-representation analysis suggested that these genes were associated with DNA binding and transcription/translation related functions. Conclusions Both seasonal H1N1 and pdmH1N1 trigger similar host responses including IFN-based antiviral responses and cytokine responses. Unlike the avian H5N1 virus, pdmH1N1 virus does not have an intrinsic capacity for cytokine dysregulation. The differences between pdmH1N1 and seasonal H1N1 viruses

  13. Apoptosis and Proinflammatory Cytokine Responses of Primary Mouse Microglia and Astrocytes Induced by Human H1N1 and Avian H5N1 Influenza Viruses

    Institute of Scientific and Technical Information of China (English)

    Gefei Wang; Kangsheng Li; Juan Zhang; Weizhong Li; Gang Xin; Yun Su; Yuanli Gao; Heng Zhang; Guimei Lin; Xiaoyang Jiao

    2008-01-01

    Patients with an influenza virus infection can be complicated by acute encephalopathy and encephalitis. To investigate the immune reactions involved in the neurocomplication, mouse microglia and astrocytes were isolated,infected with human H1N1 and avian H5N1 influenza viruses, and examined for their immune responses. We observed homogeneously distributed viral receptors, sialic acid (SA)-α2,3-Galactose (Gal) and SA-α2,6-Gal, on microglia and astrocytes. Both viruses were replicative and productive in microglia and astrocytes. Virus-induced apoptosis and cytopathy in infected cells were observed at 24 h post-infection (p.i.). Expression of IL-1β, IL-6 and TNF-α mRNA examined at 6 h and 24 h p.i. Was up-regulated, and their expression levels were considerably higher in H5N1 infection. The amounts of secreted proinflammatory IL-1β, IL-6 and TNF-α at 6 h and 24 h p.i. Were also induced, with greater induction by H5N1 infection. This study is the first demonstration that both human H1N1 and avian H5N1 influenza viruses can infect mouse microglia and astrocytes and induce apoptosis, cytopathy, and proinflammatory cytokine production in them in vitro. Our results suggest that the direct cellular damage and the consequences of immunopathological injury in the CNS contribute to the influenza viral pathogenesis.

  14. Influenza A (H1N1) 2009: a pandemic alarm

    Indian Academy of Sciences (India)

    Madhu Khanna; Neha Gupta; Ankit Gupta; V K Vijayan

    2009-09-01

    At this critical juncture when the world has not yet recovered from the threat of avian influenza, the virus has returned in the disguise of swine influenza, a lesser known illness common in pigs. It has reached pandemic proportions in a short time span with health personnel still devising ways to identify the novel H1N1 virus and develop vaccines against it. The H1N1 virus has caused a considerable number of deaths within the short duration since its emergence. Presently, there are no effective methods to contain this newly emerged virus. Therefore, a proper and clear insight is urgently required to prevent an outbreak in the future and make preparations that may be planned well in advance. This review is an attempt to discuss the historical perspective of the swine flu virus, its epidemiology and route of transmission to better understand the various control measures that may be taken to fight the danger of a global pandemic.

  15. Influenza A pandemic (H1N1) 2009 virus infection

    Institute of Scientific and Technical Information of China (English)

    BAI Lu; CAO Bin; WANG Chen

    2011-01-01

    The clinical spectrum of the 2009 pandemic influenza A (H1N1) infection ranged from self-limited mild illness to progressive pneumonia,or even a fatal outcome.We summarize the clinical manifestations,risk factors for severe and fatal cases,pathologic findings and treatment of this disease in this paper based on current reports from different regions of the world.

  16. Influenza A (H1N1) pneumonia: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Viviane Brandao; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Marchiori, Edson, E-mail: edmarchiori@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Zanetti, Glaucia [Escola de Medicina de Petropolis, RJ (Brazil); Hochhegger, Bruno [Santa Casa de Misericordia de Porto Alegre, RS (Brazil)

    2013-11-01

    Objective: to describe aspects found on HRCT scans of the chest in patients infected with the influenza A (H1N1) virus. Methods: we retrospectively analyzed the HRCT scans of 71 patients (38 females and 33 males) with H1N1 infection, confirmed through laboratory tests, between July and September of 2009. The HRCT scans were interpreted by two thoracic radiologists independently, and in case of disagreement, the decisions were made by consensus. Results: the most common HRCT findings were ground-glass opacities (85%), consolidation (64%), or a combination of ground-glass opacities and consolidation (58%). Other findings were airspace nodules (25%), bronchial wall thickening (25%), interlobular septal thickening (21%), crazy-paving pattern (15%), perilobular pattern (3%), and air trapping (3%). The findings were frequently bilateral (89%), with a random distribution (68%). Pleural effusion, when observed, was typically minimal. No lymphadenopathy was identified. Conclusions: the most common findings were ground-glass opacities and consolidations, or a combination of both. Involvement was commonly bilateral with no axial or cranio caudal predominance in the distribution. Although the major tomographic findings in H1N1 infection are nonspecific, it is important to recognize such findings in order to include infection with the H1N1 virus in the differential diagnosis of respiratory symptoms. (author)

  17. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Nguyen, Phi Hung; Lee, Hong Sik

    2011-01-01

    The emergence of highly pathogenic influenza A virus strains, such as the new H1N1 swine influenza (novel influenza), represents a serious threat to global human health. During our course of an anti-influenza screening program on natural products, one new licochalcone G (1) and seven known (2......-8) chalcones were isolated as active principles from the acetone extract of Glycyrrhiza inflata. Compounds 3 and 6 without prenyl group showed strong inhibitory effects on various neuraminidases from influenza viral strains, H1N1, H9N2, novel H1N1 (WT), and oseltamivir-resistant novel H1N1 (H274Y) expressed...... in 293T cells. In addition, the efficacy of oseltamivir with the presence of compound 3 (5 μM) was increased against H274Y neuraminidase. This evidence of synergistic effect makes this inhibitor to have a potential possibility for control of pandemic infection by oseltamivir-resistant influenza virus....

  18. Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses.

    Science.gov (United States)

    Chen, Haifen; Zhou, Xinrui; Zheng, Jie; Kwoh, Chee-Keong

    2016-12-05

    The human influenza viruses undergo rapid evolution (especially in hemagglutinin (HA), a glycoprotein on the surface of the virus), which enables the virus population to constantly evade the human immune system. Therefore, the vaccine has to be updated every year to stay effective. There is a need to characterize the evolution of influenza viruses for better selection of vaccine candidates and the prediction of pandemic strains. Studies have shown that the influenza hemagglutinin evolution is driven by the simultaneous mutations at antigenic sites. Here, we analyze simultaneous or co-occurring mutations in the HA protein of human influenza A/H3N2, A/H1N1 and B viruses to predict potential mutations, characterizing the antigenic evolution. We obtain the rules of mutation co-occurrence using association rule mining after extracting HA1 sequences and detect co-mutation sites under strong selective pressure. Then we predict the potential drifts with specific mutations of the viruses based on the rules and compare the results with the "observed" mutations in different years. The sites under frequent mutations are in antigenic regions (epitopes) or receptor binding sites. Our study demonstrates the co-occurring site mutations obtained by rule mining can capture the evolution of influenza viruses, and confirms that cooperative interactions among sites of HA1 protein drive the influenza antigenic evolution.

  19. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wörmann, Xenia [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Lesch, Markus [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Falkensee (Germany); Welke, Robert-William [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); Okonechnikov, Konstantin; Abdurishid, Mirshat [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Sieben, Christian [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); Geissner, Andreas [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Institute of Chemistry and Biochemistry, Free University, Berlin (Germany); Brinkmann, Volker [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Kastner, Markus [Institute for Biophysics, Johannes Kepler University, Linz (Austria); Karner, Andreas [Center for Advanced Bioanalysis GmbH (CBL), Linz (Austria); Zhu, Rong; Hinterdorfer, Peter [Institute for Biophysics, Johannes Kepler University, Linz (Austria); Anish, Chakkumkal [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Seeberger, Peter H. [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Institute of Chemistry and Biochemistry, Free University, Berlin (Germany); Herrmann, Andreas [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); and others

    2016-05-15

    The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA{sub 1} D130E, HA{sub 2} I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production. - Highlights: • We observed a spontaneous mutation of a 2009-pandemic H1N1 influenza virus in vitro. • The adaptation led to a 100-fold rise in replication rate in human A549 cells. • Adaptation was caused by two mutations in the HA gene segment. • Adaptation correlates with increased fusion pH and decreased receptor affinity.

  20. Subsisting H1N1 influenza memory responses are insufficient to protect from pandemic H1N1 influenza challenge in C57BL/6 mice

    OpenAIRE

    Sage, Leo K.; Fox, Julie M.; Tompkins, Stephen M.; Ralph A. Tripp

    2013-01-01

    The 2009 swine-origin pandemic H1N1 (pH1N1) influenza virus transmitted and caused disease in many individuals immune to pre-2009 H1N1 influenza virus. Whilst extensive studies on antibody-mediated pH1N1 cross-reactivity have been described, few studies have focused on influenza-specific memory T-cells. To address this, the immune response in pre-2009 H1N1 influenza-immune mice was evaluated after pH1N1 challenge and disease pathogenesis was determined. The results show that despite homology ...

  1. Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages.

    Science.gov (United States)

    Lee, Suki M Y; Gardy, Jennifer L; Cheung, C Y; Cheung, Timothy K W; Hui, Kenrie P Y; Ip, Nancy Y; Guan, Y; Hancock, Robert E W; Peiris, J S Malik

    2009-12-14

    Human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1) or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1) virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN) and tumor necrosis factor (TNF)-alpha genes. A network-based analysis suggests that the synergy between IFN-beta and TNF-alpha results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease.

  2. Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Suki M Y Lee

    Full Text Available Human disease caused by highly pathogenic avian influenza (HPAI H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1 or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1 virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN and tumor necrosis factor (TNF-alpha genes. A network-based analysis suggests that the synergy between IFN-beta and TNF-alpha results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease.

  3. Underreporting of 2009 H1N1 Influenza Cases

    Centers for Disease Control (CDC) Podcasts

    2009-12-08

    Influenza cases are difficult to track because many people don't go to the doctor or get tested for flu when they're sick. The first months of the 2009 H1N1 influenza pandemic were no different. In this podcast, CDC's Dr. Carrie Reed discusses a study in the December issue of Emerging Infectious Diseases that looked at the actual number of cases reported and estimated the true number of cases when correcting for underreporting.  Created: 12/8/2009 by Emerging Infectious Diseases.   Date Released: 12/8/2009.

  4. Effectiveness of common household cleaning agents in reducing the viability of human influenza A/H1N1.

    Science.gov (United States)

    Greatorex, Jane S; Page, Rosanna F; Curran, Martin D; Digard, Paul; Enstone, Joanne E; Wreghitt, Tim; Powell, Penny P; Sexton, Darren W; Vivancos, Roberto; Nguyen-Van-Tam, Jonathan S

    2010-02-01

    In the event of an influenza pandemic, the majority of people infected will be nursed at home. It is therefore important to determine simple methods for limiting the spread of the virus within the home. The purpose of this work was to test a representative range of common household cleaning agents for their effectiveness at killing or reducing the viability of influenza A virus. Plaque assays provided a robust and reproducible method for determining virus viability after disinfection, while a National Standard influenza virus RT-PCR assay (VSOP 25, www.hpa-standardmethods.org.uk) was adapted to detect viral genome, and a British Standard (BS:EN 14476:2005) was modified to determine virus killing. Active ingredients in a number of the cleaning agents, wipes, and tissues tested were able to rapidly render influenza virus nonviable, as determined by plaque assay. Commercially available wipes with a claimed antiviral or antibacterial effect killed or reduced virus infectivity, while nonmicrobiocidal wipes and those containing only low concentrations (<5%) of surfactants showed lower anti-influenza activity. Importantly, however, our findings indicate that it is possible to use common, low-technology agents such as 1% bleach, 10% malt vinegar, or 0.01% washing-up liquid to rapidly and completely inactivate influenza virus. Thus, in the context of the ongoing pandemic, and especially in low-resource settings, the public does not need to source specialized cleaning products, but can rapidly disinfect potentially contaminated surfaces with agents readily available in most homes.

  5. Effectiveness of common household cleaning agents in reducing the viability of human influenza A/H1N1.

    Directory of Open Access Journals (Sweden)

    Jane S Greatorex

    Full Text Available BACKGROUND: In the event of an influenza pandemic, the majority of people infected will be nursed at home. It is therefore important to determine simple methods for limiting the spread of the virus within the home. The purpose of this work was to test a representative range of common household cleaning agents for their effectiveness at killing or reducing the viability of influenza A virus. METHODOLOGY/PRINCIPAL FINDINGS: Plaque assays provided a robust and reproducible method for determining virus viability after disinfection, while a National Standard influenza virus RT-PCR assay (VSOP 25, www.hpa-standardmethods.org.uk was adapted to detect viral genome, and a British Standard (BS:EN 14476:2005 was modified to determine virus killing. CONCLUSIONS/SIGNIFICANCE: Active ingredients in a number of the cleaning agents, wipes, and tissues tested were able to rapidly render influenza virus nonviable, as determined by plaque assay. Commercially available wipes with a claimed antiviral or antibacterial effect killed or reduced virus infectivity, while nonmicrobiocidal wipes and those containing only low concentrations (<5% of surfactants showed lower anti-influenza activity. Importantly, however, our findings indicate that it is possible to use common, low-technology agents such as 1% bleach, 10% malt vinegar, or 0.01% washing-up liquid to rapidly and completely inactivate influenza virus. Thus, in the context of the ongoing pandemic, and especially in low-resource settings, the public does not need to source specialized cleaning products, but can rapidly disinfect potentially contaminated surfaces with agents readily available in most homes.

  6. Influenza Stigma during the 2009 H1N1 Pandemic.

    Science.gov (United States)

    Earnshaw, Valerie A; Quinn, Diane M

    2013-06-01

    The current study examines the extent to which H1N1 was stigmatized at the height of the 2009 H1N1 pandemic in the U.S. and explores the role that H1N1 stigma played in people's desire for physical distance from others with H1N1. H1N1 was the most stigmatized disease, with participants endorsing greater prejudice towards people with H1N1 than people with cancer or HIV/AIDS. Further, H1N1 stigma partially mediated the relationship between participants' perceptions that H1N1 was threatening and their desire for physical distance from people with H1N1. Therefore, H1N1 stigma played a role in, but was not entirely responsible for, the relationship between perceptions that H1N1 was threatening and desire for distance from others with H1N1.

  7. Acute sleep deprivation has no lasting effects on the human antibody titer response following a novel influenza A H1N1 virus vaccination

    Directory of Open Access Journals (Sweden)

    Benedict Christian

    2012-01-01

    Full Text Available Abstract Background Experimental studies in humans have yielded evidence that adaptive immune function, including the production of antigen-specific antibodies, is distinctly impaired when sleep is deprived at the time of first antigen exposure. Here we examined the effects of a regular 24- hour sleep-wake cycle (including 8 hours of nocturnal sleep and a 24-hour period of continuous wakefulness on the 7-week antibody production in 11 males and 13 females in response to the H1N1 (swine flu virus vaccination. The specific antibody titer in serum was assayed by the hemagglutination inhibition test on the days 5, 10, 17, and 52 following vaccination. Results In comparison to the sleep group, sleep-deprived males but not females had reduced serum concentration of H1N1-specific antibodies five days after vaccination, whereas antibody titers at later time points did not differ between the conditions. Conclusions These findings concur with the notion that sleep is a supportive influence in the very early stage of an adaptive immune response to a viral antigen. However, our results do not support the view that acute sleep deprivation has lasting effects on the human antibody titer response to influenza vaccination.

  8. Increase in IFNγ(-IL-2(+ cells in recent human CD4 T cell responses to 2009 pandemic H1N1 influenza.

    Directory of Open Access Journals (Sweden)

    Jason M Weaver

    Full Text Available Human CD4 T cell recall responses to influenza virus are strongly biased towards Type 1 cytokines, producing IFNγ, IL-2 and TNFα. We have now examined the effector phenotypes of CD4 T cells in more detail, particularly focusing on differences between recent versus long-term, multiply-boosted responses. Peptides spanning the proteome of temporally distinct influenza viruses were distributed into pools enriched for cross-reactivity to different influenza strains, and used to stimulate antigen-specific CD4 T cells representing recent or long-term memory. In the general population, peptides unique to the long-circulating influenza A/New Caledonia/20/99 (H1N1 induced Th1-like responses biased toward the expression of IFNγ(+TNFα(+ CD4 T cells. In contrast, peptide pools enriched for non-cross-reactive peptides of the pandemic influenza A/California/04/09 (H1N1 induced more IFNγ(-IL-2(+TNFα(+ T cells, similar to the IFNγ(-IL-2(+ non-polarized, primed precursor T cells (Thpp that are a predominant response to protein vaccination. These results were confirmed in a second study that compared samples taken before the 2009 pandemic to samples taken one month after PCR-confirmed A/California/04/09 infection. There were striking increases in influenza-specific TNFα(+, IFNγ(+, and IL-2(+ cells in the post-infection samples. Importantly, peptides enriched for non-cross-reactive A/California/04/09 specificities induced a higher proportion of Thpp-like IFNγ(-IL-2(+TNFα(+ CD4 T cells than peptide pools cross-reactive with previous influenza strains, which induced more Th1 (IFNγ(+TNFα(+ responses. These IFNγ(-IL-2(+TNFα(+ CD4 T cells may be an important target population for vaccination regimens, as these cells are induced upon infection, may have high proliferative potential, and may play a role in providing future effector cells during subsequent infections.

  9. Genome Hotspots for Nucleotide Substitutions and the Evolution of Influenza A (H1N1) Human Strains.

    Science.gov (United States)

    Civetta, Alberto; Ostapchuk, David Cecil Murphy; Nwali, Basil

    2016-04-08

    In recent years a number of studies have brought attention to the role of positive selection during the evolution of antigenic escape by influenza strains. Particularly, the identification of positively selected sites within antigenic domains of viral surface proteins has been used to suggest that the evolution of viral-host receptor binding specificity is driven by selection. Here we show that, following the 1918 outbreak, the antigenic sites of the hemagglutinin (HA) viral surface protein and the stalk region of neuraminidase became substitution hotspots. The hotspots show similar patterns of nucleotide substitution bias at synonymous and nonsynonymous sites. Such bias imposes directionality in amino acid replacements that can influence signals of selection at antigenic sites. Our results suggest that the high accumulation of substitutions within the antigenic sites of HA can explain not only cases of antigenic escape by antigenic drift but also lead to occasional episodes of viral extinction. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Mensajes importantes sobre la influenza H1N1: Higiene (H1N1 Flu Awareness: Hygiene)

    Centers for Disease Control (CDC) Podcasts

    2009-05-06

    Este podcast aborda brevemente las formas de protegerse contra el virus nuevo de la influenza H1N1.  Created: 5/6/2009 by Centers for Disease Control and Prevention (CDC).   Date Released: 5/6/2009.

  11. Mensajes importantes sobre la influenza H1N1: Comunidad (H1N1 Flu Awareness: Community)

    Centers for Disease Control (CDC) Podcasts

    2009-05-06

    Este podcast aborda brevemente los planes de la comunidad frente al brote del virus nuevo de la influenza H1N1.  Created: 5/6/2009 by Centers for Disease Control and Prevention (CDC).   Date Released: 5/6/2009.

  12. Zoonoses: USDA ARS Lessons Learned During Novel Influenza H1N1 Investigations

    Science.gov (United States)

    Influenza illness was first recognized in pigs during the 1918 human Spanish flu pandemic, and influenza A virus has since remained of importance to the swine industry as a primary respiratory pathogen. Influenza virus H1N1 remained relatively stable in U.S. swine for nearly 80 years following 1918...

  13. Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China.

    Science.gov (United States)

    Chen, Yan; Zhang, Jian; Qiao, Chuanling; Yang, Huanliang; Zhang, Ying; Xin, Xiaoguang; Chen, Hualan

    2013-01-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. They were transmitted occasionally from humans to other mammals including pigs, dogs and cats. In this study, we report the isolation and genetic analysis of novel viruses in pigs in China. These viruses were related phylogenetically to the pandemic 2009 H1N1 influenza viruses isolated from humans and pigs, which indicates that the pandemic virus is currently circulating in swine populations, and this hypothesis was further supported by serological surveillance of pig sera collected within the same period. Furthermore, we isolated another two H1N1 viruses belonging to the lineages of classical swine H1N1 virus and avian-like swine H1N1 virus, respectively. Multiple genetic lineages of H1N1 viruses are co-circulating in the swine population, which highlights the importance of intensive surveillance for swine influenza in China.

  14. Pandemic (H1N1 influenza in Diyarbakir, 2009

    Directory of Open Access Journals (Sweden)

    Meliksah Ertem

    2011-09-01

    Full Text Available  Objective: This study was conducted to evaluate the pandemic (H1N1 influenza outbreak in 2009. Method: Influenza like illness (ILI cases were reported between the 36th to 53rd weeks of the pandemic, from all health centres. 731 nasopharyngeal swabs were collected from ILI cases. Results: The first H1N1 confirmed case was reported at the 36th week and an increasing trend continued. At the 43rd week the outbreak reached its maximum level and at the 53rd week the level had decreased to the level at the start. During the outbreak 31117 cases were reported as ILI and 635 cases were hospitalized (hospitalization rate was 2.0% and 17 H1N1 laboratory confirmed cases died (mortality rate 11.5/1.000.000. Symptoms of laboratory confirmed cases were similar to seasonal influenza. Coughing (90.9%, fever (84.5%, running nose (69.5%, headache (73.4%, diarrhoea (17.5% were the some of the symptoms in laboratory confirmed cases. The median interval between the onset of symptoms and hospital admission was 3.5 days (min: 1, max: 11 days and this was 7.5 days for the occurrence of death. Conclusion: During 36th to 53rd week an important outbreak of ILI was occurred. The mortality rate was not so high as expected but the infectivity was high. The delay for hospital admission may lead to higher mortality particularly for pregnant women.Key Words: Pandemic influenza; H1N1; case fatality rate; hospitalization rateDiyarbakır’da pandemik (H1N1 influenza, 2009Amaç: Bu çalışmada 2009 yılında -Türkiye’de pandemik influenza salgınını değerlendirmek amaçlanmıştır. Yöntem: Diyarbakır ’da 36 ve 53. haftalar arasında tüm sağlık kuruluşlarından influenza benzeri hastalık rapor edilmiştir. 731 nazofaringeal sürüntü alınmıştır. Bulgular: İlk H1N1 doğrulanmış vaka 36.haftada rapor edilmiştir ve vaka sayıları zaman içinde artış göstermiştir. 43. haftada salgın başlamış ve 53. haftada başlangıç düzeyine inmiştir.Salgın s

  15. Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines.

    Directory of Open Access Journals (Sweden)

    Balaji Manicassamy

    2010-01-01

    Full Text Available The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918-1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009

  16. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  17. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  18. [Case report of the first world death due to a new strain of human influenza A H1N1 virus and behavior of human influenzae in pregnant women].

    Science.gov (United States)

    Noguera Sánchez, Marcelo Fidias; Karchmer Krivitzky, Samuel; EsliRabadán, Martínez Cesar; Antonio Sánchez, Pedro

    2013-01-01

    Influenza A H1N1 is an acute respiratory illness caused by a new strain of H1N1. Human influenza is a subtype of influenza Avirus, from the family of Orthomyxoviridae. This strain is the cause of new influenza pandemic declared by the World Health Organization in June, 2009. This paper reports the first case occurred in Mexico: a 39-year-old woman with a history of diabetes mellitus type 2 and obesity grade II, which suffered atypical and aggressive pneumonia positive to coronavirus. Patient died 98 hours after her admission to the hospital unit. Due to the clinical presentation of the case, the doctors sent samples to the Instituto Nacional de Diagnóstico y Referencia Epidemiológica that sent an aliquot of the National Center for Immunization and Respiratory Diseases of theAgency of Public Health in Canada, that reported positivity to influenza virus, and catalogued it as a new global strain called influenza A virus H1N1. The notice of 229E/NL63 coronavirus and its relationship to the recent outbreaks of avian influenza in humans and the clinical presentation of the case were the epidemiological circumstances that prevented the nation epidemiology system to establish global containment strategies to prevent the spread of this emerging infection. The consequence was the declaration of WHO pandemic alert level 6. Its behavior in pregnancy, reported by Assistant General Direction of Epidemiology in Mexico, has placed this infection as a risk factor for women.

  19. What happened after the initial global spread of pandemic human influenza virus A (H1N1? A population genetics approach

    Directory of Open Access Journals (Sweden)

    Martinez-Hernandez Fernando

    2010-08-01

    Full Text Available Abstract Viral population evolution dynamics of influenza A is crucial for surveillance and control. In this paper we analyzed viral genetic features during the recent pandemic caused by the new influenza human virus A H1N1, using a conventional population genetics approach based on 4689 hemagglutinin (HA and neuraminidase (NA sequences available in GenBank submitted between March and December of 2009. This analysis showed several relevant aspects: a a scarce initial genetic variability within the viral isolates from some countries that increased along 2009 when influenza was dispersed around the world; b a worldwide virus polarized behavior identified when comparing paired countries, low differentiation and high gene flow were found in some pairs and high differentiation and moderate or scarce gene flow in others, independently of their geographical closeness, c lack of positive selection in HA and NA due to increase of the population size of virus variants, d HA and NA variants spread in a few months all over the world being identified in the same countries in different months along 2009, and e containment of viral variants in Mexico at the beginning of the outbreak, probably due to the control measures applied by the government.

  20. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.

    Science.gov (United States)

    Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2015-12-01

    The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.

  1. Whole genome characterization of human influenza A(H1N1)pdm09 viruses isolated from Kenya during the 2009 pandemic.

    Science.gov (United States)

    Gachara, George; Symekher, Samuel; Otieno, Michael; Magana, Japheth; Opot, Benjamin; Bulimo, Wallace

    2016-06-01

    An influenza pandemic caused by a novel influenza virus A(H1N1)pdm09 spread worldwide in 2009 and is estimated to have caused between 151,700 and 575,400 deaths globally. While whole genome data on new virus enables a deeper insight in the pathogenesis, epidemiology, and drug sensitivities of the circulating viruses, there are relatively limited complete genetic sequences available for this virus from African countries. We describe herein the full genome analysis of influenza A(H1N1)pdm09 viruses isolated in Kenya between June 2009 and August 2010. A total of 40 influenza A(H1N1)pdm09 viruses isolated during the pandemic were selected. The segments from each isolate were amplified and directly sequenced. The resulting sequences of individual gene segments were concatenated and used for subsequent analysis. These were used to infer phylogenetic relationships and also to reconstruct the time of most recent ancestor, time of introduction into the country, rates of substitution and to estimate a time-resolved phylogeny. The Kenyan complete genome sequences clustered with globally distributed clade 2 and clade 7 sequences but local clade 2 viruses did not circulate beyond the introductory foci while clade 7 viruses disseminated country wide. The time of the most recent common ancestor was estimated between April and June 2009, and distinct clusters circulated during the pandemic. The complete genome had an estimated rate of nucleotide substitution of 4.9×10(-3) substitutions/site/year and greater diversity in surface expressed proteins was observed. We show that two clades of influenza A(H1N1)pdm09 virus were introduced into Kenya from the UK and the pandemic was sustained as a result of importations. Several closely related but distinct clusters co-circulated locally during the peak pandemic phase but only one cluster dominated in the late phase of the pandemic suggesting that it possessed greater adaptability.

  2. Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; Ekiert, Damian C.; Krause, Jens C.; Hai, Rong; Crowe, Jr., James E.; Wilson, Ian A. (Sinai); (Scripps); (Vanderbilt)

    2010-05-25

    The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for the age-related immunity to the current influenza pandemic.

  3. 2009甲型H1N1流感研究进展%Progress in the 2009 H1N1 influenza A

    Institute of Scientific and Technical Information of China (English)

    赵宇红; 申昆玲

    2010-01-01

    In March 2009,a new influenza A H1N1 virus was identified in Mexico.It is a quadruple-reassortant influenza A virus, which is composed of a combination of swine, avian strains and human. The clinical symptoms of the 2009 new influenza A (H1N1) are similar with the seasonal influenza.The severe illness could happened in youth and middle-aged without underlying diseases that differs from seasonal influenza. The risk groups are individuals with underlying diseases,pregnancy and obesity which has not been considered as risk factor in previous. Although oseltamivir-resistant variant influenza A ( H1N1 ) were reported, strain is susceptible to oseltamivir. This review summarizes the current information concerning viral genom,clinical features and treatment of the new pandemic influenza virus A H1N1 infection.%2009年3月在墨西哥出现了一种新型甲型H1N1流感病毒,这是一个四源重排的A型流感病毒:来源于猪流感病毒、禽流感病毒及人流感病毒.其临床特点与季节性流感相似,但重症病例可发生在无基础疾病的青壮年人,这与季节性流感不同,其高危人群为患有基础疾病者、孕妇及肥胖者.尽管已经出现了耐药毒株,但奥司他韦治疗仍然有效.该文主要对2009年流行的甲型H1N1流感病毒的基因特点、临床表现及治疗的最新进展进行综述.

  4. The Neurological Manifestations of H1N1 Influenza Infection; Diagnostic Challenges and Recommendations

    Directory of Open Access Journals (Sweden)

    Ali Akbar Asadi-Pooya

    2011-03-01

    Full Text Available Background: World Health Organization declared pandemic phase of human infection with novel influenza A (H1N1 in April 2009. There are very few reports about the neurological complications of H1N1 virus infection in the literature. Occasionally, these complications are severe and even fatal in some individuals. The aims of this study were to report neurological complaints and/or complications associated with H1N1 virus infection. Methods: The medical files of all patients with H1N1 influenza infection admitted to a specified hospital in the city of Shiraz, Iran from October through November 2009 were reviewed. More information about the patients were obtained by phone calls to the patients or their care givers. All patients had confirmed H1N1 virus infection with real-time PCR assay. Results: Fifty-five patients with H1N1 infection were studied. Twenty-three patients had neurological signs and/or symptoms. Mild neurological complaints may be reported in up to 42% of patients infected by H1N1 virus. Severe neurological complications occurred in 9% of the patients. The most common neurological manifestations were headache, numbness and paresthesia, drowsiness and coma. One patient had a Guillain-Barre syndrome-like illness, and died in a few days. Another patient had focal status epilepticus and encephalopathy. Conclusions: The H1N1 infection seems to have been quite mild with a self-limited course in much of the world, yet there appears to be a subset, which is severely affected. We recommend performing diagnostic tests for H1N1influenza virus in all patients with respiratory illness and neurological signs/symptoms. We also recommend initiating treatment with appropriate antiviral drugs as soon as possible in those with any significant neurological presentation accompanied with respiratory illness and flu-like symptoms

  5. Learning from the 2009 H1N1 pandemic: prospects for more broadly effective influenza vaccines

    Institute of Scientific and Technical Information of China (English)

    Ethan C. Settembre; Philip R. Dormitzer; Rino Rappuoli

    2011-01-01

    Calls to develop a universal influenza vaccine have increased in the wake of the 2009 H1 N1 influenza pandemic. This demand comes at a time when analyses of the human antibody repertoire, informed by structures of complexes between broadly neutralizing antibodies and influenza hemagglutinin, have revealed the target of a class of broadly neutralizing antibodies. Recent studies suggest a path forward to more broadly protective influenza vaccines.%@@ Calls to develop a universal influenza vaccine have increased in the wake of the 2009 H1 N1 influenza pandemic.This demand comes at a time when analyses of the human antibody repertoire, informed by structures of complexes between broadly neutralizing antibodies and influenza hemagglutinin, have revealed the target of a class of broadly neutralizing antibodies.Recent studies suggest a path forward to more broadly protective influenza vaccines.

  6. The 2009 Influenza A(H1N1) ’Swine Flu’ Outbreak: U.S. Responses to Global Human Cases

    Science.gov (United States)

    2009-05-26

    treatable with two antiviral drugs, oseltamivir ( brand name Tamiflu®) and zanamivir ( brand name Relenza®), though there is no available vaccine. WHO...www.who.int/ csr /disease/swineflu/en/ index.html and CRS Report R40554, The 2009 H1N1 “Swine Flu” Outbreak: An Overview, by Sarah A. Lister and C...the virus 5 See WHO, Swine influenza - update 3, April 27, 2009, http://www.who.int/ csr /don

  7. Influenza A (H1N1. Radiological Patterns Influenza A (H1N1. Patrones Radiológicos

    Directory of Open Access Journals (Sweden)

    Martha Yudey Rodriguez Pino

    2011-04-01

    Full Text Available The influenza A (H1N1 has a wide radiological spectrum, difficult to differentiate from other epidemic respiratory diseases. One of the distinctive elements seems to be the quick evolution of the imagenologic lesions in the sick persons, as well as the slow resolution of these manifestations. The chest fillm is of vital importance to make a precise diagnosis, and it constitutes an indispensable tool for the identification of the cases according to the affection degree (light, moderate, and severe, besides contributing as an essential way to the classification of the patients according to a grade of uncertainty. Although as a confirmation complementary is not definitive, it is important in defining if a case is suspicious or probable.La influenza A (H1N1 tiene un espectro radiológico amplio, difícil de diferenciar de otras enfermedades respiratorias no epidémicas. Uno de los elementos distintivos parece estar en relación con la rápida evolución de las lesiones imagenológicas en los enfermos afectados, así como la lenta resolución de estas manifestaciones. La radiografía de tórax es de vital importancia para hacer un diagnóstico preciso, constituye una herramienta indispensable para la notificación de los casos según el grado de afección (leve, moderada, severa, además de contribuir de manera esencial a la clasificación de los pacientes según el grado de incertidumbre pues, aunque no es un complementario confirmatorio, sí es importante a la hora de definir si un caso es sospechoso o probable.

  8. Influenza virus A(H1N1)2009 antibody-dependent cellular cytotoxicity in young children prior to the H1N1 pandemic.

    Science.gov (United States)

    Mesman, Annelies W; Westerhuis, Brenda M; Ten Hulscher, Hinke I; Jacobi, Ronald H; de Bruin, Erwin; van Beek, Josine; Buisman, Annemarie M; Koopmans, Marion P; van Binnendijk, Robert S

    2016-09-01

    Pre-existing immunity played a significant role in protection during the latest influenza A virus H1N1 pandemic, especially in older age groups. Structural similarities were found between A(H1N1)2009 and older H1N1 virus strains to which humans had already been exposed. Broadly cross-reactive antibodies capable of neutralizing the A(H1N1)2009 virus have been implicated in this immune protection in adults. We investigated the serological profile of a group of young children aged 9 years (n=55), from whom paired blood samples were available, just prior to the pandemic wave (March 2009) and shortly thereafter (March 2010). On the basis of A(H1N1)2009 seroconversion, 27 of the 55 children (49 %) were confirmed to be infected between these two time points. Within the non-infected group of 28 children (51 %), high levels of seasonal antibodies to H1 and H3 HA1 antigens were detected prior to pandemic exposure, reflecting past infection with H1N1 and H3N2, both of which had circulated in The Netherlands prior to the pandemic. In some children, this reactivity coincided with specific antibody reactivity against A(H1N1)2009. While these antibodies were not able to neutralize the A(H1N1)2009 virus, they were able to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro upon interaction with the A(H1N1)2009 virus. This finding suggests that cross-reactive antibodies could contribute to immune protection in children via ADCC.

  9. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  10. Evaluation of a fully human monoclonal antibody against multiple influenza A viral strains in mice and a pandemic H1N1 strain in nonhuman primates.

    Science.gov (United States)

    Song, Aihua; Myojo, Kensuke; Laudenslager, John; Harada, Daisuke; Miura, Toru; Suzuki, Kazuo; Kuni-Kamochi, Reiko; Soloff, Rachel; Ohgami, Kinya; Kanda, Yutaka

    2014-11-01

    Influenza virus is a global health concern due to its unpredictable pandemic potential. Frequent mutations of surface molecules, hemagglutinin (HA) and neuraminidase (NA), contribute to low efficacy of the annual flu vaccine and therapeutic resistance to standard antiviral agents. The populations at high risk of influenza virus infection, such as the elderly and infants, generally mount low immune responses to vaccines, and develop severe disease after infection. Novel therapeutics with high effectiveness and mutation resistance are needed. Previously, we described the generation of a fully human influenza virus matrix protein 2 (M2) specific monoclonal antibody (mAb), Z3G1, which recognized the majority of M2 variants from natural viral isolates, including highly pathogenic avian strains. Passive immunotherapy with Z3G1 significantly protected mice from the infection when administered either prophylactically or 1-2days post infection. In the present study, we showed that Z3G1 significantly protected mice from lethal infection when treatment was initiated 3days post infection. In addition, therapeutic administration of Z3G1 reduced lung viral titers in mice infected with different viral strains, including amantadine and oseltamivir-resistant strains. Furthermore, prophylactic and therapeutic administration of Z3G1 sustained O2 saturation and reduced lung pathology in monkeys infected with a pandemic H1N1 strain. Finally, de-fucosylated Z3G1 with an IgG1/IgG3 chimeric Fc region was generated (AccretaMab® Z3G1), and showed increased ADCC and CDC in vitro. Our data suggest that the anti-M2 mAb Z3G1 has great potential as a novel anti-flu therapeutic agent.

  11. Initial incursion of pandemic (H1N1) 2009 influenza A virus into European pigs.

    Science.gov (United States)

    Welsh, M D; Baird, P M; Guelbenzu-Gonzalo, M P; Hanna, A; Reid, S M; Essen, S; Russell, C; Thomas, S; Barrass, L; McNeilly, F; McKillen, J; Todd, D; Harkin, V; McDowell, S; Choudhury, B; Irvine, R M; Borobia, J; Grant, J; Brown, I H

    2010-05-22

    The initial incursion of pandemic (H1N1) 2009 influenza A virus (pH1N1) into a European pig population is reported. Diagnosis of swine influenza caused by pandemic virus was made during September 2009 following routine submission of samples for differential diagnosis of causative agents of respiratory disease, including influenza A virus. All four pigs (aged six weeks) submitted for investigation from a pig herd of approximately 5000 animals in Northern Ireland, experiencing acute-onset respiratory signs in finishing and growing pigs, were positive by immunofluorescence for influenza A. Follow-up analysis of lung tissue homogenates by real-time RT-PCR confirmed the presence of pH1N1. The virus was subsequently detected on two other premises in Northern Ireland; on one premises, detection followed the pre-export health certification testing of samples from pigs presumed to be subclinically infected as no clinical signs were apparent. None of the premises was linked to another epidemiologically. Sequencing of the haemagglutinin and neuraminidase genes revealed high nucleotide identity (>99.4 per cent) with other pH1N1s isolated from human beings. Genotypic analyses revealed all gene segments to be most closely related to those of contemporary pH1N1 viruses in human beings. It is concluded that all three outbreaks occurred independently, potentially as a result of transmission of the virus from human beings to pigs.

  12. The impact of antigenic drift of influenza A virus on human herd immunity: Sero-epidemiological study of H1N1 in healthy Thai population in 2009.

    Science.gov (United States)

    Kanai, Yuta; Boonsathorn, Naphatsawan; Chittaganpitch, Malinee; Bai, Guirong; Li, Yonggang; Kase, Tetsuo; Takahashi, Kazuo; Okuno, Yoshinobu; Jampangern, Wipawee; Ikuta, Kazuyoshi; Sawanpanyalert, Pathom

    2010-07-26

    To examine the effect of the antigenic drift of H1N1 influenza viruses on herd immunity, neutralization antibodies from 744 sera from Thai healthy volunteers in 2008-2009, who had not been vaccinated for at least the last 5 years, were investigated by microneutralization (MN) and hemagglutination inhibition (HI) assays. Significantly higher MN titers were observed for the H1N1 Thai isolate in 2006 than in 2008. The results indicate that the antigenically drifted virus effectively escaped herd immunity. Since the low neutralization activity of herd immunity against drifted viruses is an important factor for viruses to spread efficiently, continuous sero-epidemiological study is required for public health.

  13. Influenza A(H1N1pdm09-associated pneumonia deaths in Thailand.

    Directory of Open Access Journals (Sweden)

    Charatdao Bunthi

    Full Text Available BACKGROUND: The first human infections with influenza A(H1N1pdm09 virus were confirmed in April 2009. We describe the clinical and epidemiological characteristics of influenza A(H1N1pdm09-associated pneumonia deaths in Thailand from May 2009-January 2010. METHODS: We identified influenza A(H1N1pdm09-associated pneumonia deaths from a national influenza surveillance system and performed detailed reviews of a subset. RESULTS: Of 198 deaths reported, 49% were male and the median age was 37 years; 146 (73% were 20-60 years. Among 90 deaths with records available for review, 46% had no identified risk factors for severe influenza. Eighty-eight patients (98% received antiviral treatment, but only 16 (18% initiated therapy within 48 hours of symptom onset. CONCLUSIONS: Most influenza A(H1N1pdm09 pneumonia fatalities in Thailand occurred in adults aged 20-60 years. Nearly half lacked high-risk conditions. Antiviral treatment recommendations may be especially important early in a pandemic before vaccine is available. Treatment should be considered as soon as influenza is suspected.

  14. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates.

    Science.gov (United States)

    Belanov, Sergei S; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E

    2015-11-27

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009-2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009-2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates.

  15. Theoretical analysis of the neuraminidase epitope of the Mexican A H1N1 influenza strain, and experimental studies on its interaction with rabbit and human hosts.

    Science.gov (United States)

    Loyola, Paola Kinara Reyes; Campos-Rodríguez, R; Bello, Martiniano; Rojas-Hernández, S; Zimic, Mirko; Quiliano, Miguel; Briz, Verónica; Muñoz-Fernández, M Angeles; Tolentino-López, Luis; Correa-Basurto, Jose

    2013-05-01

    The neuraminidase (NA) epitope from the Mexican AH1N1 influenza virus was identified by using sequences registered at the GenBank during the peak of a pandemic (from April 2009 to October 2010). First, NA protein sequences were submitted for multiple alignment analysis, and their three-dimensional models (3-D) were then built by using homology modeling. The most common sequence (denominated wild-type) and its mutants were submitted to linear and nonlinear epitope predictors, which included the major histocompatibility complex type II (MHC II) and B-cell peptides. The epitope prediction was in accordance with evolutionary behavior and some protein structural properties. The latter included a low NA mutation rate, NA 3-D surface exposure, and the presence of high hindrance side chain residues. After selecting the epitope, docking studies and molecular dynamics (MD) simulations were used to explore interactions between the epitope and MHC II. Afterward, several experimental assays were performed to validate the theoretical study by using antibodies from humans (infected by pandemic H1N1) and rabbits (epitope vaccination). The results show 119 complete sequences that were grouped into 28 protein sequences according to their identity (one wild-type and 27 representative mutants (1-5 mutations)). The predictors yielded several epitopes, with the best fit being the one located in the C-terminal region. Theoretical methods demonstrated that the selected epitope reached the P4, P6, P7, and P9 pockets of MHC II, whereas the experimental evidence indicates that the epitope is recognized by human antibodies and also by rabbit antibodies immunized with the peptide.

  16. GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates.

    Directory of Open Access Journals (Sweden)

    Peter T Loudon

    Full Text Available BACKGROUND: The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a world-wide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99 HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun was analyzed in rhesus macaques. METHODOLOGY/PRINCIPAL FINDINGS: Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particle-mediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1-3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine. CONCLUSIONS/SIGNIFICANCE: These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skin-delivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract.

  17. Illness representation on H1N1 influenza and preventive behaviors in the Hong Kong general population.

    Science.gov (United States)

    Mo, Phoenix K H; Lau, Joseph T F

    2015-12-01

    This study examined illness representations of new influenza Human Swine Influenza A (H1N1) and association with H1N1 preventive behaviors among 300 Chinese adults using a population-based randomized telephone survey. Results showed that relatively few participants thought H1N1 would have serious consequences (12%-15.7%) and few showed negative emotional responses toward H1N1 (9%-24.7%). The majority of the participants thought H1N1 could be controlled by treatment (70.4%-72.7%). Multiple logistic regression analyses showed that treatment control (odds ratio = 1.78) and psychological attribution (odds ratio = .75) were associated with intention to take up influenza vaccination. Emotional representations were associated with lower likelihood of wearing face mask (odds ratio = .77) and hand washing (odds ratio = .67). Results confirm that illness representation variables are associated with H1N1 preventive behaviors.

  18. Stay Informed About Novel H1N1 Influenza

    Centers for Disease Control (CDC) Podcasts

    2009-05-04

    This podcast discusses things you can do everyday to avoid getting sick from infectious diseases, such as the novel H1N1 flu.  Created: 5/4/2009 by National Center for Health Marketing.   Date Released: 5/4/2009.

  19. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    Science.gov (United States)

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  20. Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China.

    Science.gov (United States)

    Sun, Ying-Feng; Wang, Xiu-Hui; Li, Xiu-Li; Zhang, Li; Li, Hai-Hua; Lu, Chao; Yang, Chun-Lei; Feng, Jing; Han, Wei; Ren, Wei-Ke; Tian, Xiang-Xue; Tong, Guang-Zhi; Wen, Feng; Li, Ze-Jun; Gong, Xiao-Qian; Liu, Xiao-Min; Ruan, Bao-Yang; Yan, Ming-Hua; Yu, Hai

    2016-02-01

    Pigs are susceptible to both human and avian influenza viruses and therefore have been proposed to be mixing vessels for the generation of pandemic influenza viruses through reassortment. In this study, for the first time, we report the isolation and genetic analyses of three novel triple-reassortant H1N1 swine influenza viruses from pigs in Tianjin, Northern China. Phylogenetic analysis showed that these novel viruses contained genes from the 2009 pandemic H1N1 (PB2, PB1, PA and NP), Eurasian swine (HA, NA and M) and triple-reassortant swine (NS) lineages. This indicated that the reassortment among the 2009 pandemic H1N1, Eurasian swine and triple-reassortant swine influenza viruses had taken place in pigs in Tianjin and resulted in the generation of new viruses. Furthermore, three human-like H1N1, two classical swine H1N1 and two Eurasian swine H1N1 viruses were also isolated during the swine influenza virus surveillance from 2009 to 2013, which indicated that multiple genetic lineages of swine H1N1 viruses were co-circulating in the swine population in Tianjin, China. The emergence of novel triple-reassortant H1N1 swine influenza viruses may be a potential threat to human health and emphasizes the importance of further continuous surveillance.

  1. Protection against divergent influenza H1N1 virus by a centralized influenza hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Eric A Weaver

    Full Text Available Influenza poses a persistent worldwide threat to the human population. As evidenced by the 2009 H1N1 pandemic, current vaccine technologies are unable to respond rapidly to this constantly diverging pathogen. We tested the utility of adenovirus (Ad vaccines expressing centralized consensus influenza antigens. Ad vaccines were produced within 2 months and protected against influenza in mice within 3 days of vaccination. Ad vaccines were able to protect at doses as low as 10(7 virus particles/kg indicating that approximately 1,000 human doses could be rapidly generated from standard Ad preparations. To generate broadly cross-reactive immune responses, centralized consensus antigens were constructed against H1 influenza and against H1 through H5 influenza. Twenty full-length H1 HA sequences representing the main branches of the H1 HA phylogenetic tree were used to create a synthetic centralized gene, HA1-con. HA1-con minimizes the degree of sequence dissimilarity between the vaccine and existing circulating viruses. The centralized H1 gene, HA1-con, induced stronger immune responses and better protection against mismatched virus challenges as compared to two wildtype H1 genes. HA1-con protected against three genetically diverse lethal influenza challenges. When mice were challenged with 1934 influenza A/PR/8/34, HA1-con protected 100% of mice while vaccine generated from 2009 A/TX/05/09 only protected 40%. Vaccination with 1934 A/PR/8/34 and 2009 A/TX/05/09 protected 60% and 20% against 1947 influenza A/FM/1/47, respectively, whereas 80% of mice vaccinated with HA1-con were protected. Notably, 80% of mice challenged with 2009 swine flu isolate A/California/4/09 were protected by HA1-con vaccination. These data show that HA1-con in Ad has potential as a rapid and universal vaccine for H1N1 influenza viruses.

  2. Factors Influencing School Closure and Dismissal Decisions: Influenza A (H1N1), Michigan 2009

    Science.gov (United States)

    Dooyema, Carrie A.; Copeland, Daphne; Sinclair, Julie R.; Shi, Jianrong; Wilkins, Melinda; Wells, Eden; Collins, Jim

    2014-01-01

    Background: In fall 2009, many US communities experienced school closures during the influenza A H1N1 pandemic (pH1N1) and the state of Michigan reported 567 closures. We conducted an investigation in Michigan to describe pH1N1-related school policies, practices, and identify factors related to school closures. Methods: We distributed an online…

  3. The hemagglutinin structure of an avian H1N1 influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tianwei; Wang, Gengyan; Li, Anzhang; Zhang, Qian; Wu, Caiming; Zhang, Rongfu; Cai, Qixu; Song, Wenjun; Yuen, Kwok-Yung; (U. Hong Kong); (Inter. Inst. Infect. Imm.); (Xiamen)

    2009-09-15

    The interaction between hemagglutinin (HA) and receptors is a kernel in the study of evolution and host adaptation of H1N1 influenza A viruses. The notion that the avian HA is associated with preferential specificity for receptors with Sia{alpha}2,3Gal glycosidic linkage over those with Sia{alpha}2,6Gal linkage is not all consistent with the available data on H1N1 viruses. By x-ray crystallography, the HA structure of an avian H1N1 influenza A virus, as well as its complexes with the receptor analogs, was determined. The structures revealed no preferential binding of avian receptor analogs over that of the human analog, suggesting that the HA/receptor binding might not be as stringent as is commonly believed in determining the host receptor preference for some subtypes of influenza viruses, such as the H1N1 viruses. The structure also showed difference in glycosylation despite the preservation of related sequences, which may partly contribute to the difference between structures of human and avian origin.

  4. The Genomic Contributions of Avian H1N1 Influenza A Viruses to the Evolution of Mammalian Strains.

    Science.gov (United States)

    Koçer, Zeynep A; Carter, Robert; Wu, Gang; Zhang, Jinghui; Webster, Robert G

    2015-01-01

    Among the influenza A viruses (IAVs) in wild aquatic birds, only H1, H2, and H3 subtypes have caused epidemics in humans. H1N1 viruses of avian origin have also caused 3 of 5 pandemics. To understand the reappearance of H1N1 in the context of pandemic emergence, we investigated whether avian H1N1 IAVs have contributed to the evolution of human, swine, and 2009 pandemic H1N1 IAVs. On the basis of phylogenetic analysis, we concluded that the polymerase gene segments (especially PB2 and PA) circulating in North American avian H1N1 IAVs have been reintroduced to swine multiple times, resulting in different lineages that led to the emergence of the 2009 pandemic H1N1 IAVs. Moreover, the similar topologies of hemagglutinin and nucleoprotein and neuraminidase and matrix gene segments suggest that each surface glycoprotein coevolved with an internal gene segment within the H1N1 subtype. The genotype of avian H1N1 IAVs of Charadriiformes origin isolated in 2009 differs from that of avian H1N1 IAVs of Anseriformes origin. When the antigenic sites in the hemagglutinin of all 31 North American avian H1N1 IAVs were considered, 60%-80% of the amino acids at the antigenic sites were identical to those in 1918 and/or 2009 pandemic H1N1 viruses. Thus, although the pathogenicity of avian H1N1 IAVs could not be inferred from the phylogeny due to the small dataset, the evolutionary process within the H1N1 IAV subtype suggests that the circulation of H1N1 IAVs in wild birds poses a continuous threat for future influenza pandemics in humans.

  5. Challenge of N95 Filtering Facepiece Respirators with Viable H1N1 Influenza Aerosols (Postprint)

    Science.gov (United States)

    2013-05-01

    AFRL-RX-TY-TP-2012-0025 CHALLENGE OF N95 FILTERING FACEPIECE RESPIRATORS WITH VIABLE H1N1 INFLUENZA AEROSOLS (POSTPRINT) Joseph D...TITLE AND SUBTITLE CHALLENGE OF N95 FILTERING FACEPIECE RESPIRATORS WITH VIABLE H1N1 INFLUENZA AEROSOLS (POSTPRINT) 5a. CONTRACT NUMBER FA4819-10...study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols. METHODs. Five N95 FFR models were challenged with aerosolized

  6. Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007/08 season.

    NARCIS (Netherlands)

    Meijer, A.; Lackenby, A.; Hungnes, O.; Lina, B.; Werf, S. van der; Schweiger, B.; Opp, M.; Paget, J.; Kassteele, J. van de; Hay, A.; Zambon, M.

    2009-01-01

    In Europe, the 2007/08 winter season was dominated by influenza virus A (H1N1) circulation through week 7, followed by influenza B virus from week 8 onward. Oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y mutation in the neuraminidase emerged independently of drug use. By country,

  7. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection: Evidence of competitive advantage of pandemic H1N1 influenza versus seasonal influenza.

    Science.gov (United States)

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-08-24

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains.

  8. Evaluation of the antigenic relatedness and cross-protective immunity of the neuraminidase between human influenza A (H1N1) virus and highly pathogenic avian influenza A (H5N1) virus.

    Science.gov (United States)

    Lu, Xiuhua; Liu, Feng; Zeng, Hui; Sheu, Tiffany; Achenbach, Jenna E; Veguilla, Vic; Gubareva, Larisa V; Garten, Rebecca; Smith, Catherine; Yang, Hua; Stevens, James; Xu, Xiyan; Katz, Jacqueline M; Tumpey, Terrence M

    2014-04-01

    To determine the genetic and antigenic relatedness as well as the cross-protective immunity of human H1N1 and avian H5N1 influenza virus neuraminidase (NA), we immunized rabbits with either a baculovirus-expressed recombinant NA from A/Beijing/262/95 (BJ/262) H1N1 or A/Hong Kong/483/97 (HK/483) H5N1 virus. Cross-reactive antibody responses were evaluated by multiple serological assays and cross-protection against H5N1 virus challenge was evaluated in mice. In a neuraminidase inhibition (NI) test, the antisera exhibited substantial inhibition of NA activity of the homologous virus, but failed to inhibit the NA activity of heterologous virus. However, these antisera exhibited low levels of cross-reactivity measured by plaque size reduction, replication inhibition, single radial hemolysis, and ELISA assays. Passive immunization with HK/483 NA-specific antisera significantly reduced virus replication and disease, and afforded almost complete protection against lethal homologous virus challenge in mice. However, passive immunization with BJ/262 (H1N1) NA-specific antisera was ineffective at providing cross-protection against lethal H5N1 virus challenge and only slightly reduced weight loss. Substantial amino acid variation among the NA antigenic sites was observed between BJ/262 and HK/483 virus, which was consistent with the lack of cross-reactive NI activity by the antibody and limited cross-protective immunity in mice. These results show a strong correlation between the lack of cross-protective immunity and low structural similarities of NA from a human seasonal H1N1 virus and an avian H5N1 influenza virus.

  9. Development and characterization of a panel of cross-reactive monoclonal antibodies generated using H1N1 influenza virus.

    Science.gov (United States)

    Guo, Chun-yan; Tang, Yi-gui; Qi, Zong-li; Liu, Yang; Zhao, Xiang-rong; Huo, Xue-ping; Li, Yan; Feng, Qing; Zhao, Peng-hua; Wang, Xin; Li, Yuan; Wang, Hai-fang; Hu, Jun; Zhang, Xin-jian

    2015-08-01

    To characterize the antigenic epitopes of the hemagglutinin (HA) protein of H1N1 influenza virus, a panel consisting of 84 clones of murine monoclonal antibodies (mAbs) were generated using the HA proteins from the 2009 pandemic H1N1 vaccine lysate and the seasonal influenza H1N1(A1) vaccines. Thirty-three (39%) of the 84 mAbs were found to be strain-specific, and 6 (7%) of the 84 mAbs were subtype-specific. Twenty (24%) of the 84 mAbs recognized the common HA epitopes shared by 2009 pandemic H1N1, seasonal A1 (H1N1), and A3 (H3N2) influenza viruses. Twenty-five of the 84 clones recognized the common HA epitopes shared by the 2009 pandemic H1N1, seasonal A1 (H1N1) and A3 (H3N2) human influenza viruses, and H5N1 and H9N2 avian influenza viruses. We found that of the 16 (19%) clones of the 84 mAbs panel that were cross-reactive with human respiratory pathogens, 15 were made using the HA of the seasonal A1 (H1N1) virus and 1 was made using the HA of the 2009 pandemic H1N1 influenza virus. Immunohistochemical analysis of the tissue microarray (TMA) showed that 4 of the 84 mAb clones cross-reacted with human tissue (brain and pancreas). Our results indicated that the influenza virus HA antigenic epitopes not only induce type-, subtype-, and strain-specific monoclonal antibodies against influenza A virus but also cross-reactive monoclonal antibodies against human tissues. Further investigations of these cross-reactive (heterophilic) epitopes may significantly improve our understanding of viral antigenic variation, epidemics, pathophysiologic mechanisms, and adverse effects of influenza vaccines.

  10. Influenza A (H1N1) neuraminidase inhibitors from Vitis amurensis

    DEFF Research Database (Denmark)

    Nguyen, Ngoc Anh; Dao, Trong Tuan; Tung, Bui Thanh

    2011-01-01

    Recently, a novel H1N1 influenza A virus (H1N1/09 virus) was identified and considered a strong candidate for a novel influenza pandemic. As part of an ongoing anti-influenza screening programme on natural products, eight oligostilbenes were isolated as active principles from the methanol extract...... of Vitis amurensis. This manuscript reports the isolation, structural elucidation, and anti-viral activities of eight compounds on various neuraminidases from influenza A/PR/8/34 (H1N1), novel swine-origin influenza A (H1N1), and oseltamivir-resistant novel H1N1 (H274Y) expressed in 293T cells...... possibility for the control of influenza infections....

  11. Positive Selection on Hemagglutinin and Neuraminidase Genes of H1N1 Influenza Viruses

    LENUS (Irish Health Repository)

    Li, Wenfu

    2011-04-21

    Abstract Background Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. Results Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. Conclusions Most of these positively and\\/or differentially selected sites were situated in the B-cell and\\/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains.

  12. Influenza A(H1N1)pdm09 in critically ill children admitted to a ...

    African Journals Online (AJOL)

    Hospitalisation was identified as a major risk factor ... in the northern hemisphere countries took ..... Summary of characteristics of the patients with H1N1 influenza A who died (n=5) .... Pandemic H1N1 influenza in Brazil: Analysis of the first 34.

  13. Adoption of Preventive Measures and Attitudes toward the H1N1 Influenza Pandemic in Schools

    Science.gov (United States)

    Pérez, Anna; Rodríguez, Tània; López, Maria José; Continente, Xavier; Nebot, Manel

    2016-01-01

    Background: This study describes the perceived impact of H1N1 influenza and the adoption of the recommended measures to address the pandemic in schools. Methods: A cross-sectional self-reported survey was conducted in 433 schools in Barcelona addressed to the school principal or the H1N1 influenza designated person. A descriptive analysis was…

  14. Pediatric Healthcare Response to Pandemic (H1N1) 2009 Influenza Stakeholder Meeting - Summary of Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    HCTT CHE

    2010-01-01

    The goal of the meeting was to bring together subject matter experts to develop tools and resources for use by the pediatric healthcare community in response to 2009 (H1N1) pandemic influenza activity during the 2009 influenza season.

  15. Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune-driven selection.

    Science.gov (United States)

    Su, Yvonne C F; Bahl, Justin; Joseph, Udayan; Butt, Ka Man; Peck, Heidi A; Koay, Evelyn S C; Oon, Lynette L E; Barr, Ian G; Vijaykrishna, Dhanasekaran; Smith, Gavin J D

    2015-08-06

    Influenza A H1N1/2009 virus that emerged from swine rapidly replaced the previous seasonal H1N1 virus. Although the early emergence and diversification of H1N1/2009 is well characterized, the ongoing evolutionary and global transmission dynamics of the virus remain poorly investigated. To address this we analyse >3,000 H1N1/2009 genomes, including 214 full genomes generated from our surveillance in Singapore, in conjunction with antigenic data. Here we show that natural selection acting on H1N1/2009 directly after introduction into humans was driven by adaptation to the new host. Since then, selection has been driven by immunological escape, with these changes corresponding to restricted antigenic diversity in the virus population. We also show that H1N1/2009 viruses have been subject to regular seasonal bottlenecks and a global reduction in antigenic and genetic diversity in 2014.

  16. Pre- and Postexposure Use of Human Monoclonal Antibody against H5N1 and H1N1 Influenza Virus in Mice: Viable Alternative to Oseltamivir

    NARCIS (Netherlands)

    Koudstaal, W.; Koldijk, M.H.; Brakenhoff, J.P.J.; Cornelissen, A.H.M.; Weverling, G.J.; Friesen, R.H.E.; Goudsmit, J.

    2009-01-01

    New strategies to prevent and treat influenza virus infections are urgently needed. A recently discovered class of monoclonal antibodies (mAbs) neutralizing an unprecedented spectrum of influenza virus subtypes may have the potential for future use in humans. Here, we assess the efficacies of CR6261

  17. Extreme evolutionary conservation of functionally important regions in H1N1 influenza proteome.

    Directory of Open Access Journals (Sweden)

    Samantha Warren

    Full Text Available The H1N1 subtype of influenza A virus has caused two of the four documented pandemics and is responsible for seasonal epidemic outbreaks, presenting a continuous threat to public health. Co-circulating antigenically divergent influenza strains significantly complicates vaccine development and use. Here, by combining evolutionary, structural, functional, and population information about the H1N1 proteome, we seek to answer two questions: (1 do residues on the protein surfaces evolve faster than the protein core residues consistently across all proteins that constitute the influenza proteome? and (2 in spite of the rapid evolution of surface residues in influenza proteins, are there any protein regions on the protein surface that do not evolve? To answer these questions, we first built phylogenetically-aware models of the patterns of surface and interior substitutions. Employing these models, we found a single coherent pattern of faster evolution on the protein surfaces that characterizes all influenza proteins. The pattern is consistent with the events of inter-species reassortment, the worldwide introduction of the flu vaccine in the early 80's, as well as the differences caused by the geographic origins of the virus. Next, we developed an automated computational pipeline to comprehensively detect regions of the protein surface residues that were 100% conserved over multiple years and in multiple host species. We identified conserved regions on the surface of 10 influenza proteins spread across all avian, swine, and human strains; with the exception of a small group of isolated strains that affected the conservation of three proteins. Surprisingly, these regions were also unaffected by genetic variation in the pandemic 2009 H1N1 viral population data obtained from deep sequencing experiments. Finally, the conserved regions were intrinsically related to the intra-viral macromolecular interaction interfaces. Our study may provide further insights

  18. Experience of influenza A H1N1 in a paediatric emergency unit.

    Science.gov (United States)

    Biçer, Suat; Ercan Sariçoban, Hülya; Özen, Ahmet Oğuzhan; Saf, Coşkun; Ergenekon Ulutaş, Pinar; Gürol, Yeşim; Yilmaz, Gülden; Vitrinel, Ayça; Özelgün, Berna

    2015-06-01

    This study was carried out to evaluate symptoms, clinical findings, treatment options and complications of H1N1 influenza infection in patients who applied to our emergency unit during the influenza season in 2009. The clinical and laboratory findings of children with influenza A (H1N1) during the influenza season in 2009 were evaluated retrospectively. Influenza A was diagnosed by polymerase chain reaction and/or rapid antigen test. Clinical and laboratory findings of the patients with H1N1 (group I) and without H1N1 (group II) were compared. Fever and myalgia were noted to be higher in group I (p H1N1 (average of 39°C) and myalgia was present only in patients with H1N1. The lymphocyte count was significantly lower in patients with H1N1 than those without H1N1. While none of the patients required intensive care, three patients requiring hospitalization were discharged after referral and completion of their treatment.

  19. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico.

    Science.gov (United States)

    Mena, Ignacio; Nelson, Martha I; Quezada-Monroy, Francisco; Dutta, Jayeeta; Cortes-Fernández, Refugio; Lara-Puente, J Horacio; Castro-Peralta, Felipa; Cunha, Luis F; Trovão, Nídia S; Lozano-Dubernard, Bernardo; Rambaut, Andrew; van Bakel, Harm; García-Sastre, Adolfo

    2016-06-28

    Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade.

  20. The pandemic (H1N1 2009 influenza virus is resistant to mannose-binding lectin

    Directory of Open Access Journals (Sweden)

    Ushirogawa Hiroshi

    2011-02-01

    Full Text Available Abstract Background Mannose-binding lectin (MBL is an important component of innate immunity because it promotes bacterial clearance and neutralization of human influenza A viruses. Since a majority of humans have no neutralizing antibody against the pandemic (H1N1 2009 influenza (pandemic 2009 virus, innate immunity may be crucial and MBL susceptibility may therefore influence viral pathogenesis. Results We examined MBL susceptibility of influenza A viruses and observed that the pandemic 2009 virus was resistant to MBL, whereas all seasonal influenza A viruses tested were susceptible. The mortality of mice infected with a seasonal H1N1 influenza virus was evidently enhanced on transient blockage of MBL activity by simultaneous inoculation of mannan, whereas mannan inoculation had no effect on mice infected with a pandemic 2009 virus. This indicates that MBL protects mice against infection with the seasonal virus but not against that with the pandemic 2009 virus. Conclusions These results indicate that the pandemic 2009 virus is not susceptible to MBL, an important component of innate immunity.

  1. A(H1N1)Influenza Pneumonia with Acute Disseminated Encephalomyelitis: A Case Report

    Institute of Scientific and Technical Information of China (English)

    JUN YANG; YU-GUANG WANG; YUN-LIANG XU; XIAN-LING REN; YU MAO; XING-WANG LI

    2010-01-01

    @@ INTRODUCTION A 56-year-old Chinese female patient with A (H1N1) influenza pneumonia accompanied by acute disseminated encephalomyelitis (ADEM) of the Central Nervous System (CNS) is described in this article. The patient had typical clinical manifestation,and the diagnosis was reached after MRI and other examinations. From this case, we can conclude that the virus ofA (H1N1) influenza can infect CNS, and we should pay more attention to patients of A (H1N1)influenza pneumonia with neurological complications.

  2. Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza.

    Directory of Open Access Journals (Sweden)

    Gustavo Palacios

    Full Text Available BACKGROUND: Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease. METHODS/PRINCIPAL FINDINGS: We examined nasopharyngeal swab samples (NPS from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20 or hospitalization (n = 19; 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%, including Streptococcus pneumoniae (n = 62; Haemophilus influenzae (n = 104; human respiratory syncytial virus A (n = 11 and B (n = 1; human rhinovirus A (n = 1 and B (n = 4; human coronaviruses 229E (n = 1 and OC43 (n = 2; Klebsiella pneumoniae (n = 2; Acinetobacter baumannii (n = 2; Serratia marcescens (n = 1; and Staphylococcus aureus (n = 35 and methicillin-resistant S. aureus (MRSA, n = 6. The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0.0004. In subjects 6 to 55 years of age, the adjusted odds ratio

  3. Evolutionary pathways of the pandemic influenza A (H1N1 2009 in the UK.

    Directory of Open Access Journals (Sweden)

    Monica Galiano

    Full Text Available The emergence of the influenza (H1N1 2009 virus provided a unique opportunity to study the evolution of a pandemic virus following its introduction into the human population. Virological and clinical surveillance in the UK were comprehensive during the first and second waves of the pandemic in 2009, with extensive laboratory confirmation of infection allowing a detailed sampling of representative circulating viruses. We sequenced the complete coding region of the haemagglutinin (HA segment of 685 H1N1 pandemic viruses selected without bias during two waves of pandemic in the UK (April-December 2009. Phylogenetic analysis showed that although temporal accumulation of amino acid changes was observed in the HA sequences, the overall diversity was less than that typically seen for seasonal influenza A H1N1 or H3N2. There was co-circulation of multiple variants as characterised by signature amino acid changes in the HA. A specific substitution (S203T became predominant both in UK and global isolates. No antigenic drift occurred during 2009 as viruses with greater than four-fold reduction in their haemagglutination inhibition (HI titre ("low reactors" were detected in a low proportion (3% and occurred sporadically. Although some limited antigenic divergence in viruses with four-fold reduction in HI titre might be related to the presence of 203T, additional studies are needed to test this hypothesis.

  4. The investigation of Risk factors of influenza pandemic H1N1

    Directory of Open Access Journals (Sweden)

    koorosh Holakooyi Naeini

    2010-01-01

    Full Text Available Introduction: Influenza pandemic H1N1 is an acute respiratory infectious disease that is combination of two types of influenza virus type A (H1N1. This study aimed to identify risk factors affecting influenza pandemic H1N1. Methods: In this case-control study, the cases were 18 positive cases of pandemic influenza H1N1 and the controls were the patients who were admitted during the same time as the cases to sections of Orthopedics, Urology, Surgery and Women of the same hospital for reasons other than influenza. The data were collected through a form by two experienced nurses and then were fed into SPSS, and were analyzed using independent T-test and chi-square. Results: A significant relationship was observed between pandemic H1N1 influenza infection and a history of domestic travel, contact with confirmed patients, respiratory diseases, and diabetes (P0.05. Conclusion: People with underlying diseases, especially respiratory diseases, diabetes, heart disease and a secondary infection and cardiovascular disease most likely are susceptible to influenza pandemic H1N1.

  5. Fraudulent 2009 H1N1 Influenza Products

    Data.gov (United States)

    U.S. Department of Health & Human Services — This list is intended to alert consumers about Web sites that are or were illegally marketing unapproved, uncleared, or unauthorized products in relation to the 2009...

  6. Fraudulent 2009 H1N1 Influenza Products Widget

    Data.gov (United States)

    U.S. Department of Health & Human Services — This list is intended to alert consumers about Web sites that are or were illegally marketing unapproved, uncleared, or unauthorized products in relation to the 2009...

  7. 2009 H1N1 influenza virus infection and necrotizing pneumonia treated with extracorporeal membrane oxygenation

    Directory of Open Access Journals (Sweden)

    Suntae Ji

    2011-08-01

    Full Text Available A 3-year-old girl with acute respiratory distress syndrome due to a H1N1 2009 influenza virus infection was complicated by necrotizing pneumonia was successfully treated with extracorporeal membrane oxygenation (ECMO. This is the first reported case in which a pediatric patient was rescued with ECMO during the H1N1 influenza epidemic in Korea in 2009.

  8. Radiologic Findings of Influenza A (H1N1) Pneumonia: Report of Two Cases

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jin Kyoung; Ahn, Myeong Im; Jung, Jung Im; Han, Dae Hee; Park, Seog Hee; Park, Chan Kwon; Kim, Young Kyoon [Seoul St. Mary' s Hospital, Seoul (Korea, Republic of)

    2010-08-15

    Novel influenza A (H1N1) infection is a highly infectious disease, which has been rapidly spreading worldwide since it was first documented in March of 2009 in Mexico. We experienced and report two cases of Influenza A (H1N1) pneumonia, accompanied by chest radiographic and CT findings. The chest radiographs revealed diffuse haziness and extensive airspace consolidation, whereas the CT scans demonstrated multifocal areas of ground glass opacity and airspace consolidation with a CT halo sign.

  9. Kompliceret influenza A (H1N1) hos gravid i andet trimester

    DEFF Research Database (Denmark)

    Ersbøll, A.S.; Hedegaard, M.; Hesselvig, A.B.

    2012-01-01

    A 27-year-old woman at 25 weeks of gestation was admitted to hospital due to bilateral pneumonia with increasing hypoxia. She was tested positive for influenza A (H1N1) and successfully treated with oral oseltamivir. Nine days after the admission pathological umbilical flows were recorded...... and an emergency caesarean was performed at 26 weeks + 2 days of gestation. The neonatal period was uncomplicated. Influenza A (H1N1) is especially dangerous in pregnant women and vaccination is important....

  10. Heterogeneous virulence of pandemic 2009 influenza H1N1 virus in mice

    Directory of Open Access Journals (Sweden)

    Farooqui Amber

    2012-06-01

    Full Text Available Abstract Background Understanding the pathogenesis of influenza infection is a key factor leading to the prevention and control of future outbreaks. Pandemic 2009 Influenza H1N1 infection, although frequently mild, led to a severe and fatal form of disease in certain cases that make its virulence nature debatable. Much effort has been made toward explaining the determinants of disease severity; however, no absolute reason has been established. Results This study presents the heterogeneous virulence of clinically similar strains of pandemic 2009 influenza virus in human alveolar adenocarcinoma cells and mice. The viruses were obtained from patients who were admitted in a local hospital in China with a similar course of infection and recovered. The A/Nanchang/8002/2009 and A/Nanchang/8011/2009 viruses showed efficient replication and high lethality in mice while infection with A/Nanchang/8008/2009 was not lethal with impaired viral replication, minimal pathology and modest proinflammatory activity in lungs. Sequence analysis displayed prominent differences between polymerase subunits (PB2 and PA of viral genomes that might correlate with their different phenotypic behavior. Conclusions The study confirms that biological heterogeneity, linked with the extent of viral replication, exists among pandemic H1N1 strains that may serve as a benchmark for future investigations on influenza pathogenesis.

  11. Acute kidney injury due to rhabdomyolysis in H1N1 influenza infection.

    Science.gov (United States)

    Unverdi, Selman; Akay, Hatice; Ceri, Mevlut; Inal, Salih; Altay, Mustafa; Demiroz, Ali Pekcan; Duranay, Murat

    2011-01-01

    Acute kidney injury (AKI) is rarely reported in the clinical course of H1N1 infection and this condition is strongly related with increasing of mortality risk. However, there are no sufficient data about the development of AKI due to H1N1 infections. The recent reports were documented for elevation of creatinine phosphokinase levels in the course of influenza infection, but rhabdomyolysis was rarely reported. Herein, we present a 28-year-old female patient and a 19-year-old male patient with AKI in the course of H1N1 influenza infection due to rhabdomyolysis.

  12. Oseltamivir-resistant pandemic influenza a (H1N1) 2009 viruses in Spain.

    Science.gov (United States)

    Ledesma, Juan; Vicente, Diego; Pozo, Francisco; Cilla, Gustavo; Castro, Sonia Pérez; Fernández, Jonathan Suárez; Ruiz, Mercedes Pérez; Navarro, José María; Galán, Juan Carlos; Fernández, Mirian; Reina, Jordi; Larrauri, Amparo; Cuevas, María Teresa; Casas, Inmaculada; Breña, Pilar Pérez

    2011-07-01

    Pandemic influenza A (H1N1) 2009 virus appeared in Spain on April 25, 2009 for the first time. This new virus was adamantane-resistant but it was sensitive to neuraminidase (NA) inhibitors oseltamivir and zanamivir. To detect oseltamivir-resistant pandemic influenza A (H1N1) 2009 viruses by the Spanish Influenza Surveillance System (SISS) and a possible spread of oseltamivir-resistant viruses in Spain since starting of the pandemic situation. A total of 1229 respiratory samples taken from 413 severe and 766 non-severe patients with confirmed viral detection of pandemic influenza A (H1N1) 2009 viruses from different Spanish regions were analyzed for the specific detection of the H275Y mutation in NA between April 2009 and May 2010. H275Y NA substitution was found in 8 patients infected with pandemic influenza A (H1N1) 2009 viruses collected in November and December 2009 and in January 2010. All oseltamivir-resistant viruses were detected in severe patients (8/413, 1.93%) who previously received treatment with oseltamivir. Six of these patients were immunocompromised. In Spain, the number of oseltamivir-resistant pandemic influenza A (H1N1) 2009 viruses is until now very low. No evidence for any spread of oseltamivir-resistant H1N1 viruses is achieved in our Country. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Research progress of severe influenza A H1N1%重症甲型H1N1流感研究进展

    Institute of Scientific and Technical Information of China (English)

    王涛; 高占成

    2010-01-01

    甲型H1N1流感最新疫情的突出特点是重症和死亡病例数显著增加,有关我国重症甲型H1N1流感患者的临床特征、预后、危险因素等方面的研究尚未见相关报道.本文拟对国外有关这方面的研究进行总结,为我国重症甲型H1N1流感的诊断及治疗提供借鉴.%The latest epidemic of influenza A H1N1 is characterized by the significant increase of severe and dead cases. The researches about clinical features, prognosis, risk factors and other aspects of Chinese patients with severe influenza A H1N1 have not been reported. This paper is to summarize foreign researches and provide a reference for the diagnosis and treatment of severe influenza A H1N1 in China.

  14. Experimental infection with a Thai reassortant swine influenza virus of pandemic H1N1 origin induced disease.

    Science.gov (United States)

    Charoenvisal, Nataya; Keawcharoen, Juthatip; Sreta, Donruethai; Tantawet, Siriporn; Jittimanee, Suphattra; Arunorat, Jirapat; Amonsin, Alongkorn; Thanawongnuwech, Roongroje

    2013-03-16

    Following the emergence of the pandemic H1N1 influenza A virus in 2009 in humans, this novel virus spread into the swine population. Pigs represent a potential host for this virus and can serve as a mixing vessel for genetic mutations of the influenza virus. Reassortant viruses eventually emerged from the 2009 pandemic and were reported in swine populations worldwide including Thailand. As a result of the discovery of this emergent disease, pathogenesis studies of this novel virus were conducted in order that future disease protection and control measures in swine and human populations could be enacted. The pandemic H1N1 2009 virus (pH1N1) and its reassortant virus (rH1N1) isolated from pigs in Thailand were inoculated into 2 separate cohorts of 9, 3-week-old pigs. Cohorts were consisted of one group experimentally infected with pH1N1 and one group with rH1N1. A negative control group consisting of 3 pigs was also included. Clinical signs, viral shedding and pathological lesions were investigated and compared. Later, 3 pigs from viral inoculated groups and 1 pig from the control group were necropsied at 2, 4, and 12 days post inoculation (DPI). The results indicated that pigs infected with both viruses demonstrated typical flu-like clinical signs and histopathological lesions of varying severity. Influenza infected-pigs of both groups had mild to moderate pulmonary signs on 1-4 DPI. Interestingly, pigs in both groups demonstrated viral RNA detection in the nasal swabs until the end of the experiment (12 DPI). The present study demonstrated that both the pH1N1 and rH1N1 influenza viruses, isolated from naturally infected pigs, induced acute respiratory disease in experimentally inoculated nursery pigs. Although animals in the rH1N1-infected cohort demonstrated more severe clinical signs, had higher numbers of pigs shedding the virus, were noted to have increased histopathological severity of lung lesions and increased viral antigen in lung tissue, the findings were

  15. Vaccination with a soluble recombinant hemagglutinin trimer protects pigs against a challenge with pandemic (H1N1) 2009 influenza virus to high titres

    NARCIS (Netherlands)

    Loeffen, W.L.A.; Vries, de R.P.; Stockhofe, N.; Zoelen-Bos, van D.J.; Maas, H.A.; Koch, G.; Moormann, R.J.M.; Rottier, P.J.M.; Haan, de C.A.M.

    2011-01-01

    In 2009 a new influenza A/H1N1 virus strain (“pandemic (H1N1) 2009”, H1N1v) emerged that rapidly spread around the world. The virus is suspected to have originated in swine through reassortment and to have subsequently crossed the species-barrier towards humans. Several cases of reintroduction into

  16. Online Flutracking Survey of Influenza-like Illness during Pandemic (H1N1) 2009, Australia

    Science.gov (United States)

    Carlson, Sandra J.; Dalton, Craig B.; Fejsa, John

    2010-01-01

    We compared the accuracy of online data obtained from the Flutracking surveillance system during pandemic (H1N1) 2009 in Australia with data from other influenza surveillance systems. Flutracking accurately identified peak influenza activity timing and community influenza-like illness activity and was significantly less biased by treatment-seeking behavior and laboratory testing protocols than other systems. PMID:21122231

  17. Immunogenicity of Virus Like Particle Forming Baculoviral DNA Vaccine against Pandemic Influenza H1N1.

    Directory of Open Access Journals (Sweden)

    Yong-Dae Gwon

    Full Text Available An outbreak of influenza H1N1 in 2009, representing the first influenza pandemic of the 21st century, was transmitted to over a million individuals and claimed 18,449 lives. The current status in many countries is to prepare influenza vaccine using cell-based or egg-based killed vaccine. However, traditional influenza vaccine platforms have several limitations. To overcome these limitations, many researchers have tried various approaches to develop alternative production platforms. One of the alternative approach, we reported the efficacy of influenza HA vaccination using a baculoviral DNA vaccine (AcHERV-HA. However, the immune response elicited by the AcHERV-HA vaccine, which only targets the HA antigen, was lower than that of the commercial killed vaccine. To overcome the limitations of this previous vaccine, we constructed a human endogenous retrovirus (HERV envelope-coated, baculovirus-based, virus-like-particle (VLP-forming DNA vaccine (termed AcHERV-VLP against pandemic influenza A/California/04/2009 (pH1N1. BALB/c mice immunized with AcHERV-VLP (1×107 FFU AcHERV-VLP, i.m. and compared with mice immunized with the killed vaccine or mice immunized with AcHERV-HA. As a result, AcHERV-VLP immunization produced a greater humoral immune response and exhibited neutralizing activity with an intrasubgroup H1 strain (PR8, elicited neutralizing antibody production, a high level of interferon-γ secretion in splenocytes, and diminished virus shedding in the lung after challenge with a lethal dose of influenza virus. In conclusion, VLP-forming baculovirus DNA vaccine could be a potential vaccine candidate capable of efficiently delivering DNA to the vaccinee and VLP forming DNA eliciting stronger immunogenicity than egg-based killed vaccines.

  18. Nosocomial swine influenza (H1N1) pneumonia: lessons learned from an illustrative case.

    Science.gov (United States)

    Cunha, B A; Thekkel, V; Krilov, L

    2010-03-01

    In the spring of 2009, our institution found itself at the epicentre of the "herald wave" of the swine influenza (H1N1) pandemic in New York. We were inundated with hundreds of patients exhibiting influenza-like illnesses (ILIs), presenting for rapid influenza A testing. During this pandemic, an infant with newly diagnosed acute lymphatic leukaemia (ALL) was admitted for induction chemotherapy. After being in hospital for a week, she developed high fever and shortness of breath, although her chest X-ray was clear. She was admitted to the paediatric intensive care unit (PICU) for mechanical ventilation. As we were in the midst of the pandemic, diagnosis of H1N1 pneumonia was considered and reverse transcription-polymerase chain reaction for H1N1 was positive. Contact investigation revealed that none of her family members/visitors had been in recent/close contact with anyone with ILI/H1N1. The investigation also revealed that paediatric healthcare staff, in contact with H1N1 patients, had rotated into PICU to care for the patient. Although no specific individual could be identified, it seems likely that H1N1 was transmitted to the patient by a healthcare worker who worked both in the paediatric ward and the PICU. This is the first known case of nosocomial paediatric transmission of H1N1 pneumonia.

  19. The association between serum biomarkers and disease outcome in influenza A(H1N1)pdm09 virus infection

    DEFF Research Database (Denmark)

    Davey, Richard T; Lynfield, Ruth; Dwyer, Dominic E

    2013-01-01

    Prospective studies establishing the temporal relationship between the degree of inflammation and human influenza disease progression are scarce. To assess predictors of disease progression among patients with influenza A(H1N1)pdm09 infection, 25 inflammatory biomarkers measured at enrollment were...

  20. Potency of a vaccine prepared from A/swine/Hokkaido/2/1981 (H1N1 against A/Narita/1/2009 (H1N1 pandemic influenza virus strain

    Directory of Open Access Journals (Sweden)

    Okamatsu Masatoshi

    2013-02-01

    Full Text Available Abstract Background The pandemic 2009 (H1N1 influenza virus has spread throughout the world and is now causing seasonal influenza. To prepare for the emergence of pandemic influenza, we have established a library of virus strains isolated from birds, pigs, and humans in global surveillance studies. Methods Inactivated whole virus particle (WV and ether-split (ES vaccines were prepared from an influenza virus strain, A/swine/Hokkaido/2/1981 (H1N1, from the library and from A/Narita/1/2009 (H1N1 pandemic strain. Each of the vaccines was injected subcutaneously into mice and their potencies were evaluated by challenge with A/Narita/1/2009 (H1N1 virus strain in mice. Results A/swine/Hokkaido/2/81 (H1N1, which was isolated from the lung of a diseased piglet, was selected on the basis of their antigenicity and growth capacity in embryonated chicken eggs. Two injections of the WV vaccine induced an immune response in mice, decreasing the impact of disease caused by the challenge with A/Narita/1/2009 (H1N1, as did the vaccine prepared from the homologous strain. Conclusion The WV vaccine prepared from an influenza virus in the library is useful as an emergency vaccine in the early phase of pandemic influenza.

  1. Novel influenza A(H1N1) 2009 in vitro reassortant viruses with oseltamivir resistance.

    Science.gov (United States)

    Ottmann, Michèle; Duchamp, Maude Bouscambert; Casalegno, Jean-Sébastien; Frobert, Emilie; Moulès, Vincent; Ferraris, Olivier; Valette, Martine; Escuret, Vanessa; Lina, Bruno

    2010-01-01

    With the recent emergence of the novel A(H1N1) virus in 2009, the efficacy of available drugs, such as neuraminidase (NA) inhibitors, is of great concern for good patient care. Influenza viruses are known to be able to acquire resistance. In 2007, A(H1N1) viruses related to A/Brisbane/59/2007 (H1N1) (A[H1N1] Brisbane-like virus), which are naturally resistant to oseltamivir, emerged. Resistance to oseltamivir can be acquired either by spontaneous mutation in the NA (H275Y in N1), or by reassortment with a mutated NA. It is therefore crucial to determine the risk of pandemic A(H1N1) 2009 virus acquiring resistance against oseltamivir by reassortment. We estimated the capacity of reassortment between the A(H1N1) 2009 virus and an oseltamivir-resistant A(H1N1) Brisbane-like virus by in vitro coinfections of influenza-permissive cells. The screening and the analysis of reassortant viruses was performed by specific reverse transcriptase PCRs and by sequencing. Out of 50 analysed reassortant viruses, two harboured the haemagglutinin (HA) segment from the pandemic A(H1N1) 2009 virus and the mutated NA originated from the A(H1N1) Brisbane-like virus. The replicating capacities of these viruses were measured, showing no difference as compared to the two parental strains, suggesting that acquisition of the mutated NA segment did not impair viral fitness in vitro. Our results suggest that the novel A(H1N1) 2009 virus can acquire by in vitro genetic reassortment the H275Y mutated NA segment conferring resistance to oseltamivir.

  2. North American triple reassortant and Eurasian H1N1 swine influenza viruses do not readily reassort to generate a 2009 pandemic H1N1-like virus.

    Science.gov (United States)

    Ma, Wenjun; Liu, Qinfang; Qiao, Chuanling; del Real, Gustavo; García-Sastre, Adolfo; Webby, Richard J; Richt, Jürgen A

    2014-03-11

    The 2009 pandemic H1N1 virus (pH1N1) was derived through reassortment of North American triple reassortant and Eurasian avian-like swine influenza viruses (SIVs). To date, when, how and where the pH1N1 arose is not understood. To investigate viral reassortment, we coinfected cell cultures and a group of pigs with or without preexisting immunity with a Eurasian H1N1 virus, A/Swine/Spain/53207/2004 (SP04), and a North American triple reassortant H1N1 virus, A/Swine/Kansas/77778/2007 (KS07). The infected pigs were cohoused with one or two groups of contact animals to investigate viral transmission. In coinfected MDCK or PK15 continuous cell lines with KS07 and SP04 viruses, more than 20 different reassortant viruses were found. In pigs without or with preexisting immunity (immunized with commercial inactivated swine influenza vaccines) and coinfected with both viruses, six or seven reassortant viruses, as well as the parental viruses, were identified in bronchoalveolar lavage fluid samples from the lungs. Interestingly, only one or two viruses transmitted to and were detected in contact animals. No reassortant containing a gene constellation similar to that of pH1N1 virus was found in either coinfected cells or pigs, indicating that the reassortment event that resulted in the generation of this virus is a rare event that likely involved specific viral strains and/or a favorable, not-yet-understood environment. IMPORTANCE The 2009 pandemic-like H1N1 virus could not be reproduced either in cell cultures or in pigs coinfected with North American triple reassortant H1N1 and Eurasian H1N1 swine influenza viruses. This finding suggests that the generation of the 2009 pandemic H1N1 virus by reassortment was a rare event that likely involved specific viral strains and unknown factors. Different reassortant viruses were detected in coinfected pigs with and without preexisting immunity, indicating that host immunity plays a relevant role in driving viral reassortment of

  3. Pandemic influenza (H1N1 2009 is associated with severe disease in India.

    Directory of Open Access Journals (Sweden)

    Akhilesh C Mishra

    Full Text Available BACKGROUND: Pandemic influenza A (H1N1 2009 has posed a serious public health challenge world-wide. In absence of reliable information on severity of the disease, the nations are unable to decide on the appropriate response against this disease. METHODS: Based on the results of laboratory investigations, attendance in outpatient department, hospital admissions and mortality from the cases of influenza like illness from 1 August to 31 October 2009 in Pune urban agglomeration, risk of hospitalization and case fatality ratio were assessed to determine the severity of pandemic H1N1 and seasonal influenza-A infections. RESULTS: Prevalence of pandemic H1N1 as well as seasonal-A cases were high in Pune urban agglomeration during the study period. The cases positive for pandemic H1N1 virus had significantly higher risk of hospitalization than those positive for seasonal influenza-A viruses (OR: 1.7. Of 93 influenza related deaths, 57 and 8 deaths from Pune (urban and 27 and 1 death from Pune (rural were from pandemic H1N1 positive and seasonal-A positive cases respectively. The case fatality ratio 0.86% for pandemic H1N1 was significantly higher than that of seasonal-A (0.13% and it was in category 3 of the pandemic severity index of CDC, USA. The data on the cumulative fatality of rural and urban Pune revealed that with time the epidemic is spreading to rural areas. CONCLUSIONS: The severity of the H1N1 influenza pandemic is less than that reported for 'Spanish flu 1918' but higher than other pandemics of the 20(th century. Thus, pandemic influenza should be considered as serious health threat and unprecedented global response seems justified.

  4. Changes in and shortcomings of control strategies, drug stockpiles, and vaccine development during outbreaks of avian influenza A H5N1, H1N1, and H7N9 among humans.

    Science.gov (United States)

    Mei, Lin; Song, Peipei; Tang, Qi; Shan, Ke; Tobe, Ruoyan Gai; Selotlegeng, Lesego; Ali, Asghar Hammad; Cheng, Yangyang; Xu, Lingzhong

    2013-04-01

    The purpose of this review is to provide a reference for the future prevention and control of emerging infectious diseases by summarizing the control strategies, the status of drugs and vaccines, and shortcomings during three major outbreaks of avian influenza among humans (H5N1 in 2003, H1N1 in 2009, and H7N9 in 2013). Data on and documents regarding the three influenza outbreaks have been reviewed. Results indicated that the response to pandemic influenza outbreaks has improved markedly in terms of control strategies, stockpiles of antivirals, and vaccine development. These improvements also suggest advances in disease surveillance, transparency in reporting, and regional collaboration and cooperation. These trends also foreshadow better prospects for prevention and control of emerging infectious diseases. However, there are shortcomings since strategies failed to focus on high-risk groups, quantitative and measurable results (both direct and indirect) were unclear, and quantitative assessment is still lacking.

  5. Transplantation of solid organs procured from influenza A H1N1 infected donors.

    Science.gov (United States)

    Cockbain, Andrew J; Jacob, Matthew; Ecuyer, Clare; Hostert, Lutz; Ahmad, Niaz

    2011-12-01

    Following the influenza A H1N1 (swine flu) pandemic, there remains little evidence informing the safety of transplanting organs from donors suspected or diagnosed with H1N1. Limited guidelines from the major transplant societies leave the use of such organs at the discretion of individual transplant centres, and practice varies considerably both nationally and internationally. We present the largest published series of outcome following transplantation of organs from H1N1 positive donors and demonstrate that these organs can be transplanted safely and with good short-term outcome. We discuss our local policy for treatment of recipients with Oseltamivir.

  6. Pandemic H1N1 2009 virus in Norwegian pigs naïve to influenza A viruses

    DEFF Research Database (Denmark)

    Germundsson, A.; Gjerset, B.; Hjulsager, Charlotte Kristiane

    In March-April 2009, a novel pandemic influenza A (H1N1) virus (pH1N1-09v) emerged in the human population. The first case of pH1N1v infection in pigs was reported from Canada in May 2009. In Norway, pH1N1v infection was recorded in a swine herd on the 10th of October of 2009. Here, we report...... showed clinical signs or iii) with a history of close contact with or close proximity to infected herds. In addition, blood samples were collected from nucleus and multiplier breeding herds. Detection of pH1N1-09v was initially performed using a real-time RT-PCR targeted to detect influenza A virus....... Positive samples were tested by a pH1N1-09v specific real-time RT-PCR. Blood samples were tested for presence of antibodies against influenza A virus by ELISA (IDVET) and positive samples in the ELISA were tested by haemagglutinin inhibition test using A/California/07/09 as antigen. From the onset...

  7. Newly emerging mutations in the matrix genes of the human influenza A(H1N1)pdm09 and A(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR.

    Science.gov (United States)

    Yang, Ji-Rong; Kuo, Chuan-Yi; Huang, Hsiang-Yi; Wu, Fu-Ting; Huang, Yi-Lung; Cheng, Chieh-Yu; Su, Yu-Ting; Chang, Feng-Yee; Wu, Ho-Sheng; Liu, Ming-Tsan

    2014-01-01

    New variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus. These accumulated mismatch mutations, together with the previously identified C154T mutation of the A(H1N1)pdm09 virus and the C153T and G189T mutations of the A(H3N2) virus, result in a reduced detection sensitivity for the real-time RT-PCR assay. To overcome the loss of assay sensitivity due to mismatch mutations, we established a real-time RT-PCR assay using degenerate nucleotide bases in both the primers and probe and successfully increased the sensitivity of the assay to detect circulating variants of the human influenza A viruses. Our observations highlight the importance of the simultaneous use of different gene-targeting real-time RT-PCR assays for the clinical diagnosis of influenza.

  8. Nephrotic Syndrome Following H1N1 Influenza in a 3-Year-Old Boy

    Directory of Open Access Journals (Sweden)

    Pio Liberatore

    2012-06-01

    Full Text Available Background: The pandemic influenza A/H1N1, spread through the world in 2009, producing a serious epidemic in Italy. Complications are generally limited to patients at the extremes of age (65years and those with comorbid medical illness. The most frequent complications of influenza involve the respiratory system.Case Presentation: A 3-year-old boy with a recent history of upper respiratory tract infection developed a nephrotic syndrome. Together with prednisone, furosemide and albumin bolus, a therapy with oseltamivir was started since the nasopharyngeal swab resulted positive for influenza A/H1N1. Clinical conditions andlaboratory findings progressively improved during hospitalization, becoming normal during a 2 month follow up.Conclusion: The possibility of a renal involvement after influenza A/H1N1 infection should be considered.

  9. Effectiveness of A(H1N1)pdm09 influenza vaccine in adults recommended for annual influenza vaccination

    NARCIS (Netherlands)

    Gefenaite, Giedre; Tacken, Margot; Bos, Jens; Stirbu-Wagner, Irina; Korevaar, Joke C.; Stolk, Ronald P.; Wolters, Bert; Bijl, Marc; Postma, Maarten J.; Wilschut, Jan; Nichol, Kristin L.; Hak, Eelko

    2013-01-01

    INTRODUCTION: Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we conducted a study in the adults belonging to the risk groups to assess the A(H1N1)pdm09 MF59-adjuvanted influenza vaccine effectiveness. METHODS: VE against influenza and/or pneumonia was ass

  10. Effectiveness of A(H1N1)pdm09 influenza vaccine in adults recommended for annual influenza vaccination.

    NARCIS (Netherlands)

    Gefenaite, G.; Tacken, M.; Bos, J.; Stirbu-Wagner, I.; Korevaar, J.C.; Stolk, R.P.; Wolters, B.; Bijl, M.; Postma, M.J.; Wilschut, J.; Nichol, K.L.; Hak, E.

    2013-01-01

    Introduction: Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we conducted a study in the adults belonging to the risk groups to assess the A(H1N1)pdm09 MF59-adjuvanted influenza vaccine effectiveness. Methods: VE against influenza and/or pneumonia was ass

  11. Effectiveness of A(H1N1)pdm09 influenza vaccine in adults recommended for annual influenza vaccination.

    NARCIS (Netherlands)

    Gefenaite, G.; Tacken, M.; Bos, J.; Stirbu-Wagner, I.; Korevaar, J.C.; Stolk, R.P.; Wolters, B.; Bijl, M.; Postma, M.J.; Wilschut, J.; Nichol, K.L.; Hak, E.

    2013-01-01

    Introduction: Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we conducted a study in the adults belonging to the risk groups to assess the A(H1N1)pdm09 MF59-adjuvanted influenza vaccine effectiveness. Methods: VE against influenza and/or pneumonia was

  12. Breve revisión de la influenza A H1N1

    OpenAIRE

    Solari,Lely

    2009-01-01

    La influenza H1N1 (conocida como "gripe porcina") es un nuevo virus de influenza que se detectó por primera vez en seres humanos en los Estados Unidos en abril del 2009; Este virus es muy diferente y se está propagando alrededor del mundo. Puede causar más enfermedades o enfermedades más graves de lo normal; Las personas que tienen mayor riesgo de infección por la influenza "2009 H1N1" incluyen niños, mujeres embarazadas y personas con problemas crónicos de salud como el asma, la diabetes y e...

  13. Clinical profile of the first 1000 fatalities for influenza A (H1N1 in Mexico

    Directory of Open Access Journals (Sweden)

    Germ and aacute;n Fajardo-Dolci

    2015-11-01

    Full Text Available Background: Influenza is an acute respiratory disease responsible for several episodes of high mortality throughout human history. In 2009, Mexico experienced an atypical influenza outbreak caused by a mutant strain of the influenza A (H1N1 subtype, which generated significant mortality. The aim of this paper was to analyze the clinical and sociodemographic conditions of the first 1000 fatalities recorded during this outbreak. Methods: We conducted a study based on an analysis of the clinical files of patients positive for influenza A (H1N1 using Real-Time-Polymerase Chain Reaction (RT-PCR to conduct an analysis of deaths compared to deaths in the general population. Results: The majority of deaths occurred in patients aged 35-84 years (65.8%. Average time between symptom onset and death was 13.8 days, with an average of 7.8 days from time of hospitalization until death. Ca. 25% of deaths occurred in residents from Mexico City and from the nearby State of Mexico. In the majority of cases, we found that patients who died had a low educational and socioeconomic status along with co-morbidities such as metabolic syndrome and its individual components, as well as respiratory illnesses. In 80% of cases, patients received mechanical ventilation, and a similar percentage received antiviral therapy (oseltamivir, zanamivir. Conclusions: The primary-care level was not utilized by patients who died from influenza. The higher prevalence of chronic degenerative diseases among deaths compared with the general population indicates that these groups of patients should be considered and prioritized in the event of future outbreaks. [Int J Res Med Sci 2015; 3(11.000: 3008-3014

  14. H1N1 Influenza Flu:Report of 130 Cases%甲型H1N1流行性感冒临床分析

    Institute of Scientific and Technical Information of China (English)

    吴传芬; 何爱民

    2011-01-01

    Objective To explore the diagnosis and treatment of H1N1 pandemic influenza. Methods Clinical characteristics and treatment of 130 cases of H1N1 influenza were retrospectively analyzed. Results Patients with mild H1N1 flu responsed to the supportive treatment by traditional Chinese medicine, Lianhuaqingwen capsule while severe patients with complicated infections responsed to combined anti - infection traditional Chinese medicine therapy , supportive treatment, and oseltamivir, an anti -influenza virus neuraminidase inhibitor. Comparison of WBC count, lymphocyte fraction, neutrophil fraction, and platelet count between hefore and after treatment showed significant differences ( P < 0.05 ) . Conclusion H1N1 pandemic influenza spread widely and rapidly, which were easily be infected. Combination of anti - infection traditional Chinese medicine therapy , supportive treatment, and oseltamivir is effective in treating H1N1 flu with complicated infections.%目的 探讨甲型H1N1流行性感冒(流感)的诊断、治疗要点.方法 回顾性分析130例甲型H1N1流感患者的临床特点、治疗方法.结果 病情轻的甲型H1N1流感患者给予中成药连花清瘟胶囊对症、支持治疗有效;病情重合并感染者给予抗感染中药对症、支持治疗基础上,加用神经氨酸酶抑制剂奥司他韦抗病毒治疗有效.130例患者治疗前后白细胞计数、淋巴细胞分数、中性粒细胞分数、血小板计数比较,差异均有统计学意义(P<0.05).结论 甲型H1N1流感传播广而迅猛,人群普遍易感.抗病毒(神经氨酸酶抑制剂奥司他韦)、中成药(连花清瘟胶囊)及对症支持治疗合并感染者有效.

  15. Evaluation of in vitro cross-reactivity to avian H5N1 and pandemic H1N1 2009 influenza following prime boost regimens of seasonal influenza vaccination in healthy human subjects: a randomised trial.

    Directory of Open Access Journals (Sweden)

    Delia Bethell

    Full Text Available INTRODUCTION: Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV would enhance production of heterosubtypic immunity and provide evidence of cross-protection against other influenza viruses. METHODS: In an open-label study, 26 adult volunteers were randomized to receive one of four vaccine regimens containing two doses of 2009-10 seasonal influenza vaccines administered 8 (±1 weeks apart: 2 doses of LAIV; 2 doses of IIV; LAIV then IIV; IIV then LAIV. Humoral immunity assays for avian H5N1, 2009 pandemic H1N1 (pH1N1, and seasonal vaccine strains were performed on blood collected pre-vaccine and 2 and 4 weeks later. The percentage of cytokine-producing T-cells was compared with baseline 14 days after each dose. RESULTS: Subjects receiving IIV had prompt serological responses to vaccine strains. Two subjects receiving heterologous prime boost regimens had enhanced haemagglutination inhibition (HI and neutralization (NT titres against pH1N1, and one subject against avian H5N1; all three had pre-existing cross-reactive antibodies detected at baseline. Significantly elevated titres to H5N1 and pH1N1 by neuraminidase inhibition (NI assay were observed following LAIV-IIV administration. Both vaccines elicited cross-reactive CD4+ T-cell responses to nucleoprotein of avian H5N1 and pH1N1. All regimens were safe and well tolerated. CONCLUSION: Neither homologous nor heterologous prime boost immunization enhanced serum HI and NT titres to 2009 pH1N1 or avian H5N1 compared to single dose vaccine. However heterologous prime-boost vaccination did lead to in vitro evidence of cross-reactivity by NI; the significance of this finding is unclear. These data support the strategy of

  16. Intense Seasonal A/H1N1 Influenza in Mexico, Winter 2013–2014

    Science.gov (United States)

    Dávila-Torres, Javier; Chowell, Gerardo; Borja-Aburto, Víctor H.; Viboud, Cécile; Grajalez-Muñiz, Concepción; Miller, Mark. A.

    2014-01-01

    Background and Aims A recrudescent wave of pandemic influenza A/H1N1 affected Mexico during the winter of 2013–2014 following a mild 2012–2013 A/H3N2 influenza season. Methods We compared the demographic and geographic characteristics of hospitalizations and inpatient deaths for severe acute respiratory infection (SARI) and laboratory-confirmed influenza during the 2013–2014 influenza season compared to previous influenza seasons, based on a large prospective surveillance system maintained by the Mexican Social Security health care system. Results A total of 14,236 SARI hospitalizations and 1,163 inpatient deaths (8.2%) were reported between October 1, 2013 and March 31, 2014. Rates of laboratory-confirmed A/H1N1 hospitalizations and deaths were significantly higher among individuals aged 30–59 years and lower among younger age groups for the 2013–2014 A/H1N1 season compared to the previous A/H1N1 season in 2011–2012 (χ2 test, p <0.001). The reproduction number for the winter 2013–2014 influenza season in central Mexico was estimated at 1.3–1.4, in line with that reported for the 2011–2012 A/H1N1 season but lower than during the initial waves of pandemic A/H1N1 activity in 2009. Conclusions We documented a substantial increase in the number of A/H1N1-related hospitalizations and deaths during the period from October 2013–March 2014 in Mexico and a proportionate shift of severe disease to middle-aged adults, relative to the preceding A/H1N1 2011–2012 season. In the absence of clear antigenic drift in globally circulating A/H1N1 viruses in the post-2009 pandemic period, the gradual change in the age distribution of A/H1N1 infections observed in Mexico suggests a slow build-up of immunity among younger populations, reminiscent of the age profile of past pandemics. PMID:25446616

  17. Seroincidence of Influenza Among HIV-infected and HIV-uninfected Men During the 2009 H1N1 Influenza Pandemic, Bangkok, Thailand.

    Science.gov (United States)

    Garg, Shikha; Olsen, Sonja J; Fernandez, Stefan; Muangchana, Charung; Rungrojcharoenkit, Kamonthip; Prapasiri, Prabda; Katz, Jacqueline M; Curlin, Marcel E; Gibbons, Robert V; Holtz, Timothy H; Chitwarakorn, Anupong; Dawood, Fatimah S

    2014-12-01

    Among 368 Thai men who have sex with men with paired serum samples collected before and during the 2009 H1N1 influenza pandemic, we determined influenza A (H1N1)pdm09 seroconversion rates (≥4-fold rise in antibody titers by hemagglutination inhibition or microneutralization assays). Overall, 66 of 232 (28%) participants seroconverted after the first year of A(H1N1)pdm09 activity, and 83 of 234 (35%) participants seroconverted after the second year. Influenza A(H1N1)pdm09 seroconversion did not differ between human immunodeficiency virus (HIV)-infected (55 of 2157 [35%]) and HIV-uninfected (71 of 2211 [34%]) participants (P = .78). Influenza A(H1N1)pdm09 seroconversion occurred in approximately one third of our Thai study population and was similar among HIV-infected and HIV-uninfected participants.

  18. Infection with human H1N1 influenza virus affects the expression of sialic acids of metaplastic mucous cells in the ferret airways

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Martel, Cyril Jean-Marie; Aasted, Bent

    2009-01-01

    Glycans terminating in sialic acids serve as receptors for influenza viruses. In this study ferrets were infected with influenza virus A/New Caledonia/20/99, and the in situ localization of sialic acids linked a2-3 and a2-6 in the airways was investigated in infected and non-infected animals by use...

  19. Outcomes of influenza A(H1N1)pdm09 virus infection

    DEFF Research Database (Denmark)

    Lynfield, Ruth; Davey, Richard; Dwyer, Dominic E

    2014-01-01

    BACKGROUND: Data from prospectively planned cohort studies on risk of major clinical outcomes and prognostic factors for patients with influenza A(H1N1)pdm09 virus are limited. In 2009, in order to assess outcomes and evaluate risk factors for progression of illness, two cohort studies were...... and/or death for outpatients, and hospitalization for >28 days, transfer to intensive care unit (ICU) if enrolled from general ward, and/or death for inpatients. Infection was confirmed by RT-PCR. 590 FLU 002 and 392 FLU 003 patients with influenza A (H1N1)pdm09 were enrolled from 81 sites in 17...... during the pandemic period had a poorer prognosis than in subsequent seasons. CONCLUSIONS: Patients with influenza A(H1N1)pdm09, particularly when requiring hospital admission, are at high risk for disease progression, especially if they are older, immunodeficient, or admitted late in infection...

  20. Kompliceret influenza A (H1N1) hos gravid i andet trimester

    DEFF Research Database (Denmark)

    Ersbøll, A.S.; Hedegaard, M.; Hesselvig, A.B.

    2012-01-01

    A 27-year-old woman at 25 weeks of gestation was admitted to hospital due to bilateral pneumonia with increasing hypoxia. She was tested positive for influenza A (H1N1) and successfully treated with oral oseltamivir. Nine days after the admission pathological umbilical flows were recorded and an ...... and an emergency caesarean was performed at 26 weeks + 2 days of gestation. The neonatal period was uncomplicated. Influenza A (H1N1) is especially dangerous in pregnant women and vaccination is important.......A 27-year-old woman at 25 weeks of gestation was admitted to hospital due to bilateral pneumonia with increasing hypoxia. She was tested positive for influenza A (H1N1) and successfully treated with oral oseltamivir. Nine days after the admission pathological umbilical flows were recorded...

  1. Two cases of exudative retina detachment and uveitis following H1N1 influenza vaccination

    Institute of Scientific and Technical Information of China (English)

    TAO Yong; CHANG Li-bing; ZHAO Min; LI Xiao-xin

    2011-01-01

    Uveitis was a rare adverse event of vaccination.We met two cases of acute uveitis with exudative retinal detachment following vaccination of H1N1 influenza.Case 1 was a 10-year-old boy who was admitted for bilateral blurred vision at 10 days after vaccination of H1N1 influenza.Vitreous opacity was obvious in both eyes.Broad exudative retinal detachment was observed in the right eye.Case 2 was a 47-year-old female who suffered from an acute high fever at 2 days after the vaccination of H1 N1 influenza.Later,she encountered bilateral headache and decreasing vision.In both eyes,mutton fat keratic precipitates,positive Tyndall phenomenon,congestion of optic disc and exudative retinal detachment were observed.

  2. Identification of Suitable Natural Inhibitor against Influenza A (H1N1) Neuraminidase Protein by Molecular Docking

    Science.gov (United States)

    Sahoo, Maheswata; Jena, Lingaraja; Rath, Surya Narayan

    2016-01-01

    The influenza A (H1N1) virus, also known as swine flu is a leading cause of morbidity and mortality since 2009. There is a need to explore novel anti-viral drugs for overcoming the epidemics. Traditionally, different plant extracts of garlic, ginger, kalmegh, ajwain, green tea, turmeric, menthe, tulsi, etc. have been used as hopeful source of prevention and treatment of human influenza. The H1N1 virus contains an important glycoprotein, known as neuraminidase (NA) that is mainly responsible for initiation of viral infection and is essential for the life cycle of H1N1. It is responsible for sialic acid cleavage from glycans of the infected cell. We employed amino acid sequence of H1N1 NA to predict the tertiary structure using Phyre2 server and validated using ProCheck, ProSA, ProQ, and ERRAT server. Further, the modelled structure was docked with thirteen natural compounds of plant origin using AutoDock4.2. Most of the natural compounds showed effective inhibitory activity against H1N1 NA in binding condition. This study also highlights interaction of these natural inhibitors with amino residues of NA protein. Furthermore, among 13 natural compounds, theaflavin, found in green tea, was observed to inhibit H1N1 NA proteins strongly supported by lowest docking energy. Hence, it may be of interest to consider theaflavin for further in vitro and in vivo evaluation. PMID:27729839

  3. Streptococcus pneumoniae Coinfection Is Correlated with the Severity of H1N1 Pandemic Influenza

    Science.gov (United States)

    Cisterna, Daniel; Savji, Nazir; Bussetti, Ana Valeria; Kapoor, Vishal; Hui, Jeffrey; Tokarz, Rafal; Briese, Thomas; Baumeister, Elsa; Lipkin, W. Ian

    2009-01-01

    Background Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease. Methods/Principal Findings We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0

  4. Detection of Seasonal Influenza H1N1 and H3N2 Viruses using RT-PCR Assay during 2009 Pandemic Influenza in Golestan Province

    Directory of Open Access Journals (Sweden)

    Zhand, S. (MSc

    2014-05-01

    Full Text Available Background and Objective: The emergence of a novel H1N1influenza A virus of animal origin with transmissibility from human to human poses pandemic concern. Current subtypes of Seasonal influenza A viruses spread in human are influenza A H1N1 influenza A H3N2 and influenza type B viruses. The aim of this study was to determine current strains of the H3N2 and new H1N1 subtypes of influenza A virus from patients suspected influenza infection in 2009 flu pandemic in Golestan province, Iran. Material and Methods: In this descriptive study, respiratory samples (n = 153 from patients with acute respiratory symptoms were collected in 2009 flu pandemic applied during 2009 pandemic influenza in Golestan province. After reverse transcription of extracted viral RNA, PCR was developed for both H1N1and H3N2subtypes using CDC specific primers. Results: The mean age of patients was 16.59. Of them 45.1% were male. Thirteen (8.49% were infected with seasonal influenza H1N1 and 25(16.33% with seasonal H3N2influenza. Conclusion: The rate of infection with seasonal H1N1and H3N2is similar to other studies reported from Iran, but lower than the rate reported from other parts of the world

  5. Antibodies against avian-like A (H1N1) swine influenza virus among swine farm residents in eastern China.

    Science.gov (United States)

    Yin, Xiuchen; Yin, Xin; Rao, Baizhong; Xie, Chunfang; Zhang, Pengchao; Qi, Xian; Wei, Ping; Liu, Huili

    2014-04-01

    In 2007, the avian-like H1N1 virus (A/swine/Zhejiang/1/07) was first isolated in pigs in China. Recently, it was reported that a 3-year-old boy was infected with avian-like A (H1N1) swine influenza virus (SIV) in Jiangsu Province, China. To investigate the prevalence of avian-like A (H1N1) SIV infection among swine farm residents in eastern China, an active influenza surveillance program was conducted on swine farms in this region from May 21, 2010 through April 22, 2012. A total of 1,162 participants were enrolled, including 1,136 persons from 48 pig farms, as well as 26 pig farm veterinarians. A total of 10.7% and 7.8% swine farm residents were positive for antibodies against avian-like A (H1N1) SIV by HI and NT assay, respectively, using 40 as the cut-off antibody titer. Meanwhile, all the serum samples collected from a control of healthy city residents were negative against avian-like A (H1N1) SIV. As the difference in numbers of antibody positive samples between the swine farm residents and health city residents controls was statistically significant (P = 0.002), these data suggest that occupational exposure to pigs may increase swine farm residents' and veterinarians' risk of avian-like A (H1N1) SIV infection in eastern China. This study provides the first data on avian-like A (H1N1) SIV infections in humans in China; the potential for avian-like A (H1N1) SIV entering the human population should also be taken into consideration.

  6. Development of a diagnostic kit for Tamiflu-resistant influenza A (H1N1)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, I. L.; Hong, S. W.

    2012-01-15

    Swine influenza A, which has been pandemic worldwide since 2009, is a new type virus derived from A type influenza. Although some drugs against the contageous disease, such as relenza and tamiflu, have been commercialized, those drug resistant viruses could be also followed by the wide usage of drugs. For examples, Tamiflu-resistant viruses, the mutant type viruses, can not be cured by the treatment of tamiflu anymore. Thus, a quick diagnosis for the wild type (tamiflu-sensitive) and mutant (tamiflu-resistant) virus would be essential in order to prevent the wide spread of viruses. In spite of that, unfortunately, very few studies have been conducted until now. If we could tell the differences between tamiflu-resistant and -sensitive patients using by the proper diagnostic kit, not only patient specific treatment would be possible, but also the spread of viruses would be effectively prevented. Currently used detection methods for the swine influenza A H1N1, which were originated from CDC, USA, can not detect the tamiflu-resistant swine influenza A H1N1, but only can detect tamiflu-sensitive wine influenza A H1N1. In this study, all the primers for the detection of swInfA, swH1, MP and NA (neuraminidase) have been developed in order to detect both tamiflu-resistant and tamiflu-sensitive swine influenza A H1N1s simultaneously, and then, new multiplex RT-PCR methods has been established.

  7. Influenza A H1N1/2009 Infection in Pediatric Solid Organ Transplant Recipients

    OpenAIRE

    Cabral Galeano, Evelyn; Gavaldà i Santapau, Joan

    2012-01-01

    The aim of this study was to describe the clinical characteristics of pandemic influenza A H1N1 infection. A retrospective study was performed in pediatric patients with solid organ transplantation and confirmed influenza A H1N1/2009 infection from June to December 2009, diagnosed in two Spanish teaching. Forty-nine patients were included. Pneumonia was diagnosed in 4 patients (8.2%), and 3 of them required respiratory support. There were no related deaths. Antiviral treatment within 48 hours...

  8. Influenza A/H1N1 Severe Pneumonia: Novel Morphocytological Findings in Bronchoalveolar Lavage

    Directory of Open Access Journals (Sweden)

    Paola Faverio

    2014-01-01

    Full Text Available We present the results of bronchoalveolar lavage (BAL performed in three patients with severe influenza A/H1N1 pneumonia complicated by acute respiratory distress syndrome (ARDS. Light microscopy analysis of BAL cytocentrifugates showed the presence of characteristic large, mononuclear, plasmoblastic/plasmocytoid-like cells never described before. Via transmission electron microscopy, these cells were classified as atypical type II pneumocytes and some of them showed cytoplasmic vesicles and inclusions. We concluded that plasmoblastic/plasmocytoid-like type II pneumocytes might represent a morphologic marker of A/H1N1 influenza virus infection as well as reparative cellular activation after diffuse alveolar damage.

  9. A case of Pityriasis rosea concurrent with the novel influenza A (H1N1) infection.

    Science.gov (United States)

    Mubki, Thamer F; Bin Dayel, Salaman A; Kadry, Razan

    2011-01-01

    Pityriasis rosea is a common skin disease with a self-limiting course. Multiple etiologies including viruses, bacteria, and fungi have been investigated in an attempt to confirm a casual association. Pityriasis rosea has not been associated with influenza virus, but has been associated with herpes simplex virus types 6 and 7. We encountered a case of a proven pandemic H1N1 infection associated with a clincopathological diagnosis of pityriasis rosea. We conclude that influenza A (H1N1) virus could either be a primary cause of pityriasis rosea or a trigger for reactivation of other viral causes. © 2011 Wiley Periodicals, Inc.

  10. Influenza A/H1N1 Severe Pneumonia: Novel Morphocytological Findings in Bronchoalveolar Lavage

    Science.gov (United States)

    Faverio, Paola; Messinesi, Grazia; Brenna, Ambrogio; Pesci, Alberto

    2014-01-01

    We present the results of bronchoalveolar lavage (BAL) performed in three patients with severe influenza A/H1N1 pneumonia complicated by acute respiratory distress syndrome (ARDS). Light microscopy analysis of BAL cytocentrifugates showed the presence of characteristic large, mononuclear, plasmoblastic/plasmocytoid-like cells never described before. Via transmission electron microscopy, these cells were classified as atypical type II pneumocytes and some of them showed cytoplasmic vesicles and inclusions. We concluded that plasmoblastic/plasmocytoid-like type II pneumocytes might represent a morphologic marker of A/H1N1 influenza virus infection as well as reparative cellular activation after diffuse alveolar damage. PMID:25383078

  11. Pulmonary Complication of Novel Influenza A (H1N1) Infection: Imaging Features in Two Patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Wook; Seo, Joon Beom; Song, Jae Woo; Lee, Hyun Joo; Lee, Jin Seong; Kim, Mi Young; Chae, Eun Jin; Song, Jin Woo; Kim, Won Young [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    Novel influenza A (H1N1) virus is the pathogen of recent global outbreaks of febrile respiratory infection. We herein report the imaging findings of pulmonary complication in two patients with novel influenza A (H1N1) infection. The first patient without secondary infection showed the ill-defined ground-glass opacity nodules and patch areas of ground-glass opacities. The second patient with secondary pneumococcal pneumonia showed areas of lobar consolidation in the right middle lobe and left lower lobe and ground-glass opacities.

  12. Melting muscles: novel H1N1 influenza A associated rhabdomyolysis.

    Science.gov (United States)

    D'Silva, Dimple; Hewagama, Saliya; Doherty, Richard; Korman, Tony M; Buttery, Jim

    2009-12-01

    We report the first case of myositis and rhabdomyolysis after infection with novel influenza A (H1N1/09) virus. The case demonstrates the novel virus' capacity for causing significant disease. Myositis and the possibility of rhabdomyolysis should be considered in any individual presenting with influenza-like symptoms in which severe myalgia or muscle weakness is apparent. It is likely that we will see severe clinical manifestations of infection with this novel influenza virus in the coming respiratory virus season.

  13. Influenza A(H1N1)pdm09 during air travel.

    Science.gov (United States)

    Neatherlin, John; Cramer, Elaine H; Dubray, Christine; Marienau, Karen J; Russell, Michelle; Sun, Hong; Whaley, Melissa; Hancock, Kathy; Duong, Krista K; Kirking, Hannah L; Schembri, Christopher; Katz, Jacqueline M; Cohen, Nicole J; Fishbein, Daniel B

    2013-01-01

    The global spread of the influenza A(H1N1)pdm09 virus (pH1N1) associated with travelers from North America during the onset of the 2009 pandemic demonstrates the central role of international air travel in virus migration. To characterize risk factors for pH1N1 transmission during air travel, we investigated travelers and airline employees from four North American flights carrying ill travelers with confirmed pH1N1 infection. Of 392 passengers and crew identified, information was available for 290 (74%) passengers were interviewed. Overall attack rates for acute respiratory infection and influenza-like illness 1-7 days after travel were 5.2% and 2.4% respectively. Of 43 individuals that provided sera, 4 (9.3%) tested positive for pH1N1 antibodies, including 3 with serologic evidence of asymptomatic infection. Investigation of novel influenza aboard aircraft may be instructive. However, beyond the initial outbreak phase, it may compete with community-based mitigation activities, and interpretation of findings will be difficult in the context of established community transmission.

  14. Clinical profile and outcome of critically ill pregnant females with H1N1 influenza

    Directory of Open Access Journals (Sweden)

    Minal Shastri

    2016-12-01

    Full Text Available Background Record based review of the 2009 H1N1 Influenza pandemic suggests that pregnant women are at higher risk for hospitalization and death due to H1N1 Influenza. Aims To study the clinical profile and outcome of critically ill pregnant females admitted in intensive care unit (ICU with real-time recombinant polymerase chain reaction (rRT-PCR proven positive H1N1 cases. Methods A retrospective record-review based study was conducted at Sir SayajiRao General Hospital (SSGH and Medical College, Vadodara on data of confirmed rRT-PCR H1N1 pregnant females admitted during the pandemics of 2010and 2015. Demographics, clinical profile and laboratory investigations were recorded and outcomes (survived or expired were analysed. Results There were a total of 20 H1N1 positive pregnant females requiring ICU admission. With equal demographic distribution among rural and urban population, cough and fever were the most common presenting complaints. 65 per cent were in third trimester, the subgroup which also had the highest mortality. Mean days from onset until presentation was 5.05 days. 12 (60 per cent patients’ required invasive mode of ventilation and all died. Average hospital stay was 7 days. Foetus had favourable outcome in patients who recovered from H1N1 acute illness. Conclusion Pregnant females in our study had 60 per cent mortality. Thus, awareness, early diagnosis and treatment should be provided to them. Guidelines, policy changes and government protocols are required specifically for pregnant females with H1N1 Influenza A infection. Our study was an observational study and comparisons with non-pregnant females were not done, conclusions applicable to entire pregnant population was not derived.

  15. The seroprevalence of pandemic influenza H1N1 (2009 virus in China.

    Directory of Open Access Journals (Sweden)

    Cuiling Xu

    Full Text Available BACKGROUND: Mainland China experienced pandemic influenza H1N1 (2009 virus (pH1N1 with peak activity during November-December 2009. To understand the geographic extent, risk factors, and attack rate of pH1N1 infection in China we conducted a nationwide serological survey to determine the prevalence of antibodies to pH1N1. METHODOLOGY/PRINCIPAL FINDINGS: Stored serum samples (n = 2,379 collected during 2006-2008 were used to estimate baseline serum reactogenicity to pH1N1. In January 2010, we used a multistage-stratified random sampling method to select 50,111 subjects who met eligibility criteria and collected serum samples and administered a standardized questionnaire. Antibody response to pH1N1 was measured using haemagglutination inhibition (HI assay and the weighted seroprevalence was calculated using the Taylor series linearization method. Multivariable logistic regression analyses were used to examine risk factors for pH1N1 seropositivity. Baseline seroprevalence of pH1N1 antibody (HI titer ≥40 was 1.2%. The weighted seroprevalence of pH1N1 among the Chinese population was 21.5%(vaccinated: 62.0%; unvaccinated: 17.1%. Among unvaccinated participants, those aged 6-15 years (32.9% and 16-24 years (30.3% had higher seroprevalence compared with participants aged 25-59 years (10.7% and ≥60 years (9.9%, P<0.0001. Children in kindergarten and students had higher odds of seropositivity than children in family care (OR: 1.36 and 2.05, respectively. We estimated that 207.7 million individuals (15.9% experienced pH1N1 infection in China. CONCLUSIONS/SIGNIFICANCE: The Chinese population had low pre-existing immunity to pH1N1 and experienced a relatively high attack rate in 2009 of this virus. We recommend routine control measures such as vaccination to reduce transmission and spread of seasonal and pandemic influenza viruses.

  16. International collaboration to assess the risk of Guillain Barre Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    Dodd, Caitlin N.; Romio, Silvana A.; Black, Steven; Vellozzi, Claudia; Andrews, Nick; Sturkenboom, Miriam; Zuber, Patrick; Hua, Wei; Bonhoeffer, Jan; Buttery, Jim; Crawford, Nigel; Deceuninck, Genevieve; de Vries, Corinne; De Wals, Philippe; Gutierrez-Gimeno, M. Victoria; Heijbel, Harald; Hughes, Hayley; Hur, Kwan; Hviid, Anders; Kelman, Jeffrey; Kilpi, Tehri; Chuang, S. K.; Macartney, Kristine; Rett, Melisa; Lopez-Callada, Vesta Richardson; Salmon, Daniel; Sanchez, Francisco Gimenez; Sanz, Nuria; Silverman, Barbara; Storsaeter, Jann; Thirugnanam, Umapathi; van der Maas, Nicoline; Yih, Katherine; Zhang, Tao; Izurieta, Hector

    2013-01-01

    Background: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barre syndrome (GBS), which has been an

  17. Full-Genome Sequence of a Reassortant H1N1 Swine Influenza Virus Isolated from Pigs in Italy.

    Science.gov (United States)

    Chiapponi, Chiara; Baioni, Laura; Luppi, Andrea; Moreno, Ana; Castellan, Alberto; Foni, Emanuela

    2013-10-03

    In this study, the full-genome sequence of a novel reassortant H1N1 swine influenza virus (SIV) is reported. The isolate has a hemagglutinin (HA) gene of the pandemic H1N1 influenza virus, but it carries the seven genome segments of the avian-origin H1N1 SIV currently circulating in European pig farms.

  18. [Effect of Yunnan herb Laggera pterodonta against influenza A (H1N1) virus in vitro].

    Science.gov (United States)

    Xia, Xiao-ling; Sun, Qiang-ming; Wang, Xiao-dan; Zhao, Yu-jiao; Yang, Zi-feng; Huang, Qing-hui; Jiang, Zhi-hong; Wang, Xin-hua; Zhang, Rong-ping

    2015-09-01

    Laggera pterodonta is commonly used for treating influenza in Southwest China, especially in Yunnnan province. The main clinical effects of L. pterodonta include anti-influenza, anti-microbial, anti-inflammatory. To investigate the anti-influenza A (H1N1) virus effect of L. pterodonta, neutralization inhibition and proliferation inhibition tests were performed. MDCK culture method was used to observe the cytopathic effect (CPE) of extracts from L. pterodonta in inhibiting influenza A (H1N1) virus and haemagglutination titre of H1N1 virus in vitro. The culture medium were collected at 24 h, 48 h, 72 h, 96 h, and detected by Real time RT-PCR, in order to compare the effect of different extracts from L. pterodonta on in vitro proliferation of H1N1, virus. The result of neutralization inhibition test showed that hemagglutination titer of ethyl acetate extract were 8 times lower at 72 h; in proliferation inhibition test, hemagglutination titer of ethyl acetate extracts reduced by 2 and 4 times. According to the results of Real time RT-PCR test, the H1N1 inhibition ratio of ethyl acetate extract was 72.5%, while the proliferation inhibition ratio of ethyl acetate extract was 25.3%; as for petroleum ether extracts, the H1N1 inhibition ratio was 60.2%, while the proliferation inhibition ratio was 81.4%. In conclusion, both ethyl acetate extract and petroleum ether extract of L. pterodonta have significant neutralization and direct proliferation inhibition effects on influenza A virus.

  19. Influenza pandêmica A (H1N1) 2009: fatores de risco para o internamento Pandemic influenza A (H1N1) 2009: risk factors for hospitalization

    OpenAIRE

    2012-01-01

    OBJETIVO: Avaliar os aspectos da influenza pandêmica A (H1N1) 2009 em pacientes hospitalizados a fim de identificar os fatores de risco para o internamento e, consequentemente, para o agravamento da doença. MÉTODOS: Estudo observacional e retrospectivo realizado entre março e dezembro de 2010. Os dados foram coletados a partir do Sistema Nacional de Agravos de Notificação do Ministério da Saúde. Foram incluídos somente os pacientes hospitalizados e não hospitalizados com confirmação laborator...

  20. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health.

    Science.gov (United States)

    Kong, Weili; Wang, Feibing; Dong, Bin; Ou, Changbo; Meng, Demei; Liu, Jinhua; Fan, Zhen-Chuan

    2015-12-01

    Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens.

  1. Distribution and risk factors of 2009 pandemic influenza A (H1N1) in mainland China

    NARCIS (Netherlands)

    L-Q. Fang (Li-Qun); L-P. Wang (Li-Ping); S.J. de Vlas (Sake); S. Liang (Song); S-L. Tong (Shi-Lu); Y-L. Li (Yan-Li); Y-P. Li (Ya-Pin); Q. Qian (Quan); H. Yang (Hong); M-G. Zhou (Mai-Geng); X-F. Wang (Xiao-Feng); J.H. Richardus (Jan Hendrik); J-Q. Ma (Jia-Qi); W.C. Cao (Wu Chun)

    2012-01-01

    textabstractData from all reported cases of 2009 pandemic influenza A (H1N1) were obtained from the China Information System for Disease Control and Prevention. The spatiotemporal distribution patterns of cases were characterized through spatial analysis. The impact of travel-related risk factors on

  2. De Quervain thyroiditis in the course of H1N1 influenza infection

    OpenAIRE

    Michas, G.; Alevetsovitis, G; Andrikou, I; Tsimiklis, S; Vryonis, E.

    2014-01-01

    Background/aim: Viral infections have been frequently associated with subacute (De Quervain) thyroiditis and autoimmune thyroid diseases. In the present case report we document a rare case of De Quervain thyroiditis in the course of H1N1 influenza infection.

  3. Immunization-Safety Monitoring Systems for the 2009 H1N1 Monovalent Influenza Vaccination Program

    NARCIS (Netherlands)

    Salmon, Daniel A.; Akhtar, Aysha; Mergler, Michelle J.; Vannice, Kirsten S.; Izurieta, Hector; Ball, Robert; Lee, Grace M.; Vellozzi, Claudia; Garman, Patrick; Cunningham, Francesca; Gellin, Bruce; Koh, Howard; Lurie, Nicole

    2011-01-01

    The effort to vaccinate the US population against the 2009 H1N1 influenza virus hinged, in part, on public confidence in vaccine safety. Early in the vaccine program, >20% of parents reported that they would not vaccinate their children. Concerns about the safety of the vaccines were reported by man

  4. Outbreak of influenza A(H1N1) in a school in southern England.

    NARCIS (Netherlands)

    Goddard, N.; Paynter, S.; Paget, J.

    2004-01-01

    An outbreak of influenza A (subtype H1N1) has occurred in a primary school in West Sussex, southern England [1]. The first cases of illness occurred during the first week of May 2004. One child was admitted to hospital during that week with symptoms of fever, confusion, headache, and conjunctivitis.

  5. Course of pandemic influenza A(H1N1) 2009 virus infection in Dutch patients

    NARCIS (Netherlands)

    Friesema, Ingrid H. M.; Meijer, Adam; van Gageldonk-Lafeber, Arianne B.; van der Lubben, Mariken; van Beek, Janko; Donker, Ge A.; Prins, Jan M.; de Jong, Menno D.; Boskamp, Simone; Isken, Leslie D.; Koopmans, Marion P. G.; van der Sande, Marianne A. B.

    2012-01-01

    The clinical dynamics of influenza A(H1N1) 2009 infections in 61 laboratory-confirmed Dutch cases were examined. An episode lasted a median of 7 5 days of which 2 days included fever. Respiratory symptoms resolved slowly, while systemic symptoms peaked early in the episode and disappeared quickly. S

  6. Correlates of 2009 H1N1 Influenza Vaccine Acceptability among Parents and Their Adolescent Children

    Science.gov (United States)

    Painter, Julia E.; Gargano, Lisa M.; Sales, Jessica M.; Morfaw, Christopher; Jones, LaDawna M.; Murray, Dennis; DiClemente, Ralph J.; Hughes, James M.

    2011-01-01

    School-aged children were a priority group for receipt of the pandemic (2009) H1N1 influenza vaccine. Both parental and adolescent attitudes likely influence vaccination behaviors. Data were collected from surveys distributed to middle- and high-school students and their parents in two counties in rural Georgia. Multivariable logistic regression…

  7. Manténgase Informado Sobre la Influenza H1N1

    Centers for Disease Control (CDC) Podcasts

    2009-05-03

    Este podcast habla sobre las medidas básicas que usted puede tomar para protegerse de cualquier enfermedad infecciosa, incluido el nuevo virus de la influenza H1N1.  Created: 5/3/2009 by National Center for Health Marketing (NCHM).   Date Released: 5/3/2009.

  8. Early experience of the pandemic influenza H1N1 2009 epidemic in Taiwan

    Directory of Open Access Journals (Sweden)

    Tzong-Hann Yang

    2011-07-01

    Conclusion: When a patient presents with influenza-like acute febrile respiratory illness symptoms and is young in age, has a travel history involving an affected area, and is suffering from myalgia or leukopenia, physicians should be alerted to the possibility of novel H1N1 virus infection.

  9. Polymyositis following Pandemic Influenza A (H1N1 and 2009-10 Seasonal Trivalent Vaccines

    Directory of Open Access Journals (Sweden)

    Clodoveo Ferri

    2012-01-01

    Full Text Available Sporadic associations between inflammatory myopathies with vaccinations were described in the literature, raising the possible trigger value of vaccines in the development of these autoimmune disorders. Here, we reported the clinical history of 3 patients who developed polymyositis complicated by interstitial lung disease (2 cases and dermatomyositis (1 case, after influenza A (H1N1 vaccination.

  10. Immunization-Safety Monitoring Systems for the 2009 H1N1 Monovalent Influenza Vaccination Program

    NARCIS (Netherlands)

    Salmon, Daniel A.; Akhtar, Aysha; Mergler, Michelle J.; Vannice, Kirsten S.; Izurieta, Hector; Ball, Robert; Lee, Grace M.; Vellozzi, Claudia; Garman, Patrick; Cunningham, Francesca; Gellin, Bruce; Koh, Howard; Lurie, Nicole

    The effort to vaccinate the US population against the 2009 H1N1 influenza virus hinged, in part, on public confidence in vaccine safety. Early in the vaccine program, >20% of parents reported that they would not vaccinate their children. Concerns about the safety of the vaccines were reported by

  11. Pandemic influenza A (H1N1 2009 vaccine: An update

    Directory of Open Access Journals (Sweden)

    M K Goel

    2011-01-01

    Full Text Available The world witnessed a the first influenza pandemic in this century and fourth overall since first flu pandemic was reported during the World War I. The past experiences with influenza viruses and this pandemic of H1N1 place a consider-able strain on health services and resulted in serious illnesses and a large number of deaths. Develop-ing countries were declared more likely to be at risk from the pandemic effects, as they faced the dual problem of highly vulnerable populations and limited resources to respond H1N1. The public health experts agreed that vaccination is the most effective ways to mitigate the negative effects of the pandemic. The vaccines for H1N1 virus have been used in over 40 coun-tries and administered to over 200 million people helped in a great way and on August 10, 2010, World Health Organization (WHO announced H1N1 to be in postpandemic period. But based on knowledge about past pandemics, the H1N1 (2009 virus is expected to continue to circulate as a seasonal virus and may undergo some agenic-variation. As WHO strongly recommends vaccination, vigilance for regular updating of the composition of influenza vaccines, based on an assessment of the future impact of circulating viruses along with safety surveillance of the vaccines is necessary. This review has been done to take a stock of the currently available H1N1 vaccines and their possible use as public health intervention in the postpandemic period.

  12. How Does Influenza A (H1N1 Infection Proceed in Allogeneic Stem Cell Transplantation Recipients?

    Directory of Open Access Journals (Sweden)

    Sinem Civriz Bozdağ

    2012-03-01

    Full Text Available Clinical course of H1N1 infection in Allogeneic Hematopoietic Stem Cell Transplantation (AHSCT patients is contraversial. We report three AHSCT patients who were infected with Influenza A/H1N1 infection. All of the patients were diagnosed with different hematological diagnosis and were at different stages of transplantation.All of them were treated with oseltamivir,zanamivir was switched with oseltamivir in one patient. All of the three patients were survived without any complication. Swine flu, can display with different courses and progress with bacterial or other viral infections in immunsupressed patients.

  13. How Does Influenza A (H1N1 Infection Proceed in Allogeneic Stem Cell Transplantation Recipients?

    Directory of Open Access Journals (Sweden)

    Sinem Civriz Bozdağ

    2012-03-01

    Full Text Available Clinical course of H1N1 infection in Allogeneic Hematopoietic Stem Cell Transplantation (AHSCT patients is contraversial. We report three AHSCT patients who were infected with Influenza A/H1N1 infection. All of the patients were diagnosed with different hematological diagnosis and were at different stages of transplantation.All of them were treated with oseltamivir,zanamivir was switched with oseltamivir in one patient. All of the three patients were survived without any complication. Swine flu, can display with different courses and progress with bacterial or other viral infections in immunsupressed patients.

  14. Meteorological Influence on the 2009 Influenza A (H1N1) Pandemic in Mainland China.

    Science.gov (United States)

    Zhao, X.; Cai, J.; Feng, D.; Bai, Y.; Xu, B.

    2015-12-01

    Since May 2009, a novel influenza A (H1N1) pandemic has spread rapidly in mainland China from Mexico. Although there has been substantial analysis of this influenza, reliable work estimating its spatial dynamics and determinants remain scarce. The survival and transmission of this pandemic virus not only depends on its biological properties, but also a correlation with external environmental factors. In this study, we collected daily influenza A (H1N1) cases and corresponding annual meteorological factors in mainland China from May 2009 to April 2010. By analyzing these data at county-level, a similarity index, which considered the spatio-temporal characteristics of the disease, was proposed to evaluate the role and lag time of meteorological factors in the influenza transmission. The results indicated that the influenza spanned a large geographical area, following an overall trend from east to west across the country. The spatio-temporal transmission of the disease was affected by a series of meteorological variables, especially absolute humidity with a 3-week lag. These findings confirmed that the absolute humidity and other meteorological variables contributed to the local occurrence and dispersal of influenza A (H1N1). The impact of meteorological variables and their lag effects could be involved in the improvement of effective strategies to control and prevent disease outbreaks.

  15. Opinions on Influenza A (H1N1)%我的一点看法

    Institute of Scientific and Technical Information of China (English)

    钟南山

    2009-01-01

    2009年4月,一场突如其来的疫情席卷全球,引起各国高度重视。这一疫情的命名经历了从“猪流感(swine influenza)”等词到“甲型H1N1流感(influenza A(H1N1))”的变化。本刊对此命名变化的来龙去脉以及“甲型H1N1流感”的含义进行了梳理与解读,并就命名问题征询了一些专家的意见。

  16. Influenza virus H1N1 induced apoptosis of mouse astrocytes and the effect on protein expression

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong Pei; Yu-Feng Zhai; Huai-Hong Zhang

    2014-01-01

    Objective:To investigate the effects of influenzaA virusH1N1 infection on the proliferation and apoptosis of mouse astrocytes cells and its protein expression.Methods:After mouse astrocytes was infected with purified influenzaA virusH1N1 in vitro, viral integration and replication status of the cells were detected byRT-PCR assay, cell proliferation and apoptosis was determined by MTT method and flow cytometry, respectively.Associated protein expression was detected by Western blotting.Results:Agarose gel electrophoresis showedH1N1 virus can infect astrocytes and can be copied.MTT staining showedH1N1 virus infection can inhibit the proliferation of mouse astrocytes, which makes cell viability decreased significantly.Flow cytometry showed that the proportion ofAnneinV staining positive vascular endothelial cells in the influenzaA virus group was significantly higher than that in the control group.Western blot analysis showed after 24 h and32 h of infection, there were cells caspase-3 protein and the expression of its active form (lysed caspase-3 protein) increased.The proportion ofBax/Bcl-2 also increased.Conclusions:InfluenzaA virus can infect human vascular endothelial cells and proliferation and it can induce apoptosis of endothelial cells.

  17. Critical influenza (H1N1) pneumonia: imaging manifestations and histopathological findings

    Institute of Scientific and Technical Information of China (English)

    LI Hong-jun; CHENG Jing-liang; LI Ning; LI Yun-fang; ZHANG Hui-mao

    2012-01-01

    Background The global outbreak of influenza A (H1N1 ) has led to the Ministry of Health of China listing it as one of the A-class infectious diseases.Pneumonia is the most serious complication of influenza A,commonly causing death.Populations are ordinarily susceptible to influenza A.This study aimed to investigate the imaging manifestation features of cdtical influenza A (H1 N1 ) pneumonia and to improve its diagnostic techniques.Methods A total of seven death cases from critical influenza A (H1 N1 ) pneumonia were retrospectively analyzed on their imaging manifestations and autopsy data.Pulmonary CT scanning was performed for five cases,with one receiving additional chest X-ray and chest CT scanning,and chest postero-anterior position X-ray examination was performed for other two.Autopsy was performed for five cases and postmortem examinations were performed for other two cases.Results The seven cases of influenza A showed critical manifestations in 4-7 days after symptoms onset,with two having basic diseases of diabetes and one being pregnant.Extensive blurry high-density shadows of bilateral lungs were found in three cases,which were most obvious in middle and infedor parts of lungs.Pulmonary CT scanning revealed bilateral flaky parenchymal shadows in peripheral,dorsal and fundus segments of the middle-inferior parts of lungs,with one case of complicated pneumothorax,atelectasis and pleural effusion and another case of thin-walled cavity and dilated bronchi shadows in the superior parts of lungs.Conclusions Diagnostic imaging is an important assessing tool for cdtical influenza A (H1N1) pneumonia The imaging manifestations are characteristic instead of being specific.The definitive diagnosis can be made in combination with clinical examinations and laboratory tests.

  18. A candidate H1N1 pandemic influenza vaccine elicits protective immunity in mice.

    Directory of Open Access Journals (Sweden)

    Julia Steitz

    Full Text Available BACKGROUND: In 2009 a new pandemic disease appeared and spread globally. The recent emergence of the pandemic influenza virus H1N1 first isolated in Mexico and USA raised concerns about vaccine availability. We here report our development of an adenovirus-based influenza H1N1 vaccine tested for immunogenicity and efficacy to confer protection in animal model. METHODS: We generated two adenovirus(Ad5-based influenza vaccine candidates encoding the wildtype or a codon-optimized hemagglutinin antigen (HA from the recently emerged swine influenza isolate A/California/04/2009 (H1N1pdm. After verification of antigen expression, immunogenicity of the vaccine candidates were tested in a mouse model using dose escalations for subcutaneous immunization. Sera of immunized animals were tested in microneutalization and hemagglutination inhibition assays for the presence of HA-specific antibodies. HA-specific T-cells were measured in IFNgamma Elispot assays. The efficiency of the influenza vaccine candidates were evaluated in a challenge model by measuring viral titer in lung and nasal turbinate 3 days after inoculation of a homologous H1N1 virus. CONCLUSIONS/SIGNIFICANCE: A single immunization resulted in robust cellular and humoral immune response. Remarkably, the intensity of the immune response was substantially enhanced with codon-optimized antigen, indicating the benefit of manipulating the genetic code of HA antigens in the context of recombinant influenza vaccine design. These results highlight the value of advanced technologies in vaccine development and deployment in response to infections with pandemic potential. Our study emphasizes the potential of an adenoviral-based influenza vaccine platform with the benefits of speed of manufacture and efficacy of a single dose immunization.

  19. Framing of Influenza A (H1N1) pandemic in a Singaporean newspaper.

    Science.gov (United States)

    Basnyat, Iccha; Lee, Seow Ting

    2015-12-01

    This study seeks to understand how public health messages provided by the government in Singapore during an Influenza A (H1N1) pandemic were framed by the news media for the public. News articles were analyzed to explore how the global pandemic was framed as a local event, providing a unique exploration of the dynamic involving public health communication, news media and the state. Thematic analysis (n = 309) included the government-issued press releases disseminating public health information about H1N1 that were directly linked to news stories (n = 56) and news stories about H1N1 generated by the newspaper (n = 253). Four themes were found: (i) imported disease, (ii) war/battle metaphors, (iii) social responsibility and (iv) lockdown policies. Frame analysis revealed that the news coverage during the H1N1 pandemic reflected how the newspaper framed and mediated the information flow, amplified a positive tone for the government response, emphasized individual responsibility and utilized gain frames to construct local messages about the global H1N1 pandemic that reified Singapore as a nation-state. © The Author (2014). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Acute necrotizing encephalopathy in a child with H1N1 influenza infection

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Jane B. [Driscoll Children' s Hospital, Department of Radiology, Corpus Christi, TX (United States); Remigio, Cheryl [Pediatric Residency Program, Department of Medical Education, Corpus Christi, TX (United States); Milligan, Thomas [Driscoll Children' s Hospital, Department of Pathology, Corpus Christi, TX (United States); Deline, Carol [Driscoll Children' s Hospital, Division of Neurology, Corpus Christi, TX (United States)

    2010-02-15

    Since the World Health Organization declared a global pandemic of novel influenza A H1N1 in June 2009, there has been a sustained rise in the number of cases of this strain of influenza. Although most cases are mild with complete and uneventful recovery, multiple cases of severe infection with complications including death have been reported. To the best of our knowledge, the majority of fatal outcomes in the United States have been related to pulmonary complications. We report a 12-year-old girl infected with influenza A H1N1 whose clinical course was complicated by rapid progressive neurologic deterioration and striking CT and MRI findings consistent with acute necrotizing encephalopathy (ANE). To our knowledge this has not been reported in the pediatric radiology literature. We hope this case will alert radiologists to this complication and familiarize radiologists with imaging findings that herald ANE. (orig.)

  1. Outcomes of influenza A(H1N1)pdm09 virus infection

    DEFF Research Database (Denmark)

    Lynfield, Ruth; Davey, Richard; Dwyer, Dominic E

    2014-01-01

    BACKGROUND: Data from prospectively planned cohort studies on risk of major clinical outcomes and prognostic factors for patients with influenza A(H1N1)pdm09 virus are limited. In 2009, in order to assess outcomes and evaluate risk factors for progression of illness, two cohort studies were...... initiated: FLU 002 in outpatients and FLU 003 in hospitalized patients. METHODS AND FINDINGS: Between October 2009 and December 2012, adults with influenza-like illness (ILI) were enrolled; outpatients were followed for 14 days and inpatients for 60 days. Disease progression was defined as hospitalization...... and/or death for outpatients, and hospitalization for >28 days, transfer to intensive care unit (ICU) if enrolled from general ward, and/or death for inpatients. Infection was confirmed by RT-PCR. 590 FLU 002 and 392 FLU 003 patients with influenza A (H1N1)pdm09 were enrolled from 81 sites in 17...

  2. Subacute thyroiditis in the course of novel H1N1 influenza infection.

    Science.gov (United States)

    Dimos, Georgios; Pappas, Georgios; Akritidis, Nikolaos

    2010-06-01

    To describe the first documented case of subacute (De Quervain) thyroiditis in the course of novel H1N1 influenza infection. This is a case report of a patient diagnosed at the General Hospital "G. Hatzikosta" of Ioannina, Greece. A 55-year-old previously healthy male developed an influenza-like syndrome that was accompanied by severe neck pain, palpitations, weight loss, and disproportionately increased erythrocyte sedimentation rate. Polymerase chain reaction assay of pharyngeal swabs confirmed the diagnosis of novel H1N1 influenza infection. Serum thyroid-stimulating hormone was suppressed to zero and levels of free thyroxine and particularly triiodothyronine were increased. Technetium-99m-pertechnetate scintigraphy showed diffuse and inhomogeneous very low technetium trapping. The patient was treated with non-steroidal anti-inflammatory drugs and thyroid function gradually normalized without evolving to a hypothyroid phase. This is the first case of subacute thyroiditis associated with novel H1N1 influenza infection. Furthermore, this is the first case to definitely demonstrate active influenza infection of any type concurrent with thyroiditis, and one of the very rare similar cases for any active viral disease etiologically implicated in the pathogenesis of subacute thyroiditis.

  3. French experience of 2009 A/H1N1v influenza in pregnant women.

    Directory of Open Access Journals (Sweden)

    Grégory Dubar

    Full Text Available BACKGROUND: The first reports on the pandemic influenza 2009 A/H1N1v from the USA, Mexico, and Australia indicated that this disease was associated with a high mortality in pregnant women. The aim of this study was to describe and compare the characteristics of severe critically ill and non-severe pregnant women with 2009 A/H1N1v-related illness in France. METHODOLOGY/PRINCIPAL FINDINGS: A national registry was created to screen pregnant women with laboratory-confirmed 2009 A/H1N1v influenza. Three hundred and fifteen patients from 46 French hospitals were included: 40 patients were admitted to intensive care units (severe outcomes, 111 were hospitalized in obstetric or medical wards (moderate outcomes, and 164 were outpatients (mild outcomes. The 2009 A/H1N1v influenza illness occurred during all pregnancy trimesters, but most women (54%, notably the severe patients (70%, were in the third trimester. Among the severe patients, twenty (50% underwent mechanical ventilation, and eleven (28% were treated with extracorporeal membrane oxygenation. Three women died from A/H1N1v influenza. We found a strong association between the development of a severe outcome and both co-existing illnesses (adjusted odds ratio [OR], 5.1; 95% confidence interval [CI], 2.2-11.8 and a delay in oseltamivir treatment after the onset of symptoms (>3 or 5 days (adjusted OR, 4.8; 95% CI, 1.9-12.1 and 61.2, 95% CI; 14.4-261.3, respectively. Among the 140 deliveries after 22 weeks of gestation known to date, 19 neonates (14% were admitted to a neonatal intensive care unit, mainly for preterm delivery, and two neonates died. None of these neonates developed 2009 A/H1N1v infection. CONCLUSIONS: This series confirms the high incidence of complications in pregnant women infected with pandemic A/H1N1v observed in other countries but depicts a lower overall maternal and neonatal mortality and morbidity than indicated in the USA or Australia. Moreover, our data demonstrate the

  4. Properly folded bacterially expressed H1N1 hemagglutinin globular head and ectodomain vaccines protect ferrets against H1N1 pandemic influenza virus.

    Directory of Open Access Journals (Sweden)

    Surender Khurana

    Full Text Available BACKGROUND: In the face of impending influenza pandemic, a rapid vaccine production and mass vaccination is the most effective approach to prevent the large scale mortality and morbidity that was associated with the 1918 "Spanish Flu". The traditional process of influenza vaccine production in eggs is time consuming and may not meet the demands of rapid global vaccination required to curtail influenza pandemic. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant technology can be used to express the hemagglutinin (HA of the emerging new influenza strain in a variety of systems including mammalian, insect, and bacterial cells. In this study, two forms of HA proteins derived from the currently circulating novel H1N1 A/California/07/2009 virus, HA1 (1-330 and HA (1-480, were expressed and purified from E. coli under controlled redox refolding conditions that favoured proper protein folding. However, only the recombinant HA1 (1-330 protein formed oligomers, including functional trimers that bound receptor and caused agglutination of human red blood cells. These proteins were used to vaccinate ferrets prior to challenge with the A/California/07/2009 virus. Both proteins induced neutralizing antibodies, and reduced viral loads in nasal washes. However, the HA1 (1-330 protein that had higher content of multimeric forms provided better protection from fever and weight loss at a lower vaccine dose compared with HA (1-480. Protein yield for the HA1 (1-330 ranged around 40 mg/Liter, while the HA (1-480 yield was 0.4-0.8 mg/Liter. CONCLUSIONS/SIGNIFICANCE: This is the first study that describes production in bacterial system of properly folded functional globular HA1 domain trimers, lacking the HA2 transmembrane protein, that elicit potent neutralizing antibody responses following vaccination and protect ferrets from in vivo challenge. The combination of bacterial expression system with established quality control methods could provide a mechanism for rapid large

  5. Transmission of Pandemic Influenza A (H1N1) Virus in a Train in China

    Science.gov (United States)

    Cui, Fuqiang; Luo, Huiming; Zhou, Lei; Yin, Dapeng; Zheng, Canjun; Wang, Dingming; Gong, Jian; Fang, Gang; He, Jianfeng; McFarland, Jeffrey; Yu, Hongjie

    2011-01-01

    Background Pandemic influenza A (H1N1) virus emerged in North America in April 2009 and spread globally. We describe the epidemiology and public health response to the first known outbreak of 2009 H1N1 in a train, which occurred in June 2009 in China. Methods After 2 provinces provided initial reports of 2009 H1N1 infection in 2 persons who had travelled on the same train, we conducted a retrospective epidemiologic investigation to collect information from the passengers, crew members, contacts, and health care providers. We explored the source of infection and possible routes of transmission in the train. All cases were confirmed by real-time reverse transcription polymerase chain reaction testing. Results Train #1223 traveled 40 hours, made 28 stops in 4 Chinese provinces, and boarded 2555 passengers, who logged a total of 59 144 person-hours of travel time. Nineteen confirmed 2009 H1N1 cases were identified. Of these, 13 were infected and developed symptoms on the train and 6 occurred among contacts who developed illness during medical monitoring. In addition, 3 asymptomatic cases were identified based on RT-PCR testing of respiratory swabs from contacts. The attack rate among contacts of confirmed cases in the same car was higher than that among contacts in other cars (3.15% vs. 0%, P train. Trains may have played an important role in the 2009 influenza pandemic. PMID:21646746

  6. Seroprevalence study in Vojvodina (Serbia following 2009 pandemic influenza A(H1N1v

    Directory of Open Access Journals (Sweden)

    Petrović Vladimir

    2012-01-01

    Full Text Available Introduction. The seroprevalence study was performed in Vojvodina during May and June 2010 in order to asses the effects of the 2009 pandemic influenza A(H1N1v epidemic on herd immunity. It was a part of the Serbian Ministry of Health funded nationwide study. Objective. Prevalence of antibodies against 2009 pandemic influenza A(H1N1v was determined in a 1% sample of the population monitored for influenza-like illness and acute respiratory infections in Vojvodina through sentinel surveillance system. Methods. The study sample involved a total of 1004 inhabitants of Vojvodina. The control group consisted of randomly selected and age-adjusted 1054 sera collected in the pre-pandemic period. Sera were tested by the reaction of hemagglutination inhibition using influenza A/California/7/2009 (H1N1 antigen in dilution from 1:8 to 1:256. Antibody titers ≥1:32 and ≥1:8 were considered protective and diagnostic, respectively. Results. The differences between control and study sera in all age groups were significant for both diagnostic ≥1/8 and protective titres ≥1/32 of hemagglutination inhibition antibodies (chi square test, p<0.001. The highest percentage of seropositive subjects was registered in the age group 15-19 years followed by children aged 5-14 years. Both diagnostic and protective titres were about twice higher in the vaccinated as compared to the non-vaccinated group. There were no statistically significant differences in seroprevalence between seven districts of Vojvodina. Conclusion. The 2009 pandemic influenza A(H1N1v epidemic significantly influenced the herd immunity in our population regardless of low immunization coverage with highest immunity levels in adolescents aged 15-19 years and with similar herd immunity levels in all the regions in the province six months after the outbreak.

  7. Mechanical ventilation in patients with most severe forms of influenza a H1N1

    Directory of Open Access Journals (Sweden)

    Romić Predrag

    2011-01-01

    Full Text Available Background/Aim. Pandemic of A H1N1 influenza is noted for its rapid spreading and life-threatening consequences like acute respiratory distress syndrome (ARDS which requires mechanical ventilation (MV and intensive therapy (IT. The aim of the study was to determine the significance of mechanical ventilation application in the presence of comorbidities on the outcome of the disease and patients with severe forms of acute influenza caused by A H1N1 virus. Methods. Five patients with acute respiratory failure caused by A H1N1 influenza that required MV were included in the study. Course and outcome of the treatment were monitored in relation to age and sex of the patients, concomitant diseases, time of influenza beginning, a time of admittance in an intensive care unit, a time of an endotracheal intubation and MV beginning, MV duration and occurrence of secondary infections. Results. Three patients were on a very prolonged MV (39, 43 and 20 days, respectively and they all survived. Two patients with a significantly shorter duration of MV (14 and 12 days, respectively died because of a very severe clinical course and concomitant diseases. Unexpectedly, we found a positive correlation between duration of MV and survival although two patients, who were on MV for the longest period of time (43 and 39 days, respectively, developed, as a complication, secondary bacterial pneumonia. Conclusion. Intensive therapy of patients with ARDS due to A H1N1 influenza virus requires MV which should be carried out according to guidelines of international expert forums. That is in accordance with our unexpected observation on negative correlation between duration of MV and fatal outcome. Intensive treatment of these patients, specially MV, can be very prolonged and, therefore, requires specialized teams of anesthesiologists, separate, isolated intensive therapy units and high level of medical staff protection, as was the case in this study, so no member of medical

  8. Two Years after Pandemic Influenza A/2009/H1N1: What Have We Learned?

    Science.gov (United States)

    Cheng, Vincent C. C.; To, Kelvin K. W.; Tse, Herman; Hung, Ivan F. N.

    2012-01-01

    Summary: The world had been anticipating another influenza pandemic since the last one in 1968. The pandemic influenza A H1N1 2009 virus (A/2009/H1N1) finally arrived, causing the first pandemic influenza of the new millennium, which has affected over 214 countries and caused over 18,449 deaths. Because of the persistent threat from the A/H5N1 virus since 1997 and the outbreak of the severe acute respiratory syndrome (SARS) coronavirus in 2003, medical and scientific communities have been more prepared in mindset and infrastructure. This preparedness has allowed for rapid and effective research on the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the disease, with impacts on its control. A PubMed search using the keywords “pandemic influenza virus H1N1 2009” yielded over 2,500 publications, which markedly exceeded the number published on previous pandemics. Only representative works with relevance to clinical microbiology and infectious diseases are reviewed in this article. A significant increase in the understanding of this virus and the disease within such a short amount of time has allowed for the timely development of diagnostic tests, treatments, and preventive measures. These findings could prove useful for future randomized controlled clinical trials and the epidemiological control of future pandemics. PMID:22491771

  9. Characterization In Vitro and In Vivo of a Pandemic H1N1 Influenza Virus from a Fatal Case

    Science.gov (United States)

    Cuevas, Maria Teresa; Pozo, Francisco; Guerra, Susana; García-Barreno, Blanca; Martinez-Orellana, Pamela; Pérez-Breña, Pilar; Montoya, Maria; Melero, Jose Antonio; Pizarro, Manuel; Ortin, Juan; Casas, Inmaculada; Nieto, Amelia

    2013-01-01

    Pandemic 2009 H1N1 (pH1N1) influenza viruses caused mild symptoms in most infected patients. However, a greater rate of severe disease was observed in healthy young adults and children without co-morbid conditions. Here we tested whether influenza strains displaying differential virulence could be present among circulating pH1N1 viruses. The biological properties and the genotype of viruses isolated from a patient showing mild disease (M) or from a fatal case (F), both without known co-morbid conditions were compared in vitro and in vivo. The F virus presented faster growth kinetics and stronger induction of cytokines than M virus in human alveolar lung epithelial cells. In the murine model in vivo, the F virus showed a stronger morbidity and mortality than M virus. Remarkably, a higher proportion of mice presenting infectious virus in the hearts, was found in F virus-infected animals. Altogether, the data indicate that strains of pH1N1 virus with enhanced pathogenicity circulated during the 2009 pandemic. In addition, examination of chemokine receptor 5 (CCR5) genotype, recently reported as involved in severe influenza virus disease, revealed that the F virus-infected patient was homozygous for the deleted form of CCR5 receptor (CCR5Δ32). PMID:23326447

  10. PLC-γ1 is involved in the inflammatory response induced by influenza A virus H1N1 infection.

    Science.gov (United States)

    Zhu, Liqian; Yuan, Chen; Ding, Xiuyan; Xu, Shuai; Yang, Jiayun; Liang, Yuying; Zhu, Qiyun

    2016-09-01

    We have previously reported that phosphoinositide-specific phospholipase γ1 (PLC-γ1) signaling is activated by influenza virus H1N1 infection and mediates efficient viral entry in human epithelial cells. In this study, we show that H1N1 also activates PLCγ-1 signaling in human promonocytic cell line -derived macrophages. Surprisingly, the activated PLCγ-1 signaling is not important for viral replication in macrophages, but is involved in the virus-induced inflammatory responses. PLC-γ1-specific inhibitor U73122 strongly inhibits the H1N1 virus-induced NF-κB signaling, blocking the up-regulation of TNF-α, IL-6, MIP-1α, and reactive oxidative species. In a positive feedback loop, IL-1β and TNF-α activate the PLCγ-1 signaling in both epithelial and macrophage cell lines. In summary, we have shown for the first time that the PLCγ-1 signaling plays an important role in the H1N1-induced inflammatory responses. Our study suggests that targeting the PLCγ-1 signaling is a potential antiviral therapy against H1N1 by inhibiting both viral replication and excessive inflammation.

  11. Calculating the potential for within-flight transmission of influenza A (H1N1

    Directory of Open Access Journals (Sweden)

    Blower Sally

    2009-12-01

    Full Text Available Abstract Background Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1. However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. Methods We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. Results The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Conclusions Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one

  12. Influenza A viral loads in respiratory samples collected from patients infected with pandemic H1N1, seasonal H1N1 and H3N2 viruses

    Directory of Open Access Journals (Sweden)

    Chuchottaworn Charoen

    2010-04-01

    Full Text Available Abstract Background Nasopharyngeal aspirate (NPA, nasal swab (NS, and throat swab (TS are common specimens used for diagnosis of respiratory virus infections based on the detection of viral genomes, viral antigens and viral isolation. However, there is no documented data regarding the type of specimen that yields the best result of viral detection. In this study, quantitative real time RT-PCR specific for M gene was used to determine influenza A viral loads present in NS, NPA and TS samples collected from patients infected with the 2009 pandemic H1N1, seasonal H1N1 and H3N2 viruses. Various copy numbers of RNA transcripts derived from recombinant plasmids containing complete M gene insert of each virus strain were assayed by RT-PCR. A standard curve for viral RNA quantification was constructed by plotting each Ct value against the log quantity of each standard RNA copy number. Results Copy numbers of M gene were obtained through the extrapolation of Ct values of the test samples against the corresponding standard curve. Among a total of 29 patients with severe influenza enrolled in this study (12 cases of the 2009 pandemic influenza, 5 cases of seasonal H1N1 and 12 cases of seasonal H3N2 virus, NPA was found to contain significantly highest amount of viral loads and followed in order by NS and TS specimen. Viral loads among patients infected with those viruses were comparable regarding type of specimen analyzed. Conclusion Based on M gene copy numbers, we conclude that NPA is the best specimen for detection of influenza A viruses, and followed in order by NS and TS.

  13. A(H1N1)流感病毒及抗病毒新药的筛选%A(H1N1) Influenza Virus and Screening of New Anti-influenza Virus Drugs

    Institute of Scientific and Technical Information of China (English)

    陈执中

    2009-01-01

    A(H1N1) influenza virus is a novel strain of influenza virus mutant,which was found in March to April 2009 in USA and Mexico. The spread of epidemic influenza brings about a serious attention by every country in the world and World Health Organization. In this paper, the A (H1N1) influenza virus and its symptom, virulence and spread are introduced. Meanwhile, the mutant' s resistance to anti-influenza drugs, the characterization of the 1918 pandemic influenza virus polymerase, the crystal structure of human and avian influenza virus polymerase and its action in influenza are also discussed. Accordingly, we put forward the screening ideas and research orientation for anti-influenza virus drugs, which will be a beneficial reference for the further design and development of new anti-influenza virus drugs.%A(H1N1)流感病毒是2009年3~4月在美国和墨西哥发现的一种流感病毒变异的新病毒株.这类流感疫情的蔓延引起了世界各国和世界卫生组织的严重关注.本文介绍了A(H1N1)流感新病毒株及感染这种病毒患者的症状,A(H1N1)流感病毒的致命力和传播,流感病毒变异对抗病毒药的抗药性,以及1918年流感大流行病毒聚合酶特性,人流感病毒和禽流感病毒聚合酶的结晶结构及其在感染中的作用.据此,提出了抗流感病毒药的筛选思路和研究方向,为抗流感病毒新药的设计和开发提供有益的参考.

  14. Factors associated with vaccination against Influenza A (H1N1 in the elderly

    Directory of Open Access Journals (Sweden)

    Janaína Fonseca Victor

    2014-02-01

    Full Text Available This study aimed to investigate the sociodemographic, clinical and behavioral factors and receiving information about the vaccine against pandemic influenza A (H1N1 associated with vaccination of elderly people. Study of quantitative and transversal nature, in which 286 elderly residents in Fortaleza, CE, Brazil participated. The association between variables was analyzed by the Pearson chi-square test, considering a 95% confidence interval and significance level (p≤0.05. The results revealed that, unlike the sociodemographic characteristics, many clinical, behavioral and informational aspects correlated significantly with adherence to Influenza A (H1N1 vaccination. It is believed that the findings can be used in strategies to control and prevent infection by viral subtypes within the elderly population, extensible even to other vaccine-preventable diseases, especially in light of possible future pandemics.

  15. THE A (H1N1 INFLUENZA. SYMBOLIC DIMENSIONS OF A PANDEMIC ARTEFACT

    Directory of Open Access Journals (Sweden)

    Andrés G. Seguel

    2013-01-01

    Full Text Available The aim of the present paper is to present the symbolic features that are exposed by the concept of artefact in the context of a pandemic alarm, such as the A (H1N1 influenza. The symbolic qualities entailed by the notion of artefact are well-known within the Social Sciences: Sociology, Anthropology, Archaeology, and Linguistics. The artefact is basically not an object, but an action aimed at designing, simulating or creating a simile by means of material, technological or linguistic structures. The purpose of the present work is to unveil the symbolic dimensions that are activated by the A (H1N1 influenza as a Pandemic Artefact: a the assumption of separating information from matter; b the need for a material support to enable the exchange; c the sociological reflexivity of the artefact and its agency; d the arbitrariness of its social use, that detaches it from the design as intention.

  16. Viral shedding in Chinese young adults with mild 2009 H1N1 influenza

    Institute of Scientific and Technical Information of China (English)

    JIA Ning; GAO Yan; SUO Ji-jiang; XIE Li-jun; YAN Zhong-qiang; XING Yu-bin; HE Lei; LIU Yun-xi

    2011-01-01

    Background The duration of viral shedding and the transmission of 2009 H1N1 influenza among individuals, especially among the younger population with mild illness, are not well understood now. The aim of this study was to determine the viral shedding of the young adult patients with mild 2009 H1N1 influenza in China.Methods From September 2009 to January 2010, the clinical data and serial nasopharyngeal swabs of 67 patients with 2009 H1N1 influenza and 37 patients with seasonal influenza aged from 18 years to 35 years were collected. The nasopharyngeal swab samples were detected by real time RT-PCR to determine the viral shedding. All the patients did not receive the antiviral therapy but Chinese medicine for detoxicating.Results Among the patients with H1N1 virus infection, 82.1% (55/67) patients presented with fever symptom, while more patients with high fever (≥39℃) were found in seasonal influenza patients (P<0.05). For the H1N1 patients, the median interval between the symptom onset and the undetectable RNA was six days (4-10 days). But viral shedding was still found in 31.3% patients after 7 days following illness onset. The median interval between disappearance of fever and an undetectable viral RNA level was three days (2-8 days), and 17.9% patients were found to be viral shedding 6 days later after normalization of body temperature. For the seasonal influenza patients, 94.6% patients were detected out viral RNA within 7 days. The median interval of seasonal influenza between the symptom onset and the undetectable RNA was four days (3-8 days). The median interval between disappearance of fever and an undetectable viral RNA level was three days (2-6 days).Conclusion It suggests that 7 days isolation period from the illness onset or 24 hours after the resolution of fever and respiratory symptoms are not long enough to cut off the transmission among Chinese young adults with mild illness.

  17. Descriptive epidemiology of novel influenza A (H1N1, Andhra Pradesh 2009-2010

    Directory of Open Access Journals (Sweden)

    Ramesh R Allam

    2013-01-01

    Full Text Available Background: The first case of pandemic Influenza A (H1N1 in India was reported from Hyderabad, Andhra Pradesh on 16 th May 2009. Subsequently, all suspected cases seeking treatment from A (H1N1 treatment centers and their contacts were tested. Laboratory confirmed cases were hospitalized and treated with antivirals according to national guidelines. We reviewed the surveillance data to assess the morbidity and mortality due to A (H1N1 in the state of Andhra Pradesh (population-76,210,007 during the period from May 2009 to December 2010. Materials and Methods: We obtained the line-list of suspected (influenza like illness as per World Health Organization case definition and laboratory confirmed cases of A (H1N1 from the state unit of integrated disease surveillance project. We analyzed the data to describe the distribution of case-patients by time, place and person. Results: During May 2009 to December 2010, a total of 6527 suspected (attack rate: 8.6/100,000 and 1480 (attack rate: 1.9/100,000 laboratory confirmed cases were reported from the State. Nearly 90% of the suspected and 93% of the confirmed cases was from nine districts of Telangana region, which includes Hyderabad. Nearly 65% of total confirmed cases were reported from Hyderabad. The attack rate was maximum (2.6/100,000 in the age group of 25-49 years. The cases peaked during August-October. 109 case-patients died (Case fatality ratio: 7% and most (80% of these patients had comorbid conditions such as diabetes (24%, chronic obstructive pulmonary disease (20%, hypertension (11% and pregnancy (11%. Case fatality was higher (16% among patients who were older than 60 years of age compared with other age groups. Conclusions: In Andhra Pradesh, H1N1 transmission peaked during August-October months and predominately affected adults. Case fatality was higher in patients older than 60 years with comorbid conditions.

  18. IL-17 response mediates acute lung injury induced by the 2009 Pandemic Influenza A(H1N1)Virus

    Institute of Scientific and Technical Information of China (English)

    Chenggang Li; Chen Wang; Zhongwei Chen; Li Xing; Chong Tang; Xiangwu Ju; Feng Guo; Jiejie Deng; Yan Zhao; Peng Yang; Jun Tang; Penghui Yang; Huanling Wang; Zhongpeng Zhao; Zhinan Yin; Bin Cao; Xiliang Wang; Chengyu Jiang; Yang Sun; Taisheng Li; Chen Wang; Zhong Wang; Zhen Zou; Yiwu Yan; Wei Wang

    2012-01-01

    The 2009 flu pandemic involved the emergence of a new strain of a swine-origin H1N1 influenza virus(S-OIV H1N1)that infected almost every country in the world.Most infections resulted in respiratory illness and some severe cases resulted in acute lung injury.In this report,we are the first to describe a mouse model of S-OIV virus infection with acute lung injury and immune responses that reflect human clinical disease.The clinical efficacy of the antiviral oseltamivir(Tamiflu)administered in the early stages of S-OIV H1N1 infection was confirmed in the mouse model.Moreover,elevated levels of IL-17,Th-17 mediators and IL-17-responsive cytokines were found in serum samples of S-OIV-infected patients in Beijing.IL-17 deficiency or treatment with monoclonal antibodies against IL-17-ameliorated acute lung injury induced by the S-OIV H1N1 virus in mice.These results suggest that IL-17 plays an important role in S-OIV-induced acute lung injury and that monoclonal antibodies against IL-17 could be useful as a potential therapeutic remedy for future S-OIV H1N1 pandemics.

  19. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    Science.gov (United States)

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  20. Pandemic (H1N1 2009 influenza: Experience from a critical care unit in India

    Directory of Open Access Journals (Sweden)

    Sahoo Jyoti

    2010-01-01

    Full Text Available This case series details our experience with seven patients with pandemic (H1N1 2009 influenza from an intensive care unit in India. All the patients had respiratory failure requiring ventilation except one; two patients developed pneumothorax. Of the seven patients, two died (28.5% and five recovered. Four patients had co-morbid conditions and one was morbidly obese; all the five patients were discharged alive.

  1. Designing inhibitors of M2 proton channel against H1N1 swine influenza virus.

    Directory of Open Access Journals (Sweden)

    Qi-Shi Du

    Full Text Available BACKGROUND: M2 proton channel of H1N1 influenza A virus is the target protein of anti-flu drugs amantadine and rimantadine. However, the two once powerful adamantane-based drugs lost their 90% bioactivity because of mutations of virus in recent twenty years. The NMR structure of the M2 channel protein determined by Schnell and Chou (Nature, 2008, 451, 591-595 may help people to solve the drug-resistant problem and develop more powerful new drugs against H1N1 influenza virus. METHODOLOGY: Docking calculation is performed to build the complex structure between receptor M2 proton channel and ligands, including existing drugs amantadine and rimantadine, and two newly designed inhibitors. The computer-aided drug design methods are used to calculate the binding free energies, with the computational biology techniques to analyze the interactions between M2 proton channel and adamantine-based inhibitors. CONCLUSIONS: 1 The NMR structure of M2 proton channel provides a reliable structural basis for rational drug design against influenza virus. 2 The channel gating mechanism and the inhibiting mechanism of M2 proton channel, revealed by the NMR structure of M2 proton channel, provides the new ideas for channel inhibitor design. 3 The newly designed adamantane-based inhibitors based on the modeled structure of H1N1-M2 proton channel have two pharmacophore groups, which act like a "barrel hoop", holding two adjacent helices of the H1N1-M2 tetramer through the two pharmacophore groups outside the channel. 4 The inhibitors with such binding mechanism may overcome the drug resistance problem of influenza A virus to the adamantane-based drugs.

  2. Antiviral Medications for Treatment of 2009 H1N1 Influenza and Pregnancy

    Centers for Disease Control (CDC) Podcasts

    2009-11-09

    This podcast features CDC's Dr. Sonja Rasmussen discussing the latest guidelines related to antiviral medications for treatment of 2009 H1N1 Influenza. Excerpt from a CDC-Medscape video series for physicians, nurses, pharmacists, and other healthcare professionals.  Created: 11/9/2009 by National Center for Health Marketing (NCHM); National Center on Birth Defects and Developmental Disabilities (NCBDDD).   Date Released: 1/21/2010.

  3. Molecular and phylogenetic analysis of influenza A H1N1 pandemic viruses in Cuba, May 2009 to August 2010.

    Science.gov (United States)

    Ramos, Alexander Piñón; Herrera, Belsy Acosta; Ramírez, Odalys Valdés; García, Amely Arencibia; Jiménez, Mayra Muné; Valdés, Clara Savón; Fernández, Angel Goyenechea; González, Grehete; Fernández, Suset I Oropesa; Báez, Guelsys González; Espinosa, Bárbara Hernández

    2013-07-01

    The influenza A(H1N1)pdm09 virus was detected in Cuba in May 2009. The introduction of a new virus with increased transmissibility into a population makes surveillance of the pandemic strain to the molecular level necessary. The aim of the present study was the molecular and phylogenetic analysis of pandemic influenza A(H1N1)pdm09 strains that circulated in Cuba between May 2009 and August 2010. Seventy clinical samples were included in the study. Nucleotide sequences from the hemagglutinin HA1 region segment were obtained directly from clinical samples. Genetic distances were calculated using MEGA v.5.05. A phylogenetic tree was constructed using MrBayes v.3.1.2 software. Potential N-glycosylation sites were predicted using NetNGlyc server 1.0. The 48 Cuban sequences of influenza A(H1N1)pdm09 obtained were similar to the A/California/07/2009 (H1N1) vaccine strain. Most of the Cuban strains belonged to clade 7. Cuban viruses showed amino acid changes, some of them located at three antigenic sites: Ca, Sa, and Sb. Two dominant mutations were detected: P83S (100%) and S203T (85.7%). Glycosylation site analysis revealed the gain of one site at position 162 in 13 sequences. The findings in this study contribute to our understanding of the progress of the influenza A(H1N1)pdm09 virus, since this virus is at the starting point of its evolution in humans.

  4. Radiographic study of severe Influenza-A (H1N1) disease in children

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Cailei, E-mail: zhaocailei197866@163.com [Department of Radiology, Shenzhen Children' s Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026 (China); Gan Yungen, E-mail: mickeyym@yahoo.cn [Department of Radiology, Shenzhen Children' s Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026 (China); Sun Jie, E-mail: sunxixi@21cn.com [Department of Radiology, Shenzhen Children' s Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026 (China)

    2011-09-15

    Objective: To characterize the radiographic findings of pediatric patients with severe Influenza-A (H1N1) disease. Methods: A retrospective study of data from chest X-ray, CT and MRI exam of 29 pediatric patients treated in intensive care unit for severe Influenza-A (H1N1) disease. Results: Disease developed quickly at early stage. Here are four types of radiographic findings. The disease continued to progress for 2-3 days and X-ray showed that all 29 patients had increased solid lesions with the existence of interstitial lesions. Four days later, all lung lesions showed absorption to certain degree. Fifteen days later, X-ray and CT showed complete or significant absorption in 19 cases (85.5%); delayed recovery was identified in 8 cases (27.6%), pulmonary fibrosis was found in 3 cases (10.3%), and 3 patients (10.3%) died. But the latter identified more lesions. Cranial CT and MRI were performed for 8 patients who had neurological symptoms. Of them, 3 cases (10.3%) were abnormal, showed symmetrical long T1 and T2 signal shadow in bilateral thalamus and longer T1 and T2 signals in the between. 3 cases had autopsy completed. Conclusion: The severe Influenza-A (H1N1) among children progression was generally rapid in the first 3 days. The overall radiographic findings are similar to acute respiratory distress syndrome (ARDS). A small portion of the patients occurred acute necrotizing encephalopathy and plastic bronchitis.

  5. Modelling influenza A(H1N1) 2009 epidemics using a random network in a distributed computing environment.

    Science.gov (United States)

    González-Parra, Gilberto; Villanueva, Rafael-J; Ruiz-Baragaño, Javier; Moraño, Jose-A

    2015-03-01

    In this paper we propose the use of a random network model for simulating and understanding the epidemics of influenza A(H1N1). The proposed model is used to simulate the transmission process of influenza A(H1N1) in a community region of Venezuela using distributed computing in order to accomplish many realizations of the underlying random process. These large scale epidemic simulations have recently become an important application of high-performance computing. The network model proposed performs better than the traditional epidemic model based on ordinary differential equations since it adjusts better to the irregularity of the real world data. In addition, the network model allows the consideration of many possibilities regarding the spread of influenza at the population level. The results presented here show how well the SEIR model fits the data for the AH1N1 time series despite the irregularity of the data and returns parameter values that are in good agreement with the medical data regarding AH1N1 influenza virus. This versatile network model approach may be applied to the simulation of the transmission dynamics of several epidemics in human networks. In addition, the simulation can provide useful information for the understanding, prediction and control of the transmission of influenza A(H1N1) epidemics.

  6. Genetic structure of human A/H1N1 and A/H3N2 influenza virus on Corsica Island: phylogenetic analysis and vaccine strain match, 2006-2010.

    Directory of Open Access Journals (Sweden)

    Alessandra Falchi

    Full Text Available BACKGROUND: The aim of this study was to analyse the genetic patterns of Hemagglutinin (HA genes of influenza A strains circulating on Corsica Island during the 2006-2009 epidemic seasons and the 2009-2010 pandemic season. METHODS: Nasopharyngeal samples from 371 patients with influenza-like illness (ILI were collected by General Practitioners (GPs of the Sentinelles Network through a randomised selection routine. RESULTS: Phylogenetic analysis of HA revealed that A/H3N2 strains circulating on Corsica were closely related to the WHO recommended vaccine strains in each analyzed season (2006-2007 to 2008-2009. Seasonal Corsican influenza A/H1N1 isolated during the 2007-2008 season had drifted towards the A/Brisbane/59/2007 lineage, the A/H1N1 vaccine strain for the 2008-2009 season. The A/H1N1 2009 (A/H1N1pdm strains isolated on Corsica Island were characterized by the S220T mutation specific to clade 7 isolates. It should be noted that Corsican isolates formed a separate sub-clade of clade 7 as a consequence of the presence of the fixed substitution D222E. The percentages of the perfect match vaccine efficacy, estimated by using the p(epitope model, against influenza viruses circulating on Corsica Island varied substantially across the four seasons analyzed, and tend to be highest for A/H1N1 compared with A/H3N2 vaccines, suggesting that cross-immunity seems to be stronger for the H1 HA gene. CONCLUSION: The molecular analysis of the HA gene of influenza viruses that circulated on Corsica Island between 2006-2010 showed for each season the presence of a dominant lineage characterized by at least one fixed mutation. The A/H3N2 and A/H1N1pdm isolates were characterized by multiples fixation at antigenic sites. The fixation of specific mutations at each outbreak could be explained by the combination of a neutral phenomenon and a founder effect, favoring the presence of a dominant lineage in a closed environment such as Corsica Island.

  7. An Influenza A/H1N1/2009 Hemagglutinin Vaccine Produced in Escherichia coli

    Science.gov (United States)

    Aguilar-Yáñez, José M.; Portillo-Lara, Roberto; Mendoza-Ochoa, Gonzalo I.; García-Echauri, Sergio A.; López-Pacheco, Felipe; Bulnes-Abundis, David; Salgado-Gallegos, Johari; Lara-Mayorga, Itzel M.; Webb-Vargas, Yenny; León-Angel, Felipe O.; Rivero-Aranda, Ramón E.; Oropeza-Almazán, Yuriana; Ruiz-Palacios, Guillermo M.; Zertuche-Guerra, Manuel I.; DuBois, Rebecca M.; White, Stephen W.; Schultz-Cherry, Stacey; Russell, Charles J.; Alvarez, Mario M.

    2010-01-01

    Background The A/H1N1/2009 influenza pandemic made evident the need for faster and higher-yield methods for the production of influenza vaccines. Platforms based on virus culture in mammalian or insect cells are currently under investigation. Alternatively, expression of fragments of the hemagglutinin (HA) protein in prokaryotic systems can potentially be the most efficacious strategy for the manufacture of large quantities of influenza vaccine in a short period of time. Despite experimental evidence on the immunogenic potential of HA protein constructs expressed in bacteria, it is still generally accepted that glycosylation should be a requirement for vaccine efficacy. Methodology/Principal Findings We expressed the globular HA receptor binding domain, referred to here as HA63–286-RBD, of the influenza A/H1N1/2009 virus in Escherichia coli using a simple, robust and scalable process. The recombinant protein was refolded and purified from the insoluble fraction of the cellular lysate as a single species. Recombinant HA63–286-RBD appears to be properly folded, as shown by analytical ultracentrifugation and bio-recognition assays. It binds specifically to serum antibodies from influenza A/H1N1/2009 patients and was found to be immunogenic, to be capable of triggering the production of neutralizing antibodies, and to have protective activity in the ferret model. Conclusions/Significance Projections based on our production/purification data indicate that this strategy could yield up to half a billion doses of vaccine per month in a medium-scale pharmaceutical production facility equipped for bacterial culture. Also, our findings demonstrate that glycosylation is not a mandatory requirement for influenza vaccine efficacy. PMID:20661476

  8. An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    José M Aguilar-Yáñez

    Full Text Available BACKGROUND: The A/H1N1/2009 influenza pandemic made evident the need for faster and higher-yield methods for the production of influenza vaccines. Platforms based on virus culture in mammalian or insect cells are currently under investigation. Alternatively, expression of fragments of the hemagglutinin (HA protein in prokaryotic systems can potentially be the most efficacious strategy for the manufacture of large quantities of influenza vaccine in a short period of time. Despite experimental evidence on the immunogenic potential of HA protein constructs expressed in bacteria, it is still generally accepted that glycosylation should be a requirement for vaccine efficacy. METHODOLOGY/PRINCIPAL FINDINGS: We expressed the globular HA receptor binding domain, referred to here as HA(63-286-RBD, of the influenza A/H1N1/2009 virus in Escherichia coli using a simple, robust and scalable process. The recombinant protein was refolded and purified from the insoluble fraction of the cellular lysate as a single species. Recombinant HA(63-286-RBD appears to be properly folded, as shown by analytical ultracentrifugation and bio-recognition assays. It binds specifically to serum antibodies from influenza A/H1N1/2009 patients and was found to be immunogenic, to be capable of triggering the production of neutralizing antibodies, and to have protective activity in the ferret model. CONCLUSIONS/SIGNIFICANCE: Projections based on our production/purification data indicate that this strategy could yield up to half a billion doses of vaccine per month in a medium-scale pharmaceutical production facility equipped for bacterial culture. Also, our findings demonstrate that glycosylation is not a mandatory requirement for influenza vaccine efficacy.

  9. Impact of obesity in patients infected with 2009 influenza A(H1N1).

    Science.gov (United States)

    Díaz, Emili; Rodríguez, Alejandro; Martin-Loeches, Ignacio; Lorente, Leonardo; Del Mar Martín, María; Pozo, Juan Carlos; Montejo, Juan Carlos; Estella, Angel; Arenzana, Ángel; Rello, Jordi

    2011-02-01

    A large proportion of patients infected with 2009 influenza A(H1N1) (A[H1N1]) are obese. Obesity has been proposed as a risk factor influencing outcome in these patients. However, its role remains unclear. We evaluate the outcome of patients who are obese and infected with A(H1N1) in the ICU, determining whether obesity is a risk factor for mortality. This was a prospective, observational, and multicenter study performed in 144 ICUs in Spain. Data were obtained from the Grupo de Trabajo en Enfermedades Infecciosas de la Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias (GTEI/SEMICYUC) registry. Adult patients with A(H1N1) that was confirmed by real-time polymerase chain reaction were included in the analysis. Patients who were obese (BMI > 30) were compared with patients who were nonobese. Cox regression analysis was used to determine adjusted mortality. Differences of P 40). Mechanical ventilation (MV) was more frequently applied in patients who were obese (64% vs 52.4%, P < .01) Patients with obesity remained on MV longer than patients who were nonobese (6.5 ± 10.3 days vs 9.3 ± 9.7 days, P = .02), had longer ICU length of stay (10.8 ± 12.1 days vs 13.7 ± 11.7 days, P = .03), and had longer hospitalization (18.2 ± 14.6 days vs 22.2 ± 16.5 days, P = .02). Mortality adjusted by severity and potential confounders identified that obesity was not significantly associated with ICU mortality (hazard ratio, 1.1; 95% CI, 0.69-1.75; P = .68). In our cohort, patients who were obese and infected with A(H1N1) did not have increased mortality. However, there was an association between obesity and higher ICU resource consumption.

  10. Genetic characterization of the influenza A pandemic (H1N1 2009 virus isolates from India.

    Directory of Open Access Journals (Sweden)

    Varsha A Potdar

    Full Text Available BACKGROUND: The Influenza A pandemic H1N1 2009 (H1N1pdm virus appeared in India in May 2009 and thereafter outbreaks with considerable morbidity and mortality have been reported from many parts of the country. Continuous monitoring of the genetic makeup of the virus is essential to understand its evolution within the country in relation to global diversification and to track the mutations that may affect the behavior of the virus. METHODS: H1N1pdm viruses were isolated from both recovered and fatal cases representing major cities and sequenced. Phylogenetic analyses of six concatenated whole genomes and the hemagglutinin (HA gene of seven more isolates from May-September 2009 was performed with reference to 685 whole genomes of global isolates available as of November 24, 2009. Molecular characterization of all the 8 segments was carried out for known pathogenic markers. RESULTS: The first isolate of May 2009 belonged to clade 5. Although clade 7 was the dominant H1N1pdm lineage in India, both clades 6 and 7 were found to be co-circulating. The neuraminidase of all the Indian isolates possessed H275, the marker for sensitivity to the neuraminidase inhibitor Oseltamivir. Some of the mutations in HA are at or in the vicinity of antigenic sites and may therefore be of possible antigenic significance. Among these a D222G mutation in the HA receptor binding domain was found in two of the eight Indian isolates obtained from fatal cases. CONCLUSIONS: The majority of the 13 Indian isolates grouped in the globally most widely circulating H1N1pdm clade 7. Further, correlations of the mutations specific to clade 7 Indian isolates to viral fitness and adaptability in the country remains to be understood. The D222G mutation in HA from isolates of fatal cases needs to be studied for pathogenicity.

  11. Entry screening to delay local transmission of 2009 pandemic influenza A (H1N1

    Directory of Open Access Journals (Sweden)

    Wong Helen WC

    2010-03-01

    Full Text Available Abstract Background After the WHO issued the global alert for 2009 pandemic influenza A (H1N1, many national health agencies began to screen travelers on entry in airports, ports and border crossings to try to delay local transmission. Methods We reviewed entry screening policies adopted by different nations and ascertained dates of official report of the first laboratory-confirmed imported H1N1 case and the first laboratory-confirmed untraceable or 'local' H1N1 case. Results Implementation of entry screening policies was associated with on average additional 7-12 day delays in local transmission compared to nations that did not implement entry screening, with lower bounds of 95% confidence intervals consistent with no additional delays and upper bounds extending to 20-30 day additional delays. Conclusions Entry screening may lead to short-term delays in local transmission of a novel strain of influenza virus. The resources required for implementation should be balanced against the expected benefits of entry screening.

  12. H1N1 Influenza Patient Saved by Extracorporeal Membrane Oxygenation: First Report from Iran

    Directory of Open Access Journals (Sweden)

    Alireza Jahangirifard

    2016-11-01

    Full Text Available Respiratory failure is a serious complication of H1N1 influenza that, if not properly managed, can cause death. When mechanical ventilation is not effective, the only way to save the patient’s life is extracorporeal membrane oxygenation (ECMO. A prolonged type of cardiopulmonary bypass, ECMO is a high-cost management modality compared to other conventional types and its maintenance requires skilled personnel. Such staff usually comprises the members of open-heart surgical teams.  Herein, we describe a patient with H1N1 influenza and severe respiratory failure not improved by mechanical ventilation who was admitted to Masih Daneshvari Medical Center in March 2015. She was placed on ECMO, from which she was successfully weaned 9 days later. The patient was discharged from the hospital after 52 days. Follow-up till 11 months after discharge revealed completely active life with no problem. There should be a close collaboration among infectious disease specialists, cardiac anesthetists, cardiac surgeons, and intensivists for the correct timing of ECMO placement, subsequent weaning, and care of the patient. This team work was the key to our success story. This is the first patient to survive H1N1 with the use of ECMO in Iran. 

  13. Narcolepsy and influenza A(H1N1) pandemic 2009 vaccination in the United States.

    Science.gov (United States)

    Duffy, Jonathan; Weintraub, Eric; Vellozzi, Claudia; DeStefano, Frank

    2014-11-11

    To assess the occurrence of narcolepsy after influenza vaccines used in the United States that contained the influenza A(H1N1)pdm09 virus strain. A population-based cohort study in the Vaccine Safety Datalink with an annual population of more than 8.5 million people. All persons younger than 30 years who received a 2009 pandemic or a 2010-2011 seasonal influenza vaccine were identified. Their medical visit history was searched for a first-ever occurrence of an ICD-9 narcolepsy diagnosis code through the end of 2011. Chart review was done to confirm the diagnosis and determine the date of symptom onset. Cases were patients who met the International Classification of Sleep Disorders, 2nd edition, narcolepsy diagnostic criteria. We compared the observed number of cases after vaccination to the number expected to occur by chance alone. The number vaccinated with 2009 pandemic vaccine was 650,995 and with 2010-2011 seasonal vaccine was 870,530. Among these patients, 70 had a first-ever narcolepsy diagnosis code after vaccination, of which 16 had a chart-confirmed incident diagnosis of narcolepsy. None had their symptom onset during the 180 days after receipt of a 2009 pandemic vaccine compared with 6.52 expected, and 2 had onset after a 2010-2011 seasonal vaccine compared with 8.83 expected. Influenza vaccines containing the A(H1N1)pdm09 virus strain used in the United States were not associated with an increased risk of narcolepsy. Vaccination with the influenza A(H1N1)pdm09 vaccine viral antigens does not appear to be sufficient by itself to increase the incidence of narcolepsy in a population. © 2014 American Academy of Neurology.

  14. Willingness to accept H1N1 pandemic influenza vaccine: A cross-sectional study of Hong Kong community nurses

    Directory of Open Access Journals (Sweden)

    Wong Carmen

    2010-10-01

    Full Text Available Abstract Background The 2009 pandemic of influenza A (H1N1 infection has alerted many governments to make preparedness plan to control the spread of influenza A (H1N1 infection. Vaccination for influenza is one of the most important primary preventative measures to reduce the disease burden. Our study aims to assess the willingness of nurses who work for the community nursing service (CNS in Hong Kong on their acceptance of influenza A (H1N1 influenza vaccination. Methods 401 questionnaires were posted from June 24, 2009 to June 30, 2009 to community nurses with 67% response rate. Results of the 267 respondents on their willingness to accept influenza A (H1N1 vaccine were analyzed. Results Twenty-seven percent of respondents were willing to accept influenza vaccination if vaccines were available. Having been vaccinated for seasonable influenza in the previous 12 months were significantly independently associated with their willingness to accept influenza A (H1N1 vaccination (OR = 4.03; 95% CI: 2.03-7.98. Conclusions Similar to previous findings conducted in hospital healthcare workers and nurses, we confirmed that the willingness of community nurses to accept influenza A (H1N1 vaccination is low. Future studies that evaluate interventions to address nurses' specific concerns or interventions that aim to raise the awareness among nurses on the importance of influenza A (H1N1 vaccination to protect vulnerable patient populations is needed.

  15. Efficacy of a pandemic (H1N1) 2009 virus vaccine in pigs against the pandemic influenza virus is superior to commercially available swine influenza vaccines.

    Science.gov (United States)

    Loeffen, W L A; Stockhofe, N; Weesendorp, E; van Zoelen-Bos, D; Heutink, R; Quak, S; Goovaerts, D; Heldens, J G M; Maas, R; Moormann, R J; Koch, G

    2011-09-28

    In April 2009 a new influenza A/H1N1 strain, currently named "pandemic (H1N1) influenza 2009" (H1N1v), started the first official pandemic in humans since 1968. Several incursions of this virus in pig herds have also been reported from all over the world. Vaccination of pigs may be an option to reduce exposure of human contacts with infected pigs, thereby preventing cross-species transfer, but also to protect pigs themselves, should this virus cause damage in the pig population. Three swine influenza vaccines, two of them commercially available and one experimental, were therefore tested and compared for their efficacy against an H1N1v challenge. One of the commercial vaccines is based on an American classical H1N1 influenza strain, the other is based on a European avian H1N1 influenza strain. The experimental vaccine is based on reassortant virus NYMC X179A (containing the hemagglutinin (HA) and neuraminidase (NA) genes of A/California/7/2009 (H1N1v) and the internal genes of A/Puerto Rico/8/34 (H1N1)). Excretion of infectious virus was reduced by 0.5-3 log(10) by the commercial vaccines, depending on vaccine and sample type. Both vaccines were able to reduce virus replication especially in the lower respiratory tract, with less pathological lesions in vaccinated and subsequently challenged pigs than in unvaccinated controls. In pigs vaccinated with the experimental vaccine, excretion levels of infectious virus in nasal and oropharyngeal swabs, were at or below 1 log(10)TCID(50) per swab and lasted for only 1 or 2 days. An inactivated vaccine containing the HA and NA of an H1N1v is able to protect pigs from an infection with H1N1v, whereas swine influenza vaccines that are currently available are of limited efficaciousness. Whether vaccination of pigs against H1N1v will become opportune remains to be seen and will depend on future evolution of this strain in the pig population. Close monitoring of the pig population, focussing on presence and evolution of

  16. Planning for the next influenza H1N1 season: a modelling study

    Directory of Open Access Journals (Sweden)

    Pelat Camille

    2010-10-01

    Full Text Available Abstract Background The level of herd immunity before and after the first 2009 pandemic season is not precisely known, and predicting the shape of the next pandemic H1N1 season is a difficult challenge. Methods This was a modelling study based on data on medical visits for influenza-like illness collected by the French General Practitioner Sentinel network, as well as pandemic H1N1 vaccination coverage rates, and an individual-centred model devoted to influenza. We estimated infection attack rates during the first 2009 pandemic H1N1 season in France, and the rates of pre- and post-exposure immunity. We then simulated various scenarios in which a pandemic influenza H1N1 virus would be reintroduced into a population with varying levels of protective cross-immunity, and considered the impact of extending influenza vaccination. Results During the first pandemic season in France, the proportion of infected persons was 18.1% overall, 38.3% among children, 14.8% among younger adults and 1.6% among the elderly. The rates of pre-exposure immunity required to fit data collected during the first pandemic season were 36% in younger adults and 85% in the elderly. We estimated that the rate of post-exposure immunity was 57.3% (95% Confidence Interval (95%CI 49.6%-65.0% overall, 44.6% (95%CI 35.5%-53.6% in children, 53.8% (95%CI 44.5%-63.1% in younger adults, and 87.4% (95%CI 82.0%-92.8% in the elderly. The shape of a second season would depend on the degree of persistent protective cross-immunity to descendants of the 2009 H1N1 viruses. A cross-protection rate of 70% would imply that only a small proportion of the population would be affected. With a cross-protection rate of 50%, the second season would have a disease burden similar to the first, while vaccination of 50% of the entire population, in addition to the population vaccinated during the first pandemic season, would halve this burden. With a cross-protection rate of 30%, the second season could be

  17. Computed tomography findings in patients with H1N1 influenza A infection

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Viviane Brandao; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Marchiori, Edson, E-mail: edmarchiori@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Zanetti, Glaucia [Faculdade de Medicina de Petropolis (FMP), RJ (Brazil)

    2013-09-15

    The present study aimed to review high resolution computed tomography findings in patients with H1N1 influenza A infection. The most common tomographic findings include ground-glass opacities, areas of consolidation or a combination of both patterns. Some patients may also present bronchial wall thickening, airspace nodules, crazy-paving pattern, perilobular opacity, air trapping and findings related to organizing pneumonia. These abnormalities are frequently bilateral, with subpleural distribution. Despite their non specificity, it is important to recognize the main tomographic findings in patients affected by H1N1 virus in order to include this possibility in the differential diagnosis, characterize complications and contribute in the follow-up, particularly in cases of severe disease. (author)

  18. Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1 pandemic.

    Directory of Open Access Journals (Sweden)

    Samantha Cook

    Full Text Available BACKGROUND: Google Flu Trends (GFT uses anonymized, aggregated internet search activity to provide near-real time estimates of influenza activity. GFT estimates have shown a strong correlation with official influenza surveillance data. The 2009 influenza virus A (H1N1 pandemic [pH1N1] provided the first opportunity to evaluate GFT during a non-seasonal influenza outbreak. In September 2009, an updated United States GFT model was developed using data from the beginning of pH1N1. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the accuracy of each U.S. GFT model by comparing weekly estimates of ILI (influenza-like illness activity with the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet. For each GFT model we calculated the correlation and RMSE (root mean square error between model estimates and ILINet for four time periods: pre-H1N1, Summer H1N1, Winter H1N1, and H1N1 overall (Mar 2009-Dec 2009. We also compared the number of queries, query volume, and types of queries (e.g., influenza symptoms, influenza complications in each model. Both models' estimates were highly correlated with ILINet pre-H1N1 and over the entire surveillance period, although the original model underestimated the magnitude of ILI activity during pH1N1. The updated model was more correlated with ILINet than the original model during Summer H1N1 (r = 0.95 and 0.29, respectively. The updated model included more search query terms than the original model, with more queries directly related to influenza infection, whereas the original model contained more queries related to influenza complications. CONCLUSIONS: Internet search behavior changed during pH1N1, particularly in the categories "influenza complications" and "term for influenza." The complications associated with pH1N1, the fact that pH1N1 began in the summer rather than winter, and changes in health-seeking behavior each may have played a part. Both GFT models performed well prior to and during pH1

  19. Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic

    Science.gov (United States)

    Cook, Samantha; Conrad, Corrie; Fowlkes, Ashley L.; Mohebbi, Matthew H.

    2011-01-01

    Background Google Flu Trends (GFT) uses anonymized, aggregated internet search activity to provide near-real time estimates of influenza activity. GFT estimates have shown a strong correlation with official influenza surveillance data. The 2009 influenza virus A (H1N1) pandemic [pH1N1] provided the first opportunity to evaluate GFT during a non-seasonal influenza outbreak. In September 2009, an updated United States GFT model was developed using data from the beginning of pH1N1. Methodology/Principal Findings We evaluated the accuracy of each U.S. GFT model by comparing weekly estimates of ILI (influenza-like illness) activity with the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). For each GFT model we calculated the correlation and RMSE (root mean square error) between model estimates and ILINet for four time periods: pre-H1N1, Summer H1N1, Winter H1N1, and H1N1 overall (Mar 2009–Dec 2009). We also compared the number of queries, query volume, and types of queries (e.g., influenza symptoms, influenza complications) in each model. Both models' estimates were highly correlated with ILINet pre-H1N1 and over the entire surveillance period, although the original model underestimated the magnitude of ILI activity during pH1N1. The updated model was more correlated with ILINet than the original model during Summer H1N1 (r = 0.95 and 0.29, respectively). The updated model included more search query terms than the original model, with more queries directly related to influenza infection, whereas the original model contained more queries related to influenza complications. Conclusions Internet search behavior changed during pH1N1, particularly in the categories “influenza complications” and “term for influenza.” The complications associated with pH1N1, the fact that pH1N1 began in the summer rather than winter, and changes in health-seeking behavior each may have played a part. Both GFT models performed well prior to and during pH1N1

  20. Persistence of the 2009 pandemic influenza A (H1N1) virus on N95 respirators.

    Science.gov (United States)

    Coulliette, A D; Perry, K A; Edwards, J R; Noble-Wang, J A

    2013-04-01

    In the United States, the 2009 pandemic influenza A (H1N1) virus (pH1N1) infected almost 20% of the population and caused >200,000 hospitalizations and >10,000 deaths from April 2009 to April 2010. On 24 April 2009, the CDC posted interim guidance on infection control measures in health care settings explicitly for pH1N1 and recommended using filtering face respirators (FFRs) when in close contact with a suspected- or confirmed-to-be-infected individual, particularly when performing aerosol-generating procedures. The persistence and infectivity of pH1N1 were evaluated on FFRs, specifically N95 respirators, under various conditions of absolute humidity (AH) (4.1 × 10(5) mPa, 6.5 × 10(5) mPa, and 14.6 × 10(5) mPa), sample matrices (2% fetal bovine serum [FBS], 5 mg/ml mucin, and viral medium), and times (4, 12, 24, 48, 72, and 144 h). pH1N1 was distributed onto N95 coupons (3.8 to 4.2 cm(2)) and extracted by a vortex-centrifugation-filtration process, and the ability of the remaining virus to replicate was quantified using an enzyme-linked immunosorbent assay (ELISA) to determine the log10 concentration of the infectious virus per coupon. Overall, pH1N1 remained infectious for 6 days, with an approximately 1-log10 loss of virus concentrations over this time period. Time and AH both affected virus survival. We found significantly higher (P ≤ 0.01) reductions in virus concentrations at time points beyond 24 to 72 h (-0.52-log10 reduction) and 144 h (-0.74) at AHs of 6.5 × 10(5) mPa (-0.53) and 14.6 × 10(5) mPa (-0.47). This research supports discarding respirators after close contact with a person with suspected or confirmed influenza infection due to the virus's demonstrated ability to persist and remain infectious.

  1. Novel Influenza A (H1N1) Virus Infection in Children: Chest Radiographic and CT Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Jeong; Lee, Young Seok; Lee, Jee Young; Lee, Kun Song [Dankook University College of Medicine, Dankook University Hospital, Cheonan (Korea, Republic of)

    2010-12-15

    The purpose of this study was to evaluate the chest radiographic and CT findings of novel influenza A (H1N1) virus infection in children, the population that is more vulnerable to respiratory infection than adults. The study population comprised 410 children who were diagnosed with an H1N1 infection from August 24, 2009 to November 11, 2009 and underwent chest radiography at Dankook University Hospital in Korea. Six of these patients also underwent chest CT. The initial chest radiographs were classified as normal or abnormal. The abnormal chest radiographs and high resolution CT scans were assessed for the pattern and distribution of parenchymal lesions, and the presence of complications such as atelectasis, pleural effusion, and pneumomediastinum. The initial chest radiograph was normal in 384 of 410 (94%) patients and abnormal in 26 of 410 (6%) patients. Parenchymal abnormalities seen on the initial chest radiographs included prominent peribronchial marking (25 of 26, 96%), consolidation (22 of 26, 85%), and ground-glass opacities without consolidation (2 of 26, 8%). The involvement was usually bilateral (19 of 26, 73%) with the lower lung zone predominance (22 of 26, 85%). Atelectasis was observed in 12 (46%) and pleural effusion in 11 (42%) patients. CT (n = 6) scans showed peribronchovascular interstitial thickening (n = 6), ground-glass opacities (n = 5), centrilobular nodules (n = 4), consolidation (n = 3), mediastinal lymph node enlargement (n = 5), pleural effusion (n = 3), and pneumomediastinum (n = 3). Abnormal chest radiographs were uncommon in children with a swine-origin influenza A (H1N1) virus (S-OIV) infection. In children, H1N1 virus infection can be included in the differential diagnosis, when chest radiographs and CT scans show prominent peribronchial markings and ill-defined patchy consolidation with mediastinal lymph node enlargement, pleural effusion and pneumomediastinum

  2. C-Methylated Flavonoids from Cleistocalyx operculatus and Their Inhibitory Effects on Novel Influenza A (H1N1) Neuraminidase

    DEFF Research Database (Denmark)

    Dao, Trong-Tuan; Tung, Bui-Thanh; Nguyen, Phi-Hung

    2010-01-01

    As part of an ongoing study focused on the discovery of anti-influenza agents from plants, four new (1-4) and 10 known (5-14) C-methylated flavonoids were isolated from a methanol extract of Cleistocalyx operculatus buds using an influenza H1N1 neuraminidase inhibition assay. Compounds 4, 7, 8......, and 14, with a chalcone skeleton, showed significant inhibitory effects on the viral neuraminidases from two influenza viral strains, H1N1 and H9N2. Compound 4 showed the strongest inhibitory activity against the neuraminidases from novel influenza H1N1 (WT) and oseltamivir-resistant novel H1N1 (H274Y...... as neuraminidase inhibitors for novel influenza H1N1....

  3. The epidemic wave of influenza A (H1N1) in Brazil, 2009.

    Science.gov (United States)

    Codeço, Cláudia Torres; Cordeiro, Josiane da Silva; Lima, Arthur Weiss da Silva; Colpo, Rodrigo Amarante; Cruz, Oswaldo Gonçalves; Coelho, Flavio Codeço; Luz, Paula Mendes; Struchiner, Claudio José; Barros, Fernando Ribeiro de

    2012-07-01

    This study describes the main features of pandemic influenza A (H1N1) in Brazil during 2009. Brazil is a large country that extends roughly from latitudes 5ºN to 34ºS. Brazil has tropical and sub-tropical climates, a heterogeneous population distribution, and intense urbanization in the southern portions of the country and along its Atlantic coast. Our analysis points to a wide variation in infection rates throughout the country, and includes both latitudinal effects and strong variations in detection rates. Two states (out of a total of 23) were responsible for 73% of all cases reported. Real time reproduction numbers demonstrate that influenza transmission was sustained in the country, beginning in May of 2009. Finally, this study discusses the challenges in understanding the infection dynamics of influenza and the adequacy of Brazil's influenza monitoring system.

  4. [Epidemiology of influenza A (H1N1) worldwide and in Spain].

    Science.gov (United States)

    Vaqué, Josep

    2010-03-01

    On June 11, 2009, the World Health Organization declared an established pandemic due to a new influenza virus A (H1N1) of swine origin. Initial cases were detected in Mexico in March and within 6 weeks the virus had spread worldwide. The transmissibility of influenza A (H1NA) is slightly higher than that of the seasonal virus, but its pathogenicity and virulence are low. The main target groups of this new virus have been children and young adults under 30 years old. Mortality has affected mainly persons aged between 20 and 50 years old. In areas with temperate climates, two epidemic waves have occurred. The first one, from mid-April to mid-August, affected Mexico, the United States and, consecutively, Spain, England, Japan, and other countries in the northern hemisphere. A few weeks later, coinciding with the beginning of the influenza season, the H1N1 epidemic started in the southern hemisphere countries, especially Argentina, Chile, Australia and New Zealand; in these countries, the epidemic finished at the end of September or October. The second wave affected the northern hemisphere, starting in the United States and Mexico at the beginning of September, and a few weeks later in European countries. In mid-December, this wave was considered to have ended, although some influenza activity persists. The intensity of this second wave was higher compared to the first one.

  5. Neutralization and Binding Profile of Monoclonal Antibodies Generated Against Influenza A H1N1 Viruses.

    Science.gov (United States)

    Shembekar, Nachiket; Mallajosyula, Vamsee V Aditya; Malik, Ankita; Saini, Ashok; Varadarajan, Raghavan; Gupta, Satish Kumar

    2016-08-01

    Monoclonal antibodies (MAbs) provide scope for the development of better therapeutics and diagnostic tools. Herein, we describe the binding and neutralization profile(s) for a panel of murine MAbs generated against influenza A H1N1 viruses elicited by immunization with pandemic H1 recombinant hemagglutinin (rHA)/whole virus or seasonal H1 rHA. Neutralizing MAbs, MA-2070 and MA-M, were obtained after pandemic A/California/07/2009 (H1N1) virus/rHA immunization(s). Both MAbs reacted specifically with rHA from A/California/07/2009 and A/England/195/2009 in ELISA. MA-2070 bound rHA of A/California/07/2009 with high affinity (KD = 51.36 ± 9.20 nM) and exhibited potent in vitro neutralization (IC50 = 2.50 μg/mL). MA-2070 bound within the stem domain of HA. MA-M exhibited both hemagglutination inhibition (HI, 1.50 μg/mL) and in vitro neutralization (IC50 = 0.66 μg/mL) activity against the pandemic A/California/07/2009 virus and showed higher binding affinity (KD = 9.80 ± 0.67 nM) than MA-2070. MAb, MA-H generated against the seasonal A/Solomon Islands/03/2006 (H1N1) rHA binds within the head domain and bound the seasonal H1N1 (A/Solomon Islands/03/2006 and A/New Caledonia/20/1990) rHAs with high affinity (KD; 0.72-8.23 nM). MA-H showed high HI (2.50 μg/mL) and in vitro neutralization (IC50 = 2.61 μg/mL) activity against the A/Solomon Islands/03/2006 virus. All 3 MAbs failed to react in ELISA with rHA from various strains of H2N2, H3N2, H5N1, H7N9, and influenza virus B, suggesting their specificity for either pandemic or seasonal H1N1 influenza virus. The MAbs reported here may be useful in developing diagnostic assays.

  6. Cross-neutralizing antibodies to pandemic 2009 H1N1 and recent seasonal H1N1 influenza A strains influenced by a mutation in hemagglutinin subunit 2.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2011-06-01

    Full Text Available Pandemic 2009 H1N1 influenza A virus (2009 H1N1 differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes, we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01-2006/07 seasons. Among adults aged 48-64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05-2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2. A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure.

  7. H1N1 influenza infection in children: Frequency, pattern, and outcome of chest radiographic abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.-Y. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, J.H., E-mail: jhkate@skku.ed [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Eo, H.; Jeon, T.Y.; Shin, K.E.; Shin, W.S.; Jung, H.N. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Y.-J. [Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2011-04-15

    Aim: To describe the frequency, pattern, and outcome of chest radiographic abnormalities in children with H1N1 influenza infection. Materials and methods: Three hundred and fourteen paediatric patients with confirmed H1N1 influenza infection who underwent chest radiography at presentation at a single institution during the outbreak in 2009 were retrospectively reviewed. Abnormal chest radiographic findings related to acute infection were analysed in terms of frequency, pattern, and distribution. Medical records and follow-up radiographs were also reviewed to assess clinical features and outcomes. Results: Chest lesions suggesting acute infection were identified in 49 (16%) patients (mean age 8.2 years, range approximately 1.8-18.5 years). The most common finding was prominent peribronchial marking (71%), followed by air-space opacity (51%) with or without volume decrease, generalized hyperinflation (24%), and pleural effusion (20%). Other minor findings included pneumomediastinum (n = 2) and a nodule (n = 1). Distributions were bilateral (55%) or unilateral (45%) with frequent involvement of lower (78%), and middle (59%) lung zones. Thirty-nine patients (80%) were hospitalized and six (12%) required mechanical ventilation, followed by recovery. Thirty-one out of the 33 patients that underwent follow-up radiography showed marked resolution of all radiographic abnormalities. Conclusion: The frequency of a chest radiographic abnormality was found to be low in children with H1N1 influenza infection. Although typical radiographic findings of a viral lower respiratory infection were more common, unilateral involvement and air-space opacity were common, often with pleural effusion. Furthermore, pulmonary lesions showed near complete resolution on follow-up radiographs in the majority of patients.

  8. Can breathing circuit filters help prevent the spread of influenza A (H1N1 virus from intubated patients?

    Directory of Open Access Journals (Sweden)

    Heuer, Jan F.

    2013-04-01

    Full Text Available [english] Introduction: In March 2010, more than 213 countries worldwide reported laboratory confirmed cases of influenza H1N1 infections with at least 16,813 deaths. In some countries, roughly 10 to 30% of the hospitalized patients were admitted to the ICU and up to 70% of those required mechanical ventilation. The question now arises whether breathing system filters can prevent virus particles from an infected patient from entering the breathing system and passing through the ventilator into the ambient air.We tested the filters routinely used in our institution for their removal efficacy and efficiency for the influenza virus A H1N1 (A/PR/8/34.Methods: Laboratory investigation of three filters (PALL Ultipor 25, Uor 100 and Pall BB50T Breathing Circuit Filter, manufactured by Pall Life Sciences using a monodispersed aerosol of human influenza A (H1N1 virus in an air stream model with virus particles quantified as cytopathic effects in cultured canine kidney cells (MDCK. Results: The initial viral load of 7.74±0.27 log was reduced to a viral load of ≤2.43 log, behind the filter. This represents a viral filtration efficiency of ≥99.9995%. Conclusion: The three tested filters retained the virus input, indicating that their use in the breathing systems of intubated and mechanically ventilated patients can reduce the risk of spreading the virus to the breathing system and the ambient air.

  9. Initial psychological responses to Influenza A, H1N1 ("Swine flu"

    Directory of Open Access Journals (Sweden)

    Neto Felix

    2009-10-01

    Full Text Available Abstract Background The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork. We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu" in the six days following the WHO pandemic alert level 5, and regional differences in these responses. Methods 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180 or Europe (N = 148. Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption Results 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p Conclusion Initial responses to Influenza A show large regional differences in anxiety, with Malaysians more anxious and more likely to reduce travel and to buy masks and food. Discussions with family and friends may reinforce existing anxiety levels. Particular groups (homosexuals, prostitutes, the homeless are perceived as at greater risk, potentially leading to increased prejudice during a pandemic. Europeans underestimated mortality of seasonal flu, and require more information about the protection given by seasonal flu inoculation.

  10. Homology modelling and insilico analysis of neuraminidase protein in H1N1 Influenza A virus

    Directory of Open Access Journals (Sweden)

    Abhilash Manohar

    2011-02-01

    Full Text Available In this work, modelling of Neuraminidase protein of Influenza A virus (A/Himeji/1/2009(H1N1 neuraminidase (NA protein was done using Modeller 9V2. Modelled structure was submitted to protein model database and could be downloaded using accession number PM0075830. The modelled protein structure was subjected to In silco analysis using various bioinformatics tools. Two anti-influenza drugs currently being used to treat infected patients are oseltamivir (Tamiflu and zanamivir (Relenza, both of which target the neuraminidase enzyme of the virus. Reports of the emergence of drug resistance make the development of new anti-influenza molecules a priority. Hence the modelled structure of H1NI Neuraminidase could be very useful for in silico analysis of potential neuraminidase inhibitors.

  11. Influenza pandêmica A (H1N1 2009: fatores de risco para o internamento Pandemic influenza A (H1N1 2009: risk factors for hospitalization

    Directory of Open Access Journals (Sweden)

    Luana Lenzi

    2012-02-01

    Full Text Available OBJETIVO: Avaliar os aspectos da influenza pandêmica A (H1N1 2009 em pacientes hospitalizados a fim de identificar os fatores de risco para o internamento e, consequentemente, para o agravamento da doença. MÉTODOS: Estudo observacional e retrospectivo realizado entre março e dezembro de 2010. Os dados foram coletados a partir do Sistema Nacional de Agravos de Notificação do Ministério da Saúde. Foram incluídos somente os pacientes hospitalizados e não hospitalizados com confirmação laboratorial da infecção durante o período de estudo. As variáveis referentes às características demográficas e clínicas foram avaliadas estatisticamente a fim de comparar as taxas de internamento na presença ou na ausência desses fatores. Os fatores de risco foram identificados por regressão logística. RESULTADOS: Foram incluídos no estudo 4.740 pacientes com confirmação laboratorial da infecção. Desses, 1.911 foram internados, e 258 (13,5% foram a óbito. Os fatores de risco para o internamento foram idade (faixa etária de 20 a 29 anos, etnia negra ou indígena, presença de algumas comorbidades (cardiopatias, pneumopatias, nefropatias, hemoglobinopatia, imunodepressão, diabetes, obesidade, puerpério e tabagismo, número alto de comorbidades associadas, e alguns sintomas (dispneia, diarreia, vômito, dor torácica, hemoptise, pneumonia e sibilos. Níveis maiores de escolaridade e uso precoce do oseltamivir foram relacionados a fatores de proteção. A hospitalização contribuiu para o aumento da sobrevida. CONCLUSÕES: O conhecimento das características epidemiológicas que podem estar associadas a internação, gravidade da doença e mortalidade podem ser úteis na adoção de medidas preventivas e no diagnóstico e tratamento precoce da doença, colaborando para a diminuição dos óbitos e da necessidade de hospitalização.OBJECTIVE: To evaluate pandemic influenza A (H1N1 2009 in hospitalized patients in order to identify risk

  12. Influenza pandêmica A (H1N1) 2009: fatores de risco para o internamento

    OpenAIRE

    2012-01-01

    OBJETIVO: Avaliar os aspectos da influenza pandêmica A (H1N1) 2009 em pacientes hospitalizados a fim de identificar os fatores de risco para o internamento e, consequentemente, para o agravamento da doença. MÉTODOS: Estudo observacional e retrospectivo realizado entre março e dezembro de 2010. Os dados foram coletados a partir do Sistema Nacional de Agravos de Notificação do Ministério da Saúde. Foram incluídos somente os pacientes hospitalizados e não hospitalizados com confirmação laborator...

  13. Oseltamivir-resistant influenza A(H1N1pdm09 virus in southern Brazil

    Directory of Open Access Journals (Sweden)

    Camila Marx

    2013-05-01

    Full Text Available The neuraminidase (NA genes of A(H1N1pdm09 influenza virus isolates from 306 infected patients were analysed. The circulation of oseltamivir-resistant viruses in Brazil has not been reported previously. Clinical samples were collected in the state of Rio Grande do Sul (RS from 2009-2011 and two NA inhibitor-resistant mutants were identified, one in 2009 (H275Y and the other in 2011 (S247N. This study revealed a low prevalence of resistant viruses (0.8% with no spread of the resistant mutants throughout RS.

  14. Changes in the viral distribution pattern after the appearance of the novel influenza A H1N1 (pH1N1 virus in influenza-like illness patients in Peru.

    Directory of Open Access Journals (Sweden)

    Victor Alberto Laguna-Torres

    Full Text Available BACKGROUND: We describe the temporal variation in viral agents detected in influenza like illness (ILI patients before and after the appearance of the ongoing pandemic influenza A (H1N1 (pH1N1 in Peru between 4-January and 13-July 2009. METHODS: At the health centers, one oropharyngeal swab was obtained for viral isolation. From epidemiological week (EW 1 to 18, at the US Naval Medical Research Center Detachment (NMRCD in Lima, the specimens were inoculated into four cell lines for virus isolation. In addition, from EW 19 to 28, the specimens were also analyzed by real time-polymerase-chain-reaction (rRT-PCR. RESULTS: We enrolled 2,872 patients: 1,422 cases before the appearance of the pH1N1 virus, and 1,450 during the pandemic. Non-pH1N1 influenza A virus was the predominant viral strain circulating in Peru through (EW 18, representing 57.8% of the confirmed cases; however, this predominance shifted to pH1N1 (51.5% from EW 19-28. During this study period, most of pH1N1 cases were diagnosed in the capital city (Lima followed by other cities including Cusco and Trujillo. In contrast, novel influenza cases were essentially absent in the tropical rain forest (jungle cities during our study period. The city of Iquitos (Jungle had the highest number of influenza B cases and only one pH1N1 case. CONCLUSIONS: The viral distribution in Peru changed upon the introduction of the pH1N1 virus compared to previous months. Although influenza A viruses continue to be the predominant viral pathogen, the pH1N1 virus predominated over the other influenza A viruses.

  15. Molecular epidemiology study of swine influenza virus revealing a reassorted virus H1N1 in swine farms in Cuba.

    Science.gov (United States)

    Pérez, Lester J; Perera, Carmen Laura; Coronado, Liani; Rios, Liliam; Vega, Armando; Frías, Maria T; Ganges, Llilianne; Núñez, José Ignacio; Díaz de Arce, Heidy

    2015-05-01

    In this report, we describe the emergence of reassorted H1N1 swine influenza virus, originated from a reassortment event between the H1N1 pandemic influenza virus (H1N1p/2009) and endemic swine influenza virus in Cuban swine population. In November 2010, a clinical respiratory outbreak was reported on a pig fattening farm in Cuba. Phylogenetic analysis showed that all the genes of one of the isolate obtained, with the exception of neuraminidase, belonged to the H1N1p/2009 cluster. This finding suggests that H1N1pdm has been established in swine and has become a reservoir of reassortment that may produce new viruses with both animal and public health risks.

  16. Pandemic influenza A/H1N1pdm in Italy: age, risk and population susceptibility.

    Directory of Open Access Journals (Sweden)

    Stefano Merler

    Full Text Available BACKGROUND: A common pattern emerging from several studies evaluating the impact of the 2009 A/H1N1 pandemic influenza (A/H1N1pdm conducted in countries worldwide is the low attack rate observed in elderly compared to that observed in children and young adults. The biological or social mechanisms responsible for the observed age-specific risk of infection are still to be deeply investigated. METHODS: The level of immunity against the A/H1N1pdm in pre and post pandemic sera was determined using left over sera taken for diagnostic purposes or routine ascertainment obtained from clinical laboratories. The antibody titres were measured by the haemagglutination inhibition (HI assay. To investigate whether certain age groups had higher risk of infection the presence of protective antibody (≥1∶40, was calculated using exact binomial 95% CI on both pre- and post- pandemic serological data in the age groups considered. To estimate age-specific susceptibility to infection we used an age-structured SEIR model. RESULTS: By comparing pre- and post-pandemic serological data in Italy we found age- specific attack rates similar to those observed in other countries. Cumulative attack rate at the end of the first A/H1N1pdm season in Italy was estimated to be 16.3% (95% CI 9.4%-23.1%. Modeling results allow ruling out the hypothesis that only age-specific characteristics of the contact network and levels of pre-pandemic immunity are responsible for the observed age-specific risk of infection. This means that age-specific susceptibility to infection, suspected to play an important role in the pandemic, was not only determined by pre-pandemic levels of H1N1pdm antibody measured by HI. CONCLUSIONS: Our results claim for new studies to better identify the biological mechanisms, which might have determined the observed pattern of susceptibility with age. Moreover, our results highlight the need to obtain early estimates of differential susceptibility with age in

  17. Community responses to communication campaigns for influenza A (H1N1: a focus group study

    Directory of Open Access Journals (Sweden)

    Gray Lesley

    2012-03-01

    Full Text Available Abstract Background This research was a part of a contestable rapid response initiative launched by the Health Research Council of New Zealand and the Ministry of Health in response to the 2009 influenza A pandemic. The aim was to provide health authorities in New Zealand with evidence-based practical information to guide the development and delivery of effective health messages for H1N1 and other health campaigns. This study contributed to the initiative by providing qualitative data about community responses to key health messages in the 2009 and 2010 H1N1 campaigns, the impact of messages on behavioural change and the differential impact on vulnerable groups in New Zealand. Methods Qualitative data were collected on community responses to key health messages in the 2009 and 2010 Ministry of Health H1N1 campaigns, the impact of messages on behaviour and the differential impact on vulnerable groups. Eight focus groups were held in the winter of 2010 with 80 participants from groups identified by the Ministry of Health as vulnerable to the H1N1 virus, such as people with chronic health conditions, pregnant women, children, Pacific Peoples and Māori. Because this study was part of a rapid response initiative, focus groups were selected as the most efficient means of data collection in the time available. For Māori, focus group discussion (hui is a culturally appropriate methodology. Results Thematic analysis of data identified four major themes: personal and community risk, building community strategies, responsibility and information sources. People wanted messages about specific actions that they could take to protect themselves and their families and to mitigate any consequences. They wanted transparent and factual communication where both good and bad news is conveyed by people who they could trust. Conclusions The responses from all groups endorsed the need for community based risk management including information dissemination. Engaging

  18. Update: novel influenza A (H1N1) virus infection - Mexico, March-May, 2009.

    Science.gov (United States)

    2009-06-05

    On April 12, 2009, Mexico responded to a request for verification by the World Health Organization (WHO) of an outbreak of acute respiratory illness in the small community of La Gloria, Veracruz. During April 15-17, the Mexico Ministry of Health received informal notification of clusters of rapidly progressive severe pneumonia occurring mostly in Distrito Federal (metropolitan Mexico City) and San Luis Potosi. In response, on April 17, Mexico intensified national surveillance for acute respiratory illness and pneumonia. During April 22-24, novel influenza A (H1N1) virus infection, previously identified in two children in the United States, was confirmed in several patients. This report updates a previous report on the outbreak in Mexico and summarizes public health actions taken to date by Mexico to monitor and control the outbreak. During March 1-May 29, national surveillance identified 41,998 persons with acute respiratory illness; specimens from 25,127 (59.8%) patients were tested, of which 5,337 (21.2%) were positive for novel influenza A (H1N1) virus infection by real-time reverse transcription--polymerase chain reaction (rRT-PCR). As of May 29, 97 patients with laboratory-confirmed infection had died. Epidemiologic evidence to date suggests that the outbreak likely peaked nationally in late April, although localized cases continue to be identified.

  19. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus

    Science.gov (United States)

    Mori, Yasutaka; Ono, Takeshi; Miyahira, Yasushi; Nguyen, Vinh Quang; Matsui, Takemi; Ishihara, Masayuki

    2013-02-01

    Silver nanoparticle (Ag NP)/chitosan (Ch) composites with antiviral activity against H1N1 influenza A virus were prepared. The Ag NP/Ch composites were obtained as yellow or brown floc-like powders following reaction at room temperature in aqueous medium. Ag NPs (3.5, 6.5, and 12.9 nm average diameters) were embedded into the chitosan matrix without aggregation or size alternation. The antiviral activity of the Ag NP/Ch composites was evaluated by comparing the TCID50 ratio of viral suspensions treated with the composites to untreated suspensions. For all sizes of Ag NPs tested, antiviral activity against H1N1 influenza A virus increased as the concentration of Ag NPs increased; chitosan alone exhibited no antiviral activity. Size dependence of the Ag NPs on antiviral activity was also observed: antiviral activity was generally stronger with smaller Ag NPs in the composites. These results indicate that Ag NP/Ch composites interacting with viruses exhibit antiviral activity.

  20. Initial psychological responses to Influenza A, H1N1 ("Swine flu").

    Science.gov (United States)

    Goodwin, Robin; Haque, Shamsul; Neto, Felix; Myers, Lynn B

    2009-10-06

    The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu) in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork). We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu") in the six days following the WHO pandemic alert level 5, and regional differences in these responses. 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180) or Europe (N = 148). Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p Malaysia, 22% Europe, p Malaysia, 17% Europe, p Malaysia, 7% Europe), 41% Malaysia (15% Europe) intended to do so (p travel and to buy masks and food. Discussions with family and friends may reinforce existing anxiety levels. Particular groups (homosexuals, prostitutes, the homeless) are perceived as at greater risk, potentially leading to increased prejudice during a pandemic. Europeans underestimated mortality of seasonal flu, and require more information about the protection given by seasonal flu inoculation.

  1. 2009甲型H1N1流感病毒的研究综述%Review of the 2009 A ( H1N1 ) Influenza Virus

    Institute of Scientific and Technical Information of China (English)

    刘超; 胡春吉; 徐瑞芹

    2011-01-01

    2009年4月初,出现1种新型甲型( H1N1)流感病毒,并通过人—人传播蔓延全球,文章介绍了该病毒的分类与宿主范围,并对其病毒学及分子特征进行了概述,最后指出加强对猪群中流行的流感病毒监管的必要性及研制通用疫苗的重要性.%A novel influenza A/H1N1 virus, emerged in early April 2009. It quickly spread worldwide through human-to-human transmission. The classification and host range of the virus were introduced, and its virdogy and molecular characteristics were described. Then concluded that the necessity of supervision on strengthening pandemic influenza virus in swine and importance of developing common vaccines.

  2. Evolution of the hemagglutinin expressed by human influenza A(H1N1)pdm09 and A(H3N2) viruses circulating between 2008-2009 and 2013-2014 in Germany.

    Science.gov (United States)

    Wedde, Marianne; Biere, Barbara; Wolff, Thorsten; Schweiger, Brunhilde

    2015-10-01

    This report describes the evolution of the influenza A(H1N1)pdm09 and A(H3N2) viruses circulating in Germany between 2008-2009 and 2013-2014. The phylogenetic analysis of the hemagglutinin (HA) genes of both subtypes revealed similar evolution of the HA variants that were also seen worldwide with minor exceptions. The analysis showed seven distinct HA clades for A(H1N1)pdm09 and six HA clades for A(H3N2) viruses. Herald strains of both subtypes appeared sporadically since 2008-2009. Regarding A(H1N1)pdm09, herald strains of HA clade 3 and 4 were detected late in the 2009-2010 season. With respect to A(H3N2), we found herald strains of HA clade 3, 4 and 7 between 2009 and 2012. Those herald strains were predominantly seen for minor and not for major HA clades. Generally, amino acid substitutions were most frequently found in the globular domain, including substitutions near the antigenic sites or the receptor binding site. Differences between both influenza A subtypes were seen with respect to the position of the indicated substitutions in the HA. For A(H1N1)pdm09 viruses, we found more substitutions in the stem region than in the antigenic sites. In contrast, in A(H3N2) viruses most changes were identified in the major antigenic sites and five changes of potential glycosylation sites were identified in the head of the HA monomer. Interestingly, we found in seasons with less influenza activity a relatively high increase of substitutions in the head of the HA in both subtypes. This might be explained by the fact that mutations under negative selection are subsequently compensated by secondary mutations to restore important functions e.g. receptor binding properties. A better knowledge of basic evolution strategies of influenza viruses will contribute to the refinement of predictive mathematical models for identifying novel antigenic drift variants.

  3. Correlates of 2009 Pandemic H1N1 Influenza Vaccine Acceptance among Middle and High School Teachers in Rural Georgia

    Science.gov (United States)

    Gargano, Lisa M.; Painter, Julia E.; Sales, Jessica M.; Morfaw, Christopher; Jones, LaDawna M.; Weiss, Paul; Murray, Dennis; DiClemente, Ralph J.; Hughes, James M.

    2011-01-01

    Background: Teachers play an essential role in the school community, and H1N1 vaccination of teachers is critical to protect not only themselves but also adolescents they come in contact within the classroom through herd immunity. School-aged children have a greater risk of developing H1N1 disease than seasonal influenza. The goal of this study…

  4. Clinical characteristics and outcomes among pediatric patients hospitalized with pandemic influenza A/H1N1 2009 infection

    Directory of Open Access Journals (Sweden)

    Eun Lee

    2011-08-01

    Full Text Available Purpose : The purpose of this article is to describe the clinical and epidemiologic features and outcomes among children hospitalized with pandemic influenza A/H1N1 2009 infection. Methods : We retrospectively reviewed the charts of hospitalized pediatric patients (&lt;18 years diagnosed with pandemic influenza A/H1N1 2009 infection by reverse-transcriptase polymerase chain reaction at a tertiary hospital in Seoul, Korea, between September 2009 and February 2010. Results : A total of 72 children were hospitalized with pandemic influenza A/H1N1 2009 infection (median age, 6.0 years; range, 2 months to 18 years. A total of 40% had at least 1 underlying medical condition, including asthma (17%, malignancies (19%, and heart diseases (17%. Of the 72 patients, 54 (76% children admitted with H1N1 infection showed radiographic alterations compatible with pneumonia. There was no significant difference in pre-existing conditions between pandemic influenza A/H1N1 infected patients with or without pneumonia. Children with pandemic influenza A/ H1N1 pneumonia were more likely to have a lower lymphocyte ratio (P=0.02, higher platelet count (P=0.02, and higher level of serum glucose (P=0.003, and more commonly presented with dyspnea than did those without pneumonia (P=0.04. Conclusion : No significant differences in age, sex, or presence of preexisting conditions were found between children hospitalized with pandemic influenza A/H1N1 H1N1 influenza infection with pneumonia and those without pneumonia. Higher leukocyte count, higher glucose level, and a lower lymphocyte ratio were associated with the development of pandemic A/H1N1 2009 influenza pneumonia.

  5. A case with myocarditis secondary to Influenza virus (H1N1

    Directory of Open Access Journals (Sweden)

    Fesih Aktar

    2015-09-01

    Full Text Available Although influenza is an acute and uncomplicated disease, that limits itself in the healthy children, it may lead to death by rarely forming the sickness. The most common complication of influenza is pneumonia and it is a rare complication which is developed together with myocarditis by influenza A and B viruses. A 32 months-old male patient was admitted for rapidly developed respiratory distress and tachycardia after fever, cough, vomiting, malaise and runny nose. His general status was medium, he had conscious and had hepatomegaly, tachycardia, dyspnea, tachypnea, intercostal-subcostal retractions and bilateral rhonchus. Cardiac enzyme levels and other laboratory parameters were found normal. Myocarditis and ejection fraction was determined as 42% in echocardiography. However, hospitalization hours between 24 and 48, the patient, whose significant respiratory compromise developed, was intubated and fastened to a mechanical ventilator. H1N1 is produce in nasopharyngeal swab culture at the sixth day of follow-up. Because we think H1N1 virus was responsible from current myocarditis, oseltamivir treatment was initiated. In the fourth day of the treatment the patient’s fever returned to normal, in the ninth day a dramatic recovery was observed. In tracking echocardiography, a significant improvement was observed in the ejection fraction and myocarditis picture compared with admission time. This case was presented in order to remind that in a patients, who present with influenza findings but have respiratory distress and tachycardia in addition to lower respiratory tract infection, myocarditis should also be considered in the differential diagnosis and to remind that promising results could be obtained with the early diagnosis and treatment.

  6. 甲型H1N1流感患者的护理%Influenza A H1N1 influenza patient care

    Institute of Scientific and Technical Information of China (English)

    廖蓉

    2011-01-01

    目的:探讨甲型H1N1流感患者的护理方法.方法:回顾分析我院2009年8月至2010年1月收治的112例患者的临床资料.结果:112例患者治愈出院.结论:对甲型H1N1流感患者在治疗的同时,有针对性采取护理措施以及严格的消毒隔离制度,是救治甲型H1N1流感的保证.

  7. Imaging Findings in Patients With H1N1 Influenza A Infection

    Directory of Open Access Journals (Sweden)

    Mehrdad Bakhshayeshkaram

    2011-12-01

    Full Text Available Background: Swine influenza (H1N1 is a very contagious respiratory infection and World Health Organization (WHO has raised the alert level to phase 6 (pandemic. The study of clinical and laboratory manifestations as well as radiologic imaging findings helps in its early diagnosis.Objectives: The aim of this study was to evaluate the imaging findings of patients with documented H1N1 infection referred to our center.Patients and Methods: Thirty-one patients (16 men with documented H1N1 infection were included in our study. The initial radiography obtained from the patients was reviewed regarding pattern (consolidation, ground glass, nodules and reticulation, distribution (focal, multifocal, and diffuse and the lung zones involved. Computed tomography (CT scans were also reviewed for the same abnormalities. The patient files were studied for their possible underlying diseases.Results: The mean age was 37.97 ± 13.9 years. Seventeen (54.8% patients had co-existing condition (eight respiratory, five cardiovascular, two immunodeficiency, two cancer, four others. Twelve (38.7% patients required intensive care unit (ICU admission. Five (16.1% patients died. (25.8% had normal initial radiographs. The most common abnormality was consolidation (12/31; 38.7% in the peripheral region (11/31; 35.5% followed by peribronchovascular areas (10/31; 32.3% which was most commonly observed in the lower zone. The patients admitted to the ICU were more likely to have two or more lung zones involved (P = 0.005.Conclusions: In patients with the novel swine flu infection, the most common radiographic abnormality observed was consolidation in the lower lung zones. Patients admitted to ICU were more likely to have two or more lung zones involved.

  8. Epidemiological and virological characterization of 2009 pandemic influenza A virus subtype H1N1 in Madagascar.

    Science.gov (United States)

    Orelle, Arnaud; Razanajatovo, Norosoa Harline; Rajatonirina, Soatiana; Hoffmann, Jonathan; Randrianasolo, Laurence; Razafitrimo, Girard Marcellin; Naidoo, Dhamari; Richard, Vincent; Heraud, Jean-Michel

    2012-12-15

    Madagascar was one of the first African countries to be affected by the 2009 pandemic of influenza A virus subtype H1N1 [A(H1N1)pdm2009] infection. The outbreak started in the capital city, Antananarivo, and then spread throughout the country from October 2009 through February 2010. Specimens from patients presenting with influenza-like illness were collected and shipped to the National Influenza Center in Madagascar for analyses, together with forms containing patient demographic and clinical information. Of the 2303 specimens tested, 1016 (44.1%) and 131 (5.7%) yielded A(H1N1)pdm09 and seasonal influenza virus, respectively. Most specimens (42.0%) received were collected from patients 50 years old to be infected with A(H1N1)pdm09 (odds ratio, 2.1; 95% confidence interval, 1.7-2.6; P Madagascar, no antigenic differences between A(H1N1)pdm09 viruses recovered in Madagascar and those that circulated worldwide were observed. The high proportion of respiratory specimens positive for A(H1N1)pdm09 is consistent with a widespread transmission of the pandemic in Madagascar. The age distribution of cases of A(H1N1)pdm09 infection suggests that children and young adults could be targeted for interventions that aim to reduce transmission during an influenza pandemic.

  9. Impact on pregnancies in south Brazil from the influenza A (H1N1 pandemic: cohort study.

    Directory of Open Access Journals (Sweden)

    André Anjos da Silva

    Full Text Available INTRODUCTION: The emergence of a new subtype of the influenza virus in 2009 generated interest in the international medical community, the media, and the general population. Pregnant women are considered to be a group at risk of serious complications related to the H1N1 influenza virus. The aim of this study was to evaluate the outcomes and teratogenic effects of pregnancies exposed to the H1N1 virus during the Influenza A epidemic that occurred in the state of Rio Grande do Sul in 2009. METHODS: This is an uncontrolled prospective cohort study of pregnant women with suspected symptoms of Influenza A who were reported in the Information System for Notifiable Diseases-Influenza (SINAN-Influenza during the epidemic of 2009 (database from the state of Rio Grande do Sul, Brazil. There were 589 cases of pregnant women with suspected infection. Among these, 243 were tested by PCR and included in the analysis. The main outcome measures were: maternal deaths, pregnancy outcome, stillbirths, premature births, low birth weight, congenital malformations, and odds ratios for H1N1+ and non-H1N1 pregnant women. RESULTS: There were one hundred and sixty-three (67% confirmed cases of H1N1, 34 cases (14% of seasonal Influenza A and 46 (19% who were negative for Influenza A. There was no difference between the three groups in clinical parameters of the disease. There were 24 maternal deaths--18 of them had H1N1. There were 8 stillbirths--5 were children of H1N1 infected mothers. There were no differences in perinatal outcomes. CONCLUSIONS: The present data do not indicate an increase in teratogenic risk from exposure to the influenza A (H1N1 virus. These results will help to strengthen the data and clarify the health issues that arose after the pandemic.

  10. Determinants of 2009 A/H1N1 influenza vaccination among pregnant women in Hong Kong.

    Science.gov (United States)

    Tarrant, Marie; Wu, Kendra M; Yuen, Carol Yuet Shueng; Cheung, Ka Lun; Chan, Vincci Hiu Sze

    2013-01-01

    During the 2009–2010 A/H1N1 influenza pandemic, pregnant women infected with the virus experienced excess morbidity and mortality when compared with other groups. Once a vaccine was available, pregnant women were a priority group for vaccination. Only a few studies have reported on the uptake of 2009 A/H1N1 influenza vaccine among pregnant women during the pandemic and none were from Asia. The purpose of this study was to examine factors associated with 2009 A/H1N1 influenza vaccine uptake among pregnant women in Hong Kong. Using a multi-center, cross-sectional design, we recruited 549 postpartum women from four post-natal wards in Hong Kong over a 4-month period during the second wave of the A/H1N1 influenza pandemic in the winter and spring of 2010. Only 6.2% (n = 34) of participants had received the 2009 A/H1N1 influenza vaccine and 4.9% (n = 27) had received the seasonal influenza vaccine. The most common reasons for not receiving the 2009 A/H1N1 vaccine were fear of causing harm to themselves or their fetus. A high knowledge level (OR = 19.06; 95% CI 5.55, 65.48), more positive attitudes (OR = 3.52; 95% CI 1.37, 9.07), and having a family member who had the 2009 A/H1N1 influenza vaccine (OR = 7.69; 95% CI 2.92, 20.19) were independently and positively associated with vaccination. Study results show an unacceptably low uptake of the pandemic A/H1N1 influenza vaccine among pregnant women in Hong Kong. Interventions to increase influenza vaccine knowledge and uptake among this group should be a priority for future pandemic planning and seasonal vaccination campaigns.

  11. Guidance for Testing and Labeling Claims against Pandemic 2009 H1N1 Influenza A Virus (Formerly called Swine Flu )

    Science.gov (United States)

    This document provides guidance labeling and testing for antimicrobial pesticides in several forms that are used to treat hard non-porous surfaces in healthcare facilities and other settings against Pandemic 2009 H1N1 influenza A Virus.

  12. An Analysis of 332 Fatalities Infected with Pandemic 2009 Influenza A (H1N1) in Argentina

    Science.gov (United States)

    Balanzat, Ana M.; Hertlein, Christian; Apezteguia, Carlos; Bonvehi, Pablo; Cámera, Luis; Gentile, Angela; Rizzo, Oscar; Gómez-Carrillo, Manuel; Coronado, Fatima; Azziz-Baumgartner, Eduardo; Chávez, Pollyanna R.; Widdowson, Marc-Alain

    2012-01-01

    Background The apparent high number of deaths in Argentina during the 2009 pandemic led to concern that the influenza A H1N1pdm disease was different there. We report the characteristics and risk factors for influenza A H1N1pdm fatalities. Methods We identified laboratory-confirmed influenza A H1N1pdm fatalities occurring during June-July 2009. Physicians abstracted data on age, sex, time of onset of illness, medical history, clinical presentation at admission, laboratory, treatment, and outcomes using standardize questionnaires. We explored the characteristics of fatalities according to their age and risk group. Results Of 332 influenza A H1N1pdm fatalities, 226 (68%) were among persons aged Argentina, though timeliness of antiviral treatment improved during the pandemic. PMID:22506006

  13. Recurrent plastic bronchitis in a child with 2009 influenza A (H1N1) and influenza B virus infection.

    Science.gov (United States)

    Kim, Sun; Cho, Hwa Jin; Han, Dong Kyun; Choi, Yoo Duk; Yang, Eun Seok; Cho, Young Kuk; Ma, Jae Sook

    2012-09-01

    Plastic bronchitis is an uncommon disorder characterized by the formation of bronchial casts. It is associated with congenital heart disease or pulmonary disease. In children with underlying conditions such as allergy or asthma, influenza can cause severe plastic bronchitis resulting in respiratory failure. A review of the literature showed nine cases of plastic bronchitis with H1N1 including this case. We report a case of a child with recurrent plastic bronchitis with eosinophilic cast associated with influenza B infection, who had recovered from plastic bronchitis associated with an influenza A (H1N1) virus infection 5 months previously. To the best of our knowledge, this is the first case of recurrent plastic bronchitis related to influenza viral infection. If patients with influenza virus infection manifest acute respiratory distress with total lung atelectasis, clinicians should consider plastic bronchitis and early bronchoscopy should be intervened. In addition, management for underlying disease may prevent from recurrence of plastic bronchitis.

  14. Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico.

    Directory of Open Access Journals (Sweden)

    Gerardo Chowell

    2011-05-01

    Full Text Available BACKGROUND: Mexico's local and national authorities initiated an intense public health response during the early stages of the 2009 A/H1N1 pandemic. In this study we analyzed the epidemiological patterns of the pandemic during April-December 2009 in Mexico and evaluated the impact of nonmedical interventions, school cycles, and demographic factors on influenza transmission. METHODS AND FINDINGS: We used influenza surveillance data compiled by the Mexican Institute for Social Security, representing 40% of the population, to study patterns in influenza-like illness (ILIs hospitalizations, deaths, and case-fatality rate by pandemic wave and geographical region. We also estimated the reproduction number (R on the basis of the growth rate of daily cases, and used a transmission model to evaluate the effectiveness of mitigation strategies initiated during the spring pandemic wave. A total of 117,626 ILI cases were identified during April-December 2009, of which 30.6% were tested for influenza, and 23.3% were positive for the influenza A/H1N1 pandemic virus. A three-wave pandemic profile was identified, with an initial wave in April-May (Mexico City area, a second wave in June-July (southeastern states, and a geographically widespread third wave in August-December. The median age of laboratory confirmed ILI cases was ∼ 18 years overall and increased to ∼ 31 years during autumn (p<0.0001. The case-fatality ratio among ILI cases was 1.2% overall, and highest (5.5% among people over 60 years. The regional R estimates were 1.8-2.1, 1.6-1.9, and 1.2-1.3 for the spring, summer, and fall waves, respectively. We estimate that the 18-day period of mandatory school closures and other social distancing measures implemented in the greater Mexico City area was associated with a 29%-37% reduction in influenza transmission in spring 2009. In addition, an increase in R was observed in late May and early June in the southeast states, after mandatory school

  15. Profile of Brazilian scientific production on A/H1N1 pandemic influenza.

    Science.gov (United States)

    Luchs, Adriana

    2012-06-01

    In the last few years, bibliometric studies have proliferated, seeking to provide data on world research. This study analyzes the profile of the Brazilian scientific production in the A (H1N1) influenza field between 2009 and 2011. The research was conducted in MEDLINE, SciELO and LILACS databases, selecting papers in which the term "H1N1" and "Brazil" were defined as the main topics. The data were analyzed taking into consideration the Brazilian state and institution in which the articles were produced, the impact factor of the journal and the language. The research revealed 40 documents (27 from MEDLINE, 16 from SciELO and 24 from LILACS). The journal impact factor ranged from 0.0977 to 8.1230. A similar amount of articles were written in English and Portuguese and São Paulo was the most productive state in the country, with 95% of the Brazilian production originating from the Southern and Southeastern regions. Linguistic data indicate that previous efforts made in order to improve the scientific production of Brazilian researchers making their observations attain a broader scientific audience produced results. It is necessary to assess the scientific studies, especially those conducted with public funds, in order to ensure that the results will benefit society.

  16. Reassortment Networks and the evolution of pandemic H1N1 swine-origin influenza.

    Science.gov (United States)

    Bokhari, Shahid H; Pomeroy, Laura W; Janies, Daniel A

    2012-01-01

    Prior research developed Reassortment Networks to reconstruct the evolution of segmented viruses under both reassortment and mutation. We report their application to the swine-origin pandemic H1N1 virus (S-OIV). A database of all influenza A viruses, for which complete genome sequences were available in Genbank by October 2009, was created and dynamic programming was used to compute distances between all corresponding segments. A reassortment network was created to obtain the minimum cost evolutionary paths from all viruses to the exemplar S-OIV A/California/04/2009. This analysis took 35 hours on the Cray Extreme Multithreading (XMT) supercomputer, which has special hardware to permit efficient parallelization. Six specific H1N1/H1N2 bottleneck viruses were identified that almost always lie on minimum cost paths to S-OIV. We conjecture that these viruses are crucial to S-OIV evolution and worthy of careful study from a molecular biology viewpoint. In phylogenetics, ancestors are typically medians that have no functional constraints. In our method, ancestors are not inferred, but rather chosen from previously observed viruses along a path of mutation and reassortment leading to the target virus. This specificity and functional constraint render our results actionable for further experiments in vitro and in vivo.

  17. Dialysis for acute kidney injury associated with influenza a (H1N1 infection

    Directory of Open Access Journals (Sweden)

    Augusto Vallejos

    2013-01-01

    Full Text Available In June 2009, the World Health Organization declared a novel influenza A, S-OIV (H1N1, pandemic. We observed 44 consecutive patients during the "first wave" of the pandemic. 70.5% of them showed co-morbidities (hypertension, obesity, chronic respiratory diseases, chronic renal disease, diabetes, pregnancy. Serious cases were admitted to the intensive care unit (ICU, particularly those with severe acute respiratory failure. Some of them developed acute kidney injury (AKI and required renal replacement therapy (RRT. The average time between admission to the ICU and initiation of RRT was 3.16 ± 2.6 days. At initiation of RRT, most patients required mechanical ventilation. No relationship was found with creatinine-kinase levels. Seventy-five percent of the cases were observed during a 3-week period and mortality, related to respiratory failure, doubling of alanine amino transferase and use of inotropics was 81.8%. In conclusion, the H1N1-infected patients who developed RRT-requiring AKI, in the context of multi-organ failure, showed a high mortality rate. Thus, it is mandatory that elaborate strategies aimed at anticipating potential renal complications associated to future pandemics are implemented.

  18. Dialysis for acute kidney injury associated with influenza a (H1N1) infection.

    Science.gov (United States)

    Vallejos, Augusto; Arias, Marcelo; Cusumano, Ana; Coste, Eduardo; Simon, Miguel; Martinez, Ricardo; Mendez, Sandra; Raño, Miguel; Sintado, Luis; Lococo, Bruno; Blanco, Carlos; Cestari, Jorge

    2013-05-01

    In June 2009, the World Health Organization declared a novel influenza A, S-OIV (H1N1), pandemic. We observed 44 consecutive patients during the "first wave" of the pandemic. 70.5% of them showed co-morbidities (hypertension, obesity, chronic respiratory diseases, chronic renal disease, diabetes, pregnancy). Serious cases were admitted to the intensive care unit (ICU), particularly those with severe acute respiratory failure. Some of them developed acute kidney injury (AKI) and required renal replacement therapy (RRT). The average time between admission to the ICU and initiation of RRT was 3.16 ± 2.6 days. At initiation of RRT, most patients required mechanical ventilation. No relationship was found with creatinine-kinase levels. Seventy-five percent of the cases were observed during a 3-week period and mortality, related to respiratory failure, doubling of alanine amino transferase and use of inotropics was 81.8%. In conclusion, the H1N1-infected patients who developed RRT-requiring AKI, in the context of multi-organ failure, showed a high mortality rate. Thus, it is mandatory that elaborate strategies aimed at anticipating potential renal complications associated to future pandemics are implemented.

  19. The knowledge of the importance on the influenza virus a (H1N1: experience report

    Directory of Open Access Journals (Sweden)

    Jaine Kareny da Silva

    2016-01-01

    Full Text Available Background and Objectives: Although infection rates by influenza A H1N1, present reduction since 2010 through immunization, it is still notorious some cases and outbreaks of the disease in the country. To minimize such cases it is important, among other measures, the qualification of the health worker. In this sense, the objective was to describe the level of awareness of nursing professionals in a hospital Bahia interior, on the transmission of the H1N1 virus, symptoms and what PPE is needed in assisting patients with suspected or diagnostic confirmation. Methods: This is an experience report experienced by nursing students at the State University of Bahia, who developed curricular component activities Caring Process: Rationale and practice in a public hospital in Bahia. The report data is from the collection conducted with the nurses, addressing aspects of symptoms, transmission and personal protective equipment. Each professional nursing spontaneously answered the questions and the end was discussed each item aiming answer questions by promoting thus an educational activity based on the knowledge of professionals. Results: Although most participants recognize the personal protective equipment and the symptoms of the viral disease, some are still unaware of the transmission routes. Most received no training on the subject. Conclusion: It is necessary to implement a Center for Continuing Education to answer questions about this and other topics, but are not limited to specific actions and seeking partnerships with higher education institutions. KEYWORDS: Education, Continuing. Education, Nursing. Disease Transmission, Infectious. Communicable Disease Control

  20. Response to 2009 pandemic influenza a (H1N1) vaccine in HIV-infected patients and the influence of prior seasonal influenza vaccination

    NARCIS (Netherlands)

    D. Soonawala (Darius); G.F. Rimmelzwaan (Guus); L.B.S. Gelinck (Luc); L.G. Visser; F.P. Kroon (Frank)

    2011-01-01

    textabstractBackground: The immunogenicity of 2009 pandemic influenza A(H1N1) (pH1N1) vaccines and the effect of previous influenza vaccination is a matter of current interest and debate. We measured the immune response to pH1N1 vaccine in HIV-infected patients and in healthy controls. In addition w

  1. Response to 2009 pandemic influenza a (H1N1) vaccine in HIV-infected patients and the influence of prior seasonal influenza vaccination

    NARCIS (Netherlands)

    D. Soonawala (Darius); G.F. Rimmelzwaan (Guus); L.B.S. Gelinck (Luc); L.G. Visser; F.P. Kroon (Frank)

    2011-01-01

    textabstractBackground: The immunogenicity of 2009 pandemic influenza A(H1N1) (pH1N1) vaccines and the effect of previous influenza vaccination is a matter of current interest and debate. We measured the immune response to pH1N1 vaccine in HIV-infected patients and in healthy controls. In addition

  2. Comorbid presentation of severe novel influenza A (H1N1) and Evans syndrome: a case report

    Institute of Scientific and Technical Information of China (English)

    CHEN Hui; JIA Xin-lei; GAO Heng-miao; QIAN Su-yun

    2011-01-01

    One 22-month-old boy who was admitted for a fever lasting 6 days as well as a cough and wheezing lasting 2 days was reported. He was diagnosed with influenza A (H1N1, severe type), severe pneumonia, acute respiratory distress syndrome (ARDS), Evans syndrome and multiple organ failure. This is the first case of novel influenza A (H1N1) and Evans syndrome. The pathogenesis is still unknown.

  3. Safety of the Pandemic H1N1 Influenza Vaccine among Pregnant U.S. Military Women and Their Newborns

    Science.gov (United States)

    2013-03-01

    liveborn neo- nates resulting from these pregnancies were obtained by linking pregnancy episodes to V3x.xx-coded neo- natal hospital discharge records as...Naval Health Research Center Safety of the Pandemic H1N1 Influenza Vaccine among Pregnant Women and Their Newborns Ava M.S. Conlin Anna...Safety of the Pandemic H1N1 Influenza Vaccine Among Pregnant U.S. Military Women and Their Newborns Ava Marie S. Conlin, DO, MPH, Anna T. Bukowinski

  4. Neuraminidase and hemagglutinin matching patterns of a highly pathogenic avian and two pandemic H1N1 influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available BACKGROUND: Influenza A virus displays strong reassortment characteristics, which enable it to achieve adaptation in human infection. Surveying the reassortment and virulence of novel viruses is important in the prevention and control of an influenza pandemic. Meanwhile, studying the mechanism of reassortment may accelerate the development of anti-influenza strategies. METHODOLOGY/PRINCIPAL FINDINGS: The hemagglutinin (HA and neuraminidase (NA matching patterns of two pandemic H1N1 viruses (the 1918 and current 2009 strains and a highly pathogenic avian influenza A virus (H5N1 were studied using a pseudotyped particle (pp system. Our data showed that four of the six chimeric HA/NA combinations could produce infectious pps, and that some of the chimeric pps had greater infectivity than did their ancestors, raising the possibility of reassortment among these viruses. The NA of H5N1 (A/Anhui/1/2005 could hardly reassort with the HAs of the two H1N1 viruses. Many biological characteristics of HA and NA, including infectivity, hemagglutinating ability, and NA activity, are dependent on their matching pattern. CONCLUSIONS/SIGNIFICANCE: Our data suggest the existence of an interaction between HA and NA, and the HA NA matching pattern is critical for valid viral reassortment.

  5. Prediction of clinical factors associated with pandemic influenza A (H1N1 2009 in Pakistan.

    Directory of Open Access Journals (Sweden)

    Nadia Nisar

    Full Text Available BACKGROUND: Influenza is a viral infection that can lead to serious complications and death(s in vulnerable groups if not diagnosed and managed in a timely manner. This study was conducted to improve the accuracy of predicting influenza through various clinical and statistical models. METHODOLOGY: A retrospective cross sectional analysis was done on demographic and epidemiological data collected from March 2009 to March 2010. Patients were classified as ILI or SARI using WHO case definitions. Respiratory specimens were tested by RT-PCR. Clinical symptoms and co-morbid conditions were analyzed using binary logistic regression models. RESULTS: In the first approach, analysis compared children (≤12 and adults (>12. Of 1,243 cases, 262 (21% tested positive for A(H1N1pdm09 and the proportion of children (≤12 and adults (>12 were 27% and 73% respectively. Four symptoms predicted influenza in children: fever (OR 2.849, 95% CI 1.931-8.722, cough (OR 1.99, 95% CI 1.512-3.643, diarrhea (OR 2.100, 95% CI 2.040-3.25 and respiratory disease (OR 3.269, 95% CI 2.128-12.624. In adults, the strongest clinical predictor was fever (OR 2.80, 95% CI 1.025-3.135 followed by cough (OR 1.431, 95% CI 1.032-2.815. In the second instance, patients were separated into two groups: SARI 326 (26% and ILI 917 (74% cases. Male to female ratio was 1.41∶1.12 for SARI and 2∶1.5 for ILI cases. Chi-square test showed that fever, cough and sore throat were significant factors for A(H1N1pdm09 infections (p = 0.008. CONCLUSION: Studies in a primary care setting should be encouraged focused on patients with influenza-like illness to develop sensitive clinical case definition that will help to improve accuracy of detecting influenza infections. Formulation of a standard "one size fits all" case definition that best correlates with influenza infections can help guide decisions for additional diagnostic testing and also discourage unjustified antibiotic prescription and usage

  6. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation.

    Science.gov (United States)

    Boilard, Eric; Paré, Guillaume; Rousseau, Matthieu; Cloutier, Nathalie; Dubuc, Isabelle; Lévesque, Tania; Borgeat, Pierre; Flamand, Louis

    2014-05-01

    Platelets play crucial functions in hemostasis and the prevention of bleeding. During H1N1 influenza A virus infection, platelets display activation markers. The platelet activation triggers during H1N1 infection remain elusive. We observed that H1N1 induces surface receptor activation, lipid mediator synthesis, and release of microparticles from platelets. These activation processes require the presence of serum/plasma, pointing to the contribution of soluble factor(s). Considering that immune complexes in the H1N1 pandemic were reported to play a pathogenic role, we assessed their contribution in H1N1-induced platelet activation. In influenza-immunized subjects, we observed that the virus scaffolds with immunoglobulin G (IgG) to form immune complexes that promote platelet activation. Mechanistically, this activation occurs through stimulation of low-affinity type 2 receptor for Fc portion of IgG (FcγRIIA), a receptor for immune complexes, independently of thrombin. Using a combination of in vitro and in vivo approaches, we found that the antibodies from H3N2-immunized mice activate transgenic mouse platelets that express FcγRIIA when put in the presence of H1N1, suggesting that cross-reacting influenza antibodies suffice. Alternatively, H1N1 can activate platelets via thrombin formation, independently of complement and FcγRIIA. These observations identify both the adaptive immune response and the innate response against pathogens as 2 intertwined processes that activate platelets during influenza infections.

  7. 无偿献血者接种甲型H1N1流感疫苗效果的初步评价%Preliminary evaluation of the effect of Human Influenza A (H1N1) vaccination in blood donors

    Institute of Scientific and Technical Information of China (English)

    车嘉琳; 梁兵; 王德文; 师玲玲; 陈少彬; 刘赴平

    2010-01-01

    目的 初步评价无偿献血者接种甲型H1N1型流感(简称甲流)疫苗的效果,为临床采集、储备甲流抗体血浆提供依据.方法 对2010年1月-2010年2月的1 027名东莞市无偿献血者分为甲流疫苗接种组(n=899)和对照组(n=128),应用ELISA法检测2组的人H1N1 IgG抗体,并对检测结果进行统计分析.结果 抗-H1N1阳性率:甲流疫苗接种组为77.53%(697/899),对照组为15.63%(20/128),2组比较具统计学意义(X2>=203.76,P<0.01);抗-H1N1阳性结果S/CO值,甲流疫苗接种组为1.27±0.18,对照组为1.08±0.07(t=4.71,P<0.01);甲流疫苗接种者中,接种时间71-80d组的抗-H1N1阳性率、S/CO值均高于接种时间小干70 d的各组.在甲流疫苗接种组中37例自诉有接种副反应,占4.12%,但无严重副反应.结论 无偿献血者接种甲流疫苗安全且能有效产生抗-H1N1 IgG,建议在接种疫苗70 d后采集甲流抗体血浆.

  8. Student behavior during a school closure caused by pandemic influenza A/H1N1.

    Directory of Open Access Journals (Sweden)

    Joel C Miller

    Full Text Available BACKGROUND: Many schools were temporarily closed in response to outbreaks of the recently emerged pandemic influenza A/H1N1 virus. The effectiveness of closing schools to reduce transmission depends largely on student/family behavior during the closure. We sought to improve our understanding of these behaviors. METHODOLOGY/PRINCIPAL FINDINGS: To characterize this behavior, we surveyed students in grades 9-12 and parents of students in grades 5-8 about student activities during a week long closure of a school during the first months after the disease emerged. We found significant interaction with the community and other students-though less interaction with other students than during school-with the level of interaction increasing with grade. CONCLUSIONS: Our results are useful for the future design of social distancing policies and to improving the ability of modeling studies to accurately predict their impact.

  9. Possible computational filter to detect proteins associated to influenza A subtype H1N1.

    Science.gov (United States)

    Polanco, Carlos; Buhse, Thomas; Castañón-González, Jorge Alberto; Samaniego, José Lino

    2014-01-01

    The design of drugs with bioinformatics methods to identify proteins and peptides with a specific toxic action is increasingly recurrent. Here, we identify toxic proteins towards the influenza A virus subtype H1N1 located at the UniProt database. Our quantitative structure-activity relationship (QSAR) approach is based on the analysis of the linear peptide sequence with the so-called Polarity Index Method that shows an efficiency of 90% for proteins from the Uniprot Database. This method was exhaustively verified with the APD2, CPPsite, Uniprot, and AmyPDB databases as well as with the set of antibacterial peptides studied by del Rio et al. and Oldfield et al.

  10. Influenza A (H1N1 Pneumonia. Three cases in children.

    Directory of Open Access Journals (Sweden)

    Ariel Efrén Uriarte Méndez

    2011-04-01

    Full Text Available It is made a report of three cases of pneumonia due to Influenza A (H1N1 with satisfactory evolution, assisted in the Intensive Care Unit of the Cienfuegos’s Pediatric Hospital Paquito González Cueto, and whose diagnosis were confirmed for the test Reaction in Chain of the Reverse "Polimerase-Transcriptase" (RCP-TR in nasopharyngeal samples. The X-rays and the laboratory exams are shown. The films reveal alveolar multifocal infiltrates, different from the interstitial pattern that commonly appears in viral pneumonias. It was significant the trombocitopenia proved in one of the patients, a fact that has been rarely reported. This work try to contribute to the best knowledge of the disease in children.

  11. Influenza A (H(1)N(1)) Antiviral and Cytotoxic Agents from Ferula assa-foetida.

    Science.gov (United States)

    Lee, Chia-Lin; Chiang, Lien-Chai; Cheng, Li-Hung; Liaw, Chih-Chuang; Abd El-Razek, Mohamed H; Chang, Fang-Rong; Wu, Yang-Chang

    2009-09-01

    Two new sesquiterpene coumarins, designated 5'-acetoxy-8'-hydroxyumbelliprenin (1) and 10'R-acetoxy-11'-hydroxyumbelliprenin (2), and a new diterpene, 15-hydroxy-6-en-dehydroabietic acid (3), along with 27 known compounds, were isolated from a CHCl(3)-soluble extract of Ferula assa-foetida through bioassay-guided fractionation. The structures of the new metabolites 1-3 were identified by spectroscopic data interpretation and by the Mosher ester method. Compounds 4 and 6-13 showed greater potency against influenza A virus (H(1)N(1)) (IC(50) 0.26-0.86 microg/mL) than amantadine (IC(50) 0.92 microg/mL), and 11 exhibited the best potency (IC(50) 0.51, 2.6, and 3.4 microg/mL) of these compounds against the HepG2, Hep3B, and MCF-7 cancer cell lines, respectively.

  12. HIV-1 and its gp120 inhibits the influenza A(H1N1pdm09 life cycle in an IFITM3-dependent fashion.

    Directory of Open Access Journals (Sweden)

    Milene Mesquita

    Full Text Available HIV-1-infected patients co-infected with A(H1N1pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1pdm09 life cycle in vitro. We show here that exposure of A(H1N1pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA gene from in vitro experiments and from samples of HIV-1/A(H1N1pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1pdm09 co-infected patients during the recent influenza form 2009/2010.

  13. Thoracic computerized tomographic (CT findings in 2009 influenza A (H1N1 virus infection in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Mojtaba Rostami

    2011-01-01

    Full Text Available Background: Pandemic 2009 H1N1 influenza A virus arrived at Isfahan in August 2009. The virus is still circulating in the world. The abnormal thoracic computerized tomographic (CT scan findings vary widely among the studies of 2009 H1N1 influenza. We evaluated the thoracic CT findings in patients with 2009 H1N1 virus infection to describe findings compared to previously reported findings, and to suggest patterns that may be suggestive for 2009 influenza A (H1N1 in an appropriate clinical setting. Methods: Retrospectively, the archive of all patients with a diagnosis of 2009 H1N1 influenza A were reviewed, in Al-Zahra Hospital in Isfahan, central Iran, between September 23 rd 2009 to February 20 th 2010. Out of 216 patients with confirmed 2009 influenza A (H1N1 virus, 26 cases with abnormal CT were enrolled in the study. Radiologic findings were characterized by the type and pattern of opacities and zonal distribution. Results: Patchy infiltration (34.6%, lobar consolidation (30.8%, and interstitial infiltration (26.9% with airbronchogram (38.5% were the predominant findings in our patients. Bilateral distribution was seen in 80.8% of the patients. Only one patient (3.8% showed ground-glass opacity, predominant radiographic finding in the previous reports and severe acute respiratory syndrome (SARS. Conclusions: The most common thoracic CT findings in pandemic H1N1 were patchy infiltration, lobar consolidation, and interstitial infiltration with airbronchogram and bilateral distribution. While these findings can be associated with other infections; they may be suggestive to 2009 influenza A (H1N1 in the appropriate clinical setting. Various radiographic patterns can be seen in thoracic CT scans of the influenza patients. Imaging findings are nonspecific.

  14. Antigenic Drift of the Pandemic 2009 A(H1N1) Influenza Virus in a Ferret Model

    Science.gov (United States)

    Guarnaccia, Teagan; Carolan, Louise A.; Maurer-Stroh, Sebastian; Lee, Raphael T. C.; Job, Emma; Reading, Patrick C.; Petrie, Stephen; McCaw, James M.; McVernon, Jodie; Hurt, Aeron C.; Kelso, Anne; Mosse, Jennifer; Barr, Ian G.; Laurie, Karen L.

    2013-01-01

    Surveillance data indicate that most circulating A(H1N1)pdm09 influenza viruses have remained antigenically similar since they emerged in humans in 2009. However, antigenic drift is likely to occur in the future in response to increasing population immunity induced by infection or vaccination. In this study, sequential passaging of A(H1N1)pdm09 virus by contact transmission through two independent series of suboptimally vaccinated ferrets resulted in selection of variant viruses with an amino acid substitution (N156K, H1 numbering without signal peptide; N159K, H3 numbering without signal peptide; N173K, H1 numbering from first methionine) in a known antigenic site of the viral HA. The N156K HA variant replicated and transmitted efficiently between naïve ferrets and outgrew wildtype virus in vivo in ferrets in the presence and absence of immune pressure. In vitro, in a range of cell culture systems, the N156K variant rapidly adapted, acquiring additional mutations in the viral HA that also potentially affected antigenic properties. The N156K escape mutant was antigenically distinct from wildtype virus as shown by binding of HA-specific antibodies. Glycan binding assays demonstrated the N156K escape mutant had altered receptor binding preferences compared to wildtype virus, which was supported by computational modeling predictions. The N156K substitution, and culture adaptations, have been detected in human A(H1N1)pdm09 viruses with N156K preferentially reported in sequences from original clinical samples rather than cultured isolates. This study demonstrates the ability of the A(H1N1)pdm09 virus to undergo rapid antigenic change to evade a low level vaccine response, while remaining fit in a ferret transmission model of immunization and infection. Furthermore, the potential changes in receptor binding properties that accompany antigenic changes highlight the importance of routine characterization of clinical samples in human A(H1N1)pdm09 influenza surveillance

  15. Cytokine responses in patients with mild or severe influenza A(H1N1)pdm09.

    Science.gov (United States)

    Bradley-Stewart, A; Jolly, L; Adamson, W; Gunson, R; Frew-Gillespie, C; Templeton, K; Aitken, C; Carman, W; Cameron, S; McSharry, C

    2013-09-01

    Influenza virus affects millions of people worldwide each year. More severe infection occurs in the elderly, very young and immunocompromised. In 2009, a new variant of swine origin (influenza A(H1N1)pdm09 virus) emerged that produced severe disease in young healthy adults. The aim of this study was to determine whether cytokine concentrations are associated with clinical outcome in patients infected influenza A(H1N1)pdm09 virus. Plasma concentration of 32 cytokines and growth factors were measured using a multiplex bead immunoassay and conventional ELISA in four patient groups. Patients with severe and mild influenza A(H1N1)pdm09 virus infection, rhinovirus infection and healthy volunteers were investigated. In addition, serial samples of respiratory secretions from five patients with severe influenza A(H1N1)pdm09 virus infection were examined. The majority of cytokines measured were elevated in patients with viral respiratory infections compared to the healthy controls. Concentrations of IL-6, IL-10, IL-15, IP-10, IL-2R, HGF, ST2 and MIG were significantly higher (p<0.05) and EGF significantly lower (p=0.0001) in patients with severe influenza A(H1N1)pdm09 virus infection compared to those with mild influenza A(H1N1)pdm09 virus and rhinovirus infection. A number of cytokines were found to be substantially elevated in patients with severe influenza A(H1N1)pdm09 virus infection. This supports and extends other published work suggesting a role for proinflammatory cytokines in influenza-induced lung pathology. Interestingly, EGF was significantly lower in patients with severe infection suggesting it is actively suppressed. As EGF has a role in role in cell proliferation and tissue repair, it may protect the lung from host or virus mediated damage. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. H1N1 influenza A virus neuraminidase modulates infectivity in mice.

    Science.gov (United States)

    Ferraris, Olivier; Escuret, Vanessa; Bouscambert, Maude; Casalegno, Jean-Sébastien; Jacquot, Frédéric; Raoul, Hervé; Caro, Valérie; Valette, Martine; Lina, Bruno; Ottmann, Michèle

    2012-03-01

    In the 2years since the onset of the H1N1 2009 pandemic virus (H1N1pdm09), sporadic cases of oseltamivir-resistant viruses have been reported. We investigated the impact of oseltamivir-resistant neuraminidase from H1N1 Brisbane-like (seasonal) and H1N1pdm09 viruses on viral pathogenicity in mice. Reassortant viruses with the neuraminidase from seasonal H1N1 virus were obtained by co-infection of a H1N1pdm09 virus and an oseltamivir-resistant H1N1 Brisbane-like virus. Oseltamivir-resistant H1N1pdm09 viruses were also isolated from patients. After biochemical characterization, the pathogenicity of these viruses was assessed in a murine model. We confirmed a higher infectivity, in mice, of the H1N1pdm09 virus compared to seasonal viruses. Surprisingly, the oseltamivir-resistant H1N1pdm09 virus was more infectious than its sensitive counterpart. Moreover, the association of H1N1pdm09 hemagglutinin and an oseltamivir-resistant neuraminidase improved the infectivity of reassortant viruses in mice, regardless of the NA origin: seasonal (Brisbane-like) or pandemic strain. This study highlights the need to closely monitor the emergence of oseltamivir-resistant viruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs

    DEFF Research Database (Denmark)

    De Vleeschauwer, Annebel; Atanasova, Kalina; Van Borm, Steven

    2009-01-01

    Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal......) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused...... milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs...

  18. EFSA Panel Animal Health and Welfare (AHAW); Scientific Opinion on the pandemic (H1N1) 2009 influenza and its potential implications for animal health

    DEFF Research Database (Denmark)

    Bøtner, Anette; Brown, Ian; Capua, Ilaria

    of wild birds with pH1N1 virus has been reported. From an animal health perspective, no specific disease control measures are considered necessary. Vaccines based on the pH1N1 virus appear to induce protection in swine similar to that induced by the existing swine influenza virus (SIV) vaccines...... are available but at present, there is no need to vaccinate poultry against pH1N1 virus. Monitoring of circulating influenza viruses in swine and poultry populations should be instigated to monitor the evolution of the pH1N1 virus including changes in virulence.......Analysis of the recent pandemic (H1N1) 2009 (pH1N1) virus indicates a probable origin in pigs. However, it was not reported in pigs prior to its detection in humans. Several cases of pH1N1 virus infections in animals have been reported, mainly in pigs but also in other animals including turkeys...

  19. A single base-pair change in 2009 H1N1 hemagglutinin increases human receptor affinity and leads to efficient airborne viral transmission in ferrets.

    Directory of Open Access Journals (Sweden)

    Akila Jayaraman

    Full Text Available The 2009 H1N1 influenza A virus continues to circulate among the human population as the predominant H1N1 subtype. Epidemiological studies and airborne transmission studies using the ferret model have shown that the transmission efficiency of 2009 H1N1 viruses is lower than that of previous seasonal strains and the 1918 pandemic H1N1 strain. We recently correlated this reduced transmission efficiency to the lower binding affinity of the 2009 H1N1 hemagglutinin (HA to α2→6 sialylated glycan receptors (human receptors. Here we report that a single point mutation (Ile219→Lys; a base pair change in the glycan receptor-binding site (RBS of a representative 2009 H1N1 influenza A virus, A/California/04/09 or CA04/09, quantitatively increases its human receptor-binding affinity. The increased human receptor-affinity is in the same range as that of the HA from highly transmissible seasonal and 1918 pandemic H1N1 viruses. Moreover, a 2009 H1N1 virus carrying this mutation in the RBS (generated using reverse genetics transmits efficiently in ferrets by respiratory droplets thereby reestablishing our previously observed correlation between human receptor-binding affinity and transmission efficiency. These findings are significant in the context of monitoring the evolution of the currently circulating 2009 H1N1 viruses.

  20. The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics.

    Directory of Open Access Journals (Sweden)

    Piero Poletti

    Full Text Available BACKGROUND: The 2009 H1N1 pandemic influenza dynamics in Italy was characterized by a notable pattern: as it emerged from the analysis of influenza-like illness data, after an initial period (September-mid-October 2009 characterized by a slow exponential increase in the weekly incidence, a sudden and sharp increase of the growth rate was observed by mid-October. The aim here is to understand whether spontaneous behavioral changes in the population could be responsible for such a pattern of epidemic spread. METHODOLOGY/PRINCIPAL FINDINGS: In order to face this issue, a mathematical model of influenza transmission, accounting for spontaneous behavioral changes driven by cost/benefit considerations on the perceived risk of infection, is proposed and validated against empirical epidemiological data. The performed investigation revealed that an initial overestimation of the risk of infection in the general population, possibly induced by the high concern for the emergence of a new influenza pandemic, results in a pattern of spread compliant with the observed one. This finding is also supported by the analysis of antiviral drugs purchase over the epidemic period. Moreover, by assuming a generation time of 2.5 days, the initially diffuse misperception of the risk of infection led to a relatively low value of the reproductive number , which increased to in the subsequent phase of the pandemic. CONCLUSIONS/SIGNIFICANCE: This study highlights that spontaneous behavioral changes in the population, not accounted by the large majority of influenza transmission models, can not be neglected to correctly inform public health decisions. In fact, individual choices can drastically affect the epidemic spread, by altering timing, dynamics and overall number of cases.

  1. Preparing the outbreak assistance laboratory network in the Netherlands for the detection of the influenza virus A(H1N1) variant

    NARCIS (Netherlands)

    Meijer, Adam; Beerens, Antoine; Claas, Eric; Hermans, Mirjam; de Jong, Arjan; Molenkamp, Richard; Niesters, Hubert; Overduin, Pieter; Rossen, John; Schuurman, Rob; Wolffs, Petra; Fouchier, Ron; Osterhaus, Albert; Schutten, Martin; Koopmans, Marion

    2009-01-01

    BACKGROUND: Late April 2009, human infection with variant influenza virus A(H1N1)v emerged in the Northern Americas posing a threat that this virus may become the next pandemic influenza virus. OBJECTIVES: To prepare laboratories for surge capacity for molecular diagnosis of patients suspected for A

  2. Preparing the outbreak assistance laboratory network in the Netherlands for the detection of the influenza virus A(H1N1) variant.

    NARCIS (Netherlands)

    Meijer, A.; Beerens, A.; Claas, E.; Hermans, M.; Jong, A. de; Molenkamp, R.; Niesters, H.; Overduin, P.; Rossen, J.; Schuurman, R.; Wolffs, P.; Fouchier, R.; Osterhaus, A.; Schutten, M.; Koopmans, M.

    2009-01-01

    BACKGROUND: Late April 2009, human infection with variant influenza virus A(H1N1)v emerged in the Northern Americas posing a threat that this virus may become the next pandemic influenza virus. OBJECTIVES: To prepare laboratories for surge capacity for molecular diagnosis of patients suspected for A

  3. Preparing the outbreak assistance laboratory network in the Netherlands for the detection of the influenza virus A(H1N1) variant

    NARCIS (Netherlands)

    A. Meijer; A. Beerens; E. Claas; M. Hermans; A. de Jong; R. Molenkamp; H. Niesters; P. Overduin; J. Rossen; R. Schuurman; P. Wolffs; R. Fouchier; A. Osterhaus; M. Schutten; M. Koopmans

    2009-01-01

    Background: Late April 2009, human infection with variant influenza virus A(H1N1)v emerged in the Northern Americas posing a threat that this virus may become the next pandemic influenza virus. Objectives: To prepare laboratories for surge capacity for molecular diagnosis of patients suspected for A

  4. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1)pdm09 influenza viruses.

    Science.gov (United States)

    Butler, Jeff; Hooper, Kathryn A; Petrie, Stephen; Lee, Raphael; Maurer-Stroh, Sebastian; Reh, Lucia; Guarnaccia, Teagan; Baas, Chantal; Xue, Lumin; Vitesnik, Sophie; Leang, Sook-Kwan; McVernon, Jodie; Kelso, Anne; Barr, Ian G; McCaw, James M; Bloom, Jesse D; Hurt, Aeron C

    2014-04-01

    Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide.

  5. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1pdm09 influenza viruses.

    Directory of Open Access Journals (Sweden)

    Jeff Butler

    2014-04-01

    Full Text Available Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1 influenza virus (A(H1N1pdm09, the proportion of A(H1N1pdm09 viruses that are oseltamivir resistant (OR has generally been low. However, a cluster of OR A(H1N1pdm09 viruses, encoding the neuraminidase (NA H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1pdm09 viruses. Our findings suggest that recent A(H1N1pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1pdm09 viruses, increasing the risk that OR A(H1N1pdm09 will emerge and spread worldwide.

  6. Estimating the Fitness Advantage Conferred by Permissive Neuraminidase Mutations in Recent Oseltamivir-Resistant A(H1N1)pdm09 Influenza Viruses

    Science.gov (United States)

    Butler, Jeff; Hooper, Kathryn A.; Petrie, Stephen; Lee, Raphael; Maurer-Stroh, Sebastian; Reh, Lucia; Guarnaccia, Teagan; Baas, Chantal; Xue, Lumin; Vitesnik, Sophie; Leang, Sook-Kwan; McVernon, Jodie; Kelso, Anne; Barr, Ian G.; McCaw, James M.; Bloom, Jesse D.; Hurt, Aeron C.

    2014-01-01

    Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide. PMID:24699865

  7. Computed Tomography Findings in New Swine Flu Influenza A (H1N1 Infection

    Directory of Open Access Journals (Sweden)

    Mehrdad Bakhshayeshkaram

    2011-05-01

    Full Text Available Background/Objective: The aim of this study was to"nevaluate the computed tomography scan of patients"nwith documented influenza A (H1N1."nPatients and Methods: Thirteen patients (six men,"nseven women, with documented H1N1 infection"nconfirmed by RT-PCR from November 2009 to January"n2010 were included in this study. The computed"ntomography scans of the patients were reviewed"nregarding pattern (consolidation, ground glass, nodules"nand reticulation, distribution (focal, multifocal and"ndiffuse and the lung zones involved. The patients'"nfiles were studied for their possible underlying disease."nLDH and CPK level was available for nine and ten"npatients, respectively."nResults: The mean age was 35.54 years. Eight patients"nhad a co-existing condition (two respiratory, two"ncardiovascular, one immunodeficiency, one cancer"nand three others. Six (46.2% patients required ICU"nadmission. Three (23.1% patients died. The most"ncommon radiographic abnormality was ground glass"nopacities (10/13; 76.9% followed by consolidation"n(6/13; 46.2% in the peribronchovascular region (8/13;"n61.5% which was most commonly observed in the"nupper zones (left 76.9%; right 76.9%. Six (46.2%"npatients had more than three lung zones involved."nSeven (53.8% patients had pleural thickening or"neffusion. Two (15.4% patients had hilar or mediastinal"nadenopathy. CPK was high in 3/10 and LDH in 9/10."nConclusion: In patients with the novel swine flu"ninfection the most common computed tomography"nmanifestation in our center was ground glass opacities"nin the upper lung zones.

  8. Influenza A (H1N1 2009: Impact on Frankfurt in due consideration of health care and public health

    Directory of Open Access Journals (Sweden)

    Groneberg David A

    2010-04-01

    Full Text Available Abstract Background In April 2009 a novel influenza A H1N1/2009 virus was identified in Mexico and in the United States which quickly spread around the world. Most of the countries established infection surveillance systems in order to track the number of (laboratory-confirmed H1N1 cases, hospitalizations and deaths. Methods The impact of the emergence of the novel pandemic (H1N1 2009 virus on Frankfurt was statistically evaluated by the Health Protection Authority, City of Frankfurt am Main. Vaccination rates of the health care workers (HCWs of the University Hospital Frankfurt were measured by the Occupational Health Service. Results Although the virulence of pandemic (H1N1 2009 seems to be comparable with seasonal influenza, a major patient load and wave of hospital admissions occurred in the summer of 2009. Even though the 2009 vaccination rate of the University Hospital Frankfurt (seasonal influenza [40.5%], swine flu [36.3%] is better than the average annual uptake of influenza vaccine in the German health care system (approximately 22% for seasonal and 15% for swine flu, vaccination levels remain insufficient. However, physicians were significantly (p Conclusions The outbreak of the pandemic (H1N1 2009 in April 2009 provided a major challenge to health services around the world. Nosocomial transmission of H1N1/2009 has been documented. Present experience should be used to improve pandemic preparedness plans and vaccination programs ought to target as many HCWs as possible.

  9. Immunosensor based on the ZnO nanorod networks for the detection of H1N1 swine influenza virus.

    Science.gov (United States)

    Jang, Yunseok; Park, Jungil; Pak, Youngmi Kim; Pak, James Jungho

    2012-07-01

    This paper presents an immunosensor fabricated on patterned zinc oxide nanorod networks (ZNNs) for detecting the H1N1 swine influenza virus (H1N1 SIV). Nanostructured ZnO with a high isoelectric point (IEP, approximately 9.5) possesses good absorbability for proteins with low IEPs. Hydrothermally grown ZNNs were fabricated on a patterned Au electrode (0.02 cm2) through a lift-off process. To detect the H1N1 SIV, the sandwich enzyme-linked immunosorbent assay (ELISA) method was employed in the immunosensor. The immunosensor was evaluated in an acetate buffer solution containing 3,3',5,5'-tetramethylbenzidine (TMB) via cyclic voltammetry at various H1N1 SIV concentrations (1 pg/mL-5 ng/mL). The measurement results of the fabricated immunosensor showed that the reduction currents of TMB at 0.25 V logarithmically increased from 259.37 to 577.98 nA as the H1N1 SIV concentration changed from 1 pg/mL to 5 ng/mL. An H1N1 SIV immunosensor, based on the patterned ZNNs, was successfully realized for detecting 1 pg/mL-5 ng/mL H1N1 SIV concentrations, with a detection limit of 1 pg/mL for H1N1 SIV.

  10. Preliminary study about sublingual administration of bacteria-expressed pandemic H1N1 influenza vaccine in miniature pigs.

    Science.gov (United States)

    Kim, Hyekwon; Kim, Jeong-Ki; Song, Hohyun; Choi, Jungah; Shim, Byoungshik; Kang, Bokyu; Moon, Hyoungjoon; Yeom, Minjoo; Kim, Sang-Hyun; Song, Daesub; Song, Manki

    2014-09-01

    Sublingual (SL) administration of influenza vaccine would be non-invasive and effective way to give human populations protective immunity against the virus, especially when pandemic influenza outbreaks. In this study, the efficacy of pandemic influenza virus-based subunit vaccines was tested after sublingual (SL) adjuvant administration in pigs. Eight specific pathogen-free Yucatan pigs were divided into 4 groups: nonvaccinated but challenged (A) and vaccinated and challenged (B, C, and D). The vaccinated groups were subdivided by vaccine type and inoculation route: SL subunit vaccine (hemagglutinin antigen 1 [HA1] + wild-type cholera toxin [wtCT], B); IM subunit vaccine (HA1 + aluminum hydroxide, C); and IM inactivated vaccine (+ aluminum hydroxide, D). The vaccines were administered twice at a 2-week interval. All pigs were challenged with pandemic influenza virus (A/swine/GCVP-KS01/2009 [H1N1]) and monitored for clinical signs, serology, viral shedding, and histopathology. After vaccination, hemagglutination inhibition titre was higher in group D (320) than in the other vaccinated groups (40-80) at the time of challenge. The mobility and feed intake were reduced in group C. Both viral shedding and histopathological lesions were reduced in groups B and D. Although this study has limitation due to the limited number of pigs (2 pigs per a group), the preliminary data in this study provided the protective potential of SL administration of bacteria-expressed pandemic H1N1 influenza vaccine in pigs. There should be additional animal studies about effective adjuvant system and vaccine types for the use of SL influenza vaccination.

  11. Timeliness of contact tracing among flight passengers for influenza A/H1N1 2009

    Directory of Open Access Journals (Sweden)

    Swaan Corien M

    2011-12-01

    Full Text Available Abstract Background During the initial containment phase of influenza A/H1N1 2009, close contacts of cases were traced to provide antiviral prophylaxis within 48 h after exposure and to alert them on signs of disease for early diagnosis and treatment. Passengers seated on the same row, two rows in front or behind a patient infectious for influenza, during a flight of ≥ 4 h were considered close contacts. This study evaluates the timeliness of flight-contact tracing (CT as performed following national and international CT requests addressed to the Center of Infectious Disease Control (CIb/RIVM, and implemented by the Municipal Health Services of Schiphol Airport. Methods Elapsed days between date of flight arrival and the date passenger lists became available (contact details identified - CI was used as proxy for timeliness of CT. In a retrospective study, dates of flight arrival, onset of illness, laboratory diagnosis, CT request and identification of contacts details through passenger lists, following CT requests to the RIVM for flights landed at Schiphol Airport were collected and analyzed. Results 24 requests for CT were identified. Three of these were declined as over 4 days had elapsed since flight arrival. In 17 out of 21 requests, contact details were obtained within 7 days after arrival (81%. The average delay between arrival and CI was 3,9 days (range 2-7, mainly caused by delay in diagnosis of the index patient after arrival (2,6 days. In four flights (19%, contacts were not identified or only after > 7 days. CI involving Dutch airlines was faster than non-Dutch airlines (P Conclusion CT for influenza A/H1N1 2009 among flight passengers was not successful for timely provision of prophylaxis. CT had little additional value for alerting passengers for disease symptoms, as this information already was provided during and after the flight. Public health authorities should take into account patient delays in seeking medical advise and

  12. Influenza A(H1N1) Oseltamivir Resistant Viruses in the Netherlands During the Winter 2007/2008

    Science.gov (United States)

    Dijkstra, Frederika; Jonges, Marcel; van Beek, Ruud; Donker, Gé A; Schellevis, François G; Koopmans, Marion; van der Sande, Marianne A.B; Osterhaus, Albert D.M.E; Boucher, Charles A.B; Rimmelzwaan, Guus F; Meijer, Adam

    2011-01-01

    Background: Antiviral susceptibility surveillance in the Netherlands was intensified after the first reports about the emergence of influenza A(H1N1) oseltamivir resistant viruses in Norway in January, 2008. Methods: Within the existing influenza surveillance an additional questionnaire study was performed to retrospectively assess possible risk factors and establish clinical outcome of all patients with influenza virus A(H1N1) positive specimens. To discriminate resistant and sensitive viruses, fifty percent inhibitory concentrations for the neuramidase inhibitors oseltamivir and zanamivir were determined in a neuraminidase inhibition assay. Mutations previously associated with resistance to neuramidase inhibitors and M2 blockers (amantadine and rimantadine) were searched for by nucleotide sequencing of neuraminidase and M2 genes respectively. Results: Among 171 patients infected with A(H1N1) viruses an overall prevalence of oseltamivir resistance of 27% (95% CI: 20-34%) was found. None of influenza A(H1N1) oseltamivir resistant viruses tested was resistant against amantadine or zanamivir. Patient characteristics, underlying conditions, influenza vaccination, symptoms, complications, and exposure to oseltamivir and other antivirals did not differ significantly between patients infected with resistant and sensitive A(H1N1) viruses. Conclusion: In 2007/2008 a large proportion of influenza A(H1N1) viruses resistant to oseltamivir was detected. There were no clinical differences between patients infected with resistant and sensitive A(H1N1) viruses. Continuous monitoring of the antiviral drug sensitivity profile of influenza viruses is justified, preferably using the existing sentinel surveillance, however, complemented with data from the more severe end of the clinical spectrum. In order to act timely on emergencies of public health importance we suggest setting up a surveillance system that can guarantee rapid access to the latter. PMID:22253652

  13. Origin and future distribution of the new A (H1N1) influenza virus emerging in North America in 2009

    Institute of Scientific and Technical Information of China (English)

    CHEN JiMing; SUN YingXue; LIU Shuo; JIANG WenMing; CHEN Jie; HOU GuangYu; LI JinPing

    2009-01-01

    The origin of the new A (H1N1) influenza virus recently emerging in North America is a hot controversial topic of significance in disease control and risk assessment.Some experts claimed that it was an unusually mongrelized mix of human,avian and swine influenza viruses,while some others concluded that it was totally a simple re-assortment hybrid of two lineages of swine influenza viruses.Here the phylogenetic diversity of the viral PB1,PA and PB2 gene sequences using online web servers,and the results suggest that all the 8 genetic segments of the new virus were possibly from two lineages of swine influenza viruses,and one of the lineage was a mongrelized mix of human,avian and swine influenza viruses emerging in the world approximately 10 years ago.Considering the recent epidemiological trends of the new virus,we believe it will spread more widely in the world and persist long in human populations.It also could spread among swine populations.The future wide spreading of the new virus may coincide the disappearance of a subtype of previous human influenza A virus.

  14. Influenza A(H1N1)pdm09 vaccination policies and coverage in Europe.

    LENUS (Irish Health Repository)

    Mereckiene, J

    2012-06-01

    In August 2010 the Vaccine European New Integrated Collaboration Effort (VENICE) project conducted a survey to collect information on influenza A(H1N1)pdm09 vaccination policies and vaccination coverage in the European Union (EU), Norway and Iceland. Of 29 responding countries, 26 organised national pandemic influenza vaccination and one country had recommendations for vaccination but did not have a specific programme. Of the 27 countries with vaccine recommendations, all recommended it for healthcare workers and pregnant women. Twelve countries recommended vaccine for all ages. Six and three countries had recommendations for specific age groups in children and in adults, countries for specific adult age groups. Most countries recommended vaccine for those in new risk groups identified early in the pandemic such as morbid obese and people with neurologic diseases. Two thirds of countries started their vaccination campaigns within a four week period after week 40\\/2009. The reported vaccination coverage varied between countries from 0.4% to 59% for the entire population (22 countries); 3% to 68% for healthcare workers (13 countries); 0% to 58% for pregnant women (12 countries); 0.2% to 74% for children (12 countries). Most countries identified similar target groups for pandemic vaccine, but substantial variability in vaccination coverage was seen. The recommendations were in accordance with policy advice from the EU Health Security Committee and the World Health Organization.

  15. Issues in pharmacotherapy of 2009 H1N1 influenza infection

    Directory of Open Access Journals (Sweden)

    Gupta Y

    2010-01-01

    Full Text Available The pandemic caused by the 2009 H1N1 influenza A virus has been a cause of great concern for healthcare professionals and the scientific community worldwide. Due to the widespread resistance of the virus to adamantanes, pharmacotherapy is currently limited to neuraminidase inhibitors, oseltamivir and zanamivir. The use of neuraminidase inhibitors in India is primarily associated with issues of patient and physician awareness, variability in disease management guidelines, safety and efficacy in the Indian population, need for active drug safety monitoring, and development of resistance due to possible misuse. In addition, other issues like availability of the drugs in retail and stockpiling by the public health authorities need careful introspection. The development of influenza vaccines in India and its adequate availability to the country′s populace also poses significant challenges in the management of the pandemic. In light of the limited therapeutic options available for the management of the disease, research on novel targets and pharmacological agents would also be beneficial in addressing the challenges of future outbreaks.

  16. Structural Characterization of the 1918 Influenza H1N1 Neuraminidase

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.; Zhu, X.; Dwek, R.A.; Stevens, J.; Wilson, I.A.

    2009-05-28

    Influenza virus neuraminidase (NA) plays a crucial role in facilitating the spread of newly synthesized virus in the host and is an important target for controlling disease progression. The NA crystal structure from the 1918 'Spanish flu' (A/Brevig Mission/1/18 H1N1) and that of its complex with zanamivir (Relenza) at 1.65-{angstrom} and 1.45-{angstrom} resolutions, respectively, corroborated the successful expression of correctly folded NA tetramers in a baculovirus expression system. An additional cavity adjacent to the substrate-binding site is observed in N1, compared to N2 and N9 NAs, including H5N1. This cavity arises from an open conformation of the 150 loop (Gly147 to Asp151) and appears to be conserved among group 1 NAs (N1, N4, N5, and N8). It closes upon zanamivir binding. Three calcium sites were identified, including a novel site that may be conserved in N1 and N4. Thus, these high-resolution structures, combined with our recombinant expression system, provide new opportunities to augment the limited arsenal of therapeutics against influenza.

  17. Computer-aided assessment of pulmonary disease in novel swine-origin H1N1 influenza on CT

    Science.gov (United States)

    Yao, Jianhua; Dwyer, Andrew J.; Summers, Ronald M.; Mollura, Daniel J.

    2011-03-01

    The 2009 pandemic is a global outbreak of novel H1N1 influenza. Radiologic images can be used to assess the presence and severity of pulmonary infection. We develop a computer-aided assessment system to analyze the CT images from Swine-Origin Influenza A virus (S-OIV) novel H1N1 cases. The technique is based on the analysis of lung texture patterns and classification using a support vector machine (SVM). Pixel-wise tissue classification is computed from the SVM value. The method was validated on four H1N1 cases and ten normal cases. We demonstrated that the technique can detect regions of pulmonary abnormality in novel H1N1 patients and differentiate these regions from visually normal lung (area under the ROC curve is 0.993). This technique can also be applied to differentiate regions infected by different pulmonary diseases.

  18. Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice.

    Directory of Open Access Journals (Sweden)

    Wenfei Zhu

    Full Text Available Influenza A virus can infect a wide variety of animal species with illness ranging from mild to severe, and is a continual cause for concern. Genetic mutations that occur either naturally or during viral adaptation in a poorly susceptible host are key mechanisms underlying the evolution and virulence of influenza A virus. Here, the variants containing PA-A36T or PB2-H357N observed in the mouse-adapted descendants of 2009 pandemic H1N1 virus (pH1N1, A/Sichuan/1/2009 (SC, were characterized. Both mutations enhanced polymerase activity in mammalian cells. These effects were confirmed using recombinant SC virus containing polymerase genes with wild type (WT or mutant PA or PB2. The PA-A36T mutant showed enhanced growth property compared to the WT in both human A549 cells and porcine PK15 cells in vitro, without significant effect on viral propagation in murine LA-4 cells and pathogenicity in mice; however, it did enhance the lung virus titer. PB2-H357N variant demonstrated growth ability comparable to the WT in A549 cells, but replicated well in PK15, LA-4 cells and in mice with an enhanced pathogenic phenotype. Despite such mutations are rare in nature, they could be observed in avian H5 and H7 subtype viruses which were currently recognized to pose potential threat to human. Our findings indicated that pH1N1 may adapt well in mammals when acquiring these mutations. Therefore, future molecular epidemiological surveillance should include scrutiny of both markers because of their potential impact on pathogenesis.

  19. Pandemic Influenza A (H1N1) Virus Infection Increases Apoptosis and HIV-1 Replication in HIV-1 Infected Jurkat Cells.

    Science.gov (United States)

    Wang, Xue; Tan, Jiying; Biswas, Santanu; Zhao, Jiangqin; Devadas, Krishnakumar; Ye, Zhiping; Hewlett, Indira

    2016-02-02

    Influenza virus infection has a significant impact on public health, since it is a major cause of morbidity and mortality. It is not well-known whether influenza virus infection affects cell death and human immunodeficiency virus (HIV)-1 replication in HIV-1-infected patients. Using a lymphoma cell line, Jurkat, we examined the in vitro effects of pandemic influenza A (H1N1) virus (pH1N1) infection on cell death and HIV-1 RNA production in infected cells. We found that pH1N1 infection increased apoptotic cell death through Fas and Bax-mediated pathways in HIV-1-infected Jurkat cells. Infection with pH1N1 virus could promote HIV-1 RNA production by activating host transcription factors including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein 1 (AP-1) through mitogen-activated protein kinases (MAPK) pathways and T-cell antigen receptor (TCR)-related pathways. The replication of HIV-1 latent infection could be reactivated by pH1N1 infection through TCR and apoptotic pathways. These data indicate that HIV-1 replication can be activated by pH1N1 virus in HIV-1-infected cells resulting in induction of cell death through apoptotic pathways.

  20. Association of swine influenza H1N1 pandemic virus (SIV-H1N1p) with porcine respiratory disease complex in sows from commercial pig farms in Colombia.

    Science.gov (United States)

    Jiménez, Luisa Fernanda Mancipe; Ramírez Nieto, Gloria; Alfonso, Victor Vera; Correa, Jairo Jaime

    2014-08-01

    Porcine respiratory disease complex (PRDC) is a serious health problem that mainly affects growing and finishing pigs. PRDC is caused by a combination of viral and bacterial agents, such as porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), Mycoplasma hyopneumoniae (Myh), Actinobacillus pleuropneumoniae (APP), Pasteurella multocida and Porcine circovirus 2 (PCV2). To characterize the specific role of swine influenza virus in PRDC presentation in Colombia, 11 farms from three major production regions in Colombia were examined in this study. Nasal swabs, bronchial lavage and lung tissue samples were obtained from animals displaying symptoms compatible with SIV. Isolation of SIV was performed in 9-day embryonated chicken eggs or Madin-Darby Canine Kidney (MDCK) cells. Positive isolates, identified via the hemagglutination inhibition test, were further analyzed using PCR. Overall, 7 of the 11 farms were positive for SIV. Notably, sequencing of the gene encoding the hemagglutinin (HA) protein led to grouping of strains into circulating viruses identified during the human outbreak of 2009, classified as pandemic H1N1-2009. Serum samples from 198 gilts and multiparous sows between 2008 and 2009 were obtained to determine antibody presence of APP, Myh, PCV2 and PRRSV in both SIV-H1N1p-negative and -positive farms, but higher levels were recorded for SIV-H1N1p-positive farms. Odds ratio (OR) and P values revealed statistically significant differences (p<0.05) in PRDC presentation in gilts and multiparous sows of farms positive for SIV-H1N1p. Our findings indicate that positive farms have increased risk of PRDC presentation, in particular, PCV2, APP and Myh.

  1. Antibody Response After a Single Dose of an AS03-Adjuvanted Split-Virion Influenza A (H1N1) Vaccine in Heart Transplant Recipients

    NARCIS (Netherlands)

    Meyer, Sven; Adam, Matti; Schweiger, Brunhilde; Ilchmann, Corina; Eulenburg, Christine; Sattinger, Edgar; Runte, Hendrik; Schlueter, Michael; Deuse, Tobias; Reichenspurner, Hermann; Costard-Jaeckle, Angelika

    2011-01-01

    Background. Influenza A (H1N1) has emerged as a considerable threat for recipients of organ transplants. Vaccination against the novel influenza A (H1N1) virus has generally been advocated. There is limited experience with AS03-adjuvanted A/H1N1 pandemic influenza vaccines in immunosuppressed patien

  2. Statistical optimization of influenza H1N1 production from batch cultures of suspension Vero cells (sVero).

    Science.gov (United States)

    Paillet, Cristian; Forno, Guillermina; Soldano, Nicolas; Kratje, Ricardo; Etcheverrigaray, Marina

    2011-09-22

    Efficient vaccine production requires the growth of large quantities of virus produced with high yield from a safe host system. Human influenza vaccines are produced in embryonated chicken eggs. However, over the last decade many efforts have allowed the establishment of cell culture-derived vaccines. We generated a Vero cell line adapted to grow in suspension (sVero) in a serum-free medium and evaluated it for its potential as host cell for influenza vaccine production. Initially we studied the capacity of sVero cells to grow in the presence of incremental concentrations of trypsin. In comparison with adherent Vero cells (aVero), we found that sVero cells maintain their growth kinetics even with a three-fold increase in trypsin concentration. The influence of the conditions of infection on the yield of H1N1 produced in serum-free suspension cultures of sVero cells was investigated by a 2(2) full factorial experiment with center point. Each experiment tested the influence of the multiplicity of infection (m.o.i.) and trypsin concentration, on production yields at two levels, in four possible combinations of levels and conditions, plus a further combination in which each condition was set in the middle of its extreme levels. On the basis of software analysis, a combination of m.o.i. of 0.0066TCID(50%)/cell and trypsin concentration of 5μg/1.0×10(6) cells with a desirability of 0.737 was selected as the optimized condition for H1N1 production in sVero cells. Our results show the importance of proper selection of infection conditions for H1N1 production on sVero cells in serum-free medium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. BLOOD CONTENTS OF DEFENSINS IN PATIENTS WITH PNEUMONIAS CAUSED BY INFLUENZA А/H1N1

    Directory of Open Access Journals (Sweden)

    E. N. Romanova

    2012-01-01

    Full Text Available Abstract. Defensin amounts in severe forms of influenza-associated pneumonia and acute respiratory distresssyndrome is increased to a lesser degree than in pneumonias with milder clinical course. This difference may be determined by selective accumulation of defensins in areas of infectious lesions. Mean content of α-defensins in non-severe pneumonias with influenza А/H1N1 accompanied by normocytosis or leukopenia, is higher than in bacterial pneumonias with leukocytosis. High levels of defensins, along with substantially increased neutrophil counts, associated with normocytosis or leukopenia, reflect a pronounced systemic inflammatory response caused by influenza А/H1N1.

  4. Effectiveness of the influenza a(H1N1)PDM09 vaccine in adults recommended for annual influenza vaccination : A case-control study

    NARCIS (Netherlands)

    Gefenaite, Giedre; Tacken, Margot; Bos, Jens; Stirbu-Wagner, Irina; Korevaar, Joke C.; Stolk, Ronald P.; Wolters, Bert; Bijl, Marc; Postma, Maarten J.; Wilschut, Jan; Nichol, Kristin L.; Hak, Eelko

    2012-01-01

    Background: Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we aimed to assess the effectiveness of MF59-adjuvanted A(H1N1)pdm09 vaccine in a matched case-control study. Objectives: We aimed to assess the effectiveness of MF59- adjuvanted A(H1N1)pdm09 infl

  5. Did socio-ecological factors drive the spatiotemporal patterns of pandemic influenza A (H1N1)?

    Science.gov (United States)

    Hu, Wenbiao; Williams, Gail; Phung, Hai; Birrell, Frances; Tong, Shilu; Mengersen, Kerrie; Huang, Xiaodong; Clements, Archie

    2012-09-15

    Pandemic influenza A (H1N1) has a significant public health impact. This study aimed to examine the effect of socio-ecological factors on the transmission of H1N1 in Brisbane, Australia. We obtained data from Queensland Health on numbers of laboratory-confirmed daily H1N1 in Brisbane by statistical local areas (SLA) in 2009. Data on weather and socio-economic index were obtained from the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. A Bayesian spatial conditional autoregressive (CAR) model was used to quantify the relationship between variation of H1N1 and independent factors and to determine its spatiotemporal patterns. Our results show that average increase in weekly H1N1 cases were 45.04% (95% credible interval (CrI): 42.63-47.43%) and 23.20% (95% CrI: 16.10-32.67%), for a 1 °C decrease in average weekly maximum temperature at a lag of one week and a 10mm decrease in average weekly rainfall at a lag of one week, respectively. An interactive effect between temperature and rainfall on H1N1 incidence was found (changes: 0.71%; 95% CrI: 0.48-0.98%). The auto-regression term was significantly associated with H1N1 transmission (changes: 2.5%; 95% CrI: 1.39-3.72). No significant association between socio-economic indexes for areas (SEIFA) and H1N1 was observed at SLA level. Our results demonstrate that average weekly temperature at lag of one week and rainfall at lag of one week were substantially associated with H1N1 incidence at a SLA level. The ecological factors seemed to have played an important role in H1N1 transmission cycles in Brisbane, Australia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses

    NARCIS (Netherlands)

    M.L.B. Hillaire (Marine); S.E. Vogelzang-van Trierum (Stella ); J.H.C.M. Kreijtz (Joost); G. de Mutsert (Gerrie); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Ab); G.F. Rimmelzwaan (Guus)

    2013-01-01

    textabstractVirus-specific CD8+ T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity

  7. 344例甲型H1N1流感轻症的临床特征分析%Epidemiological and clinical features of 344 influenza A (H1N1)cases with light symptoms

    Institute of Scientific and Technical Information of China (English)

    李际强; 卢传坚; 罗翌; 温泽淮; 李晓彦; 郑丹文; 邓庆平

    2011-01-01

    Objective To investigate the epidemiological and clinical features of 344 influenza A (H1N1)case with light symptoms. Methods The clinical data of 344 influenza A (H1N1)cases confirmed by pathogenic diagnosis were retrospectively analyzed including clinical features,results of physical examination and laboratory tests and compared with those negative for influenza A virus (H1N1). Results Compared with those negative for influenza A virus (H1N1)the symptoms of cough and with phlegm was obviously observed in influenza A (H1N1)patients,showing significant differences (P<0.01). The percentage of throat congestion and antiadoncus was significantly higher in the influenza A(H1N1)cases than that of those negative for influenza A virus (H1N1)(P<0.01 ). The WBC count,neutrophil count and lymphocyte count in patients positive for influenza A virus cnucleic acid were significantly lower than those of the negative group (P<0.01 and P<0.05). There 72.09% of the confirmed influenza A (H1N1)cases wer in the age group of 18-30 years. Conclusion Most of the influenza A (H1N1 )cases were those at their prime of life and clinical manifestations/signs and hematological test results were the basis for early diagnosis of the disease.%目的 探讨甲型H1N1流感轻症患者流行病学和临床特征.方法对病原学诊断为甲型H1N1流感的患者344例的临床资料进行回顾性分析,对其主要临床表现、体格检查、血细胞计数等项目与甲型H1N1流感病毒检测阴性的患者进行比较.结果 临床表现方面,病原学诊断为甲型H1N1流感的患者与甲型H1N1流感病毒检测阴性的患者相比,咳嗽与咯痰症状比较突出(P<0.01);咽部充血与扁桃体肿大所占比例亦高于阴性组(P<0.01);甲型H1N1病毒核酸阳性组的白细胞计数、中性粒细胞计数明显低于阴性病人(P<0.01),淋巴细胞计数亦低于阴性组(P<0.05).确诊甲型H1N1流感患者中,发病年龄以18~30岁所占比例最大,共248

  8. Influenza A(H1N1) oseltamivir resistant viruses in the Netherlands during the winter 2007/2008.

    NARCIS (Netherlands)

    Dijkstra, F.; Jonges, M.; Beek, R. van; Donker, G.A.; Schellevis, F.G.; Koopmans, M.; Sande, M.A.B. van der; Osterhaus, A.D.M.E.; Boucher, C.A.B.; Rimmelzwaan, G.F.; Meijer, A.

    2011-01-01

    Background: Antiviral susceptibility surveillance in the Netherlands was intensified after the first reports about the emergence of influenza A(H1N1) oseltamivir resistant viruses in Norway in January, 2008. Methods: Within the existing influenza surveillance an additional questionnaire study was pe

  9. Outbreak of Influenza A(H1N1) in a Kidney Transplant Unit-Protective Effect of Vaccination.

    Science.gov (United States)

    Helanterä, I; Anttila, V-J; Lappalainen, M; Lempinen, M; Isoniemi, H

    2015-09-01

    Seasonal influenza vaccination is recommended for patients with end-stage renal disease (ESRD), despite suggested inferior efficacy among these patients. We characterize an outbreak of influenza A(H1N1) in a kidney transplant unit. Altogether 23 patients were treated on the ward for postoperative care after kidney transplantation during the outbreak. After the first positive case, all patients were tested with nasopharyngeal swab tests and 7 patients were diagnosed with influenza A(H1N1). Altogether 17/23 patients had received adequate seasonal influenza vaccination, of whom 2/17 tested positive for influenza (one asymptomatic, one with mild cough). Five of six unvaccinated patients were diagnosed with influenza A(H1N1); 3/5 suffered from severe respiratory failure and were treated with ventilator support in the ICU, but all died due to acute respiratory distress syndrome, whereas 2/5 suffered from mild viral pneumonitis and recovered fully. The risk of influenza infection and mortality was significantly increased in unvaccinated patients (odds ratio 37.5 [95% CI 2.7-507.5, p = 0.01] and 6.7 [95% CI 2.3-18.9, p = 0.003], respectively). Influenza A(H1N1) had a high mortality in our cohort of nonvaccinated immunosuppressed patients early after kidney transplantation. None of the vaccinated patients developed serious disease, supporting the role of vaccination also for ESRD patients.

  10. Influenza A(H1N1) oseltamivir resistant viruses in the Netherlands during the winter 2007/2008.

    NARCIS (Netherlands)

    Dijkstra, F.; Jonges, M.; Beek, R. van; Donker, G.A.; Schellevis, F.G.; Koopmans, M.; Sande, M.A.B. van der; Osterhaus, A.D.M.E.; Boucher, C.A.B.; Rimmelzwaan, G.F.; Meijer, A.

    2011-01-01

    Background: Antiviral susceptibility surveillance in the Netherlands was intensified after the first reports about the emergence of influenza A(H1N1) oseltamivir resistant viruses in Norway in January, 2008. Methods: Within the existing influenza surveillance an additional questionnaire study was pe

  11. Development of oseltamivir and zanamivir resistance in influenza A(H1N1)pdm09 virus, Denmark, 2014

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Pedersen, Svend Stenvang; Vorborg, Kristine

    2017-01-01

    Antiviral treatment of immunocompromised patients with prolonged influenza virus infection can lead to multidrug resistance. This study reveals the selection of antiviral resistance mutations in influenza A(H1N1)pdm09 virus in an immunocompromised patient during a 6-month period. The patient...

  12. Dynamics of a New Strain of the H1N1 Influenza A Virus Incorporating the Effects of Repetitive Contacts

    Directory of Open Access Journals (Sweden)

    Puntani Pongsumpun

    2014-01-01

    Full Text Available The respiratory disease caused by the Influenza A Virus is occurring worldwide. The transmission for new strain of the H1N1 Influenza A virus is studied by formulating a SEIQR (susceptible, exposed, infected, quarantine, and recovered model to describe its spread. In the present model, we have assumed that a fraction of the infected population will die from the disease. This changes the mathematical equations governing the transmission. The effect of repetitive contact is also included in the model. Analysis of the model by using standard dynamical modeling method is given. Conditions for the stability of equilibrium state are given. Numerical solutions are presented for different values of parameters. It is found that increasing the amount of repetitive contacts leads to a decrease in the peak numbers of exposed and infectious humans. A stability analysis shows that the solutions are robust.

  13. Conjugating influenza a (H1N1) antigen to n-trimethylaminoethylmethacrylate chitosan nanoparticles improves the immunogenicity of the antigen after nasal administration.

    Science.gov (United States)

    Liu, Qingfeng; Zheng, Xiaoyao; Zhang, Chi; Shao, Xiayan; Zhang, Xi; Zhang, Qizhi; Jiang, Xinguo

    2015-11-01

    As one of the most serious infectious respiratory diseases, influenza A (H1N1) is a great threat to human health, and it has created an urgent demand for effective vaccines. Nasal immunization can induce both systemic and mucosal immune responses against viruses, and it can serve as an ideal route for vaccination. However, the low immunogenicity of antigens on nasal mucosa is a high barrier for the development of nasal vaccines. In this study, we covalently conjugated an influenza A (H1N1) antigen to the surface of N-trimethylaminoethylmethacrylate chitosan (TMC) nanoparticles (H1N1-TMC/NP) through thioester bonds to increase the immunogenicity of the antigen after nasal administration. SDS-PAGE revealed that most of the antigen was conjugated on TMC nanoparticles, and an in vitro biological activity assay confirmed the stability of the antigen after conjugation. After three nasal immunizations, the H1N1-TMC/NP induced significantly higher levels of serum IgG and mucosal sIgA compared with free antigen. A hemagglutination inhibition assay showed that H1N1-TMC/NP induced much more protective antibodies than antigen-encapsulated nanoparticles or alum-precipitated antigen (I.M.). In the mechanistic study, H1N1-TMC/NP was shown to stimulate macrophages to produce IL-1β and IL-6 and to stimulate spleen lymphocytes to produce IL-2 and IFN-γ. These results indicated that H1N1-TMC/NP may be an effective vaccine against influenza A (H1N1) viruses for use in nasal immunization.

  14. Corticosteroid treatment ameliorates acute lung injury induced by 2009 swine origin influenza A (H1N1 virus in mice.

    Directory of Open Access Journals (Sweden)

    Chenggang Li

    Full Text Available BACKGROUND: The 2009 influenza pandemic affected people in almost all countries in the world, especially in younger age groups. During this time, the debate over whether to use corticosteroid treatment in severe influenza H1N1 infections patients resurfaced and was disputed by clinicians. There is an urgent need for a susceptible animal model of 2009 H1N1 infection that can be used to evaluate the pathogenesis and the therapeutic effect of corticosteroid treatment during infection. METHODOLOGY/PRINCIPAL FINDINGS: We intranasally inoculated two groups of C57BL/6 and BALB/c mice (using 4- or 6-to 8-week-old mice to compare the pathogenesis of several different H1N1 strains in mice of different ages. Based on the results, a very susceptible 4-week-old C57BL/6 mouse model of Beijing 501 strain of 2009 H1N1 virus infection was established, showing significantly elevated lung edema and cytokine levels compared to controls. Using our established animal model, the cytokine production profile and lung histology were assessed at different times post-infection, revealing increased lung lesions in a time-dependent manner. In additional,the mice were also treated with dexamethasone, which significantly improved survival rate and lung lesions in infected mice compared to those in control mice. Our data showed that corticosteroid treatment ameliorated acute lung injury induced by the 2009 A/H1N1 virus in mice and suggested that corticosteroids are valid drugs for treating 2009 A/H1N1 infection. CONCLUSIONS/SIGNIFICANCE: Using the established, very susceptible 2009 Pandemic Influenza A (H1N1 mouse model, our studies indicate that corticosteroids are a potential therapeutic remedy that may address the increasing concerns over future 2009 A/H1N1 pandemics.

  15. Enfermedad respiratoria grave en terapia intensiva durante la pandemia por el virus de influenza A (H1N1) 2009 Severe respiratory disease in an intensive care unit during influenza A(H1N1)2009 pandemia

    OpenAIRE

    2010-01-01

    Se describen pacientes hospitalizados en una unidad de terapia intensiva por enfermedad respiratoria aguda grave con características de influenza durante los primeros meses de la pandemia por influenza A(H1N1) 2009 en la Argentina. Evaluamos datos clínicos, scores de gravedad, pruebas de laboratorio, microbiología y radiología torácica al ingreso, evolución y mortalidad hospitalaria, comparando pacientes con y sin confirmación de H1N1 por test de reacción de polimerasa en cadena, transcriptas...

  16. Los virus Influenza y la nueva pandemia A/H1N1

    Directory of Open Access Journals (Sweden)

    Miguel Talledo

    2011-07-01

    Full Text Available Los virus Influenza pertenecen a la familia Orthomyxoviridae, virus con genoma RNA de sentido negativo segmentado. Los virus influenza tipo A infectan a humanos y otros organismos, y son los agentes causantes de influenza en humanos. Resaltan entre sus principales proteínas la Hemaglutinina y la Neuraminidasa, que son utilizadas en la clasificación de los miembros de este grupo. Estos virus mutan continuamente, exhibiendo patrones muy estudiados, como el cambio y la deriva antigénica, siendo uno de los principales eventos de recombinación el reordenamiento. Todos los subtipos se encuentran en aves acuáticas silvestres, aunque se han encontrado otros hospederos, como equinos, visones, ballenas, focas, cerdos, gallinas y pavos, entre otros. Tanto las aves salvajes, las aves domésticas y el cerdo juegan un rol fundamental en la adaptación progresiva del virus al hospedero humano. Aunque los subtipos H2N2 y H3N2 han sido muy comunes, el subtipo H1N1 ha reemergido con mutaciones que le han permitido alcanzar el estado de pandemia en 2009. Este nuevo virus surge de un virus generado por triple reordenamiento con el virus humano, porcino norteamericano y aviar, conteniendo a su vez segmentos génicos de virus influenza porcina euroasiática. Esto ha hecho que el virus presente una enfermedad humana moderada y solamente severa y hasta letal en casos de individuos con condiciones médicas previas. A nivel mundial ha causado más de 134,510 casos y en el Perú alcanza cerca de 3,700 casos. El estado actual indica que la pandemia está por llegar a su pico máximo en el Perú, debido a la alta morbilidad del virus coincidente con la estación más fría del año. Es importante contener al máximo la dispersión del virus, ya que cuanto mayor sea el número de personas que infecte, el mismo estará sometido a un mayor número de eventos de recombinación genética por reordenamiento con virus influenza humanos previos y esto puede condicionar a la

  17. Acute Respiratory Distress Syndrome (ARDS) from Endemic Influenza A/H1N1: Prehospital Management.

    Science.gov (United States)

    Salihefendic, Nizama; Zildzic, Muharem; Ahmetagic, Sead

    2015-02-01

    Acute respiratory distress syndrome (ARDS) is a form of acute life threatening respiratory failure. In daily practice there is difficulty in diagnostic and therapeutic management of Acute respiratory distress syndrome (ARDS). We observed delay in diagnostic and therapeutic procedures in patients with clinical signs for the presence of severe respiratory disorders. Finding timely evidence of the presence the clinical signs of threatening ARDS and underlying diseases like influenza A/H1N1 during prehospital period in early stage of disease it is possible introduce early adequate treatment: high flow oxygen, fluid replacement and pharmacological and antiviral therapy. This measure can reduce high mortality in patients who develop ARDS. It is important to improve diagnostic criteria for a precise definition of ARDS and transfer it in practice of emergency and family medicine, microbiology, intensive care units, hospital departments of infectious and respiratory diseases. In this article we underlined the key elements of the new definition of ARDS, diagnostic criteria and the importance of early diagnosis in prehospital period following clinical feature and course (a presence of severe dyspnea) by adding chest x-ray and laboratory investigations.

  18. 江阴市2009年甲型H1N1流感疫情分析%Epidemic features and influential factors of influenza A(H1N1)in Jiangyin in 2009

    Institute of Scientific and Technical Information of China (English)

    马焰

    2011-01-01

    目的 探讨江阴市甲型H1N1流感流行特征并提出防治措施.方法 对江阴市2009年甲型H1N1流感疫情资料进行分析.结果 2009年累计确诊甲型H1N1流感病人22例,其中重症病例3例、危重2例、死亡1例,发病率为1.25/10万.发生2起暴发疫情,均发生在学校.检测流感样病人咽拭子标本124份,甲型H1N1流感核酸阳性率为11.29%.结论江阴市采取的一系列甲型H1N1流感防控措施整体上显著有效,2009年江阴市甲型H1N1流感疫情处于低流行水平.%Aim To survey the epidemic features of influenza A (H1N1 ) in Jiang yin City. Methods Epidemic data of influenza A(H1N1 ) in Jiangyin of Jiangsu Province in 2009 were analyzed. Results In 2009, a total of 22 influenza A (H1N1) cases were confirmed,among them there were 5 severe cases,1 deaths.The morbidity rate was 1.25/100000 population. There were 2 outbreaks all in schools. 124 nasopharyngeal swab samples of Influenza-like patients were tested.The positive rate of nucleic acid influenza A (H1N1) was 11.29%. Conclusion The control measuers in combot against influenza A(H1N1 ) in Jiangyin is effective and the epidemic of influenza A(H1N1 ) in Jiangyin is at a low level n 2009.

  19. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases.

    Science.gov (United States)

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; Melo, Maria Elisabeth Lisboa de; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; Silva, Luciene Alexandre Bié da; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-09-01

    We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses' epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  20. Coinfection with influenza A(H1N1pdm09 and dengue virus in fatal cases

    Directory of Open Access Journals (Sweden)

    Anne Carolinne Bezerra Perdigão

    2016-01-01

    Full Text Available Abstract We report on four patients with fatal influenza A(H1N1pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses’ epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4. Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998. As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015. In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm, caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010. In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013. The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013. The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  1. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases

    Science.gov (United States)

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; de Melo, Maria Elisabeth Lisboa; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; da Silva, Luciene Alexandre Bié; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-01-01

    Abstract We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses’ epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará. PMID:27598244

  2. 2009年深圳市某街道甲型H1N1流感流行病学分析%Epidemiological characteristics of influenza A (H1N1) in a strict of Shenzhen in 2009

    Institute of Scientific and Technical Information of China (English)

    谢显清; 刘福益; 刘松

    2011-01-01

    目的 探讨深圳市某街道2009年甲型H1N1流感的流行病学特征.方法 将2009年流感样病例建立数据库进行统计学分析,对死亡病例进行个案分析.结果 2009年甲型H1N1流感实验室确诊65例,其中重症患者10例(死亡1例);病例主要集中在10-11月(333例);学校和托幼机构为高发场所(363例,98.9%);5~14岁青少年为易感人群(293例,79.8%).结论 深圳市某街道2009年甲型H1N1流感发病高峰出现在11月,主要在封闭、人群集中、接触密切的学校和托幼机构暴发.%aObjective To investigate epidemiological characteristics of influenza A(H1N1) in a strict of Shenzhen in 2009. Method Collected the data of influenza A( HI N1) to statistical analysis. Results 65 cases of influenza A(H1N1) in 2009, 10 cases of patient were severe and 1 patient were dead. There were 333 cases of influenza A (H1N1) during October to November. There were 363 cases of influenza A(H1N1) in school and nursery. 293 cases of influenza A(H1N1) 5-14 years. Conclusion The influenza A(H1N1) break out peaking in November. The influenza A(H1N1) outbreak in schools and nurseries was the mainly characterized of influenza A(H1N1) in a strict.

  3. Pandemic H1N1 influenza: zoonoses are a two-way street

    Science.gov (United States)

    Influenza is a zoonotic viral disease representing a worldwide health and economic threat to humans and animals. Swine influenza was first recognized clinically in pigs in the Midwestern United States in 1918 concurrent with the Spanish flu human pandemic. Since the first report that flu was caused ...

  4. 一起家庭甲型H1N1流行性感冒暴发疫情流行病学调查%Epidemiological Survey on a Household Outbreak of Influenza A (H1N1)

    Institute of Scientific and Technical Information of China (English)

    樊毅

    2012-01-01

    目的 调查分析一起家庭甲型H1N1流感暴发疫情的原因和特征,为今后预防控制工作提供科学依据.方法 对流感暴发家庭进行现场流行病学调查,采集患者咽拭子,采用荧光定量PCR方法检测甲型H1N1流感病毒核酸,根据调查结果分析甲型H1N1流感家庭暴发疫情特征,讨论甲型H1N1流感的发病规律和流行因素.结果 本起甲型H1N1流感暴发疫情为一起家庭甲型H1N1流感暴发疫情,4名家庭成员3人发病,其中1例死亡.结论 本起甲型H1N1流感暴发疫情主要是因家庭近距离密切接触传播引起,甲流H1N1病毒对某些患有基础性疾病的个体有较强的致病性,易感人群以青壮年为主,传染来源为社区感染后引入家庭,首发患者没有及时隔离治疗是造成家庭内暴发的主要原因.尽早发现与报告传染源,严格执行甲型H1N1流感患者居家隔离治疗措施,对于控制甲型H1N1流感传染源、切断传播途径,积极主动地预防控制疫情暴发流行,都是非常关键有效的防控措施.%Objective To investigate and analyze the causes and characteristics of a household outbreak of influenza A (H1N1), so as to provide a scientific basis for future prevention and control. Methods Field epidemiological investigations were conducted on a family with an influenza A (H1N1) outbreak. Throat swabs were collected from the patients and nucleic acid of H1N1 influenza virus was detected by fluorescence quantitative PCR. Characteristics of the household outbreak of influenza A (H1N1) were analyzed and its occurrence regularity and epidemic factors were explored. Results This influenza A (H1N1) epidemic was a household outbreak. Three out of four household members were diseased and one died. Conclusions The household outbreak of influenza A (H1N1) is mainly caused by close contact with household members. Influenza A (H1N1) virus is more pathogenic to individuals with underlying diseases. Susceptible populations

  5. 关于甲型H1N1流感病毒预防及控制措施%Prevention and Control Measures on H1N1 Influenza Virus

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    H1N1 influenza virus is a kind of world infectious diseases, and we should strengthen the flu virus prevention and control, so it’s very important. In this paper, at first the influenza H1N1 influenza virus is analyzed and introduced, and then puts forward the virus prevention and control measures.%  甲型H1N1流感病毒是一种世界性的传染病,加强该流感病毒的预防和控制是十分重要的。本文首先对甲型H1N1流感病毒进行了分析介绍,然后提出了该病毒的预防和控制措施。

  6. Management of severe respiratory failure following influenza A H1N1 pneumonia

    Directory of Open Access Journals (Sweden)

    Michela Vivarelli

    2013-12-01

    Full Text Available The use of non-invasive ventilation (NIV in severe hypoxemic respiratory failure (PaO2/FIO2 ≤250 due to H1H1 virus pneumonia is controversial. In this prospective study, we aimed to assess the efficacy of NIV in avoiding endotracheal intubation and to identify predictors of success or failure. Nineteen patients with H1N1 viral pneumonia had severe respiratory failure (PaO2/FIO2 ratio ≤250. Five patients with PaO2/FIO2 lower than 150 and simplified acute physiology score (SAPS II lower than 34 underwent NIV and were admitted to the Intensive Care Unit and received NIV as first-line therapy. NIV failed in 2 of the 14 patients but had a good outcome in 12. None of the patients treated with NIV died. The duration of NIV was 5.0±1.9 days and the hospital stay was 11.3±1.2 days. The average PaO2/FIO2 ratio after 1 h of NIV was 239.1+38.7. No patient had multi-organ failure. PaO2/FIO2 ratio after 1 h and SAPS II at admission were independent variables correlated with the success of NIV. In our study, NIV was successful in 12 of the 14 patients (85.7% and this is one of the highest success rates in the literature. In our opinion, the reason for these results is the strict selection of patients with severe respiratory failure (PaO2/FIO2 ratio ≥150 and the strict following of predictors of success for NIV such as SAPS II of 34 or lower and PaO2/FIO2 ratio of 175 or lower after 1 h of NIV. Clinicians should be aware of pulmonary complications of influenza A H1N1 and strictly select the patients to undergo NIV. NIV could have an effective and safe role in reducing the high demand for critical care beds, particularly during the pandemic.

  7. Systematic review of influenza A(H1N1)pdm09 virus shedding: duration is affected by severity, but not age.

    Science.gov (United States)

    Fielding, James E; Kelly, Heath A; Mercer, Geoffry N; Glass, Kathryn

    2014-03-01

    Duration of viral shedding following infection is an important determinant of disease transmission, informing both control policies and disease modelling. We undertook a systematic literature review of the duration of influenza A(H1N1)pdm09 virus shedding to examine the effects of age, severity of illness and receipt of antiviral treatment. Studies were identified by searching the PubMed database using the keywords 'H1N1', 'pandemic', 'pandemics', 'shed' and 'shedding'. Any study of humans with an outcome measure of viral shedding was eligible for inclusion in the review. Comparisons by age, degree of severity and antiviral treatment were made with forest plots. The search returned 214 articles of which 22 were eligible for the review. Significant statistical heterogeneity between studies precluded meta-analysis. The mean duration of viral shedding generally increased with severity of clinical presentation, but we found no evidence of longer shedding duration of influenza A(H1N1)pdm09 among children compared with adults. Shorter viral shedding duration was observed when oseltamivir treatment was administered within 48 hours of illness onset. Considerable differences in the design and analysis of viral shedding studies limit their comparison and highlight the need for a standardised approach. These insights have implications not only for pandemic planning, but also for informing responses and study of seasonal influenza now that the A(H1N1)pdm09 virus has become established as the seasonal H1N1 influenza virus.

  8. Assessment of epicutaneous testing of a monovalent Influenza A (H1N1 2009 vaccine in egg allergic patients

    Directory of Open Access Journals (Sweden)

    Pitt Tracy

    2011-02-01

    Full Text Available Abstract Background H1N1 is responsible for the first influenza pandemic in 41 years. In the fall of 2009, an H1N1 vaccine became available in Canada with the hopes of reducing the overall effect of the pandemic. The purpose of this study was to assess the safety of administering 2 different doses of a monovalent split virus 2009 H1N1 vaccine in egg allergic patients. Methods Patients were skin tested to the H1N1 vaccine in the outpatient paediatric and adult allergy and immunology clinics of the Health Sciences Centre and Children's Hospital of Winnipeg, Manitoba Canada. Individuals Results A total of 61 patients with egg allergy (history of an allergic reaction to egg with either positive skin test &/or specific IgE to egg >0.35 Ku/L were referred to our allergy clinics for skin testing to the H1N1 vaccine. 2 patients were excluded, one did not have a skin prick test to the H1N1 vaccine (only vaccine administration and the other passed an egg challenge during the study period. Ages ranged from 1 to 27 years (mean 5.6 years. There were 41(69.5% males and 18(30.5% females. All but one patient with a history of egg allergy, positive skin test to egg and/or elevated specific IgE level to egg had negative skin tests to the H1N1 vaccine. The 58 patients with negative skin testing to the H1N1 vaccine were administered the vaccine and observed for 30 minutes post vaccination with no adverse results. The patient with the positive skin test to the H1N1 vaccine was also administered the vaccine intramuscularly with no adverse results. Conclusions Despite concern regarding possible anaphylaxis to the H1N1 vaccine in egg allergic patients, in our case series 1/59(1.7% patients with sensitization to egg were also sensitized to the H1N1 vaccine. Administration of the H1N1 vaccine in egg allergic patients with negative H1N1 skin tests and observation is safe. Administering the vaccine in a 1 or 2 dose protocol without skin testing is a reasonable alternative

  9. Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus

    Science.gov (United States)

    Du, Qi-Shi; Wang, Shu-Qing; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-01-01

    The neuraminidase (NA) and M2 proton channel of influenza virus are the drug-targeting proteins, based on which several drugs were developed. However these once powerful drugs encountered drug-resistant problem to the H5N1 and H1N1 flu. To address this problem, the computational 3D structures of NA and M2 proteins of 2009-H1N1 influenza virus were built using the molecular modeling technique and computational chemistry method. Based on the models the structure features of NA and M2 proteins were analyzed, the docking structures of drug-protein complexes were computed, and the residue mutations were annotated. The results may help to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic.

  10. Emergence of influenza A (H1N1 PDM09 in the remote Islands of India - A molecular approach

    Directory of Open Access Journals (Sweden)

    N Muruganandam

    2015-01-01

    Full Text Available Background: A disease outbreak of A (H1N1 PDM09 was reported in Andaman and Nicobar islands in 2009 with an attack rate of 33.5% among settler population and 26.3% among the aboriginal Nicobarese tribe. During the ongoing outbreak of A (H1N1 PDM09 disease in different parts of the world, a subject working in Dubai city of Saudi Arabia, came to Port Blair, following which the pandemic triggered for the first time in these Islands. Materials and Methods: During the period August 2009 to January 2011, 30 confirmed cases of Influenza A (H1N1 PDM09 virus infection was detected. To understand the genetic relationship, the NA gene sequences of the viruses were phylogenetically analysed together along with the virus sequence isolated from other parts of the world. Result: Formation of multiple clusters were observed, with the sequences of Andaman Islands, mainland India, Mexico, Saudi Arabia and few other counties clustering together. The sequence analysis data revealed that there was no specific mutation conferring resistance to oseltamivir among the Andaman A (H1N1 PDM09 virus isolates. The result of phylogenetic analysis have also revealed that the A (H1N1 PDM09 virus might have spread in these remote Islands of India via the subject from Saudi Arabia/Dubai. Conclusion: A (H1N1 PDM09 Influenza outbreak have highlighted the need to strengthen the region-specific pandemic preparedness plans and surveillance strategies.

  11. 2009年甲型H1N1流感大流行时空分布特征分析%Characterization of the Global Spatio-temporal Transmission of the 2009 Pandemic H1N1 Influenza

    Institute of Scientific and Technical Information of China (English)

    蒋之犇; 白建军; 蔡俊; 李瑞云; 金震宇; 徐冰

    2012-01-01

    identical to that of the 65 global cities, within which 79 percent of the outbreaks were distributed within a radius of 600 km. In addition, the correlation coefficients show that the highest positive correlation (r=0. 7,p=. 002) between national arrivals and weekly influenza cases lied in the 19th week. These findings suggest that global cities are the key nodes of the network which disseminates international travels, hence the viruses in the early period of the pandemic. It was found that the seasonal environmental factors also have impact on the influenza pandemic through applying time series analysis. Unexpectedly, some countries in the northern temperate zone reported more confirmed human cases in June and July when was thought not to be suitable for the transmission of the influenza. In the meantime, the winter peaks of cases for the countries that lie to the north of the tropic of cancer are clustered around the period between the 45th week and the 48th week, which is earlier than the common type A influenza season. It might partially due to the lack of immunity among the population against the pandemic A(H1N1)2009 virus.

  12. Effect of sesamin against cytokine production from influenza type A H1N1-induced peripheral blood mononuclear cells: computational and experimental studies.

    Science.gov (United States)

    Fanhchaksai, Kanda; Kodchakorn, Kanchanok; Pothacharoen, Peraphan; Kongtawelert, Prachya

    2016-01-01

    In 2009, swine flu (H1N1) had spread significantly to levels that threatened pandemic influenza. There have been many treatments that have arisen for patients since the WHO first reported the disease. Although some progress in controlling influenza has taken place during the last few years, the disease is not yet under control. The development of new and less expensive anti-influenza drugs is still needed. Here, we show that sesamin from the seeds of the Thai medicinal plant Sesamum indicum has anti-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) induced by 2009 influenza virus type A H1N1. In this study, the combinatorial screening method combined with the computational approach was applied to investigate the new molecular binding structures of sesamin against the 2009 influenza virus type A H1N1 (p09N1) crystallized structure. Experimental methods were applied to propose the mechanisms of sesamin against cytokine production from H1N1-induced human PBMC model. The molecular dynamics simulation of sesamin binding with the p09N1 crystallized structure showed new molecular binding structures at ARG118, ILE222, ARG224, and TYR406, and it has been proposed that sesamin could potentially be used to produce anti-H1N1 compounds. Furthermore, the mechanisms of sesamin against cytokine production from influenza type A H1N1-induced PBMCs by ELISA and signaling transduction showed that sesamin exhibits the ability to inhibit proinflammatory cytokines, IL-1β and TNF-α, and to enhance the activity of the immune cell cytokine IL-2 via downregulating the phosphorylated JNK, p38, and ERK1/2 MAPK signaling pathways. This information might very well be useful in the prevention and treatment of immune-induced inflammatory disorders.

  13. Clinical and radiological features of pandemic H1N1 2009 influenza virus infection manifesting as acute febrile respiratory illness at their initial presentations: comparison with contemporaneous non-H1N1 patients

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Tae Jin (Dept. of Radiology, Armed Force Byukjae Hospital, Gyeonggi-do (Korea, Republic of); Dept. of Radiology, Seoul National Univ. Hospital, Seoul (Korea, Republic of)); Park, Chang Min; Choi, Seung Hong; Lee, Hyun Ju; Goo, Jin Mo (Dept. of Radiology, Seoul National Univ. Hospital, Seoul (Korea, Republic of)), email: cmpark@radiol.snu.ac.kr; Kwon, Gu Jin (Dept. of Family Medicine, Armed Force Byukjae Hospital, Gyeonggi-do (Korea, Republic of); Dept. of Family Medicine, Gangneung Asan Hospital, Gangneung (Korea, Republic of)); Woo, Sung Koo (Dept. of Radiology, Armed Force Byukjae Hospital, Gyeonggi-do (Korea, Republic of)); Park, Seung Hoon (Dept. of Internal Medicine, Armed Force Byukjae Hospital, Gyeonggi-do (Korea, Republic of))

    2011-05-15

    Background Since the first outbreak caused by the pandemic H1N1 2009 influenza in Mexico, the virus has spread widely across the world with meaningful morbidity and mortality. However, there are few data on the comparative investigations to assess the clinical and radiological features between the H1N1 patient and non-H1N1 patients. Purpose To assess the clinical and radiological features of patients infected by the pandemic H1N1 2009 flu virus at their initial presentation and to compare them with contemporaneous non-H1N1 patients with acute febrile respiratory illness. Material and Methods This retrospective study was approved by the ethics committee of the Armed Forces Medical Command, South Korea. From August to September 2009, 337 consecutive patients presented with an acute febrile respiratory illness in a tertiary military hospital. Reverse-transcriptase polymerase-chain-reaction tests were performed in 62 of these patients under the impression of H1N1 infection. Clinical and radiological features at their initial presentation were described for the H1N1 group (n = 35) and non-H1N1 group (n = 27) and compared between the two groups. Results Increased C-reactive protein level (97%) without leukocytosis (9%) or increased erythrocyte sedimentation rate (0%) was common in the H1N1 group at their initial presentation. On chest radiographs, 12 of 35 (34%) H1N1 patients had abnormal findings; nodules in 10 patients (83%) and consolidations in two (17%). Of the 28 H1N1 patients who underwent thin-section CT 16 patients (57%) showed abnormal findings; ground-glass opacities (GGOs) in 15 (94%), and nodules in 13 (81%). However, there were no significant differences between the H1N1 group and non-H1N1 group in terms of symptoms, laboratory results, or radiological findings (P > 0.05). Conclusion Patients with H1N1 infection show consistent clinical and radiological features at their initial presentation, however, clinical and radiological features of the H1N1 group are

  14. [Clinical analysis of 8 children with plastic bronchitis associated with influenza A virus (H1N1) infection].

    Science.gov (United States)

    Zheng, Yue-jie; Deng, Ji-kui; Lu, Zhi-wei; Ma, Hong-ling; Li, Jing; Wang, Li

    2012-07-01

    To analyze the clinical characteristics of plastic bronchitis associated with 2009 influenza A virus (H1N1) infection. A retrospective investigation of the clinical manifestation, bronchoscopy, and the histology of the cast, clinical course and outcome of 8 children with plastic bronchitis associated with influenza A virus (H1N1) infection during winter of 2009 and 2010 was performed. All 8 cases were boys, the range of age was 3 to 6 years. Five cases occurred in 2009 winter, accounting for 3.3% (5/150) of hospitalized children with influenza A (H1N1) infection; 3 cases occurred in 2010 winter, accounting for 15.8% (3/19) of hospitalized children with influenza A (H1N1) infection. Two patients had an underlying chronic disease, 1 had asthma, and the other had allergic rhinitis and atopic dermatitis. All the 8 cases had fever, cough and sputum; 2 had wheezing; 5 had respiratory distress. All 8 cases were diagnosed as influenza A virus (H1N1) infection complicated with pneumonia, of whom 5 patients had atelectasis, 2 had pneumothorax, 1 had pneumomediastinum, 1 had parapneumonic effusion, 2 patients were suspected of foreign body aspiration. Seven cases were admitted to an ICU, 5 patients developed respiratory failure, and 3 patients required mechanical ventilation. Flexible bronchoscopy and bronchial lavage was performed in all cases and showed bronchial cast. Histological examination of the bronchial cast revealed a fibrinous material containing large quantity of eosinophils, neutrophils, and lymphocytes in 7 patients, fibrinous material and necrotic material without inflammatory cells in 1 patient. After the bronchial cast was removed, all patients were improved greatly, no patients died. Plastic bronchitis is a life-threatening complication associated with 2009 influenza A (H1N1) virus infection in children. In children with rapid and progressive respiratory distress with lung atelectasis or consolidation on chest radiograph, plastic bronchitis should be

  15. Pandemic A/H1N1v influenza 2009 in hospitalized children: a multicenter Belgian survey

    Directory of Open Access Journals (Sweden)

    Blumental Sophie

    2011-11-01

    Full Text Available Abstract Background During the 2009 influenza A/H1N1v pandemic, children were identified as a specific "at risk" group. We conducted a multicentric study to describe pattern of influenza A/H1N1v infection among hospitalized children in Brussels, Belgium. Methods From July 1, 2009, to January 31, 2010, we collected epidemiological and clinical data of all proven (positive H1N1v PCR and probable (positive influenza A antigen or culture pediatric cases of influenza A/H1N1v infections, hospitalized in four tertiary centers. Results During the epidemic period, an excess of 18% of pediatric outpatients and emergency department visits was registered. 215 children were hospitalized with proven/probable influenza A/H1N1v infection. Median age was 31 months. 47% had ≥ 1 comorbid conditions. Febrile respiratory illness was the most common presentation. 36% presented with initial gastrointestinal symptoms and 10% with neurological manifestations. 34% had pneumonia. Only 24% of the patients received oseltamivir but 57% received antibiotics. 10% of children were admitted to PICU, seven of whom with ARDS. Case fatality-rate was 5/215 (2%, concerning only children suffering from chronic neurological disorders. Children over 2 years of age showed a higher propensity to be admitted to PICU (16% vs 1%, p = 0.002 and a higher mortality rate (4% vs 0%, p = 0.06. Infants less than 3 months old showed a milder course of infection, with few respiratory and neurological complications. Conclusion Although influenza A/H1N1v infections were generally self-limited, pediatric burden of disease was significant. Compared to other countries experiencing different health care systems, our Belgian cohort was younger and received less frequently antiviral therapy; disease course and mortality were however similar.

  16. Conservation and diversity of influenza A H1N1 HLA-restricted T cell epitope candidates for epitope-based vaccines.

    Directory of Open Access Journals (Sweden)

    Paul Thiamjoo Tan

    Full Text Available BACKGROUND: The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated. METHODOLOGY/PRINCIPAL FINDINGS: HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54 peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-gamma ELISpot assay. The 54 peptides were compared to the 2007-2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes. CONCLUSIONS/SIGNIFICANCE: Seventeen (17 T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus.

  17. Evaluation of In Vitro Cross-Reactivity to Avian H5N1 and Pandemic H1N1 2009 Influenza Following Prime Boost Regimens of Seasonal Influenza Vaccination in Healthy Human Subjects: A Randomised Trial

    Science.gov (United States)

    2013-03-26

    washed, and specific enzyme substrate added. The reactions were stopped with 1 N sulphuric acid . The absorbance was measured at 490 nm. The average A490...California/04/2009 (H1N1) (122 15 mer peptide overlapping by 11 amino acids ) or A/Vietnam/1194/2004 (H5N1) (121 15 mer peptide overlapping by 11 amino... acids ) at a final concentration of each peptide of 1 mg/ml. NP is the main viral protein recognized by cross reactive T cells [12]. All stimulated PBMC

  18. School illness absenteeism during 2009 influenza A (H1N1) pandemic--South Dakota, 2009-2010.

    Science.gov (United States)

    Kightlinger, Lon; Horan, Vickie

    2013-05-01

    Schools are important amplification settings of influenza virus transmission. We demonstrated correlation of school absenteeism (due to any illness) with other influenza A (H1N1) activity surveillance data during the 2009 pandemic. We collected nonspecific illness student absenteeism data from August 17, 2009 through April 3, 2010 from 187 voluntarily participating South Dakota schools using weekly online surveys. Relative risks (RR) were calculated as the ratio of the probability of absenteeism during elevated weeks versus the probability of absenteeism during the baseline weeks (RR = 1.89). We used Pearson correlation to associate absenteeism with laboratory-confirmed influenza cases, influenza cases diagnosed by rapid tests, influenza-associated hospitalizations and deaths reported in South Dakota during the 2009 H1N1 pandemic period. School-absenteeism data correlated strongly with data from these other influenza surveillance sources.

  19. Epidemiological survey on pandemic influenza A (H1N1) virus infection in Kurdistan province, Islamic Republic of Iran, 2009.

    Science.gov (United States)

    Afrasiabian, S; Mohsenpour, B; Bagheri, K H; Barari, M; Ghaderi, E; Hashemi, R; Garibi, F

    2014-04-03

    This study evaluated the epidemiology of suspected cases of pandemic influenza A (H1N1) virus infection in 2009-2010 in Kurdistan province, a frontier province of the Islamic Republic of Iran. A questionnaire covering demographic characteristics, clinical presentation and outcome, and history of exposure and travel was completed by patients attending health centres and hospitals in the province. Nasal and throat swabs were analysed by RT-PCR. A total of 1059 suspected cases were assessed; H1N1 influenza A was confirmed in 157 (14.8%). The highest proportion of confirmed cases was 30.0%, among children aged Kurdistan.

  20. Clinical characteristics of pediatric hospitalizations associated with 2009 pandemic influenza A (H1N1 in Northern Bavaria, Germany

    Directory of Open Access Journals (Sweden)

    Wieching Anna

    2012-06-01

    Full Text Available Abstract Background The 2009 pandemic influenza A (H1N1 (PIA virus infected large parts of the pediatric population with a wide clinical spectrum and an initially unknown complication rate. The aims of our study were to define clinical characteristics and outcome of pandemic influenza A (H1N1 2009-associated hospitalizations (PIAH in children Results Between July 2009 and March 2010, 94 PIAH (62% males occurred in children Conclusions Most PIAH demonstrated a benign course of disease. However, six children (6% needed treatment at an intensive care unit for severe complications.

  1. Investigation of Hospitalized Patients with New Influenza A(H1N1) in Hangzhou%杭州新型甲型H1N1流感住院病例调查

    Institute of Scientific and Technical Information of China (English)

    赵磊; 王先开; 周逸丹

    2011-01-01

    [目的]研究杭州地区新型甲型H1N1流感的临床表现和流行病学特点.[方法]用统计指标和图表来描述杭州地区104例新型甲型H1N1流感住院病例的临床表现和血液化验数据,比较各年龄组和不同时间段组的新型甲型H1N1流感的临床表现.[结果]在104例病例中20岁及20岁以下的人群占57.7%.20岁及20岁以下与20岁以上的新型甲型H1N1流感病人的病程长短和白细胞计数的差异没有统计学意义(P>0.05),不同时期发病的新型甲型H1N1流感病人的病程长短和白细胞计数的差异没有统计学意义(P>0.05).[结论]杭州地区的新型甲型H1N1流感青少年、学生较多,65岁以上老年人较少;重症和死亡病人较少,咳嗽是新型甲型H1N1流感的主要症状,各年龄层次新型甲型H1N1流感的临床表现差异不大.%[Objective] To study the clinical and epidemiological characteristics of new influenza A(H1N1 ). [Methods] We described the clinical manifestation and the data of blood test of 104 patients who have caught New Influenza A(H1N1) with statistical indexes, tables and charts. And we contrasted the clinical manifestation of New Influenza A(H1N1) of the groups with different age and period. [Results] Of the 104 patients,57. 7% were 20 years of age or younger,and nobody was 65 years of age or older. The differences of the duration and the leucocyte count of new influenza A(H 1N1) between the age of 20 years or under it and 20 years older were not statistically significant(P>0. 05) ; The differences of the duration and the leucocyte count of new infuenza A(H1N1) between two periods of morbidity were not statistically significant(P>0. 05). [Conclusion] The majority of the patients catching new influenza A(H1N1) recently were adolescent or students;the minor were 65 years of age older;few patients were serious or died.Cough was the major symptom of new influenza A(H1N1). The differences of the clinical manifestation about new

  2. Age distribution of cases of 2009 (H1N1 pandemic influenza in comparison with seasonal influenza.

    Directory of Open Access Journals (Sweden)

    Drosos E Karageorgopoulos

    Full Text Available INTRODUCTION: Several aspects of the epidemiology of 2009 (H1N1 pandemic influenza have not been accurately determined. We sought to study whether the age distribution of cases differs in comparison with seasonal influenza. METHODS: We searched for official, publicly available data through the internet from different countries worldwide on the age distribution of cases of influenza during the 2009 (H1N1 pandemic influenza period and most recent seasonal influenza periods. Data had to be recorded through the same surveillance system for both compared periods. RESULTS: For 2009 pandemic influenza versus recent influenza seasons, in USA, visits for influenza-like illness to sentinel providers were more likely to involve the age groups of 5-24, 25-64 and 0-4 years compared with the reference group of >64 years [odds ratio (OR (95% confidence interval (CI: 2.43 (2.39-2.47, 1.66 (1.64-1.69, and 1.51 (1.48-1.54, respectively]. Pediatric deaths were less likely in the age groups of 2-4 and 65 years [OR (95% CI: 7.19 (6.67-7.75, 5.33 (4.90-5.79, 5.04 (4.70-5.41, 3.12 (2.89-3.36 and 1.89 (1.75-2.05, respectively]. In New Zealand, consultations for influenza-like illness by sentinel providers were more likely in the age groups of 65 years [OR (95% CI: 2.38 (1.74-3.26, 1.99 (1.62-2.45, 1.57 (1.30-1.89, 1.57 (1.30-1.88, 1.40 (1.17-1.69 and 1.39 (1.14-1.70, respectively]. CONCLUSIONS: The greatest increase in influenza cases during 2009 (H1N1 pandemic influenza period, in comparison with most recent seasonal influenza periods, was seen for school-aged children, adolescents, and younger adults.

  3. Dependence of the results of ecological-epidemic investigation of influenza A(H1N1) on immunity

    Science.gov (United States)

    Fathudinova, Mohinav; Alimova, Barno; Rahimova, Halima

    2016-07-01

    This report presents the results of ecology-epidemical and immunological researches influ-enza virus A (H1 N1) and acute respiratory infection in Dushanbe from 2011 till 2015. The received results epidemiological and immunological analysis showed us, that last years has been changed not only characteristics of influenza epidemic, but it can not be notice the low-er of intensively of the collective immunity to actual versions influenza viruses A and B

  4. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    Directory of Open Access Journals (Sweden)

    Helena Grgić

    Full Text Available The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1pdm09. One H1N2 isolate had hemagglutinin (HA, polymerase A (PA and non-structural (NS genes closely related to A(H1N1pdm09, and neuraminidase (NA, matrix (M, polymerase B1 (PB1, polymerase B2 (PB2, and nucleoprotein (NP genes originating from a triple-reassortant H3N2 virus (tr H3N2. The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  5. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    Science.gov (United States)

    Grgić, Helena; Costa, Marcio; Friendship, Robert M; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  6. Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1.

    Directory of Open Access Journals (Sweden)

    Samantha M Tracht

    Full Text Available On June 11, 2009, the World Health Organization declared the outbreak of novel influenza A (H1N1 a pandemic. With limited supplies of antivirals and vaccines, countries and individuals are looking at other ways to reduce the spread of pandemic (H1N1 2009, particularly options that are cost effective and relatively easy to implement. Recent experiences with the 2003 SARS and 2009 H1N1 epidemics have shown that people are willing to wear facemasks to protect themselves against infection; however, little research has been done to quantify the impact of using facemasks in reducing the spread of disease. We construct and analyze a mathematical model for a population in which some people wear facemasks during the pandemic and quantify impact of these masks on the spread of influenza. To estimate the parameter values used for the effectiveness of facemasks, we used available data from studies on N95 respirators and surgical facemasks. The results show that if N95 respirators are only 20% effective in reducing susceptibility and infectivity, only 10% of the population would have to wear them to reduce the number of influenza A (H1N1 cases by 20%. We can conclude from our model that, if worn properly, facemasks are an effective intervention strategy in reducing the spread of pandemic (H1N1 2009.

  7. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    C. Dodd (Caitlin); S.A. Romio (Silvana); S. Black (Steve); C. Vellozzi (Claudia); N.J. Andrews (Nick); M.C.J.M. Sturkenboom (Miriam); P. Zuber (Patrick); W. Hua (Wei); J. Bonhoeffer (Jan); J. Buttery (Jim); N. Crawford (Nigel); G. Deceuninck (Genevieve); C.S. de Vries (Corinne); P. de Wals (Philippe); D. Gimeno (David); H. Heijbel (Harald); H. Hughes (Hayley); K. Hur (Kwan); A. Hviid (Anders); J. Kelman (Jeffrey); T. Kilpi (Tehri); S.K. Chuang (S.); T. Macartney (Thomas); M. Rett (Melisa); V.R. Lopez-Callada (Vesta Richardson); D. Salmon (Daniel); F.G. Sanchez (Francisco Gimenez); N. Sanz (Nuria); B. Silverman (Bernard); J. Storsaeter (Jann); U. Thirugnanam (Umapathi); N.A.T. van der Maas (Nicoline); K. Yih (Katherine); T. Zhang (Teng Fei); H.S. Izurieta (Hector); B.J. Addis; A. Akhtar (Aysha); J. Cope (Judith); R.L. Davis (Robert); P. Gargiullo (Paul); X. Kurz (Xavier); B. Law (Barbara); I. Sahinovic (Isabelle); J. Tokars (Jerry); P. Serrano (Pedro); A. Cheng (Aixin); N.J. Andrews (Nick); P. Charles (Pat); H. Clothier (Hazel); B. Day (Bruce); T. Day (Timothy); P. Gates (Peter); R. MacDonnell (Richard); L. Roberts (Les); V. Rodriguez-Casero (Vic-toria); T. Wijeratne (Tissa); H.A.L. Kiers (Henk); C. Blyth (Christopher); R. Booy (Robert); E. Elliott (Elizabeth); M.R. Gold (Michael); H. Marshall; P. McIntyre (Peter); P. Richmond (Peter); J. Royle (Jenny); N.W. Wood (Nicholas); Y. Zurynski (Yvonne); G. Calvo (Gonzalo); M. Campins (Magda); N. Corominas (Nuria); F. Torres (Ferran); V. Valls; A. Vilella (Ángels); A. Dutra (Amalia); A. Eick-Cost (Angelia); H.M. Jackson (Henry); K. Garman (Katherine); Z. Hu (Zheng); J. Rigo; J. Badoo (Judith); D Cho (David); L.L. Polakowski (Laura); S.K. Sandhu (Sukhminder); G. Sun (Guoying); H.-S.S. Chan (Hoi-Shan Sophelia); K.-Y. Chan (Kwok-Yin); R. Cheung (Raymond); Y-F. Cheung (Yuk-Fai); S. Cherk (Sharon); S.K Chuang (S.); D. Fok (Dennis); B.-H. Fung (Bun-Hey); K.-F. Ko (Kwai-Fu); K.W. Lau (Ka Wing); K.-K. Lau (Kwok-Kwong); P. Li (Pulin); H.-T. Liu (Hui-Tung); S.-H. Liu (Shao-Haei); K. Mok (Kin); J. So (Joanna); W. Wong (Winnie); S.-P. Wu (Shun-Ping); V. Avagyan (Vardan); R. Ball (Robert); D. Burwen (Dale); R.L. Franks (Riley); J.M. Gibbs (Jonathan); R.E. Kliman (Rebecca); S. Kropp (Silke); T.E. MaCurdy (Thomas); D.B. Martin (David); S.-D.K. Sandhu (Sukhmin-Der); B.B. Worrall (Bradford B.); D.E.F. Fuentes (Dra. Elvira Fuentes); P.C.O. González (Paola Carolina Ojeda); V.F. Reyna (Valerie ); M. Kulldorff (Martin); G. Lee (Grace); T.A. Lieu (Tracy); S. Platt; G.D. Serres (Gaston De); K. Jabin (Kamilah); B.L.S. Soh (Bee Leng Sally); L. Arnheim-Dahlström (Lisen); A. Castot (Anne); H.E. de Melker (Hester); J.P. Dieleman (Jeanne); J. Hallgren (Jonal); B.C. Jacobs (Bart); K. Johansen (Kari); P Kramarz (Piotr); M. Lapeyre (Maryse); T. Leino (Tuija); D. Mølgaard-Nielsen (Ditte); M. Mosseveld (Mees); H.K. Olberg (Henning K); C.-M. Sammon (Cor-Mac); C. Saussier (Christel); M.J. Schuemie (Martijn); A. Sommet (Agnès); P. Sparen (Pär); H. Svanström (Henrik); A.M. Vanrolleghem (Ann M.); D.M. Weibel (Daniel); J.D. Domingo (Javier Diez); J.L. Esparza (José LuísMicó); R.M.O. Lucas (Rafael M. Ortí); J.B.M. Maseres (Juan B. Mollar); J.L.A. Sánchez (José Luís Alfonso); M.G. Sánchez (Mercedes Garcés); V.Z. Viguer (Vicente Zanón); F. Cunningham (Francesca); B. Thakkar (Bharat); R. Zhang (Rongping)

    2013-01-01

    textabstractBackground: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which

  8. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    C. Dodd (Caitlin); S.A. Romio (Silvana); S. Black (Steve); C. Vellozzi (Claudia); N.J. Andrews (Nick); M.C.J.M. Sturkenboom (Miriam); P. Zuber (Patrick); W. Hua (Wei); J. Bonhoeffer (Jan); J. Buttery (Jim); N. Crawford (Nigel); G. Deceuninck (Genevieve); C.S. de Vries (Corinne); P. de Wals (Philippe); D. Gimeno (David); H. Heijbel (Harald); H. Hughes (Hayley); K. Hur (Kwan); A. Hviid (Anders); J. Kelman (Jeffrey); T. Kilpi (Tehri); S.K. Chuang (S.); T. Macartney (Thomas); M. Rett (Melisa); V.R. Lopez-Callada (Vesta Richardson); D. Salmon (Daniel); F.G. Sanchez (Francisco Gimenez); N. Sanz (Nuria); B. Silverman (Bernard); J. Storsaeter (Jann); U. Thirugnanam (Umapathi); N.A.T. van der Maas (Nicoline); K. Yih (Katherine); T. Zhang (Teng Fei); H.S. Izurieta (Hector); B.J. Addis; A. Akhtar (Aysha); J. Cope (Judith); R.L. Davis (Robert); P. Gargiullo (Paul); X. Kurz (Xavier); B. Law (Barbara); I. Sahinovic (Isabelle); J. Tokars (Jerry); P. Serrano (Pedro); A. Cheng (Aixin); N.J. Andrews (Nick); P. Charles (Pat); H. Clothier (Hazel); B. Day (Bruce); T. Day (Timothy); P. Gates (Peter); R. MacDonnell (Richard); L. Roberts (Les); V. Rodriguez-Casero (Vic-toria); T. Wijeratne (Tissa); H.A.L. Kiers (Henk); C. Blyth (Christopher); R. Booy (Robert); E. Elliott (Elizabeth); M.R. Gold (Michael); H. Marshall; P. McIntyre (Peter); P. Richmond (Peter); J. Royle (Jenny); N.W. Wood (Nicholas); Y. Zurynski (Yvonne); G. Calvo (Gonzalo); M. Campins (Magda); N. Corominas (Nuria); F. Torres (Ferran); V. Valls; A. Vilella (Ángels); A. Dutra (Amalia); A. Eick-Cost (Angelia); H.M. Jackson (Henry); K. Garman (Katherine); Z. Hu (Zheng); J. Rigo; J. Badoo (Judith); D Cho (David); L.L. Polakowski (Laura); S.K. Sandhu (Sukhminder); G. Sun (Guoying); H.-S.S. Chan (Hoi-Shan Sophelia); K.-Y. Chan (Kwok-Yin); R. Cheung (Raymond); Y-F. Cheung (Yuk-Fai); S. Cherk (Sharon); S.K Chuang (S.); D. Fok (Dennis); B.-H. Fung (Bun-Hey); K.-F. Ko (Kwai-Fu); K.W. Lau (Ka Wing); K.-K. Lau (Kwok-Kwong); P. Li (Pulin); H.-T. Liu (Hui-Tung); S.-H. Liu (Shao-Haei); K. Mok (Kin); J. So (Joanna); W. Wong (Winnie); S.-P. Wu (Shun-Ping); V. Avagyan (Vardan); R. Ball (Robert); D. Burwen (Dale); R.L. Franks (Riley); J.M. Gibbs (Jonathan); R.E. Kliman (Rebecca); S. Kropp (Silke); T.E. MaCurdy (Thomas); D.B. Martin (David); S.-D.K. Sandhu (Sukhmin-Der); B.B. Worrall (Bradford B.); D.E.F. Fuentes (Dra. Elvira Fuentes); P.C.O. González (Paola Carolina Ojeda); V.F. Reyna (Valerie ); M. Kulldorff (Martin); G. Lee (Grace); T.A. Lieu (Tracy); S. Platt; G.D. Serres (Gaston De); K. Jabin (Kamilah); B.L.S. Soh (Bee Leng Sally); L. Arnheim-Dahlström (Lisen); A. Castot (Anne); H.E. de Melker (Hester); J.P. Dieleman (Jeanne); J. Hallgren (Jonal); B.C. Jacobs (Bart); K. Johansen (Kari); P Kramarz (Piotr); M. Lapeyre (Maryse); T. Leino (Tuija); D. Mølgaard-Nielsen (Ditte); M. Mosseveld (Mees); H.K. Olberg (Henning K); C.-M. Sammon (Cor-Mac); C. Saussier (Christel); M.J. Schuemie (Martijn); A. Sommet (Agnès); P. Sparen (Pär); H. Svanström (Henrik); A.M. Vanrolleghem (Ann M.); D.M. Weibel (Daniel); J.D. Domingo (Javier Diez); J.L. Esparza (José LuísMicó); R.M.O. Lucas (Rafael M. Ortí); J.B.M. Maseres (Juan B. Mollar); J.L.A. Sánchez (José Luís Alfonso); M.G. Sánchez (Mercedes Garcés); V.Z. Viguer (Vicente Zanón); F. Cunningham (Francesca); B. Thakkar (Bharat); R. Zhang (Rongping)

    2013-01-01

    textabstractBackground: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which

  9. 孕妇对甲型H1N1流感的认知态度调查%Study on the cognitive situation of influenza A(H1N1) among antenatal-checkup pregnant women

    Institute of Scientific and Technical Information of China (English)

    郑冬燕; 曹敏; 王丹凤

    2011-01-01

    目的:了解在我院进行产检孕妇对甲型H1N1流感的基本认知和态度,为制定有效的防控措施,开展相关的健康教育提供依据.方法:采用自行设计的调查问卷,采用随机抽样的方法,对我院产检的孕妇进行自填式问卷调查.结果:孕妇对甲型H1N1流感相关知识的知晓率为99.64%;文化程度越高的孕妇越能正确面对甲型H1N1流感(P<0.05);孕妇获取甲型H1N1流感相关知识的主要途径为电视、报纸.结论:我院产检孕妇对甲型H1N1流感的知晓率较高;文化程度越高的孕妇,对甲型H1N1流感的知识越关注,越能正确的面对;孕妇获取甲型H1N1流感相关知识的主要途径是媒体宣传.%Objective:To study the cognitive situation and attitude of influenza A( H1N1 ) among pregnant women that Antenatal checkup in our hospital to help making plan for influenza A( H1N1 ) prevention and providing relative health education.Methods: Self - made questionnaire was used for the random sampling investigation of pregnant women that Antenatal checkup in our hospital.Results:99.64% pregnant women had relative knowledge of influenza A ( H1N1 ); Pregnant women with higher education background had better Cognitive Situation of influenza A( H1N1 )( P < 0.05 ); The main approaches of acknowledgment of relative knowledge of influenza A ( H1N1 ) were by TV ( 90.58% )and newspaper ( 62.68% ).Conclusion:Most of pregnant women that Antenatal checkup in our hospital had relative knowledge of influenza A( H1N1 ).Pregnant women with higher education background paid more attention to influenza A( H1N1 ) and had better cognizance of influenza A( H1N1 ).The main approaches of acknowledgment of influenza A( H1N1 ) relative knowledge was by media.

  10. Respiratory failure presenting in H1N1 influenza with Legionnaires disease: two case reports

    Directory of Open Access Journals (Sweden)

    Iannuzzi Michele

    2011-10-01

    Full Text Available Abstract Introduction Media sensationalism on the H1N1 outbreak may have influenced decisional processes and clinical diagnosis. Case Presentation We report two cases of patients who presented in 2009 with coexisting H1N1 virus and Legionella infections: a 69-year-old Caucasian man and a 71-year-old Caucasian woman. In our cases all the signs and symptoms, including vomiting, progressive respiratory disease leading to respiratory failure, refractory hypoxemia, leukopenia, lymphopenia, thrombocytopenia, and elevated levels of creatine kinase and hepatic aminotransferases, were consistent with critical illness due to 2009 H1N1 virus infection. Other infectious disorders may mimic H1N1 viral infection especially Legionnaires' disease. Because the swine flu H1N1 pandemic occurred in Autumn in Italy, Legionnaires disease was to be highly suspected since the peak incidence usually occurs in early fall. We do think that our immediate suspicion of Legionella infection based on clinical history and X-ray abnormalities was fundamental for a successful resolution. Conclusion Our two case reports suggest that patients with H1N1 should be screened for Legionella, which is not currently common practice. This is particularly important since the signs and symptoms of both infections are similar.

  11. Supply of neuraminidase inhibitors related to reduced influenza A (H1N1) mortality during the 2009-2010 H1N1 pandemic: summary of an ecological study.

    Science.gov (United States)

    Miller, Paula E; Rambachan, Aksharananda; Hubbard, Roderick J; Li, Jiabai; Meyer, Alison E; Stephens, Peter; Mounts, Anthony W; Rolfes, Melissa A; Penn, Charles R

    2013-09-01

    When the influenza A (H1N1) pandemic spread across the globe from April 2009 to August 2010, many WHO Member States used antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Antivirals have been found to be effective in reducing severity and duration of influenza illness, and likely reduce morbidity; however, it is unclear whether NAIs used during the pandemic reduced H1N1 mortality. To assess the association between antivirals and influenza mortality, at an ecologic level, country-level data on supply of oseltamivir and zanamivir were compared to laboratory-confirmed H1N1 deaths (per 100 000 people) from July 2009 to August 2010 in 42 WHO Member States. From this analysis, it was found that each 10% increase in kilograms of oseltamivir, per 100 000 people, was associated with a 1·6% reduction in H1N1 mortality over the pandemic period [relative rate (RR) = 0·84 per log increase in oseltamivir supply]. Each 10% increase in kilogram of active zanamivir, per 100 000, was associated with a 0·3% reduction in H1N1 mortality (RR = 0·97 per log increase). While limitations exist in the inference that can be drawn from an ecologic evaluation, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics. This article summarises the original study described previously, which can be accessed through the following citation: Miller PE, Rambachan A, Hubbard RJ, Li J, Meyer AE, et al. (2012) Supply of Neuraminidase Inhibitors Related to Reduced Influenza A (H1N1) Mortality during the 2009-2010 H1N1 Pandemic: An Ecological Study. PLoS ONE 7(9): e43491.

  12. Clinical features and prevention & control strategy of influenza A H1N1%甲型H1N1流行性感冒的临床特征与防控策略

    Institute of Scientific and Technical Information of China (English)

    任成山

    2009-01-01

    @@ 甲型H1N1流感(influenza A H1N1 virus)于2009年3月18日首先在墨西哥出现,疫情迅速蔓延,席卷全球[1].经美国疾病预防与控制中心(centers for disease control and prevention,CDC)鉴定,致病源为甲型流感病毒的核酸序列发生基因重排(reassortment),同时含人、禽和猪流感病毒核酸序列的新型H1N1甲型流感病毒(novel swine-origin influenza A H1N1 virus,S-OIV)[2-4].2009年5月11日我国内地首例甲型H1N1流感病例的确诊,意味着甲型H1N1流感已突破前哨闯入中国,也标志着我国防控甲型H1N1流感的阵地战已经打响.

  13. The hemagglutinin of the influenza A(H1N1pdm09 is mutating towards stability

    Directory of Open Access Journals (Sweden)

    Castelán-Vega JA

    2014-10-01

    Full Text Available Juan A Castelán-Vega, Anastasia Magaña-Hernández, Alicia Jiménez-Alberto, Rosa María Ribas-AparicioDepartamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, MexicoAbstract: The last influenza A pandemic provided an excellent opportunity to study the adaptation of the influenza A(H1N1pdm09 virus to the human host. Particularly, due to the availability of sequences taken from isolates since the beginning of the pandemic until date, we could monitor amino acid changes that occurred in the hemagglutinin (HA as the virus spread worldwide and became the dominant H1N1 strain. HA is crucial to viral infection because it binds to sialidated cell-receptors and mediates fusion of cell and viral membranes; because antibodies that bind to HA may block virus entry to the cell, this protein is subjected to high selective pressure. Multiple alignment analysis of sequences of the HA from isolates taken since 2009 to date allowed us to find amino acid changes that were positively selected as the pandemic progressed. We found nine changes that became prevalent: HA1 subunits D104N, K166Q, S188T, S206T, A259T, and K285E; and HA2 subunits E47K, S124N, and E172K. Most of these changes were located in areas involved in inter- and intrachain interactions, while only two (K166Q and S188T were located in known antigenic sites. We conclude that selective pressure on HA was aimed to improve its functionality and hence virus fitness, rather than at avoidance of immune recognition.Keywords: influenza A, hemagglutinin evolution, virus fitness

  14. Outbreaks of pandemic (H1N1) 2009 and seasonal influenza A (H3N2) on cruise ship.

    Science.gov (United States)

    Ward, Kate A; Armstrong, Paul; McAnulty, Jeremy M; Iwasenko, Jenna M; Dwyer, Dominic E

    2010-11-01

    To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship's childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks.

  15. CHARACTERISTICS OF PATIENTS HOSPITALIZED WITH 2009 H1N1 INFLUENZA IN A TERTIARY CARE HOSPITAL IN SOUTHERN SAUDI ARABIA

    Directory of Open Access Journals (Sweden)

    Adnan Agha

    2012-01-01

    Full Text Available Background Pandemic influenza A (H1N1 virus emerged and spread globally in the spring of 2009.  We describe the clinical features of the patients who were hospitalized with 2009 H1N1 influenza July 2009 to June 2010 in a tertiary care hospital in Khamis Mushyt, Saudi Arabia.  We analyzed the clinical and laboratory variables in order to determine predictors of poor outcome Methods We performed a prospective study in all patients who were hospitalized for at least 48 hours  and with a positive test for 2009 H1N1 virus through RT-PCR(real time polymerase chain reaction.  Their epidemiological, clinical, biochemical characteristics were collected and the hospital course of the patients with eventual outcome (discharge or death was observed. We applied a logistic regression analysis to determine the best predictor of death.

  16. Recombinant equine herpesvirus 1 (EHV-1) vaccine protects pigs against challenge with influenza A(H1N1)pmd09.

    Science.gov (United States)

    Said, Abdelrahman; Lange, Elke; Beer, Martin; Damiani, Armando; Osterrieder, Nikolaus

    2013-05-01

    Swine influenza virus (SIV) is not only an important respiratory pathogen in pigs but also a threat to human health. The pandemic influenza A(H1N1)pdm09 virus likely originated in swine through reassortment between a North American triple reassortant and Eurasian avian-like SIV. The North American triple reassortant virus harbors genes from avian, human and swine influenza viruses. An effective vaccine may protect the pork industry from economic losses and curb the development of new virus variants that may threaten public health. In the present study, we evaluated the efficacy of a recombinant equine herpesvirus type 1 (EHV-1) vaccine (rH_H1) expressing the hemagglutinin H1 of A(H1N1)pdm09 in the natural host. Our data shows that the engineered rH_H1 vaccine induces influenza virus-specific antibody responses in pigs and is able to protect at least partially against challenge infection: no clinical signs of disease were detected and virus replication was reduced as evidenced by decreased nasal virus shedding and faster virus clearance. Taken together, our results indicate that recombinant EHV-1 encoding H1 of A(H1N1)pdm09 may be a promising alternative for protection of pigs against infection with A(H1N1)pdm09 or other influenza viruses.

  17. 甲型H1N1流感死亡病例三株病毒分离株血凝素基因测序分析%Sequence analysis of the hemagglutinin gene of isolates viruses from 3 novel influenza A ( H1N1 )deaths

    Institute of Scientific and Technical Information of China (English)

    张如胜; 欧新华; 田斌

    2010-01-01

    Objective To understand the origin and variation of the hemagglutinin gene of isolates viruses from 3 novel influenza A( H1N1 ) deaths in Changsha ( A/Hunan Kaifu/SWL4142/2009 ( H1N1 ) , A/Hunan Changsha/SWL4346/2009 ( H1 N1 ) and A/Hunan Furong/SWL4224/2009( H1N1 )). Methods The nasopharyngeal swab specimens from the 3 novel influenza A( H1N1 ) deaths in Changsha were tested by RT-PCR and influenza viruses were isolated simultaneously. With the sequencing primers recommended by World Health Organization (WHO), the HA gene of sequences of 3 novel influenza A( H1N1 ) deaths were tested by CEQTM 8000 Genetic Analysis System, through dye terminator cycle sequencing. The sequencing results were submitted to GenBank, then the results were analyzed for amino acid alignment and phylogenetic tree analysis with ClustalX and Mega4.1 software. Results All the nucleotide homologies of HA gene sequences in A/Hunan Kaifu/SWL4142/2009 ( H1N1 ), A/Hunan Changsha/SWL4346/2009 ( H1N1 ) and A/Hunan Furong/SWL4224/2009( H1N1 ) are 99% as compared with the novel influenza A( H1N1 ) virus strains of A/NewYork/3502/2009 ( H1N1 ), A/Shanghai/71T/2009 ( H1N1 ) and A/Chita/01/2009 ( H1N1 )The nucleotide homology of the 3 HA gene sequences are more than 99. 5% the same compared with the novel influenza A( H1N1 ) virus strain ( A/Sichuan/1/2009( H1N1 ) ) in China. Phylogenetic tree analysis reveals that 2009 novel influenza A(H1N1 ) viruses including 3 HA gene sequences of A/Hunan Kaifu/SWL4142/2009 ( H1 N1 ), A/Hunan Changsha/SWL4346/2009 ( H1N1 ), A/Hunan Furong/SWL4224/2009( H1N1 ) had a close evolutionary relationship with the swine H1 virus isolates in North America ( A/Swine/Indiana/P12439/00), but a distant evolutionary relationship with those human seasonal A( H1 N1 ) influenza virus and avian. After comparing with genes of A/Swine/Indiana/P12439/00, we found that the HA gene sequences of the 3 viruses isolated had 28,30 and 27 amino acids with mutation respectively, but only one (R53

  18. A Metagenomic Analysis of Pandemic Influenza A (2009 H1N1) Infection in Patients from North America

    Science.gov (United States)

    Greninger, Alexander L.; Chen, Eunice C.; Sittler, Taylor; Scheinerman, Alex; Roubinian, Nareg; Yu, Guixia; Kim, Edward; Pillai, Dylan R.; Guyard, Cyril; Mazzulli, Tony; Isa, Pavel; Arias, Carlos F.; Hackett, John; Schochetman, Gerald; Miller, Steve; Tang, Patrick; Chiu, Charles Y.

    2010-01-01

    Although metagenomics has been previously employed for pathogen discovery, its cost and complexity have prevented its use as a practical front-line diagnostic for unknown infectious diseases. Here we demonstrate the utility of two metagenomics-based strategies, a pan-viral microarray (Virochip) and deep sequencing, for the identification and characterization of 2009 pandemic H1N1 influenza A virus. Using nasopharyngeal swabs collected during the earliest stages of the pandemic in Mexico, Canada, and the United States (n = 17), the Virochip was able to detect a novel virus most closely related to swine influenza viruses without a priori information. Deep sequencing yielded reads corresponding to 2009 H1N1 influenza in each sample (percentage of aligned sequences corresponding to 2009 H1N1 ranging from 0.0011% to 10.9%), with up to 97% coverage of the influenza genome in one sample. Detection of 2009 H1N1 by deep sequencing was possible even at titers near the limits of detection for specific RT-PCR, and the percentage of sequence reads was linearly correlated with virus titer. Deep sequencing also provided insights into the upper respiratory microbiota and host gene expression in response to 2009 H1N1 infection. An unbiased analysis combining sequence data from all 17 outbreak samples revealed that 90% of the 2009 H1N1 genome could be assembled de novo without the use of any reference sequence, including assembly of several near full-length genomic segments. These results indicate that a streamlined metagenomics detection strategy can potentially replace the multiple conventional diagnostic tests required to investigate an outbreak of a novel pathogen, and provide a blueprint for comprehensive diagnosis of unexplained acute illnesses or outbreaks in clinical and public health settings. PMID:20976137

  19. A metagenomic analysis of pandemic influenza A (2009 H1N1 infection in patients from North America.

    Directory of Open Access Journals (Sweden)

    Alexander L Greninger

    Full Text Available Although metagenomics has been previously employed for pathogen discovery, its cost and complexity have prevented its use as a practical front-line diagnostic for unknown infectious diseases. Here we demonstrate the utility of two metagenomics-based strategies, a pan-viral microarray (Virochip and deep sequencing, for the identification and characterization of 2009 pandemic H1N1 influenza A virus. Using nasopharyngeal swabs collected during the earliest stages of the pandemic in Mexico, Canada, and the United States (n = 17, the Virochip was able to detect a novel virus most closely related to swine influenza viruses without a priori information. Deep sequencing yielded reads corresponding to 2009 H1N1 influenza in each sample (percentage of aligned sequences corresponding to 2009 H1N1 ranging from 0.0011% to 10.9%, with up to 97% coverage of the influenza genome in one sample. Detection of 2009 H1N1 by deep sequencing was possible even at titers near the limits of detection for specific RT-PCR, and the percentage of sequence reads was linearly correlated with virus titer. Deep sequencing also provided insights into the upper respiratory microbiota and host gene expression in response to 2009 H1N1 infection. An unbiased analysis combining sequence data from all 17 outbreak samples revealed that 90% of the 2009 H1N1 genome could be assembled de novo without the use of any reference sequence, including assembly of several near full-length genomic segments. These results indicate that a streamlined metagenomics detection strategy can potentially replace the multiple conventional diagnostic tests required to investigate an outbreak of a novel pathogen, and provide a blueprint for comprehensive diagnosis of unexplained acute illnesses or outbreaks in clinical and public health settings.

  20. Molecular Characterization of Avian-like H1N1 Swine Influenza A Viruses Isolated in Eastern China, 2011

    Institute of Scientific and Technical Information of China (English)

    Xian Qi; Yuning Pan; Yuanfang Qin; Rongqiang Zu; Fengyang Tang; Minghao Zhou; Hua Wang; Yongchun Song

    2012-01-01

    Currently,three predominant subtypes of influenza virus are prevalent in pig populations worldwide:H1N1,H3N2,and H1N2.European avian-like H1N1 viruses,which were initially detected in European pig populations in 1979,have been circulating in pigs in eastern China since 2007.In this study,six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China.Based on whole genome sequencing,molecular characteristics of two isolates were determined.Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations,especially similar to those found in China.Four potential glycosylation sites were observed at positions 13,26,198,277 in the HA1 proteins of the two isolates.Due to the presence of a stop codon at codon 12,the isolates contained truncated PB1-F2 proteins.In this study,the isolates contained 591Q,627E and 701N in the polymerase subunit PB2,which had been shown to be determinants of virulence and host adaptation.The isolates also had a D rather than E at position 92 of the NS1,a marker of mammalian adaptation.Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1,a characteristic marker of the European avian-like swine viruses since about 1999,which is distinct from those of avian,human and classical swine viruses.The M2 proteins of the isolates have the mutation (S31N),a characteristic marker of the European avian-like swine viruses since about 1987,which may confer resistance to amantadine and rimantadine antivirals