WorldWideScience

Sample records for human influenza disease

  1. [Human influenza].

    Science.gov (United States)

    Stock, Ingo

    2006-10-01

    Human influenza is one of the most common human infectious diseases, contributing to approximately one million deaths every year. In Germany, each year between 5.000 and 20.000 individuals die from severe influenza infections. In several countries, the morbidity and mortality of influenza is greatly underestimated. This is reflected by general low immunization rates. The emergence of avian influenza against the background of the scenario of a human influenza pandemic has revived public interest in the disease. According to the World Health Organisation, it is only the question on the beginning of a new influenza pandemic. The virus type of the new pandemic is still uncertain and it is also unclear, if a pandemic spread of the virus may be prevented by consistent controlling of avian influenza.

  2. Human Influenza Virus Infections.

    Science.gov (United States)

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.

  3. About Haemophilus influenzae Disease

    Science.gov (United States)

    ... Hib Vaccination Hib Vaccination Meningitis Pneumonia Sepsis About Haemophilus influenzae Disease Recommend on Facebook Tweet Share Compartir H. ... severe, such as a bloodstream infection. Types of Haemophilus influenzae Infections Infections caused by these bacteria... Causes, How ...

  4. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza in Pigs

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-12-01

    Full Text Available Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries for 80 years. In 1998, triple reassortant H3N2 swine influenza viruses that contains genes of human influenza A virus (H3N2, swine influenza virus (H1N1 and avian influenza are reported as cause an outbreaks in pigs in North America. Furthermore, the circulation of triple reassortant H3N2 swine influenza virus resulting reassortant H1N1 swine influenza and reassortant H1N2 swine influenza viruses cause infection in humans. Humans who were infected by triple reassortant swine influenza A virus (H1N1 usually made direct contact with pigs. Although without any clinical symptoms, pigs that are infected by triple reassortant swine influenza A (H1N1 can transmit infection to the humans around them. In June 2009, WHO declared that pandemic influenza of reassortant H1N1 influenza A virus (novel H1N1 has reached phase 6. In Indonesia until 2009, there were 1005 people were infected by H1N1 influenza A and 5 of them died. Novel H1N1 and H5N1 viruses have been circulated in humans and pigs in Indonesia. H5N1 reassortant and H1N1 viruses or the seasonal flu may could arise because of genetic reassortment between avian influenza and humans influenza viruses that infect pigs together.

  5. Emergence in China of human disease due to avian influenza A(H10N8)--cause for concern?

    Science.gov (United States)

    To, Kelvin K W; Tsang, Alan K L; Chan, Jasper F W; Cheng, Vincent C C; Chen, Honglin; Yuen, Kwok-Yung

    2014-03-01

    In December 2013, China reported the first human case of avian influenza A(H10N8). A 73-year-old female with chronic diseases who had visited a live poultry market succumbed with community-acquired pneumonia. While human infections with avian influenza viruses are usually associated with subtypes prevalent in poultries, A(H10N8) isolates were mostly found in migratory birds and only recently in poultries. Although not possible to predict whether this single intrusion by A(H10N8) is an accident or the start of another epidemic like the preceding A(H7N9) and A(H5N1), several features suggest that A(H10N8) is a potential threat to humans. Recombinant H10 could attach to human respiratory epithelium, and A(H10N4) virus could cause severe infections in minks and chickens. A(H10N8) viruses contain genetic markers for mammalian adaptation and virulence in the haemagglutinin (A135T, S138A[H3 numbering]), M1(N30D, T215A), NS1(P42S) and PB2(E627K) protein. Studies on this human A(H10N8) isolate will reveal its adaptability to humans. Clinicians should alert the laboratory to test for A(H5,6,7,9,10) viruses in patients with epidemiological exposure in endemic geographical areas especially when human influenza A(H1,3) and B are negative. Vigilant virological and serological surveillance for A(H10N8) in human, poultry and wild bird is important for following the trajectory of this emerging influenza virus.

  6. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  7. Commentary: A Historical Review of Centers for Disease Control and Prevention Antiviral Treatment and Postexposure Chemoprophylaxis Guidance for Human Infections With Novel Influenza A Viruses Associated With Severe Human Disease.

    Science.gov (United States)

    Havers, Fiona P; Campbell, Angela P; Uyeki, Timothy M; Fry, Alicia M

    2017-09-15

    Human infections with novel influenza A viruses are of global public health concern, and antiviral medications have a potentially important role in treatment and prevention of human illness. Initial guidance was developed by the U.S. Centers for Disease Control and Prevention after the emergence of human infections with avian influenza A(H5N1) and has evolved over time, with identification of influenza A(H7N9) virus infections in humans, as well as detection of avian influenza viruses in birds in the United States. This commentary describes the historical context and current guidance for the use of influenza antiviral medications for treatment and post-exposure chemoprophylaxis of human infections with novel influenza A viruses associated with severe human illness, or with the potential to cause severe human disease, and provides the scientific rationale behind current recommendations. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases.

    Directory of Open Access Journals (Sweden)

    Weixu Meng

    Full Text Available The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infection confer therapeutic protection to others infected with the same pathogen. However, survivors may not always be available for providing plasma or for the cloning of monoclonal antibodies (mAbs.The genome and the immunoglobulin genes in rhesus macaques and humans are highly homologous; therefore, we investigated whether neutralizing mAbs that are highly homologous to those of humans (human-like could be generated. Using the H5N1 influenza virus as a model, we first immunized rhesus macaques with recombinant adenoviruses carrying a synthetic gene encoding hemagglutinin (HA. Following screening an antibody phage display library derived from the B cells of immunized monkeys, we cloned selected macaque immunoglobulin heavy chain and light chain variable regions into the human IgG constant region, which generated human-macaque chimeric mAbs exhibiting over 97% homology to human antibodies. Selected mAbs demonstrated potent neutralizing activities against three clades (0, 1, 2 of the H5N1 influenza viruses. The in vivo protection experiments demonstrated that the mAbs effectively protected the mice even when administered up to 3 days after infection with H5N1 influenza virus. In particular, mAb 4E6 demonstrated sub-picomolar binding affinity to HA and superior in vivo protection efficacy without the loss of body weight and obvious lung damage. The analysis of the 4E6 escape mutants demonstrated that the 4E6 antibody bound to a conserved epitope region containing two amino acids on the globular head of HA.Our study demonstrated the generation of neutralizing mAbs for potential application in humans in urgent preparedness against outbreaks of new influenza infections or

  9. [Importance of vaccination against influenza in individuals with cardiovascular disease].

    Science.gov (United States)

    Kynčl, J

    2014-09-01

    Influenza is one of the most common causes of human morbidity and mortality. Analysis of severe cases of influenza during the influenza season 2012/2013 found that 84 % of patients had at least one risk factor and the cohort of patients had lower influenza vaccine coverage in comparison with the general population. Influenza vaccine reduces the risk for cardiovascular disease and, therefore, should be recommended particularly to patients with chronic conditions who suffer more often from severe influenza. The education of physicians specialists is also desirable.

  10. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil.

    Science.gov (United States)

    Schaefer, Rejane; Rech, Raquel Rubia; Gava, Danielle; Cantão, Mauricio Egídio; da Silva, Marcia Cristina; Silveira, Simone; Zanella, Janice Reis Ciacci

    2015-01-01

    Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.

  11. Haemophilus influenzae Disease (Including Hib) Symptoms

    Science.gov (United States)

    ... Search The CDC Cancel Submit Search The CDC Haemophilus influenzae Disease (Including Hib) Note: Javascript is disabled or ... and Symptoms Recommend on Facebook Tweet Share Compartir Haemophilus influenzae , including Hib, disease causes different symptoms depending on ...

  12. Invasive Disease Caused by Nontypeable Haemophilus influenzae

    Science.gov (United States)

    de Jonge, Marien I.

    2015-01-01

    The incidence of severe Haemophilus influenza infections, such as sepsis and meningitis, has declined substantially since the introduction of the H. influenzae serotype b vaccine. However, the H. influenzae type b vaccine fails to protect against nontypeable H. influenzae strains, which have become increasingly frequent causes of invasive disease, especially among children and the elderly. We summarize recent literature supporting the emergence of invasive nontypeable H. influenzae and describe mechanisms that may explain its increasing prevalence over the past 2 decades. PMID:26407156

  13. The human side of influenza

    Science.gov (United States)

    Oshansky, Christine M.; Thomas, Paul G.

    2012-01-01

    A clear understanding of immunity in individuals infected with influenza virus is critical for the design of effective vaccination and treatment strategies. Whereas myriad studies have teased apart innate and adaptive immune responses to influenza infection in murine models, much less is known about human immunity as a result of the ethical and technical constraints of human research. Still, these murine studies have provided important insights into the critical correlates of protection and pathogenicity in human infection and helped direct the human studies that have been conducted. Here, we examine and review the current literature on immunity in humans infected with influenza virus, noting evidence offered by select murine studies and suggesting directions in which future research is most warranted. PMID:22362872

  14. Influenza infection and Kawasaki disease

    Directory of Open Access Journals (Sweden)

    Xijing Huang

    2015-06-01

    Full Text Available INTRODUCTION: The objective of this study was to investigate the possible link between influenza (Flu infection and Kawasaki disease (KD. METHODS: We examined the medical records of 1,053 KD cases and 4,669 influenza infection cases hospitalized at our institute from January 1, 2011 to December 31, 2013. Cases of KD with concomitant influenza infection formed the KD + Flu group. Each KD + Flu case was matched with 2 KD cases and 2 influenza infection cases, and these cases were assigned to the KD group and Flu group, respectively. The differences in the principal clinical manifestations, course of disease, incomplete KD rate, intravenous immunoglobulin (IVIG resistance rate, and echocardiographic detection results between the KD + Flu group and KD group were compared. The fever durations and laboratory test results of these three groups were compared. RESULTS: 1 The seasonal variations of the KD + Flu group, KD group and Flu group were similar. 2 The morbidity rate of incomplete KD was higher in the KD + Flu group compared with the KD group. 3 Patients in the KD + Flu group exhibited a longer time to KD diagnosis compared with patients in the KD group. 4 The KD + Flu group exhibited the longest fever duration among the three groups. 5 The CRP and ESR values in the KD + Flu group were higher those in the Flu or KD groups. CONCLUSIONS: Concomitant influenza infection affects the clinical manifestations of KD and can impact the laboratory test results and the diagnosis and treatment of the disease. However, it remains unclear whether influenza contributes to KD etiology.

  15. Proteomic expression profiling of Haemophilus influenzae grown in pooled human sputum from adults with chronic obstructive pulmonary disease reveal antioxidant and stress responses

    Directory of Open Access Journals (Sweden)

    Brauer Aimee L

    2010-06-01

    Full Text Available Abstract Background Nontypeable Haemophilus influenzae colonizes and infects the airways of adults with chronic obstructive pulmonary disease, the fourth most common cause of death worldwide.Thus, H. influenzae, an exclusively human pathogen, has adapted to survive in the hostile environment of the human airways.To characterize proteins expressed by H. influenzae in the airways, a prototype strain was grown in pooled human sputum to simulate conditions in the human respiratory tract.The proteins from whole bacterial cell lysates were solubilized with a strong buffer and then quantitatively cleaned with an optimized precipitation/on-pellet enzymatic digestion procedure.Proteomic profiling was accomplished by Nano-flow liquid chromatography/mass spectroscopy with low void volume and high separation efficiency with a shallow, long gradient. Results A total of 1402 proteins were identified with high confidence, including 170 proteins that were encoded by genes that are annotated as conserved hypothetical proteins.Thirty-one proteins were present in greater abundance in sputum-grown conditions at a ratio of > 1.5 compared to chemically defined media.These included 8 anti-oxidant and 5 stress-related proteins, suggesting that expression of antioxidant activity and stress responses is important for survival in the airways.Four proteins involved in uptake of divalent anions and 9 proteins that function in uptake of various molecules were present in greater abundance in sputum-grown conditions. Conclusions Proteomic expression profiling of H. influenzae grown in pooled human sputum revealed increased expression of antioxidant, stress-response proteins and cofactor and nutrient uptake systems compared to media grown cells.These observations suggest that H. influenzae adapts to the oxidative and nutritionally limited conditions of the airways in adults with chronic obstructive pulmonary disease by increasing expression of molecules necessary for survival

  16. Isolation and characterization of H7N9 avian influenza A virus from humans with respiratory diseases in Zhejiang, China.

    NARCIS (Netherlands)

    Zhang, Y.; Mao, H.; Yan, J.; Zhang, L.; Sun, Y.; Wang, X.; Chen, Y.; Lu, Y.; Chen, E.; Lv, H.; Gong, L.; Li, Z.; Gao, J.; Xu, C.; Feng, Y.; Ge, Q.; Xu, B.; Xu, F.; Yang, Z.; Zhao, C.; Han, J.; Koch, G.; Li, H.; Shu, Y.L.; Chen, Z.

    2014-01-01

    In 2013, the novel reassortant avian-origin influenza A (H7N9) virus was reported in China. Through enhanced surveillance, infection by the H7N9 virus in humans was first identified in Zhejiang Province. Real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) was used to confirm the infec

  17. A Surveillance Model for Human Avian Influenza with a Comprehensive Surveillance System for Local-Priority Communicable Diseases in South Sulawesi, Indonesia

    Science.gov (United States)

    Hanafusa, Shigeki; Muhadir, Andi; Santoso, Hari; Tanaka, Kohtaroh; Anwar, Muhammad; Sulistyo, Erwan Tri; Hachiya, Masahiko

    2012-01-01

    The government of Indonesia and the Japan International Cooperation Agency launched a three-year project (2008–2011) to strengthen the surveillance of human avian influenza cases through a comprehensive surveillance system of local-priority communicable diseases in South Sulawesi Province. Based on findings from preliminary and baseline surveys, the project developed a technical protocol for surveillance and response activities in local settings, consistent with national guidelines. District surveillance officers (DSOs) and rapid-response-team members underwent training to improve surveillance and response skills. A network-based early warning and response system for weekly reports and a short message service (SMS) gateway for outbreak reports, both encompassing more than 20 probable outbreak diseases, were introduced to support existing paper-based systems. Two further strategies were implemented to optimize project outputs: a simulation exercise and a DSO-centered model. As a result, the timeliness of weekly reports improved from 33% in 2009 to 82% in 2011. In 2011, 65 outbreaks were reported using the SMS, with 64 subsequent paper-based reports. All suspected human avian influenza outbreaks up to September 2011 were reported in the stipulated format. A crosscutting approach using human avian influenza as the core disease for coordinating surveillance activities improved the overall surveillance system for communicable diseases. PMID:23532690

  18. Crosstalk between animal and human influenza viruses

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2017-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the last decade, the first pandemic of the 21st century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assessed the pandemic potential of H5N1 highly pathogenic avian influenza viruses. PMID:25387011

  19. Development and qualification of the parallel line model for the estimation of human influenza haemagglutinin content using the single radial immunodiffusion assay

    NARCIS (Netherlands)

    van Kessel, G.; Geels, M. J.; de Weerd, S.; Buijs, L. J.; de Bruijni, M. A. M.; Glansbeek, H. L.; van den Bosch, J. F.; Heldens, J. G.; van den Heuvel, E. R.

    2012-01-01

    Infection with human influenza virus leads to serious respiratory disease. Vaccination is the most common and effective prophylactic measure to prevent influenza. Influenza vaccine manufacturing and release is controlled by the correct determination of the potency-defining haemagglutinin (HA)

  20. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    Science.gov (United States)

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  1. The contrasting phylodynamics of human influenza B viruses.

    Science.gov (United States)

    Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne C F; Halpin, Rebecca; Lee, Raphael T C; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin J D; Barr, Ian G

    2015-01-16

    A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.

  2. Isolation and characterization of H7N9 avian influenza A virus from humans with respiratory diseases in Zhejiang, China.

    Science.gov (United States)

    Zhang, Yanjun; Mao, Haiyan; Yan, Juying; Zhang, Lei; Sun, Yi; Wang, Xinying; Chen, Yin; Lu, Yiyu; Chen, Enfu; Lv, Huakun; Gong, Liming; Li, Zhen; Gao, Jian; Xu, Changping; Feng, Yan; Ge, Qiong; Xu, Baoxiang; Xu, Fang; Yang, Zhangnv; Zhao, Guoqiu; Han, Jiankang; Guus, Koch; Li, Hui; Shu, Yuelong; Chen, Zhiping; Xia, Shichang

    2014-08-30

    In 2013, the novel reassortant avian-origin influenza A (H7N9) virus was reported in China. Through enhanced surveillance, infection by the H7N9 virus in humans was first identified in Zhejiang Province. Real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) was used to confirm the infection. Embryonated chicken eggs were used for virus isolation from pharyngeal swabs taken from infected human patients. The H7N9 isolates were first identified by the hemagglutination test and electron microscopy, then used for whole genome sequencing. Bioinformatics software was used to construct the phylogenetic tree and for computing the mean rate of evolution of the HA gene in H7Nx and NA in HxN9. Two novel H7N9 avian influenza A viruses (A/Zhejiang/1/2013 and A/Zhejiang/2/2013) were isolated from the positive infection cases. Substitutions were found in both Zhejiang isolates and were identified as human-type viruses. All phylogenetic results indicated that the novel reassortant in H7N9 originated in viruses that infected birds. The sequencing and phylogenetic analysis of the whole genome revealed the mean rate of evolution of the HA gene in H7NX to be 5.74E-3 (95% Highest posterior density: 3.8218E-3 to 7.7873E-3) while the NA gene showed 2.243E-3 (4.378E-4 to 3.79E-3) substitutions per nucleotide site per year. The novel reassortant H7N9 virus was confirmed by molecular methods to have originated in poultry, with the mutations occurring during the spread of the H7N9 virus infection. Live poultry markets played an important role in whole H7N9 circulation.

  3. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... their saliva, mucous and feces. Human infections with bird flu viruses can happen when enough virus gets into ... Virus (CVV) for a Highly Pathogenic Avian Influenza (Bird Flu) Virus ” for more information on this process. ...

  4. Modeling human influenza infection in the laboratory

    Directory of Open Access Journals (Sweden)

    Radigan KA

    2015-08-01

    Full Text Available Kathryn A Radigan,1 Alexander V Misharin,2 Monica Chi,1 GR Scott Budinger11Division of Pulmonary and Critical Care Medicine, 2Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USAAbstract: Influenza is the leading cause of death from an infectious cause. Because of its clinical importance, many investigators use animal models to understand the biologic mechanisms of influenza A virus replication, the immune response to the virus, and the efficacy of novel therapies. This review will focus on the biosafety, biosecurity, and ethical concerns that must be considered in pursuing influenza research, in addition to focusing on the two animal models – mice and ferrets – most frequently used by researchers as models of human influenza infection.Keywords: mice, ferret, influenza, animal model, biosafety

  5. Haemophilus influenzae Disease (Including Hib) Diagnosis and Treatment

    Science.gov (United States)

    ... Search The CDC Cancel Submit Search The CDC Haemophilus influenzae Disease (Including Hib) Note: Javascript is disabled or ... Compartir On this Page Diagnosis Treatment Complications Diagnosis Haemophilus influenzae , including Hib, disease is usually diagnosed with one ...

  6. Novel human H7N9 influenza virus in China.

    Science.gov (United States)

    Wang, Chengmin; Luo, Jing; Wang, Jing; Su, Wen; Gao, Shanshan; Zhang, Min; Xie, Li; Ding, Hua; Liu, Shelan; Liu, Xiaodong; Chen, Yu; Jia, Yaxiong; He, Hongxuan

    2014-06-01

    Outbreaks of H7N9 avian influenza in humans in 5 provinces and 2 municipalities of China have reawakened concern that avian influenza viruses may again cross species barriers to infect the human population and thereby initiate a new influenza pandemic. Evolutionary analysis shows that human H7N9 influenza viruses originated from the H9N2, H7N3 and H11N9 avian viruses, and that it is as a novel reassortment influenza virus. This article reviews current knowledge on 11 subtypes of influenza A virus from human which can cause human infections.

  7. Human Infection with Avian Influenza A(H7N9) Virus - China

    Science.gov (United States)

    ... Biorisk reduction Human infection with avian influenza A(H7N9) virus – China Disease outbreak news 18 January 2017 ... laboratory-confirmed human infection with avian influenza A(H7N9) virus and on 12 January 2017, the Health ...

  8. Pandemic influenza: human rights, ethics and duty to treat.

    Science.gov (United States)

    Pahlman, I; Tohmo, H; Gylling, H

    2010-01-01

    The 2009 influenza A/H1N1 pandemic seems to be only moderately severe. In the future, a pandemic influenza with high lethality, such as the Spanish influenza in 1918-1919 or even worse, may emerge. In this kind of scenario, lethality rates ranging roughly from 2% to 30% have been proposed. Legal and ethical issues should be discussed before the incident. This article aims to highlight the legal, ethical and professional aspects that might be relevant to anaesthesiologists in the case of a high-lethality infectious disease such as a severe pandemic influenza. The epidemiology, the role of anaesthesiologists and possible threats to the profession and colleagueship within medical specialties relevant to anaesthesiologists are reviewed. During historical plague epidemics, some doctors have behaved like 'deserters'. However, during the Spanish influenza, physicians remained at their jobs, although many perished. In surveys, more than half of the health-care workers have reported their willingness to work in the case of severe pandemics. Physicians have the same human rights as all citizens: they have to be effectively protected against infectious disease. However, they have a duty to treat. Fair and responsible colleagueship among the diverse medical specialties should be promoted. Until disaster threatens humanity, volunteering to work during a pandemic might be the best way to ensure that physicians and other health-care workers stay at their workplace. Broad discussion in society is needed.

  9. Severe swine influenza A (H1N1) versus severe human seasonal influenza A (H3N2): clinical comparisons.

    Science.gov (United States)

    Cunha, Burke A; Pherez, Francisco M; Strollo, Stephanie; Syed, Uzma; Laguerre, Marianne

    2011-01-01

    At the beginning of the swine influenza (H1N1) pandemic in the spring of 2009, there were still stories of human seasonal influenza A circulating in the New York area. Adult patients admitted with influenza-like illnesses (ILIs) (fever > 102°F, dry cough, and myalgias) presented diagnostic problems. First, clinicians had to differentiate ILIs from influenza, and then differentiate human seasonal influenza A from H1N1 in hospitalized adults with ILIs and negative chest films (no focal segmental/lobar infiltrates). Human seasonal influenza A was diagnosed by rapid influenza diagnostic tests (RIDTs), but H1N1 was often RIDT negative. Reverse transcriptase-polymerase chain reaction for H1N1 was restricted or not available. The Winthrop-University Hospital Infectious Disease Division developed clinical diagnostic criteria (a diagnostic weighted point score system) to rapidly and clinically diagnose H1N1 in patients with negative RIDTs. The point score system was modified and shortened for ease of use, that is, the diagnostic H1N1 triad (any 3 of 4) (ILI, see above) plus thrombocytopenia, relative lymphopenia, elevated serum transaminases, or an elevated creatine phosphokinase. Our clinical experience during the pandemic allowed us to develop the swine diagnostic H1N1 triad. In the process, similarities and differences between human seasonal influenza A and H1N1 were noted. We present 2 illustrative cases of severe influenza, one due to human seasonal influenza A and one due to H1N1, for clinical consideration reflective of our experiences early in the H1N1 pandemic in 2009.

  10. Human influenza viruses and CD8(+) T cell responses.

    Science.gov (United States)

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations.

  11. Heterosybtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines

    Directory of Open Access Journals (Sweden)

    Saranya eSridhar

    2016-05-01

    Full Text Available Influenza A virus (IAV remains a significant global health issue causing annual epidemics, pandemics and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the 21st century underlined the urgent need to develop new vaccines capable of protection against a broad range of influenza strains. Such universal influenza vaccines are based on the idea of heterosubtypic immunity wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognising conserved antigens are a key contributor to reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.

  12. Invasive Disease Caused by Nontypeable Haemophilus Influenzae

    Centers for Disease Control (CDC) Podcasts

    2015-11-12

    Dr. Elizabeth Briere discusses Nontypeable Haemophilus influenzae which causes a variety of infections in children and adults.  Created: 11/12/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 11/17/2015.

  13. Avian influenza virus and Newcastle disease virus

    Science.gov (United States)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  14. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses.

    Science.gov (United States)

    Sun, Xiangjie; Zeng, Hui; Kumar, Amrita; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2016-12-15

    A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage

  15. The Role of Punctuated Evolution in the Pathogenicity of Influenza Viruses

    National Research Council Canada - National Science Library

    McCullers, Jonathan A

    2016-01-01

    Influenza is an acute respiratory disease caused by influenza viruses. Evolutionarily, all influenza viruses are zoonoses, arising in the animal reservoir and spilling over into the human population...

  16. Influenza vaccines for preventing cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Christine Clar

    Full Text Available ABSTRACTBACKGROUND: This is an update of the original review published in 2008. The risk of adverse cardiovascular outcomes is increased with influenza-like infection, and vaccination against influenza may improve cardiovascular outcomes.OBJECTIVES: To assess the potential benefits of influenza vaccination for primary and secondary prevention of cardiovascular disease.METHODS:Search methods:We searched the following electronic databases on 18 October 2013: The Cochrane Library (including Cochrane Central Register of Controlled Trials (CENTRAL, Database of Abstracts of Reviews of Effects (DARE, Economic Evaluation Database (EED and Health Technology Assessment database (HTA, MEDLINE, EMBASE, Science Citation Index Expanded, Conference Proceedings Citation Index - Science and ongoing trials registers (www.controlled-trials.com/ and www.clinicaltrials.gov. We examined reference lists of relevant primary studies and systematic reviews. We performed a limited PubMed search on 20 February 2015, just before publication.Selection criteria:Randomised controlled trials (RCTs of influenza vaccination compared with placebo or no treatment in participants with or without cardiovascular disease, assessing cardiovascular death or non-fatal cardiovascular events.Data collection and analysis:We used standard methodological procedures as expected by The Cochrane Collaboration. We carried out meta-analyses only for cardiovascular death, as other outcomes were reported too infrequently. We expressed effect sizes as risk ratios (RRs, and we used random-effects models.MAIN RESULTS: We included eight trials of influenza vaccination compared with placebo or no vaccination, with 12,029 participants receiving at least one vaccination or control treatment. We included six new studies (n = 11,251, in addition to the two included in the previous version of the review. Four of these trials (n = 10,347 focused on prevention of influenza in the general or elderly population

  17. Molecular analysis of serum and bronchoalveolar lavage in a mouse model of influenza reveals markers of disease severity that can be clinically useful in humans.

    Directory of Open Access Journals (Sweden)

    Yadunanda Kumar

    Full Text Available BACKGROUND: Management of influenza, a major contributor to the worldwide disease burden, is complicated by lack of reliable methods for early identification of susceptible individuals. Identification of molecular markers that can augment existing diagnostic tools for prediction of severity can be expected to greatly improve disease management capabilities. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed cytokines, proteome flux and protein adducts in bronchoalveolar lavage (BAL and sera from mice infected with influenza A virus (PR8 strain using a previously established non-lethal model of influenza infection. Through detailed cytokine and protein adduct measurements of murine BAL, we first established the temporal profile of innate and adaptive responses as well as macrophage and neutrophil activities in response to influenza infection. A similar analysis was also performed with sera from a longitudinal cohort of influenza patients. We then used an iTRAQ-based, comparative serum proteome analysis to catalog the proteome flux in the murine BAL during the stages correlating with "peak viremia," "inflammatory damage," as well as the "recovery phase." In addition to activation of acute phase responses, a distinct class of lung proteins including surfactant proteins was found to be depleted from the BAL coincident with their "appearance" in the serum, presumably due to leakage of the protein following loss of the integrity of the lung/epithelial barrier. Serum levels of at least two of these proteins were elevated in influenza patients during the febrile phase of infection compared to healthy controls or to the same patients at convalescence. CONCLUSIONS/SIGNIFICANCE: The findings from this study provide a molecular description of disease progression in a mouse model of influenza and demonstrate its potential for translation into a novel class of markers for measurement of acute lung injury and improved case management.

  18. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    Science.gov (United States)

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.

  19. Influenza vaccine induces intracellular immune memory of human NK cells.

    Directory of Open Access Journals (Sweden)

    Yaling Dou

    Full Text Available Influenza vaccines elicit antigen-specific antibodies and immune memory to protect humans from infection with drift variants. However, what supports or limits vaccine efficacy and duration is unclear. Here, we vaccinated healthy volunteers with annual vaccine formulations and investigated the dynamics of T cell, natural killer (NK cell and antibody responses upon restimulation with heterologous or homologous influenza virus strains. Influenza vaccines induced potential memory NK cells with increased antigen-specific recall IFN-γ responses during the first 6 months. In the absence of significant changes in other NK cell markers (CD45RO, NKp44, CXCR6, CD57, NKG2C, CCR7, CD62L and CD27, influenza vaccines induced memory NK cells with the distinct feature of intracellular NKp46 expression. Indeed, surface NKp46 was internalized, and the dynamic increase in NKp46(intracellular+CD56dim NK cells positively correlated with increased IFN-γ production to influenza virus restimulation after vaccination. In addition, anti-NKp46 antibodies blocked IFN-γ responses. These findings provide insights into a novel mechanism underlying vaccine-induced immunity and NK-related diseases, which may help to design persisting and universal vaccines in the future.

  20. Influenza vaccine induces intracellular immune memory of human NK cells.

    Science.gov (United States)

    Dou, Yaling; Fu, Binqing; Sun, Rui; Li, Wenting; Hu, Wanfu; Tian, Zhigang; Wei, Haiming

    2015-01-01

    Influenza vaccines elicit antigen-specific antibodies and immune memory to protect humans from infection with drift variants. However, what supports or limits vaccine efficacy and duration is unclear. Here, we vaccinated healthy volunteers with annual vaccine formulations and investigated the dynamics of T cell, natural killer (NK) cell and antibody responses upon restimulation with heterologous or homologous influenza virus strains. Influenza vaccines induced potential memory NK cells with increased antigen-specific recall IFN-γ responses during the first 6 months. In the absence of significant changes in other NK cell markers (CD45RO, NKp44, CXCR6, CD57, NKG2C, CCR7, CD62L and CD27), influenza vaccines induced memory NK cells with the distinct feature of intracellular NKp46 expression. Indeed, surface NKp46 was internalized, and the dynamic increase in NKp46(intracellular)+CD56dim NK cells positively correlated with increased IFN-γ production to influenza virus restimulation after vaccination. In addition, anti-NKp46 antibodies blocked IFN-γ responses. These findings provide insights into a novel mechanism underlying vaccine-induced immunity and NK-related diseases, which may help to design persisting and universal vaccines in the future.

  1. Pandemic and Avian Influenza A Viruses in Humans: Epidemiology, Virology, Clinical Characteristics, and Treatment Strategy.

    Science.gov (United States)

    Li, Hui; Cao, Bin

    2017-03-01

    The intermittent outbreak of pandemic influenza and emergence of novel avian influenza A virus is worldwide threat. Although most patients present with mild symptoms, some deteriorate to severe pneumonia and even death. Great progress in the understanding of the mechanism of disease pathogenesis and a series of vaccines has been promoted worldwide; however, incidence, morbidity, and mortality remains high. To step up vigilance and improve pandemic preparedness, this article elucidates the virology, epidemiology, pathogenesis, clinical characteristics, and treatment of human infections by influenza A viruses, with an emphasis on the influenza A(H1N1)pdm09, H5N1, and H7N9 subtypes.

  2. Influenza vaccination in patients with end-stage renal disease.

    Science.gov (United States)

    Principi, Nicola; Esposito, Susanna

    2015-08-01

    Patients with end-stage renal disease (ESRD) are considered at higher risk of influenza-related complications and are listed worldwide among the subjects for whom yearly influenza vaccination is strongly recommended. However, influenza vaccination coverage of patients with ESRD is significantly lower than desired. This paper explores why compliance with official recommendations for influenza vaccination is poor in patients with ESRD and analyzes the true risk of infection as well as the immunogenicity, the effectiveness and the safety of influenza vaccination in these patients. Epidemiological and clinical data support the importance of influenza in conditioning clinical deterioration of patients with ESRD, particularly in relation to their level of immunosuppression. However, the variable levels of immunodeficiency detected in patients with ESRD may reduce the immune response to influenza vaccination, which appears to be lower than that usually found in healthy subjects. However, few studies are available, and they are difficult to compare for several reasons. Additionally, limited data have been collected on influenza vaccine effectiveness, although the available studies support positive results of vaccination on outcomes of severe disease. Despite such limitations, it is important to highlight that all the available studies have confirmed the good safety and tolerability of inactivated influenza vaccines. These findings, together with the risks associated with influenza in these patients, support annual influenza vaccination in patients with ESRD as well as vaccination of their close contacts and should be presented in educational programs organized for nephrologists and patient associations.

  3. The association between serum biomarkers and disease outcome in influenza A(H1N1)pdm09 virus infection

    DEFF Research Database (Denmark)

    Davey, Richard T; Lynfield, Ruth; Dwyer, Dominic E

    2013-01-01

    Prospective studies establishing the temporal relationship between the degree of inflammation and human influenza disease progression are scarce. To assess predictors of disease progression among patients with influenza A(H1N1)pdm09 infection, 25 inflammatory biomarkers measured at enrollment were...

  4. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, M. van; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C.A.; Heesterbeek, J.A.P.

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemio

  5. Influenza vaccination in children at high risk of respiratory disease.

    Science.gov (United States)

    Patria, Maria Francesca; Tagliabue, Claudia; Longhi, Benedetta; Esposito, Susanna

    2013-05-01

    Chronic respiratory diseases (CRDs) are a heterogeneous group of diseases that can affect the pediatric population and health authorities throughout the world recommend influenza vaccination because of the significant risk of influenza-related complications. However, despite this recommendation, vaccine coverage is generally unsatisfactory. The aim of this review is to analyze the impact of influenza on children at high risk of respiratory disease, and the immunogenicity, safety and efficacy of influenza vaccination in such children. The results show that there is a significant risk of influenza-related complications in preterm neonates and infants, in whom influenza vaccines are immunogenic and safe (although their efficacy has not been specifically studied). There are conflicting data concerning the effect of influenza infection on asthma morbidity in children, and whether or not influenza vaccination helps to prevent asthma exacerbations. Recent data provide no evidence that influenza is more frequent in patients with cystic fibrosis than in healthy subjects, or that it is responsible for increased lower respiratory tract morbidity. The lack of any clear correlate of protection suggests that future studies should also consider the efficacy of the different influenza vaccines and not only evaluate them in terms of immunogenicity. Furthermore, there is a need for clinical studies to assess the effectiveness of the available vaccines in patients with other rare CRDs and other chronic underlying diseases with possibly severe respiratory involvement. It is also important to determine whether children with recurrent respiratory tract infections should be included in the list of those for whom influenza vaccination is recommended. In the meantime, given the increasing evidence of the burden of influenza on the population as a whole and the benefits associated with vaccination, annual influenza vaccinations should be recommended for all children at high risk of

  6. Cross talk between animal and human influenza viruses.

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2013-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the past decade, the first pandemic of the twenty-first century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assess the pandemic potential of H5N1 highly pathogenic avian influenza viruses.

  7. A review on the clinical spectrum and natural history of human influenza.

    Science.gov (United States)

    Punpanich, Warunee; Chotpitayasunondh, Tawee

    2012-10-01

    The objective of this review is to provide updated information on the clinical spectrum and natural history of human influenza, including risk factors for severe disease, and to identify the knowledge gap in this area. We searched the MEDLINE database of the recent literature for the period January 2009 to August 17, 2011 with regard to the abovementioned aspects of human influenza, focusing on A(H1N1)pdm09 and seasonal influenza. The clinical spectrum and outcomes of cases of A(H1N1)pdm09 influenza have been mild and rather indistinguishable from those of seasonal influenza. Sporadic cases covering a wide range of neurological complications have been reported. Underlying predisposing conditions considered to be high-risk for A(H1N1)pdm09 infections are generally similar to those of seasonal influenza, but with two additional risk groups: pregnant women and the morbidly obese. Co-infections with bacteria and D222/N variants or 225G substitution of the viral genome have also been reported to be significant factors associated with the severity of disease. The current knowledge gap includes: (1) a lack of clarification regarding the relatively greater severity of the Mexican A(H1N1)pdm09 influenza outbreak in the early phase of the pandemic; (2) insufficient data on the clinical impact, risk factors, and outcomes of human infections caused by resistant strains of influenza; and (3) insufficient data from less developed countries that would enable them to prioritize strategies for influenza prevention and control. Clinical features and risk factors of A(H1N1)pdm09 are comparable to those of seasonal influenza. Emerging risk factors for severe disease with A(H1N1)pdm09 include morbid obesity, pregnancy, bacterial co-infections, and D222/N variants or 225G substitution of the viral genome. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    Science.gov (United States)

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  9. Influenza-associated encephalopathy: no evidence for neuroinvasion by influenza virus nor for reactivation of human herpesvirus 6 or 7.

    NARCIS (Netherlands)

    van Zeijl, J.H.; Bakkers, J.; Wilbrink, B.; Melchers, W.J.; Mullaart, R.A.; Galama, J.M.

    2005-01-01

    During 2 consecutive influenza seasons we investigated the presence of influenza virus, human herpesvirus (HHV) type 6, and HHV-7 in cerebrospinal fluid samples from 9 white children suffering from influenza-associated encephalopathy. We conclude that it is unlikely that neuroinvasion by influenza

  10. The effects of synoptic weather on influenza infection incidences: a retrospective study utilizing digital disease surveillance

    Science.gov (United States)

    Zhao, Naizhuo; Cao, Guofeng; Vanos, Jennifer K.; Vecellio, Daniel J.

    2017-02-01

    The environmental drivers and mechanisms of influenza dynamics remain unclear. The recent development of influenza surveillance-particularly the emergence of digital epidemiology-provides an opportunity to further understand this puzzle as an area within applied human biometeorology. This paper investigates the short-term weather effects on human influenza activity at a synoptic scale during cold seasons. Using 10 years (2005-2014) of municipal level influenza surveillance data (an adjustment of the Google Flu Trends estimation from the Centers for Disease Control's virologic surveillance data) and daily spatial synoptic classification weather types, we explore and compare the effects of weather exposure on the influenza infection incidences in 79 cities across the USA. We find that during the cold seasons the presence of the polar [i.e., dry polar (DP) and moist polar (MP)] weather types is significantly associated with increasing influenza likelihood in 62 and 68% of the studied cities, respectively, while the presence of tropical [i.e., dry tropical (DT) and moist tropical (MT)] weather types is associated with a significantly decreasing occurrence of influenza in 56 and 43% of the cities, respectively. The MP and the DP weather types exhibit similar close positive correlations with influenza infection incidences, indicating that both cold-dry and cold-moist air provide favorable conditions for the occurrence of influenza in the cold seasons. Additionally, when tropical weather types are present, the humid (MT) and the dry (DT) weather types have similar strong impacts to inhibit the occurrence of influenza. These findings suggest that temperature is a more dominating atmospheric factor than moisture that impacts the occurrences of influenza in cold seasons.

  11. Avian influenza biosecurity: a key for animal and human protection

    Directory of Open Access Journals (Sweden)

    Nikolas Charisis

    2008-12-01

    Full Text Available Modern biosecurity methods have provided the best way of preventing the spread of a communicable disease since people realised that human and animal contact can transmit exotic diseases. The avian influenza virus is readily transmitted through animal vectors and inanimate matter and incurs heavy losses to the poultry industry. Biosecurity measures include the prevention of vaccination of flocks in an endemic area and the isolation of farms from the surrounding world (villages, other farms, fields, etc.. Veterinary services work in liaison with owners to implement national quarantine and vaccination measures for the benefit of farmers and the industry and for protection of public health.

  12. A systems approach to understanding human rhinovirus and influenza virus infection.

    Science.gov (United States)

    Kim, Taek-Kyun; Bheda-Malge, Anjali; Lin, Yakang; Sreekrishna, Koti; Adams, Rachel; Robinson, Michael K; Bascom, Charles C; Tiesman, Jay P; Isfort, Robert J; Gelinas, Richard

    2015-12-01

    Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. We modeled host responses to these viral infections with time and documented the qualitative and quantitative differences in innate immune activation and regulation.

  13. H7N9 Influenza: The Emerging Infectious Disease

    OpenAIRE

    Viroj Wiwanitkit

    2013-01-01

    Influenza virus infection is a common respiratory pathogen. Emerging of new atypical influenza is usually a big public health threat. H7N9 bird flu is the newest atypical influenza virus infection that has just been reported since early 2013. The emerging of this new disease occurred in China and becomes the present focus for possible worldwide pandemic. In this specific article, the author will discus and describe on epidemiology, symptomatology, pathology, diagnosis, treatment, and preventi...

  14. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    Directory of Open Access Journals (Sweden)

    Claire M. Smith

    2016-08-01

    Full Text Available Defective interfering (DI viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8 was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1; it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral.

  15. Current Approaches for Diagnosis of Influenza Virus Infections in Humans

    Directory of Open Access Journals (Sweden)

    Sai Vikram Vemula

    2016-04-01

    Full Text Available Despite significant advancement in vaccine and virus research, influenza continues to be a major public health concern. Each year in the United States of America, influenza viruses are responsible for seasonal epidemics resulting in over 200,000 hospitalizations and 30,000–50,000 deaths. Accurate and early diagnosis of influenza viral infections are critical for rapid initiation of antiviral therapy to reduce influenza related morbidity and mortality both during seasonal epidemics and pandemics. Several different approaches are currently available for diagnosis of influenza infections in humans. These include viral isolation in cell culture, immunofluorescence assays, nucleic acid amplification tests, immunochromatography-based rapid diagnostic tests, etc. Newer diagnostic approaches are being developed to overcome the limitations associated with some of the conventional detection methods. This review discusses diagnostic approaches currently available for detection of influenza viruses in humans.

  16. Variant (Swine Origin) Influenza Viruses in Humans

    Science.gov (United States)

    ... infected pig coughs or sneezes and droplets with influenza virus in them spread through the air. If these ... possibly get infected is to inhale particles containing influenza virus. Scientists aren’t really sure which of these ...

  17. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  18. Nasal IgA Provides Protection against Human Influenza Challenge in Volunteers with Low Serum Influenza Antibody Titre.

    Science.gov (United States)

    Gould, Victoria M W; Francis, James N; Anderson, Katie J; Georges, Bertrand; Cope, Alethea V; Tregoning, John S

    2017-01-01

    In spite of there being a number of vaccines, influenza remains a significant global cause of morbidity and mortality. Understanding more about natural and vaccine induced immune protection against influenza infection would help to develop better vaccines. Virus specific IgG is a known correlate of protection, but other factors may help to reduce viral load or disease severity, for example IgA. In the current study we measured influenza specific responses in a controlled human infection model using influenza A/California/2009 (H1N1) as the challenge agent. Volunteers were pre-selected with low haemagglutination inhibition (HAI) titres in order to ensure a higher proportion of infection; this allowed us to explore the role of other immune correlates. In spite of HAI being uniformly low, there were variable levels of H1N1 specific IgG and IgA prior to infection. There was also a range of disease severity in volunteers allowing us to compare whether differences in systemic and local H1N1 specific IgG and IgA prior to infection affected disease outcome. H1N1 specific IgG level before challenge did not correlate with protection, probably due to the pre-screening for individuals with low HAI. However, the length of time infectious virus was recovered from the nose was reduced in patients with higher pre-existing H1N1 influenza specific nasal IgA or serum IgA. Therefore, IgA contributes to protection against influenza and should be targeted in vaccines.

  19. Clinical characteristics of human infection with a novel avian-origin influenza A(H10N8) virus

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Wan Jianguo; Qian Kejian; Liu Xiaoqing; Xiao Zuke; Sun Jian; Zeng Zhenguo

    2014-01-01

    Background Novel influenza A viruses of avian-origin may be the precursors of pandemic strains.This descriptive study aims to introduce a novel avian-origin influenza A (H10N8) virus which can infect humans and cause severe diseases.Methods Collecting clinical data of three cases of human infection with a novel reassortment avian influenza A (H10N8)virus in Nanchang,Jiangxi Province,China.Results Three cases of human infection with a new reassortment avian influenza A(H10N8) virus were described,of which two were fatal cases,and one was severe case.These cases presented with severe pneumonia that progressed to acute respiratory distress syndrome (ARDS) and intractable respiratory failure.Conclusion This novel reassortment avian influenza A (H10N8) virus in China resulted in fatal human infections,and should be added to concerns in clinical practice.

  20. The East Jakarta Project: surveillance for highly pathogenic avian influenza A(H5N1) and seasonal influenza viruses in patients seeking care for respiratory disease, Jakarta, Indonesia, October 2011-September 2012.

    Science.gov (United States)

    Storms, A D; Kusriastuti, R; Misriyah, S; Praptiningsih, C Y; Amalya, M; Lafond, K E; Samaan, G; Triada, R; Iuliano, A D; Ester, M; Sidjabat, R; Chittenden, K; Vogel, R; Widdowson, M A; Mahoney, F; Uyeki, T M

    2015-12-01

    Indonesia has reported the most human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus worldwide. We implemented enhanced surveillance in four outpatient clinics and six hospitals for HPAI H5N1 and seasonal influenza viruses in East Jakarta district to assess the public health impact of influenza in Indonesia. Epidemiological and clinical data were collected from outpatients with influenza-like illness (ILI) and hospitalized patients with severe acute respiratory infection (SARI); respiratory specimens were obtained for influenza testing by real-time reverse transcription-polymerase chain reaction. During October 2011-September 2012, 1131/3278 specimens from ILI cases (34·5%) and 276/1787 specimens from SARI cases (15·4%) tested positive for seasonal influenza viruses. The prevalence of influenza virus infections was highest during December-May and the proportion testing positive was 76% for ILI and 36% for SARI during their respective weeks of peak activity. No HPAI H5N1 virus infections were identified, including hundreds of ILI and SARI patients with recent poultry exposures, whereas seasonal influenza was an important contributor to acute respiratory disease in East Jakarta. Overall, 668 (47%) of influenza viruses were influenza B, 384 (27%) were A(H1N1)pdm09, and 359 (25%) were H3. While additional data over multiple years are needed, our findings suggest that seasonal influenza prevention efforts, including influenza vaccination, should target the months preceding the rainy season.

  1. Programme of the Community Network of Reference Laboratories for Human Influenza to improve Influenza Surveillance in Europe.

    NARCIS (Netherlands)

    Meijer, Adam; Brown, Caroline; Hungnes, Olav; Schweiger, Brunhilde; Valette, Martine; Werf, Sylvie van der; Zambon, Maria

    2006-01-01

    All laboratories participating in the Community Network of Reference Laboratories for Human Influenza in Europe (CNRL) co-ordinated by the European Influenza Surveillance Scheme (EISS) should be able to perform a range of influenza diagnostics. This includes direct detection, culture, typing, subtyp

  2. Programme of the community network of reference laboratories for human influenza to improve influenza surveillance in Europe.

    NARCIS (Netherlands)

    Meijer, A.; Brown, C.; Hungnes, O.; Schweiger, B.; Valette, M.; Werf, S. van der; Zambon, M.

    2006-01-01

    All laboratories participating in the Community Network of Reference Laboratories for Human Influenza in Europe (CNRL) co-ordinated by the European Influenza Surveillance Scheme (EISS) should be able to perform a range of influenza diagnostics. This includes direct detection, culture, typing, subtyp

  3. H7N9 influenza: The emerging infectious disease

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2013-01-01

    Full Text Available Influenza virus infection is a common respiratory pathogen. Emerging of new atypical influenza is usually a big public health threat. H7N9 bird flu is the newest atypical influenza virus infection that has just been reported since early 2013. The emerging of this new disease occurred in China and becomes the present focus for possible worldwide pandemic. In this specific article, the author will discus and describe on epidemiology, symptomatology, pathology, diagnosis, treatment, and prevention of this new bird flu. The literature researching by PubMed and Google is used for data gathering in this collective review.

  4. Vector-borne infectious diseases and influenza

    Science.gov (United States)

    Rift Valley fever (RVF) is a serious viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. First isolated in Kenya during an outbreak in 1930 subsequent outbreaks have had a significant impact on animal and human health and national economies, and it is...

  5. Introductions and evolution of human-origin seasonal influenza a viruses in multinational swine populations.

    Science.gov (United States)

    Nelson, Martha I; Wentworth, David E; Culhane, Marie R; Vincent, Amy L; Viboud, Cecile; LaPointe, Matthew P; Lin, Xudong; Holmes, Edward C; Detmer, Susan E

    2014-09-01

    The capacity of influenza A viruses to cross species barriers presents a continual threat to human and animal health. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. We sequenced the genomes of 141 influenza viruses collected from North American swine during 2002 to 2011 and identified a swine virus that possessed all eight genome segments of human seasonal A/H3N2 virus origin. A molecular clock analysis indicates that this virus--A/sw/Saskatchewan/02903/2009(H3N2)--has likely circulated undetected in swine for at least 7 years. For historical context, we performed a comprehensive phylogenetic analysis of an additional 1,404 whole-genome sequences from swine influenza A viruses collected globally during 1931 to 2013. Human-to-swine transmission occurred frequently over this time period, with 20 discrete introductions of human seasonal influenza A viruses showing sustained onward transmission in swine for at least 1 year since 1965. Notably, human-origin hemagglutinin (H1 and H3) and neuraminidase (particularly N2) segments were detected in swine at a much higher rate than the six internal gene segments, suggesting an association between the acquisition of swine-origin internal genes via reassortment and the adaptation of human influenza viruses to new swine hosts. Further understanding of the fitness constraints on the adaptation of human viruses to swine, and vice versa, at a genomic level is central to understanding the complex multihost ecology of influenza and the disease threats that swine and humans pose to each other. The swine origin of the 2009 A/H1N1 pandemic virus underscored the importance of understanding how influenza A virus evolves in these animals hosts. While the importance of reassortment in generating genetically diverse influenza viruses in swine is well documented, the role of human-to-swine transmission has not been as intensively studied. Through a

  6. Expression of IgA Proteases by Haemophilus influenzae in the Respiratory Tract of Adults With Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Murphy, Timothy F; Kirkham, Charmaine; Jones, Megan M; Sethi, Sanjay; Kong, Yong; Pettigrew, Melinda M

    2015-12-01

    Immunoglobulin (Ig)A proteases of Haemophilus influenzae are highly specific endopeptidases that cleave the hinge region of human IgA1 and also mediate invasion and trafficking in human respiratory epithelial cells, facilitating persistence of H. influenzae. Little is known about the expression of IgA proteases in clinical settings of H. influenzae infection. We identified and characterized IgA protease genes in H. influenzae and studied their expression and proteolytic specificity, in vitro and in vivo in 169 independent strains of H. influenzae collected longitudinally over 10 years from adults with chronic obstructive pulmonary disease. The H. influenzae pangenome has 2 alleles of IgA protease genes; all strains have igaA, and 40% of strains have igaB. Each allele has 2 variants with differing proteolytic specificities for human IgA1. A total of 88% of 169 strains express IgA protease activity. Expression of the 4 forms of IgA protease varies among strains. Based on the presence of IgA1 fragments in sputum samples, each of the different forms of IgA protease is selectively expressed in the human airways during infection. Four variants of IgA proteases are variably expressed by H. influenzae during infection of the human airways. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. 76 FR 66032 - Availability of an Environmental Assessment for Field Testing Avian Influenza-Marek's Disease...

    Science.gov (United States)

    2011-10-25

    ... Assessment for Field Testing Avian Influenza-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's... unlicensed Avian Influenza-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector. The... product: Requester: Biomune Company. Product: Avian Influenza-Marek's Disease Vaccine, H5 Subtype...

  8. Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein

    Directory of Open Access Journals (Sweden)

    Gwerder Myriam

    2009-12-01

    Full Text Available Abstract Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection.

  9. FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human-Animal Interface.

    Science.gov (United States)

    Anderson, Tara; Capua, Ilaria; Dauphin, Gwenaëlle; Donis, Ruben; Fouchier, Ron; Mumford, Elizabeth; Peiris, Malik; Swayne, David; Thiermann, Alex

    2010-05-01

    For the past 10 years, animal health experts and human health experts have been gaining experience in the technical aspects of avian influenza in mostly separate fora. More recently, in 2006, in a meeting of the small WHO Working Group on Influenza Research at the Human Animal Interface (Meeting report available from: http://www.who.int/csr/resources/publications/influenza/WHO_CDS_EPR_GIP_2006_3/en/index.html) in Geneva allowed influenza experts from the animal and public health sectors to discuss together the most recent avian influenza research. Ad hoc bilateral discussions on specific technical issues as well as formal meetings such as the Technical Meeting on HPAI and Human H5N1 Infection (Rome, June, 2007; information available from: http://www.fao.org/avianflu/en/conferences/june2007/index.html) have increasingly brought the sectors together and broadened the understanding of the topics of concern to each sector. The sectors have also recently come together at the broad global level, and have developed a joint strategy document for working together on zoonotic diseases (Joint strategy available from: ftp://ftp.fao.org/docrep/fao/011/ajl37e/ajl37e00.pdf). The 2008 FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human Animal Interface described here was the first opportunity for a large group of influenza experts from the animal and public health sectors to gather and discuss purely technical topics of joint interest that exist at the human-animal interface. During the consultation, three influenza-specific sessions aimed to (1) identify virological characteristics of avian influenza viruses (AIVs) important for zoonotic and pandemic disease, (2) evaluate the factors affecting evolution and emergence of a pandemic influenza strain and identify existing monitoring systems, and (3) identify modes of transmission and exposure sources for human zoonotic influenza infection (including discussion of specific exposure risks by affected countries). A

  10. Avian influenza: the political economy of disease control in Cambodia.

    Science.gov (United States)

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations.

  11. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    Science.gov (United States)

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus.

  12. The Association of Meningococcal Disease with Influenza in the United States, 1989–2009

    OpenAIRE

    2014-01-01

    Importance and Objective Prior influenza infection is a risk factor for invasive meningococcal disease. Quantifying the fraction of meningococcal disease attributable to influenza could improve understanding of viral-bacterial interaction and indicate additional health benefits to influenza immunization. Design, Setting and Participants A time series analysis of the association of influenza and meningococcal disease using hospitalizations in 9 states from 1989–2009 included in the State Inpat...

  13. Post-pandemic seroprevalence of human influenza viruses in domestic cats.

    Science.gov (United States)

    Ibrahim, Mahmoud; Ali, Ahmed; Daniels, Joshua B; Lee, Chang-Won

    2016-12-30

    The continuous exposure of cats to diverse influenza viruses raises the concern of a potential role of cats in the epidemiology of these viruses. Our previous seroprevalence study of domestic cat sera collected during the 2009 H1N1 pandemic wave (September 2009-September 2010) revealed a high prevalence of pandemic H1N1, as well as seasonal H1N1 and H3N2 human flu virus infection (22.5%, 33.0%, and 43.5%, respectively). In this study, we extended the serosurvey of influenza viruses in cat sera collected post-pandemic (June 2011-August 2012). A total of 432 cat sera were tested using the hemagglutination inhibition assay. The results showed an increase in pandemic H1N1 prevalence (33.6%) and a significant reduction in both seasonal H1N1 and H3N2 prevalence (10.9% and 17.6%, respectively) compared to our previous survey conducted during the pandemic wave. The pandemic H1N1 prevalence in cats showed an irregular seasonality pattern in the post-pandemic phase. Pandemic H1N1 reactivity was more frequent among female cats than male cats. In contrast to our earlier finding, no significant association between clinical respiratory disease and influenza virus infection was observed. Our study highlights a high susceptibility among cats to human influenza virus infection that is correlated with influenza prevalence in the human population.

  14. Haemophilus haemolyticus: A Human Respiratory Tract Commensal to Be Distinguished from Haemophilus influenzae

    DEFF Research Database (Denmark)

    Murphy, T.F.; Brauer, A.L.; Sethi, S.

    2007-01-01

    Background. Haemophilus influenzae is a common pathogen in adults with chronic obstructive pulmonary disease (COPD). In a prospective study, selected isolates of apparent H. influenzae had an altered phenotype. We tested the hypothesis that these variant strains were genetically different from ty...... distinguish H. haemolyticus from H. influenzae. H. haemolyticus is a respiratory tract commensal. The recognition that some strains of apparent H. influenzae are H. haemolyticus substantially strengthens the association of true H. influenzae with clinical infection....

  15. Structural and Functional Bases for Broad-Spectrum Neutralization of Avian and Human Influenza A Viruses

    OpenAIRE

    Sui, Jianhua; Hwang, William C; Perez, Sandra; Wei, Ge; Aird, Daniel; Chen, Li-Mei; Santelli, Eugenio; Stec, Boguslaw; Cadwell, Greg; Ali, Maryam; Wan, Hongquan; Murakami, Akikazu; Yammanuru, Anuradha; Han, Thomas; Cox, Nancy J

    2009-01-01

    Influenza virus remains a constant public health threat, owing to its ability to evade immune surveillance through rapid genetic drift and reassortment. Monoclonal antibody (mAb)-based immunotherapy is a promising strategy for disease control. Here we use a human Ab phage display library and H5 hemagglutinin (HA) ectodomain to select ten neutralizing mAbs (nAbs) with a remarkably broad range among Group 1 influenza viruses, including the H5N1 “bird flu” and the H1N1 “Spanish flu” strains. Not...

  16. Influenza-associated disease burden in Kenya: a systematic review of literature.

    NARCIS (Netherlands)

    Emukule, G.O.; Paget, J.; Velden, K. van der; Mott, J.A.

    2015-01-01

    Background: In Kenya data on the burden of influenza disease are needed to inform influenza control policies. Methods: We conducted a systematic review of published data describing the influenza disease burden in Kenya using surveillance data collected until December 2013. We included studies with

  17. Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses.

    Science.gov (United States)

    Hause, Ben M; Ducatez, Mariette; Collin, Emily A; Ran, Zhiguang; Liu, Runxia; Sheng, Zizhang; Armien, Anibal; Kaplan, Bryan; Chakravarty, Suvobrata; Hoppe, Adam D; Webby, Richard J; Simonson, Randy R; Li, Feng

    2013-02-01

    Of the Orthomyxoviridae family of viruses, only influenza A viruses are thought to exist as multiple subtypes and has non-human maintenance hosts. In April 2011, nasal swabs were collected for virus isolation from pigs exhibiting influenza-like illness. Subsequent electron microscopic, biochemical, and genetic studies identified an orthomyxovirus with seven RNA segments exhibiting approximately 50% overall amino acid identity to human influenza C virus. Based on its genetic organizational similarities to influenza C viruses this virus has been provisionally designated C/Oklahoma/1334/2011 (C/OK). Phylogenetic analysis of the predicted viral proteins found that the divergence between C/OK and human influenza C viruses was similar to that observed between influenza A and B viruses. No cross reactivity was observed between C/OK and human influenza C viruses using hemagglutination inhibition (HI) assays. Additionally, screening of pig and human serum samples found that 9.5% and 1.3%, respectively, of individuals had measurable HI antibody titers to C/OK virus. C/OK virus was able to infect both ferrets and pigs and transmit to naive animals by direct contact. Cell culture studies showed that C/OK virus displayed a broader cellular tropism than a human influenza C virus. The observed difference in cellular tropism was further supported by structural analysis showing that hemagglutinin esterase (HE) proteins between two viruses have conserved enzymatic but divergent receptor-binding sites. These results suggest that C/OK virus represents a new subtype of influenza C viruses that currently circulates in pigs that has not been recognized previously. The presence of multiple subtypes of co-circulating influenza C viruses raises the possibility of reassortment and antigenic shift as mechanisms of influenza C virus evolution.

  18. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia.

    Science.gov (United States)

    Mangiri, Amalya; Iuliano, A Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y; Lafond, Kathryn E; Storms, Aaron D; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M; Storey, J Douglas; Uyeki, Timothy M

    2017-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 virus infections. Overall, a very low percentage of physician participants reported ever diagnosing hospitalized patients with seasonal, pandemic, or HPAI H5N1 influenza. Use of influenza testing was low in outpatients and hospitalized patients, and use of antiviral treatment was very low for clinically diagnosed influenza patients. Further research is needed to explore health system barriers for influenza diagnostic testing and availability of antivirals for treatment of influenza in Indonesia. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  19. Prediction of exacerbation chronic bronchopulmonary diseases in children with influenza

    Directory of Open Access Journals (Sweden)

    O. I. Afanaseva

    2015-01-01

    Full Text Available The objective: To develop a method for predicting exacerbation of chronic illness in children with asthma and cystic fibrosis, patients with influenza, based on the study of the dynamics of cytokines. Materials and methods: Were examined 52 patients with bronchial asthma and 45 children with cystic fibrosis at the age from 1 year to 12 years, located in infectious pulmonary Department at the planned treatment of underlying pathology, in which influenza was in-hospital infection. Control group observations included 40 patients with the flu, without concomitant pulmonary disease. The etiology of viral infection was established by detection of viral RNA in nasopharyngeal swabs by PCR. Among the influenza viruses were identified influenza АH1N1, АH3N2, influenza B, and in 2009–2010 the predominant antigen was the pandemic influenza virus АH1N1pdm09. Determination of the concentration of serum interleukins IL-1β, IL-4, IL-8, IL-10, ТNF-α, IFN-γ was performed in the 1st and 3rd day of hospitalization cytokines by the solid-phase immune-enzyme assay. Analysis of the results performed using statistical package SPSS 17.0 EN for Windows. Results: The flu caused the aggravation associated bronchopulmonary pathology in 2/3 of children, as MV patients, and patients with BA (65,4%-66,7%, respectively. With an increase of the ratio of IL-4 / IFN-γ and IL-10/IFN-γ, at least 5-6 times, influenza can be considered a trigger of exacerbation of chronic bronchopulmonary pathologies that require amplification of the therapy of bronchial asthma and of сystic fibrosis. The growth of prognostic coefficients in 2-3 times allows using for treatment of influenza in these patients only antiviral agents. Conclusion: The study has shown a method for predicting exacerbation of bronchial asthma and cystic fibrosis in children at an early stage of influenza by calculating the ratio of IL-4/IFN-γ and IL-10/IFN-γ in children aged from 1 year to 12 years. 

  20. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome.

    NARCIS (Netherlands)

    R.A.M. Fouchier (Ron); P.M. Schneeberger (Peter); F.W. Rozendaal (Frans); J.M. Broekman (Jan); S.A. Kemink (Stiena); V.J. Munster (Vincent); G.F. Rimmelzwaan (Guus); M. Schutten (Martin); G.J.J. van Doornum (Gerard); G. Koch (Guus); A. Bosman (Arnold); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2004-01-01

    textabstractHighly pathogenic avian influenza A viruses of subtypes H5 and H7 are the causative agents of fowl plague in poultry. Influenza A viruses of subtype H5N1 also caused severe respiratory disease in humans in Hong Kong in 1997 and 2003, including at least seven fatal cases, posing a serious

  1. Infection of children with avian-human reassortant influenza virus from pigs in Europe

    NARCIS (Netherlands)

    E.C.J. Claas (Eric); Y. Kawaoka (Yoshihiro); J.C. de Jong (Jan); N. Masurel (Nic); R.G. Webster (Robert)

    1994-01-01

    textabstractPigs have been proposed to act as the intermediate hosts in the generation of pandemic human influenza strains by reassortment of genes from avian and human influenza virus strains. The circulation of avian-like H1N1 influenza viruses in European pigs since 1979 and the detection of huma

  2. [Case report of the first world death due to a new strain of human influenza A H1N1 virus and behavior of human influenzae in pregnant women].

    Science.gov (United States)

    Noguera Sánchez, Marcelo Fidias; Karchmer Krivitzky, Samuel; EsliRabadán, Martínez Cesar; Antonio Sánchez, Pedro

    2013-01-01

    Influenza A H1N1 is an acute respiratory illness caused by a new strain of H1N1. Human influenza is a subtype of influenza Avirus, from the family of Orthomyxoviridae. This strain is the cause of new influenza pandemic declared by the World Health Organization in June, 2009. This paper reports the first case occurred in Mexico: a 39-year-old woman with a history of diabetes mellitus type 2 and obesity grade II, which suffered atypical and aggressive pneumonia positive to coronavirus. Patient died 98 hours after her admission to the hospital unit. Due to the clinical presentation of the case, the doctors sent samples to the Instituto Nacional de Diagnóstico y Referencia Epidemiológica that sent an aliquot of the National Center for Immunization and Respiratory Diseases of theAgency of Public Health in Canada, that reported positivity to influenza virus, and catalogued it as a new global strain called influenza A virus H1N1. The notice of 229E/NL63 coronavirus and its relationship to the recent outbreaks of avian influenza in humans and the clinical presentation of the case were the epidemiological circumstances that prevented the nation epidemiology system to establish global containment strategies to prevent the spread of this emerging infection. The consequence was the declaration of WHO pandemic alert level 6. Its behavior in pregnancy, reported by Assistant General Direction of Epidemiology in Mexico, has placed this infection as a risk factor for women.

  3. Global migration dynamics underlie evolution and persistence of human influenza A (H3N2).

    Science.gov (United States)

    Bedford, Trevor; Cobey, Sarah; Beerli, Peter; Pascual, Mercedes

    2010-05-27

    The global migration patterns of influenza viruses have profound implications for the evolutionary and epidemiological dynamics of the disease. We developed a novel approach to reconstruct the genetic history of human influenza A (H3N2) collected worldwide over 1998 to 2009 and used it to infer the global network of influenza transmission. Consistent with previous models, we find that China and Southeast Asia lie at the center of this global network. However, we also find that strains of influenza circulate outside of Asia for multiple seasons, persisting through dynamic migration between northern and southern regions. The USA acts as the primary hub of temperate transmission and, together with China and Southeast Asia, forms the trunk of influenza's evolutionary tree. These findings suggest that antiviral use outside of China and Southeast Asia may lead to the evolution of long-term local and potentially global antiviral resistance. Our results might also aid the design of surveillance efforts and of vaccines better tailored to different geographic regions.

  4. Genetic evolution of recently emerged novel human-like swine H3 influenza A viruses (IAV) in United States swine

    Science.gov (United States)

    Introduction Influenza A virus (IAV) is a major cause of respiratory disease in swine. IAV transmission from humans to swine is a major contributor to swine IAV diversity. In 2012, a novel H3N2 with an HA (hu-H3) and NA derived from human seasonal H3N2 was detected in United States (US) swine. The h...

  5. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009.

    Science.gov (United States)

    Shinde, Vivek; Bridges, Carolyn B; Uyeki, Timothy M; Shu, Bo; Balish, Amanda; Xu, Xiyan; Lindstrom, Stephen; Gubareva, Larisa V; Deyde, Varough; Garten, Rebecca J; Harris, Meghan; Gerber, Susan; Vagasky, Susan; Smith, Forrest; Pascoe, Neal; Martin, Karen; Dufficy, Deborah; Ritger, Kathy; Conover, Craig; Quinlisk, Patricia; Klimov, Alexander; Bresee, Joseph S; Finelli, Lyn

    2009-06-18

    Triple-reassortant swine influenza A (H1) viruses--containing genes from avian, human, and swine influenza viruses--emerged and became enzootic among pig herds in North America during the late 1990s. We report the clinical features of the first 11 sporadic cases of infection of humans with triple-reassortant swine influenza A (H1) viruses reported to the Centers for Disease Control and Prevention, occurring from December 2005 through February 2009, until just before the current epidemic of swine-origin influenza A (H1N1) among humans. These data were obtained from routine national influenza surveillance reports and from joint case investigations by public and animal health agencies. The median age of the 11 patients was 10 years (range, 16 months to 48 years), and 4 had underlying health conditions. Nine of the patients had had exposure to pigs, five through direct contact and four through visits to a location where pigs were present but without contact. In another patient, human-to-human transmission was suspected. The range of the incubation period, from the last known exposure to the onset of symptoms, was 3 to 9 days. Among the 10 patients with known clinical symptoms, symptoms included fever (in 90%), cough (in 100%), headache (in 60%), and diarrhea (in 30%). Complete blood counts were available for four patients, revealing leukopenia in two, lymphopenia in one, and thrombocytopenia in another. Four patients were hospitalized, two of whom underwent invasive mechanical ventilation. Four patients received oseltamivir, and all 11 recovered from their illness. From December 2005 until just before the current human epidemic of swine-origin influenza viruses, there was sporadic infection with triple-reassortant swine influenza A (H1) viruses in persons with exposure to pigs in the United States. Although all the patients recovered, severe illness of the lower respiratory tract and unusual influenza signs such as diarrhea were observed in some patients, including

  6. Swine Influenza Viruses: a North American Perspective

    Science.gov (United States)

    Influenza is a zoonotic viral disease that represents a health and economic threat to both humans and animals worldwide. Swine influenza was first recognized clinically in pigs in the Midwestern U.S. in 1918, coinciding with the human influenza pandemic known as the Spanish flu. Since that time swin...

  7. Human Monoclonal Antibodies Broadly Neutralizing against Influenza B Virus

    Science.gov (United States)

    Yasugi, Mayo; Kubota-Koketsu, Ritsuko; Yamashita, Akifumi; Kawashita, Norihito; Du, Anariwa; Sasaki, Tadahiro; Nishimura, Mitsuhiro; Misaki, Ryo; Kuhara, Motoki; Boonsathorn, Naphatsawan; Fujiyama, Kazuhito; Okuno, Yoshinobu; Nakaya, Takaaki; Ikuta, Kazuyoshi

    2013-01-01

    Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus. PMID:23408886

  8. An ELISA for detection of antibodies against influenza A nucleoprotein in humans and various animal species.

    NARCIS (Netherlands)

    G.F. de Boer; W. Back; A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractA double antibody sandwich blocking ELISA, using a monoclonal antibody (MAb) against influenza A nucleoprotein (NP) was developed to detect antibodies against influenza. Collections of serum samples were obtained from human and various animal species. All influenza A subtypes induced ant

  9. Susceptibility of human and avian influenza viruses to human and chicken saliva.

    Science.gov (United States)

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Auewarakul, Prasert; Wiriyarat, Witthawat

    2014-05-01

    Oral cavity can be an entry site of influenza virus and saliva is known to contain innate soluble anti-influenza factors. Influenza strains were shown to vary in their susceptibility to those antiviral factors. Whether the susceptibility to the saliva antiviral factors plays any role in the host species specificity of influenza viruses is not known. In this study, the antiviral activity of human and chicken saliva against human and the H5N1 avian influenza viruses were investigated by hemagglutination inhibition (HI) and neutralization (NT) assays. In comparison to human influenza viruses, H5N1 isolates showed reduced susceptibility to human saliva as measured by HI and NT assays. Interestingly, an H5N1 isolate that bind to both α2,3- and α2,6-linked sialic acid showed much higher HI titers with human saliva, suggesting that the susceptibility profile was linked to the receptor-binding preference and the presence of α2,6-linked sialic in human saliva. On the other hand, the H5N1 isolates showed increased HI titers but reduced NT titers to chicken saliva as compared to human influenza isolates. The human salivary antiviral components were characterized by testing the sensitivity to heat, receptor destroying enzyme (RDE), CaCl₂/EDTA dependence, and inhibition by mannan, and shown to be α- and γ-inhibitors. These data suggest that the H5N1 HPAI influenza virus had distinctive susceptibility patterns to human and chicken saliva, which may play some roles in its infectivity and transmissibility in these hosts.

  10. Adult human metapneumonovirus (hMPV) pneumonia mimicking Legionnaire's disease.

    Science.gov (United States)

    Cunha, Burke A; Irshad, Nadia; Connolly, James J

    2016-01-01

    In adults hospitalized with viral pneumonias the main differential diagnostic consideration is influenza pneumonia. The respiratory viruses causing viral influenza like illnesses (ILIs), e.g., RSV may closely resemble influenza. Rarely, extrapulmonary findings of some ILIs may resemble Legionnaire's disease (LD), e.g., adenovirus, human parainfluenza virus (HPIV-3). We present a most unusual case of human metapneumonovirus pneumonia (hMPV) with some characteristic extrapulmonary findings characteristic of LD, e.g., relative bradycardia, as well as mildly elevated serum transaminases and hyphosphatemia. We believe this is the first reported case of hMPV pneumonia in a hospitalized adult that had some features of LD.

  11. A human multi-epitope recombinant vaccinia virus as a universal T cell vaccine candidate against influenza virus.

    Directory of Open Access Journals (Sweden)

    Alan G Goodman

    Full Text Available There is a need to develop a universal vaccine against influenza virus infection to avoid developing new formulations of a seasonal vaccine each year. Many of the vaccine strategies for a universal vaccine target strain-conserved influenza virus proteins, such as the matrix, polymerase, and nucleoproteins, rather than the surface hemagglutinin and neuraminidase proteins. In addition, non-disease-causing viral vectors are a popular choice as a delivery system for the influenza virus antigens. As a proof-of-concept, we have designed a novel influenza virus immunogen based on the NP backbone containing human T cell epitopes for M1, NS1, NP, PB1 and PA proteins (referred as NPmix as well as a construct containing the conserved regions of influenza virus neuraminidase (N-terminal and hemagglutinin (C-terminal (referred as NA-HA. DNA vectors and vaccinia virus recombinants expressing NPmix (WR-NP or both NPmix plus NA-HA (WR-flu in the cytosol were tested in a heterologous DNA-prime/vaccinia virus-boost vaccine regimen in mice. We observed an increase in the number of influenza virus-specific IFNγ-secreting splenocytes, composed of populations marked by CD4(+ and CD8(+ T cells producing IFNγ or TNFα. Upon challenge with influenza virus, the vaccinated mice exhibited decreased viral load in the lungs and a delay in mortality. These findings suggest that DNA prime/poxvirus boost with human multi-epitope recombinant influenza virus proteins is a valid approach for a general T-cell vaccine to protect against influenza virus infection.

  12. H9N2 avian influenza virus antibody titers in human population in fars province, Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-09-01

    Full Text Available Among the avian influenza A virus subtypes, H5N1 and H9N2 viruses have the potential to cause an influenza pandemic because they are widely prevalent in avian species in Asia and have demonstrated the ability to infect humans. This study was carried out to determined the seroprevalence of H9N2 avian influenza virus in different human populations in Fars province, which is situated in the south of Iran. Antibodies against H9N2 avian influenza virus were measured using hemagglutination-inhibition (HI test in sera from 300 individuals in five different population in Fars province, including poultry-farm workers, slaughter-house workers, veterinarians, patients with clinical signs of respiratory disease, and clinically normal individuals, who were not or rarely in contact with poultry. Mean antibody titers of 7.3, 6.8, 6.1, 4.5, and 2.9 and seroprevalences of 87%, 76.2%, 72.5%, 35.6%, and 23% were determined in those groups, respectively. Higher prevalences were detected in poultry-farm workers, slaughter-house workers, and veterinarians, possibly due to their close and frequent contact with poultry.

  13. Circulation of reassortant influenza A(H7N9) viruses in poultry and humans, Guangdong Province, China, 2013.

    Science.gov (United States)

    Ke, Changwen; Lu, Jing; Wu, Jie; Guan, Dawei; Zou, Lirong; Song, Tie; Yi, Lina; Zeng, Xianqiao; Liang, Lijun; Ni, Hanzhong; Kang, Min; Zhang, Xin; Zhong, Haojie; He, Jianfeng; Lin, Jinyan; Smith, Derek; Burke, David; Fouchier, Ron A M; Koopmans, Marion; Zhang, Yonghui

    2014-12-01

    Influenza A(H7N9) virus emerged in eastern China in February 2013 and continues to circulate in this region, but its ecology is poorly understood. In April 2013, the Guangdong Provincial Center for Disease Control and Prevention (CDC) implemented environmental and human syndromic surveillance for the virus. Environmental samples from poultry markets in 21 city CDCs (n=8,942) and respiratory samples from persons with influenza-like illness or pneumonia (n=32,342) were tested; viruses isolated from 6 environmental samples and 16 patients were sequenced. Sequence analysis showed co-circulation of 4 influenza A(H7N9) virus strains that evolved by reassortment with avian influenza A(H9N2) viruses circulating in this region. In addition, an increase in human cases starting in late 2013 coincided with an increase in influenza A H7 virus isolates detected by environmental surveillance. Co-circulation of multiple avian influenza viruses that can infect humans highlights the need for increased surveillance of poultry and potential environmental sources.

  14. Reverse Genetics Approaches for the Development of Influenza Vaccines

    OpenAIRE

    Aitor Nogales; Luis Martínez-Sobrido

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influ...

  15. Occurrence of invasive pneumococcal disease and number of excess cases due to influenza

    Directory of Open Access Journals (Sweden)

    Penttinen Pasi

    2006-03-01

    Full Text Available Abstract Background Influenza is characterized by seasonal outbreaks, often with a high rate of morbidity and mortality. It is also known to be a cause of significant amount secondary bacterial infections. Streptococcus pneumoniae is the main pathogen causing secondary bacterial pneumonia after influenza and subsequently, influenza could participate in acquiring Invasive Pneumococcal Disease (IPD. Methods In this study, we aim to investigate the relation between influenza and IPD by estimating the yearly excess of IPD cases due to influenza. For this purpose, we use influenza periods as an indicator for influenza activity as a risk factor in subsequent analysis. The statistical modeling has been made in two modes. First, we constructed two negative binomial regression models. For each model, we estimated the contribution of influenza in the models, and calculated number of excess number of IPD cases. Also, for each model, we investigated several lag time periods between influenza and IPD. Secondly, we constructed an "influenza free" baseline, and calculated differences in IPD data (observed cases and baseline (expected cases, in order to estimate a yearly additional number of IPD cases due to influenza. Both modes were calculated using zero to four weeks lag time. Results The analysis shows a yearly increase of 72–118 IPD cases due to influenza, which corresponds to 6–10% per year or 12–20% per influenza season. Also, a lag time of one to three weeks appears to be of significant importance in the relation between IPD and influenza. Conclusion This epidemiological study confirms the association between influenza and IPD. Furthermore, negative binomial regression models can be used to calculate number of excess cases of IPD, related to influenza.

  16. Increase human metapneumovirus mediated morbidity following pandemic influenza infection.

    Directory of Open Access Journals (Sweden)

    Liora Regev

    Full Text Available Human metapneumovirus (hMPV is a recently discovered respiratory pathogen, infecting mainly young children. The infected patients suffer from influenza like symptoms (ILS. In Israel the virus is mainly circulating in February to March. Here we report on an increased rate of hMPV infection in the winter season of 2009-10. The 2009-10 infection had several unique characteristics when compared to previous seasons; it started around January and a large number of infants were infected by the virus. Genetic analysis based on the viral L and F genes of hMPV showed that only subtypes A2 and B2 circulated in Israel. Additionally, we have identified a novel variant of hMPV within subgroup A2b, which subdivide it into A2b1 and A2b2. Finally, we showed that the hMPV infection was detected in the country soon after the infection with the pandemic influenza virus had declined, that infection with the pandemic influenza virus was dominant and that it interfered with the infection of other respiratory viruses. Thus, we suggest that the unusual increase in hMPV infection observed in 2009-10 was due to the appearance of the pandemic influenza virus in the winter season prior to 2009-10.

  17. Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region.

    Science.gov (United States)

    Chen, Yongxue; Wen, Yongxian

    2015-02-21

    In 2013 in China a new type of avian influenza virus, H7N9, began to infect humans and had aroused severe fatality in the infected humans. We know that the spread is from poultry to humans, and the H7N9 avian influenza is low pathogenic in the poultry world but highly pathogenic in the human world, but the transmission mechanism is unclear. Since it has no signs of human-to-human transmission and outbreaks are isolated in some cities in China, in order to investigate the transmission mechanism of human infection with H7N9 avian influenza, an eco-epidemiological model in an outbreak region is proposed and analyzed dynamically. Researches and reports show that gene mutation makes the new virus be capable of infecting humans, therefore the mutation factor is taken into account in the model. The global dynamic analysis is conducted, different thresholds are identified, persistence and global qualitative behaviors are obtained. The impact of H7N9 avian influenza on the people population is concerned. Finally, the numerical simulations are carried out to support the theoretical analysis and to investigate the disease control measures. It seems that we may take people׳s hygiene and prevention awareness factor as a significant policy to achieve the aim of both the disease control and the economic returns.

  18. Influenza virus infection in seal (Phocidae) : seroepidemiological survey of influenza virus in Caspian seals(Phoca caspica)

    OpenAIRE

    OHISHI, Kazue; NINOMIYA, Ai; Kida, Hiroshi; Maruyama, Tadashi; Arai, Takaomi; Miyazaki, Nobuyuki

    2003-01-01

    In the last a few decades, several viral diseases in marine mammals such as seals and cetaceans were characterized. Influenza virus causes a worldwide zoonosis, influenza, and was shown to be involved in mass mortality in seals. Several influenza virus strains have been isolated from the sick seals. Because interspecies transmission of influenza virus plays a crucial role in the introduction of pandemic influenza disease in humans, it is important to monitor the virus distribution in wild ani...

  19. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  20. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  1. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  2. [Differences in influenza epidemics in Osaka City--epidemiological surveillance of infectious disease].

    Science.gov (United States)

    Murakami, T; Haruki, K; Seto, Y; Kimura, T; Shibe, K; Minoshiro, S

    1994-05-01

    Influenza viruses in outpatients with influenza symptoms in Osaka City were analyzed in an epidemiological surveillance of infectious disease between 1989 and 1993. During influenza epidemics a mixed prevalence of several types of influenza viruses existed. Three types of influenza viruses, AH1, AH3 and B, were isolated during the 1990/1991 season. Remarkably the three types of viruses were discovered in samplings collected on the same day and within a narrow area inside a radius of 800-1,000m from the surveyed hospitals. Different types of viruses were detected between brothers and among school children from same housing complexes. Influenza AH3 viruses detected in 1992/1993 season differed in antigenicity from those detected in the 1990/1991 and 1991/1992 seasons. Therefore it appears that mutation of the AH3 virus contributed to the large-scale influenza epidemic which occurred in the 1992/1993 season.

  3. Prevalence of Haemophilus influenzae carriers in the Catalan preschool population. Working Group on Invasive Disease Caused by Haemophilus influenzae.

    Science.gov (United States)

    Fontanals, D; Bou, R; Pons, I; Sanfeliu, I; Domínguez, A; Pineda, V; Renau, J; Muñoz, C; Latorre, C; Sanchez, F

    2000-04-01

    This study was designed to determine the prevalence of healthy Haemophilus influenzae carriers in a random sample of the preschool population in Catalonia. Oropharyngeal swabs were collected and cultured on chocolate agar supplemented with 260 microg/ml of bacitracin. Four hundred two of the 734 (54.8%) children studied were detected as Haemophilus influenzae carriers: 7 (0.9%) carried serotype b, 14 (1.9%) serotype e, 6 (0.8%) serotype f, and 375 (51%) carried nontypable strains. The results show that, although the prevalence of Haemophilus influenzae carriers is similar to figures reported from other countries, the prevalence of Haemophillus influenzae serotype b carriers is lower and corresponds with the low incidence of invasive disease observed in the Catalan community.

  4. Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru.

    Science.gov (United States)

    Razuri, Hugo; Malecki, Monika; Tinoco, Yeny; Ortiz, Ernesto; Guezala, M Claudia; Romero, Candice; Estela, Abel; Breña, Patricia; Morales, Maria-Luisa; Reaves, Erik J; Gomez, Jorge; Uyeki, Timothy M; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Bausch, Daniel G; Schildgen, Verena; Schildgen, Oliver; Montgomery, Joel M

    2015-11-01

    We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall-winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru.

  5. Fc functional antibodies in humans with severe H7N9 and seasonal influenza

    Science.gov (United States)

    Vanderven, Hillary A.; Liu, Lu; Ana-Sosa-Batiz, Fernanda; Nguyen, Thi H.O.; Wan, Yanmin; Hogarth, P. Mark; Tilmanis, Danielle; Parsons, Matthew S.; Hurt, Aeron C.; Davenport, Miles P.; Kotsimbos, Tom; Cheng, Allen C.; Kedzierska, Katherine; Zhang, Xiaoyan; Xu, Jianqing; Kent, Stephen J.

    2017-01-01

    BACKGROUND. Both seasonal and novel avian influenza viruses can result in severe infections requiring hospitalization. Anti-influenza antibodies (Abs) with Fc-mediated effector functions, such as Ab-dependent cellular cytotoxicity (ADCC), are of growing interest in control of influenza but have not previously been studied during severe human infections. As such, the objective of this study was to examine Fc-mediated Ab functions in humans hospitalized with influenza infection. METHODS. Serum Ab response was studied in subjects hospitalized with either pandemic H7N9 avian influenza virus in China (n = 18) or circulating seasonal influenza viruses in Melbourne, Australia (n = 16). Recombinant soluble Fc receptor dimer ELISAs, natural killer (NK) cell activation assays, and Ab-dependent killing assays with influenza-infected target cells were used to assess the Fc functionality of anti-influenza hemagglutinin (HA) Abs during severe human influenza infection. RESULTS. We found that the peak generation of Fc functional HA Abs preceded that of neutralizing Abs for both severe H7N9 and seasonal influenza infections. Subjects who succumbed to complications of H7N9 infection demonstrated reduced HA-specific Fc receptor–binding Abs (in magnitude and breadth) immediately prior to death compared with those who survived. Subjects who recovered from H7N9 and severe seasonal influenza infections demonstrated increased Fc receptor–binding Abs not only against the homologous infecting strain but against HAs from different influenza A subtypes. CONCLUSION. Collectively, survivors of severe influenza infection rapidly generate a functional Ab response capable of mediating ADCC against divergent influenza viruses. Broadly binding HA Abs with Fc-mediated functions may be a useful component of protective immunity to severe influenza infection. FUNDING. The National Health and Medical Research Council ([NHMRC] grants 1023294, 1041832, and 1071916), the Australian Department of Health

  6. Epidemiology of Haemophilus influenzae type b invasive disease in Wales.

    Science.gov (United States)

    Howard, A J; Dunkin, K T; Musser, J M; Palmer, S R

    1991-01-01

    OBJECTIVE--To investigate the epidemiology of invasive disease due to Haemophilus influenzae type b, the clones responsible, and the antibiotic resistance of the isolates. DESIGN--Prospective population based analysis of clinical and epidemiological data collected for Gwynedd during 1980-90 and in the whole of Wales during 1988-90. SETTING--19 hospitals in Wales; all medical microbiology laboratories in Wales participated. PATIENTS--82 patients with confirmed invasive infections caused by H influenzae type b in Gwynedd during 1980-90 and 207 in Wales during 1988-90. MAIN OUTCOME MEASURES--Clinical and epidemiological measures; analysis of the clonal types of the isolates based on the electrophoretic mobilities of 17 metabolic enzymes; and antibiotic resistance. RESULTS--The annual incidence of H influenzae type b infections in Gwynedd was 3.2 cases/100,000 and in Wales was 2.5 cases/100,000. Most cases occurred in children aged under 5 years, the highest annual incidence being in those aged under 1 (84.6/100,000 and 56.9/100,000 in Wales). The cumulative risk of acquiring H influenzae type b disease by the fifth birthday was one in 456 in Gwynedd and one in 578 in Wales. Fifteen per cent of cases in Gwynedd and 7% of those in Wales occurred in adults. Predominant clinical conditions were meningitis in children and pneumonia in adults. In Gwynedd 2/70 (3%) children and 5/12 (42%) adults died. Long term neurological sequelae occurred in 8% (4/48) of children who survived haemophilus meningitis. Children presenting with infection were usually the youngest members of their family. No secondary household cases were identified. 100 of 128 (78%) strains were of a single clone, electrophoretic type 12.5, and 4/207 (1.9%) isolates from Wales were resistant to both ampicillin and chloramphenicol. CONCLUSIONS--The annual rate of infection in children aged under 5 in four Welsh counties was 12-44% higher than that previously published for the United Kingdom. The study

  7. Using Zebrafish Models of Human Influenza A Virus Infections to Screen Antiviral Drugs and Characterize Host Immune Cell Responses.

    Science.gov (United States)

    Sullivan, Con; Jurcyzszak, Denise; Goody, Michelle F; Gabor, Kristin A; Longfellow, Jacob R; Millard, Paul J; Kim, Carol H

    2017-01-20

    Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination. In individuals who have contracted influenza, antiviral drugs can mitigate symptoms. There is a clear and unmet need to develop alternative strategies to combat influenza. Several animal models have been created to model host-influenza interactions. Here, protocols for generating zebrafish models for systemic and localized human influenza A virus (IAV) infection are described. Using a systemic IAV infection model, small molecules with potential antiviral activity can be screened. As a proof-of-principle, a protocol that demonstrates the efficacy of the antiviral drug Zanamivir in IAV-infected zebrafish is described. It shows how disease phenotypes can be quantified to score the relative efficacy of potential antivirals in IAV-infected zebrafish. In recent years, there has been increased appreciation for the critical role neutrophils play in the human host response to influenza infection. The zebrafish has proven to be an indispensable model for the study of neutrophil biology, with direct impacts on human medicine. A protocol to generate a localized IAV infection in the Tg(mpx:mCherry) zebrafish line to study neutrophil biology in the context of a localized viral infection is described. Neutrophil recruitment to localized infection sites provides an additional quantifiable phenotype for assessing experimental manipulations that may have therapeutic applications. Both zebrafish protocols described faithfully recapitulate aspects of human IAV infection. The zebrafish model possesses numerous inherent advantages, including high fecundity, optical clarity, amenability to drug screening, and availability of transgenic lines, including those in which immune cells such as neutrophils are labeled with fluorescent proteins. The protocols detailed here

  8. Is avian influenza virus A(H5N1) a real threat to human health?

    Science.gov (United States)

    Amendola, A; Ranghiero, A; Zanetti, A; Pariani, E

    2011-09-01

    The A(H5N1) influenza remains a disease of birds with a significant species barrier: in the presence of some tens million cases of infection in poultry--with a wide geographical spread--, only a few hundreds cases have occurred in humans. To date, human cases have been reported in 15 countries--mainly in Asia--and all were related to the onset of outbreaks in poultry. A peak of H5N1 human cases was recorded in 2006, then decreasing in subsequent years. Despite this trend, the H5N1 virus still represents a possible threat to human health, considering that more than half of human cases of H5N1 have been fatal. Moreover, despite the drop in the number of cases, the risk of a novel pandemic cannot be excluded, since H5N1 continues to circulate in poultry in countries with elevated human population density and where monitoring systems are not fully appropriate. In addition, there is a major global concern about the potential occurrence of a reassortment between the 2009 pandemic H1N1 and the highly pathogenic H5N1 influenza viruses following a co-infection in a susceptible host. Therefore, the implementation of appropriate surveillance and containment measures is crucial in order to minimize such risk. In conclusion, H5N1 avian influenza is still a rare disease in humans but its clinical severe outcome requires a careful monitoring of the virus's ability to evolve and to trigger a new pandemic.

  9. Disease: H00398 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00398 Influenza Influenza is typically a self-limiting upper respiratory disease c...aused by three types of influenza viruses: influenza A, B, and C. Influenza A and B viruses cause highly contagious disea...us is responsible for annual epidemics in humans with high mortality rates. Infectious disea

  10. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface

    OpenAIRE

    Nelson, Martha I.; Vincent, Amy L.

    2015-01-01

    The origins of the influenza A (H1N1) pandemic of 2009 in swine are unknown, highlighting gaps in our understanding of influenza A virus ecology and evolution. Here we review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest ‘r...

  11. Influenza infection in wild raccoons.

    Science.gov (United States)

    Hall, Jeffrey S; Bentler, Kevin T; Landolt, Gabrielle; Elmore, Stacey A; Minnis, Richard B; Campbell, Tyler A; Barras, Scott C; Root, J Jeffrey; Pilon, John; Pabilonia, Kristy; Driscoll, Cindy; Slate, Dennis; Sullivan, Heather; McLean, Robert G

    2008-12-01

    Raccoons (Procyon lotor) are common, widely distributed animals that frequently come into contact with wild waterfowl, agricultural operations, and humans. Serosurveys showed that raccoons are exposed to avian influenza virus. We found antibodies to a variety of influenza virus subtypes (H10N7, H4N6, H4N2, H3, and H1) with wide geographic variation in seroprevalence. Experimental infection studies showed that raccoons become infected with avian and human influenza A viruses, shed and transmit virus to virus-free animals, and seroconvert. Analyses of cellular receptors showed that raccoons have avian and human type receptors with a similar distribution as found in human respiratory tracts. The potential exists for co-infection of multiple subtypes of influenza virus with genetic reassortment and creation of novel strains of influenza virus. Experimental and field data indicate that raccoons may play an important role in influenza disease ecology and pose risks to agriculture and human health.

  12. United States of America Department of Health and Human Services support for advancing influenza vaccine manufacturing in the developing world.

    Science.gov (United States)

    Perdue, Michael L; Bright, Rick A

    2011-07-01

    Since 2005, the Government of the United States of America has provided more than US$ 50 million to advance influenza vaccine development in low-resourced countries. This programme has provided a unique opportunity for the US Government to develop a comprehensive view of, and to understand better the challenges and future needs for influenza vaccines in the developing world. The funding for this programme has been primarily through a cooperative agreement with the World Health Organization (WHO) to support directly its capacity-building grants to government-owned or -supported vaccine manufacturers in developing countries. A second cooperative agreement with the Program for Appropriate Technologies in Health (PATH) was initiated to accelerate the completion of a current Good Manufacturing Practice cGMP production facility, along with supporting facilities to obtain a reliable source of eggs, and to conduct clinical trials of influenza vaccine manufactured in Vietnam. This mechanism of utilizing cooperative agreements to support capacity-building for vaccine development in low-resourced settings has been novel and unique and has yielded fruitful returns on minimal investment. The information derived from this programme helps to clarify not only the development challenges for influenza vaccines and how the United States may assist in meeting those challenges, but also other vaccine development issues common to manufacturers in developing countries. While building the initial capacity to produce influenza vaccines can be a straightforward exercise, the sustainability of the enterprise and expansion of subsequent markets will be the key to future usefulness. There is hope for expansion of the global influenza vaccine market. Ongoing burden of disease studies are elucidating the impact of influenza infections, particularly in children, and more countries will take note and respond accordingly, since respiratory diseases are now the number one killer of children under

  13. Epidemic Status of Swine Influenza Virus in China

    OpenAIRE

    Kong, Weili; Ye, Jiahui; Guan, Shangsong; Liu, Jinhua; Pu, Juan

    2013-01-01

    As one of the most significant swine diseases, in recent years, swine influenza (SI) has had an immense impact on public health and has raised extensive public concerns in China. Swine are predisposed to both avian and human influenza virus infections, between that and/or swine influenza viruses, genetic reassortment could occur. This analysis aims at introducing the history of swine influenza virus, the serological epidemiology of swine influenza virus infection, the clinical details of swin...

  14. Influenza Forecasting in Human Populations: A Scoping Review

    Science.gov (United States)

    Chretien, Jean-Paul; George, Dylan; Shaman, Jeffrey; Chitale, Rohit A.; McKenzie, F. Ellis

    2014-01-01

    Forecasts of influenza activity in human populations could help guide key preparedness tasks. We conducted a scoping review to characterize these methodological approaches and identify research gaps. Adapting the PRISMA methodology for systematic reviews, we searched PubMed, CINAHL, Project Euclid, and Cochrane Database of Systematic Reviews for publications in English since January 1, 2000 using the terms “influenza AND (forecast* OR predict*)”, excluding studies that did not validate forecasts against independent data or incorporate influenza-related surveillance data from the season or pandemic for which the forecasts were applied. We included 35 publications describing population-based (N = 27), medical facility-based (N = 4), and regional or global pandemic spread (N = 4) forecasts. They included areas of North America (N = 15), Europe (N = 14), and/or Asia-Pacific region (N = 4), or had global scope (N = 3). Forecasting models were statistical (N = 18) or epidemiological (N = 17). Five studies used data assimilation methods to update forecasts with new surveillance data. Models used virological (N = 14), syndromic (N = 13), meteorological (N = 6), internet search query (N = 4), and/or other surveillance data as inputs. Forecasting outcomes and validation metrics varied widely. Two studies compared distinct modeling approaches using common data, 2 assessed model calibration, and 1 systematically incorporated expert input. Of the 17 studies using epidemiological models, 8 included sensitivity analysis. This review suggests need for use of good practices in influenza forecasting (e.g., sensitivity analysis); direct comparisons of diverse approaches; assessment of model calibration; integration of subjective expert input; operational research in pilot, real-world applications; and improved mutual understanding among modelers and public health officials. PMID:24714027

  15. Influenza

    Directory of Open Access Journals (Sweden)

    Forleo-Neto Eduardo

    2003-01-01

    Full Text Available A influenza (gripe é doença infecciosa aguda de origem viral que acomete o trato respiratório e a cada inverno atinge mais de 100 milhões de pessoas na Europa, Japão e Estados Unidos, causando anualmente a morte de cerca de 20 a 40 mil pessoas somente neste último país. O agente etiológico é o Myxovirus influenzae, ou vírus da gripe. Este subdivide-se nos tipos A, B e C, sendo que apenas os do tipo A e B apresentam relevância clínica em humanos. O vírus influenza apresenta altas taxas de mutação, o que resulta freqüentemente na inserção de novas variantes virais na comunidade, para as quais a população não apresenta imunidade. São poucas as opções disponíveis para o controle da influenza. Dentre essas, a vacinação constitui a forma mais eficaz para o controle da doença e de suas complicações. Em função das mutações que ocorrem naturalmente no vírus influenza, recomenda-se que a vacinação seja realizada anualmente. No Brasil, segundo dados obtidos pelo Projeto VigiGripe - ligado à Universidade Federal de São Paulo -, verifica-se que a influenza apresenta pico de atividade entre os meses de maio e setembro. Assim, a época mais indicada para a vacinação corresponde aos meses de março e abril. Para o tratamento específico da influenza estão disponíveis quatro medicamentos antivirais: os fármacos clássicos amantadina e rimantidina e os antivirais de segunda geração oseltamivir e zanamivir. Os últimos, acrescentam alternativas para o tratamento da influenza e ampliam as opções disponíveis para o seu controle.

  16. Genetic correlation between current circulating H1N1 swine and human influenza viruses.

    Science.gov (United States)

    Lu, Lu; Yin, Yanbo; Sun, Zhongsheng; Gao, Lei; Gao, George F; Liu, Sidang; Sun, Lei; Liu, Wenjun

    2010-11-01

    H1N1 is the main subtype influenza A virus circulating in human and swine population, and has long been a threat to economy and public health. To explore the genetic correlation between current circulating H1N1 swine and human influenza viruses. Three new H1N1 swine influenza viruses (SIVs) were isolated and genomes sequencing were conducted followed by phylogenetic and molecular analysis of all swine and human H1N1 influenza viruses isolated in China in the past five years. Homology and phylogenetic analysis revealed that the three isolates possessed different characteristics: the genome of A/Swine/Shandong/1112/2008 was closely related to that of classical H1N1 SIV, while A/Swine/Shandong/1123/2008 was a reassortant with NS gene from the human-like H3N2 influenza virus and other genes from the classical H1N1 SIV, and A/Swine/Fujian/0325/2008 fell into a lineage of seasonal human H1N1 influenza viruses. Genetically, 2009 H1N1 influenza A viruses (2009 H1N1) in China were contiguous to the SIV lineages rather than the seasonal H1N1 human influenza virus's lineage. Furthermore, molecular analysis among human and swine influenza viruses provided more detail information for understanding their genetic correlation. These results suggested that in China in the past five years, the classical, avian-like and human-like H1N1 SIV existed in swine herds and the reassortment between H1N1 swine and H3N2 human influenza viruses was identified. In addition, the present data showed no evidence to support a strong correlation between the 2009 H1N1 and the swine influenza virus circulating in China. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Draft Genome Sequences of Six Nontypeable Haemophilus influenzae Strains That Establish Bacteremia in the Infant Rat Model of Invasive Disease

    Science.gov (United States)

    VanWagoner, Timothy M.; Seale, Thomas W.; Mussa, Huda J.; Cole, Brett K.; Whitby, Paul W.; Stull, Terrence L.

    2015-01-01

    Haemophilus influenzae is an important cause of invasive disease. The infant rat is the accepted model of invasive H. influenzae disease. Here, we report the genome sequences of six nontypeable H. influenzae strains that establish bacteremia in the infant rat. PMID:26404588

  18. Cloned Defective Interfering Influenza RNA and a Possible Pan-Specific Treatment of Respiratory Virus Diseases

    Science.gov (United States)

    Dimmock, Nigel J.; Easton, Andrew J.

    2015-01-01

    Defective interfering (DI) genomes are characterised by their ability to interfere with the replication of the virus from which they were derived, and other genetically compatible viruses. DI genomes are synthesized by nearly all known viruses and represent a vast natural reservoir of antivirals that can potentially be exploited for use in the clinic. This review describes the application of DI virus to protect from virus-associated diseases in vivo using as an example a highly active cloned influenza A DI genome and virus that protects broadly in preclinical trials against different subtypes of influenza A and against non-influenza A respiratory viruses. This influenza A-derived DI genome protects by two totally different mechanisms: molecular interference with influenza A replication and by stimulating innate immunity that acts against non-influenza A viruses. The review considers what is needed to develop DI genomes to the point of entry into clinical trials. PMID:26184282

  19. Possible role of songbirds and parakeets in transmission of influenza A(H7N9) virus to humans.

    Science.gov (United States)

    Jones, Jeremy C; Sonnberg, Stephanie; Koçer, Zeynep A; Shanmuganatham, Karthik; Seiler, Patrick; Shu, Yuelong; Zhu, Huachen; Guan, Yi; Peiris, Malik; Webby, Richard J; Webster, Robert G

    2014-03-01

    Avian-origin influenza A(H7N9) recently emerged in China, causing severe human disease. Several subtype H7N9 isolates contain influenza genes previously identified in viruses from finch-like birds. Because wild and domestic songbirds interact with humans and poultry, we investigated the susceptibility and transmissibility of subtype H7N9 in these species. Finches, sparrows, and parakeets supported replication of a human subtype H7N9 isolate, shed high titers through the oropharyngeal route, and showed few disease signs. Virus was shed into water troughs, and several contact animals seroconverted, although they shed little virus. Our study demonstrates that a human isolate can replicate in and be shed by such songbirds and parakeets into their environment. This finding has implications for these birds' potential as intermediate hosts with the ability to facilitate transmission and dissemination of A(H7N9) virus.

  20. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface.

    Science.gov (United States)

    Nelson, Martha I; Vincent, Amy L

    2015-03-01

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts.

  1. Host genetics of severe influenza: from mouse Mx1 to human IRF7.

    Science.gov (United States)

    Ciancanelli, Michael J; Abel, Laurent; Zhang, Shen-Ying; Casanova, Jean-Laurent

    2016-02-01

    Influenza viruses cause mild to moderate respiratory illness in most people, and only rarely devastating or fatal infections. The virulence factors encoded by viral genes can explain seasonal or geographic differences at the population level but are unlikely to account for inter-individual clinical variability. Inherited or acquired immunodeficiencies may thus underlie severe cases of influenza. The crucial role of host genes was first demonstrated by forward genetics in inbred mice, with the identification of interferon (IFN)-α/β-inducible Mx1 as a canonical influenza susceptibility gene. Reverse genetics has subsequently characterized the in vivo role of other mouse genes involved in IFN-α/β and -λ immunity. A series of in vitro studies with mouse and human cells have also refined the cell-intrinsic mechanisms of protection against influenza viruses. Population-based human genetic studies have not yet uncovered variants with a significant impact. Interestingly, human primary immunodeficiencies affecting T and B cells were also not found to predispose to severe influenza. Recently however, human IRF7 was shown to be essential for IFN-α/β- and IFN-λ-dependent protective immunity against primary influenza in vivo, as inferred from a patient with life-threatening influenza revealed to be IRF7-deficient by whole exome sequencing. Next generation sequencing of human exomes and genomes will facilitate the analysis of the human genetic determinism of severe influenza.

  2. Serologic evidence of human influenza virus infections in swine populations, Cambodia.

    Science.gov (United States)

    Rith, Sareth; Netrabukkana, Punnaporn; Sorn, San; Mumford, Elizabeth; Mey, Channa; Holl, Davun; Goutard, Flavie; Y, Bunthin; Fenwick, Stan; Robertson, Ian; Roger, François; Buchy, Philippe

    2013-05-01

    This study was conducted from 2006 to 2010 and investigated the seroprevalence of influenza A viruses in Cambodian pigs, including human H1N1, H3N2, 2009 pandemic H1N1 (A(H1N1)pdm09), and highly pathogenic avian H5N1 influenza A viruses. A total of 1147 sera obtained from pigs in Cambodia were tested by haemagglutination inhibition (HI) assays for antibody to human influenza A viruses along with both HI and microneutralization (MN) tests to assess immunological responses to H5N1 virus. The results were compared by year, age, and province. Antibodies against a human influenza A virus were detected in 14·9% of samples. A(H1N1)pdm09 virus were dominant over the study period (23·1%), followed by those to human H1N1 (17·3%) and H3N2 subtypes (9·9%). No pigs were serologically positive for avian H5 influenza viruses. The seroprevalence of human H1N1 and H3N2 influenza viruses peaked in 2008, while that of A(H1N1)pdm09 reached a peak in 2010. No significant differences in seroprevalence to human influenza subtypes were observed in different age groups. Cambodian pigs were exposed to human strains of influenza A viruses either prior to or during this study. The implications of these high prevalence rates imply human-to-swine influenza virus transmission in Cambodia. Although pigs are mostly raised in small non-commercial farms, our preliminary results provide evidence of sustained human influenza virus circulation in pig populations in Cambodia. © 2012 Blackwell Publishing Ltd.

  3. BIRD FLU (AVIAN INFLUENZA)

    OpenAIRE

    Ali ACAR; Bulent BESIRBELLIOÐLU

    2005-01-01

    Avian influenza (bird flu) is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, ...

  4. The association of meningococcal disease with influenza in the United States, 1989-2009.

    Directory of Open Access Journals (Sweden)

    Jessica Hartman Jacobs

    Full Text Available IMPORTANCE AND OBJECTIVE: Prior influenza infection is a risk factor for invasive meningococcal disease. Quantifying the fraction of meningococcal disease attributable to influenza could improve understanding of viral-bacterial interaction and indicate additional health benefits to influenza immunization. DESIGN, SETTING AND PARTICIPANTS: A time series analysis of the association of influenza and meningococcal disease using hospitalizations in 9 states from 1989-2009 included in the State Inpatient Databases from the Agency for Healthcare Research and Quality and the proportion of positive influenza tests by subtype reported to the Centers for Disease Control. The model accounts for the autocorrelation of meningococcal disease and influenza between weeks, temporal trends, co-circulating respiratory syncytial virus, and seasonality. The influenza-subtype-attributable fraction was estimated using the model coefficients. We analyzed the synchrony of seasonal peaks in hospitalizations for influenza, respiratory syncytial virus, and meningococcal disease. RESULTS AND CONCLUSIONS: In 19 of 20 seasons, influenza peaked≤2 weeks before meningococcal disease, and peaks were highly correlated in time (ρ = 0.95; P <.001. H3N2 and H1N1 peaks were highly synchronized with meningococcal disease while pandemic H1N1, B, and respiratory syncytial virus were not. Over 20 years, 12.8% (95% CI, 9.1-15.0 of meningococcal disease can be attributable to influenza in the preceding weeks with H3N2 accounting for 5.2% (95% CI, 3.0-6.5, H1N1 4.3% (95% CI, 2.6-5.6, B 3.0% (95% CI, 0.8-4.9 and pH1N1 0.2% (95% CI, 0-0.4. During the height of influenza season, weekly attributable fractions reach 59%. While vaccination against meningococcal disease is the most important prevention strategy, influenza vaccination could provide further protection, particularly in young children where the meningococcal disease vaccine is not recommended or protective against the most common

  5. Weighing serological evidence of human exposure to animal influenza viruses - a literature review.

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-11-03

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. This article is copyright of The Authors, 2016.

  6. Human Alveolar Macrophages May Not Be Susceptible to Direct Infection by a Human Influenza Virus.

    Science.gov (United States)

    Ettensohn, David B; Frampton, Mark W; Nichols, Joan E; Roberts, Norbert J

    2016-12-01

    The current studies were undertaken to determine the susceptibility of human alveolar macrophages (AMs) to influenza A virus (IAV) infection in comparison with autologous peripheral blood-derived monocytes-macrophages (PBMs). AMs and PBMs were exposed to IAV in vitro and examined for their ability to bind and internalize IAV, and synthesize viral proteins and RNA. PBMs but not AMs demonstrated binding and internalization of the virus, synthesizing viral proteins and RNA. Exposure of AMs in the presence of a sialidase inhibitor or anti-IAV antibody resulted in viral protein synthesis by the cells. Exposure of AMs to fluorescein isothiocyanate-labeled IAV in the presence of anti-fluorescein isothiocyanate antibody also resulted in viral protein synthesis. Thus, human AMs are apparently not susceptible to direct infection by a human IAV but are likely to be infected indirectly in the setting of exposure in the presence of antibody that binds the challenging strain of IAV. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. The Demise of Poskanzer and Schwab's Influenza Theory on the Pathogenesis of Parkinson's Disease.

    Science.gov (United States)

    Estupinan, Danny; Nathoo, Sunina; Okun, Michael S

    2013-01-01

    In 1961, David C. Poskanzer and Robert S. Schwab presented a paper, "Studies in the epidemiology of Parkinson's disease predicting its disappearance as a major clinical entity by 1980." This paper introduced the hypothesis that Parkinson's disease was derived from a single aetiology, the influenza virus. We review the original Poskanzer and Schwab hypothesis that Parkinson's disease was based on the association between the 1918-19 influenza epidemic and the later observation of Parkinsonism in some influenza sufferers. We also further explore the prediction that Parkinson's disease would totally disappear as an entity once original influenza victims were all deceased. Current research has revealed that there are many potential causes and factors important in the occurrence of Parkinson's disease, postencephalitic Parkinsonism, and encephalitis lethargica. Poskanzer and Schwab presented a novel hypothesis; however, it was proven false by a combination of research and time.

  8. Selective expansion of influenza A virus-specific T cells in symptomatic human carotid artery atherosclerotic plaques

    NARCIS (Netherlands)

    T.T. Keller (Tymen); J.J. van der Meer (Jelger); P. Teeling (Peter); K.F. van der Sluijs (Koenraad); M.M. Idu (Mirza); G.F. Rimmelzwaan (Guus); M. Levi (Michael); A.C. van der Wal (Allard); O.J. de Boer (Onno)

    2008-01-01

    textabstractBACKGROUND AND PURPOSE - Evidence is accumulating that infection with influenza A virus contributes to atherothrombotic disease. Vaccination against influenza decreases the risk of atherosclerotic syndromes, indicating that inflammatory mechanisms may be involved. We tested the

  9. HEALTH CARE DATA WAREHOUSE SYSTEM ARCHITECTURE FOR INFLUENZA (FLU DISEASES

    Directory of Open Access Journals (Sweden)

    Rajib Dutta

    2013-02-01

    Full Text Available Data Warehouse is the most reliable technology used by the company for planning, forecasting and management. Critical business management data was contained in several unrelated and disconnected databases, both internally managed and from external sources. Client was unable to view the data from an integrated viewpoint. The data warehousing is one of the best technique to integrate data. This paper presents the Influenza (Flu diseases specific data warehouse architecture for health care. This could be used by the database administrator or executive manager, doctors, nurses, other staff members of the health care. Health care data warehouse is mostly important to integrate different data format from different data source. All information about patient including their medical test reports are store in the database, the executive manager needs to access those data and make a report. By seeing the report, the doctor takes action.

  10. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease.

    Science.gov (United States)

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G

    2014-12-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.

  11. A Narrative Review of Influenza: A Seasonal and Pandemic Disease

    Directory of Open Access Journals (Sweden)

    Mohsen Moghadami

    2017-01-01

    Full Text Available Influenza is an acute respiratory disease caused by the influenza A or B virus. It often occurs in outbreaks and epidemics worldwide, mainly during the winter season. Significant numbers of influenza virus particles are present in the respiratory secretions of infected persons, so infection can be transmitted by sneezing and coughing via large particle droplets. The mean duration of influenza virus shedding in immunocompetent adult patients is around 5 days but may continue for up to 10 days or more—particularly in children, elderly adults, patients with chronic illnesses, and immunocompromised hosts. Influenza typically begins with the abrupt onset of high-grade fever, myalgia, headache, and malaise. These manifestations are accompanied by symptoms of respiratory tract illnesses such as nonproductive cough, sore throat, and nasal discharge. After a typical course, influenza can affect other organs such as the lungs, brain, and heart more than it can affect the respiratory tract and cause hospitalization. The best way to prevent influenza is to administer annual vaccinations. Among severely ill patients, an early commencement of antiviral treatment (<2 d from illness onset is associated with reduced morbidity and mortality, with greater benefits allied to an earlier initiation of treatment. Given the significance of the disease burden, we reviewed the latest findings in the diagnosis and management of influenza.

  12. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam.

    Science.gov (United States)

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D; Jeeninga, Rienk E; Rogier van Doorn, H; Farrar, Jeremy; Wertheim, Heiman F L

    2013-10-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern Vietnam.

  13. A review on human influenza A H5N1 infections in Hong Kong

    Institute of Scientific and Technical Information of China (English)

    CHAN Paul K S

    2009-01-01

    Avian influenza A H5N1 remains the most threatening virus that may cause another devastating pan-demic in the foreseeable future, In 1997, Hong Kong was the first place to detect human infections due to this virus originated from birds. The experience and lessons learnt provide important information for controlling further outbreaks caused by avian influenza viruses.

  14. A review on human influenza A H5N1 infections in Hong Kong

    Institute of Scientific and Technical Information of China (English)

    CHAN; Paul; K; S

    2009-01-01

    Avian influenza A H5N1 remains the most threatening virus that may cause another devastating pandemic in the foreseeable future. In 1997, Hong Kong was the first place to detect human infections due to this virus originated from birds. The experience and lessons learnt provide important information for controlling further outbreaks caused by avian influenza viruses.

  15. WHO Regional Office for Europe guidance for influenza surveillance in humans.

    NARCIS (Netherlands)

    Brown, C.S.; Andraghetti, R.; Paget, J.

    2009-01-01

    Recent international mandates, and the emergent circulation of pandemic (H1N1) 2009 virus in human populations, call for strengthening influenza surveillance to better target seasonal influenza control programmes and support pandemic preparedness. This document provides technical guidance to establi

  16. Comparative analysis of avian influenza virus diversity in poultry and humans during a highly pathogenic avian influenza A (H7N7) virus outbreak

    NARCIS (Netherlands)

    M. Jonges (Marcel); A. Bataille (Arnaud); R. Enserink (Remko); A. Meijer (Adam); R.A.M. Fouchier (Ron); A. Stegeman (Arjan); G. Koch (Guus); M. Koopmans (Matty)

    2011-01-01

    textabstractAlthough increasing data have become available that link human adaptation with specific molecular changes in nonhuman influenza viruses, the molecular changes of these viruses during a large highly pathogenic avian influenza virus (HPAI) outbreak in poultry along with avian-to-human tran

  17. Comparative Analysis of Avian Influenza Virus Diversity in Poultry and Humans during a Highly Pathogenic Avian Influenza A (H7N7) Virus Outbreak

    NARCIS (Netherlands)

    Jonges, M.; Bataille, A.; Enserink, R.; Meijer, A.; Fouchier, R.A.M.; Stegeman, A.; Koch, G.; Koopmans, M.

    2011-01-01

    Although increasing data have become available that link human adaptation with specific molecular changes in nonhuman influenza viruses, the molecular changes of these viruses during a large highly pathogenic avian influenza virus (HPAI) outbreak in poultry along with avian-to-human transmission hav

  18. Haemophilus influenzae pneumonia in human immunodeficiency virus-infected patients. The Grupo Andaluz para el Estudio de las Enfermedades Infecciosas.

    Science.gov (United States)

    Cordero, E; Pachón, J; Rivero, A; Girón, J A; Gómez-Mateos, J; Merino, M D; Torres-Tortosa, M; González-Serrano, M; Aliaga, L; Collado, A; Hernández-Quero, J; Barrera, A; Nuño, E

    2000-03-01

    Although Haemophilus influenzae is a common etiologic agent of pneumonia in patients infected with human immunodeficiency virus (HIV), the characteristics of this pneumonia have not been adequately assessed. We have prospectively studied features of H. influenzae pneumonia in 26 consecutive HIV-infected inpatients. Most of these patients were severely immunosuppressed; 73.1% had a CD4+ cell count <100/microL. A subacute clinical presentation was observed in 27% of the patients and was associated with a higher degree of immunosuppression (P=.04). Bilateral lung infiltrates were noted radiographically in 57.7% of the cases. The mortality attributable to H. influenzae pneumonia was 11.5%. Thus, pneumonia caused by H. influenzae affects mainly patients with advanced HIV disease, and since its clinical and radiological features may be diverse, this etiology should be considered when pneumonia occurs in patients with advanced HIV infection. The mortality rate associated with H. influenzae pneumonia is not higher than that occurring in the general population.

  19. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  20. Activation of invariant NKT cells enhances the innate immune response and improves the disease course in influenza A virus infection.

    Science.gov (United States)

    Ho, Ling-Pei; Denney, Laura; Luhn, Kerstin; Teoh, Denise; Clelland, Colin; McMichael, Andrew J

    2008-07-01

    Invariant NKT (iNKT) cells have an indubitable role in antiviral immunity, although the mechanisms by which these cells exert their functions are not fully elucidated. With the emerging importance of high-pathogenicity influenza A virus infections in humans, we questioned whether iNKT cells contribute to immune defence against influenza A virus and whether activation of these cells influences outcome. We show that activation of iNKT cells with alpha-galactosylceramide (alpha-GC) during influenza virus infection transiently enhanced early innate immune response without affecting T cell immunity, and reduced early viral titres in lungs of C57BL/6 mice. This is accompanied by a better disease course with improved weight loss profile. Temporal changes in iNKT cells in the liver, blood and lungs suggest activation and migration of iNKT cells from the liver to the lungs in mice that were administered alpha-GC. Improvement in viral titres appears dependent on activation of iNKT cells via the intraperitoneal route since intranasal administration of alpha-GC did not have the same effect. We conclude that activation of iNKT cells enhances early innate immune response in the lungs and contribute to antiviral immunity and improved disease course in influenza A virus infection.

  1. Demographic and ecological risk factors for human influenza A virus infections in rural Indonesia.

    Science.gov (United States)

    Root, Elisabeth Dowling; Agustian, Dwi; Kartasasmita, Cissy; Uyeki, Timothy M; Simões, Eric A F

    2017-09-01

    Indonesia has the world's highest reported mortality for human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus. Indonesia is an agriculturally driven country where human-animal mixing is common and provides a unique environment for zoonotic influenza A virus transmission. To identify potential demographic and ecological risk factors for human infection with seasonal influenza A viruses in rural Indonesia, a population-based study was conducted in Cileunyi and Soreang subdistricts near Bandung in western Java from 2008 to 2011. Passive influenza surveillance with RT-PCR confirmation of influenza A viral RNA in respiratory specimens was utilized for case ascertainment. A population census and mapping were utilized for population data collection. The presence of influenza A(H3N2) and A(H1N1)pdm09 virus infections in a household was modeled using Generalized Estimating Equations. Each additional child aged influenza A virus infections in rural Indonesian households with young children and poultry. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  2. Targeted disruption of influenza A virus hemagglutinin in genetically modified mice reduces viral replication and improves disease outcome

    OpenAIRE

    Song Wang; Chao Chen; Zhou Yang; Xiaojuan Chi; Jing Zhang; Ji-Long Chen

    2016-01-01

    Influenza A virus can cause acute respiratory infection in animals and humans around the globe, and is still a major threat to animal husbandry and public health. Due to antigenic drift and antigenic shift of the virus, development of novel anti-influenza strategies has become an urgent task. Here we generated transgenic (TG) mice stably expressing a short-hairpin RNA specifically targeting hemagglutinin (HA) of influenza A virus, and investigated the susceptibility of the mice to influenza v...

  3. H7N9 avian influenza A virus and the perpetual challenge of potential human pandemicity.

    Science.gov (United States)

    Morens, David M; Taubenberger, Jeffery K; Fauci, Anthony S

    2013-07-09

    ABSTRACT The ongoing H7N9 influenza epizootic in China once again presents us questions about the origin of pandemics and how to recognize them in early stages of development. Over the past ~135 years, H7 influenza viruses have neither caused pandemics nor been recognized as having undergone human adaptation. Yet several unusual properties of these viruses, including their poultry epizootic potential, mammalian adaptation, and atypical clinical syndromes in rarely infected humans, suggest that they may be different from other avian influenza viruses, thus questioning any assurance that the likelihood of human adaptation is low. At the same time, the H7N9 epizootic provides an opportunity to learn more about the mammalian/human adaptational capabilities of avian influenza viruses and challenges us to integrate virologic and public health research and surveillance at the animal-human interface.

  4. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease.

    Science.gov (United States)

    Pillai, Padmini S; Molony, Ryan D; Martinod, Kimberly; Dong, Huiping; Pang, Iris K; Tal, Michal C; Solis, Angel G; Bielecki, Piotr; Mohanty, Subhasis; Trentalange, Mark; Homer, Robert J; Flavell, Richard A; Wagner, Denisa D; Montgomery, Ruth R; Shaw, Albert C; Staeheli, Peter; Iwasaki, Akiko

    2016-04-22

    Influenza A virus (IAV) causes up to half a million deaths worldwide annually, 90% of which occur in older adults. We show that IAV-infected monocytes from older humans have impaired antiviral interferon production but retain intact inflammasome responses. To understand the in vivo consequence, we used mice expressing a functional Mx gene encoding a major interferon-induced effector against IAV in humans. In Mx1-intact mice with weakened resistance due to deficiencies in Mavs and Tlr7, we found an elevated respiratory bacterial burden. Notably, mortality in the absence of Mavs and Tlr7 was independent of viral load or MyD88-dependent signaling but dependent on bacterial burden, caspase-1/11, and neutrophil-dependent tissue damage. Therefore, in the context of weakened antiviral resistance, vulnerability to IAV disease is a function of caspase-dependent pathology.

  5. H5N6 influenza virus infection, the newest influenza

    Directory of Open Access Journals (Sweden)

    Beuy Joob

    2015-06-01

    Full Text Available The most recent new emerging infection is the H5N6 influenza virus infection. This infection has just been reported from China in early May 2014. The disease is believed to be a cross species infection. All indexed cases are from China. Of interest, the H5N6 influenza virus is the primary virus for avian. The avian H5N6 influenza virus in avian population is a low virulent strain. However, the clinical manifestation in human seems severe. In this mini-review, the authors summarize and discuss on this new emerging influenza.

  6. Securitization of infectious diseases in Vietnam: the cases of HIV and avian influenza.

    Science.gov (United States)

    Herington, Jonathan

    2010-11-01

    The frequent and swift emergence of new and devastating infectious diseases has brought renewed attention to health as an issue of international importance. Some states and regional organizations, including in Asia, have begun to regard infectious disease as a national and international security issue. This article seeks to examine the Vietnamese government's response to the epidemics of avian influenza and Human immunodeficiency virus. Both diseases have been recognized at different times as threats to international security and both are serious infectious disease problems in Vietnam. Yet, the character of the central government's response to these two epidemics has been starkly different. How and why this disparity in policy approaches occurs depends largely on the epidemiological, economic and political context in which they occur. Although epidemiological factors are frequently explored when discussing disease as a security issue, seldom are the political, social and economic characteristics of the state invoked. These dimensions, and their interaction with the epidemiology of the disease, are central to understanding which diseases are ultimately treated by states as security issues. In particular, the role of economic security as a powerful motivator for resistance to control measures and the role that local implementation of policies can have in disrupting the effect of central government policy are explored. In exploring both the outcomes of securitization, and its facilitating conditions, I suggest some preliminary observations on the potential costs and benefits of securitizing infectious disease and its utility as a mechanism for protecting health in Asia.

  7. Contribution of influenza to acute exacerbations of chronic obstructive pulmonary disease in Kashmir, India, 2010-2012.

    Science.gov (United States)

    Koul, Parvaiz A; Khan, Umar H; Asad, Romana; Yousuf, Rubaya; Broor, Shobha; Lal, Renu B; Dawood, Fatimah S

    2015-01-01

    We estimate the contribution of influenza to hospitalizations for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) in Kashmir, India. Prospective surveillance for influenza among patients hospitalized with AECOPD was conducted at a tertiary care hospital. Patients had clinical data collected and nasal/throat swabs tested for influenza viruses. Outcomes among patients with and without influenza were compared with logistic regression adjusting for age and underlying conditions. During October 2010-September 2012, 498 patients hospitalized with AECOPD were enrolled, of whom 40 (8%) had received influenza vaccine. Forty (8%) had influenza; influenza virus detection peaked in winter (January-March). Patients with influenza were more likely to die during hospitalization (adjusted OR 3.4, CI 1.0-11.4) than those without.

  8. Serological report of pandemic and seasonal human influenza virus infection in dogs in southern China.

    Science.gov (United States)

    Yin, Xin; Zhao, Fu-Rong; Zhou, Dong-Hui; Wei, Ping; Chang, Hui-Yun

    2014-11-01

    From January to July 2012, we looked for evidence of subclinical A (H1N1) pdm09 and seasonal human influenza viruses infections in healthy dogs in China. Sera from a total of 1920 dogs were collected from Guangdong, Guangxi, Fujian and Jiangxi provinces. We also examined archived sera from 66 dogs and cats that were collected during 2008 from these provinces. Using hemagglutination inhibition (HI) and microneutralization (MN) assays, we found that only the dogs sampled in 2012 had elevated antibodies (≥ 1:32) against A(H1N1)pdm09 virus and seasonal human influenza viruses: Of the 1920 dog sera, 20.5 % (n = 393) had elevated antibodies against influenza A(H1N1) pdm09 by the HI assay, 1.1 % (n = 22), and 4.7 % (n = 91) of the 1920 dogs sera had elevated antibodies against human seasonal H1N1 influenza virus and human seasonal H3N2 influenza virus by the HI assay. Compared with dogs that were raised on farms, dogs that were raised as pets were more likely to have elevated antibodies against A(H1N1)pdm09 and seasonal human influenza viruses. Seropositivity was highest among pet dogs, which likely had more diverse and frequent exposures to humans than farm dogs. These findings will help us better understand which influenza A viruses are present in dogs and will contribute to the prevention and control of influenza A virus. Moreover, further in-depth study is necessary for us to understand what roles dogs play in the ecology of influenza A.

  9. Human Environmental Disease Network

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Audouze, Karine

    2017-01-01

    During the past decades, many epidemiological, toxicological and biological studies have been performed to assess the role of environmental chemicals as potential toxicants for diverse human disorders. However, the relationships between diseases based on chemical exposure have been rarely studied...... by computational biology. We developed a human environmental disease network (EDN) to explore and suggest novel disease-disease and chemical-disease relationships. The presented scored EDN model is built upon the integration on systems biology and chemical toxicology using chemical contaminants information...

  10. Randomized controlled trials for influenza drugs and vaccines: a review of controlled human infection studies

    Directory of Open Access Journals (Sweden)

    Shobana Balasingam

    2016-08-01

    Conclusions: Controlled human infection studies are an important research tool in assessing promising influenza vaccines and antivirals. These studies are performed quickly and are cost-effective and safe, with a low incidence of serious adverse events.

  11. Chest imaging of H7N9 subtype of human avian influenza

    Directory of Open Access Journals (Sweden)

    Xi-ming Wang

    2015-03-01

    Conclusions: The characteristic imaging demonstrations of H7N9 subtype of human avian influenza are segmental or lobar exudative lesions at lungs at the initial stage, which rapidly progress into bilateral distribution at lungs at the progressive stage.

  12. Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility

    DEFF Research Database (Denmark)

    Belser, Jessica A; Blixt, Ola; Chen, Li-Mei

    2008-01-01

    Avian H7 influenza viruses from both the Eurasian and North American lineage have caused outbreaks in poultry since 2002, with confirmed human infection occurring during outbreaks in The Netherlands, British Columbia, and the United Kingdom. The majority of H7 infections have resulted in self......-limiting conjunctivitis, whereas probable human-to-human transmission has been rare. Here, we used glycan microarray technology to determine the receptor-binding preference of Eurasian and North American lineage H7 influenza viruses and their transmissibility in the ferret model. We found that highly pathogenic H7N7...... in the upper respiratory tract of ferrets and was capable of transmission in this species by direct contact. These results indicate that H7 influenza viruses from the North American lineage have acquired sialic acid-binding properties that more closely resemble those of human influenza viruses and have...

  13. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Los Alamos National Laboratory; Velappan, Nileena [Los Alamos National Laboratory; Schmidt, Jurgen G [Los Alamos National Laboratory

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  14. Influenza and respiratory disease surveillance: the US military’s global laboratory‐based network

    OpenAIRE

    Jeremy Sueker, J.; Blazes, David L.; Matthew C Johns; Patrick J Blair; Paul A Sjoberg; Tjaden, Jeffrey A.; Montgomery, Joel M.; Pavlin, Julie A; Schnabel, David C; Angelia A Eick; Tobias, Steven; Quintana, Miguel; Vest, Kelly G; Burke, Ronald L.; Lindler, Luther E.

    2010-01-01

    Please cite this paper as: Jeremy Sueker et al. (2010) Influenza and respiratory disease surveillance: the US military’s global laboratory‐based network. Influenza and Other Respiratory Viruses 4(3), 155–161. The US Department of Defense influenza surveillance system now spans nearly 500 sites in 75 countries, including active duty US military and dependent populations as well as host‐country civilian and military personnel. This system represents a major part of the US Government’s contribut...

  15. Replication of swine and human influenza viruses in juvenile and layer turkey hens.

    Science.gov (United States)

    Ali, Ahmed; Yassine, Hadi; Awe, Olusegun O; Ibrahim, Mahmoud; Saif, Yehia M; Lee, Chang-Won

    2013-04-12

    Since the first reported isolation of swine influenza viruses (SIVs) in turkeys in the 1980s, transmission of SIVs to turkeys was frequently documented. Recently, the 2009 pandemic H1N1 virus, that was thought to be of swine origin, was detected in turkeys with a severe drop in egg production. In this study, we assessed the infectivity of different mammalian influenza viruses including swine, pandemic H1N1 and seasonal human influenza viruses in both juvenile and layer turkeys. In addition, we investigated the potential influenza virus dissemination in the semen of experimentally infected turkey toms. Results showed that all mammalian origin influenza viruses tested can infect turkeys. SIVs were detected in respiratory and digestive tracts of both juvenile and layer turkeys. Variations in replication efficiencies among SIVs were observed especially in the reproductive tract of layer turkeys. Compared to SIVs, limited replication of seasonal human H1N1 and no detectable replication of recent human-like swine H1N2, pandemic H1N1 and seasonal human H3N2 viruses was noticed. All birds seroconverted to all tested viruses regardless of their replication level. In turkey toms, we were able to detect swine H3N2 virus in semen and reproductive tract of infected toms by real-time RT-PCR although virus isolation was not successful. These data suggest that turkey hens could be affected by diverse influenza strains especially SIVs. Moreover, the differences in the replication efficiency we demonstrated among SIVs and between SIV and human influenza viruses in layer turkeys suggest a possible use of turkeys as an animal model to study host tropism and pathogenesis of influenza viruses. Our results also indicate a potential risk of venereal transmission of influenza viruses in turkeys. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. First Complete Genome Sequence of Haemophilus influenzae Serotype a

    Science.gov (United States)

    Hayden, Kristy

    2017-01-01

    ABSTRACT Haemophilus influenzae is an important human pathogen that primarily infects small children. In recent years, H. influenzae serotype a has emerged as a significant cause of invasive disease among indigenous populations. Here, we present the first complete whole-genome sequence of H. influenzae serotype a. PMID:28104664

  17. Influenza Pandemic Infrastructure Response in Thailand

    Centers for Disease Control (CDC) Podcasts

    2009-03-05

    Influenza viruses change antigenic properties, or drift, every year and they create seasonal outbreaks. Occasionally, influenza viruses change in a major way, called a “shift." If an influenza virus shifts, the entire human population is susceptible to the new influenza virus, creating the potential for a pandemic. On this podcast, CDC's Dr. Scott Dowell discusses responding to an influenza pandemic.  Created: 3/5/2009 by Emerging Infectious Diseases.   Date Released: 3/5/2009.

  18. Poultry food products--a source of avian influenza virus transmission to humans?

    Science.gov (United States)

    Harder, T C; Buda, S; Hengel, H; Beer, M; Mettenleiter, T C

    2016-02-01

    Global human mobility and intercontinental connectivity, expansion of livestock production and encroachment of wildlife habitats by invasive agricultural land use contribute to shape the complexity of influenza epidemiology. The OneHealth approach integrates these and further elements into considerations to improve disease control and prevention. Food of animal origin for human consumption is another integral aspect; if produced from infected livestock such items may act as vehicles of spread of animal pathogens, and, in case of zoonotic agents, as a potential human health hazard. Notifiable zoonotic avian influenza viruses (AIV) have become entrenched in poultry populations in several Asian and northern African countries since 2003. Highly pathogenic (HP) AIV (e.g. H5N1) cause extensive poultry mortality and severe economic losses. HPAIV and low pathogenic AIV (e.g. H7N9) with zoonotic propensities pose risks for human health. More than 1500 human cases of AIV infection have been reported, mainly from regions with endemically infected poultry. Intense human exposure to AIV-infected poultry, e.g. during rearing, slaughtering or processing of poultry, is a major risk factor for acquiring AIV infection. In contrast, human infections through consumption of AIV-contaminated food have not been substantiated. Heating poultry products according to kitchen standards (core temperatures ≥70°C, ≥10 s) rapidly inactivates AIV infectivity and renders fully cooked products safe. Nevertheless, concerted efforts must ensure that poultry products potentially contaminated with zoonotic AIV do not reach the food chain. Stringent and sustained OneHealth measures are required to better control and eventually eradicate, HPAIV from endemic regions.

  19. Identification of Rare PB2-D701N Mutation from a Patient with Severe Influenza: Contribution of the PB2-D701N Mutation to the Pathogenicity of Human Influenza.

    Science.gov (United States)

    Nieto, Amelia; Pozo, Francisco; Vidal-García, Matxalen; Omeñaca, Manuel; Casas, Inmaculada; Falcón, Ana

    2017-01-01

    Several amino acid changes have been previously implicated in adaptation of avian influenza viruses to human hosts, among them the D701N change in the PB2 polymerase subunit that also is the main determinant of avian virus pathogenesis in animal models. However, previous studies using recombinant viruses did not provide conclusive information of the contribution of this PB2 residue to pathogenicity in human influenza virus strains. We identified this mutation in an A(H1N1)pdm09-like human influenza virus isolated from an infected patient with pneumonia and acute respiratory failure, admitted to the intensive care unit. An exhaustive search has revealed PB2-D701 as a highly conserved position in all available H1N1 human virus sequences in NCBI database, showing a very low prevalence of PB2-D701N change. Presence of PB2-701N amino acid correlates with severe or fatal outcome in those scarce cases with known disease outcome of the infection. In these patients, the residue PB2-701N may contribute to pathogenicity as it was previously reported in humans infected with avian viruses. This study helps to clarify a debate that has arisen regarding the role of PB2-D701N in human influenza virus pathogenicity.

  20. Identification of Rare PB2-D701N Mutation from a Patient with Severe Influenza: Contribution of the PB2-D701N Mutation to the Pathogenicity of Human Influenza

    Science.gov (United States)

    Nieto, Amelia; Pozo, Francisco; Vidal-García, Matxalen; Omeñaca, Manuel; Casas, Inmaculada; Falcón, Ana

    2017-01-01

    Several amino acid changes have been previously implicated in adaptation of avian influenza viruses to human hosts, among them the D701N change in the PB2 polymerase subunit that also is the main determinant of avian virus pathogenesis in animal models. However, previous studies using recombinant viruses did not provide conclusive information of the contribution of this PB2 residue to pathogenicity in human influenza virus strains. We identified this mutation in an A(H1N1)pdm09-like human influenza virus isolated from an infected patient with pneumonia and acute respiratory failure, admitted to the intensive care unit. An exhaustive search has revealed PB2-D701 as a highly conserved position in all available H1N1 human virus sequences in NCBI database, showing a very low prevalence of PB2-D701N change. Presence of PB2-701N amino acid correlates with severe or fatal outcome in those scarce cases with known disease outcome of the infection. In these patients, the residue PB2-701N may contribute to pathogenicity as it was previously reported in humans infected with avian viruses. This study helps to clarify a debate that has arisen regarding the role of PB2-D701N in human influenza virus pathogenicity. PMID:28421062

  1. Influenza-A infections in animals and birds and their significance in the epidemiology of human influenza-A

    Directory of Open Access Journals (Sweden)

    Đurišić Slavko

    2005-01-01

    Full Text Available The objective of this presentation is to point out at knowledge obtained so far through comparative analyses of the influenza-A virus, certain ecological and epizootiological aspects, and at the cases registered so far of the transfer of this virus among animals, animals and birds and humans. In this way, we believe we will help our professional public to take a more comprehensive view of the currently uncertain epizootiological (epidemiological situation regarding infections with influenza-A viruses in the world, and to secure preventive measures with due attention. New information is daily added to this matter, which is of wide-ranging aspects and, because of insufficient space, we have limited this work to the aspects which, because of insufficient space, we have limited this work to the aspects which are currently biologically the most significant. Consequently we have divided the entire presentation into the following sections Introduction with emphasis on the existence of large numbers of influenza-A viruses in nature, with a wide range of antigenic and biological characteristics in domestic and wild animals and birds, as well as on the fact that these viruses can be a potential source of so-called new pandemic viruses and pose a constant threat to human welfare. Results of comparative analyses of the influnza-A virus, with special emphasis on classification virion structure, genome structure and nomenclature, on the progressive mutation of the virus, known as antigenic drift, and the genetic recombination, known as antigenic shift. Influenza-A viruses in humans animals and birds with a presentation of subtypes and variants of the virus identified so far. Transfer of the virus among animals, birds and humans with a presentation of cases registered so far of virus transfer in nature as well as possibilities for experimental infections of calves, swine, mice hamsters, and squirrels with influenza-A viruses originating from birds. Concluding

  2. First human case of avian influenza A (H5N6 in Yunnan province, China

    Directory of Open Access Journals (Sweden)

    Jibo He

    2015-08-01

    Full Text Available Objective: To report clinical, virological, and epidemiological features of the first death caused by a H5N6 avian influenza virus in Yunnan Province, China. Method: The case was described in clinical expression, chest radiography, blood test and treatment. Real-time RT-PCR was used to detect H5N6 virus RNA in clinical and environment samples. Epidemiological investigation was performed including case exposure history determinant, close contacts follow up, and environment sample collection. Results: The patient initially developed sore throat and coughs on 27 January 2015. The disease progressed to severe pneumonia, multiple organ dysfunction syndrome, and acute respiratory distress syndrome. And the patient died on 6 February. A highly pathogenic avian influenza A H5N6 virus was isolated from the tracheal aspirate specimen of the patient. The viral genome analyses revealed that the H5 hemmagglutinin gene belongs to 2.3.4.4 clade. Epidemiological investigation showed that the patient had exposure to wild bird. All close contacts of the patient did not present the same disease in seven consecutive days. A high H5 positive rate was detected in environmental samples from local live poultry markets. Conclusion: The findings suggest that studies on the source of the virus, transmission models, serologic investigations, vaccines, and enhancing surveillance in both humans and birds are necessary.

  3. An Amphibian Host Defense Peptide Is Virucidal for Human H1 Hemagglutinin-Bearing Influenza Viruses.

    Science.gov (United States)

    Holthausen, David J; Lee, Song Hee; Kumar, Vineeth Tv; Bouvier, Nicole M; Krammer, Florian; Ellebedy, Ali H; Wrammert, Jens; Lowen, Anice C; George, Sanil; Pillai, Madhavan Radhakrishna; Jacob, Joshy

    2017-04-18

    Although vaccines confer protection against influenza A viruses, antiviral treatment becomes the first line of defense during pandemics because there is insufficient time to produce vaccines. Current antiviral drugs are susceptible to drug resistance, and developing new antivirals is essential. We studied host defense peptides from the skin of the South Indian frog and demonstrated that one of these, which we named "urumin," is virucidal for H1 hemagglutinin-bearing human influenza A viruses. This peptide specifically targeted the conserved stalk region of H1 hemagglutinin and was effective against drug-resistant H1 influenza viruses. Using electron microscopy, we showed that this peptide physically destroyed influenza virions. It also protected naive mice from lethal influenza infection. Urumin represents a unique class of anti-influenza virucide that specifically targets the hemagglutinin stalk region, similar to targeting of antibodies induced by universal influenza vaccines. Urumin therefore has the potential to contribute to first-line anti-viral treatments during influenza outbreaks. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Contact variables for exposure to avian influenza H5N1 virus at the human-animal interface.

    Science.gov (United States)

    Rabinowitz, P; Perdue, M; Mumford, E

    2010-06-01

    Although the highly pathogenic avian influenza H5N1 virus continues to cause infections in both avian and human populations, the specific zoonotic risk factors remain poorly understood. This review summarizes available evidence regarding types of contact associated with transmission of H5N1 virus at the human-animal interface. A systematic search of the published literature revealed five analytical studies and 15 case reports describing avian influenza transmission from animals to humans for further review. Risk factors identified in analytical studies were compared, and World Health Organization-confirmed cases, identified in case reports, were classified according to type of contact reported using a standardized algorithm. Although cases were primarily associated with direct contact with sick/unexpectedly dead birds, some cases reported only indirect contact with birds or contaminated environments or contact with apparently healthy birds. Specific types of contacts or activities leading to exposure could not be determined from data available in the publications reviewed. These results support previous reports that direct contact with sick birds is not the only means of human exposure to avian influenza H5N1 virus. To target public health measures and disease awareness messaging for reducing the risk of zoonotic infection with avian influenza H5N1 virus, the specific types of contacts and activities leading to transmission need to be further understood. The role of environmental virus persistence, shedding of virus by asymptomatic poultry and disease pathophysiology in different avian species relative to human zoonotic risk, as well as specific modes of zoonotic transmission, should be determined.

  5. Activation of coagulation and tissue fibrin deposition in experimental influenza in ferrets

    NARCIS (Netherlands)

    M. Goeijenbier (Marco); E.C.M. van Gorp (Eric); J.M.A. van den Brand (Judith); K.J. Stittelaar (Koert); K. Bakhtiari (Kamran); J.J.T.H. Roelofs (Joris); G. van Amerongen (Geert); T. Kuiken (Thijs); B.E.E. Martina (Byron); J.C.M. Meijers; A.D.M.E. Osterhaus (Albert)

    2014-01-01

    textabstractBackground: Epidemiological studies relate influenza infection with vascular diseases like myocardial infarction. The hypothesis that influenza infection has procoagulant effects on humans has been investigated by experimental animal models. However, these studies often made use of

  6. Influenza Virus and Glycemic Variability in Diabetes: A Killer Combination?

    Directory of Open Access Journals (Sweden)

    Katina D. Hulme

    2017-05-01

    Full Text Available Following the 2009 H1N1 influenza virus pandemic, numerous studies identified the striking link between diabetes mellitus and influenza disease severity. Typically, influenza virus is a self-limiting infection but in individuals who have a pre-existing chronic illness, such as diabetes mellitus, severe influenza can develop. Here, we discuss the latest clinical and experimental evidence for the role of diabetes in predisposing the host to severe influenza. We explore the possible mechanisms that underlie this synergy and highlight the, as yet, unexplored role that blood glucose oscillations may play in disease development. Diabetes is one of the world’s fastest growing chronic diseases and influenza virus represents a constant and pervasive threat to human health. It is therefore imperative that we understand how diabetes increases influenza severity in order to mitigate the burden of future influenza epidemics and pandemics.

  7. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.

    Science.gov (United States)

    Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2015-12-01

    The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.

  8. Characterization of Avian Influenza and Newcastle Disease Viruses from Poultry in Libya.

    Science.gov (United States)

    Kammon, Abdulwahab; Heidari, Alireza; Dayhum, Abdunaser; Eldaghayes, Ibrahim; Sharif, Monier; Monne, Isabela; Cattoli, Giovanni; Asheg, Abdulatif; Farhat, Milad; Kraim, Elforjani

    2015-09-01

    On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies.

  9. High permissivity of human HepG2 hepatoma cells for influenza viruses.

    Science.gov (United States)

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-12-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represent a new approach for study of the interrelations of this complex with influenza viruses.

  10. Innate immune induction and influenza protection elicited by a response-selective agonist of human C5a.

    Directory of Open Access Journals (Sweden)

    Sam D Sanderson

    Full Text Available The anaphylatoxin C5a is an especially potent mediator of both local and systemic inflammation. However, C5a also plays an essential role in mucosal host defense against bacterial, viral, and fungal infection. We have developed a response-selective agonist of human C5a, termed EP67, which retains the immunoenhancing activity of C5a at the expense of its inflammatory, anaphylagenic properties. EP67 insufflation results in the rapid induction of pulmonary cytokines and chemokines. This is followed by an influx of innate immune effector cells, including neutrophils, NK cells, and dendritic cells. EP67 exhibits both prophylactic and therapeutic protection when tested in a murine model of influenza A infection. Mice treated with EP67 within a twenty-four hour window of non-lethal infection were significantly protected from influenza-induced weight loss. Furthermore, EP67 delivered twenty-four hours after lethal infection completely blocked influenza-induced mortality (0% vs. 100% survival. Since protection based on innate immune induction is not restricted to any specific pathogen, EP67 may well prove equally efficacious against a wide variety of possible viral, bacterial, and fungal pathogens. Such a strategy could be used to stop the worldwide spread of emergent respiratory diseases, including but not limited to novel strains of influenza.

  11. Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus

    Science.gov (United States)

    Suzuki, Tadaki; Kawaguchi, Akira; Ainai, Akira; Tamura, Shin-ichi; Ito, Ryo; Multihartina, Pretty; Setiawaty, Vivi; Pangesti, Krisna Nur Andriana; Odagiri, Takato; Tashiro, Masato; Hasegawa, Hideki

    2015-01-01

    Secretory IgA (S-IgA) antibodies, the major contributors to humoral mucosal immunity to influenza virus infection, are polymeric Igs present in many external secretions. In the present study, the quaternary structures of human S-IgA induced in nasal mucosa after administration of intranasal inactivated influenza vaccines were characterized in relation to neutralization potency against influenza A viruses. Human nasal IgA antibodies have been shown to contain at least five quaternary structures. Direct and real-time visualization of S-IgA using high-speed atomic force microscopy (AFM) demonstrated that trimeric and tetrameric S-IgA had six and eight antigen-binding sites, respectively, and that these structures exhibited large-scale asynchronous conformational changes while capturing influenza HA antigens in solution. Furthermore, trimeric, tetrameric, and larger polymeric structures, which are minor fractions in human nasal IgA, displayed increased neutralizing potency against influenza A viruses compared with dimeric S-IgA, suggesting that the larger polymeric than dimeric forms of S-IgA play some important roles in protection against influenza A virus infection in the human upper respiratory tract. PMID:26056267

  12. Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus.

    Science.gov (United States)

    Suzuki, Tadaki; Kawaguchi, Akira; Ainai, Akira; Tamura, Shin-ichi; Ito, Ryo; Multihartina, Pretty; Setiawaty, Vivi; Pangesti, Krisna Nur Andriana; Odagiri, Takato; Tashiro, Masato; Hasegawa, Hideki

    2015-06-23

    Secretory IgA (S-IgA) antibodies, the major contributors to humoral mucosal immunity to influenza virus infection, are polymeric Igs present in many external secretions. In the present study, the quaternary structures of human S-IgA induced in nasal mucosa after administration of intranasal inactivated influenza vaccines were characterized in relation to neutralization potency against influenza A viruses. Human nasal IgA antibodies have been shown to contain at least five quaternary structures. Direct and real-time visualization of S-IgA using high-speed atomic force microscopy (AFM) demonstrated that trimeric and tetrameric S-IgA had six and eight antigen-binding sites, respectively, and that these structures exhibited large-scale asynchronous conformational changes while capturing influenza HA antigens in solution. Furthermore, trimeric, tetrameric, and larger polymeric structures, which are minor fractions in human nasal IgA, displayed increased neutralizing potency against influenza A viruses compared with dimeric S-IgA, suggesting that the larger polymeric than dimeric forms of S-IgA play some important roles in protection against influenza A virus infection in the human upper respiratory tract.

  13. Epidemiology of human avian influenza in Indonesia, 2005-2009: a descriptive analysis

    Directory of Open Access Journals (Sweden)

    Wiku Adisasmito

    2010-02-01

    Full Text Available Aim The study set out to better understand the epidemiology, natural history, therapeutic management and outcomes associated with confirmed human cases of Avian Influenza (AI in Indonesia.Methods This observational study utilized data from 93 cases with laboratory-confirmed H5N1 Influenza between September 2005 and August 2009. Cases were identified through records obtained from the Ministry of Health, as well as the Provincial health office and district health office records. Categorical data were analyzed with frequency tables, chi-square tests, and relative risks, and continuous data were analyzed using univariate statistics and Wilcoxon tests.Results Most subjects (54% first presented to a physician’s office or clinic. All of the subjects were hospitalized, and the vast majority (85% had respiratory symptoms as their predominant symptom at presentation. There was no clear association of any of these case characteristics with survival. Cases with direct poultry exposure were 2.8 times more likely to receive oseltamivir treatment than those without direct exposure (RR = 2.89, 95% CI 1.44 – 5.78. While the overall number of survivors was small, cases with documented oseltamivir treatment were approximately 24% more likely to survive than cases for which oseltamivir treatment was not documented (RR 1.24; 95% CI: 0.34-4.58. In oseltamivir treated cases, the median time from symptom onset to start of antiviral treatment was 2.5 days in survivors compared to 7.0 days for those who died. Fatality, therefore, may be related to delay in initiation of treatment after presentation.Conclusions The data suggest that early treatment with the antiviral drug oseltamivir may play an important role in survival. However, a low clinical suspicion of disease likely remains an important impediment to early diagnosis. Therefore, a clear policy for the protocol of early diagnosis & treatment of febrile illness including influenza is necessary. (Med J Indones

  14. The Demise of Poskanzer and Schwab's Influenza Theory on the Pathogenesis of Parkinson's Disease

    OpenAIRE

    Danny Estupinan; Sunina Nathoo; Okun, Michael S.

    2013-01-01

    In 1961, David C. Poskanzer and Robert S. Schwab presented a paper, “Studies in the epidemiology of Parkinson’s disease predicting its disappearance as a major clinical entity by 1980.” This paper introduced the hypothesis that Parkinson’s disease was derived from a single aetiology, the influenza virus. We review the original Poskanzer and Schwab hypothesis that Parkinson’s disease was based on the association between the 1918-19 influenza epidemic and the later observation of Parkinsonism i...

  15. Outbreak of swine influenza in Argentina reveals a non-contemporary human H3N2 virus highly transmissible among pigs.

    Science.gov (United States)

    Cappuccio, Javier A; Pena, Lindomar; Dibárbora, Marina; Rimondi, Agustina; Piñeyro, Pablo; Insarralde, Lucas; Quiroga, María A; Machuca, Mariana; Craig, Maria I; Olivera, Valeria; Chockalingam, Ashok; Perfumo, Carlos J; Perez, Daniel R; Pereda, Ariel

    2011-12-01

    Sporadic outbreaks of human H3N2 influenza A virus (IAV) infections in swine populations have been reported in Asia, Europe and North America since 1970. In South America, serological surveys in pigs indicate that IAVs of the H3 and H1 subtypes are currently in circulation; however, neither virus isolation nor characterization has been reported. In November 2008, an outbreak of respiratory disease in pigs consistent with swine influenza virus (SIV) infection was detected in Argentina. The current study describes the clinical epidemiology, pathology, and molecular and biological characteristics of the virus. Phylogenetic analysis revealed that the virus isolate shared nucleotide identities of 96-98 % with H3N2 IAVs that circulated in humans from 2000 to 2003. Antigenically, sera from experimentally inoculated animals cross-reacted mainly with non-contemporary human-origin H3N2 influenza viruses. In an experimental infection in a commercial swine breed, the virus was of low virulence but was transmitted efficiently to contact pigs and caused severe disease when an infected animal acquired a secondary bacterial infection. This is the first report of a wholly human H3N2 IAV associated with clinical disease in pigs in South America. These studies highlight the importance of two-way transmission of IAVs and SIVs between pigs and humans, and call for enhanced influenza surveillance in the pig population worldwide.

  16. Proinflammatory cytokine responses induced by influenza A (H5N1 viruses in primary human alveolar and bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Poon LLM

    2005-11-01

    Full Text Available Abstract Background Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10. Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97 (H5N1/97 were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a and chemokines (e.g. IP-10 from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells. Methods We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97, A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04 with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro. Results We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted and interleukin 6 (IL-6 in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04 appeared to be even more potent at inducing IP-10 than H5N1/97 virus. Conclusion The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.

  17. Caveolin-1 influences human influenza A virus (H1N1 multiplication in cell culture

    Directory of Open Access Journals (Sweden)

    Hemgård Gun-Viol

    2010-05-01

    Full Text Available Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1 as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1 strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1 virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK, a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.

  18. High Permissivity of Human HepG2 Hepatoma Cells for Influenza Viruses

    OpenAIRE

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-01-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represe...

  19. Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses.

    Science.gov (United States)

    Chan, Renee W Y; Chan, Michael C W; Nicholls, John M; Malik Peiris, J S

    2013-12-05

    The tropism of influenza viruses for the human respiratory tract is a key determinant of host-range, and consequently, of pathogenesis and transmission. Insights can be obtained from clinical and autopsy studies of human disease and relevant animal models. Ex vivo cultures of the human respiratory tract and in vitro cultures of primary human cells can provide complementary information provided they are physiologically comparable in relevant characteristics to human tissues in vivo, e.g. virus receptor distribution, state of differentiation. We review different experimental models for their physiological relevance and summarize available data using these cultures in relation to highly pathogenic avian influenza H5N1, in comparison where relevant, with other influenza viruses. Transformed continuous cell-lines often differ in important ways to the corresponding tissues in vivo. The state of differentiation of primary human cells (respiratory epithelium, macrophages) can markedly affect virus tropism and host responses. Ex vivo cultures of human respiratory tissues provide a close resemblance to tissues in vivo and may be used to risk assess animal viruses for pandemic threat. Physiological factors (age, inflammation) can markedly affect virus receptor expression and virus tropism. Taken together with data from clinical studies on infected humans and relevant animal models, data from ex vivo and in vitro cultures of human tissues and cells can provide insights into virus transmission and pathogenesis and may provide understanding that leads to novel therapeutic interventions.

  20. ‘Spanish’ flu and army horses: what historians and biologists can learn from a history of animals with flu during the 1918–1919 influenza pandemic

    National Research Council Canada - National Science Library

    Floor Haalboom

    2014-01-01

    At the time of the 1918–1919 ‘Spanish’ influenza pandemic, influenza researchers did not just relate this disease to the human population, despite the focus of historians of medicine on its human aspects and meanings...

  1. Cross-recognition of avian H5N1 influenza virus by human cytotoxic T-lymphocyte populations directed to human influenza A virus

    NARCIS (Netherlands)

    J.H.C.M. Kreijtz (Joost); G. de Mutsert (Gerrie); C.A. van Baalen (Carel); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)

    2008-01-01

    textabstractSince the number of human cases of infection with avian H5N1 influenza viruses is ever increasing, a pandemic outbreak caused by these viruses is feared. Therefore, in addition to virus-specific antibodies, there is considerable interest in immune correlates of protection against these v

  2. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade

    Directory of Open Access Journals (Sweden)

    Ding Yuan Oh

    2014-01-01

    Full Text Available Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004–2013, the adamantanes and the neuraminidase inhibitors (NAIs. During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1 viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future.

  3. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    Science.gov (United States)

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  4. A combination of serological assays to detect human antibodies to the avian influenza A H7N9 virus.

    Directory of Open Access Journals (Sweden)

    Libo Dong

    Full Text Available Human infection with avian influenza A H7N9 virus was first identified in March 2013 and represents an ongoing threat to public health. There is a need to optimize serological methods for this new influenza virus. Here, we compared the sensitivity and specificity of the hemagglutinin inhibition (HI, microneutralization (MN, and Western blot (WB assays for the detection of human antibodies against avian influenza A (H7N9 virus. HI with horse erythrocytes (hRBCs and a modified MN assay possessed greater sensitivity than turkey erythrocytes and the standard MN assay, respectively. Using these assays, 80% of tested sera from confirmed H7N9 cases developed detectable antibody to H7N9 after 21 days. To balance sensitivity and specificity, we found serum titers of ≥20 (MN or 160 (HI samples were most effective in determining seropositive to H7N9 virus. Single serum with HI titers of 20-80 or MN titer of 10 could be validated by each other or WB assay. Unlike serum collected from adult or elderly populations, the antibody response in children with mild disease was low or undetectable. These combinations of assays will be useful in case diagnosis and serologic investigation of human cases.

  5. Experimental SARS and influenza: similar disease, different pathways

    NARCIS (Netherlands)

    J.M.A. van den Brand (Judith)

    2013-01-01

    textabstractIn humans, viral infections causing respiratory disease have been known for many years. Every now and then such viruses may cause epidemics involving large groups of people or even pandemics with spread across the world. At the end of last century and at the beginning of this century zoo

  6. Experimental SARS and influenza: similar disease, different pathways

    NARCIS (Netherlands)

    J.M.A. van den Brand (Judith)

    2013-01-01

    textabstractIn humans, viral infections causing respiratory disease have been known for many years. Every now and then such viruses may cause epidemics involving large groups of people or even pandemics with spread across the world. At the end of last century and at the beginning of this century

  7. Burden and outcome of human influenza in a tertiary care hospital of Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Rasul CH; Bakar MA; Mamun AA; Siraz MS; Zaman RU

    2011-01-01

    Objective:To determine the magnitude and outcome of influenza in southern part of Bangladesh and also to identify intrusion of novel influenza virus. Methods:This study was conducted for two years (2008-2009) in outpatient and inpatient department of both paediatrics and medicine discipline of Khulna Medical College Hospital. Nasal and throat swab specimens were collected from each influenza like illness (ILI) case and kept together in a virus transport media and transported to international centre for diarrhoeal disease and research, Bangladesh laboratory. Influenza virus was detected by rRT-PCR including types and subtypes. Results:A total of 526 patients were enrolled during the study period with the mean (SD) age of 19 (17) years. Identification of influenza virus was 14%and positive cases were mostly found in under-five children (24%). The vast majority (88%) of influenza cases were found during April to September. Virus detection rate was higher in inpatient department (IPD) (21%) than in outpatient department (12%). The dominant virus type and subtype was influenza A (87%) and H3 (49%), respectively. Type A was significantly higher than type B in causing severe illness compared to ILI (OR=7.04, 95%CI:2.76-18.7, P<0.01). Headache and chest indrawing was found in significantly higher proportion (P<0.05) in influenza positive IPD cases. Among 31 hospitalized cases majority (77%) recovered completely except two cases that needed referral for additional support. Conclusions:Influenza mostly affected under-five children and young adult. The peak season here was late summer and rainy season.

  8. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens.

    Directory of Open Access Journals (Sweden)

    Dominick J Laddy

    Full Text Available BACKGROUND: The persistent evolution of highly pathogenic avian influenza (HPAI highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. METHODS AND FINDINGS: Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA, N1 neuraminidase (pN1NA, and nucleoprotein antigen (pNP. Dramatic IFN-gamma-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40 were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. CONCLUSIONS: By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the

  9. The effect of physician’s recommendation on seasonal influenza immunization in children with chronic diseases

    Directory of Open Access Journals (Sweden)

    Pandolfi Elisabetta

    2012-11-01

    Full Text Available Abstract Background Despite recommendations by Health Authorities, influenza immunization coverage remains low in children with chronic diseases. Different medical providers involved in the management of children with chronic conditions may affect the pattern of influenza vaccine recommendations and coverage. The likelihood of vaccination by type of provider in children with chronic conditions is poorly understood. Therefore, the objectives of this study were to analyze the pattern and the effect of recommendations for seasonal influenza immunization provided by different physician profiles to families of children with chronic diseases and to measure the frequency of immunization in the study population. Methods We recruited children with chronic diseases aged 6 months–18 years who subsequently presented to specialty clinics for routine follow-up visits, during spring 2009, in three Italian Regions Families of children with chronic diseases were interviewed during routine visits at reference centers through a face-to-face interview. We analyzed the following immunization predictors: having received a recommendation toward influenza immunization by a health provider; child’s sex and age; mothers and fathers’ age; parental education and employment; underlying child’s disease; number of contacts with health providers in the previous year. Influenza immunization coverage was calculated as the proportion of children who received at least one dose of seasonal influenza vaccine in the previous season. We calculated prevalence ratios and we used a generalized linear model with Poisson family, log link and robust error variance to assess the effect of socio-demographic variables, underlying diseases, and recommendations provided by physicians on influenza immunization. Results We enrolled 275 families of children with chronic diseases. Overall influenza coverage was 57.5%, with a low of 25% in children with neurological diseases and a high of 91

  10. Invasive Haemophilus Influenzae Disease, Europe, 1996–2006

    Centers for Disease Control (CDC) Podcasts

    2010-03-15

    This podcast describes monitoring of Haemophilus influenzae disease in Europe from 1996 through 2006. CDC epidemiologist Stacey Martin discusses what researchers learned about the effect of vaccination on disease prevalence.  Created: 3/15/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID); National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 4/5/2010.

  11. Retroviruses and human disease.

    OpenAIRE

    1987-01-01

    Over the past 25 years animal retroviruses have been favoured subjects of research by virologists, oncologists, and molecular biologists. Retroviruses have given us reverse transcriptase, oncogenes, and cloning vectors that may one day be exploited for human gene therapy. They have also given us leukaemia and the acquired immune deficiency syndrome (AIDS). Kawasaki disease and tropical spastic paraparesis are thought to be associated with retrovirus infection, and other diseases such as de Qu...

  12. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  13. Broad-range neutralizing anti-influenza A human monoclonal antibodies: new perspectives in therapy and prophylaxis.

    Science.gov (United States)

    Clementi, Nicola; Criscuolo, Elena; Castelli, Matteo; Clementi, Massimo

    2012-10-01

    Broadly neutralizing monoclonal antibodies (mAbs) directed against different subtypes of influenza A viruses are novel tools for the potential development of effective anti-influenza prophylactic and therapeutic strategies. In both cases, the main candidates for passive transfer and new vaccine development are represented by protective mAbs directed against influenza hemagglutinin (HA). A large number of mAbs directed against influenza HA has been developed to date. However, even if they can be useful and contribute to develop new vaccinal strategies, only few of them can be a good candidate for human administration. In this review, we will describe the most relevant human mAb directed against influenza HA able to recognize highly divergent influenza isolates and possibly useful for human therapy and prophylaxis.

  14. Pandemic influenza (H1N1 2009 is associated with severe disease in India.

    Directory of Open Access Journals (Sweden)

    Akhilesh C Mishra

    Full Text Available BACKGROUND: Pandemic influenza A (H1N1 2009 has posed a serious public health challenge world-wide. In absence of reliable information on severity of the disease, the nations are unable to decide on the appropriate response against this disease. METHODS: Based on the results of laboratory investigations, attendance in outpatient department, hospital admissions and mortality from the cases of influenza like illness from 1 August to 31 October 2009 in Pune urban agglomeration, risk of hospitalization and case fatality ratio were assessed to determine the severity of pandemic H1N1 and seasonal influenza-A infections. RESULTS: Prevalence of pandemic H1N1 as well as seasonal-A cases were high in Pune urban agglomeration during the study period. The cases positive for pandemic H1N1 virus had significantly higher risk of hospitalization than those positive for seasonal influenza-A viruses (OR: 1.7. Of 93 influenza related deaths, 57 and 8 deaths from Pune (urban and 27 and 1 death from Pune (rural were from pandemic H1N1 positive and seasonal-A positive cases respectively. The case fatality ratio 0.86% for pandemic H1N1 was significantly higher than that of seasonal-A (0.13% and it was in category 3 of the pandemic severity index of CDC, USA. The data on the cumulative fatality of rural and urban Pune revealed that with time the epidemic is spreading to rural areas. CONCLUSIONS: The severity of the H1N1 influenza pandemic is less than that reported for 'Spanish flu 1918' but higher than other pandemics of the 20(th century. Thus, pandemic influenza should be considered as serious health threat and unprecedented global response seems justified.

  15. Experimental infection with a Thai reassortant swine influenza virus of pandemic H1N1 origin induced disease.

    Science.gov (United States)

    Charoenvisal, Nataya; Keawcharoen, Juthatip; Sreta, Donruethai; Tantawet, Siriporn; Jittimanee, Suphattra; Arunorat, Jirapat; Amonsin, Alongkorn; Thanawongnuwech, Roongroje

    2013-03-16

    Following the emergence of the pandemic H1N1 influenza A virus in 2009 in humans, this novel virus spread into the swine population. Pigs represent a potential host for this virus and can serve as a mixing vessel for genetic mutations of the influenza virus. Reassortant viruses eventually emerged from the 2009 pandemic and were reported in swine populations worldwide including Thailand. As a result of the discovery of this emergent disease, pathogenesis studies of this novel virus were conducted in order that future disease protection and control measures in swine and human populations could be enacted. The pandemic H1N1 2009 virus (pH1N1) and its reassortant virus (rH1N1) isolated from pigs in Thailand were inoculated into 2 separate cohorts of 9, 3-week-old pigs. Cohorts were consisted of one group experimentally infected with pH1N1 and one group with rH1N1. A negative control group consisting of 3 pigs was also included. Clinical signs, viral shedding and pathological lesions were investigated and compared. Later, 3 pigs from viral inoculated groups and 1 pig from the control group were necropsied at 2, 4, and 12 days post inoculation (DPI). The results indicated that pigs infected with both viruses demonstrated typical flu-like clinical signs and histopathological lesions of varying severity. Influenza infected-pigs of both groups had mild to moderate pulmonary signs on 1-4 DPI. Interestingly, pigs in both groups demonstrated viral RNA detection in the nasal swabs until the end of the experiment (12 DPI). The present study demonstrated that both the pH1N1 and rH1N1 influenza viruses, isolated from naturally infected pigs, induced acute respiratory disease in experimentally inoculated nursery pigs. Although animals in the rH1N1-infected cohort demonstrated more severe clinical signs, had higher numbers of pigs shedding the virus, were noted to have increased histopathological severity of lung lesions and increased viral antigen in lung tissue, the findings were

  16. Epidemiology of human influenza A(H7N9) infection in Hong Kong.

    Science.gov (United States)

    Leung, Yiu-Hong; To, May-Kei; Lam, Tsz-Sum; Yau, Shui-Wah; Leung, Oi-Shan; Chuang, Shuk-Kwan

    2017-04-01

    We conducted a case series study to review the epidemiology of human influenza A(H7N9) infection reported in Hong Kong. We reviewed case records of confirmed human cases of influenza A(H7N9) infection reported in Hong Kong in the 2013-2014 winter season. We compared the median viral shedding duration and interval from illness onset to initiation of oseltamivir treatment between severe and mild cases. We estimated the incubation period of influenza A(H7N9) virus from cases with a single known date of poultry exposure. A total of 10 cases were reported and all were imported infection from Mainland China. Four patients died and the cause of death was related to influenza A(H7N9) infection in two patients. The median interval from illness onset to initiation of oseltamivir treatment for the severe cases (4.5 days) was significantly longer than the mild cases (2 days; p = 0.025). Severe cases had a significantly longer viral shedding duration than mild cases (p = 0.028). The median incubation period for cases with a single known exposure date was 4 days. Nasopharyngeal aspirate taken from the 88 close contacts of the 10 patients all tested negative for influenza A virus using reverse transcription polymerase chain reaction. Delayed administration of antiviral treatment may be associated with a more severe illness for influenza A(H7N9) infection. Despite our aggressive contact tracing policy with laboratory testing of all close contacts, no secondary case was identified which implied that the potential of human-to-human transmission of the circulating influenza A(H7N9) virus remains low. Copyright © 2015. Published by Elsevier B.V.

  17. Vascular Permeability Drives Susceptibility to Influenza Infection in a Murine Model of Sickle Cell Disease

    Science.gov (United States)

    Karlsson, Erik A.; Oguin, Thomas H.; Meliopoulos, Victoria; Iverson, Amy; Broadnax, Alexandria; Yoon, Sun-Woo; Pestina, Tamara; Thomas, Paul; Webby, Richard; Schultz-Cherry, Stacey; Rosch, Jason W.

    2017-01-01

    Sickle cell disease (SCD) is a major global health concern. Patients with SCD experience disproportionately greater morbidity and mortality in response to influenza infection than do others. Viral infection is one contributing factor for the development of Acute Chest Syndrome (ACS), a major cause of morbidity and mortality in SCD patients. We determined whether the heightened sensitivity to influenza infection could be reproduced in the two different SCD murine models to ascertain the underlying mechanisms of increased disease severity. In agreement with clinical observations, we found that both genetic and bone marrow-transplanted SCD mice had greater mortality in response to influenza infection than did wild-type animals. Despite similar initial viral titers and inflammatory responses between wild-type and SCD animals during infection, SCD mice continued to deteriorate and failed to resolve the infection, resulting in increased mortality. Histopathology of the lung tissues revealed extensive pulmonary edema and vascular damage following infection, a finding confirmed by heightened vascular permeability following virus challenge. These findings implicate the development of exacerbated pulmonary permeability following influenza challenge as the primary factor underlying heightened mortality. These studies highlight the need to focus on prevention and control strategies against influenza infection in the SCD population. PMID:28256526

  18. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses.

    Science.gov (United States)

    Sun, Shisheng; Wang, Qinzhe; Zhao, Fei; Chen, Wentian; Li, Zheng

    2012-01-01

    Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data.

  19. Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus.

    Science.gov (United States)

    Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao

    2015-09-28

    The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control.

  20. Estimating the Distribution of the Incubation Periods of Human Avian Influenza A(H7N9) Virus Infections

    Science.gov (United States)

    Virlogeux, Victor; Li, Ming; Tsang, Tim K.; Feng, Luzhao; Fang, Vicky J.; Jiang, Hui; Wu, Peng; Zheng, Jiandong; Lau, Eric H. Y.; Cao, Yu; Qin, Ying; Liao, Qiaohong; Yu, Hongjie; Cowling, Benjamin J.

    2015-01-01

    A novel avian influenza virus, influenza A(H7N9), emerged in China in early 2013 and caused severe disease in humans, with infections occurring most frequently after recent exposure to live poultry. The distribution of A(H7N9) incubation periods is of interest to epidemiologists and public health officials, but estimation of the distribution is complicated by interval censoring of exposures. Imputation of the midpoint of intervals was used in some early studies, resulting in estimated mean incubation times of approximately 5 days. In this study, we estimated the incubation period distribution of human influenza A(H7N9) infections using exposure data available for 229 patients with laboratory-confirmed A(H7N9) infection from mainland China. A nonparametric model (Turnbull) and several parametric models accounting for the interval censoring in some exposures were fitted to the data. For the best-fitting parametric model (Weibull), the mean incubation period was 3.4 days (95% confidence interval: 3.0, 3.7) and the variance was 2.9 days; results were very similar for the nonparametric Turnbull estimate. Under the Weibull model, the 95th percentile of the incubation period distribution was 6.5 days (95% confidence interval: 5.9, 7.1). The midpoint approximation for interval-censored exposures led to overestimation of the mean incubation period. Public health observation of potentially exposed persons for 7 days after exposure would be appropriate. PMID:26409239

  1. Eccentric exercise as an adjuvant to influenza vaccination in humans.

    Science.gov (United States)

    Edwards, Kate M; Burns, Victoria E; Allen, Louise M; McPhee, Jamie S; Bosch, Jos A; Carroll, Douglas; Drayson, Mark; Ring, Christopher

    2007-02-01

    The immune response to vaccination in animals can be enhanced by exposure to acute stress at the time of vaccination. The efficacy of this adjuvant strategy for vaccination in humans requires investigation. The current study employed a randomised controlled trial design to examine the effects of eccentric exercise prior to influenza vaccination on the antibody and cell-mediated responses. Sixty young healthy adults (29 men, 31 women) performed eccentric contractions of the deltoid and biceps brachii muscles of the non-dominant arm (exercise group) or rested quietly (control group), and were vaccinated 6h later in the non-dominant arm. Change in arm circumference and pain were measured to assess the physiological response to exercise. Antibody titres were measured pre-vaccination and at 6- and 20-week follow-ups. Interferon-gamma in response to in vitro stimulation by the whole vaccine, an index of the cell-mediated response, was measured 8 weeks post-vaccination. Interferon-gamma responses were enhanced by exercise in men, whereas antibody titres were enhanced by eccentric exercise in women but not in men. Men showed greater increase in arm circumference after eccentric exercise than women but there was no difference in reported pain. The interferon-gamma response was positively associated with the percentage increase in arm circumference among the exercise group. Eccentric exercise exerted differential effects on the response to vaccination in men and women, with enhancement of the antibody response in women, but enhancement of the cell-mediated response in men. Eccentric exercise of the muscle at the site of vaccine administration should be explored further as a possible behavioural adjuvant to vaccination.

  2. Temporal cross-correlation between influenza-like illnesses and invasive pneumococcal disease in the Netherlands

    OpenAIRE

    Hendriks, W; Boshuizen, H.C.; Dekkers, A.; Knol, M J; Donker, G A; van der Ende, A; Korthals-Altes, H.

    2017-01-01

    BACKGROUND: While the burden of community-acquired pneumonia and invasive pneumococcal disease (IPD) is still considerable, there is little insight in the factors contributing to disease. Previous research on the lagged relationship between respiratory viruses and pneumococcal disease incidence is inconclusive, and studies correcting for temporal autocorrelation are lacking. OBJECTIVES: To investigate the temporal relation between influenza-like illnesses (ILI) and IPD, correcting for tempora...

  3. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    Energy Technology Data Exchange (ETDEWEB)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Oshita, Masatoshi; Ideno, Shoji [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Yunoki, Mikihiro [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Kuhara, Motoki [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano 396-0002 (Japan); Yamamoto, Naomasa [Department of Biochemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima 963-8611 (Japan); Okuno, Yoshinobu [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa 768-0061 (Japan); Ikuta, Kazuyoshi, E-mail: ikuta@biken.osaka-u.ac.jp [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan)

    2009-09-11

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  4. An inactivated influenza D virus vaccine partially protects cattle from respiratory disease caused by homologous challenge

    Science.gov (United States)

    Originally isolated from swine, the proposed influenza D virus has since been shown to be common in cattle. Inoculation of IDV to naïve calves resulted in mild respiratory disease histologically characterized by tracheitis. As several studies have associated the presence of IDV with acute bovine r...

  5. Impact of influenza on mortality in relation to age and underlying disease, 1967-1989

    NARCIS (Netherlands)

    M.J.W. Sprenger (Marc); P.G.H. Mulder (Paul); W.E.Ph. Beyer (Walter); R. van Strik (Roel); N. Masurel (Nic)

    1993-01-01

    textabstractBased on data from the Dutch Central Bureau of Statistics, the impact of influenza on mortality in The Netherlands was estimated for a 22.5-year period (1967-1989) in four age groups and three entities of disease, using Poisson regression techniques. Our analysis suggests that, on

  6. Analysis of non-typeable Haemophilus influenzae in invasive disease reveals lack of the capsule locus.

    Science.gov (United States)

    Lâm, T-T; Claus, H; Frosch, M; Vogel, U

    2016-01-01

    Among invasive Haemophilus influenzae, unencapsulated strains have largely surpassed the previously predominant serotype b (Hib) because of Hib vaccination. Isolates without the genomic capsule (cap) locus are designated non-typeable H. influenzae (NTHi). They are different from capsule-deficient variants that show deletion of the capsule transport gene bexA within the cap locus. The frequency of capsule-deficient variants in invasive disease is unknown. We analysed 783 unencapsulated invasive isolates collected over 5 years in Germany and found no single capsule-deficient isolate. Invasive unencapsulated strains in Germany were exclusively NTHi. A negative serotyping result by slide agglutination was therefore highly predictive for NTHi.

  7. Department of Defense Influenza and Other Respiratory Disease Surveillance during the 2009 Pandemic

    Science.gov (United States)

    2011-01-01

    NMRCD partnerships with Bolivia and Ecuador ; AFRIMS surveillance in Vietnam; NAMRU-3 develop- ment of a veterinary and human influenza surveillance...Korea, Microbiology Section, Unit 15244, Box 459, APO AP 96205, USA. 11Naval Medical Research Unit Number 2, Kompleks Pergudangan DEPKES R.I., JI

  8. Early-Life Intranasal Colonization with Nontypeable Haemophilus influenzae Exacerbates Juvenile Airway Disease in Mice.

    Science.gov (United States)

    McCann, Jessica R; Mason, Stanley N; Auten, Richard L; St Geme, Joseph W; Seed, Patrick C

    2016-07-01

    Accumulating evidence suggests a connection between asthma development and colonization with nontypeable Haemophilus influenzae (NTHi). Specifically, nasopharyngeal colonization of human infants with NTHi within 4 weeks of birth is associated with an increased risk of asthma development later in childhood. Monocytes derived from these infants have aberrant inflammatory responses to common upper respiratory bacterial antigens compared to those of cells derived from infants who were not colonized and do not go on to develop asthma symptoms in childhood. In this study, we hypothesized that early-life colonization with NTHi promotes immune system reprogramming and the development of atypical inflammatory responses. To address this hypothesis in a highly controlled model, we tested whether colonization of mice with NTHi on day of life 3 induced or exacerbated juvenile airway disease using an ovalbumin (OVA) allergy model of asthma. We found that animals that were colonized on day of life 3 and subjected to induction of allergy had exacerbated airway disease as juveniles, in which exacerbated airway disease was defined as increased cellular infiltration into the lung, increased amounts of inflammatory cytokines interleukin-5 (IL-5) and IL-13 in lung lavage fluid, decreased regulatory T cell-associated FOXP3 gene expression, and increased mucus production. We also found that colonization with NTHi amplified airway resistance in response to increasing doses of a bronchoconstrictor following OVA immunization and challenge. Together, the murine model provides evidence for early-life immune programming that precedes the development of juvenile airway disease and corroborates observations that have been made in human children.

  9. Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses.

    Science.gov (United States)

    Hartmann, Boris M; Thakar, Juilee; Albrecht, Randy A; Avey, Stefan; Zaslavsky, Elena; Marjanovic, Nada; Chikina, Maria; Fribourg, Miguel; Hayot, Fernand; Schmolke, Mirco; Meng, Hailong; Wetmur, James; García-Sastre, Adolfo; Kleinstein, Steven H; Sealfon, Stuart C

    2015-10-01

    Influenza viruses continue to present global threats to human health. Antigenic drift and shift, genetic reassortment, and cross-species transmission generate new strains with differences in epidemiology and clinical severity. We compared the temporal transcriptional responses of human dendritic cells (DC) to infection with two pandemic (A/Brevig Mission/1/1918, A/California/4/2009) and two seasonal (A/New Caledonia/20/1999, A/Texas/36/1991) H1N1 influenza viruses. Strain-specific response differences included stronger activation of NF-κB following infection with A/New Caledonia/20/1999 and a unique cluster of genes expressed following infection with A/Brevig Mission/1/1918. A common antiviral program showing strain-specific timing was identified in the early DC response and found to correspond with reported transcript changes in blood during symptomatic human influenza virus infection. Comparison of the global responses to the seasonal and pandemic strains showed that a dramatic divergence occurred after 4 h, with only the seasonal strains inducing widespread mRNA loss. Continuously evolving influenza viruses present a global threat to human health; however, these host responses display strain-dependent differences that are incompletely understood. Thus, we conducted a detailed comparative study assessing the immune responses of human DC to infection with two pandemic and two seasonal H1N1 influenza strains. We identified in the immune response to viral infection both common and strain-specific features. Among the stain-specific elements were a time shift of the interferon-stimulated gene response, selective induction of NF-κB signaling by one of the seasonal strains, and massive RNA degradation as early as 4 h postinfection by the seasonal, but not the pandemic, viruses. These findings illuminate new aspects of the distinct differences in the immune responses to pandemic and seasonal influenza viruses. Copyright © 2015, American Society for Microbiology. All

  10. NNDSS - Table II. Giardiasis to Haemophilus influenza

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...

  11. NNDSS - Table II. Giardiasis to Haemophilus influenza

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...

  12. NNDSS - Table II. Giardiasis to Haemophilus influenza

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2016. In this Table, provisional* cases of selected†notifiable diseases (≥1,000 cases reported during the...

  13. Theoretical and practical exploration of vision building in human influenza pandemic prevention & control

    Institute of Scientific and Technical Information of China (English)

    PengKong; YanKong; XuJiang; XiaohuaWang

    2010-01-01

    This article introduced the vision building concept about human influenza pandemic prevention and control. Different visions were built by creating different shapes of building blocks which also represented different organizations and physical facilities, respectively. The around-view reflection is required to be developed in the process of building so as to search for the ideal pattern. The correlation of all sectors and systems are established to combine different kinds of things, from one family to another, from communities, towns, counties, cities, rural areas, provinces to the state to handle trivial problems. These training objectives have been successfully accomplished, which has not only enriched the knowledge about prevention and control of influenza pandemic between different departments but also clarified the roles and responsibility. It lays the firm foundation for next cooperation between different departments, and make a bridge for the objective and choice of channel over human influenza pandemic prevention and control.

  14. A new model for simulating evolution of human influenza virus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Understanding the evolution of influenza A virus, which poses a global challenge to public health, is of special significance for its control and prevention. Although the genome structure of the virus is seemingly simple, their evolutionary patterns and molecular mechanisms are difficult to reveal.

  15. [Polymorphism of current human influenza A and B virus population].

    Science.gov (United States)

    Grinbaum, E B; Litvinova, O M; Bannikov, A I; Konovalenko, I B; Chernookaia, N Iu; Iukhnova, L G; Kiselev, O I

    1994-01-01

    During the past years, the etiological situation has been significantly complicated. It is characterized by simultaneous circulation of A(H1N1), A(H3N2) and influenza B viruses and by the isolation of reassortant strains and viruses, which are atypical in relation to the process of their natural variability. The antigenic properties of epidemic strains and unusual isolates were investigated. The marked heterogeneity of the A(H3N2) influenza viruses was demonstrated. It was determined by the circulation of several antigenic variants during the epidemic. Two separate antigenic lineage of the influenza B viruses--b/Victoria/2/87 and B/Yamagata/16/88--cocirculated in our country in 1991. Since 1986, all the influenza A(H1N1) viruses have been considered to be varieties of the reference strain A/Taiwan/1/86. A direct correlation was found between some atypical viruses and the vaccine strains previously used.

  16. Reassortment ability of the 2009 pandemic H1N1 influenza virus with circulating human and avian influenza viruses: public health risk implications.

    Science.gov (United States)

    Stincarelli, Maria; Arvia, Rosaria; De Marco, Maria Alessandra; Clausi, Valeria; Corcioli, Fabiana; Cotti, Claudia; Delogu, Mauro; Donatelli, Isabella; Azzi, Alberta; Giannecchini, Simone

    2013-08-01

    Exploring the reassortment ability of the 2009 pandemic H1N1 (A/H1N1pdm09) influenza virus with other circulating human or avian influenza viruses is the main concern related to the generation of more virulent or new variants having implications for public health. After different coinfection experiments in human A549 cells, by using the A/H1N1pdm09 virus plus one of human seasonal influenza viruses of H1N1 and H3N2 subtype or one of H11, H10, H9, H7 and H1 avian influenza viruses, several reassortant viruses were obtained. Among these, the HA of H1N1 was the main segment of human seasonal influenza virus reassorted in the A/H1N1pdm09 virus backbone. Conversely, HA and each of the three polymerase segments, alone or in combination, of the avian influenza viruses mainly reassorted in the A/H1N1pdm09 virus backbone. Of note, A/H1N1pdm09 viruses that reassorted with HA of H1N1 seasonal human or H11N6 avian viruses or carried different combination of avian origin polymerase segments, exerted a higher replication effectiveness than that of the parental viruses. These results confirm that reassortment of the A/H1N1pdm09 with circulating low pathogenic avian influenza viruses should not be misjudged in the prediction of the next pandemic. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Preexisting human antibodies neutralize recently emerged H7N9 influenza strains

    Science.gov (United States)

    Henry Dunand, Carole J.; Leon, Paul E.; Kaur, Kaval; Tan, Gene S.; Zheng, Nai-Ying; Andrews, Sarah; Huang, Min; Qu, Xinyan; Huang, Yunping; Salgado-Ferrer, Marlene; Ho, Irvin Y.; Taylor, William; Hai, Rong; Wrammert, Jens; Ahmed, Rafi; García-Sastre, Adolfo; Palese, Peter; Krammer, Florian; Wilson, Patrick C.

    2015-01-01

    The emergence and seasonal persistence of pathogenic H7N9 influenza viruses in China have raised concerns about the pandemic potential of this strain, which, if realized, would have a substantial effect on global health and economies. H7N9 viruses are able to bind to human sialic acid receptors and are also able to develop resistance to neuraminidase inhibitors without a loss in fitness. It is not clear whether prior exposure to circulating human influenza viruses or influenza vaccination confers immunity to H7N9 strains. Here, we demonstrate that 3 of 83 H3 HA-reactive monoclonal antibodies generated by individuals that had previously undergone influenza A virus vaccination were able to neutralize H7N9 viruses and protect mice against homologous challenge. The H7N9-neutralizing antibodies bound to the HA stalk domain but exhibited a difference in their breadth of reactivity to different H7 influenza subtypes. Mapping viral escape mutations suggested that these antibodies bind at least two different epitopes on the stalk region. Together, these results indicate that these broadly neutralizing antibodies may contribute to the development of therapies against H7N9 strains and may also be effective against pathogenic H7 strains that emerge in the future. PMID:25689254

  18. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium.

    Science.gov (United States)

    Böttcher-Friebertshäuser, Eva; Klenk, Hans-Dieter; Garten, Wolfgang

    2013-11-01

    Influenza is an acute infection of the respiratory tract, which affects each year millions of people. Influenza virus infection is initiated by the surface glycoprotein hemagglutinin (HA) through receptor binding and fusion of viral and endosomal membranes. HA is synthesized as a precursor protein and requires cleavage by host cell proteases to gain its fusion capacity. Although cleavage of HA is crucial for virus infectivity, little was known about relevant proteases in the human airways for a long time. Recent progress in the identification and characterization of HA-activating host cell proteases has been considerable however and supports the idea of targeting HA cleavage as a novel approach for influenza treatment. Interestingly, certain bacteria have been demonstrated to support HA activation either by secreting proteases that cleave HA or due to activation of cellular proteases and thereby may contribute to virus spread and enhanced pathogenicity. In this review, we give an overview on activation of influenza viruses by proteases from host cells and bacteria with the main focus on recent progress on HA cleavage by proteases HAT and TMPRSS2 in the human airway epithelium. In addition, we outline investigations of HA-activating proteases as potential drug targets for influenza treatment. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Novel avian-origin influenza A (H7N9) virus attaches to epithelium in both upper and lower respiratory tract of humans

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); L.M.E. Leijten (Lonneke); M.T. de Graaf (Marieke); J.Y. Siegers (Jurre); K.R. Short (Kirsty); M.I. Spronken (Monique); E.J.A. Schrauwen (Eefje); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2013-01-01

    textabstractInfluenza A viruses from animal reservoirs have the capacity to adapt to humans and cause influenza pandemics. The occurrence of an influenza pandemic requires efficient virus transmission among humans, which is associated with virus attachment to the upper respiratory tract. Pandemic se

  20. Influenza Vaccination Reduces Dementia Risk in Chronic Kidney Disease Patients: A Population-Based Cohort Study.

    Science.gov (United States)

    Liu, Ju-Chi; Hsu, Yi-Ping; Kao, Pai-Feng; Hao, Wen-Rui; Liu, Shing-Hwa; Lin, Chao-Feng; Sung, Li-Chin; Wu, Szu-Yuan

    2016-03-01

    Taiwan has the highest prevalence of chronic kidney disease (CKD) worldwide. CKD, a manifestation of vascular diseases, is associated with a high risk of dementia. Here, we estimated the association between influenza vaccination and dementia risk in patients with CKD. Data from the National Health Insurance Research Database of Taiwan were used in this study. The study cohort included all patients diagnosed with CKD (according to International Classification of Disease, Ninth Revision, Clinical Modification codes) at healthcare facilities in Taiwan (n = 32,844) from January 1, 2000, to December 31, 2007. Each patient was followed up to assess dementia risk or protective factors: demographic characteristics of age and sex; comorbidities of diabetes, hypertension, dyslipidemia, cerebrovascular diseases, parkinsonism, epilepsy, substance and alcohol use disorders, mood disorder, anxiety disorder, psychotic disorder, and sleep disorder; urbanization level; monthly income; and statin, metformin, aspirin, and angiotensin-converting enzyme inhibitor (ACEI) use. A propensity score was derived using a logistic regression model for estimating the effect of vaccination by accounting for covariates that predict receiving the intervention (vaccine). A time-dependent Cox proportional hazard model was used to calculate the hazard ratios (HRs) of dementia among vaccinated and unvaccinated CKD patients. The study population comprised 11,943 eligible patients with CKD; 5745 (48%) received influenza vaccination and the remaining 6198 (52%) did not. The adjusted HRs (aHRs) of dementia decreased in vaccinated patients compared with those in unvaccinated patients (influenza season, noninfluenza season, and all seasons: aHRs = 0.68, 0.58, and 0.64; P dementia in various models. A stronger protective effect against dementia risk was demonstrated during the noninfluenza season. Regardless of comorbidities or drug use, influenza vaccination was an independent protective factor and

  1. Regulation of virulence gene expression resulting from Streptococcus pneumoniae and nontypeable Haemophilus influenzae interactions in chronic disease.

    Directory of Open Access Journals (Sweden)

    Emily K Cope

    Full Text Available Chronic rhinosinusitis (CRS is a common inflammatory disease of the sinonasal cavity mediated, in part, by polymicrobial communities of bacteria. Recent molecular studies have confirmed the importance of Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi in CRS. Here, we hypothesize that interaction between S. pneumoniae and NTHi mixed-species communities cause a change in bacterial virulence gene expression. We examined CRS as a model human disease to validate these polymicrobial interactions. Clinical strains of S. pneumoniae and NTHi were grown in mono- and co-culture in a standard biofilm assay. Reverse transcriptase real-time PCR (RTqPCR was used to measure gene expression of key virulence factors. To validate these results, we investigated the presence of the bacterial RNA transcripts in excised human tissue from patients with CRS. Consequences of physical or chemical interactions between microbes were also investigated. Transcription of NTHi type IV pili was only expressed in co-culture in vitro, and expression could be detected ex vivo in diseased tissue. S. pneumoniae pyruvate oxidase was up-regulated in co-culture, while pneumolysin and pneumococcal adherence factor A were down-regulated. These results were confirmed in excised human CRS tissue. Gene expression was differentially regulated by physical contact and secreted factors. Overall, these data suggest that interactions between H. influenzae and S. pneumoniae involve physical and chemical mechanisms that influence virulence gene expression of mixed-species biofilm communities present in chronically diseased human tissue. These results extend previous studies of population-level virulence and provide novel insight into the importance of S. pneumoniae and NTHi in CRS.

  2. The Leeuwenhoek Lecture 2001. Animal origins of human infectious disease.

    Science.gov (United States)

    Weiss, R A

    2001-06-29

    Since time immemorial animals have been a major source of human infectious disease. Certain infections like rabies are recognized as zoonoses caused in each case by direct animal-to-human transmission. Others like measles became independently sustained with the human population so that the causative virus has diverged from its animal progenitor. Recent examples of direct zoonoses are variant Creutzfeldt-Jakob disease arising from bovine spongiform encephalopathy, and the H5N1 avian influenza outbreak in Hong Kong. Epidemics of recent animal origin are the 1918-1919 influenza pandemic, and acquired immune deficiency syndrome caused by human immunodeficiency virus (HIV). Some retroviruses jump into and out of the chromosomal DNA of the host germline, so that they oscillate between being inherited Mendelian traits or infectious agents in different species. Will new procedures like animal-to-human transplants unleash further infections? Do microbes become more virulent upon cross-species transfer? Are animal microbes a threat as biological weapons? Will the vast reservoir of immunodeficient hosts due to the HIV pandemic provide conditions permissive for sporadic zoonoses to take off as human-to-human transmissible diseases? Do human infections now pose a threat to endangered primates? These questions are addressed in this lecture.

  3. Avian influenza and pandemic influenza preparedness in Hong Kong.

    Science.gov (United States)

    Lam, Ping Yan

    2008-06-01

    Avian influenza A H5N1 continues to be a major threat to global public health as it is a likely candidate for the next influenza pandemic. To protect public health and avert potential disruption to the economy, the Hong Kong Special Administrative Region Government has committed substantial effort in preparedness for avian and pandemic influenza. Public health infrastructures for emerging infectious diseases have been developed to enhance command, control and coordination of emergency response. Strategies against avian and pandemic influenza are formulated to reduce opportunities for human infection, detect pandemic influenza timely, and enhance emergency preparedness and response capacity. Key components of the pandemic response include strengthening disease surveillance systems, updating legislation on infectious disease prevention and control, enhancing traveller health measures, building surge capacity, maintaining adequate pharmaceutical stockpiles, and ensuring business continuity during crisis. Challenges from avian and pandemic influenza are not to be underestimated. Implementing quarantine and social distancing measures to contain or mitigate the spread of pandemic influenza is problematic in a highly urbanised city like Hong Kong as they involved complex operational and ethical issues. Sustaining effective risk communication campaigns during interpandemic times is another challenge. Being a member of the global village, Hong Kong is committed to contributing its share of efforts and collaborating with health authorities internationally in combating our common public health enemy.

  4. Infection and pathogenesis of canine, equine, and human influenza viruses in canine tracheas.

    Science.gov (United States)

    Gonzalez, Gaelle; Marshall, John F; Morrell, Joanna; Robb, David; McCauley, John W; Perez, Daniel R; Parrish, Colin R; Murcia, Pablo R

    2014-08-01

    Influenza A viruses (IAVs) can jump species barriers and occasionally cause epidemics, epizootics, pandemics, and panzootics. Characterizing the infection dynamics at the target tissues of natural hosts is central to understanding the mechanisms that control host range, tropism, and virulence. Canine influenza virus (CIV; H3N8) originated after the transfer of an equine influenza virus (EIV) into dogs. Thus, comparing CIV and EIV isolates provides an opportunity to study the determinants of influenza virus emergence. Here we characterize the replication of canine, equine, and human IAVs in the trachea of the dog, a species to which humans are heavily exposed. We define a phenotype of infection for CIV, which is characterized by high levels of virus replication and extensive tissue damage. CIV was compared to evolutionarily distinct EIVs, and the early EIV isolates showed an impaired ability to infect dog tracheas, while EIVs that circulated near the time of CIV emergence exhibited a CIV-like infection phenotype. Inoculating dog tracheas with various human IAVs (hIAVs) showed that they infected the tracheal epithelium with various efficiencies depending on the virus tested. Finally, we show that reassortant viruses carrying gene segments of CIV and hIAV are viable and that addition of the hemagglutinin (HA) and neuraminidase (NA) of CIV to the 2009 human pandemic virus results in a virus that replicates at high levels and causes significant lesions. This provides important insights into the role of evolution on viral emergence and on the role of HA and NA as determinants of pathogenicity. Influenza A viruses (IAVs) have entered new host species in recent history, sometimes with devastating consequences. Canine influenza virus (CIV) H3N8 originated from a direct transfer of an equine influenza virus (EIV) in the early 2000s. We studied the infection patterns of IAVs that circulate in dogs or to which dogs are commonly exposed and showed that CIV emergence was likely

  5. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Aitor Nogales

    2016-12-01

    Full Text Available Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.

  6. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  7. Innate immune response to influenza A virus in differentiated human alveolar type II cells.

    Science.gov (United States)

    Wang, Jieru; Nikrad, Mrinalini P; Phang, Tzulip; Gao, Bifeng; Alford, Taylor; Ito, Yoko; Edeen, Karen; Travanty, Emily A; Kosmider, Beata; Hartshorn, Kevan; Mason, Robert J

    2011-09-01

    Alveolar Type II (ATII) cells are important targets for seasonal and pandemic influenza. To investigate the influenza-induced innate immune response in those cells, we measured the global gene expression profile of highly differentiated ATII cells infected with the influenza A virus at a multiplicity of infection of 0.5 at 4 hours and 24 hours after inoculation. Infection with influenza stimulated a significant increase in the mRNA concentrations of many host defense-related genes, including pattern/pathogen recognition receptors, IFN, and IFN-induced genes, chemokines, and suppressors of cytokine signaling. We verified these changes by quantitative real-time RT-PCR. At the protein level, we detected a robust virus-induced secretion of the three glutamic acid-leucine-arginine (ELR)-negative chemokines CXCL9, CXCL10, and CXCL11, according to ELISA. The ultraviolet inactivation of virus abolished the chemokine and cytokine response. Viral infection did not appear to alter the differentiation of ATII cells, as measured by cellular mRNA and concentrations of surfactant proteins. However, viral infection significantly reduced the secretion of surfactant protein (SP)-A and SP-D. In addition, influenza A virus triggered a time-dependent activation of phosphatidylinositol 3-kinase signaling in ATII cells. The inhibition of this pathway significantly decreased the release of infectious virus and the chemokine response, but did not alter virus-induced cell death. This study provides insights into influenza-induced innate immunity in differentiated human ATII cells, and demonstrates that the alveolar epithelium is a critical part of the initial innate immune response to influenza.

  8. Final analysis of Netherlands avian influenza outbreaks reveals much higher levels of transmission to humans than previously thought.

    NARCIS (Netherlands)

    Bosman, A.; Meijer, A.; Koopmans, M.

    2005-01-01

    Between March and May 2003, an unprecedented outbreak of avian influenza occurred in humans in the Netherlands. During an extensive epizootic of influenza A virus H7N7 on commercial poultry farms, 86 cases in poultry workers and 3 cases in people with no poultry contact were initially confirmed by P

  9. Influenza vaccination responses in human systemic lupus erythematosus: impact of clinical and demographic features.

    Science.gov (United States)

    Crowe, Sherry R; Merrill, Joan T; Vista, Evan S; Dedeke, Amy B; Thompson, David M; Stewart, Scott; Guthridge, Joel M; Niewold, Timothy B; Franek, Beverly S; Air, Gillian M; Thompson, Linda F; James, Judith A

    2011-08-01

    Vaccination against common pathogens, such as influenza, is recommended for patients with systemic lupus erythematosus (SLE) to decrease infections and improve health. However, most reports describing the vaccination response are limited to evaluations of SLE patients with quiescent disease. This study focuses on understanding the clinical, serologic, therapeutic, and demographic factors that influence the response to influenza vaccination in SLE patients with a broad range of disease activity. Blood specimens and information on disease activity were collected from 72 patients with SLE, at baseline and at 2, 6, and 12 weeks after influenza vaccination. Influenza-specific antibody responses were assessed by determining the total serum antibody concentration (B(max)), relative affinity (K(a)), and level of hemagglutination inhibition in the plasma. Using a cumulative score, the patients were evenly divided into groups of high or low vaccine responders. Autoantibody levels were evaluated at each time point using immunofluorescence tests and standard enzyme-linked immunosorbent assays. Compared to high responders, low responders to the vaccine were more likely to have hematologic criteria (P = 0.009), to have more American College of Rheumatology classification criteria for SLE (P = 0.05), and to be receiving concurrent prednisone treatment (P = 0.04). Interestingly, European American patients were more likely to be low responders than were African American patients (P = 0.03). Following vaccination, low responders were more likely to experience disease flares (P = 0.01) and to have increased titers of antinuclear antibodies (P = 0.04). Serum interferon-α activity at baseline was significantly higher in patients in whom a flare occurred after vaccination compared to a matched group of patients who did not experience a disease flare (P = 0.04). Ancestral background, prednisone treatment, hematologic criteria, and evidence of increased likelihood of disease flares were

  10. Influenza Seasonal Summary, 2014-2015 Season

    Science.gov (United States)

    2015-08-14

    categorized into influenza types, two of which (Type A and Type B) routinely spread among humans and result in seasonal influenza each year. An...diseases Diseases of the nervous system and sense organs Menta l disorders Inj ury and poisoning Compli cations of pregnancy, childbirth , and the...forming organs Injury and poisoning Diseases of the digestive system Menta l disorders Compli cations of pregnancy, childbirth , and the puerperium

  11. Human mobility and the spatial transmission of influenza in the United States

    DEFF Research Database (Denmark)

    Charu, Vivek; Zeger, Scott; Gog, Julia

    2017-01-01

    of which sparked onward transmission. Gravity model estimates indicate a sharp decay in influenza transmission with the distance between infectious and susceptible cities, consistent with spread dominated by work commutes rather than air traffic. Two early-onset seasons associated with antigenic novelty......Seasonal influenza epidemics offer unique opportunities to study the invasion and re-invasion waves of a pathogen in a partially immune population. Detailed patterns of spread remain elusive, however, due to lack of granular disease data. Here we model high-volume city-level medical claims data...

  12. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection

    Science.gov (United States)

    Exposure to oxidant air pollution is associated with Increased respiratory morbiditses and susceptibility to Infections Ozone is a commonly encountered oxidant air pollutant, yet Its effects on influenza infections in humans are not known ‘the greater Mexico City area was the pri...

  13. Human influenza A(H7N9) virus infection associated with poultry farm, Northeastern China.

    Science.gov (United States)

    Fan, Ming; Huang, Biao; Wang, Ao; Deng, Liquan; Wu, Donglin; Lu, Xinrong; Zhao, Qinglong; Xu, Shuang; Havers, Fiona; Wang, Yanhui; Wu, Jing; Yin, Yuan; Sun, Bingxin; Yao, Jianyi; Xiang, Nijuan

    2014-11-01

    We report on a case of human infection with influenza A(H7N9) virus in Jilin Province in northeastern China. This case was associated with a poultry farm rather than a live bird market, which may point to a new focus for public health surveillance and interventions in this evolving outbreak.

  14. Safety and tolerability of intradermal influenza vaccination in patients with cardiovascular disease

    Institute of Scientific and Technical Information of China (English)

    Arintaya Phrommintikul; Wanwarang Wongcharoen; Srun Kuanprasert; Narawudt Prasertwitayakij; Rungsrit Kanjanavanit; Siriluck Gunaparn; Apichard Sukonthasarn

    2014-01-01

    Background It is well-established that influenza vaccination reduces adverse cardiovascular outcomes in patients with cardiovascular diseases (CVD), however, the vaccine coverage rate in most countries remains low. The concern about the local adverse effects of intramus-cular injection, particularly in CVD patients receiving antithrombotic therapy, is one of the important impediments. This study was con-ducted to assess the safety, side effects and tolerability of intradermal influenza vaccine in CVD patients. Methods This was an observa-tional study in adult CVD patients who had undergone vaccination against seasonal influenza by intradermal vaccination between May 16th and May 30th, 2012 at Maharaj Nakorn Chiang Mai Hospital. The medical history, patients’ acceptability and adverse effects were collected using a written questionnaire completed by the patient immediately following vaccination and by a telephone survey eight days later. Results Among 169 patients, 52.1%were women and the mean age was 63 ± 12 years. Coronary artery disease, valvular heart disease and dilated cardiomyopathy were present in 121 (71.6%), 40 (23.7%) and 8 (4.7%), respectively. Antithrombotics were used in 89.3%. After vaccination, the pain score was 0, 1 or 2 (out of 10) in 44.4%, 15.1%, and 27.6%of the patients, respectively. Eight days after vaccination, the common adverse reactions were itching 19 (11.9%), swelling 9 (5.7%) and fatigue (4.7%). No hematoma or bruising was reported. Conclusions The intradermal influenza vaccination is safe and well tolerates with high rates of satisfaction in CVD patients. This technique should be useful in expanding influenza vaccine coverage.

  15. Staphylococcus aureus and influenza A virus stimulate human bronchoalveolar cells to release histamine and leukotrienes

    DEFF Research Database (Denmark)

    Clementsen, P; Bisgaard, H; Pedersen, M

    1989-01-01

    Mediator release was examined from superficially lying cells in the airway epithelium obtained by bronchoalveolar lavage (BAL) in 13 non-atopic individuals. The BAL-cells were incubated (20 min, 37 degrees C) with Staphylococcus (Staph.) aureus or with human influenza A virus Staph. aureus...... was found to release histamine from cells from 7 of the 13 individuals and influenza A virus in 3 of 5 persons. Furthermore, Staph, aureus stimulated the BAL-cells to release leukotriene B4 in 7 of 11 subjects, whereas no release was found by influenza A virus in 7 examined persons. When cells from 4...... persons were stimulated with Staph. aureus no release of leukotriene C4 was found. The mediator release caused by bacteria and virus might be of importance for the exacerbation of bronchial asthma in upper respiratory tract infections, since histamine is assumed to increase the epithelial permeability...

  16. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yang [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Sasaki, Tadahiro [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Inoue, Yuji [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yasugi, Mayo [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Du, Anariwa [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Boonsathorn, Naphatsawan [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Tokyo (Japan); Ibrahim, Madiha S. [Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour (Egypt); and others

    2014-07-18

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.

  17. Effect of influenza-induced fever on human bioimpedance values.

    Directory of Open Access Journals (Sweden)

    Elisabetta Marini

    Full Text Available Bioelectrical impedance analysis (BIA is a widely used technique to assess body composition and nutritional status. While bioelectrical values are affected by diverse variables, there has been little research on validation of BIA in acute illness, especially to understand prognostic significance. Here we report the use of BIA in acute febrile states induced by influenza.Bioimpedance studies were conducted during an H1N1 influenza A outbreak in Venezuelan Amerindian villages from the Amazonas. Measurements were performed on 52 subjects between 1 and 40 years of age, and 7 children were re-examined after starting Oseltamivir treatment. Bioelectrical Impedance Vector Analysis (BIVA and permutation tests were applied.For the entire sample, febrile individuals showed a tendency toward greater reactance (p=0.058 and phase angle (p=0.037 than afebrile individuals, while resistance and impedance were similar in the two groups. Individuals with repeated measurements showed significant differences in bioimpedance values associated with fever, including increased reactance (p<0.001 and phase angle (p=0.007, and decreased resistance (p=0.007 and impedance (p<0.001.There are bioelectrical variations induced by influenza that can be related to dehydration, with lower extracellular to intracellular water ratio in febrile individuals, or a direct thermal effect. Caution is recommended when interpreting bioimpedance results in febrile states.

  18. [Colorimetric detection of human influenza A H1N1 virus by reverse transcription loop mediated isothermal amplification].

    Science.gov (United States)

    Nie, Kai; Wang, Da-Yan; Qin, Meng; Gao, Rong-Bao; Wang, Miao; Zou, Shu-Mei; Han, Feng; Zhao, Xiang; Li, Xi-Yan; Shu, Yue-Long; Ma, Xue-Jun

    2010-03-01

    A simple, rapid and sensitive colorimetric Reverse Transcription Loop Mediated Isothermal Amplification (RT-LAMP) method was established to detect human influenza A H1N1 virus. The method employed a set of six specially designed primers that recognized eight distinct sequences of the HA gene for amplification of nucleic acid under isothermal conditions at 65 degrees C for one and half hour. The amplification process of RT-LAMP was monitored by the addition of HNB (Hydroxy naphthol blue) dye prior to amplification. A positive reaction was indicated by a color change from violet to sky blue and confirmed by agarose electrophoresis. The specificity of the RT-LAMP assay was validated by cross-reaction with different swine and human influenza virus including human seasonal influenza A /H1N1 A /H3N2, influenza B and swine A /H1N1. The sensitivity of this assay was evaluated by serial dilutions of RNA molecules from in vitro transcription of human influenza A H1N1 HA gene. The assay was further evaluated with 30 clinical specimens with suspected pandemic influenza A H1N1 virus infection in parallel with RT-PCR detection and 26 clinical specimens with seasonal influenza virus infection. Our results showed that the RT-LAMP was able to achieve a sensitivity of 60 RNA copies with high specificity, and detection rate was comparable to that of the RT-PCR with the clinical samples of pandemic influenza A H1N1 infection. The RT-LAMP reaction with HNB could also be measured at 650nm in a microplate reader for quantitative analysis. Thus, we concluded that this colorimetric RT-LAMP assay had potential for the rapid screening of the human influenza A H1N1 virus infection in National influenza monitoring network laboratories and sentinel hospitals of provincial and municipal region in China.

  19. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    Directory of Open Access Journals (Sweden)

    Matthew J Kesic

    Full Text Available Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs human airway trypsin-like protease (HAT and transmembrane protease, serine 2 (TMPRSS2, whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI. Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.

  20. 6SLN-lipo PGA specifically catches (coats) human influenza virus and synergizes neuraminidase-targeting drugs for human influenza therapeutic potential.

    Science.gov (United States)

    Sriwilaijaroen, Nongluk; Suzuki, Katsuhiko; Takashita, Emi; Hiramatsu, Hiroaki; Kanie, Osamu; Suzuki, Yasuo

    2015-10-01

    The purpose of this study was to develop a new compound to overcome influenza epidemics and pandemics as well as drug resistance. We synthesized a new compound carrying: (i) Neu5Acα2-6Galβ1-4GlcNAc (6SLN) for targeting immutable haemagglutinins (HAs) unless switched from human-type receptor preference; (ii) an acyl chain (lipo) for locking the compound with the viral HA via hydrophobic interactions; and (iii) a flexible poly-α-L-glutamic acid (PGA) for enhancing the compound solubility and for coating the viral surface, precluding accessibility of the PGA-coated virus to the negatively charged sialic acid on the host cell surface. 6SLN-lipo PGA appears to subvert binding of pandemic H1 and seasonal H3 HAs to receptors, as assessed by using guinea pig erythrocytes, which is critical for virus entry into host cells for multiplication. It shows high potency with IC50 values in the range of 300-500 nM against multiplication of both influenza pandemic H1N1/2009 and seasonal H3N2/2004 viruses in cell culture. It acts in synergism with either of the two FDA-approved neuraminidase inhibitor (NAI) clinical drugs, zanamivir (Relenza(®)) and oseltamivir carboxylate (active form of Tamiflu(®)), and it has the potential to aid NAI drugs to achieve complete clearance of the virus from the culture. 6SLN-lipo PGA is a new potential candidate drug for influenza control and is an attractive candidate for use in combination with an NAI drug for minimized toxicity, delayed development of resistance, prevention and treatment with the potential for eradication of human influenza. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Lineage Structure of the Human Antibody Repertoire in Response to Influenza Vaccination

    Science.gov (United States)

    Jiang, Ning; He, Jiankui; Weinstein, Joshua A.; Penland, Lolita; Sasaki, Sanae; He, Xiao-Song; Dekker, Cornelia L.; Zheng, Nai-ying; Huang, Min; Sullivan, Meghan; Wilson, Patrick C.; Greenberg, Harry B.; Davis, Mark M.; Fisher, Daniel S.; Quake, Stephen R.

    2013-01-01

    The human antibody repertoire is one of the most important defenses against infectious disease, and the development of vaccines has enabled the conferral of targeted protection to specific pathogens. However, there are many challenges to measuring and analyzing the immunoglobulin sequence repertoire, such as the fact that each B cell contains a distinct antibody sequence encoded in its genome, that the antibody repertoire is not constant but changes over time, and the high similarity between antibody sequences. We have addressed this challenge by using high-throughput long read sequencing to perform immunogenomic characterization of expressed human antibody repertoires in the context of influenza vaccination. Informatic analysis of 5 million antibody heavy chain sequences from healthy individuals allowed us to perform global characterizations of isotype distributions, determine the lineage structure of the repertoire and measure age and antigen related mutational activity. Our analysis of the clonal structure and mutational distribution of individuals’ repertoires shows that elderly subjects have a decreased number of lineages but an increased pre-vaccination mutation load in their repertoire and that some of these subjects have an oligoclonal character to their repertoire in which the diversity of the lineages is greatly reduced relative to younger subjects. We have thus shown that global analysis of the immune system’s clonal structure provides direct insight into the effects of vaccination and provides a detailed molecular portrait of age-related effects. PMID:23390249

  2. [Serological detection of Brucella suis, influenza virus and Aujeszky's disease virus in backyard and small swine holders in Argentina].

    Science.gov (United States)

    Dibarbora, Marina; Cappuccio, Javier A; Aznar, María N; Bessone, Fernando A; Piscitelli, Hernán; Pereda, Ariel J; Pérez, Daniel R

    Farmers raising less than 100 sows represent more than 99% of swine producers in Argentina, although little is known about their sanitary status and productive characteristics in the country. Sanitary and productive information was obtained. Furthermore, samples for serological studies were taken to detect antibodies against Brucella suis (Bs), Aujeszky's disease virus (AV) and influenza virus (IV) in 68 backyard and small producers with less than 100 sows located in the north, central and south regions of Argentina. Antibodies against H1 pandemic were detected in 80% of the farms while 11%, 11.7% and 6.0% of the producers were positive to influenza H3 cluster 2, AV and Bs, respectively. None of the producers was aware of the risk factors concerning the transmission of diseases from pigs to humans. A percentage of 47% of them buy pigs for breeding from other farmers and markets. With regard to biosecurity measures, only 16% of the farms had perimeter fences. The results of this study demonstrate that productive characterization and disease surveys are important to improve productivity and to reduce the risk of disease transmission among animals and humans. The study of sanitary status and risk factors is necessary for better control and eradication of diseases in backyard or small producers. More representative studies at country level should be carried out to detect the pathogensthat circulate and, with this knowledge, to implement prevention and control measures. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Effect of Fluoroquinolones and Macrolides on Eradication and Resistance of Haemophilus influenzae in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Pettigrew, Melinda M; Tsuji, Brian T; Gent, Janneane F; Kong, Yong; Holden, Patricia N; Sethi, Sanjay; Murphy, Timothy F

    2016-07-01

    Little is known about the effect of antibiotics on eradication of carriage and development of resistance in Haemophilus influenzae in individuals with chronic obstructive pulmonary disease (COPD). Our goals were to assess antibiotic susceptibilities, prevalence of resistance genes, and development of resistance in H. influenzae and to evaluate the effect of macrolide and fluoroquinolone administration on H. influenzae eradication. Data were from a 15-year longitudinal study of COPD. Genome sequence data were used to determine genotype and identify resistance genes. MICs of antibiotics were determined by reference broth microdilution. Generalized linear mixed models were used to evaluate associations between antibiotic use and H. influenzae eradication. We examined 267 H. influenzae isolates from 77 individuals. All newly acquired H. influenzae isolates were susceptible to azithromycin. Five of 27 (19%) strains developed 4-fold increases in azithromycin MICs and reached or exceeded the susceptibility breakpoint (≤4 μg/ml) during exposure. H. influenzae isolates were uniformly susceptible to ciprofloxacin, levofloxacin, and moxifloxacin (MIC90s of 0.015, 0.015, and 0.06, respectively); there were no mutations in quinolone resistance-determining regions. Fluoroquinolone administration was associated with increased H. influenzae eradication compared to macrolides (odds ratio [OR], 16.67; 95% confidence interval [CI], 2.67 to 104.09). There was no difference in H. influenzae eradication when comparing macrolide administration to no antibiotic (OR, 1.89; 95% CI, 0.43 to 8.30). Fluoroquinolones are effective in eradicating H. influenzae in individuals with COPD. Macrolides are ineffective in eradicating H. influenzae, and their use in COPD patients may lead to decreased macrolide susceptibility and resistance.

  4. Application of three duplex real-time PCR assays for simultaneous detection of human seasonal and avian influenza viruses.

    Science.gov (United States)

    Stefańska, Ilona; Dzieciatkowski, Tomasz; Brydak, Lidia B; Romanowska, Magdalena

    2013-08-01

    This study was performed to develop real-time PCR (qPCR) for detection of human seasonal and avian influenza viruses in duplex format. First duplex qPCR detects haemagglutinin (HA) gene of influenza virus A(H1N1)pdm09 and HA gene of influenza virus A(H3N2), the second reaction detects neuraminidase (NA) gene of influenza virus A(H3N2) and NA gene of influenza virus A(H1N1)pdm09 and A(H5N1), and the third reaction detects HA gene of influenza A(H5N1) and nonstructural protein gene of influenza B virus. Primers and probes were designed using multiple alignments of target gene sequences of different reference strains. Assays were optimised for identical thermocycling conditions. Their specificity was confirmed by conventional PCR and monoplex qPCR with nucleic acids isolated from different influenza viruses and other respiratory pathogens. Plasmid constructs with a fragment of specific gene were used to assess sensitivity of the assay. The limit of detection ranged from 27 to 96 cDNA copies/reaction. Clinical specimens (n = 107) have been tested using new assays, immunofluorescence and monoplex qRT-PCR. It has been shown that developed assays have been capable of rapid and accurate simultaneous detection and differentiation of influenza viruses. They are more sensitive than immunofluorescence and at least as sensitive as monoplex qRT-PCR.

  5. Controlling influenza disease: Comparison between discrete time Markov chain and deterministic model

    Science.gov (United States)

    Novkaniza, F.; Ivana, Aldila, D.

    2016-04-01

    Mathematical model of respiratory diseases spread with Discrete Time Markov Chain (DTMC) and deterministic approach for constant total population size are analyzed and compared in this article. Intervention of medical treatment and use of medical mask included in to the model as a constant parameter to controlling influenza spreads. Equilibrium points and basic reproductive ratio as the endemic criteria and it level set depend on some variable are given analytically and numerically as a results from deterministic model analysis. Assuming total of human population is constant from deterministic model, number of infected people also analyzed with Discrete Time Markov Chain (DTMC) model. Since Δt → 0, we could assume that total number of infected people might change only from i to i + 1, i - 1, or i. Approximation probability of an outbreak with gambler's ruin problem will be presented. We find that no matter value of basic reproductive ℛ0, either its larger than one or smaller than one, number of infection will always tends to 0 for t → ∞. Some numerical simulation to compare between deterministic and DTMC approach is given to give a better interpretation and a better understanding about the models results.

  6. MICROBIOLOGICAL CHARACTERISATION OF Haemophilus influenzae STRAINS ISOLATED FROM PATIENTS WITH INVASIVE AND RESPIRATORY DISEASES

    Directory of Open Access Journals (Sweden)

    Tomislav Kostyanev

    2010-01-01

    Full Text Available A total of 175 H. influenzae strains were collected between 1994 and 2009 from all aged patient groups. The strains were isolated from patients with invasive and community-acquired respiratory tract infections. All strains were identified according to standard microbiological methods. Serotyping was done by a coagglutination test and by molecular PCR capsular genotyping. Beta-lactamase production was determined by the chromogenic cephalosporin test with nitrocephin as substrate. Most of the isolated H. influenzae strains were from children under 5 years of age (57.7%. Overall, 61 strains belonged to serotype b (34.9% by the means of PCR capsular typing, 1 strain was type f, and 113 isolates (64.6% were non-typeable (non-encapsulated H. influenzae. Among the infants and children with meningitis or other invasive infections, aged 2 month to 5 years, all strains, except one, were serotype b. In respiratory tract infections (pneumonia, otitis media, sinusitis and people with chronic pulmonary diseases - exacerbations of COPD, bronchiectasis, cystic fibrosis the most common - 96.5% were non-typeable strains in both groups children and adults. Overall, the prevalence of beta-lactamase production was 19.4%. But, it was much higher for invasive strains from CSF isolates - 37.7%, 25% in blood samples, and 37.5% in otitis media causative strains. Beta-lactamase production was less frequent in respiratory tract isolates - in sputum 13.3% and in URT samples - 2.3%. The rate of beta-lactamase production in CSF isolates has not changed for the last 10 years.PCR capsular genotyping method has to be performed for all non-b-type strains. The implementation of Hib vaccine in our country will be accompanied by a reduction in invasive diseases caused by H. influenzae type b in children, but it is not useful in preventing infections caused by non-typeable H. influenzae strains.

  7. Live Attenuated Influenza Vaccine Strains Elicit a Greater Innate Immune Response than Antigenically-Matched Seasonal Influenza Viruses during Infection of Human Nasal Epithelial Cell Cultures

    Science.gov (United States)

    Fischer, William A.; Brighton, Missy; Jaspers, Ilona

    2014-01-01

    Influenza viruses are global pathogens that infect approximately 10–20% of the world’s population each year. Vaccines, including the live attenuated influenza vaccine (LAIV), are the best defense against influenza infections. The LAIV is a novel vaccine that actively replicates in the human nasal epithelium and elicits both mucosal and systemic protective immune responses. The differences in replication and innate immune responses following infection of human nasal epithelium with influenza seasonal wild type (WT) and LAIV viruses remain unknown. Using a model of primary differentiated human nasal epithelial cell (hNECs) cultures, we compared influenza WT and antigenically-matched cold adapted (CA) LAIV virus replication and the subsequent innate immune response including host cellular pattern recognition protein expression, host innate immune gene expression, secreted pro-inflammatory cytokine production, and intracellular viral RNA levels. Growth curves comparing virus replication between WT and LAIV strains revealed significantly less infectious virus production during LAIV compared with WT infection. Despite this disparity in infectious virus production the LAIV strains elicited a more robust innate immune response with increased expression of RIG-I, TLR-3, IFNβ, STAT-1, IRF-7, MxA, and IP-10. There were no differences in cytotoxicity between hNEC cultures infected with WT and LAIV strains as measured by basolateral levels of LDH. Elevated levels of intracellular viral RNA during LAIV as compared with WT virus infection of hNEC cultures at 33°C may explain the augmented innate immune response via the up-regulation of pattern recognition receptors and down-stream type I IFN expression. Taken together our results suggest that the decreased replication of LAIV strains in human nasal epithelial cells is associated with a robust innate immune response that differs from infection with seasonal influenza viruses, limits LAIV shedding and plays a role in the

  8. Live attenuated influenza vaccine strains elicit a greater innate immune response than antigenically-matched seasonal influenza viruses during infection of human nasal epithelial cell cultures.

    Science.gov (United States)

    Fischer, William A; Chason, Kelly D; Brighton, Missy; Jaspers, Ilona

    2014-03-26

    Influenza viruses are global pathogens that infect approximately 10-20% of the world's population each year. Vaccines, including the live attenuated influenza vaccine (LAIV), are the best defense against influenza infections. The LAIV is a novel vaccine that actively replicates in the human nasal epithelium and elicits both mucosal and systemic protective immune responses. The differences in replication and innate immune responses following infection of human nasal epithelium with influenza seasonal wild type (WT) and LAIV viruses remain unknown. Using a model of primary differentiated human nasal epithelial cell (hNECs) cultures, we compared influenza WT and antigenically-matched cold adapted (CA) LAIV virus replication and the subsequent innate immune response including host cellular pattern recognition protein expression, host innate immune gene expression, secreted pro-inflammatory cytokine production, and intracellular viral RNA levels. Growth curves comparing virus replication between WT and LAIV strains revealed significantly less infectious virus production during LAIV compared with WT infection. Despite this disparity in infectious virus production the LAIV strains elicited a more robust innate immune response with increased expression of RIG-I, TLR-3, IFNβ, STAT-1, IRF-7, MxA, and IP-10. There were no differences in cytotoxicity between hNEC cultures infected with WT and LAIV strains as measured by basolateral levels of LDH. Elevated levels of intracellular viral RNA during LAIV as compared with WT virus infection of hNEC cultures at 33°C may explain the augmented innate immune response via the up-regulation of pattern recognition receptors and down-stream type I IFN expression. Taken together our results suggest that the decreased replication of LAIV strains in human nasal epithelial cells is associated with a robust innate immune response that differs from infection with seasonal influenza viruses, limits LAIV shedding and plays a role in the silent

  9. Radiographic study of severe Influenza-A (H1N1) disease in children

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Cailei, E-mail: zhaocailei197866@163.com [Department of Radiology, Shenzhen Children' s Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026 (China); Gan Yungen, E-mail: mickeyym@yahoo.cn [Department of Radiology, Shenzhen Children' s Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026 (China); Sun Jie, E-mail: sunxixi@21cn.com [Department of Radiology, Shenzhen Children' s Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026 (China)

    2011-09-15

    Objective: To characterize the radiographic findings of pediatric patients with severe Influenza-A (H1N1) disease. Methods: A retrospective study of data from chest X-ray, CT and MRI exam of 29 pediatric patients treated in intensive care unit for severe Influenza-A (H1N1) disease. Results: Disease developed quickly at early stage. Here are four types of radiographic findings. The disease continued to progress for 2-3 days and X-ray showed that all 29 patients had increased solid lesions with the existence of interstitial lesions. Four days later, all lung lesions showed absorption to certain degree. Fifteen days later, X-ray and CT showed complete or significant absorption in 19 cases (85.5%); delayed recovery was identified in 8 cases (27.6%), pulmonary fibrosis was found in 3 cases (10.3%), and 3 patients (10.3%) died. But the latter identified more lesions. Cranial CT and MRI were performed for 8 patients who had neurological symptoms. Of them, 3 cases (10.3%) were abnormal, showed symmetrical long T1 and T2 signal shadow in bilateral thalamus and longer T1 and T2 signals in the between. 3 cases had autopsy completed. Conclusion: The severe Influenza-A (H1N1) among children progression was generally rapid in the first 3 days. The overall radiographic findings are similar to acute respiratory distress syndrome (ARDS). A small portion of the patients occurred acute necrotizing encephalopathy and plastic bronchitis.

  10. MicroRNA Regulation of Human Genes Essential for Influenza A (H7N9) Replication

    Science.gov (United States)

    Wolf, Stefan; Wu, Weilin; Jones, Cheryl; Perwitasari, Olivia; Mahalingam, Suresh; Tripp, Ralph A.

    2016-01-01

    Influenza A viruses are important pathogens of humans and animals. While seasonal influenza viruses infect humans every year, occasionally animal-origin viruses emerge to cause pandemics with significantly higher morbidity and mortality rates. In March 2013, the public health authorities of China reported three cases of laboratory confirmed human infection with avian influenza A (H7N9) virus, and subsequently there have been many cases reported across South East Asia and recently in North America. Most patients experience severe respiratory illness, and morbidity with mortality rates near 40%. No vaccine is currently available and the use of antivirals is complicated due the frequent emergence of drug resistant strains. Thus, there is an imminent need to identify new drug targets for therapeutic intervention. In the current study, a high-throughput screening (HTS) assay was performed using microRNA (miRNA) inhibitors to identify new host miRNA targets that reduce influenza H7N9 replication in human respiratory (A549) cells. Validation studies lead to a top hit, hsa-miR-664a-3p, that had potent antiviral effects in reducing H7N9 replication (TCID50 titers) by two logs. In silico pathway analysis revealed that this microRNA targeted the LIF and NEK7 genes with effects on pro-inflammatory factors. In follow up studies using siRNAs, anti-viral properties were shown for LIF. Furthermore, inhibition of hsa-miR-664a-3p also reduced virus replication of pandemic influenza A strains H1N1 and H3N2. PMID:27166678

  11. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses.

    Science.gov (United States)

    Paquette, Stéphane G; Banner, David; Huang, Stephen S H; Almansa, Raquel; Leon, Alberto; Xu, Luoling; Bartoszko, Jessica; Kelvin, David J; Kelvin, Alyson A

    2015-10-01

    Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus

  12. Influenza Transmission in the Mother-Infant Dyad Leads to Severe Disease, Mammary Gland Infection, and Pathogenesis by Regulating Host Responses.

    Directory of Open Access Journals (Sweden)

    Stéphane G Paquette

    2015-10-01

    Full Text Available Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1β upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of

  13. Comparison of human and animal surveillance data for H5N1 influenza A in Egypt 2006-2011.

    Directory of Open Access Journals (Sweden)

    Peter M Rabinowitz

    Full Text Available BACKGROUND: The majority of emerging infectious diseases are zoonotic (transmissible between animals and humans in origin, and therefore integrated surveillance of disease events in humans and animals has been recommended to support effective global response to disease emergence. While in the past decade there has been extensive global surveillance for highly pathogenic avian influenza (HPAI infection in both animals and humans, there have been few attempts to compare these data streams and evaluate the utility of such integration. METHODOLOGY: We compared reports of bird outbreaks of HPAI H5N1 in Egypt for 2006-2011 compiled by the World Organisation for Animal Health (OIE and the UN Food and Agriculture Organization (FAO EMPRESi reporting system with confirmed human H5N1 cases reported to the World Health Organization (WHO for Egypt during the same time period. PRINCIPAL FINDINGS: Both human cases and bird outbreaks showed a cyclic pattern for the country as a whole, and there was a statistically significant temporal correlation between the data streams. At the governorate level, the first outbreak in birds in a season usually but not always preceded the first human case, and the time lag between events varied widely, suggesting regional differences in zoonotic risk and/or surveillance effectiveness. In a multivariate risk model, lower temperature, lower urbanization, higher poultry density, and the recent occurrence of a bird outbreak were associated with increased risk of a human case of HPAI in the same governorate, although the positive predictive value of a bird outbreak was low. CONCLUSIONS: Integrating data streams of surveillance for human and animal cases of zoonotic disease holds promise for better prediction of disease risk and identification of environmental and regional factors that can affect risk. Such efforts can also point out gaps in human and animal surveillance systems and generate hypotheses regarding disease transmission.

  14. The association between serum biomarkers and disease outcome in influenza A(H1N1pdm09 virus infection: results of two international observational cohort studies.

    Directory of Open Access Journals (Sweden)

    Richard T Davey

    Full Text Available BACKGROUND: Prospective studies establishing the temporal relationship between the degree of inflammation and human influenza disease progression are scarce. To assess predictors of disease progression among patients with influenza A(H1N1pdm09 infection, 25 inflammatory biomarkers measured at enrollment were analyzed in two international observational cohort studies. METHODS: Among patients with RT-PCR-confirmed influenza A(H1N1pdm09 virus infection, odds ratios (ORs estimated by logistic regression were used to summarize the associations of biomarkers measured at enrollment with worsened disease outcome or death after 14 days of follow-up for those seeking outpatient care (FLU 002 or after 60 days for those hospitalized with influenza complications (FLU 003. Biomarkers that were significantly associated with progression in both studies (p<0.05 or only in one (p<0.002 after Bonferroni correction were identified. RESULTS: In FLU 002 28/528 (5.3% outpatients had influenza A(H1N1pdm09 virus infection that progressed to a study endpoint of complications, hospitalization or death, whereas in FLU 003 28/170 (16.5% inpatients enrolled from the general ward and 21/39 (53.8% inpatients enrolled directly from the ICU experienced disease progression. Higher levels of 12 of the 25 markers were significantly associated with subsequent disease progression. Of these, 7 markers (IL-6, CD163, IL-10, LBP, IL-2, MCP-1, and IP-10, all with ORs for the 3(rd versus 1(st tertile of 2.5 or greater, were significant (p<0.05 in both outpatients and inpatients. In contrast, five markers (sICAM-1, IL-8, TNF-α, D-dimer, and sVCAM-1, all with ORs for the 3(rd versus 1(st tertile greater than 3.2, were significantly (p≤.002 associated with disease progression among hospitalized patients only. CONCLUSIONS: In patients presenting with varying severities of influenza A(H1N1pdm09 virus infection, a baseline elevation in several biomarkers associated with inflammation

  15. Prevalence of Haemophilus influenzae pharyngeal carriers in the school population of Catalonia. Working Group on invasive disease caused by Haemophilus influenzae.

    Science.gov (United States)

    Bou, R; Domínguez, A; Fontanals, D; Sanfeliu, I; Pons, I; Renau, J; Pineda, V; Lobera, E; Latorre, C; Majó, M; Salleras, L

    2000-06-01

    The objective of this study was to determine the prevalence of healthy Haemophilus influenzae (Hi) pharyngeal carriers in a representative sample of the Catalonian school population, as well as the factors associated. A two-stage cluster sampling was carried out. Parents were given a questionnaire to collect information on sociodemographic and epidemiological variables. A pharyngeal swab was performed on children when informed consent was given by parents, and was cultured on chocolate agar with 260 microg/ml bacitracin. Of the 1212 children studied, 316 (26%) H. influenzae carriers were detected: 5 (0.4%) serotype b, 1 (0.08%) serotype c, 6 (0.5%) serotype e, 5 (0.4%) serotype f, and 299 (24.7%) non-typable. Age, gender and geographical location were the only variables associated with H. influenzae carrier status. The prevalence of non-typable H. influenzae carriers was similar to that of studies carried out in other countries, while that of serotype b carriers was similar to the remainder of H. influenzae capsulates, and lower than that described in previous studies. These data are in accordance with the low incidence of the disease observed in our context, although the possibility that the vaccine coverage may have affected the results of this study cannot be dismissed.

  16. Risk factors for avian influenza virus contamination of live poultry markets in Zhejiang, China during the 2015–2016 human influenza season

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Qimei; Cheng, Wei; Yu, Zhao; Ling, Feng; Mao, Haiyan; Chen, Enfu

    2017-01-01

    Live bird markets (LBMs), being a potential source of avian influenza virus, require effective environmental surveillance management. In our study, a total of 2865 environmental samples were collected from 292 LBMs during the 2015–2016 human influenza season from 10 cities in Zhejiang province, China. The samples were tested by real-time quantitative polymerase chain reaction (RT-PCR). Field investigations were carried out to investigate probable risk factors. Of the environmental samples, 1519 (53.0%) were contaminated by A subtype. The highest prevalence of the H9 subtype was 30.2%, and the frequencies of the H5 and H7 subtype were 9.3% and 17.3%, respectively. Hangzhou and Jinhua cities were contaminated more seriously than the others. The prevalence of H5/H7/H9 in drinking water samples was highest, at 50.9%, and chopping board swabs ranked second, at 49.3%. Duration of sales per day, types of live poultry, LBM location and the number of live poultry were the main risk factors for environmental contamination, according to logistic regression analysis. In conclusion, LBMs in Zhejiang were contaminated by avian influenza. Our study has provided clues for avian influenza prevention and control during the human influenza season, especially in areas where LBMs are not closed. PMID:28256584

  17. Risk factors for avian influenza virus contamination of live poultry markets in Zhejiang, China during the 2015-2016 human influenza season.

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Qimei; Cheng, Wei; Yu, Zhao; Ling, Feng; Mao, Haiyan; Chen, Enfu

    2017-03-03

    Live bird markets (LBMs), being a potential source of avian influenza virus, require effective environmental surveillance management. In our study, a total of 2865 environmental samples were collected from 292 LBMs during the 2015-2016 human influenza season from 10 cities in Zhejiang province, China. The samples were tested by real-time quantitative polymerase chain reaction (RT-PCR). Field investigations were carried out to investigate probable risk factors. Of the environmental samples, 1519 (53.0%) were contaminated by A subtype. The highest prevalence of the H9 subtype was 30.2%, and the frequencies of the H5 and H7 subtype were 9.3% and 17.3%, respectively. Hangzhou and Jinhua cities were contaminated more seriously than the others. The prevalence of H5/H7/H9 in drinking water samples was highest, at 50.9%, and chopping board swabs ranked second, at 49.3%. Duration of sales per day, types of live poultry, LBM location and the number of live poultry were the main risk factors for environmental contamination, according to logistic regression analysis. In conclusion, LBMs in Zhejiang were contaminated by avian influenza. Our study has provided clues for avian influenza prevention and control during the human influenza season, especially in areas where LBMs are not closed.

  18. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.

  19. Genome evolution of novel influenza A (H1N1)viruses in humans

    Institute of Scientific and Technical Information of China (English)

    KOU Zheng; HU SongNian; LI TianXian

    2009-01-01

    The epidemic situation of A H1N1 flu arose in North America in April 2009,which rapidly expanded to three continents of Europe,Asia and Africa,with the risk ranking up to 5.Until May 13th,the flu virus of A H1N1 had spread into 33 countries and regions,with a laboratory confirmed case number of 5728,including 61 deaths.Based on IRV and EpiFluDB database,425 parts of A H1N1 flu virus sequence were achieved,followed by sequenced comparison and evolution analysis.The results showed that the current predominant A H1N1 flu virus was a kind of triple reassortment A flu virus:(i) HA,NA,MP,NP and NS originated from swine influenza virus;PB2 and PA originated from bird influenza virus;PB1 originated from human influenza virus.(ii) The origin of swine influenza virus could be subdivided as follows:HA,NP and NS originated from classic swine influenza virus of H1N1 subtype;NA and MP originated from bird origin swine influenza virus of H1N1 subtype.(iii) A H1N1 flu virus experienced no significant mutation during the epidemic spread,accompanied with no reassortment of the virus genome.In the paper,the region of the representative strains for sequence analysis (A/California/04/2009 (H1N1) and A/Mexico/4486/2009 (H1N1)) included USA and Mexico and was relatively wide,which suggested that the analysis results were convincing.

  20. EFFECTS OF ALLERGIC AIRWAYS DISEASE ON INFLUENZA VIRUS INFECTION IN BROWN NORWAY RATS

    Science.gov (United States)

    EFFECTS OF ALLERGIC AIRWAYS DISEASE ON INFLUENZA VIRUS INFECTION IN BROWN NORWAY RATS (P. Singhl, D.W. Winsett2, M.J. Daniels2,C.A.J. Dick', K.B. Adlerl and M.I. Gilmour2, INCSU, Raleigh, N.C., 2NHEERL/ORD/ USEPA, RTP, N.C. and 3UNC, Chapel Hill, N.C.)The interaction between ...

  1. Genetic Mapping in Human Disease

    OpenAIRE

    Altshuler, David; Daly, Mark J; Lander, Eric S.

    2008-01-01

    Genetic mapping provides a powerful approach to identify genes and biological processes underlying any trait influenced by inheritance, including human diseases. We discuss the intellectual foundations of genetic mapping of Mendelian and complex traits in humans, examine lessons emerging from linkage analysis of Mendelian diseases and genome-wide association studies of common diseases, and discuss questions and challenges that lie ahead.

  2. Receptor binding properties of human and animal H1 influenza virus isolates.

    Science.gov (United States)

    Rogers, G N; D'Souza, B L

    1989-11-01

    It has been previously reported that several human H1 influenza viruses isolated prior to 1956, in contrast to human H3 isolates which are quite specific for SA alpha 2,6Gal sequences, apparently recognize both SA alpha 2,3Gal and SA alpha 2,6Gal sequences (Rogers, G.N., and Paulson, J.C., Virology 127, 361-373, 1983). In this report human H1 isolates representative of two epidemic periods, from 1934 to 1957 and from 1977 to 1986, and H1 influenza isolated from pigs, ducks, and turkeys were compared for their ability to utilize sialyloligosaccharide structures containing terminal SA alpha 2,3Gal or SA alpha 2,6Gal sequences as receptor determinants. Five of the eight human isolates from the first epidemic period recognize both SA alpha 2,3Gal and SA alpha 2,6Gal linkages, in agreement with our previous results. Of the remaining three strains, all isolated towards the end of the first epidemic, two appear to prefer SA alpha 2,6Gal sequences while the third preferentially binds SA alpha 2,3Gal sequences. In contrast to the early isolates, 11 of 13 human strains isolated during the second epidemic period preferentially bind SA alpha 2,6Gal containing oligosaccharides. On the basis of changes in receptor binding associated with continued passage in the laboratory for some of these later strains, it seems likely that human H1 isolates preferentially bind SA alpha 2,6Gal sequences in nature, and that acquisition of SA alpha 2,3Gal-binding is associated with laboratory passage. Influenza H1 viruses isolated from pigs were predominantly SA alpha 2,6Gal-specific while those isolated from ducks were primarily SA alpha 2,3Gal-specific. Thus, as has been previously reported for H3 influenza isolates, receptor specificity for influenza H1 viruses appears to be influenced by the species from which they were isolated, human isolates binding preferentially to SA alpha 2,6Gal-containing oligosaccharides while those isolated from ducks prefer SA alpha 2,3Gal

  3. Hemagglutinin protein of Asian strains of human influenza virus A H1N1 binds to sialic acid--a major component of human airway receptors.

    Science.gov (United States)

    Chua, K H; Chai, H C

    2012-03-16

    Hemagglutinin (HA) protein plays an important role in binding the influenza virus to infected cells and therefore mediates infection. Deposited HA sequences of 86 Asian strains of influenza A (H1N1) viruses during the first outbreak were obtained from the NCBI database and compared. Interaction of the HA protein of influenza A (H1N1) virus with the human sialic acid receptor was also studied using bioinformatics. Overall, not more than three single-point amino acid variants/changes were observed in the HA protein region of influenza A (H1N1) virus from Asian countries when a selected group sequence comparison was made. The bioinformatics study showed that the HA protein of influenza A (H1N1) binds to the sialic acid receptor in human airway receptors, possibly key to air-borne infection in humans.

  4. Genomic sequences of human infection of avian-origin influenza A(H7N9) virus in Zhejiang province

    Institute of Scientific and Technical Information of China (English)

    陈寅

    2013-01-01

    Objective To analyze the etiology and genomic sequences of human infection of avian-origin influenza A (H7N9) virus from Zhejiang province.Methods Viral RNA was extracted from patients of suspected H7N9

  5. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection

    OpenAIRE

    2011-01-01

    The 2009 pandemic H1N1 influenza pandemic demonstrated the global health threat of reassortant influenza strains. Herein, we report a detailed analysis of plasmablast and monoclonal antibody responses induced by pandemic H1N1 infection in humans. Unlike antibodies elicited by annual influenza vaccinations, most neutralizing antibodies induced by pandemic H1N1 infection were broadly cross-reactive against epitopes in the hemagglutinin (HA) stalk and head domain of multiple influenza strains. T...

  6. Glycan-functionalized graphene-FETs toward selective detection of human-infectious avian influenza virus

    Science.gov (United States)

    Ono, Takao; Oe, Takeshi; Kanai, Yasushi; Ikuta, Takashi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Watanabe, Yohei; Nakakita, Shin-ichi; Suzuki, Yasuo; Kawahara, Toshio; Matsumoto, Kazuhiko

    2017-03-01

    There are global concerns about threat of pandemic caused by the human-infectious avian influenza virus. To prevent the oncoming pandemic, it is crucial to analyze the viral affinity to human-type or avian-type sialoglycans with high sensitivity at high speed. Graphene-FET (G-FET) realizes such high-sensitive electrical detection of the targets, owing to graphene’s high carrier mobility. In the present study, G-FET was functionalized using sialoglycans and employed for the selective detection of lectins from Sambucus sieboldiana and Maackia amurensis as alternatives of the human and avian influenza viruses. Glycan-functionalized G-FET selectively monitored the sialoglycan-specific binding reactions at subnanomolar sensitivity.

  7. The epidemiology and spread of drug resistant human influenza viruses.

    Science.gov (United States)

    Hurt, Aeron C

    2014-10-01

    Significant changes in the circulation of antiviral-resistant influenza viruses have occurred over the last decade. The emergence and continued circulation of adamantane-resistant A(H3N2) and A(H1N1)pdm09 viruses mean that the adamantanes are no longer recommended for use. Resistance to the newer class of drugs, the neuraminidase inhibitors, is typically associated with poorer viral replication and transmission. But 'permissive' mutations, that compensated for impairment of viral function in A(H1N1) viruses during 2007/2008, enabled them to acquire the H275Y NA resistance mutation without fitness loss, resulting in their rapid global spread. Permissive mutations now appear to be present in A(H1N1)pdm09 viruses thereby increasing the risk that oseltamivir-resistant A(H1N1)pdm09 viruses may also spread globally, a concerning scenario given that oseltamivir is the most widely used influenza antiviral. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages.

    Science.gov (United States)

    Lee, Suki M Y; Gardy, Jennifer L; Cheung, C Y; Cheung, Timothy K W; Hui, Kenrie P Y; Ip, Nancy Y; Guan, Y; Hancock, Robert E W; Peiris, J S Malik

    2009-12-14

    Human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1) or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1) virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN) and tumor necrosis factor (TNF)-alpha genes. A network-based analysis suggests that the synergy between IFN-beta and TNF-alpha results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease.

  9. Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Suki M Y Lee

    Full Text Available Human disease caused by highly pathogenic avian influenza (HPAI H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1 or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1 virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN and tumor necrosis factor (TNF-alpha genes. A network-based analysis suggests that the synergy between IFN-beta and TNF-alpha results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease.

  10. Human influenza A H5N1 in Indonesia: health care service-associated delays in treatment initiation.

    Science.gov (United States)

    Adisasmito, Wiku; Aisyah, Dewi Nur; Aditama, Tjandra Yoga; Kusriastuti, Rita; Trihono; Suwandono, Agus; Sampurno, Ondri Dwi; Prasenohadi; Sapada, Nurshanty A; Mamahit, M J N; Swenson, Anna; Dreyer, Nancy A; Coker, Richard

    2013-06-11

    Indonesia has had more recorded human cases of influenza A H5N1 than any other country, with one of the world's highest case fatality rates. Understanding barriers to treatment may help ensure life-saving influenza-specific treatment is provided early enough to meaningfully improve clinical outcomes. Data for this observational study of humans infected with influenza A H5N1 were obtained primarily from Ministry of Health, Provincial and District Health Office clinical records. Data included time from symptom onset to presentation for medical care, source of medical care provided, influenza virology, time to initiation of influenza-specific treatment with antiviral drugs, and survival. Data on 124 human cases of virologically confirmed avian influenza were collected between September 2005 and December 2010, representing 73% of all reported Indonesia cases. The median time from health service presentation to antiviral drug initiation was 7.0 days. Time to viral testing was highly correlated with starting antiviral treatment (p influenza H5N1 in Indonesia appear related to delays in diagnosis rather than presentation to health care settings. Either cases are not suspected of being H5N1 cases until nearly one week after presenting for medical care, or viral testing and/or antiviral treatment is not available where patients are presenting for care. Health system delays have increased since 2007.

  11. Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L; White, Mitchell R; Tecle, Tesfaldet

    2007-01-01

    BACKGROUND: Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection. Common human polymorphisms of SP-D have been found in many human populations and associated with increased risk of certain infections. We recently reported that the Thr...... human SP-D multimers as well as reduced hemagglutination inhibiting activity against several strains of IAV. Natural SP-D trimers also had different interactions with human neutrophil peptide defensins (HNPs) in viral neutralization assays as compared to multimeric SP-D. CONCLUSION: These studies......-D can be useful for dissecting out different functional properties of the protein....

  12. Published sequences do not support transfer of oseltamivir resistance mutations from avian to human influenza A virus strains.

    Science.gov (United States)

    Norberg, Peter; Lindh, Magnus; Olofsson, Sigvard

    2015-03-28

    Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.

  13. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weibin [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen, Aizhong [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Miao, Yi [Shanghai Xuhui Central Hospital, Shanghai 200031 (China); Xia, Shengli [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Ling, Zhiyang; Xu, Ke; Wang, Tongyan [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shu, Yuelong [Chinese Center for Disease Control and Prevention, Beijing 102206 (China); Ma, Xiaowei [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Xu, Bianli; Zhang, Jin [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Lin, Xiaojun, E-mail: linxiaojun@hualan.com [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Bian, Chao, E-mail: cbian@sibs.ac.cn [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Sun, Bing, E-mail: bsun@sibs.ac.cn [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2013-01-20

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  14. Identification of Haemophilus influenzae clones associated with invasive disease a decade after introduction of H. influenzae serotype b vaccination in Italy.

    Science.gov (United States)

    Giufrè, Maria; Cardines, Rita; Accogli, Marisa; Pardini, Manuela; Cerquetti, Marina

    2013-08-01

    The introduction of Haemophilus influenzae serotype b (Hib) conjugate vaccines has changed the epidemiology of invasive H. influenzae disease, with a shift in the predominant serotype from Hib to nonencapsulated H. influenzae (ncHi). The objective of this study was to identify the genotypes/clones associated with invasive H. influenzae disease in Italy. Eighty-seven H. influenzae strains isolated in the years 2009 to 2011 within the National Surveillance of Invasive Bacterial Disease program were analyzed. Strains were characterized by serotyping, antimicrobial susceptibility testing, and multilocus sequence typing (MLST). Genetic polymorphisms in the bla(TEM) gene promoter region as well as the occurrence of both adhesin genes (hmwA and hia) and the IgA1 protease-encoding gene (igaB) were also investigated. Of 87 strains, 67 were ncHi and 20 were encapsulated. Eleven strains were β-lactamase positive, harboring the bla(TEM) gene. Most bla(TEM) genes (10/11) were associated with a Pdel promoter region exhibiting a 135-bp deletion; the remaining strain possessed the Pa/Pb overlapping promoter. MLST analysis showed that encapsulated isolates were clonal, with each serotype sharing a few related sequence types (STs). Forty-six different STs were identified among the 67 ncHi strains. Despite this heterogeneity, a group of closely related STs (ST103, ST139, and ST145) encompassed almost 25% of all ncHi strains and 45.5% of the β-lactamase producers carrying the Pdel promoter. These major ST clones were found to be associated with the hmwA gene but not with the igaB gene. To conclude, although the heterogeneity of the ncHi population was confirmed, diffusion of major successful ST clones was documented.

  15. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Trevenan Walther

    2013-03-01

    Full Text Available The first step in influenza infection of the human respiratory tract is binding of the virus to sialic (Sia acid terminated receptors. The binding of different strains of virus for the receptor is determined by the α linkage of the sialic acid to galactose and the adjacent glycan structure. In this study the N- and O-glycan composition of the human lung, bronchus and nasopharynx was characterized by mass spectrometry. Analysis showed that there was a wide spectrum of both Sia α2-3 and α2-6 glycans in the lung and bronchus. This glycan structural data was then utilized in combination with binding data from 4 of the published glycan arrays to assess whether these current glycan arrays were able to predict replication of human, avian and swine viruses in human ex vivo respiratory tract tissues. The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung. Our findings indicate that more comprehensive but focused arrays need to be developed to investigate influenza virus binding in an assessment of newly emerging influenza viruses.

  16. Cooperative Crisis Management and Avian Influenza. A Risk Assessment Guide for International Contagious Disease Prevention and Risk Mitigation

    Science.gov (United States)

    2006-03-01

    commercial poultry production facilities, areas in the community where poultry are produced in backyards , and markets where live poultry are sold. Third...goal towards diminishing the risk of avian influenza to humans and poultry ” along with “approaches and implementation plans for the control of...as in the case of avian influenza, where poultry workers and persons who keep small domestic flocks of chickens are at higher risk for exposure from

  17. Integrative genomic analysis of the human immune response to influenza vaccination

    Science.gov (United States)

    Franco, Luis M; Bucasas, Kristine L; Wells, Janet M; Niño, Diane; Wang, Xueqing; Zapata, Gladys E; Arden, Nancy; Renwick, Alexander; Yu, Peng; Quarles, John M; Bray, Molly S; Couch, Robert B; Belmont, John W; Shaw, Chad A

    2013-01-01

    Identification of the host genetic factors that contribute to variation in vaccine responsiveness may uncover important mechanisms affecting vaccine efficacy. We carried out an integrative, longitudinal study combining genetic, transcriptional, and immunologic data in humans given seasonal influenza vaccine. We identified 20 genes exhibiting a transcriptional response to vaccination, significant genotype effects on gene expression, and correlation between the transcriptional and antibody responses. The results show that variation at the level of genes involved in membrane trafficking and antigen processing significantly influences the human response to influenza vaccination. More broadly, we demonstrate that an integrative study design is an efficient alternative to existing methods for the identification of genes involved in complex traits. DOI: http://dx.doi.org/10.7554/eLife.00299.001 PMID:23878721

  18. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    Science.gov (United States)

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  19. Influenza at the animal-human interface: a review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A(H5N1).

    Science.gov (United States)

    Freidl, G S; Meijer, A; de Bruin, E; de Nardi, M; Munoz, O; Capua, I; Breed, A C; Harris, K; Hill, A; Kosmider, R; Banks, J; von Dobschuetz, S; Stark, K; Wieland, B; Stevens, K; van der Werf, S; Enouf, V; van der Meulen, K; Van Reeth, K; Dauphin, G; Koopmans, M

    2014-05-08

    Factors that trigger human infection with animal influenza virus progressing into a pandemic are poorly understood. Within a project developing an evidence-based risk assessment framework for influenza viruses in animals, we conducted a review of the literature for evidence of human infection with animal influenza viruses by diagnostic methods used. The review covering Medline, Embase, SciSearch and CabAbstracts yielded 6,955 articles, of which we retained 89; for influenza A(H5N1) and A(H7N9), the official case counts of t he World Health Organization were used. An additional 30 studies were included by scanning the reference lists. Here, we present the findings for confirmed infections with virological evidence. We found reports of 1,419 naturally infected human cases, of which 648 were associated with avian influenza virus (AIV) A(H5N1), 375 with other AIV subtypes, and 396 with swine influenza virus (SIV). Human cases naturally infected with AIV spanned haemagglutinin subtypes H5, H6, H7, H9 and H10. SIV cases were associated with endemic SIV of H1 and H3 subtype descending from North American and Eurasian SIV lineages and various reassortants thereof. Direct exposure to birds or swine was the most likely source of infection for the cases with available information on exposure.

  20. A comprehensive review of the epidemiology and disease burden of Influenza B in 9 European countries.

    Science.gov (United States)

    Tafalla, Monica; Buijssen, Marleen; Geets, Régine; Vonk Noordegraaf-Schouten, Marije

    2016-04-02

    This review was undertaken to consolidate information on the epidemiology and burden of influenza B, as well as the circulation patterns of influenza B lineage in 9 European countries. Following a comprehensive search of peer-reviewed and gray literature sources, we found that published data on influenza B epidemiology and burden are scarce. Surveillance data show frequent co-circulation of both influenza B lineages during influenza seasons, but little is known about its impact, especially in adults and the clinical burden of influenza B remains unknown. Mismatch between the circulating influenza B lineage and vaccine recommendations has been seen in at least one influenza season in every country. Such observations could impact the effectiveness of seasonal influenza vaccination programs using trivalent vaccines, which contain only one influenza B lineage (B/Yamagata or B/Victoria) and highlight the need for local studies to better understand the epidemiology and burden of influenza B in these countries.

  1. Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

    Science.gov (United States)

    Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.

    2014-01-01

    ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or

  2. Pandemic Influenza and Canada's Children

    Directory of Open Access Journals (Sweden)

    Joanne M Langley

    2006-01-01

    Full Text Available Paediatricians and others who care for children are familiar with the regular epidemic of respiratory illnesses that accompanies the annual visit of influenza virus each winter. In recent years, media interest in new strains of influenza has generated much public interest in, and often anxiety about, the threat of an influenza pandemic. Around the world, local, regional and national jurisdictions are engaged in contingency planning for the inevitable surge of illness, shortage of human and material resources, and societal disruption that is expected to accompany this event. In the present Paediatric Infectious Disease Note, we review briefly the potential implications of pandemic influenza for Canadian children, and the actions that paediatricians and others who care for children can take to prepare for this inevitable event.

  3. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  4. Competitive Fitness of Influenza B Viruses with Neuraminidase Inhibitor-Resistant Substitutions in a Coinfection Model of the Human Airway Epithelium

    Science.gov (United States)

    Burnham, Andrew J.; Armstrong, Jianling; Lowen, Anice C.; Webster, Robert G.

    2015-01-01

    ABSTRACT Influenza A and B viruses are human pathogens that are regarded to cause almost equally significant disease burdens. Neuraminidase (NA) inhibitors (NAIs) are the only class of drugs available to treat influenza A and B virus infections, so the development of NAI-resistant viruses with superior fitness is a public health concern. The fitness of NAI-resistant influenza B viruses has not been widely studied. Here we examined the replicative capacity and relative fitness in normal human bronchial epithelial (NHBE) cells of recombinant influenza B/Yamanashi/166/1998 viruses containing a single amino acid substitution in NA generated by reverse genetics (rg) that is associated with NAI resistance. The replication in NHBE cells of viruses with reduced inhibition by oseltamivir (recombinant virus with the E119A mutation generated by reverse genetics [rg-E119A], rg-D198E, rg-I222T, rg-H274Y, rg-N294S, and rg-R371K, N2 numbering) or zanamivir (rg-E119A and rg-R371K) failed to be inhibited by the presence of the respective NAI. In a fluorescence-based assay, detection of rg-E119A was easily masked by the presence of NAI-susceptible virus. We coinfected NHBE cells with NAI-susceptible and -resistant viruses and used next-generation deep sequencing to reveal the order of relative fitness compared to that of recombinant wild-type (WT) virus generated by reverse genetics (rg-WT): rg-H274Y > rg-WT > rg-I222T > rg-N294S > rg-D198E > rg-E119A ≫ rg-R371K. Based on the lack of attenuated replication of rg-E119A in NHBE cells in the presence of oseltamivir or zanamivir and the fitness advantage of rg-H274Y over rg-WT, we emphasize the importance of these substitutions in the NA glycoprotein. Human infections with influenza B viruses carrying the E119A or H274Y substitution could limit the therapeutic options for those infected; the emergence of such viruses should be closely monitored. IMPORTANCE Influenza B viruses are important human respiratory pathogens contributing to a

  5. Changes in and shortcomings of control strategies, drug stockpiles, and vaccine development during outbreaks of avian influenza A H5N1, H1N1, and H7N9 among humans.

    Science.gov (United States)

    Mei, Lin; Song, Peipei; Tang, Qi; Shan, Ke; Tobe, Ruoyan Gai; Selotlegeng, Lesego; Ali, Asghar Hammad; Cheng, Yangyang; Xu, Lingzhong

    2013-04-01

    The purpose of this review is to provide a reference for the future prevention and control of emerging infectious diseases by summarizing the control strategies, the status of drugs and vaccines, and shortcomings during three major outbreaks of avian influenza among humans (H5N1 in 2003, H1N1 in 2009, and H7N9 in 2013). Data on and documents regarding the three influenza outbreaks have been reviewed. Results indicated that the response to pandemic influenza outbreaks has improved markedly in terms of control strategies, stockpiles of antivirals, and vaccine development. These improvements also suggest advances in disease surveillance, transparency in reporting, and regional collaboration and cooperation. These trends also foreshadow better prospects for prevention and control of emerging infectious diseases. However, there are shortcomings since strategies failed to focus on high-risk groups, quantitative and measurable results (both direct and indirect) were unclear, and quantitative assessment is still lacking.

  6. Climate impact on spreading of airborne infectious diseases. Complex network based modeling of climate influences on influenza like illnesses

    Science.gov (United States)

    Brenner, Frank; Marwan, Norbert; Hoffmann, Peter

    2017-06-01

    In this study we combined a wide range of data sets to simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. The basis is a complex network whose structures are inspired by global air traffic data (from openflights.org) containing information about airports, airport locations, direct flight connections and airplane types. Disease spreading inside every node is realized with a Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model. Disease transmission rates in our model are depending on the climate environment and therefore vary in time and from node to node. To implement the correlation between water vapor pressure and influenza transmission rate [J. Shaman, M. Kohn, Proc. Natl. Acad. Sci. 106, 3243 (2009)], we use global available climate reanalysis data (WATCH-Forcing-Data-ERA-Interim, WFDEI). During our sensitivity analysis we found that disease spreading dynamics are strongly depending on network properties, the climatic environment of the epidemic outbreak location, and the season during the year in which the outbreak is happening.

  7. Serological investigation of five diseases; Influenza, Newcastle disease, Salmonella, Mycoplasma gallisepticum and Mycoplasma synoviae in native hens of Eghlid, Iran

    Directory of Open Access Journals (Sweden)

    M. M. Mokhtari

    2013-06-01

    Full Text Available Aim: The study was conducted to determine seroprevalence of the five diseases influenza, Newcastle, Mycoplasma gallisepticum, Mycoplasma synoviae and salmonella, among around native hens of Eghlid in Iran, on spring 2011. Materials and Methods: On the basis of native Hens distribution, this region divided into four parts of Eghlid, Doskord, Sedeh and Hasan-abad. Fifty unvaccinated native Hens randomly selected from each part. Blood samples were aseptically collected from the wing veins using 5-ml sterile syringe. Serum from hens was tested for detection and titration for Mycoplasma and Salmonella by the rapid slide agglutination method, and was tested for influenza and Newcastle by the Hemagglutination Inhibition Assay. The data was analyzed completely in randomized design with four treatments, 50 repetitions for each disease. Results: 34 out of 200 samples (17% were positive for influenza. There were significant differences between regions (p<0.01. 38 out of 200 samples (19% were positive for Newcastle. The maximum infectious rate obtained from Eghlid. There were significant differences between regions (p <0.05. 170 out of 200 samples (85% were positive for Mycoplasma gallisepticum. 4 from 200 samples (2% were positive for Mycoplasma synoviae. The results do not show a significant difference for salmonella (p <0.05. Conclusion: Contamination of Influenza, Newcastle and Mycoplasma gallisepticum was high, and the highest contamination rate was related to Mycoplasma gallisepticum. It is usually recommended that preventive strategies, such as appropriate husbandry and hygiene, sanitary handling of chicks and eggs, routine health monitoring and vaccination of Native hens should be emphasized. [Vet World 2013; 6(3.000: 126-130

  8. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses.

    Science.gov (United States)

    Pan, Yang; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Inoue, Yuji; Yasugi, Mayo; Yamashita, Akifumi; Ramadhany, Ririn; Arai, Yasuha; Du, Anariwa; Boonsathorn, Naphatsawan; Ibrahim, Madiha S; Daidoji, Tomo; Nakaya, Takaaki; Ono, Ken-ichiro; Okuno, Yoshinobu; Ikuta, Kazuyoshi; Watanabe, Yohei

    2014-07-18

    Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. CROSSREACTIVE ANTIBODIES AND MEMORY T CELLS TO HUMAN AND ZOONOTIC INFLUENZA A VIRUSES IN VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    I. V. Losev

    2015-01-01

    Full Text Available There exists a real hazard of transferring zoonotic influenza A viruses, either swine, or avian, into human population. In such case, severity of such pandemics depends on the pathogen-specific immunity in the population. Virtual absence of such immunity in humans was declared in the literature. In this work, we assessed systemic, local, and T-cell immunity to potentially pandemic H3N2sw, H5N1, H5N2, H7N3, H7N9 and H2N2 influenza A viruses in a group of healthy adults of different age. Our results indicate that these subjects develop the following immune reactions: (i local (i.e., nasal IgA and cellular (CD4+ and CD8v memory T cells heterosubtypic immunity, in absence of detectable virus-specific serum antibodies to avian influenza A viruses; (ii Local immune responses (as nasal IgA to human A (H2N2 virus which circulated in 1957-1968 were detected both in subjects who could be primed at that time, but also in subjects born after 1968; (iii full-scale systemic and local immunity to potentially pandemic А (H3N2sw swine virus was found in the group. Conclusion. In order of proper epidemiological forecasts and planning appropriate preventive measures for potentially pandemic Influenza A viruses, a regular monitoring of collective immunity should be performed using different adaptive markers. In this respect, any conclusion based on molecular analysis only could lead to considerable mistakes, and should be accomplished by the mentioned immunological studies.

  10. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease.

    Directory of Open Access Journals (Sweden)

    Ama-Tawiah Essilfie

    2011-10-01

    Full Text Available A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR. Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD. BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA and intranasally challenged with OVA 12-15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate and T lymphocytes (late, adaptive in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.

  11. Immunogenicity of influenza H1N1 vaccination in mixed connective tissue disease: effect of disease and therapy

    Directory of Open Access Journals (Sweden)

    Renata Miossi

    2013-01-01

    Full Text Available OBJECTIVE: To assess the potential acute effects regarding the immunogenicity and safety of non-adjuvanted influenza A H1N1/2009 vaccine in patients with mixed connective tissue disease and healthy controls. METHODS: Sixty-nine mixed connective tissue disease patients that were confirmed by Kasukawa's classification criteria and 69 age- and gender-matched controls participated in the study; the participants were vaccinated with the non-adjuvanted influenza A/California/7/2009 (H1N1 virus-like strain. The percentages of seroprotec-tion, seroconversion, geometric mean titer and factor increase in the geometric mean titer were calculated. The patients were clinically evaluated, and blood samples were collected pre- and 21 days post-vaccination to evaluate C-reactive protein, muscle enzymes and autoantibodies. Anti-H1N1 titers were determined using an influenza hemagglutination inhibition assay. ClinicalTrials.gov: NCT01151644. RESULTS: Before vaccination, no difference was observed regarding the seroprotection rates (p = 1.0 and geometric mean titer (p = 0.83 between the patients and controls. After vaccination, seroprotection (75.4% vs. 71%, (p = 0.7, seroconversion (68.1% vs. 65.2%, (p = 1.00 and factor increase in the geometric mean titer (10.0 vs. 8.0, p = 0.40 were similar in the two groups. Further evaluation of seroconversion in patients with and without current or previous history of muscle disease (p = 0.20, skin ulcers (p = 0.48, lupus-like cutaneous disease (p = 0.74, secondary Sjogren syndrome (p = 0.78, scleroderma-pattern in the nailfold capillaroscopy (p = 1.0, lymphopenia #1000/mm³ on two or more occasions (p = 1.0, hypergammaglobulinemia $1.6 g/d (p = 0.60, pulmonary hypertension (p = 1.0 and pulmonary fibrosis (p = 0.80 revealed comparable rates. Seroconversion rates were also similar in patients with and without immunosuppressants. Disease parameters, such as C-reactive protein (p = 0.94, aldolase (p = 0.73, creatine

  12. Identification of human host proteins contributing to H5N1 influenza virus propagation by membrane proteomics.

    Science.gov (United States)

    Liu, Cheng; Zhang, Anding; Guo, Jing; Yang, Jing; Zhou, Hongbo; Chen, Huanchun; Jin, Meilin

    2012-11-02

    The highly pathogenic avian influenza (HPAI) H5N1 virus is a highly virulent pathogen that causes respiratory diseases and death in humans and other animal species worldwide. Because influenza is an enveloped virus, the entry, assembly, and budding of virus particles are essential steps in the viral life cycle, and the virus relies on the participation of host cellular membrane proteins for all of these steps. Thus, we took a comparative membrane proteomics approach by using 2-DE coupled with MALDI-TOF/TOF MS to profile membrane proteins involved in H5N1 virus infection at 6, 12, and 24 h. Forty-two different proteins were found to vary on A549 cells due to H5N1 virus infection. Of these proteins, 57% were membrane or membrane-associated proteins. To further characterize the roles of novel identified proteins in virus propagation, the siRNA technology were applied and complement component C1q binding protein, annexin 2, prohibitin, peroxiredoxin 1 and heat shock protein 90-beta were successfully demonstrated to be contributed to viral propagation. In conclusion, the present study provides important new insight into understanding the roles of host membrane proteins in viral infection progress, and this insight is of particular importance for the development of novel therapeutic strategies.

  13. Antigen-activated dendritic cells ameliorate influenza A infections

    Science.gov (United States)

    Boonnak, Kobporn; Vogel, Leatrice; Orandle, Marlene; Zimmerman, Daniel; Talor, Eyal; Subbarao, Kanta

    2013-01-01

    Influenza A viruses cause significant morbidity and mortality worldwide. There is a need for alternative or adjunct therapies, as resistance to currently used antiviral drugs is emerging rapidly. We tested ligand epitope antigen presentation system (LEAPS) technology as a new immune-based treatment for influenza virus infection in a mouse model. Influenza-J-LEAPS peptides were synthesized by conjugating the binding ligand derived from the β2-microglobulin chain of the human MHC class I molecule (J-LEAPS) with 15 to 30 amino acid–long peptides derived from influenza virus NP, M, or HA proteins. DCs were stimulated with influenza-J-LEAPS peptides (influenza-J-LEAPS) and injected intravenously into infected mice. Antigen-specific LEAPS-stimulated DCs were effective in reducing influenza virus replication in the lungs and enhancing survival of infected animals. Additionally, they augmented influenza-specific T cell responses in the lungs and reduced the severity of disease by limiting excessive cytokine responses, which are known to contribute to morbidity and mortality following influenza virus infection. Our data demonstrate that influenza-J-LEAPS–pulsed DCs reduce virus replication in the lungs, enhance survival, and modulate the protective immune responses that eliminate the virus while preventing excessive cytokines that could injure the host. This approach shows promise as an adjunct to antiviral treatment of influenza virus infections. PMID:23934125

  14. Significant neutralizing activities against H2N2 influenza A viruses in human intravenous immunoglobulin lots manufactured from 1993 to 2010

    Directory of Open Access Journals (Sweden)

    Ikuta K

    2012-07-01

    Full Text Available Ritsuko Kubota-Koketsu,1,2 Mikihiro Yunoki,2,3 Yoshinobu Okuno,1 Kazuyoshi Ikuta21Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kagawa; 2Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3Pathogenic Risk Management, Benesis Corporation, Osaka, JapanAbstract: Influenza A H2N2 virus, also known as the Asian flu, spread worldwide from 1957 to 1967, although there have been no cases reported in humans in the past 40 years. A vaccination program was introduced in Japan in the 1960s. Older Japanese donors could have been naturally infected with the H2N2 virus or vaccinated in the early 1960s. Human intravenous immunoglobulin (IVIG reflects the epidemiological status of the donating population in a given time period. Here, the possible viral neutralizing (VN activities of IVIG against the H2N2 virus were examined. Hemagglutination inhibition (HI and VN activities of IVIG lots manufactured from 1993 to 2010 in Japan and the United States were evaluated against H2N2 viruses. High HI and VN activities against H2N2 viruses were found in all the IVIG lots investigated. HI titers were 32–64 against the isolate in 1957 and 64–128 against the isolates in 1965. VN titers were 80–320 against the isolate in 1957 and 1280–5120 against the isolates in 1965. Both the HI and VN titers were higher against the isolate in 1965 than in 1957. Thus, antibody titers of IVIG against influenza viruses are well correlated with the history of infection and the vaccine program in Japan. Therefore, evaluation of antibody titers provides valuable information about IVIGs, which could be used for immune stimulation when a new influenza virus emerges in the human population.Keywords: IVIG, influenza, H2N2, neutralization

  15. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C. (Harvard-Med); (Novartis); (US-FDA); (Duke)

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  16. Migration and persistence of human influenza A viruses, Vietnam, 2001-2008.

    Science.gov (United States)

    Le, Mai Quynh; Lam, Ha Minh; Cuong, Vuong Duc; Lam, Tommy Tsan-Yuk; Halpin, Rebecca A; Wentworth, David E; Hien, Nguyen Tran; Thanh, Le Thi; Phuong, Hoang Vu Mai; Horby, Peter; Boni, Maciej F

    2013-11-01

    Understanding global influenza migration and persistence is crucial for vaccine strain selection. Using 240 new human influenza A virus whole genomes collected in Vietnam during 2001-2008, we looked for persistence patterns and migratory connections between Vietnam and other countries. We found that viruses in Vietnam migrate to and from China, Hong Kong, Taiwan, Cambodia, Japan, South Korea, and the United States. We attempted to reduce geographic bias by generating phylogenies subsampled at the year and country levels. However, migration events in these phylogenies were still driven by the presence or absence of sequence data, indicating that an epidemiologic study design that controls for prevalence is required for robust migration analysis. With whole-genome data, most migration events are not detectable from the phylogeny of the hemagglutinin segment alone, although general migratory relationships between Vietnam and other countries are visible in the hemagglutinin phylogeny. It is possible that virus lineages in Vietnam persisted for >1 year.

  17. BIRD FLU (AVIAN INFLUENZA

    Directory of Open Access Journals (Sweden)

    Ali ACAR

    2005-12-01

    Full Text Available Avian influenza (bird flu is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, severe respiratory diseases and other severe and life-threatening complications. In such situation, people should avoid contact with infected birds or contaminated surface, and should be careful when handling and cooking poultry. [TAF Prev Med Bull 2005; 4(6.000: 345-353

  18. Differentiation of human influenza A viruses including the pandemic subtype H1N1/2009 by conventional multiplex PCR.

    Science.gov (United States)

    Furuse, Yuki; Odagiri, Takashi; Okada, Takashi; Khandaker, Irona; Shimabukuro, Kozue; Sawayama, Rumi; Suzuki, Akira; Oshitani, Hitoshi

    2010-09-01

    April 2009 witnessed the emergence of a novel H1N1 influenza A virus infecting the human population. Currently, pandemic and seasonal influenza viruses are co-circulating in human populations. Understanding the course of the emerging pandemic virus is important. It is still unknown how the novel virus co-circulates with or outcompetes seasonal viruses. Sustainable and detailed influenza surveillance is required throughout the world including developing countries. In the present study, a multiplex PCR using four primers was developed, which was designed to differentiate the pandemic H1N1 virus from the seasonal H1N1 and H3N2 viruses, to obtain amplicons of different sizes. Multiplex PCR analysis could clearly differentiate the three subtypes of human influenza A virus. This assay was performed using 206 clinical samples collected in 2009 in Japan. Between February and April, four samples were subtyped as seasonal H1N1 and four as seasonal H3N2. All samples collected after July were subtyped as pandemic H1N1. Currently, pandemic viruses seem to have replaced seasonal viruses almost completely in Japan. This is a highly sensitive method and its cost is low. Influenza surveillance using this assay would provide significant information on the epidemiology of both pandemic and seasonal influenza.

  19. The Effect of Tsukamurella inchonensis Bacterin on the Immune Response Against Influenza and Newcastle Disease Vaccines in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Forough Talazadeh

    2016-11-01

    Full Text Available Background: In poultry production, improving immunity is very important to prevent infectious diseases. One solution to improve the immunity of animals and to decrease their susceptibility to infectious disease is administration of immunostimulants. Surveys have indicated that some bacteria can work as immunomodulators such as Mycobacterium vaccae and can promote Th1-mediated mechanisms, and switch off pre-existing Th2 preponderance (1. Objectives: The aim of this study was to examine the effect of Tsukamurella inchonensis bacterin on the immune response against Influenza and Newcastle disease vaccine in broiler chickens . Materials and Methods: A total of 170 day-old broiler chicks were purchased and divided randomly into 5 equal groups. Chickens of group A received 106 bacterin subcutaneously on two days before vaccination against Newcastle disease and avian influenza. Chickens of group B received 106 bacterin subcutaneously on six days after the first injection of bacterin. Chickens of group C received 106bacterin subcutaneously on six days after the second injection of bacterin. Chickens of group D, vaccinated against Newcastle disease and avian influenza but did not receive bacterin. Chickens of group E, did not vaccinate against Newcastle disease and avian influenza and did not receive bacterin. All groups except group E, were vaccinated with live Newcastle vaccine and AI-ND killed vaccine (subtype H9N2. Blood samples were collected and antibody titer against Newcastle disease vaccine and avian influenza vaccine was determined by HI test. Results: The results of present study showed that receiving of Tsukamurella inchonensis bacterin for 3 times, significantly increased the specific antibody response to avian influenza subtype H9N2 vaccine. Also about Newcastle vaccine, significantly increased the specific antibody response to Newcastle vaccine at 21 and 28 days after vaccination. Conclusions: Receiving of Tsukamurella inchonensis bacterin

  20. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Parida, Satya; Rasmussen, Thomas Bruun;

    2010-01-01

    for the presence of infection. This literature review describes the current knowledge on the use of DIVA diagnostic strategies for three important transboundary animal diseases: foot-and-mouth disease in cloven-hoofed animals, classical swine fever in pigs and avian influenza in poultry....

  1. Changing selective pressure during antigenic changes in human influenza H3.

    Directory of Open Access Journals (Sweden)

    Benjamin P Blackburne

    2008-05-01

    Full Text Available The rapid evolution of influenza viruses presents difficulties in maintaining the optimal efficiency of vaccines. Amino acid substitutions result in antigenic drift, a process whereby antisera raised in response to one virus have reduced effectiveness against future viruses. Interestingly, while amino acid substitutions occur at a relatively constant rate, the antigenic properties of H3 move in a discontinuous, step-wise manner. It is not clear why this punctuated evolution occurs, whether this represents simply the fact that some substitutions affect these properties more than others, or if this is indicative of a changing relationship between the virus and the host. In addition, the role of changing glycosylation of the haemagglutinin in these shifts in antigenic properties is unknown. We analysed the antigenic drift of HA1 from human influenza H3 using a model of sequence change that allows for variation in selective pressure at different locations in the sequence, as well as at different parts of the phylogenetic tree. We detect significant changes in selective pressure that occur preferentially during major changes in antigenic properties. Despite the large increase in glycosylation during the past 40 years, changes in glycosylation did not correlate either with changes in antigenic properties or with significantly more rapid changes in selective pressure. The locations that undergo changes in selective pressure are largely in places undergoing adaptive evolution, in antigenic locations, and in locations or near locations undergoing substitutions that characterise the change in antigenicity of the virus. Our results suggest that the relationship of the virus to the host changes with time, with the shifts in antigenic properties representing changes in this relationship. This suggests that the virus and host immune system are evolving different methods to counter each other. While we are able to characterise the rapid increase in

  2. Mechanism of Human Influenza Virus RNA Persistence and Virion Survival in Feces: Mucus Protects Virions From Acid and Digestive Juices.

    Science.gov (United States)

    Hirose, Ryohei; Nakaya, Takaaki; Naito, Yuji; Daidoji, Tomo; Watanabe, Yohei; Yasuda, Hiroaki; Konishi, Hideyuki; Itoh, Yoshito

    2017-07-01

    Although viral RNA or infectious virions have been detected in the feces of individuals infected with human influenza A and B viruses (IAV/IBV), the mechanism of viral survival in the gastrointestinal tract remains unclear. We developed a model that attempts to recapitulate the conditions encountered by a swallowed virus. While IAV/IBV are vulnerable to simulated digestive juices (gastric acid and bile/pancreatic juice), highly viscous mucus protects viral RNA and virions, allowing the virus to retain its infectivity. Our results suggest that virions and RNA present in swallowed mucus are not inactivated or degraded by the gastrointestinal environment, allowing their detection in feces. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. Absence of detectable influenza RNA transmitted via aerosol during various human respiratory activities--experiments from Singapore and Hong Kong.

    Directory of Open Access Journals (Sweden)

    Julian W Tang

    Full Text Available Two independent studies by two separate research teams (from Hong Kong and Singapore failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth-breathing manikin. Aerosolised droplets exhaled from the volunteers and entering the manikin's mouth were collected with PTFE filters and an aerosol sampler, in separate experiments. Virus detection was performed using an in-house influenza RNA reverse-transcription polymerase chain reaction (RT-PCR assay. No influenza RNA was detected from any of the PTFE filters or air samples. For the Singapore experiments, 6 influenza-infected volunteers were asked to breathe (nasal/mouth breathing, talk (counting in English/second language, cough (from 1 m/0.1 m away and laugh, onto a thermal, breathing manikin. The manikin's face was swabbed at specific points (around both eyes, the nostrils and the mouth before and after exposure to each of these respiratory activities, and was cleaned between each activity with medical grade alcohol swabs. Shadowgraph imaging was used to record the generation of these respiratory aerosols from the infected volunteers and their impact onto the target manikin. No influenza RNA was detected from any of these swabs with either team's in-house diagnostic influenza assays. All the influenza-infected volunteers had diagnostic swabs taken at recruitment that confirmed influenza (A/H1, A/H3 or B infection with high viral loads, ranging from 10(5-10(8 copies/mL (Hong Kong volunteers/assay and 10(4-10(7 copies/mL influenza viral RNA (Singapore volunteers/assay. These findings suggest that influenza RNA may not be readily transmitted from naturally-infected human source to susceptible recipients via these natural respiratory activities, within

  4. Comparative distribution of human and avian type sialic acid influenza receptors in the pig

    Directory of Open Access Journals (Sweden)

    Perez Belinda

    2010-01-01

    Full Text Available Abstract Background A major determinant of influenza infection is the presence of virus receptors on susceptible host cells to which the viral haemagglutinin is able to bind. Avian viruses preferentially bind to sialic acid α2,3-galactose (SAα2,3-Gal linked receptors, whereas human strains bind to sialic acid α2,6-galactose (SAα2,6-Gal linked receptors. To date, there has been no detailed account published on the distribution of SA receptors in the pig, a model host that is susceptible to avian and human influenza subtypes, thus with potential for virus reassortment. We examined the relative expression and spatial distribution of SAα2,3-GalG(1-3GalNAc and SAα2,6-Gal receptors in the major organs from normal post-weaned pigs by binding with lectins Maackia amurensis agglutinins (MAA II and Sambucus nigra agglutinin (SNA respectively. Results Both SAα2,3-Gal and SAα2,6-Gal receptors were extensively detected in the major porcine organs examined (trachea, lung, liver, kidney, spleen, heart, skeletal muscle, cerebrum, small intestine and colon. Furthermore, distribution of both SA receptors in the pig respiratory tract closely resembled the published data of the human tract. Similar expression patterns of SA receptors between pig and human in other major organs were found, with exception of the intestinal tract. Unlike the limited reports on the scarcity of influenza receptors in human intestines, we found increasing presence of SAα2,3-Gal and SAα2,6-Gal receptors from duodenum to colon in the pig. Conclusions The extensive presence of SAα2,3-Gal and SAα2,6-Gal receptors in the major organs examined suggests that each major organ may be permissive to influenza virus entry or infection. The high similarity of SA expression patterns between pig and human, in particular in the respiratory tract, suggests that pigs are not more likely to be potential hosts for virus reassortment than humans. Our finding of relative abundance of SA receptors

  5. Entry Properties and Entry Inhibitors of a Human H7N9 Influenza Virus

    OpenAIRE

    Youhui Si; Jianguo Li; Yuqiang Niu; Xiuying Liu; Lili Ren; Li Guo; Min Cheng; Hongli Zhou; Jianwei Wang; Qi Jin; Wei Yang

    2014-01-01

    The recently identified human infections with a novel avian influenza H7N9 virus in China raise important questions regarding possible risk to humans. However, the entry properties and tropism of this H7N9 virus were poorly understood. Moreover, neuraminidase inhibitor resistant H7N9 isolates were recently observed in two patients and correlated with poor clinical outcomes. In this study, we aimed to elucidate the entry properties of H7N9 virus, design and evaluate inhibitors for H7N9 virus e...

  6. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

    Science.gov (United States)

    Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A

    2013-12-06

    The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.

  7. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    Science.gov (United States)

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-02-28

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    Science.gov (United States)

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors.IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent

  9. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus

    Science.gov (United States)

    Sobel Leonard, Ashley; Weissman, Daniel B.; Greenbaum, Benjamin; Ghedin, Elodie

    2017-01-01

    ABSTRACT The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors. IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations

  10. Kallikrein-Related Peptidase 5 Contributes to H3N2 Influenza Virus Infection in Human Lungs.

    Science.gov (United States)

    Magnen, Mélia; Gueugnon, Fabien; Guillon, Antoine; Baranek, Thomas; Thibault, Virginie C; Petit-Courty, Agnès; de Veer, Simon J; Harris, Jonathan; Humbles, Alison A; Si-Tahar, Mustapha; Courty, Yves

    2017-08-15

    Hemagglutinin (HA) of influenza virus must be activated by proteolysis before the virus can become infectious. Previous studies indicated that HA cleavage is driven by membrane-bound or extracellular serine proteases in the respiratory tract. However, there is still uncertainty as to which proteases are critical for activating HAs of seasonal influenza A viruses (IAVs) in humans. This study focuses on human KLK1 and KLK5, 2 of the 15 serine proteases known as the kallikrein-related peptidases (KLKs). We find that their mRNA expression in primary human bronchial cells is stimulated by IAV infection. Both enzymes cleaved recombinant HA from several strains of the H1 and/or H3 virus subtype in vitro, but only KLK5 promoted the infectivity of A/Puerto Rico/8/34 (H1N1) and A/Scotland/20/74 (H3N2) virions in MDCK cells. We assessed the ability of treated viruses to initiate influenza in mice. The nasal instillation of only the KLK5-treated virus resulted in weight loss and lethal outcomes. The secretion of this protease in the human lower respiratory tract is enhanced during influenza. Moreover, we show that pretreatment of airway secretions with a KLK5-selective inhibitor significantly reduced the activation of influenza A/Scotland/20/74 virions, providing further evidence of its importance. Differently, increased KLK1 secretion appeared to be associated with the recruitment of inflammatory cells in human airways regardless of the origin of inflammation. Thus, our findings point to the involvement of KLK5 in the proteolytic activation and spread of seasonal influenza viruses in humans.IMPORTANCE Influenza A viruses (IAVs) cause acute infection of the respiratory tract that affects millions of people during seasonal outbreaks every year. Cleavage of the hemagglutinin precursor by host proteases is a critical step in the life cycle of these viruses. Consequently, host proteases that activate HA can be considered promising targets for the development of new antivirals

  11. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus.

    Science.gov (United States)

    Kim, Shin-Hee; Paldurai, Anandan; Samal, Siba K

    2017-03-01

    Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Computational prediction of vaccine strains for human influenza A (H3N2) viruses.

    Science.gov (United States)

    Steinbrück, L; Klingen, T R; McHardy, A C

    2014-10-01

    Human influenza A viruses are rapidly evolving pathogens that cause substantial morbidity and mortality in seasonal epidemics around the globe. To ensure continued protection, the strains used for the production of the seasonal influenza vaccine have to be regularly updated, which involves data collection and analysis by numerous experts worldwide. Computer-guided analysis is becoming increasingly important in this problem due to the vast amounts of generated data. We here describe a computational method for selecting a suitable strain for production of the human influenza A virus vaccine. It interprets available antigenic and genomic sequence data based on measures of antigenic novelty and rate of propagation of the viral strains throughout the population. For viral isolates sampled between 2002 and 2007, we used this method to predict the antigenic evolution of the H3N2 viruses in retrospective testing scenarios. When seasons were scored as true or false predictions, our method returned six true positives, three false negatives, eight true negatives, and one false positive, or 78% accuracy overall. In comparison to the recommendations by the WHO, we identified the correct antigenic variant once at the same time and twice one season ahead. Even though it cannot be ruled out that practical reasons such as lack of a sufficiently well-growing candidate strain may in some cases have prevented recommendation of the best-matching strain by the WHO, our computational decision procedure allows quantitative interpretation of the growing amounts of data and may help to match the vaccine better to predominating strains in seasonal influenza epidemics. Importance: Human influenza A viruses continuously change antigenically to circumvent the immune protection evoked by vaccination or previously circulating viral strains. To maintain vaccine protection and thereby reduce the mortality and morbidity caused by infections, regular updates of the vaccine strains are required. We

  13. Comparative Profile of Heme Acquisition Genes in Disease-Causing and Colonizing Nontypeable Haemophilus influenzae and Haemophilus haemolyticus.

    Science.gov (United States)

    Hariadi, Nurul I; Zhang, Lixin; Patel, Mayuri; Sandstedt, Sara A; Davis, Gregg S; Marrs, Carl F; Gilsdorf, Janet R

    2015-07-01

    Nontypeable Haemophilus influenzae (NTHI) are Gram-negative bacteria that colonize the human pharynx and can cause respiratory tract infections, such as acute otitis media (AOM). Since NTHI require iron from their hosts for aerobic growth, the heme acquisition genes may play a significant role in avoiding host nutritional immunity and determining virulence. Therefore, we employed a hybridization-based technique to compare the prevalence of five heme acquisition genes (hxuA, hxuB, hxuC, hemR, and hup) between 514 middle ear strains from children with AOM and 235 throat strains from healthy children. We also investigated their prevalences in 148 Haemophilus haemolyticus strains, a closely related species that colonizes the human pharynx and is considered to be nonpathogenic. Four out of five genes (hxuA, hxuB, hxuC, and hemR) were significantly more prevalent in the middle ear strains (96%, 100%, 100%, and 97%, respectively) than in throat strains (80%, 92%, 93%, and 85%, respectively) of NTHI, suggesting that strains possessing these genes have a virulence advantage over those lacking them. All five genes were dramatically more prevalent in NTHI strains than in H. haemolyticus, with 91% versus 9% hxuA, 98% versus 11% hxuB, 98% versus 11% hxuC, 93% versus 20% hemR, and 97% versus 34% hup, supporting their potential role in virulence and highlighting their possibility to serve as biomarkers to distinguish H. influenzae from H. haemolyticus. In summary, this study demonstrates that heme acquisition genes are more prevalent in disease-causing NTHI strains isolated from the middle ear than in colonizing NTHI strains and H. haemolyticus isolated from the pharynx.

  14. Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with hemagglutinin protein

    Directory of Open Access Journals (Sweden)

    Bushnell Ruth V

    2010-08-01

    Full Text Available Abstract Background Recent and previous studies have shown that guinea pigs can be infected with, and transmit, human influenza viruses. Therefore guinea pig may be a useful animal model for better understanding influenza infection and assessing vaccine strategies. To more fully characterize the model, antibody responses following either infection/re-infection with human influenza A/Wyoming/03/2003 H3N2 or immunization with its homologous recombinant hemagglutinin (HA protein were studied. Results Serological samples were collected and tested for anti-HA immunoglobulin by ELISA, antiviral antibodies by hemagglutination inhibition (HI, and recognition of linear epitopes by peptide scanning (PepScan. Animals inoculated with infectious virus demonstrated pronounced viral replication and subsequent serological conversion. Animals either immunized with the homologous HA antigen or infected, showed a relatively rapid rise in antibody titers to the HA glycoprotein in ELISA assays. Antiviral antibodies, measured by HI assay, were detectable after the second inoculation. PepScan data identified both previously recognized and newly defined linear epitopes. Conclusions Infection and/or recombinant HA immunization of guinea pigs with H3N2 Wyoming influenza virus resulted in a relatively rapid production of viral-specific antibody thus demonstrating the strong immunogenicity of the major viral structural proteins in this animal model for influenza infection. The sensitivity of the immune response supports the utility of the guinea pig as a useful animal model of influenza infection and immunization.

  15. H1N1 Influenza

    Science.gov (United States)

    ... Nutrient Shortfall Questionnaire Home Diseases and Conditions H1N1 Influenza H1N1 Influenza Condition Family HealthKids and Teens Share H1N1 ... Contents1. Overview2. Symptoms3. Prevention4. Treatment What is H1N1 influenza?H1N1 influenza (also known as swine flu) is an ...

  16. Antiviral activity of mycophenolic acid against influenza viruses and MERS coronavirus

    OpenAIRE

    Mok, Ka-Yi; 莫嘉怡

    2014-01-01

    Influenza virusand Middle East Respiratory Syndrome Coronavirus(MERS-CoV) cause life-threatening respiratory disease. There are 3 to 5million severe cases and 250,000 to 500,000 fatal cases caused by seasonal influenza virus A(H1N1)virus, A(H3N2) virus and influenza B virus every year. Pandemic influenza, which is associated with higher mortality, has once every few decades. Among various influenza viruses, the avian-origin A(H5N1)virus and A(H7N9) virus are the most virulent in humans. MERS-...

  17. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses.

    Science.gov (United States)

    Fang, Shisong; Bai, Tian; Yang, Lei; Wang, Xin; Peng, Bo; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Zhu, Wenfei; Wang, Dayan; Cheng, Jinquan; Shu, Yuelong

    2016-08-03

    Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance.

  18. Characterization of H5N1 influenza viruses isolated from humans in vitro

    Directory of Open Access Journals (Sweden)

    Kameoka Masanori

    2010-06-01

    Full Text Available Abstract Since December 1997, highly pathogenic avian influenza A H5N1viruses have swept through poultry populations across Asian countries and been transmitted into African and European countries. We characterized 6 avian influenza H5N1 viruses isolated from humans in 2004 in Thailand. A highly pathogenic (HP KAN353 strain showed faster replication and higher virulence in embryonated eggs compared to other strains, especially compared to the low pathogenic (LP SP83 strain. HP KAN353 also showed strong cytopathogenicity compared to SP83 in Madin-Darby canine kidney cells. Interestingly, LP SP83 induced smaller plaques compared to other strains, especially HP KAN353. PB2 amino acid 627E may contribute to low virulence, whereas either PB2 amino acid 627 K or the combination of 627E/701N seems to be associated with high virulence. The in vitro assays used in this study may provide the basis for assessing the pathogenesis of influenza H5N1 viruses in vivo.

  19. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses.

    Science.gov (United States)

    Sui, Jianhua; Hwang, William C; Perez, Sandra; Wei, Ge; Aird, Daniel; Chen, Li-mei; Santelli, Eugenio; Stec, Boguslaw; Cadwell, Greg; Ali, Maryam; Wan, Hongquan; Murakami, Akikazu; Yammanuru, Anuradha; Han, Thomas; Cox, Nancy J; Bankston, Laurie A; Donis, Ruben O; Liddington, Robert C; Marasco, Wayne A

    2009-03-01

    Influenza virus remains a serious health threat, owing to its ability to evade immune surveillance through rapid genetic drift and reassortment. Here we used a human non-immune antibody phage-display library and the H5 hemagglutinin ectodomain to select ten neutralizing antibodies (nAbs) that were effective against all group 1 influenza viruses tested, including H5N1 'bird flu' and the H1N1 'Spanish flu'. The crystal structure of one such nAb bound to H5 shows that it blocks infection by inserting its heavy chain into a conserved pocket in the stem region, thus preventing membrane fusion. Nine of the nAbs employ the germline gene VH1-69, and all seem to use the same neutralizing mechanism. Our data further suggest that this region is recalcitrant to neutralization escape and that nAb-based immunotherapy is a promising strategy for broad-spectrum protection against seasonal and pandemic influenza viruses.

  20. A human monoclonal antibody with neutralizing activity against highly divergent influenza subtypes.

    Directory of Open Access Journals (Sweden)

    Nicola Clementi

    Full Text Available The interest in broad-range anti-influenza A monoclonal antibodies (mAbs has recently been strengthened by the identification of anti-hemagglutinin (HA mAbs endowed with heterosubtypic neutralizing activity to be used in the design of "universal" prophylactic or therapeutic tools. However, the majority of the single mAbs described to date do not bind and neutralize viral isolates belonging to highly divergent subtypes clustering into the two different HA-based influenza phylogenetic groups: the group 1 including, among others, subtypes H1, H2, H5 and H9 and the group 2 including, among others, H3 subtype. Here, we describe a human mAb, named PN-SIA28, capable of binding and neutralizing all tested isolates belonging to phylogenetic group 1, including H1N1, H2N2, H5N1 and H9N2 subtypes and several isolates belonging to group 2, including H3N2 isolates from the first period of the 1968 pandemic. Therefore, PN-SIA28 is capable of neutralizing isolates belonging to subtypes responsible of all the reported pandemics, as well as other subtypes with pandemic potential. The region recognized by PN-SIA28 has been identified on the stem region of HA and includes residues highly conserved among the different influenza subtypes. A deep characterization of PN-SIA28 features may represent a useful help in the improvement of available anti-influenza therapeutic strategies and can provide new tools for the development of universal vaccinal strategies.

  1. Molecular characterization of H1N1 influenza A viruses from human cases in North America

    Institute of Scientific and Technical Information of China (English)

    WU Bin; WANG ChengMin; DONG GuoYing; LUO Jing; ZHAO BaoHua; HE HongXuan

    2009-01-01

    Subtypes of H1N1 influenza virus can be found in humans in North America,while they are also associated with the infection of swine.Characterization of the genotypes of viral strains in human populations is important to understand the source and distribution of viral strains.Genomic and protein sequences of 10 isolates of the 2009 outbreak of influenza A (H1N1) virus in North America were obtained from GenBank database.To characterize the genotypes of these viruses,phylogenetic trees of genes PB2,PB1,PA,HA,NP,NA,NS and M were constructed by Phylip3.67 program and N-Linked glycosylation sites of HA,NA,PB2,NS1 and M2 proteins were analyzed online by NetNGIyc1.0 program.Phylogenetic analysis indicated that these isolates are virtually identical but may be recombinant viruses because their genomic fragments come from different viruses.The isolates also contain a characteristic lowly pathogenic amino acid motif at their HA cleavage sites (IPSIQSR↓GL),and an E residue at position 627 of the PB2 protein which shows its high affinity to humans.The homologous model of M proteins showed that the viruses had obtained the ability of anti-amantadine due to the mutation at the drug-sensitive site,while sequence analysis of NA proteins indicated that the viruses are still susceptible to the neuraminidase inhibitor drug (i.e.oseltamivir and zanamivir) because no mutations have been observed.Our results strongly suggested that the viruses responsible for the 2009 outbreaks of influenza A (H1N1) virus have the ability to cross species barriers to infect human and mammalian animals based on molecular analysis.These findings may further facilitate the therapy and prevention of possible transmission from North America to other countries.

  2. Viral diseases and human evolution

    OpenAIRE

    2000-01-01

    The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish l...

  3. Pandemic H1N1 influenza: zoonoses are a two-way street

    Science.gov (United States)

    Influenza is a zoonotic viral disease representing a worldwide health and economic threat to humans and animals. Swine influenza was first recognized clinically in pigs in the Midwestern United States in 1918 concurrent with the Spanish flu human pandemic. Since the first report that flu was caused ...

  4. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola.

    Science.gov (United States)

    Fedson, David S

    2016-11-01

    There is an ongoing threat of epidemic or pandemic diseases that could be caused by influenza, Ebola or other emerging viruses. It will be difficult and costly to develop new drugs that target each of these viruses. Statins and angiotensin receptor blockers (ARBs) have been effective in treating patients with sepsis, pneumonia and influenza, and a statin/ARB combination appeared to dramatically reduce mortality during the recent Ebola outbreak. These drugs target (among other things) the endothelial dysfunction found in all of these diseases. Most scientists work on new drugs that target viruses, and few accept the idea of treating the host response with generic drugs. A great deal of research will be needed to show conclusively that these drugs work, and this will require the support of public agencies and foundations. Investigators in developing countries should take an active role in this research. If the next Public Health Emergency of International Concern is caused by an emerging virus, a "top down" approach to developing specific new drug treatments is unlikely to be effective. However, a "bottom up" approach to treatment that targets the host response to these viruses by using widely available and inexpensive generic drugs could reduce mortality in any country with a basic health care system. In doing so, it would make an immeasurable contribution to global equity and global security.

  5. 76 FR 51374 - Direct Discovery of HLA Associated Influenza Epitopes Isolated From Human Cells for Vaccine and...

    Science.gov (United States)

    2011-08-18

    ... HUMAN SERVICES Food and Drug Administration Direct Discovery of HLA Associated Influenza Epitopes Isolated From Human Cells for Vaccine and Therapeutic Evaluation and Development (U01) AGENCY: Food and... will provide the regulatory science to facilitate development and evaluation of direct discovery of...

  6. Functional variants regulating LGALS1 (Galectin 1) expression affect human susceptibility to influenza A(H7N9)

    NARCIS (Netherlands)

    Chen, Yu; Zhou, Jie; Cheng, Zhongshan; Yang, Shigui; Chu, Hin; Fan, Yanhui; Li, Cun; Wong, Bosco Ho-Yin; Zheng, Shufa; Zhu, Yixin; Yu, Fei; Wang, Yiyin; Liu, Xiaoli; Gao, Hainv; Yu, Liang; Tang, Linglin; Cui, Dawei; Hao, Ke; Bosse, Yohan; Obeidat, Maen; Brandsma, Corry-Anke; Song, You-Qiang; Kai-Wang, Kelvin; Sham, Pak Chung; Yuen, Kwok-Yung; Li, Lanjuan

    2015-01-01

    The fatality of avian influenza A(H7N9) infection in humans was over 30%. To identify human genetic susceptibility to A(H7N9) infection, we performed a genome-wide association study (GWAS) involving 102 A(H7N9) patients and 106 heavily-exposed healthy poultry workers, a sample size critically restri

  7. Functional variants regulating LGALS1 (Galectin 1) expression affect human susceptibility to influenza A(H7N9)

    NARCIS (Netherlands)

    Chen, Yu; Zhou, Jie; Cheng, Zhongshan; Yang, Shigui; Chu, Hin; Fan, Yanhui; Li, Cun; Wong, Bosco Ho-Yin; Zheng, Shufa; Zhu, Yixin; Yu, Fei; Wang, Yiyin; Liu, Xiaoli; Gao, Hainv; Yu, Liang; Tang, Linglin; Cui, Dawei; Hao, Ke; Bosse, Yohan; Obeidat, Maen; Brandsma, Corry-Anke; Song, You-Qiang; Kai-Wang, Kelvin; Sham, Pak Chung; Yuen, Kwok-Yung; Li, Lanjuan

    2015-01-01

    The fatality of avian influenza A(H7N9) infection in humans was over 30%. To identify human genetic susceptibility to A(H7N9) infection, we performed a genome-wide association study (GWAS) involving 102 A(H7N9) patients and 106 heavily-exposed healthy poultry workers, a sample size critically restri

  8. Wipes coated with a singlet-oxygen-producing photosensitizer are effective against human influenza virus but not against norovirus

    NARCIS (Netherlands)

    Verhaelen, Katharina; Bouwknegt, Martijn; Rutjes, Saskia; de Roda Husman, Ana Maria; Duizer, Erwin

    2014-01-01

    Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses,

  9. Viral diseases and human evolution

    Directory of Open Access Journals (Sweden)

    Leal Élcio de Souza

    2000-01-01

    Full Text Available The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish long-lasting associations with man. Although not all viral agents cause disease and some may in fact be considered beneficial, the present situation of overpopulation, poverty and ecological inbalance may have devastating effets on human progress. Recently emerged diseases causing massive pandemics (eg., HIV-1 and HCV, dengue, etc. are becoming formidable challenges, which may have a direct impact on the fate of our species.

  10. Assembly and immunological properties of a bivalent virus-like particle (VLP) for avian influenza and Newcastle disease.

    Science.gov (United States)

    Shen, Huifang; Xue, Chunyi; Lv, Lishan; Wang, Wei; Liu, Qiliang; Liu, Kang; Chen, Xianxian; Zheng, Jing; Li, Xiaoming; Cao, Yongchang

    2013-12-26

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are both important pathogens in poultry worldwide. The protection of poultry from avian influenza and Newcastle disease can be achieved through vaccination. We embarked on the development of a bivalent vaccine that would allow for a single immunization against both avian influenza and Newcastle disease. We constructed a chimeric virus-like particle (VLP) that is composed of the M1 protein and HA protein of avian influenza virus and a chimeric protein containing the cytoplasmic and transmembrane domains of AIV neuraminidase protein (NA) and the ectodomain of the NDV hemagglutinin-neuraminidase (HN) protein (NA/HN). The single immunization of chickens with the chimeric VLP vaccine induced both AIV H5- and NDV-specific antibodies. The HI titers and specific antibodies elicited by the chimeric VLPs were statistically similar to those elicited in animals vaccinated with the corresponding commercial monovalent vaccines. Chickens vaccinated with chimeric VLP vaccine and then challenged with the Newcastle disease F48E9 virus displayed complete protection. Overall, the chimeric VLP vaccine elicits strong immunity and can protect against Newcastle disease virus challenge.

  11. Infectious Progeny of 2009 A (H1N1) Influenza Virus Replicated in and Released from Human Neutrophils.

    Science.gov (United States)

    Zhang, Zhang; Huang, Tao; Yu, Feiyuan; Liu, Xingmu; Zhao, Conghui; Chen, Xueling; Kelvin, David J; Gu, Jiang

    2015-12-07

    Various reports have indicated that a number of viruses could infect neutrophils, but the multiplication of viruses in neutrophils was abortive. Based on our previous finding that avian influenza viral RNA and proteins were present in the nucleus of infected human neutrophils in vivo, we investigated the possibility of 2009 A (H1N1) influenza viral synthesis in infected neutrophils and possible release of infectious progeny from host cells. In this study we found that human neutrophils in vitro without detectable level of sialic acid expression could be infected by this virus strain. We also show that the infected neutrophils can not only synthesize 2009 A (H1N1) viral mRNA and proteins, but also produce infectious progeny. These findings suggest that infectious progeny of 2009 A (H1N1) influenza virus could be replicated in and released from human neutrophils with possible clinical implications.

  12. [Literature review on human influenza epidemics occurred before the implementation plan for sentinel surveillance program in the DRC].

    Science.gov (United States)

    Nkwembe-Ngabana, Edith; Ahuka-Mundeke, Steve; Kebela-Ilunga, Benoit; Londa, Emile Okitolo; Muyembe-Tamfum, Jean-Jacques

    2017-01-01

    In the Democratic Republic of the Congo (DRC), several influenza epidemics are ignored because they are confused with other infectious diseases which have similar symptoms. Our study aims to assess influenza epidemics occurred in the DRC before 2008, year of the implementation of the influenza surveillance program in the DRC. We searched all the documents [articles, report,…] about influenza epidemic or acute respiratory infections [ARI] in the DRC before 2008 by using chosen key words. Epidemic description elements were identified and analyzed in each report. 4 documents have been found that had no article published. The sites of the epidemic outbreak were the rural health zones in Koshibanda and Kahemba, Bandundu [1995 and 2007], in Bosobolo, Equator [2002] and in Kinshasa [2002-2003]. Attack and lethality rates were 3.9% and 16% in Koshibanda respectively; 0.1% and 2% in Kinshasa; 47.5% and 1.5% in Bosobolo and 14.6% and 2.9% in Kahemba. Children less than 5 years of age were the most affected. Their attack rates ranged between 22.6 and 57.7% and lethality rates ranged between 3.2 and 3.7%. The two epidemics in Bosobolo and Kinshasa were associated with H3N2 influenza virus. This literature review highlights a high morbidity and mortality due to rare influenza epidemics in the DRC.

  13. Recognition of influenza H3N2 variant virus by human neutralizing antibodies

    Science.gov (United States)

    Bangaru, Sandhya; Nieusma, Travis; Kose, Nurgun; Thornburg, Natalie J.; Kaplan, Bryan S.; King, Hannah G.; Singh, Vidisha; Lampley, Rebecca M.; Cisneros, Alberto; Edwards, Kathryn M.; Edupuganti, Srilatha; Lai, Lilin; Richt, Juergen A.; Webby, Richard J.; Ward, Andrew B.; Crowe, James E.

    2016-01-01

    Since 2011, over 300 human cases of infection, especially in exposed children, with the influenza A H3N2 variant (H3N2v) virus that circulates in swine in the US have been reported. The structural and genetic basis for the lack of protection against H3N2v induced by vaccines containing seasonal H3N2 antigens is poorly understood. We isolated 17 human monoclonal antibodies (mAbs) that neutralized H3N2v virus from subjects experimentally immunized with an H3N2v candidate vaccine. Six mAbs exhibited very potent neutralizing activity (IC50 < 200 ng/ml) against the H3N2v virus but not against current human H3N2 circulating strains. Fine epitope mapping and structural characterization of antigen-antibody complexes revealed that H3N2v specificity was attributable to amino acid polymorphisms in the 150-loop and the 190-helix antigenic sites on the hemagglutinin protein. H3N2v-specific antibodies also neutralized human H3N2 influenza strains naturally circulating between 1995 and 2005. These results reveal a high level of antigenic relatedness between the swine H3N2v virus and previously circulating human strains, consistent with the fact that early human H3 seasonal strains entered the porcine population in the 1990s and reentered the human population, where they had not been circulating, as H3N2v about a decade later. The data also explain the increased susceptibility to H3N2v viruses in young children, who lack prior exposure to human seasonal strains from the 1990s. PMID:27482543

  14. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  15. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    Science.gov (United States)

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear.

  16. Agglutination of human O erythrocytes by influenza A(H1N1) viruses freshly isolated from patients.

    Science.gov (United States)

    Murakami, T; Haruki, K; Seto, Y; Kimura, T; Minoshiro, S; Shibe, K

    1991-04-01

    The hemagglutinin titers of 10 influenza A (H1N1) viruses were examined using the erythrocytes of several species. Human O erythrocytes showed the highest agglutination titer to the viruses, whereas chicken erythrocytes showed a low titer. These findings were noted for at least 10 passages by serial dilutions of the viruses in Madin-Darby canine kidney (MDCK) cells. All influenza A(H1N1) viruses, plaque-cloned directly from throat-washing specimens of patients, also agglutinated human O but not chicken erythrocytes. The results of a hemadsorption test indicated that chicken erythrocytes possess less affinity to MDCK cells infected with the A/Osaka City/2/88(H1N1) stain than to those infected with the A/Yamagata/120/86(H1N1) strain which is used as an inactivated influenza vaccine in Japan. However, there were no significant differences between the A/Osaka City/2/88 and the A/Yamagata/120/86 strains in the hemagglutination inhibition test. Since human O erythrocytes have high agglutination activity to influenza A(H1N1) and also to A(H3N2) and B viruses in MDCK cells, these erythrocytes may be useful for the serological diagnosis of influenza.

  17. Genetic diversity of the 2013–14 human isolates of influenza H7N9 in China

    OpenAIRE

    Farooqui, Amber; Leon, Alberto J.; Huang, Linxi; Wu, Suwu; Cai, Yingmu; Lin, Pengzhou; Chen, Weihong; Fang, Xibin; Zeng, Tiansheng; Liu, Yisu; Li ZHANG; Su, Ting; Chen, Weibin; Ghedin, Elodie; Zhu, Huachen

    2015-01-01

    Background Influenza H7N9 has become an endemic pathogen in China where circulating virus is found extensively in wild birds and domestic poultry. Two epidemic waves of Human H7N9 infections have taken place in Eastern and South Central China during the years of 2013 and 2014. In this study, we report on the first four human cases of influenza H7N9 in Shantou, Guangdong province, which occurred during the second H7N9 wave, and the subsequent analysis of the viral isolates. Methods Viral genom...

  18. The Mx1 Gene Protects Mice against the Pandemic 1918 and Highly Lethal Human H5N1 Influenza Viruses▿

    OpenAIRE

    2007-01-01

    Mice carrying a wild-type Mx1 gene (Mx1+/+) differ from standard laboratory mice (Mx1−/−) in being highly resistant to infection with common laboratory strains of influenza A virus. We report that Mx1 also protects mice against the pandemic human 1918 influenza virus and a highly lethal human H5N1 strain from Vietnam. Resistance to H5N1 of Mx1+/+ but not Mx1−/− mice was enhanced if the animals were treated with a single dose of exogenous alpha interferon before infection. Thus, the interferon...

  19. THE COMPARISON OF INFLUENZA VACCINE EFFICACY ON RESPIRATORY DISEASE AMONG IRANIAN PILGRIMS IN THE 2003 AND 2004 SEASONS

    Directory of Open Access Journals (Sweden)

    M. Razavi

    2005-07-01

    Full Text Available Prolonged cough occurs in a large proportion of the 2 million pilgrims who participate in the annual Hajj in Saudi Arabia. There is no unique cause for pilgrims’ respiratory involvement, but several studies suggest a high incidence of influenza as a cause of the disease. To determine influenza vaccine efficacy against respiratory disease in pilgrims, we conducted two similar cohort studies on 51100 Iranian pilgrims who had participated in the annual Hajj in the years 2003 and 2004. We calculated vaccine efficacy in these two years with the use of “1- odd’s ratio” formula and compared the results. The vaccine efficacy for prevention of influenza like illness in the year 2003 was 51% but the vaccine was not efficient in the year 2004. It was concluded that etiologic agents other than influenza virus should be considered as the cause of respiratory disease in Hajj. Bacterial infections superimposed on chronic respiratory diseases, and allergic or toxic conditions are suggested caourses for more investigation.

  20. Absence of an important vaccine and diagnostic target in carriage- and disease-related nontypeable Haemophilus influenzae.

    Science.gov (United States)

    Smith-Vaughan, Heidi C; Chang, Anne B; Sarovich, Derek S; Marsh, Robyn L; Grimwood, Keith; Leach, Amanda J; Morris, Peter S; Price, Erin P

    2014-02-01

    Nontypeable Haemophilus influenzae (NTHi)-associated disease is a major health problem globally. Whole-genome sequence analysis identified the absence of hpd genes encoding Haemophilus protein D in 3 of 16 phylogenetically distinct NTHi isolates. This novel finding is of potential clinical significance, as protein D and hpd represent important NTHi vaccine antigen and diagnostic targets, respectively.

  1. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    Science.gov (United States)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  2. Vaccine-associated enhanced respiratory disease is influenced by hemagglutinin and neuraminidase in whole inactivated influenza virus vaccines

    Science.gov (United States)

    Multiple subtypes and many antigenic variants of influenza A virus (IAV) co-circulate in swine in the USA, complicating effective use of commercial vaccines to control disease and transmission. Whole inactivated virus (WIV) vaccines may provide partial protection against IAV with substantial antigen...

  3. Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains.

    Directory of Open Access Journals (Sweden)

    Olivo Miotto

    Full Text Available BACKGROUND: There is widespread concern that H5N1 avian influenza A viruses will emerge as a pandemic threat, if they become capable of human-to-human (H2H transmission. Avian strains lack this capability, which suggests that it requires important adaptive mutations. We performed a large-scale comparative analysis of proteins from avian and human strains, to produce a catalogue of mutations associated with H2H transmissibility, and to detect their presence in avian isolates. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a dataset of influenza A protein sequences from 92,343 public database records. Human and avian sequence subsets were compared, using a method based on mutual information, to identify characteristic sites where human isolates present conserved mutations. The resulting catalogue comprises 68 characteristic sites in eight internal proteins. Subtype variability prevented the identification of adaptive mutations in the hemagglutinin and neuraminidase proteins. The high number of sites in the ribonucleoprotein complex suggests interdependence between mutations in multiple proteins. Characteristic sites are often clustered within known functional regions, suggesting their functional roles in cellular processes. By isolating and concatenating characteristic site residues, we defined adaptation signatures, which summarize the adaptive potential of specific isolates. Most adaptive mutations emerged within three decades after the 1918 pandemic, and have remained remarkably stable thereafter. Two lineages with stable internal protein constellations have circulated among humans without reassorting. On the contrary, H5N1 avian and swine viruses reassort frequently, causing both gains and losses of adaptive mutations. CONCLUSIONS: Human host adaptation appears to be complex and systemic, involving nearly all influenza proteins. Adaptation signatures suggest that the ability of H5N1 strains to infect humans is related to the presence of an

  4. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    Science.gov (United States)

    Arai, Yasuha; Kawashita, Norihito; Daidoji, Tomo; Ibrahim, Madiha S; El-Gendy, Emad M; Takagi, Tatsuya; Takahashi, Kazuo; Suzuki, Yasuo; Ikuta, Kazuyoshi; Nakaya, Takaaki; Shioda, Tatsuo; Watanabe, Yohei

    2016-04-01

    A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  5. Economic and policy implications of pandemic influenza.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Braeton J.; Starks, Shirley J.; Loose, Verne W.; Brown, Theresa Jean; Warren, Drake E.; Vargas, Vanessa N.

    2010-03-01

    Pandemic influenza has become a serious global health concern; in response, governments around the world have allocated increasing funds to containment of public health threats from this disease. Pandemic influenza is also recognized to have serious economic implications, causing illness and absence that reduces worker productivity and economic output and, through mortality, robs nations of their most valuable assets - human resources. This paper reports two studies that investigate both the short- and long-term economic implications of a pandemic flu outbreak. Policy makers can use the growing number of economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. Experts recognize that pandemic influenza has serious global economic implications. The illness causes absenteeism, reduced worker productivity, and therefore reduced economic output. This, combined with the associated mortality rate, robs nations of valuable human resources. Policy makers can use economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. In this paper economists examine two studies which investigate both the short- and long-term economic implications of a pandemic influenza outbreak. Resulting policy implications are also discussed. The research uses the Regional Economic Modeling, Inc. (REMI) Policy Insight + Model. This model provides a dynamic, regional, North America Industrial Classification System (NAICS) industry-structured framework for forecasting. It is supported by a population dynamics model that is well-adapted to investigating macro-economic implications of pandemic influenza, including possible demand side effects. The studies reported in this paper exercise all of these capabilities.

  6. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  7. Avian influenza: integration of knowledge updated for disease prevention and control

    Directory of Open Access Journals (Sweden)

    Chethanond, U.

    2006-07-01

    Full Text Available Avian influenza (AI subtype H5N1 is a highly contagious as well as highly pathogenic disease of poultry, and also a zoonosis. The epidemic has occurred in Asia since 2003, causing great economic loss to the poultry industry. The fear has arisen that the virus, which can mutate easily, may have reassortment with influenza virus leading to pandemic outbreak. Stamping out the birds in infected farms is the major control measure in Thailand which has an impact on not only the psychic loss of raisers but also the loss of genetic pool. This review is aimed to disclose updated knowledge and approaches to implement the control measures. The strategies are involved with 1 outreach to stakeholders on the property of virus and transmission, 2 restriction of movement and carcass disposition, and 3 reduction of viral contamination in the environment and increased farm biosecurity. Vaccination is an option for which both pro and cons must be considered. However, owing to sophisticated technology, vaccines offer more choices and are produced better results in terms of protection and reduction of viral contamination. Thus, many countries decided to use vaccine for AI prevention and control nowadays.

  8. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Directory of Open Access Journals (Sweden)

    David Metzgar

    Full Text Available For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based or remarkably insensitive (antibody-based. Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A

  9. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    Science.gov (United States)

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis.IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  10. The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses.

    Science.gov (United States)

    Tumpey, Terrence M; Szretter, Kristy J; Van Hoeven, Neal; Katz, Jacqueline M; Kochs, Georg; Haller, Otto; García-Sastre, Adolfo; Staeheli, Peter

    2007-10-01

    Mice carrying a wild-type Mx1 gene (Mx1+/+) differ from standard laboratory mice (Mx1-/-) in being highly resistant to infection with common laboratory strains of influenza A virus. We report that Mx1 also protects mice against the pandemic human 1918 influenza virus and a highly lethal human H5N1 strain from Vietnam. Resistance to H5N1 of Mx1+/+ but not Mx1-/- mice was enhanced if the animals were treated with a single dose of exogenous alpha interferon before infection. Thus, the interferon-induced resistance factor Mx1 represents a key component of the murine innate immune system that mediates protection against epidemic and pandemic influenza viruses.

  11. Dynamic transcriptional signatures and network responses for clinical symptoms in influenza-infected human subjects using systems biology approaches.

    Science.gov (United States)

    Linel, Patrice; Wu, Shuang; Deng, Nan; Wu, Hulin

    2014-10-01

    Recent studies demonstrate that human blood transcriptional signatures may be used to support diagnosis and clinical decisions for acute respiratory viral infections such as influenza. In this article, we propose to use a newly developed systems biology approach for time course gene expression data to identify significant dynamically response genes and dynamic gene network responses to viral infection. We illustrate the methodological pipeline by reanalyzing the time course gene expression data from a study with healthy human subjects challenged by live influenza virus. We observed clear differences in the number of significant dynamic response genes (DRGs) between the symptomatic and asymptomatic subjects and also identified DRG signatures for symptomatic subjects with influenza infection. The 505 common DRGs shared by the symptomatic subjects have high consistency with the signature genes for predicting viral infection identified in previous works. The temporal response patterns and network response features were carefully analyzed and investigated.

  12. Host Physiologic Changes Induced by Influenza A Virus Lead to Staphylococcus aureus Biofilm Dispersion and Transition from Asymptomatic Colonization to Invasive Disease

    Directory of Open Access Journals (Sweden)

    Ryan M. Reddinger

    2016-08-01

    Full Text Available Staphylococcus aureus is a ubiquitous opportunistic human pathogen and a major health concern worldwide, causing a wide variety of diseases from mild skin infections to systemic disease. S. aureus is a major source of severe secondary bacterial pneumonia after influenza A virus infection, which causes widespread morbidity and mortality. While the phenomenon of secondary bacterial pneumonia is well established, the mechanisms behind the transition from asymptomatic colonization to invasive staphylococcal disease following viral infection remains unknown. In this report, we have shown that S. aureus biofilms, grown on an upper respiratory epithelial substratum, disperse in response to host physiologic changes related to viral infection, such as febrile range temperatures, exogenous ATP, norepinephrine, and increased glucose. Mice that were colonized with S. aureus and subsequently exposed to these physiologic stimuli or influenza A virus coinfection developed pronounced pneumonia. This study provides novel insight into the transition from colonization to invasive disease, providing a better understanding of the events involved in the pathogenesis of secondary staphylococcal pneumonia.

  13. Human avian influenza A (H5N1) virus infection in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Highly pathogenic influenza A (H5N1) virus causes a widespread poultry deaths worldwide. The first human H5N1 infected case was reported in Hong Kong Special Administrative Region of China in 1997. Since then, the virus re-emerged in 2003 and continues to infect people worldwide. Currently, over 400 human infections have been reported in more than 15 countries and mortality rate is greater than 60%. H5N1 viruses still pose a potential pandemic threat in the future because of the continuing global spread and evolution. Here, we summarize the epidemiological, clinical and virological characteristics of human H5N1 infection in China monitored and identified by our national surveillance systems.

  14. Linking Microbiota to Human Diseases

    DEFF Research Database (Denmark)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, F

    2015-01-01

    diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies......The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2...... may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction....

  15. Chromatin remodeling and human disease.

    Science.gov (United States)

    Huang, Cheng; Sloan, Emily A; Boerkoel, Cornelius F

    2003-06-01

    In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.

  16. Highly pathogenic avian influenza A(H5N1) mutants transmissible by air are susceptible to human and animal neutralizing antibodies.

    Science.gov (United States)

    Du, Lanying; Li, Ye; Zhao, Guangyu; Wang, Lili; Zou, Peng; Lu, Lu; Zhou, Yusen; Jiang, Shibo

    2013-10-15

    A laboratory-generated reassortant H5 hemagglutinin (HA)/influenza A(H1N1) strain containing 4 mutations in influenza A(H5N1) HA has become transmissible by air among mammals. Here, we constructed 15 influenza A(H5N1) pseudoviruses containing a single mutation or a combination of mutations and showed that the pseudoviruses were susceptible to neutralizing antibodies from patients with influenza A(H5N1) infection and from mice immunized with a vaccine containing the conserved HA1 sequence of influenza A(H5N1). These results indicate that antibodies in patients currently infected by influenza A(H5N1) and antibodies induced by vaccines containing conserved sequences in HA1 of wild-type influenza A(H5N1) are highly effective in cross-neutralizing future influenza A(H5N1) mutants with airborne transmissibility, suggesting that human influenza pandemics caused by these influenza A(H5N1) variants can be prevented.

  17. Immune Responses in Acute and Convalescent Patients with Mild, Moderate and Severe Disease during the 2009 Influenza Pandemic in Norway.

    Science.gov (United States)

    Mohn, Kristin G-I; Cox, Rebecca Jane; Tunheim, Gro; Berdal, Jan Erik; Hauge, Anna Germundsson; Jul-Larsen, Åsne; Peters, Bjoern; Oftung, Fredrik; Jonassen, Christine Monceyron; Mjaaland, Siri

    2015-01-01

    Increased understanding of immune responses influencing clinical severity during pandemic influenza infection is important for improved treatment and vaccine development. In this study we recruited 46 adult patients during the 2009 influenza pandemic and characterized humoral and cellular immune responses. Those included were either acute hospitalized or convalescent patients with different disease severities (mild, moderate or severe). In general, protective antibody responses increased with enhanced disease severity. In the acute patients, we found higher levels of TNF-α single-producing CD4+T-cells in the severely ill as compared to patients with moderate disease. Stimulation of peripheral blood mononuclear cells (PBMC) from a subset of acute patients with peptide T-cell epitopes showed significantly lower frequencies of influenza specific CD8+ compared with CD4+ IFN-γ T-cells in acute patients. Both T-cell subsets were predominantly directed against the envelope antigens (HA and NA). However, in the convalescent patients we found high levels of both CD4+ and CD8+ T-cells directed against conserved core antigens (NP, PA, PB, and M). The results indicate that the antigen targets recognized by the T-cell subsets may vary according to the phase of infection. The apparent low levels of cross-reactive CD8+ T-cells recognizing internal antigens in acute hospitalized patients suggest an important role for this T-cell subset in protective immunity against influenza.

  18. Patient-based transcriptome-wide analysis identify interferon and ubiquination pathways as potential predictors of influenza A disease severity.

    Directory of Open Access Journals (Sweden)

    Long Truong Hoang

    Full Text Available The influenza A virus is an RNA virus that is responsible for seasonal epidemics worldwide with up to five million cases of severe illness and 500,000 deaths annually according to the World Health Organization estimates. The factors associated with severe diseases are not well defined, but more severe disease is more often seen among persons aged >65 years, infants, pregnant women, and individuals of any age with underlying health conditions.Using gene expression microarrays, the transcriptomic profiles of influenza-infected patients with severe (N = 11, moderate (N = 40 and mild (N = 83 symptoms were compared with the febrile patients of unknown etiology (N = 73. We found that influenza-infected patients, regardless of their clinical outcomes, had a stronger induction of antiviral and cytokine responses and a stronger attenuation of NK and T cell responses in comparison with those with unknown etiology. More importantly, we found that both interferon and ubiquitination signaling were strongly attenuated in patients with the most severe outcomes in comparison with those with moderate and mild outcomes, suggesting the protective roles of these pathways in disease pathogenesis.The attenuation of interferon and ubiquitination pathways may associate with the clinical outcomes of influenza patients.

  19. Ability of recombinant human catalase to suppress inflammation of the murine lung induced by influenza A.

    Science.gov (United States)

    Shi, Xunlong; Shi, Zhihui; Huang, Hai; Zhu, Hongguang; Zhou, Pei; Zhu, Haiyan; Ju, Dianwen

    2014-06-01

    Influenza A virus pandemics and emerging antiviral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and inflammation of the lung. We have previously investigated the therapeutic efficacy of recombinant human catalase (rhCAT) against viral pneumonia in mice, but the protection mechanisms involved were not explored. In the present study, we have performed a more in-depth analysis covering survival, lung inflammation, immune cell responses, production of cytokines, and inflammation signaling pathways in mice. Male imprinting control region mice were infected intranasally with high pathogenicity (H1N1) influenza A virus followed by treatment with recombinant human catalase. The administration of rhCAT resulted in a significant reduction in inflammatory cell infiltration (e.g., macrophages and neutrophils), inflammatory cytokine levels (e.g., IL-2, IL-6, TNF-α, IFN-γ), the level of the intercellular adhesion molecule 1 chemokine and the mRNA levels of toll-like receptors TLR-4, TLR-7, and NF-κB, as well as partially maintaining the activity of the antioxidant enzymes system. These findings indicated that rhCAT might play a key protective role in viral pneumonia of mice via suppression of inflammatory immune responses.

  20. Avian influenza: potential impact on sub-Saharan military populations with high rates of human immunodeficiency virus/acquired immunodeficiency syndrome.

    Science.gov (United States)

    Feldman, Robert L; Nickell, Kent

    2007-07-01

    Several sub-Saharan militaries have large percentages of troops with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome. With the arrival of avian influenza in Africa, the potential exists that some of those soldiers might also become infected with H5N1, the virus responsible for the disease. Two possible scenarios have been postulated regarding how such a coinfection of HIV and H5N1 might present. (1) Soldiers already weakened by HIV/acquired immunodeficiency syndrome rapidly succumb to H5N1. The cause of death is a "cytokine storm," essentially a runaway inflammatory response. (2) The weakened immune system prevents the cytokine storm from occurring; however, H5N1 is still present, replicating, and being shed, leading to the infection of others. A cytokine storm is particularly dangerous for individuals of military age, as evidenced by the large number of soldiers who died during the 1918 influenza epidemic. If large numbers of sub-Saharan soldiers suffer a similar fate from avian influenza, then military and political instability could develop.

  1. The origin of novel avian influenza A (H7N9) and mutation dynamics for its human-to-human transmissible capacity.

    Science.gov (United States)

    Peng, Jin; Yang, Hao; Jiang, Hua; Lin, Yi-xiao; Lu, Charles Damien; Xu, Ya-wei; Zeng, Jun

    2014-01-01

    In February 2013, H7N9 (A/H7N9/2013_China), a novel avian influenza virus, broke out in eastern China and caused human death. It is a global priority to discover its origin and the point in time at which it will become transmittable between humans. We present here an interdisciplinary method to track the origin of H7N9 virus in China and to establish an evolutionary dynamics model for its human-to-human transmission via mutations. After comparing influenza viruses from China since 1983, we established an A/H7N9/2013_China virus evolutionary phylogenetic tree and found that the human instances of virus infection were of avian origin and clustered into an independent line. Comparing hemagglutinin (HA) and neuraminidase (NA) gene sequences of A/H7N9/2013_China viruses with all human-to-human, avian, and swine influenza viruses in China in the past 30 years, we found that A/H7N9/2013_China viruses originated from Baer's Pochard H7N1 virus of Hu Nan Province 2010 (HA gene, EPI: 370846, similarity with H7N9 is 95.5%) and duck influenza viruses of Nanchang city 2000 (NA gene, EPI: 387555, similarity with H7N9 is 97%) through genetic re-assortment. HA and NA gene sequence comparison indicated that A/H7N9/2013_China virus was not similar to human-to-human transmittable influenza viruses. To simulate the evolution dynamics required for human-to-human transmission mutations of H7N9 virus, we employed the Markov model. The result of this calculation indicated that the virus would acquire properties for human-to-human transmission in 11.3 years (95% confidence interval (CI): 11.2-11.3, HA gene).

  2. The Therapeutic Effect of Pamidronate on Lethal Avian Influenza A H7N9 Virus Infected Humanized Mice

    Science.gov (United States)

    Liu, Yinping; Xiang, Zheng; Liu, Ming; Chan, Kwok-Hung; Lau, Siu-Ying; Lam, Kwok-Tai; To, Kelvin Kai-Wang; Chan, Jasper Fuk-Woo; Li, Lanjuan; Chen, Honglin; Lau, Yu-Lung; Yuen, Kwok-Yung; Tu, Wenwei

    2015-01-01

    A novel avian influenza virus H7N9 infection occurred among human populations since 2013. Although the lack of sustained human-to-human transmission limited the epidemics caused by H7N9, the late presentation of most patients and the emergence of neuraminidase-resistant strains made the development of novel antiviral strategy against H7N9 in urgent demands. In this study, we evaluated the potential of pamidronate, a pharmacological phosphoantigen that can specifically boost human Vδ2-T-cell, on treating H7N9 virus-infected humanized mice. Our results showed that intraperitoneal injection of pamidronate could potently decrease the morbidity and mortality of H7N9-infected mice through controlling both viral replication and inflammation in affected lungs. More importantly, pamidronate treatment starting from 3 days after infection could still significantly ameliorate the severity of diseases in infected mice and improve their survival chance, whereas orally oseltamivir treatment starting at the same time showed no therapeutic effects. As for the mechanisms underlying pamidronate-based therapy, our in vitro data demonstrated that its antiviral effects were partly mediated by IFN-γ secreted from human Vδ2-T cells. Meanwhile, human Vδ2-T cells could directly kill virus-infected host cells in a perforin-, granzyme B- and CD137-dependent manner. As pamidronate has been used for osteoporosis treatment for more than 20 years, pamidronate-based therapy represents for a safe and readily available option for clinical trials to treat H7N9 infection. PMID:26285203

  3. The Therapeutic Effect of Pamidronate on Lethal Avian Influenza A H7N9 Virus Infected Humanized Mice.

    Directory of Open Access Journals (Sweden)

    Jian Zheng

    Full Text Available A novel avian influenza virus H7N9 infection occurred among human populations since 2013. Although the lack of sustained human-to-human transmission limited the epidemics caused by H7N9, the late presentation of most patients and the emergence of neuraminidase-resistant strains made the development of novel antiviral strategy against H7N9 in urgent demands. In this study, we evaluated the potential of pamidronate, a pharmacological phosphoantigen that can specifically boost human Vδ2-T-cell, on treating H7N9 virus-infected humanized mice. Our results showed that intraperitoneal injection of pamidronate could potently decrease the morbidity and mortality of H7N9-infected mice through controlling both viral replication and inflammation in affected lungs. More importantly, pamidronate treatment starting from 3 days after infection could still significantly ameliorate the severity of diseases in infected mice and improve their survival chance, whereas orally oseltamivir treatment starting at the same time showed no therapeutic effects. As for the mechanisms underlying pamidronate-based therapy, our in vitro data demonstrated that its antiviral effects were partly mediated by IFN-γ secreted from human Vδ2-T cells. Meanwhile, human Vδ2-T cells could directly kill virus-infected host cells in a perforin-, granzyme B- and CD137-dependent manner. As pamidronate has been used for osteoporosis treatment for more than 20 years, pamidronate-based therapy represents for a safe and readily available option for clinical trials to treat H7N9 infection.

  4. Seasonality of Influenza A(H7N9) Virus in China—Fitting Simple Epidemic Models to Human Cases

    Science.gov (United States)

    Lin, Qianying; Lin, Zhigui; Chiu, Alice P. Y.; He, Daihai

    2016-01-01

    Background Three epidemic waves of influenza A(H7N9) (hereafter ‘H7N9’) human cases have occurred between March 2013 and July 2015 in China. However, the underlying transmission mechanism remains unclear. Our main objective is to use mathematical models to study how seasonality, secular changes and environmental transmission play a role in the spread of H7N9 in China. Methods Data on human cases and chicken cases of H7N9 infection were downloaded from the EMPRES-i Global Animal Disease Information System. We modelled on chicken-to-chicken transmission, assuming a constant ratio of 10−6 human case per chicken case, and compared the model fit with the observed human cases. We developed three different modified Susceptible-Exposed-Infectious-Recovered-Susceptible models: (i) a non-periodic transmission rate model with an environmental class, (ii) a non-periodic transmission rate model without an environmental class, and (iii) a periodic transmission rate model with an environmental class. We then estimated the key epidemiological parameters and compared the model fit using Akaike Information Criterion and Bayesian Information Criterion. Results Our results showed that a non-periodic transmission rate model with an environmental class provided the best model fit to the observed human cases in China during the study period. The estimated parameter values were within biologically plausible ranges. Conclusions This study highlighted the importance of considering secular changes and environmental transmission in the modelling of human H7N9 cases. Secular changes were most likely due to control measures such as Live Poultry Markets closures that were implemented during the initial phase of the outbreaks in China. Our results suggested that environmental transmission via viral shedding of infected chickens had contributed to the spread of H7N9 human cases in China. PMID:26963937

  5. Seasonality of Influenza A(H7N9 Virus in China-Fitting Simple Epidemic Models to Human Cases.

    Directory of Open Access Journals (Sweden)

    Qianying Lin

    Full Text Available Three epidemic waves of influenza A(H7N9 (hereafter 'H7N9' human cases have occurred between March 2013 and July 2015 in China. However, the underlying transmission mechanism remains unclear. Our main objective is to use mathematical models to study how seasonality, secular changes and environmental transmission play a role in the spread of H7N9 in China.Data on human cases and chicken cases of H7N9 infection were downloaded from the EMPRES-i Global Animal Disease Information System. We modelled on chicken-to-chicken transmission, assuming a constant ratio of 10-6 human case per chicken case, and compared the model fit with the observed human cases. We developed three different modified Susceptible-Exposed-Infectious-Recovered-Susceptible models: (i a non-periodic transmission rate model with an environmental class, (ii a non-periodic transmission rate model without an environmental class, and (iii a periodic transmission rate model with an environmental class. We then estimated the key epidemiological parameters and compared the model fit using Akaike Information Criterion and Bayesian Information Criterion.Our results showed that a non-periodic transmission rate model with an environmental class provided the best model fit to the observed human cases in China during the study period. The estimated parameter values were within biologically plausible ranges.This study highlighted the importance of considering secular changes and environmental transmission in the modelling of human H7N9 cases. Secular changes were most likely due to control measures such as Live Poultry Markets closures that were implemented during the initial phase of the outbreaks in China. Our results suggested that environmental transmission via viral shedding of infected chickens had contributed to the spread of H7N9 human cases in China.

  6. Measurements of airborne influenza virus in aerosol particles from human coughs.

    Directory of Open Access Journals (Sweden)

    William G Lindsley

    Full Text Available Influenza is thought to be communicated from person to person by multiple pathways. However, the relative importance of different routes of influenza transmission is unclear. To better understand the potential for the airborne spread of influenza, we measured the amount and size of aerosol particles containing influenza virus that were produced by coughing. Subjects were recruited from patients presenting at a student health clinic with influenza-like symptoms. Nasopharyngeal swabs were collected from the volunteers and they were asked to cough three times into a spirometer. After each cough, the cough-generated aerosol was collected using a NIOSH two-stage bioaerosol cyclone sampler or an SKC BioSampler. The amount of influenza viral RNA contained in the samplers was analyzed using quantitative real-time reverse-transcription PCR (qPCR targeting the matrix gene M1. For half of the subjects, viral plaque assays were performed on the nasopharyngeal swabs and cough aerosol samples to determine if viable virus was present. Fifty-eight subjects were tested, of whom 47 were positive for influenza virus by qPCR. Influenza viral RNA was detected in coughs from 38 of these subjects (81%. Thirty-five percent of the influenza RNA was contained in particles>4 µm in aerodynamic diameter, while 23% was in particles 1 to 4 µm and 42% in particles<1 µm. Viable influenza virus was detected in the cough aerosols from 2 of 21 subjects with influenza. These results show that coughing by influenza patients emits aerosol particles containing influenza virus and that much of the viral RNA is contained within particles in the respirable size range. The results support the idea that the airborne route may be a pathway for influenza transmission, especially in the immediate vicinity of an influenza patient. Further research is needed on the viability of airborne influenza viruses and the risk of transmission.

  7. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential....... Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds...

  8. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline

    2015-01-01

    The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute...

  9. Influenza A (H3N2) virus in swine at agricultural fairs and transmission to humans, Michigan and Ohio, USA, 2016

    Science.gov (United States)

    An 18 case outbreak of variant H3N2 influenza A occurred during 2016 after exposure to influenza-infected swine at seven agricultural fairs. Sixteen cases were infected with a reassortant between 2010-2011 human seasonal H3N2 strains and viruses endemic in North American swine, a viral lineage incre...

  10. Pre- and Postexposure Use of Human Monoclonal Antibody against H5N1 and H1N1 Influenza Virus in Mice: Viable Alternative to Oseltamivir

    NARCIS (Netherlands)

    Koudstaal, W.; Koldijk, M.H.; Brakenhoff, J.P.J.; Cornelissen, A.H.M.; Weverling, G.J.; Friesen, R.H.E.; Goudsmit, J.

    2009-01-01

    New strategies to prevent and treat influenza virus infections are urgently needed. A recently discovered class of monoclonal antibodies (mAbs) neutralizing an unprecedented spectrum of influenza virus subtypes may have the potential for future use in humans. Here, we assess the efficacies of CR6261

  11. Bacterial lipopolysaccharide inhibits influenza virus infection of human macrophages and the consequent induction of CD8+ T cell immunity

    NARCIS (Netherlands)

    Short, K.R.; Vissers, M.; Kleijn, S. de; Zomer, A.L.; Kedzierska, K.; Grant, E.; Reading, P.C.; Hermans, P.W.M.; Ferwerda, G.; Diavatopoulos, D.A.

    2014-01-01

    It is well established that infection with influenza A virus (IAV) facilitates secondary bacterial disease. However, there is a growing body of evidence that the microbial context in which IAV infection occurs can affect both innate and adaptive responses to the virus. To date, these studies have be

  12. Clinical severity of human infections with avian influenza A(H7N9) virus, China, 2013/14.

    Science.gov (United States)

    Feng, L; Wu, J T; Liu, X; Yang, P; Tsang, T K; Jiang, H; Wu, P; Yang, J; Fang, V J; Qin, Y; Lau, E H; Li, M; Zheng, J; Peng, Z; Xie, Y; Wang, Q; Li, Z; Leung, G M; Gao, G F; Yu, H; Cowling, B J

    2014-12-11

    Assessing the severity of emerging infections is challenging because of potential biases in case ascertainment. The first human case of infection with influenza A(H7N9) virus was identified in China in March 2013; since then, the virus has caused two epidemic waves in the country. There were 134 laboratory-confirmed cases detected in the first epidemic wave from January to September 2013. In the second epidemic wave of human infections with avian influenza A(H7N9) virus in China from October 2013 to October 2014, we estimated that the risk of death among hospitalised cases of infection with influenza A(H7N9) virus was 48% (95% credibility interval: 42-54%), slightly higher than the corresponding risk in the first wave. Age-specific risks of death among hospitalised cases were also significantly higher in the second wave. Using data on symptomatic cases identified through national sentinel influenza-like illness surveillance, we estimated that the risk of death among symptomatic cases of infection with influenza A(H7N9) virus was 0.10% (95% credibility interval: 0.029-3.6%), which was similar to previous estimates for the first epidemic wave of human infections with influenza A(H7N9) virus in 2013. An increase in the risk of death among hospitalised cases in the second wave could be real because of changes in the virus, because of seasonal changes in host susceptibility to severe infection, or because of variation in treatment practices between hospitals, while the increase could be artefactual because of changes in ascertainment of cases in different areas at different times.

  13. LGP2 downregulates interferon production during infection with seasonal human influenza A viruses that activate interferon regulatory factor 3.

    Science.gov (United States)

    Malur, Meghana; Gale, Michael; Krug, Robert M

    2012-10-01

    LGP2, a member of the RIG-I-like receptor family, lacks the amino-terminal caspase activation recruitment domains (CARDs) required for initiating the activation of interferon regulatory factor 3 (IRF3) and interferon (IFN) transcription. The role of LGP2 in virus infection is controversial, and the only LGP2 experiments previously carried out with mammalian influenza A viruses employed an attenuated, mouse-adapted H1N1 A/PR/8/34 (PR8) virus that does not encode the NS1 protein. Here we determine whether LGP2 has a role during infection with wild-type, nonattenuated influenza A viruses that have circulated in the human population, specifically two types of seasonal influenza A viruses: (i) H3N2 and H1N1 viruses that activate IRF3 and IFN transcription and (ii) recent H1N1 viruses that block these two activations. In human cells infected with an H3N2 virus that activates IRF3, overexpression of LGP2 or its repressor domain decreased STAT1 activation and IFN-β transcription approximately 10-fold. Overexpression of LGP2 also caused a 10-fold decrease of STAT1 activation during infection with other seasonal influenza A viruses that activate IRF3. Using LGP2(+/+) and LGP2(-/-) mouse cells, we show that endogenous LGP2 decreased IFN production during H3N2 virus infection 3- to 4-fold. In contrast, in both mouse and human cells infected with H1N1 viruses that do not activate IRF3, LGP2 had no detectable role. These results demonstrate that LGP2 downregulates IFN production during infection by seasonal influenza A viruses that activate IRF3 and IFN transcription. It is intriguing that LGP2, a host protein induced during influenza A virus infection, downregulates the host antiviral IFN response.

  14. Surveillance of feral cats for influenza A virus in North Central Florida

    OpenAIRE

    Gordy, James T.; Jones, Cheryl A.; Rue, Joanne; Crawford, Patti Cynda; Crawford, P. Cynda; Levy, Julie K.; Stallknecht, David E.; Tripp, Ralph A.; Tompkins, Stephen M.

    2011-01-01

    Please cite this paper as: Gordy JT et?al. (2012) Surveillance of feral cats for influenza A virus in North Central Florida. Influenza and Other Respiratory Viruses 6(5), 341?347. Background? Transmission of highly pathogenic avian influenza and the recent pandemic H1N1 viruses to domestic cats and other felids creates concern because of the morbidity and mortality associated with human infections as well as disease in the infected animals. Experimental infections have demonstrated transmissi...

  15. Epidemiological and virological characteristics of influenza B: results of the Global Influenza B Study

    NARCIS (Netherlands)

    Caini, S.; Huang, Q.S.; Ciblak, M.A.; Kusznierz, G.; Owen, R.; Wangchuk, S.; Henriques, C.M.; Njouom, R.; Fasce, R.A.; Yu, H.; Feng, L.; Zambon, M.; Clara, A.W.; Kosasih, H.; Puzelli, S.; Kadjo, H.A.; Emukule, G.; Heraud, J.M.; Ang, L.W.; Venter, M.; Mironenko, A.; Brammer, L.; Mai, T.Q. le; Schellevis, F.; Plotkin, S.; Paget, J.

    2015-01-01

    INTRODUCTION: Literature on influenza focuses on influenza A, despite influenza B having a large public health impact. The Global Influenza B Study aims to collect information on global epidemiology and burden of disease of influenza B since 2000. METHODS: Twenty-six countries in the Southern (n =

  16. Epidemiological and virological characteristics of influenza B: results of the global influenza B study.

    NARCIS (Netherlands)

    Caini, S.; Sue Huang, Q.; Ciblak, M.A.; Kusznierz, G.; Owen, R.; Wangchuk, S.; Henriques, C.M.P.; Njouom, R.; Fasce, R.A.; Yu, H.; Feng, L.; Zambon, M.; Clara, A.W.; Kosasih, H.; Puzelli, S.; Kasjo, H.A.; Emukule, G.; Hereaud, J.M.; Ang, L.W.; Venter, M.; Mironenko, A.; Brammer, L.; Mai, L.T.Q.; Schellevis, F.; Plotkin, S.; Paget, J.

    2015-01-01

    Introduction: Literature on influenza focuses on influenza A, despite influenza B having a large public health impact. The Global Influenza B Study aims to collect information on global epidemiology and burden of disease of influenza B since 2000. Methods Twenty-six countries in the Southern (n = 5)

  17. Epidemiological and virological characteristics of influenza B: results of the Global Influenza B Study

    NARCIS (Netherlands)

    Caini, S.; Huang, Q.S.; Ciblak, M.A.; Kusznierz, G.; Owen, R.; Wangchuk, S.; Henriques, C.M.; Njouom, R.; Fasce, R.A.; Yu, H.; Feng, L.; Zambon, M.; Clara, A.W.; Kosasih, H.; Puzelli, S.; Kadjo, H.A.; Emukule, G.; Heraud, J.M.; Ang, L.W.; Venter, M.; Mironenko, A.; Brammer, L.; Mai, T.Q. le; Schellevis, F.; Plotkin, S.; Paget, J.

    2015-01-01

    INTRODUCTION: Literature on influenza focuses on influenza A, despite influenza B having a large public health impact. The Global Influenza B Study aims to collect information on global epidemiology and burden of disease of influenza B since 2000. METHODS: Twenty-six countries in the Southern (n = 5

  18. Risk factors for avian influenza and Newcastle disease in smallholder farming systems, Madagascar highlands.

    Science.gov (United States)

    Rasamoelina Andriamanivo, H; Lancelot, R; Maminiaina, O F; Rakotondrafara, T F; Jourdan, M; Renard, J F; Gil, P; Servan de Almeida, R; Albina, E; Martinez, D; Tillard, E; Rakotondravao, R; Chevalier, V

    2012-04-01

    Newcastle disease (ND) and avian influenza (AI) are issues of interest to avian producers in Madagascar. Newcastle disease virus (NDV) is the major constraint for village aviculture, and avian influenza viruses type A (AIAV) are known to circulate in bird flocks. This study aims at classifying smallholder poultry farms, according to the combination of risk factors potentially associated with NDV and AIAV transmission and to assess the level of infection for each farm class. Two study sites, Lake Alaotra and Grand Antananarivo, were chosen with respect to their differences in terms of agro-ecological features and poultry productions. A typology survey involving 526 farms was performed to identify possible risk factors for (i) within-village, and (ii) between-village virus transmission. A cross-sectional serological study was also carried out in 270 farms to assess sero-prevalences of NDV and AIAV for each farm class and the link between them and risk factor patterns. For within-village transmission, four classes of farms were identified in Grand Antananarivo and five in Lake Alaotra. For between-village virus transmission, four classes of farms were identified for each site. In both sites, NDV sero-prevalence was higher than for AIAV. There was no evidence of the presence of H5 or H7 subtypes of AIAV. Sero-prevalences were significantly higher in Lake Alaotra than in Grand Antananarivo for both viruses (OR=2.4, p=0.02 for NDV, and OR=9.6, prisk of virus transmission between the different farm classes. In Grand Antananarivo, farm visits by collectors or animal health workers, and farm contacts with several markets were identified as potential risk factors for NDV transmission. Further studies are needed to identify the circulating virus genotypes, model their transmission risk, and provide adapted control measures.

  19. Protecting poultry workers from exposure to avian influenza viruses.

    Science.gov (United States)

    MacMahon, Kathleen L; Delaney, Lisa J; Kullman, Greg; Gibbins, John D; Decker, John; Kiefer, Max J

    2008-01-01

    Emerging zoonotic diseases are of increasing regional and global importance. Preventing occupational exposure to zoonotic diseases protects workers as well as their families, communities, and the public health. Workers can be protected from zoonotic diseases most effectively by preventing and controlling diseases in animals, reducing workplace exposures, and educating workers. Certain avian influenza viruses are potential zoonotic disease agents that may be transmitted from infected birds to humans. Poultry workers are at risk of becoming infected with these viruses if they are exposed to infected birds or virus-contaminated materials or environments. Critical components of worker protection include educating employers and training poultry workers about occupational exposure to avian influenza viruses. Other recommendations for protecting poultry workers include the use of good hygiene and work practices, personal protective clothing and equipment, vaccination for seasonal influenza viruses, antiviral medication, and medical surveillance. Current recommendations for protecting poultry workers from exposure to avian influenza viruses are summarized in this article.

  20. Radiological description about the globally first case of human infected avian influenza virus (H10N8 induced pneumonia

    Directory of Open Access Journals (Sweden)

    Jian He

    2016-03-01

    Full Text Available Human infected avian influenza (H10N8 is an acute infectious respiratory tract infection caused by JX346-H10N8. The reported case in this paper is the globally first case report about radiological description of human infected avian influenza (H10N8 virus related pneumonia. The patient showed an epidemiological history of contacts to living poultries and the incubation period lasted for 4 days. The condition was clinically characterized by fever, cough, chest distress and obvious hypoxia. CT scan demonstrated the lungs with large flake of hyper-intense consolidation, confined patch of ground glass opacity, dilated bronchi, predominantly dorsal thickening of the interlobular septum, and other types of lesions related to interstitial pulmonary edema. Meanwhile, accompanying interlobar effusion, infrapulmonary effusion and pleural effusion were demonstrated in a small quantity by CT scan. Human infected avian influenza (H10N8 related pneumonia should be differentiated from pneumonia induced by human infected avian influenza viruses H5N1 and H7N9. No characteristic key points for radiological differentiation have been found. And its definitive diagnosis should be based on the etiological examination.

  1. Mx1 gene protects mice against the highly lethal human H5N1 influenza virus.

    Science.gov (United States)

    Salomon, Rachelle; Staeheli, Peter; Kochs, Georg; Yen, Hui-Ling; Franks, John; Rehg, Jerold E; Webster, Robert G; Hoffmann, Erich

    2007-10-01

    We investigated the importance of the host Mx1 gene in protection against highly pathogenic H5N1 avian influenza virus. Mice expressing the Mx1 gene survived infection with the lethal human H5N1 isolate A/Vietnam/1203/04 and with reassortants combining its genes with those of the non-lethal virus A/chicken/Vietnam/C58/04, while all Mx1-/- mice succumbed. Mx1-expressing mice showed lower organ virus titers, fewer lesions, and less pulmonary inflammation. Our data support the hypothesis that Mx1 expression protects mice against the high pathogenicity of H5N1 virus through inhibition of viral polymerase activity ultimately resulting in reduced viral growth and spread. Drugs that mimic this mechanism may be protective in humans.

  2. Influenza, immune system, and pregnancy.

    Science.gov (United States)

    Raj, Renju S; Bonney, Elizabeth A; Phillippe, Mark

    2014-12-01

    Influenza is a major health problem worldwide. Both seasonal influenza and pandemics take a major toll on the health and economy of our country. The present review focuses on the virology and complex immunology of this RNA virus in general and in relation to pregnancy. The goal is to attempt to explain the increased morbidity and mortality seen in infection during pregnancy. We discuss elements of innate and adaptive immunity as well as placental cellular responses to infection. In addition, we delineate findings in animal models as well as human disease. Increased knowledge of maternal and fetal immunologic responses to influenza is needed. However, enhanced understanding of nonimmune, pregnancy-specific factors influencing direct interaction of the virus with host cells is also important for the development of more effective prevention and treatment options in the future.

  3. Quantifying the fitness advantage of polymerase substitutions in Influenza A/H7N9 viruses during adaptation to humans.

    Directory of Open Access Journals (Sweden)

    Judith M Fonville

    Full Text Available Adaptation of zoonotic influenza viruses towards efficient human-to-human transmissibility is a substantial public health concern. The recently emerged A/H7N9 influenza viruses in China provide an opportunity for quantitative studies of host-adaptation, as human-adaptive substitutions in the PB2 gene of the virus have been found in all sequenced human strains, while these substitutions have not been detected in any non-human A/H7N9 sequences. Given the currently available information, this observation suggests that the human-adaptive PB2 substitution might confer a fitness advantage to the virus in these human hosts that allows it to rise to proportions detectable by consensus sequencing over the course of a single human infection. We use a mathematical model of within-host virus evolution to estimate the fitness advantage required for a substitution to reach predominance in a single infection as a function of the duration of infection and the fraction of mutant present in the virus population that initially infects a human. The modeling results provide an estimate of the lower bound for the fitness advantage of this adaptive substitution in the currently sequenced A/H7N9 viruses. This framework can be more generally used to quantitatively estimate fitness advantages of adaptive substitutions based on the within-host prevalence of mutations. Such estimates are critical for models of cross-species transmission and host-adaptation of influenza virus infections.

  4. 坪山新区流行性感冒和人禽流感监测结果分析%Analysis of Influenza and Human Avian Influenza Surveillance in Pingshan

    Institute of Scientific and Technical Information of China (English)

    李萌; 邹崇杰; 林特宇

    2016-01-01

    Objective To investigate the monitoring results of Pingshan new influenza and avian flu, provide basis for the prevention and control measures. Methods From October 2014 to October 2015, Pingshan flu cases reported 7868 cases of all medical records were analyzed. Results The results of influenza like cases in October 2014 to October 2015, Pingshan 7868 cases, accounting for 0.58%.2015 of influenza in January 15.82%, the highest proportion, followed by 13.87% in February, 13.19% in March; in July the lowest proportion of 1.72%. influenza, influenza like patients in the 25~59 age group the proportion of the most high, reached 49.06%, compared with other age groups, significant difference (P< 0.05). The collection of patients with influenza like symptoms of throat sub samples were 586, which accounted for 11.26%. posi-tive samples of influenza a H1N1 influenza H3N2 accounted for 40.91%, accounting for 27.27%, Yamagata accounted for 31.82% of influenza B, H7N9 was not found positive for bird flu Specimens. The positive rate of avian flu is higher than that of pigs, and the difference is significant (P< 0.05). Conclusion Pingshan New District in 2014—2015 no flu outbreak and epidemic phenomenon, did not find human cases of avian flu, but need to continue influenza and human avian influenza monitoring work, as far as possible control of the epidemic and reduce the disease harm, to protect the health of the masses.%目的:探讨坪山新区流行性感冒和人禽流感的监测结果,为制定防治措施提供依据。方法选择2014年10月—2015年10月坪山新区报告流感病例7868例,对所有病历资料进行分析。结果坪山新区2014年10月—2015年10月的流感样病例有7868例,占0.58%。2015年1月份流感样患者比重最高,为15.82%,其次为2月份的13.87%,3月份的13.19%;7月份流感样比例最低,为1.72%。流感样患者在25~59岁年龄段的比例最高,达到49.06%,与其他年龄段患者相

  5. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus

    Directory of Open Access Journals (Sweden)

    Kosmider Beata

    2012-06-01

    Full Text Available Abstract Background Influenza A virus (IAV infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2 activates the majority of antioxidant genes. Methods Alveolar type II (ATII cells and alveolar macrophages (AM were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8 virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2 or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. Results We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and

  6. In Silico Prediction and Experimental Confirmation of HA Residues Conferring Enhanced Human Receptor Specificity of H5N1 Influenza A Viruses

    Science.gov (United States)

    Schmier, Sonja; Mostafa, Ahmed; Haarmann, Thomas; Bannert, Norbert; Ziebuhr, John; Veljkovic, Veljko; Dietrich, Ursula; Pleschka, Stephan

    2015-06-01

    Newly emerging influenza A viruses (IAV) pose a major threat to human health by causing seasonal epidemics and/or pandemics, the latter often facilitated by the lack of pre-existing immunity in the general population. Early recognition of candidate pandemic influenza viruses (CPIV) is of crucial importance for restricting virus transmission and developing appropriate therapeutic and prophylactic strategies including effective vaccines. Often, the pandemic potential of newly emerging IAV is only fully recognized once the virus starts to spread efficiently causing serious disease in humans. Here, we used a novel phylogenetic algorithm based on the informational spectrum method (ISM) to identify potential CPIV by predicting mutations in the viral hemagglutinin (HA) gene that are likely to (differentially) affect critical interactions between the HA protein and target cells from bird and human origin, respectively. Predictions were subsequently validated by generating pseudotyped retrovirus particles and genetically engineered IAV containing these mutations and characterizing potential effects on virus entry and replication in cells expressing human and avian IAV receptors, respectively. Our data suggest that the ISM-based algorithm is suitable to identify CPIV among IAV strains that are circulating in animal hosts and thus may be a new tool for assessing pandemic risks associated with specific strains.

  7. Changes in human Langerhans cells following intradermal injection of influenza virus-like particle vaccines.

    Directory of Open Access Journals (Sweden)

    Marc Pearton

    Full Text Available There is a significant gap in our fundamental understanding of early morphological and migratory changes in human Langerhans cells (LCs in response to vaccine stimulation. As the vast majority of LCs studies are conducted in small animal models, substantial interspecies variation in skin architecture and immunity must be considered when extrapolating the results to humans. This study aims to determine whether excised human skin, maintained viable in organ culture, provides a useful human model for measuring and understanding early immune response to intradermally delivered vaccine candidates. Excised human breast skin was maintained viable in air-liquid-interface organ culture. This model was used for the first time to show morphological changes in human LCs stimulated with influenza virus-like particle (VLP vaccines delivered via intradermal injection. Immunohistochemistry of epidermal sheets and skin sections showed that LCs in VLP treated skin lost their typical dendritic morphology. The cells were more dispersed throughout the epidermis, often in close proximity to the basement membrane, and appeared vertically elongated. Our data provides for increased understanding of the complex morphological, spatial and temporal changes that occur to permit LC migration through the densely packed keratinocytes of the epidermis following exposure to vaccine. Significantly, the data not only supports previous animal data but also provides new and essential evidence of host response to this vaccination strategy in the real human skin environment.

  8. Receptor binding specificity of recent human H3N2 influenza viruses

    Directory of Open Access Journals (Sweden)

    Cummings Richard D

    2007-05-01

    Full Text Available Abstract Background Human influenza viruses are known to bind to sialic acid linked α2-6 to galactose, but the binding specificity beyond that linkage has not been systematically examined. H3N2 human influenza isolates lost binding to chicken red cells in the 1990s but viruses isolated since 2003 have re-acquired the ability to agglutinate chicken erythrocytes. We have investigated specificity of binding, changes in hemagglutinin sequence of the recent viruses and the role of sialic acid in productive infection. Results Viruses that agglutinate, or do not agglutinate, chicken red cells show identical binding to a Glycan Array of 264 oligosaccharides, binding exclusively to a subset of α2-6-sialylsaccharides. We identified an amino acid change in hemagglutinin that seemed to correlate with chicken red cell binding but when tested by mutagenesis there was no effect. Recombinant hemagglutinins expressed on Sf-9 cells bound chicken red cells but the released recombinant baculoviruses agglutinated only human red cells. Similarly, an isolate that does not agglutinate chicken red cells show hemadsorption of chicken red cells to infected MDCK cells. We suggest that binding of chicken red cells to cell surface hemagglutinin but not to virions is due to a more favorable hemagglutinin density on the cell surface. We investigated whether a virus specific for α2-6 sialyloligosaccharides shows differential entry into cells that have varying proportions of α2-6 and α2-3 sialic acids, including human A549 and HeLa cells with high levels of α2-6 sialic acid, and CHO cells that have only α2-3 sialic acid. We found that the virus enters all cell types tested and synthesizes viral nucleoprotein, localized in the nucleus, and hemagglutinin, transported to the cell surface, but infectious progeny viruses were released only from MDCK cells. Conclusion Agglutination of chicken red cells does not correlate with altered binding to any oligosaccharide on the Glycan

  9. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens

    Science.gov (United States)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known about the interaction between these two viruses when simultaneously co-infecting the same host, especially in areas of the world where both viruses are...

  10. Attitude of poultry farmers towards vaccination against newcastle disease and avian influenza in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    OE Oluwole,

    2012-06-01

    Full Text Available Newcastle disease (ND and Avian Influenza (AI are among the important viral diseases of poultry with very high economic implications. ND is enzootic in most parts of the world while Highly Pathogenic AI (HPAI is an emerging zoonosis in Nigeria. This study was carried out to assess the perception and attitude of poultry farmers in the selected Local Government Areas in Ibadan towards vaccination of birds against these diseases, and to find out the types of vaccines that were available for the control of the two diseases. A total of 84 respondents out of 100 (84% completed and returned the questionnaires administered. The results indicated that all farmers vaccinated their birds against ND. The regime for ND vaccination was not the same across the local government areas. Some 32 (38.1% farmers operated vaccination schedules provided by hatchery technicians, while 43 (51.2% farmers vaccinated their birds at about 4-6 weeks interval. Nine (10.7% farmers combined hatchery and laboratory evaluation to determine schedule. Thirty nine farmers (46.4% indicated that they were aware of national policy of non-vaccination against AI. However, 14 out of 84 farmers (16.7% vaccinated their birds against HPAI. There is a need to continue the national policy of slaughter of HPAI infected poultry birds and compensation of farmers, albeit allowing strategic use of vaccine to effectively control HPAI outbreaks in south-western part of Nigeria.

  11. Complement-Dependent Lysis of Influenza A Virus-Infected Cells by Broadly Cross-Reactive Human Monoclonal Antibodies ▿

    Science.gov (United States)

    Terajima, Masanori; Cruz, John; Co, Mary Dawn T.; Lee, Jane-Hwei; Kaur, Kaval; Wilson, Patrick C.; Ennis, Francis A.

    2011-01-01

    We characterized human monoclonal antibodies (MAbs) cloned from influenza virus-infected patients and from influenza vaccine recipients by complement-dependent lysis (CDL) assay. Most MAbs active in CDL were neutralizing, but not all neutralizing MAbs can mediate CDL. Two of the three stalk-specific neutralizing MAbs tested were able to mediate CDL and were more cross-reactive to temporally distant H1N1 strains than the conventional hemagglutination-inhibiting and neutralizing MAbs. One of the stalk-specific MAbs was subtype cross-reactive to H1 and H2 hemagglutinins, suggesting a role for stalk-specific antibodies in protection against influenza illness, especially by a novel viral subtype which can cause pandemics. PMID:21994454

  12. Avirulent Avian Influenza Virus as a Vaccine Strain against a Potential Human Pandemic

    Science.gov (United States)

    Takada, Ayato; Kuboki, Noritaka; Okazaki, Katsunori; Ninomiya, Ai; Tanaka, Hiroko; Ozaki, Hiroichi; Itamura, Shigeyuki; Nishimura, Hidekazu; Enami, Masayoshi; Tashiro, Masato; Shortridge, Kennedy F.; Kida, Hiroshi

    1999-01-01

    In the influenza H5N1 virus incident in Hong Kong in 1997, viruses that are closely related to H5N1 viruses initially isolated in a severe outbreak of avian influenza in chickens were isolated from humans, signaling the possibility of an incipient pandemic. However, it was not possible to prepare a vaccine against the virus in the conventional embryonated egg system because of the lethality of the virus for chicken embryos and the high level of biosafety therefore required for vaccine production. Alternative approaches, including an avirulent H5N4 virus isolated from a migratory duck as a surrogate virus, H5N1 virus as a reassortant with avian virus H3N1 and an avirulent recombinant H5N1 virus generated by reverse genetics, have been explored. All vaccines were formalin inactivated. Intraperitoneal immunization of mice with each of vaccines elicited the production of hemagglutination-inhibiting and virus-neutralizing antibodies, while intranasal vaccination without adjuvant induced both mucosal and systemic antibody responses that protected the mice from lethal H5N1 virus challenge. Surveillance of birds and animals, particularly aquatic birds, for viruses to provide vaccine strains, especially surrogate viruses, for a future pandemic is stressed. PMID:10482580

  13. Animal Models for Influenza Virus Pathogenesis and Transmission

    Directory of Open Access Journals (Sweden)

    Anice C. Lowen

    2010-07-01

    Full Text Available Influenza virus infection of humans results in a respiratory disease that ranges in severity from sub-clinical infection to primary viral pneumonia that can result in death. The clinical effects of infection vary with the exposure history, age and immune status of the host, and also the virulence of the influenza strain. In humans, the virus is transmitted through either aerosol or contact-based transfer of infectious respiratory secretions. As is evidenced by most zoonotic influenza virus infections, not all strains that can infect humans are able to transmit from person-to-person. Animal models of influenza are essential to research efforts aimed at understanding the viral and host factors that contribute to the disease and transmission outcomes of influenza virus infection in humans. These models furthermore allow the pre-clinical testing of antiviral drugs and vaccines aimed at reducing morbidity and mortality in the population through amelioration of the virulence or transmissibility of influenza viruses. Mice, ferrets, guinea pigs, cotton rats, hamsters and macaques have all been used to study influenza viruses and therapeutics targeting them. Each model presents unique advantages and disadvantages, which will be discussed herein.

  14. Animal Models for Influenza Virus Pathogenesis and Transmission

    Science.gov (United States)

    Bouvier, Nicole M.; Lowen, Anice C.

    2010-01-01

    Influenza virus infection of humans results in a respiratory disease that ranges in severity from sub-clinical infection to primary viral pneumonia that can result in death. The clinical effects of infection vary with the exposure history, age and immune status of the host, and also the virulence of the influenza strain. In humans, the virus is transmitted through either aerosol or contact-based transfer of infectious respiratory secretions. As is evidenced by most zoonotic influenza virus infections, not all strains that can infect humans are able to transmit from person-to-person. Animal models of influenza are essential to research efforts aimed at understanding the viral and host factors that contribute to the disease and transmission outcomes of influenza virus infection in humans. These models furthermore allow the pre-clinical testing of antiviral drugs and vaccines aimed at reducing morbidity and mortality in the population through amelioration of the virulence or transmissibility of influenza viruses. Mice, ferrets, guinea pigs, cotton rats, hamsters and macaques have all been used to study influenza viruses and therapeutics targeting them. Each model presents unique advantages and disadvantages, which will be discussed herein. PMID:21442033

  15. Innate immune sensing and response to influenza.

    Science.gov (United States)

    Pulendran, Bali; Maddur, Mohan S

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.

  16. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    Science.gov (United States)

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  17. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  18. Vaccine-induced boosting of influenza virus-specific CD4 T cells in younger and aged humans.

    Directory of Open Access Journals (Sweden)

    Douglas V Dolfi

    Full Text Available Current yearly influenza virus vaccines induce strain-specific neutralizing antibody (NAb responses providing protective immunity to closely matched viruses. However, these vaccines are often poorly effective in high-risk groups such as the elderly and challenges exist in predicting yearly or emerging pandemic influenza virus strains to include in the vaccines. Thus, there has been considerable emphasis on understanding broadly protective immunological mechanisms for influenza virus. Recent studies have implicated memory CD4 T cells in heterotypic immunity in animal models and in human challenge studies. Here we examined how influenza virus vaccination boosted CD4 T cell responses in younger versus aged humans. Our results demonstrate that while the magnitude of the vaccine-induced CD4 T cell response and number of subjects responding on day 7 did not differ between younger and aged subjects, fewer aged subjects had peak responses on day 14. While CD4 T cell responses were inefficiently boosted against NA, both HA and especially nucleocaspid protein- and matrix-(NP+M specific responses were robustly boosted. Pre-existing CD4 T cell responses were associated with more robust responses to influenza virus NP+M, but not H1 or H3. Finally pre-existing strain-specific NAb decreased the boosting of CD4 T cell responses. Thus, accumulation of pre-existing influenza virus-specific immunity in the form of NAb and cross-reactive T cells to conserved virus proteins (e.g. NP and M over a lifetime of exposure to infection and vaccination may influence vaccine-induced CD4 T cell responses in the aged.

  19. The rapid and sustained responses of dendritic cells to influenza virus infection in a non-human primate model.

    Science.gov (United States)

    Jie, Zhijun; Sun, Wei; Wang, Shanze; Koster, Frederick; Li, Bilan; Harrod, Kevin S

    2014-01-01

    Dendritic cells (DCs) are readily infected by influenza viruses and play a crucial role in regulating host innate and adaptive immune responses to viral infection. The aims of this study are to characterize the dynamic changes in the numbers and maturation status of dendritic cells present in the lung and lung-associated lymph nodes (LALNs) in the model of a non-human primate (NHP) infected by influenza A virus (IAV). Cynomolgus macaques were infected with influenza A virus (H3N2) via bronchoscopy. Flow cytometry was used to analyze the DC numbers, maturation status and subsets during the time of acute infection (days 1, 2, 3, 4, 7) and the resolution phase (day 30). A dramatic increase in the numbers of influenza A virus-infected CD11c+CD14- myeloid dendritic cells (mDCs) and CD11c-CD123+ plasmacytoid dendritic cells (pDCs) were observed from day 1 to day 4 and peak up from day 7 post-infection. In lung and lung-associated lymph nodes, the numbers and maturation status of myeloid dendritic cells and plasmacytoid dendritic cells increased more slowly than those in the lung tissues. On day 30 post-infection, influenza A virus challenge increased the number of myeloid dendritic cells, but not plasmacytoid dendritic cells, compared with baseline. These findings indicate that dendritic cells are susceptible to influenza A virus infection, with the likely purpose of increasing mature myeloid dendritic cells numbers in the lung and lung and lung-associated lymph nodes, which provides important new insights into the regulation of dendritic cells in a non-human primate model.

  20. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... files Questions & answers Features Multimedia Contacts Avian and other zoonotic influenza Fact sheet Updated November 2016 Key ... A(H3) subtypes. Clinical features of avian and other zoonotic influenza infections in humans Avian and other ...

  1. Chagas disease and human migration

    Directory of Open Access Journals (Sweden)

    Felipe Guhl

    2000-08-01

    Full Text Available Human Chagas disease is a purely accidental occurrence. As humans came into contact with the natural foci of infection might then have become infected as a single addition to the already extensive host range of Trypanosoma cruzi that includes other primates. Thus began a process of adaptation and domiciliation to human habitations through which the vectors had direct access to abundant food as well as protection from climatic changes and predators. Our work deals with the extraction and specific amplification by polymerase chain reaction of T. cruzi DNA obtained from mummified human tissues and the positive diagnosis of Chagas disease in a series of 4,000-year-old Pre-Hispanic human mummies from the northern coast of Chile. The area has been inhabited at least for 7,000 years, first by hunters, fishers and gatherers, and then gradually by more permanent settlements. The studied specimens belonged to the Chinchorro culture, a people inhabiting the area now occupied by the modern city of Arica. These were essentially fishers with a complex religious ideology, which accounts for the preservation of their dead in the way of mummified bodies, further enhanced by the extremely dry conditions of the desert. Chinchorro mummies are, perhaps, the oldest preserved bodies known to date.

  2. A High-Resolution Human Contact Network for Infectious Disease Transmission

    CERN Document Server

    Salathé, Marcel; Lee, Jung Woo; Levis, Philip; Feldman, Marcus W; Jones, James H

    2010-01-01

    The most frequent infectious diseases in humans - and those with the highest potential for rapid pandemic spread - are usually transmitted via droplets during close proximity interactions (CPIs). Despite the importance of this transmission route, very little is known about the dynamic patterns of CPIs. Using wireless sensor network technology, we obtained high-resolution data of CPIs during a typical day at an American high school, permitting the reconstruction of the social network relevant for infectious disease transmission. At a 94% coverage, we collected 762,868 CPIs at a maximal distance of 3 meters among 788 individuals. The data revealed a high density network with typical small world properties and a relatively homogenous distribution of both interaction time and interaction partners among subjects. Computer simulations of the spread of an influenza-like disease on the weighted contact graph are in good agreement with absentee data during the most recent influenza season. Analysis of targeted immuniz...

  3. Entry properties and entry inhibitors of a human H7N9 influenza virus.

    Directory of Open Access Journals (Sweden)

    Youhui Si

    Full Text Available The recently identified human infections with a novel avian influenza H7N9 virus in China raise important questions regarding possible risk to humans. However, the entry properties and tropism of this H7N9 virus were poorly understood. Moreover, neuraminidase inhibitor resistant H7N9 isolates were recently observed in two patients and correlated with poor clinical outcomes. In this study, we aimed to elucidate the entry properties of H7N9 virus, design and evaluate inhibitors for H7N9 virus entry. We optimized and developed an H7N9-pseudotyped particle system (H7N9pp that could be neutralized by anti-H7 antibodies and closely mimicked the entry process of the H7N9 virus. Avian, human and mouse-derived cultured cells showed high, moderate and low permissiveness to H7N9pp, respectively. Based on influenza virus membrane fusion mechanisms, a potent anti-H7N9 peptide (P155-185-chol corresponding to the C-terminal ectodomain of the H7N9 hemagglutinin protein was successfully identified. P155-185-chol demonstrated H7N9pp-specific inhibition of infection with IC50 of 0.19 µM. Importantly, P155-185-chol showed significant suppression of A/Anhui/1/2013 H7N9 live virus propagation in MDCK cells and additive effects with NA inhibitors Oseltamivir and Zanamivir. These findings expand our knowledge of the entry properties of the novel H7N9 viruses, and they highlight the potential for developing a new class of inhibitors targeting viral entry for use in the next pandemic.

  4. On the epidemiology of influenza

    Directory of Open Access Journals (Sweden)

    Scragg Robert

    2008-02-01

    Full Text Available Abstract The epidemiology of influenza swarms with incongruities, incongruities exhaustively detailed by the late British epidemiologist, Edgar Hope-Simpson. He was the first to propose a parsimonious theory explaining why influenza is, as Gregg said, "seemingly unmindful of traditional infectious disease behavioral patterns." Recent discoveries indicate vitamin D upregulates the endogenous antibiotics of innate immunity and suggest that the incongruities explored by Hope-Simpson may be secondary to the epidemiology of vitamin D deficiency. We identify – and attempt to explain – nine influenza conundrums: (1 Why is influenza both seasonal and ubiquitous and where is the virus between epidemics? (2 Why are the epidemics so explosive? (3 Why do they end so abruptly? (4 What explains the frequent coincidental timing of epidemics in countries of similar latitude? (5 Why is the serial interval obscure? (6 Why is the secondary attack rate so low? (7 Why did epidemics in previous ages spread so rapidly, despite the lack of modern transport? (8 Why does experimental inoculation of seronegative humans fail to cause illness in all the volunteers? (9 Why has influenza mortality of the aged not declined as their vaccination rates increased? We review recent discoveries about vitamin D's effects on innate immunity, human studies attempting sick-to-well transmission, naturalistic reports of human transmission, studies of serial interval, secondary attack rates, and relevant animal studies. We hypothesize that two factors explain the nine conundrums: vitamin D's seasonal and population effects on innate immunity, and the presence of a subpopulation of "good infectors." If true, our revision of Edgar Hope-Simpson's theory has profound implications for the prevention of influenza.

  5. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Wong Emily HM

    2010-08-01

    Full Text Available Abstract Background The influenza A virus is an important infectious cause of morbidity and mortality in humans and was responsible for 3 pandemics in the 20th century. As the replication of the influenza virus is based on its host's machinery, codon usage of its viral genes might be subject to host selection pressures, especially after interspecies transmission. A better understanding of viral evolution and host adaptive responses might help control this disease. Results Relative Synonymous Codon Usage (RSCU values of the genes from segment 1 to segment 6 of avian and human influenza viruses, including pandemic H1N1, were studied via Correspondence Analysis (CA. The codon usage patterns of seasonal human influenza viruses were distinct among their subtypes and different from those of avian viruses. Newly isolated viruses could be added to the CA results, creating a tool to investigate the host origin and evolution of viral genes. It was found that the 1918 pandemic H1N1 virus contained genes with mammalian-like viral codon usage patterns, indicating that the introduction of this virus to humans was not through in toto transfer of an avian influenza virus. Many human viral genes had directional changes in codon usage over time of viral isolation, indicating the effect of host selection pressures. These changes reduced the overall GC content and the usage of G at the third codon position in the viral genome. Limited evidence of translational selection pressure was found in a few viral genes. Conclusions Codon usage patterns from CA allowed identification of host origin and evolutionary trends in influenza viruses, providing an alternative method and a tool to understand the evolution of influenza viruses. Human influenza viruses are subject to selection pressure on codon usage which might assist in understanding the characteristics of newly emerging viruses.

  6. High conservation level of CD8(+) T cell immunogenic regions within an unusual H1N2 human influenza variant.

    Science.gov (United States)

    Komadina, Naomi; Quiñones-Parra, Sergio M; Kedzierska, Katherine; McCaw, James M; Kelso, Anne; Leder, Karin; McVernon, Jodie

    2016-10-01

    Current seasonal influenza vaccines require regular updates due to antigenic drift causing loss of effectiveness and therefore providing little or no protection against novel influenza A subtypes. Next generation vaccines capable of eliciting CD8(+) T cell (CTL) mediated cross-protective immunity may offer a long-term alternative strategy. However, measuring pre- and existing levels of CTL cross-protection in humans is confounded by differences in infection histories across individuals. During 2000-2003, H1N2 viruses circulated persistently in the human population for the first time and we hypothesized that the viral nucleoprotein (NP) contained novel CTL epitopes that may have contributed to the survival of the viruses. This study describes the immunogenic NP peptides of H1N1, H2N2, and H3N2 influenza viruses isolated from humans over the past century, 1918-2003, by comparing this historical dataset to reference NP peptides from H1N2 that circulated in humans during 2000-2003. Observed peptides sequences ranged from highly conserved (15%) to highly variable (12%), with variation unrelated to reported immunodominance. No unique NP peptides which were exclusive to the H1N2 viruses were noted. However, the virus had inherited the NP from a recently emerged H3N2 variant containing novel peptides, which may have assisted its persistence. Any advantage due to this novelty was subsequently lost with emergence of a newer H3N2 variant in 2003. Our approach has potential to provide insight into the population context in which influenza viruses emerge, and may help to inform immunogenic peptide selection for CTL-inducing influenza vaccines. J. Med. Virol. 88:1725-1732, 2016. © 2016 Wiley Periodicals, Inc.

  7. Influenza virus and endothelial cells: A species specific relationship

    NARCIS (Netherlands)

    K.R. Short (Kirsty); E.J.B. Veldhuis Kroeze (Edwin); L.A. Reperant (Leslie); M. Richard (Mathilde); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A virus (IAV) infection is an important cause of respiratory disease in humans. The original reservoirs of IAV are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target

  8. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages.

    Science.gov (United States)

    Machkovech, Heather M; Bedford, Trevor; Suchard, Marc A; Bloom, Jesse D

    2015-11-01

    Numerous experimental studies have demonstrated that CD8(+) T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8(+) T cells. Here we use a novel computational approach to test for selection in CD8(+) T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8(+) T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8(+) T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8(+) T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8(+) T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  9. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses.

    Science.gov (United States)

    Shi, Yi; Zhang, Wei; Wang, Fei; Qi, Jianxun; Wu, Ying; Song, Hao; Gao, Feng; Bi, Yuhai; Zhang, Yanfang; Fan, Zheng; Qin, Chengfeng; Sun, Honglei; Liu, Jinhua; Haywood, Joel; Liu, Wenjun; Gong, Weimin; Wang, Dayan; Shu, Yuelong; Wang, Yu; Yan, Jinghua; Gao, George F

    2013-10-11

    An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln(226)) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu(226)). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu(226) → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property.

  10. [Alzheimer's disease and human memory].

    Science.gov (United States)

    Eustache, F; Giffard, B; Rauchs, G; Chételat, G; Piolino, P; Desgranges, B

    2006-10-01

    Memory disorders observed in Alzheimer's disease gave rise, from the eighties, to a detailed analysis into the framework of cognitive neuropsychology which aimed at describing the deficits of very specific processes. Beyond their clinical interest, these studies contributed to the modelisation of human memory thanks to the characterization of different memory systems and their relationships. The first part of this paper gives an overview of the memory deficits in Alzheimer's disease and insists on particular cognitive phenomena. Hence, several examples are developed in the domains of semantic memory (such as hyperpriming and hypopriming effects) and autobiographical memory. Recent results highlight the existence of severe autobiographical amnesia observed in all neurodegenerative diseases, though with contrasting profiles: Ribot's gradient in Alzheimer's disease (showing that remote memories are better preserved than recent ones), reverse gradient in semantic dementia and no clear gradient in the frontal variant of frontotemporal dementia. The second part of this article presents advances in cognitive neuroscience searching to disclose the cerebral substrates of these cognitive deficits in Alzheimer's disease. The studies using functional imaging techniques are the most informative regarding this problematic. While showing the dysfunctions of an extended network, they emphasize the selectivity of cerebral damages that are at the root of very specific cognitive dysfunctions, coming close in that way to the conceptions of cognitive neuropsychology. These neuroimaging studies unravel the existence of compensatory mechanisms, which until recently were clearly missing in the literature on neurodegenerative diseases. These different researches lead to a wide conception of human memory, not just limited to simple instrumental processes (encoding, storage, retrieval), but necessarily covering models of identity and continuity of the subject, which interact in a dynamic way

  11. Transfer RNA and human disease

    Directory of Open Access Journals (Sweden)

    Jamie A Abbott

    2014-06-01

    Full Text Available Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA genes are hotspots for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase, mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing. Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  12. Antiviral drug susceptibilities of seasonal human influenza viruses in Lebanon, 2008-09 season.

    Science.gov (United States)

    Zaraket, Hassan; Saito, Reiko; Wakim, Rima; Tabet, Carelle; Medlej, Fouad; Reda, Mariam; Baranovich, Tatiana; Suzuki, Yasushi; Dapat, Clyde; Caperig-Dapat, Isolde; Dbaibo, Ghassan S; Suzuki, Hiroshi

    2010-07-01

    The emergence of antiviral drug-resistant strains of the influenza virus in addition to the rapid spread of the recent pandemic A(H1N1) 2009 virus highlight the importance of surveillance of influenza in identifying new variants as they appear. In this study, genetic characteristics and antiviral susceptibility patterns of influenza samples collected in Lebanon during the 2008-09 season were investigated. Forty influenza virus samples were isolated from 89 nasopharyngeal swabs obtained from patients with influenza-like illness. Of these samples, 33 (82.5%) were A(H3N2), 3 (7.5%) were A(H1N1), and 4 (10%) were B. All the H3N2 viruses were resistant to amantadine but were sensitive to oseltamivir and zanamivir; while all the H1N1 viruses were resistant to oseltamivir (possessed H275Y mutation, N1 numbering, in their NA) but were sensitive to amantadine and zanamivir. In the case of influenza B, both Victoria and Yamagata lineages were identified (three and one isolates each, respectively) and they showed decreased susceptibility to oseltamivir and zanamivir when compared to influenza A viruses. Influenza circulation patterns in Lebanon were very similar to those in Europe during the same season. Continued surveillance is important to fully elucidate influenza patterns in Lebanon and the Middle East in general, especially in light of the current influenza pandemic.

  13. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo.

    Science.gov (United States)

    Chan, Michael C W; Kuok, Denise I T; Leung, Connie Y H; Hui, Kenrie P Y; Valkenburg, Sophie A; Lau, Eric H Y; Nicholls, John M; Fang, Xiaohui; Guan, Yi; Lee, Jae W; Chan, Renee W Y; Webster, Robert G; Matthay, Michael A; Peiris, J S Malik

    2016-03-29

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation.

  14. Human/bovine chimeric MxA-like GTPases reveal a contribution of N-terminal domains to the magnitude of anti-influenza A activity.

    Science.gov (United States)

    Garigliany, Mutien-Marie; Cornet, Anne; Desmecht, Daniel

    2012-07-01

    Type I interferons (IFN-α/β) provide powerful and universal innate intracellular defense mechanisms against viruses. Among the antiviral effectors induced by IFN-α/β, Mx proteins of some species appear as key components of defense against influenza A viruses. The body of work published to date suggests that to exert anti-influenza activity, an Mx protein should possess a GTP-binding site, structural bases allowing multimerisation, and a specific C-terminal GTPase effector domain (GED). Both the human MxA and bovine Mx1 proteins meet these minimal requirements, but the bovine protein is more active against influenza viruses. Here, we measured the anti-influenza activity exerted by 2 human/bovine chimeric Mx proteins. We show that substituting the bovine GED for the human one in human MxA does not affect the magnitude of anti-influenza activity. Strikingly, however, substituting the human GED for the bovine one in bovine Mx1 yields a chimeric protein with a much higher anti-influenza activity than the human protein. We conclude, in contradiction to the hypothesis currently in vogue in the literature, that the GED is not the sole determinant controlling the magnitude of the anti-influenza activity exercised by an Mx protein that can bind GTP and multimerise. Our results suggest that 1 or several motifs that remain to be discovered, located N-terminally with regard to the GED, may interact with a viral component or a cellular factor so as to alter the viral cycle. Identifying, in the N-terminal portion of bovine Mx1, the motif(s) responsible for its higher anti-influenza activity could contribute to the development of new anti-influenza molecules.

  15. Human exposure to live poultry and psychological and behavioral responses to influenza A(H7N9), China.

    Science.gov (United States)

    Wang, Liping; Cowling, Benjamin J; Wu, Peng; Yu, Jianxing; Li, Fu; Zeng, Lingjia; Wu, Joseph T; Li, Zhongjie; Leung, Gabriel M; Yu, Hongjie

    2014-08-01

    To investigate human exposure to live poultry and changes in risk perception and behavior after the April 2013 influenza A(H7N9) outbreak in China, we surveyed 2,504 urban residents in 5 cities and 1,227 rural residents in 4 provinces and found that perceived risk for influenza A(H7N9) was low. The highest rate of exposure to live poultry was reported in Guangzhou, where 47% of those surveyed reported visiting a live poultry market > or =1 times in the previous year. Most (77%) urban respondents reported that they visited live markets less often after influenza A(H7N9) cases were first identified in China in March 2013, but only 30% supported permanent closure of the markets to control the epidemic. In rural areas, 48% of respondents reported that they raised backyard poultry. Exposure to live commercial and private poultry is common in urban and rural China and remains a potential risk factor for human infection with novel influenza viruses.

  16. Host-Specific and Segment-Specific Evolutionary Dynamics of Avian and Human Influenza A Viruses: A Systematic Review.

    Science.gov (United States)

    Kim, Kiyeon; Omori, Ryosuke; Ueno, Keisuke; Iida, Sayaka; Ito, Kimihito

    2016-01-01

    Understanding the evolutionary dynamics of influenza viruses is essential to control both avian and human influenza. Here, we analyze host-specific and segment-specific Tajima's D trends of influenza A virus through a systematic review using viral sequences registered in the National Center for Biotechnology Information. To avoid bias from viral population subdivision, viral sequences were stratified according to their sampling locations and sampling years. As a result, we obtained a total of 580 datasets each of which consists of nucleotide sequences of influenza A viruses isolated from a single population of hosts at a single sampling site within a single year. By analyzing nucleotide sequences in the datasets, we found that Tajima's D values of viral sequences were different depending on hosts and gene segments. Tajima's D values of viruses isolated from chicken and human samples showed negative, suggesting purifying selection or a rapid population growth of the viruses. The negative Tajima's D values in rapidly growing viral population were also observed in computer simulations. Tajima's D values of PB2, PB1, PA, NP, and M genes of the viruses circulating in wild mallards were close to zero, suggesting that these genes have undergone neutral selection in constant-sized population. On the other hand, Tajima's D values of HA and NA genes of these viruses were positive, indicating HA and NA have undergone balancing selection in wild mallards. Taken together, these results indicated the existence of unknown factors that maintain viral subtypes in wild mallards.

  17. Ex vivo analysis of human memory B lymphocytes specific for A and B influenza hemagglutinin by polychromatic flow-cytometry.

    Directory of Open Access Journals (Sweden)

    Monia Bardelli

    Full Text Available Understanding the impact that human memory B-cells (MBC, primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA⁺ B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses.

  18. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  19. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  20. Molecular basis of live-attenuated influenza virus.

    Directory of Open Access Journals (Sweden)

    Wen He

    Full Text Available Human influenza is a seasonal disease associated with significant morbidity and mortality. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination with a three inactivated influenza virus strains mixture, or by intranasal administration of a group of three different live attenuated influenza vaccine strains. Comparing to the inactivated vaccine, the attenuated live viruses allow better elicitation of a long-lasting and broader immune (humoral and cellular response that represents a naturally occurring transient infection. The cold-adapted (ca influenza A/AA/6/60 (H2N2 (AA ca virus is the backbone for the live attenuated trivalent seasonal influenza vaccine licensed in the United States. Similarly, the influenza A components of live-attenuated vaccines used in Russia have been prepared as reassortants of the cold-adapted (ca H2N2 viruses, A/Leningrad/134/17/57-ca (Len/17 and A/Leningrad/134/47/57-ca (Len/47 along with virulent epidemic strains. However, the mechanism of temperature-sensitive attenuation is largely elusive. To understand how modification at genetic level of influenza virus would result in attenuation of human influenza virus A/PR/8/34 (H1N1,A/PR8, we investigated the involvement of key mutations in the PB1 and/or PB2 genes in attenuation of influenza virus in vitro and in vivo. We have demonstrated that a few of residues in PB1 and PB2 are critical for the phenotypes of live attenuated, temperature sensitive influenza viruses by minigenome assay and real-time PCR. The information of these mutation loci could be used for elucidation of mechanism of temperature-sensitive attenuation and as a new strategy for influenza vaccine development.

  1. Reconstruction of disease transmission rates: Applications to measles, dengue, and influenza.

    Science.gov (United States)

    Lange, Alexander

    2016-07-07

    Transmission rates are key in understanding the spread of infectious diseases. Using the framework of compartmental models, we introduce a simple method to reconstruct time series of transmission rates directly from incidence or disease-related mortality data. The reconstruction employs differential equations, which model the time evolution of infective stages and strains. Being sensitive to initial values, the method produces asymptotically correct solutions. The computations are fast, with time complexity being quadratic. We apply the reconstruction to data of measles (England and Wales, 1948-1967), dengue (Thailand, 1982-1999), and influenza (U.S., 1910-1927). The Measles example offers comparison with earlier work. Here we re-investigate reporting corrections, include and exclude demographic information. The dengue example deals with the failure of vector-control measures in reducing dengue hemorrhagic fever (DHF) in Thailand. Two competing mechanisms have been held responsible: strain interaction and demographic transitions. Our reconstruction reveals that both explanations are possible, showing that the increase in DHF cases is consistent with decreasing transmission rates resulting from reduced vector counts. The flu example focuses on the 1918/1919 pandemic, examining the transmission rate evolution for an invading strain. Our analysis indicates that the pandemic strain could have circulated in the population for many months before the pandemic was initiated by an event of highly increased transmission.

  2. Study on Haemophilus influenzae type b diseases in China: the past, present and future.

    Science.gov (United States)

    Yang, Y; Shen, X; Jiang, Z; Liu, X; Leng, Z; Lu, D; Rao, J; Liu, J; Chang, L

    1998-09-01

    Meningitis caused by Haemophilus influenzae type b (Hib) is a common and serious disease for which there now are WHO-certified vaccines that are recommended for universal infant immunization in North America and European countries. If these vaccines are to be recommended in Asia, it is necessary to know the incidence, age distribution and clinical outcome of Hib meningitis and other systemic infections in this region. Data on Hib disease in China are scanty. Hib meningitis was common during the 1950s in China, accounting for up to 16% of all of pyogenic meningitis (up to 38% of cases were caused by unknown pathogens), despite severe epidemics of meningococcal meningitis during that period. Since 1989 we have conducted hospital- and community-based etiologic and epidemiologic studies of bacterial meningitis. Hib accounts for 30 to 50% of bacterial meningitis in China. The incidence of Hib meningitis in Hefei City was 10.4 per 100000 children death rate of children by one-third by the year 2000, greater efforts should be made to reduce the mortality of children with pneumonia. Our preliminary study showed that about one-fourth to one-third of cases of pneumonia in Chinese children might be caused by Hib. Therefore Hib vaccination for infants and children in China might be an effective and valuable procedure to achieve the goal.

  3. Cytokine release from human peripheral blood leucocytes incubated with endotoxin with and without prior infection with influenza virus

    DEFF Research Database (Denmark)

    Banner, Jytte; Smith, H; Sweet, C

    1993-01-01

    Previous work with a neonatal ferret model for human SIDS had indicated that inflammation caused by a combination of influenza virus and bacterial endotoxin may be a cause of human SIDS. To determine whether cytokines may be involved in this inflammatory response, levels of interleukin (IL)-1 beta......, IL-6 and tumour necrosis factor (TNF)-alpha were examined, using ELISA assays, in culture supernatants of human peripheral blood leucocytes infected with influenza virus and subsequently incubated with endotoxin. Levels of TNF-alpha were increased compared to cells incubated with virus or endotoxin...... alone. Levels of IL-1 beta were also increased whereas levels of IL-6 were generally not enhanced. Cytokines appeared within 1-2 h of stimulation with virus or endotoxin and increased subsequently to reach maximum titres between 16 and 20 h post treatment. While levels of cytokine were much lower when...

  4. Draft Genome Sequences of Eight Nontypeable Haemophilus influenzae Strains Previously Characterized Using an Electrophoretic Typing Scheme.

    Science.gov (United States)

    Mussa, Huda J; VanWagoner, Timothy M; Morton, Daniel J; Seale, Thomas W; Whitby, Paul W; Stull, Terrence L

    2015-11-25

    Nontypeable Haemophilus influenzae is an important cause of human disease. Strains were selected for genome sequencing to represent the breadth of nontypeable strains within the species, as previously defined by the electrophoretic mobility of 16 metabolic enzymes.

  5. Characterization of the 2009 pandemic A/Beijing/501/2009 H1N1 influenza strain in human airway epithelial cells and ferrets.

    Directory of Open Access Journals (Sweden)

    Penghui Yang

    Full Text Available BACKGROUND: A novel 2009 swine-origin influenza A H1N1 virus (S-OIV H1N1 has been transmitted among humans worldwide. However, the pathogenesis of this virus in human airway epithelial cells and mammals is not well understood. METHODOLOGY/PRINCIPAL FINDING: In this study, we showed that a 2009 A (H1N1 influenza virus strain, A/Beijing/501/2009, isolated from a human patient, caused typical influenza-like symptoms including weight loss, fluctuations in body temperature, and pulmonary pathological changes in ferrets. We demonstrated that the human lung adenocarcinoma epithelial cell line A549 was susceptible to infection and that the infected cells underwent apoptosis at 24 h post-infection. In contrast to the seasonal H1N1 influenza virus, the 2009 A (H1N1 influenza virus strain A/Beijing/501/2009 induced more cell death involving caspase-3-dependent apoptosis in A549 cells. Additionally, ferrets infected with the A/Beijing/501/2009 H1N1 virus strain exhibited increased body temperature, greater weight loss, and higher viral titers in the lungs. Therefore, the A/Beijing/501/2009 H1N1 isolate successfully infected the lungs of ferrets and caused more pathological lesions than the seasonal influenza virus. Our findings demonstrate that the difference in virulence of the 2009 pandemic H1N1 influenza virus and the seasonal H1N1 influenza virus in vitro and in vivo may have been mediated by different mechanisms. CONCLUSION/SIGNIFICANCE: Our understanding of the pathogenesis of the 2009 A (H1N1 influenza virus infection in both humans and animals is broadened by our findings that apoptotic cell death is involved in the cytopathic effect observed in vitro and that the pathological alterations in the lungs of S-OIV H1N1-infected ferrets are much more severe.

  6. [Influenza viruses and atherosclerosis: the role of atherosclerotic plaques in prolonging the persistent form of influenza infection].

    Science.gov (United States)

    Pleskov, V M; Bannikov, A I; Gurevich, V S; Pleskova, Iu V

    2003-01-01

    It was established that viral particles, like low-density lipoproteins (LDLP), when subjected to some modification changes, lost their ability to be internalized by tissue somatic cells and acquired tropism to macrophage cells. The data, obtained by us by using the polymerase chain reaction (PCR) method, made it possible to assert that atherosclerotic plaques, isolated from vessels of patients with ischemic heart disease (IHD) who underwent coronary bypass, contained RNA of the A(HINI) and AH3N3) influenza viruses. Whereas, the vessel portions, undamaged by atherosclerosis, did not contain any genetic substances of influenza viruses. It was for the first time that an experimentally supported understanding was expressed on that the atherosclerotic plaques serve as a "reservoir" for influenza viruses. It is also suggested that the mentioned plaques can be the carriers of influenza viruses for a long time, thus, prolonging the persistent form of influenza infection in the human body.

  7. Human Microbiota and Ophthalmic Disease.

    Science.gov (United States)

    Lu, Louise J; Liu, Ji

    2016-09-01

    The human ocular surface, consisting of the cornea and conjunctiva, is colonized by an expansive, diverse microbial community. Molecular-based methods, such as 16S rRNA sequencing, has allowed for more comprehensive and precise identification of the species composition of the ocular surface microbiota compared to traditional culture-based methods. Evidence suggests that the normal microbiota plays a protective immunological role in preventing the proliferation of pathogenic species and thus, alterations in the homeostatic microbiome may be linked to ophthalmic pathologies. Further investigation of the ocular surface microbiome, as well as the microbiome of other areas of the body such as the oral mucosa and gut, and their role in the pathophysiology of diseases is a significant, emerging field of research, and may someday enable the development of novel probiotic approaches for the treatment and prevention of ophthalmic diseases.

  8. Human Cytomegalovirus and Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Anne Halenius

    2014-01-01

    Full Text Available Human cytomegalovirus (HCMV represents a prototypic pathogenic member of the β-subgroup of the herpesvirus family. A range of HCMV features like its lytic replication in multiple tissues, the lifelong persistence through periods of latency and intermitting reactivation, the extraordinary large proteome, and extensive manipulation of adaptive and innate immunity make HCMV a high profile candidate for involvement in autoimmune disorders. We surveyed the available literature for reports on HCMV association with onset or exacerbation of autoimmune disease. A causative linkage between HCMV and systemic lupus erythematosus (SLE, systemic sclerosis (SSc, diabetes mellitus type 1, and rheumatoid arthritis (RA is suggested by the literature. However, a clear association of HCMV seroprevalence and disease could not be established, leaving the question open whether HCMV could play a coresponsible role for onset of disease. For convincing conclusions population-based prospective studies must be performed in the future. Specific immunopathogenic mechanisms by which HCMV could contribute to the course of autoimmune disease have been suggested, for example, molecular mimicry by UL94 in SSc and UL83/pp65 in SLE patients, as well as aggravation of joint inflammation by induction and expansion of CD4+/CD28− T-cells in RA patients. Further studies are needed to validate these findings and to lay the grounds for targeted therapeutic intervention.

  9. Aluminium and human breast diseases.

    Science.gov (United States)

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate.

  10. Effect of human rhinovirus infection in pediatric patients with influenza-like illness on the 2009 pandemic influenza A(H1N1) virus

    Institute of Scientific and Technical Information of China (English)

    Sun Yu; Zhu Ru'nan; Zhao Linqing; Deng Jie; Wang Fang; Ding Yaxin; Yuan Yi

    2014-01-01

    Background Some research groups have hypothesized that human rhinoviruses (HRVs) delayed the circulation of the 2009 pandemic influenza A(H1N1) virus (A(H1N1)pdm09) at the beginning of Autumn 2009 in France.This study aimed to evaluate the relationship between HRV and A(H1N1)pdm09 in pediatric patients with influenza-like illness in Beijing,China.Methods A systematic analysis to detect A(H1N1)pdm09 and seasonal influenza A virus (FLU A) was performed on 4 349 clinical samples from pediatric patients with influenza-like illness during the period June 1,2009 to February 28,2010,while a one-step real-time RT-PCR (rRT-PCR) assay was used to detect HRV in 1 146 clinical specimens selected from those 4 349 specimens.Results During the survey period,only one wave of A(H1N1)pdm09 was observed.The percentage of positive cases for A(H1N1)pdm09 increased sharply in September with a peak in November 2009 and then declined in February 2010.Data on the monthly distribution of HRVs indicated that more HRV-positive samples were detected in September (2.2%) and October (3.3%),revealing that the peak of HRV infection in 2009 was similar to that of other years.Among the 1 146 specimens examined for HRVs,21 (1.8%) were HRV-positive,which was significantly lower than that reported previously in Beijing (15.4% to 19.2%) (P <0.01).Overall,6 samples were positive for both A(H1N1)pdm09 and HRV,which represented a positive relative frequency of 1.60% and 2.08% HRV,considering the A(H1N1)pdm09-positive and-negative specimens,respectively.The odds ratio was 0.87 (95% CI 0.32; 2.44,P=0.80).Conclusions HRVs and A (H1N1)pdm09 co-circulated in this Chinese population during September and October 2009,and the HRV epidemic in 2009 did not affect A(H1N1)pdm09 infection rates in Beijing,China as suggested by other studies.However,the presence of A(H1N1)pdm09 might explain the unexpected reduction in the percentage of HRV positive cases during the period studied.

  11. Public-Private Partnerships: Critical to Combatting the Next Pandemic Influenza in the State of Kansas

    Science.gov (United States)

    2011-06-10

    Influenza A (H5N1), also known as Avian Flu or Bird Flu because it primarily affects chickens, turkeys, guinea fowls, migratory waterfowl, and other avian...Wikipedia: H1N1 2011) Influenza A H5N1: (also called ―Avian Flu‖ or ― Bird Flu ‖) ―influenza caused by viruses adapted to birds. Of the greatest concern is...1999. Biohazard. New York: Delta. CIDRAP. 2011. Avian influenza ( bird flu ): Implications for human disease. http://www.cidrap.umn.edu/cidrap/content

  12. Avian and pandemic human influenza policy in South-East Asia: the interface between economic and public health imperatives.

    Science.gov (United States)

    Pongcharoensuk, Petcharat; Adisasmito, Wiku; Sat, Le Minh; Silkavute, Pornpit; Muchlisoh, Lilis; Cong Hoat, Pham; Coker, Richard

    2012-08-01

    The aim of this study was to analyse the contemporary policies regarding avian and human pandemic influenza control in three South-East Asia countries: Thailand, Indonesia and Vietnam. An analysis of poultry vaccination policy was used to explore the broader policy of influenza A H5N1 control in the region. The policy of antiviral stockpiling with oseltamivir, a scarce regional resource, was used to explore human pandemic influenza preparedness policy. Several policy analysis theories were applied to analyse the debate on the use of vaccination for poultry and stockpiling of antiviral drugs in each country case study. We conducted a comparative analysis across emergent themes. The study found that whilst Indonesia and Vietnam introduced poultry vaccination programmes, Thailand rejected this policy approach. By contrast, all three countries adopted similar strategic policies for antiviral stockpiling in preparation. In relation to highly pathogenic avian influenza, economic imperatives are of critical importance. Whilst Thailand's poultry industry is large and principally an export economy, Vietnam's and Indonesia's are for domestic consumption. The introduction of a poultry vaccination policy in Thailand would have threatened its potential to trade and had a major impact on its economy. Powerful domestic stakeholders in Vietnam and Indonesia, by contrast, were concerned less about international trade and more about maintaining a healthy domestic poultry population. Evidence on vaccination was drawn upon differently depending upon strategic economic positioning either to support or oppose the policy. With influenza A H5N1 endemic in some countries of the region, these policy differences raise questions around regional coherence of policies and the pursuit of an agreed overarching goal, be that eradication or mitigation. Moreover, whilst economic imperatives have been critically important in guiding policy formulation in the agriculture sector, questions arise

  13. Characterization of influenza A (H7N9 viruses isolated from human cases imported into Taiwan.

    Directory of Open Access Journals (Sweden)

    Ji-Rong Yang

    Full Text Available A novel avian influenza A (H7N9 virus causes severe human infections and was first identified in March 2013 in China. The H7N9 virus has exhibited two epidemiological peaks of infection, occurring in week 15 of 2013 and week 5 of 2014. Taiwan, which is geographically adjacent to China, faces a large risk of being affected by this virus. Through extensive surveillance, launched in April 2013, four laboratory-confirmed H7N9 cases imported from China have been identified in Taiwan. The H7N9 virus isolated from imported case 1 in May 2013 (during the first wave was found to be closest genetically to a virus from wild birds and differed from the prototype virus, A/Anhui/1/2013, in the MP gene. The other three imported cases were detected in December 2013 and April 2014 (during the second wave. The viruses isolated from cases 2 and 4 were similar in the compositions of their 6 internal genes and distinct from A/Anhui/1/2013 in the PB2 and MP genes, whereas the virus isolated from case 3 exhibited a novel reassortment that has not been identified previously and was different from A/Anhui/1/2013 in the PB2, PA and MP genes. The four imported H7N9 viruses share similar antigenicity with A/Anhui/1/2013, and their HA and NA genes grouped together in their respective phylogenies. In contrast with the HA and NA genes, which exhibited a smaller degree of diversity, the internal genes were heterogeneous and provided potential distinctions between transmission sources in terms of both geography and hosts. It is important to strengthen surveillance of influenza and to share viral genetic data in real-time for reducing the threat of rapid and continuing evolution of H7N9 viruses.

  14. Avian influenza H5N1: an update on molecular pathogenesis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly pathogenic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur in the near future. Transmission from avian species to humans remains sporadic, but the mortality associated with human infection is very high (about 62%). To date, there are no effective therapeutic drugs or a prophylactic vaccines available, which means that there is still a long way to go before we can eradicate or cure avian influenza. This review focuses on the molecular pathogenesis of avian influenza H5N1 virus infection. An understanding of the viral pathogenesis may facilitate the development of novel treatments or effective eradication of this fatal disease.

  15. Avian influenza H5N1: an update on molecular pathogenesis

    Institute of Scientific and Technical Information of China (English)

    WANG HongLiang; JIANG ChengYu

    2009-01-01

    Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly patho-genic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur in the near future. Transmission from avian species to humans remains sporadic, but the mortality associated with human infection is very high (about 62%). To date, there are no effec-tive therapeutic drugs or a prophylactic vaccines available, which means that there is still a long way to go before we can eradicate or cure avian influenza. This review focuses on the molecular pathogenesis of avian influenza H5N1 virus infection. An understanding of the viral pathogenesis may facilitate the development of novel treatments or effective eradication of this fatal disease.

  16. Genotypic and phenotypic diversity of the noncapsulated Haemophilus influenzae: adaptation and pathogenesis in the human airways.

    Science.gov (United States)

    Garmendia, Junkal; Martí-Lliteras, Pau; Moleres, Javier; Puig, Carmen; Bengoechea, José A

    2012-12-01

    The human respiratory tract contains a highly adapted microbiota including commensal and opportunistic pathogens. Noncapsulated or nontypable Haemophilus influenzae (NTHi) is a human-restricted member of the normal airway microbiota in healthy carriers and an opportunistic pathogen in immunocompromised individuals. The duality of NTHi as a colonizer and as a symptomatic infectious agent is closely related to its adaptation to the host, which in turn greatly relies on the genetic plasticity of the bacterium and is facilitated by its condition as a natural competent. The variable genotype of NTHi accounts for its heterogeneous gene expression and variable phenotype, leading to differential host-pathogen interplay among isolates. Here we review our current knowledge of NTHi diversity in terms of genotype, gene expression, antigenic variation, and the phenotypes associated with colonization and pathogenesis. The potential benefits of NTHi diversity studies discussed herein include the unraveling of pathogenicity clues, the generation of tools to predict virulence from genomic data, and the exploitation of a unique natural system for the continuous monitoring of long-term bacterial evolution in human airways exposed to noxious agents. Finally, we highlight the challenge of monitoring both the pathogen and the host in longitudinal studies, and of applying comparative genomics to clarify the meaning of the vast NTHi genetic diversity and its translation to virulence phenotypes.

  17. Novel avian influenza A (H7N9 virus induces impaired interferon responses in human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Veera Arilahti

    Full Text Available In March 2013 a new avian influenza A(H7N9 virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs. We observed that in H7N9 virus-infected cells, interferon (IFN responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced "cytokine storm" seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs.

  18. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein.

    Directory of Open Access Journals (Sweden)

    Benjamin Mänz

    2013-03-01

    Full Text Available The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive mutations in the nucleoprotein (NP of pandemic strains A/Brevig Mission/1/1918 (1918 and A/Hamburg/4/2009 (pH1N1 that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918 cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the MxA-sensitive influenza virus A/Thailand/1(KAN-1/04 (H5N1 resulted in a gain of MxA resistance coupled with a decrease in viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses and that adaptive mutations in the viral NP should be carefully monitored.

  19. Antiviral Effect of Methylated Flavonol Isorhamnetin against Influenza

    OpenAIRE

    Ahmed Abdal Dayem; Hye Yeon Choi; Young Bong Kim; Ssang-Goo Cho

    2015-01-01

    Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3', and 4' positions of the 15-carbon flavonoid skeleton, and found t...

  20. Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in the developing brains of neonatal mice.

    Science.gov (United States)

    Fatemi, S H; Emamian, E S; Sidwell, R W; Kist, D A; Stary, J M; Earle, J A; Thuras, P

    2002-01-01

    Epidemiological reports describe a strong association between prenatal human influenza viral infection and later development of schizophrenia. Postmodern human brain studies, however, indicate a lack of gliosis in schizophrenic brains presumably secondary to absence of glial cells during the second trimester viral infection in utero. We hypothesized that human influenza infection in day 9 pregnant mice would alter the expression of glial fibrillary acidic protein (GFAP, an important marker of gliosis, neuron migration, and reactive injury) in developing brains of postnatal days 0, 14 and 35 mice. Determination of cellular GFAP immunoreactivity (IR) expressed as cell density in cortex and hippocampus of control and experimental brains showed increases in GFAP-positive density in exposed cortical (P = 0.03 day 14 vs control) and hippocampal cells (P = 0.035 day 14, P = 0.034 day 35). Similarly, ependymal cell layer GFAP-IR cell counts showed increases with increasing brain age from day 0, to days 14 and 35 in infected groups (P = 0.037, day 14) vs controls. The GFAP-positive cells in prenatally exposed brains showed 'hypertrophy' and more stellate morphology. These results implicate a significant role of prenatal human influenza viral infection on subsequent gliosis, which persists throughout brain development in mice from birth to adolescence.

  1. SURVEILLANCE FOR NEWCASTLE DISEASE VIRUS, AVIAN INFLUENZA VIRUS AND MYCOPLASMA GALLISEPTICUM IN WILD BIRDS NEAR COMMERCIAL POULTRY FARMS SURROUNDED BY ATLANTIC RAINFOREST REMNANTS, SOUTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    MB Guimarães

    Full Text Available ABSTRACT The geographic overlap between areas of Atlantic rainforest and human activities allows interactions to occur between humans and wild and domestic animals. Despite the great importance of the domestic animal-wildlife-human interface that occurs at poultry farms in terms of public health, economic production and wildlife conservation, there are few studies in Brazil examining the distribution and health of wild birds that interact with poultry farms. From January to December 2010, mist nets were used to capture 166 free-ranging birds that were within close proximity to three poultry farms in Atlantic rainforest remnants in south-eastern Brazil. The species composition was examined, and molecular methods were used to test for avian influenza virus, Newcastle disease virus, and Mycoplasma gallisepticum. The avian communities near the poultry farms were dominated by three synanthropic species, which corresponded to 70% of all captured individuals: house sparrows Passer domesticus (33%, saffron finches (Sicalis flaveola (22%, and ruddy ground-doves (Columbina talpacoti (15%. These predominant bird species were in poor body condition (27%, were infested with feather mites (43%, or presented both conditions (23%. No evidence of infection by avian influenza virus, Newcastle disease virus or M. gallisepticum was identified in any of the studied birds. Although no evidence of the studied pathogens was, our findings demonstrate that differences in the environmental characteristics and biosecurity practices influence the wild bird community near poultry farms, which in turn may affect the health status of these synanthropic birds and strengthen their role in the transmission of pathogens.

  2. Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D

    Directory of Open Access Journals (Sweden)

    Sorensen Grith L

    2007-02-01

    Full Text Available Abstract Background Surfactant protein D (SP-D plays important roles in innate host defense against influenza A virus (IAV infection. Common human polymorphisms of SP-D have been found in many human populations and associated with increased risk of certain infections. We recently reported that the Thr/Thr 11 form of SP-D is associated with low serum levels and assembles predominantly as trimers as opposed to the more common multimeric forms of SP-D. Methods Preliminary experiments were done to establish the effects of different monoclonal antibodies against SP-D on ability of SP-D to bind to or neutralize the virus. We then purified natural human trimeric and multimeric forms of SP-D from amniotic fluid and tested ability of these preparations to bind to IAV, to inhibit infectivity and hemagglutination activity of IAV in vitro. Results In initial experiments mAbs directed against different areas on the CRD of SP-D were found to have differing effects on antiviral activity. Using an mAb that did not interfere with antiviral activity of SP-D, we confirm that natural SP-D trimers had reduced ability to bind to IAV. In addition, the trimers had reduced ability to neutralize IAV as compared to natural human SP-D multimers as well as reduced hemagglutination inhibiting activity against several strains of IAV. Natural SP-D trimers also had different interactions with human neutrophil peptide defensins (HNPs in viral neutralization assays as compared to multimeric SP-D. Conclusion These studies indicate that a common human polymorphic form of SP-D may modulate host defense against IAV and give impetus to clinical studies correlating this genotype with risk for IAV infection in susceptible groups. We also show that mAbs directed against different areas on the carbohydrate recognition domain of SP-D can be useful for dissecting out different functional properties of the protein.

  3. Evaluation of the antigenic relatedness and cross-protective immunity of the neuraminidase between human influenza A (H1N1) virus and highly pathogenic avian influenza A (H5N1) virus.

    Science.gov (United States)

    Lu, Xiuhua; Liu, Feng; Zeng, Hui; Sheu, Tiffany; Achenbach, Jenna E; Veguilla, Vic; Gubareva, Larisa V; Garten, Rebecca; Smith, Catherine; Yang, Hua; Stevens, James; Xu, Xiyan; Katz, Jacqueline M; Tumpey, Terrence M

    2014-04-01

    To determine the genetic and antigenic relatedness as well as the cross-protective immunity of human H1N1 and avian H5N1 influenza virus neuraminidase (NA), we immunized rabbits with either a baculovirus-expressed recombinant NA from A/Beijing/262/95 (BJ/262) H1N1 or A/Hong Kong/483/97 (HK/483) H5N1 virus. Cross-reactive antibody responses were evaluated by multiple serological assays and cross-protection against H5N1 virus challenge was evaluated in mice. In a neuraminidase inhibition (NI) test, the antisera exhibited substantial inhibition of NA activity of the homologous virus, but failed to inhibit the NA activity of heterologous virus. However, these antisera exhibited low levels of cross-reactivity measured by plaque size reduction, replication inhibition, single radial hemolysis, and ELISA assays. Passive immunization with HK/483 NA-specific antisera significantly reduced virus replication and disease, and afforded almost complete protection against lethal homologous virus challenge in mice. However, passive immunization with BJ/262 (H1N1) NA-specific antisera was ineffective at providing cross-protection against lethal H5N1 virus challenge and only slightly reduced weight loss. Substantial amino acid variation among the NA antigenic sites was observed between BJ/262 and HK/483 virus, which was consistent with the lack of cross-reactive NI activity by the antibody and limited cross-protective immunity in mice. These results show a strong correlation between the lack of cross-protective immunity and low structural similarities of NA from a human seasonal H1N1 virus and an avian H5N1 influenza virus.

  4. Canadian experiences with avian influenza: a look at regional disease control--past, present, and future.

    Science.gov (United States)

    Vaillancourt, J-P

    2009-04-01

    Over the past 5 yr, the poultry industry in Canada has had a few H5 or H7 avian influenza (AI) epidemics. An analysis of these outbreaks by government officials highlighted the need to establish a better partnership between those responsible for controlling the disease and public health officials responsible for protecting the public and those participating in eradication efforts. These officials also agreed that compensations had to be reviewed, that national biosecurity standards needed to be established to better prevent AI, that a national mortality disposal plan was needed, and finally that the current emergency disease management protocols had to be reviewed. Industry representatives stressed the need for early detection and reporting; for more effective tools for decision making, including using local expertise for trace-back activities and quick interventions; for better communications within industry, but mainly between industry and governmental authorities at the federal, provincial, and municipal levels; and finally, for better planning to minimize the impact of eradication efforts on poultry production and for the recovery following the epidemic. These observations triggered a series of initiatives. A National Office of Animal Biosecurity was created by federal authorities, with the mandate to establish national biosecurity standards. A Canadian Animal Health Surveillance Network was also put in place to improve the capacity of early detection of the disease and to increase the surge capacity of the Canadian laboratory system. Wildlife and commercial poultry AI surveillance programs have also been put in place. Provincial poultry grower organizations have established AI control and eradication plans that are increasing their ability to intervene early and to assist government authorities once AI is confirmed in the field. This includes the creation of industry incident command centers with emphasis on confidentiality agreements between government and

  5. Computer-aided assessment of pulmonary disease in novel swine-origin H1N1 influenza on CT

    Science.gov (United States)

    Yao, Jianhua; Dwyer, Andrew J.; Summers, Ronald M.; Mollura, Daniel J.

    2011-03-01

    The 2009 pandemic is a global outbreak of novel H1N1 influenza. Radiologic images can be used to assess the presence and severity of pulmonary infection. We develop a computer-aided assessment system to analyze the CT images from Swine-Origin Influenza A virus (S-OIV) novel H1N1 cases. The technique is based on the analysis of lung texture patterns and classification using a support vector machine (SVM). Pixel-wise tissue classification is computed from the SVM value. The method was validated on four H1N1 cases and ten normal cases. We demonstrated that the technique can detect regions of pulmonary abnormality in novel H1N1 patients and differentiate these regions from visually normal lung (area under the ROC curve is 0.993). This technique can also be applied to differentiate regions infected by different pulmonary diseases.

  6. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characte......Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... with the hemagglutination-inhibiting activity of SP-D. HNPs had significant viral neutralizing activity against divergent IAV strains. However, the HNPs generally had competitive effects when combined with SP-D in assays using an SP-D-sensitive IAV strain. In contrast, cooperative antiviral effects were noted in some...

  7. Brief literature review for the WHO global influenza research agenda--highly pathogenic avian influenza H5N1 risk in humans.

    Science.gov (United States)

    Van Kerkhove, Maria D

    2013-09-01

    Highly pathogenic avian influenza A H5N1 viruses remain a significant health threat to humans given the continued rare occurrence of human cases with a high case fatality rate. This brief literature review summarizes available evidence of risk factors for H5N1 infection in humans and updates a recent systematic review published in early 2011. Several epidemiologic studies have been published to evaluate the risk factors for H5N1 infection in humans, including contact with poultry and poultry products and non-poultry-related contact such as from H5N1-contaminated water. While most H5N1 cases are attributed to exposure to sick poultry, it is unclear how many may be due to human-to-human transmission. The collective results of published literature suggest that transmission risk of H5N1 from poultry to humans may be highest among individuals who may have been in contact with the highest potential concentrations of virus shed by poultry. This suggests that there may be a threshold of virus concentration needed for effective transmission and that circulating H5N1 strains have not yet mutated to transmit readily from either poultry to human or from human to human. However, the mode of potential transmission can be quite varied throughout different countries and by study with exposures ranging from visiting a wet market, preparing infected poultry for consumption, to swimming or bathing in ponds frequented by poultry. Several important data gaps remain in the understanding of the epidemiology of H5N1 in humans and limit our ability to interpret the results of the available H5N1 seroepidemiologic studies.

  8. Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Seyed Javad Moghaddam

    2011-01-01

    Full Text Available Seyed Javad Moghaddam1, Cesar E Ochoa1,2, Sanjay Sethi3, Burton F Dickey1,41Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Tecnológico de Monterrey School of Medicine, Monterrey, Nuevo León, Mexico; 3Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA; 4Center for Inflammation and Infection, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USAAbstract: Chronic obstructive pulmonary disease (COPD is predicted to become the third leading cause of death in the world by 2020. It is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles and gases, most commonly cigarette smoke. Among smokers with COPD, even following withdrawal of cigarette smoke, inflammation persists and lung function continues to deteriorate. One possible explanation is that bacterial colonization of smoke-damaged airways, most commonly with nontypeable Haemophilus influenzae (NTHi, perpetuates airway injury and inflammation. Furthermore, COPD has also been identified as an independent risk factor for lung cancer irrespective of concomitant cigarette smoke exposure. In this article, we review the role of NTHi in airway inflammation that may lead to COPD progression and lung cancer promotion.Keywords: COPD, NTHi, inflammation

  9. H5N1 avian influenza virus: human cases reported in southern China.

    NARCIS (Netherlands)

    Crofts, J.; Paget, J.; Karcher, F.

    2003-01-01

    Two cases of confirmed influenza due to the avian influenza A H5N1 virus were reported last week in Hong Kong (1). The cases occurred in a Hong Kong family who had recently visited Fujian province in southern China. The daughter, aged 8 years, died following a respiratory illness. The cause of her d

  10. Swine Influenza Virus and Association with the Porcine Respiratory Disease Complex in Pig Farms in Southern Brazil.

    Science.gov (United States)

    Schmidt, C; Cibulski, S P; Andrade, C P; Teixeira, T F; Varela, A P M; Scheffer, C M; Franco, A C; de Almeida, L L; Roehe, P M

    2016-05-01

    Despite the putative endemic status of swine influenza A virus (swIAV) infections, data on the occurrence of swine influenza outbreaks are scarce in Brazil. The aim of this study was to detect and subtype swIAVs from six outbreaks of porcine respiratory disease complex (PRDC) in southern Brazil. Nasal swabs were collected from 66 piglets with signs of respiratory disease in six herds. Lung tissue samples were collected from six necropsied animals. Virus detection was performed by PCR screening and confirmed by virus isolation and hemagglutination (HA). Influenza A subtyping was performed by a real-time reverse transcriptase PCR (rRT-PCR) to detect the A(H1N1)pdm09; other swIAV subtypes were determined by multiplex RT-PCR. In lung tissues, the major bacterial and viral pathogens associated with PRDC (Pasteurella multocida, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and PCV2) were investigated. In some affected pigs, clinico-pathological evaluations were conducted. Influenza A was detected by screening PCR in 46 of 66 swab samples and from five of six lungs. Virus was recovered from pigs of all six herds. Subtype A(H1N1)pdm09 was detected in four of six herds and H1N2 in the other two herds. In lung tissues, further agents involved in PRDC were detected in all cases; Pasteurella multocida was identified in five of six samples and Mycoplasma hyopneumoniae in three of six. Actinobacillus pleuropneumoniae (1/6), Haemophilus parasuis (1/6) and PCV2 (1/6) were also detected. These findings indicate that subtypes A(H1N1)pdm09 and H1N2 were present in pigs in southern Brazil and were associated with PRDC outbreaks. © 2015 Blackwell Verlag GmbH.

  11. Full-genome analysis of avian influenza A(H5N1) virus from a human, North America, 2013.

    Science.gov (United States)

    Pabbaraju, Kanti; Tellier, Raymond; Wong, Sallene; Li, Yan; Bastien, Nathalie; Tang, Julian W; Drews, Steven J; Jang, Yunho; Davis, C Todd; Fonseca, Kevin; Tipples, Graham A

    2014-05-01

    Full-genome analysis was conducted on the first isolate of a highly pathogenic avian influenza A(H5N1) virus from a human in North America. The virus has a hemagglutinin gene of clade 2.3.2.1c and is a reassortant with an H9N2 subtype lineage polymerase basic 2 gene. No mutations conferring resistance to adamantanes or neuraminidase inhibitors were found.

  12. Towards universal influenza vaccines?

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); G.F. Rimmelzwaan (Guus)

    2011-01-01

    textabstractVaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the

  13. Avian Influenza Surveillance and Disease Contingency Plan for Prime Hook National Wildlife Refuge 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — With Avian Influenza, a nonclinical viral infection, becoming a growing concern for wild bird populations in North America and the United States, it has become...

  14. M2e-Based Universal Influenza A Vaccines

    Directory of Open Access Journals (Sweden)

    Lei Deng

    2015-02-01

    Full Text Available The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future.

  15. Integrated Molecular Signature of Disease: Analysis of Influenza Virus-Infected Macaques through Functional Genomics and Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Baas, T.; Baskin, C. R.; Diamond, Deborah L.; Garcia-Sastre, A.; Bielefeldt-Ohmann, H.; Tumpey, T. M.; Thomas, M. J.; Carter, V. S.; Teal, T. H.; Van Hoven, N.; Proll, Sean; Jacobs, Jon M.; Caldwell, Z.; Gritsenko, Marina A.; Hukkanen, R.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-11-01

    Recent outbreaks of avian influenza in humans have stressed the need for an improved non-human primate model of influenza pathogenesis. In order to develop our macaque model, we expanded our in vivo and functional genomics experiments: We focused on the innate immune response at day 2 post-inoculation and on gene expression in affected lung tissue with viral genetic material present; finally, we sought to identify signature genes for early infection in whole blood. For these purposes, we infected six pigtailed macaques with 107 TCID50 of influenza A/Texas/36/91 virus and three control animals with a sham inoculate. We sacrificed one control and two experimental animals at day 2, 4, and 7 and lung tissue was harvested for pathology, gene expression profiling, and proteomics. Additionally, blood was collected for genomics every other day from each animal until its endpoint. Gross and microscopic pathology, immunohistochemistry, viral gene expression by arrays and/or quantitative real-time RT-PCR confirmed successful yet mild infection in all experimental animals. Genomic experiments were performed using second generation macaque-specific oligonucleotide arrays and high-throughput proteomics revealed host response to infection at the protein level. Our data showed dramatic differences in gene expression within the same influenza-induced lesion based on the presence or absence of viral mRNA. We also identified genes tightly co-regulated in peripheral white blood cells and in lung tissue at day 2 post-inoculation. This latter finding opens the possibility of using gene expression arrays on whole blood to detect infection after exposure but prior to onset of symptoms or shedding.

  16. CURRENT APPROACHES TO UNIVERSAL VACCINE AGAINST INFLUENZA VIRUS

    Directory of Open Access Journals (Sweden)

    I. B. Esmagambetov

    2016-01-01

    Full Text Available Influenza is a seasonal infectious disease widespread across the globe. In Russia the share of influenza and other acute respiratory viral infections account for up to 90% of all infectious diseases. Scientific and reasonable method of influenza prevention is vaccination. However, traditional current influenza vaccines can’t induce protection against various virus strains that differ substantially in terms of their antigenic structure, and thus require periodic updates to its immunogenic components. In addition, there is the risk of a pandemic caused by an entirely new antigen in relation to variants of influenza virus A. Attempts to improve on traditional approaches to vaccination have focused primarily on improving production technologies and to increase immunogenicity of vaccines. Therefore, the urgent task is the creation of vaccines able to induce immune response a broad spectrum against different influenza virus strains and human strains of avian influenza, also can cause disease in humans. Protective effect of universal vaccine should be the induction of integrated immune response, based on the formulation of cross-reactive antibodies and T cells. The development of such universal vaccine could remove the need for periodical strain composition update of existing vaccines and, accor dingly, will be able to give the vaccine manufacturer itself, production planning regardless of epidemic seasons. Currently, the most widely studied antigens as key components of flu vaccines are proteins M2 and NP as well as the hemagglutinin of influenza virus. This review summarizes and lists some data of domestic and foreign research on a universal influenza virus vaccine.

  17. Human infection with an avian influenza A (H9N2) virus in the middle region of China.

    Science.gov (United States)

    Huang, Yiwei; Li, Xiaodan; Zhang, Hong; Chen, Bozhong; Jiang, Yonglin; Yang, Lei; Zhu, Wenfei; Hu, Shixiong; Zhou, Siyu; Tang, Yunli; Xiang, Xingyu; Li, Fangcai; Li, Wenchao; Gao, Lidong

    2015-10-01

    During the epidemic period of the novel H7N9 viruses, an influenza A (H9N2) virus was isolated from a 7-year-old boy with influenza-like illness in Yongzhou city of Hunan province in November 2013. To identify the possible source of infection, environmental specimens collected from local live poultry markets epidemiologically linked to the human case in Yongzhou city were tested for influenza type A and its subtypes H5, H7, and H9 using real-time RT-PCR methods as well as virus isolation, and four other H9N2 viruses were isolated. The real-time RT-PCR results showed that the environment was highly contaminated with avian influenza H9 subtype viruses (18.0%). Sequencing analyses revealed that the virus isolated from the patient, which was highly similar (98.5-99.8%) to one of isolates from environment in complete genome sequences, was of avian origin. Based on phylogenetic and antigenic analyses, it belonged to genotype S and Y280 lineage. In addition, the virus exhibited high homology (95.7-99.5%) of all six internal gene lineages with the novel H7N9 and H10N8 viruses which caused epidemic and endemic in China. Meanwhile, it carried several mammalian adapted molecular residues including Q226L in HA protein, L13P in PB1 protein, K356R, S409N in PA protein, V15I in M1 protein, I28V, L55F in M2 protein, and E227K in NS protein. These findings reinforce the significance of continuous surveillance of H9N2 influenza viruses.

  18. Characterization of human Influenza Viruses in Lebanon during 2010-2011 and 2011-2012 post-pandemic seasons.

    Science.gov (United States)

    Zaraket, Hassan; Dapat, Clyde; Ghanem, Soha; Ali, Zainab; Lteif, Mireille; Kondo, Hiroki; Dapat, Isolde C; Saito, Kousuke; Kayali, Ghazi; Suzuki, Hiroshi; Dbaibo, Ghassan; Saito, Reiko

    2014-01-01

    To genetically characterize human influenza viruses and their susceptibilities to antivirals during two post-pandemic seasons in Lebanon. Influenza virus was isolated from nasopharyngeal swabs that were obtained from patients with influenza-like illness during 2010-2012 and further analyzed both phenotypically and genotypically. During the 2010-2011 season, both 2009 pandemic H1N1 (H1N1p) and B viruses co-circulated with equal prevalence, while the H3N2 virus predominated during the 2011-2012 season. All H3N2 and H1N1 viruses were resistant to amantadine. Importantly, all viruses of the influenza A and B types were susceptible to the neuraminidase (NA) inhibitors oseltamivir, zanamivir, peramivir, and laninamivir. Nonetheless, all 2011-2012 H1N1p isolates had three mutations (V241I, N369K, and N386S) in the NA gene that were suggested to be permissive of the H275Y mutation, which confers resistance to oseltamivir. We also detected one H1N1p virus during the 2010-2011 season with a 4-fold decrease in susceptibility to oseltamivir due to an NA-S247N mutation. This isolate was phylogenetically distinct from other H1N1p viruses that were isolated in other regions. Influenza A viruses with reduced susceptibility to oseltamivir and mutations permissive for acquiring NA resistance-conferring mutation with minimal burden on their fitness were isolated in Lebanon. © 2014 S. Karger AG, Basel.

  19. A Host Transcriptional Signature for Presymptomatic Detection of Infection in Humans Exposed to Influenza H1N1 or H3N2

    Science.gov (United States)

    2013-01-09

    A Host Transcriptional Signature for Presymptomatic Detection of Infection in Humans Exposed to Influenza H1N1 or H3N2 Christopher W. Woods1,2,3...patients where it discriminates between swine-origin influenza A/ H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic... Influenza H1N1 or H3N2. PLoS ONE 8(1): e52198. doi:10.1371/journal.pone.0052198 Editor: Herman Tse, The University of Hong Kong, Hong Kong Received

  20. Functional testing of an inhalable nanoparticle based influenza vaccine using a human precision cut lung slice technique.

    Directory of Open Access Journals (Sweden)

    Vanessa Neuhaus

    Full Text Available Annual outbreaks of influenza infections, caused by new influenza virus subtypes and high incidences of zoonosis, make seasonal influenza one of the most unpredictable and serious health threats worldwide. Currently available vaccines, though the main prevention strategy, can neither efficiently be adapted to new circulating virus subtypes nor provide high amounts to meet the global demand fast enough. New influenza vaccines quickly adapted to current virus strains are needed. In the present study we investigated the local toxicity and capacity of a new inhalable influenza vaccine to induce an antigen-specific recall response at the site of virus entry in human precision-cut lung slices (PCLS. This new vaccine combines recombinant H1N1 influenza hemagglutinin (HAC1, produced in tobacco plants, and a silica nanoparticle (NP-based drug delivery system. We found no local cellular toxicity of the vaccine within applicable concentrations. However higher concentrations of NP (≥10(3 µg/ml dose-dependently decreased viability of human PCLS. Furthermore NP, not the protein, provoked a dose-dependent induction of TNF-α and IL-1β, indicating adjuvant properties of silica. In contrast, we found an antigen-specific induction of the T cell proliferation and differentiation cytokine, IL-2, compared to baseline level (152±49 pg/mg vs. 22±5 pg/mg, which could not be seen for the NP alone. Additionally, treatment with 10 µg/ml HAC1 caused a 6-times higher secretion of IFN-γ compared to baseline (602±307 pg/mg vs. 97±51 pg/mg. This antigen-induced IFN-γ secretion was further boosted by the adjuvant effect of silica NP for the formulated vaccine to a 12-fold increase (97±51 pg/mg vs. 1226±535 pg/mg. Thus we were able to show that the plant-produced vaccine induced an adequate innate immune response and re-activated an established antigen-specific T cell response within a non-toxic range in human PCLS at the site of virus entry.

  1. Swine-origin influenza-virus-induced acute lung injury:Novel or classical pathogenesis?

    Institute of Scientific and Technical Information of China (English)

    Naoyoshi; Maeda; Toshimitsu; Uede

    2010-01-01

    Influenza viruses are common respiratory pathogens in humans and can cause serious infection that leads to the development of pneumonia.Due to their hostrange diversity,genetic and antigenic diversity,and potential to reassort genetically in vivo,influenza A viruses are continual sources of novel influenza strains that lead to the emergence of periodic epidemics and outbreaks in humans.Thus,newly emerging viral diseases are always major threats to public health.In March 2009,a novel influenza virus suddenly emerged and caused a worldwide pandemic.The novel pandemic influenza virus was genetically and antigenically distinct from previous seasonal human influenza A/H1N1 viruses;it was identified to have originated from pigs,and further genetic analysis revealed it as a subtype of A/H1N1,thus later called a swine-origin influenza virus A/H1N1.Since the novel virus emerged,epidemiological surveys and research on experimental animal models have been conducted,and characteristics of the novel influenza virus have been determined but the exact mechanisms of pulmonary pathogenesis remain to be elucidated.In this editorial,we summa-rize and discuss the recent pandemic caused by the novel swine-origin influenza virus A/H1N1 with a focus on the mechanism of pathogenesis to obtain an insight into potential therapeutic strategies.

  2. Invasive Haemophilus influenzae disease in the vaccine era in Rio de Janeiro, Brazil

    Science.gov (United States)

    Tuyama, Mari; Corrêa-Antônio, Jessica; Schlackman, Jessica; Marsh, Jane W; Rebelo, Maria C; Cerqueira, Elaine O; Nehab, Márcio; Kegele, Fabíola; Carmo, Getúlio F; Thielmann, Dominique CA; Barroso, Paulo F; Harrison, Lee H; Barroso, David E

    2017-01-01

    BACKGROUND Haemophilus influenzae (Hi) serotype b (Hib) conjugate vaccine was incorporated into the infant immunisation schedule in Brazil in 1999, where Hib was one of the major etiologic sources of community-acquired bacterial meningitis. OBJECTIVES The purpose of this study is to describe the molecular epidemiology of invasive Hi disease in Rio de Janeiro state, Brazil, before and after vaccine introduction. METHODS Surveillance data from 1986 to 2014 were analysed. Hi isolates recovered from cerebrospinal fluid (CSF) or blood from 1993 to 2014 were serotyped by slide agglutination, genotyped by multilocus sequence typing (MLST), and the capsule type evaluation, differentiation of serologically non-typeable isolates, and characterisation of the capsule (cap) locus was done by polymerase chain reaction. Antimicrobial susceptibility testing was performed using E-test. FINDINGS From 1986 to 1999 and from 2000 to 2014, 2580 and 197 (42% without serotype information) confirmed cases were reported, respectively. The case fatality rate was 17% and did not correlate with the strain. Hib and b- variant isolates belonged to ST-6, whereas serotype a isolates belonged to the ST-23 clonal complex. Serotype a appeared to emerge during the 2000s. Non-encapsulated isolates were non-clonal and distinct from the encapsulated isolates. Ampicillin-resistant isolates were either of serotype b or were non-encapsulated, and all of them were β-lactamase-positive but amoxicillin-clavulanic acid susceptible. MAIN CONCLUSIONS Although Hi meningitis became a relatively rare disease in Rio de Janeiro after the introduction of the Hib conjugate vaccine, the isolates recovered from patients have become more diverse. These results indicate the need to implement an enhanced surveillance system to continue monitoring the impact of the Hib conjugate vaccine. PMID:28225904

  3. Evaluation of a fully human monoclonal antibody against multiple influenza A viral strains in mice and a pandemic H1N1 strain in nonhuman primates.

    Science.gov (United States)

    Song, Aihua; Myojo, Kensuke; Laudenslager, John; Harada, Daisuke; Miura, Toru; Suzuki, Kazuo; Kuni-Kamochi, Reiko; Soloff, Rachel; Ohgami, Kinya; Kanda, Yutaka

    2014-11-01

    Influenza virus is a global health concern due to its unpredictable pandemic potential. Frequent mutations of surface molecules, hemagglutinin (HA) and neuraminidase (NA), contribute to low efficacy of the annual flu vaccine and therapeutic resistance to standard antiviral agents. The populations at high risk of influenza virus infection, such as the elderly and infants, generally mount low immune responses to vaccines, and develop severe disease after infection. Novel therapeutics with high effectiveness and mutation resistance are needed. Previously, we described the generation of a fully human influenza virus matrix protein 2 (M2) specific monoclonal antibody (mAb), Z3G1, which recognized the majority of M2 variants from natural viral isolates, including highly pathogenic avian strains. Passive immunotherapy with Z3G1 significantly protected mice from the infection when administered either prophylactically or 1-2days post infection. In the present study, we showed that Z3G1 significantly protected mice from lethal infection when treatment was initiated 3days post infection. In addition, therapeutic administration of Z3G1 reduced lung viral titers in mice infected with different viral strains, including amantadine and oseltamivir-resistant strains. Furthermore, prophylactic and therapeutic administration of Z3G1 sustained O2 saturation and reduced lung pathology in monkeys infected with a pandemic H1N1 strain. Finally, de-fucosylated Z3G1 with an IgG1/IgG3 chimeric Fc region was generated (AccretaMab® Z3G1), and showed increased ADCC and CDC in vitro. Our data suggest that the anti-M2 mAb Z3G1 has great potential as a novel anti-flu therapeutic agent.

  4. Clinical characteristics of 26 human cases of highly pathogenic avian influenza A (H5N1 virus infection in China.

    Directory of Open Access Journals (Sweden)

    Hongjie Yu

    Full Text Available BACKGROUND: While human cases of highly pathogenic avian influenza A (H5N1 virus infection continue to increase globally, available clinical data on H5N1 cases are limited. We conducted a retrospective study of 26 confirmed human H5N1 cases identified through surveillance in China from October 2005 through April 2008. METHODOLOGY/PRINCIPAL FINDINGS: Data were collected from hospital medical records of H5N1 cases and analyzed. The median age was 29 years (range 6-62 and 58% were female. Many H5N1 cases reported fever (92% and cough (58% at illness onset, and had lower respiratory findings of tachypnea and dyspnea at admission. All cases progressed rapidly to bilateral pneumonia. Clinical complications included acute respiratory distress syndrome (ARDS, 81%, cardiac failure (50%, elevated aminotransaminases (43%, and renal dysfunction (17%. Fatal cases had a lower median nadir platelet count (64.5 x 10(9 cells/L vs 93.0 x 10(9 cells/L, p = 0.02, higher median peak lactic dehydrogenase (LDH level (1982.5 U/L vs 1230.0 U/L, p = 0.001, higher percentage of ARDS (94% [n = 16] vs 56% [n = 5], p = 0.034 and more frequent cardiac failure (71% [n = 12] vs 11% [n = 1], p = 0.011 than nonfatal cases. A higher proportion of patients who received antiviral drugs survived compared to untreated (67% [8/12] vs 7% [1/14], p = 0.003. CONCLUSIONS/SIGNIFICANCE: The clinical course of Chinese H5N1 cases is characterized by fever and cough initially, with rapid progression to lower respiratory disease. Decreased platelet count, elevated LDH level, ARDS and cardiac failure were associated with fatal outcomes. Clinical management of H5N1 cases should be standardized in China to include early antiviral treatment for suspected H5N1 cases.

  5. Network information analysis reveals risk perception transmission in a behaviour-influenza dynamics system.

    Science.gov (United States)

    Liao, C-M; You, S-H; Cheng, Y-H

    2015-01-01

    Influenza poses a significant public health burden worldwide. Understanding how and to what extent people would change their behaviour in response to influenza outbreaks is critical for formulating public health policies. We incorporated the information-theoretic framework into a behaviour-influenza (BI) transmission dynamics system in order to understand the effects of individual behavioural change on influenza epidemics. We showed that information transmission of risk perception played a crucial role in the spread of health-seeking behaviour throughout influenza epidemics. Here a network BI model provides a new approach for understanding the risk perception spread and human behavioural change during disease outbreaks. Our study allows simultaneous consideration of epidemiological, psychological, and social factors as predictors of individual perception rates in behaviour-disease transmission systems. We suggest that a monitoring system with precise information on risk perception should be constructed to effectively promote health behaviours in preparation for emerging disease outbreaks.

  6. Mechanisms of Severe Mortality-Associated Bacterial Co-infections Following Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Leili Jia

    2017-08-01

    Full Text Available Influenza virus infection remains one of the largest disease burdens on humans. Influenza-associated bacterial co-infections contribute to severe disease and mortality during pandemic and seasonal influenza episodes. The mechanisms of severe morbidity following influenza-bacteria co-infections mainly include failure of an antibacterial immune response and pathogen synergy. Moreover, failure to resume function and tolerance might be one of the main reasons for excessive mortality. In this review, recent advances in the study of mechanisms of severe disease, caused by bacterial co-infections following influenza virus pathogenesis, are summarized. Therefore, understanding the synergy between viruses and bacteria will facilitate the design of novel therapeutic approaches to prevent mortality associated with bacterial co-infections.

  7. Global coordination for swine influenza virus surveillance and research: what are we missing from the big picture?

    Science.gov (United States)

    Introduction Surveillance for influenza A viruses (IAV) circulating in pigs and other non-human mammals has been chronically underfunded and virtually nonexistent in many areas of the world. This deficit continues in spite of our knowledge that influenza is a disease shared between man and pig fro...

  8. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010.

    Science.gov (United States)

    Creanga, Adrian; Hang, Nguyen Le Khanh; Cuong, Vuong Duc; Nguyen, Ha T; Phuong, Hoang Vu Mai; Thanh, Le Thi; Thach, Nguyen Co; Hien, Pham Thi; Tung, Nguyen; Jang, Yunho; Balish, Amanda; Dang, Nguyen Hoang; Duong, Mai Thuy; Huong, Ngo Thu; Hoa, Do Ngoc; Tho, Nguyen Dang; Klimov, Alexander; Kapella, Bryan K; Gubareva, Larisa; Kile, James C; Hien, Nguyen Tran; Mai, Le Quynh; Davis, C Todd

    2017-09-15

    Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Characterization of avian influenza virus isolates submitted to the National Centre for Foreign Animal Disease between 1997 and 2001.

    Science.gov (United States)

    Pasick, J; Weingartl, H; Clavijo, A; Riva, J; Kehler, H; Handel, K; Watkins, E; Hills, K

    2003-01-01

    The National Centre for Foreign Animal Disease (NCFAD) in Winnipeg, Manitoba, is the Canadian Food Inspection Agency's (CFIA) newest high biocontainment laboratory. One of the functions of the NCFAD is to serve as a national reference laboratory for avian influenza. Between 1997 and 2001, 15 avian influenza virus isolates were characterized. These isolates originated from domestic poultry, imported caged birds held in quarantine, and wild birds. Diagnostic specimens were submitted to the NCFAD by CFIA field veterinarians, provincial veterinary diagnostic laboratories, and veterinary colleges. Characterization of isolates included the determination of H and N subtypes: H1, H6, H7, and H10 subtypes were isolated from domestic poultry; H3, H4, and three H13 viruses were isolated from water fowl, and six H3 viruses were isolated from caged birds being held in import quarantine. Selected isolates were characterized with respect to their pathogenic potential by intravenous inoculation of 4-to-6-wk-old chickens. A molecular-based protocol was used to assess the pathogenicity of one H7 isolate. During this period, work was also carried out toward validating our molecular pathotyping protocol for avian influenza viruses with H5 and H7 hemagglutinin subtypes.

  10. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide.

    Science.gov (United States)

    Tilmanis, Danielle; van Baalen, Carel; Oh, Ding Yuan; Rossignol, Jean-Francois; Hurt, Aeron C

    2017-10-03

    Nitazoxanide is a thiazolide compound that was originally developed as an anti-parasitic agent, but has recently been repurposed for the treatment of influenza virus infections. Thought to exert its anti-influenza activity via the inhibition of hemagglutinin maturation and intracellular trafficking in infected cells, the effectiveness of nitazoxanide in treating patients with non-complicated influenza is currently being assessed in phase III clinical trials. Here, we describe the susceptibility of 210 seasonal influenza viruses to tizoxanide, the active circulating metabolite of nitazoxanide. An optimised cell culture-based focus reduction assay was used to determine the susceptibility of A(H1N1)pdm09, A(H3N2), and influenza B viruses circulating in the southern hemisphere from the period March 2014 to August 2016. Tizoxanide showed potent in vitro antiviral activity against all influenza viruses tested, including neuraminidase inhibitor-resistant viruses, allowing the establishment of a baseline level of susceptibility for each subtype. Median EC50 values (±IQR) of 0.48 μM (0.33-0.71), 0.62 μM (0.56-0.75), 0.66 μM (0.62-0.69), and 0.60 μM (0.51-0.67) were obtained for A(H1N1)pdm09, A(H3N2), B(Victoria lineage), and B(Yamagata lineage) influenza viruses respectively. There was no significant difference in the median baseline tizoxanide susceptibility for each influenza subtype tested. This is the first report on the susceptibility of circulating viruses to tizoxanide. The focus reduction assay format described is sensitive, robust, and less laborious than traditional cell based antiviral assays, making it highly suitable for the surveillance of tizoxanide susceptibility in circulating seasonal influenza viruses. Copyright © 2017. Published by Elsevier B.V.

  11. Role for proteases and HLA-G in the pathogenicity of influenza A viruses.

    Science.gov (United States)

    Foucault, Marie-Laure; Moules, Vincent; Rosa-Calatrava, Manuel; Riteau, Béatrice

    2011-07-01

    Influenza is one of the most common infectious diseases in humans occurring as seasonal epidemic and sporadic pandemic outbreaks. The ongoing infections of humans with avian H5N1 influenza A viruses (IAV) and the past 2009 pandemic caused by the quadruple human/avian/swine reassortant (H1N1) virus highlights the permanent threat caused by these viruses. This review aims to describe the interaction between the virus and the host, with a particular focus on the role of proteases and HLA-G in the pathogenicity of influenza viruses.

  12. The pig as a large animal model for influenza a virus infection

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Brogaard, Louise; Larsen, Lars Erik

    infiltration of the respiratory system. This study aimed at providing a better understanding of the involvement of innate immune factors and non-coding RNA in blood leukocytes during influenza A virus infection. By using the pig as a model we were able to perform highly controlled experimental infections...... consolidate the pig as a valuable model for influenza A virus infection.......It is increasingly realized that large animal models like the pig are exceptionally human like and serve as an excellent model for disease and inflammation. Pigs are fully susceptible to human influenza, share many similarities with humans regarding lung physiology and innate immune cell...

  13. Influenza A virus infection of healthy piglets in an abattoir in Brazil: animal-human interface and risk for interspecies transmission

    Directory of Open Access Journals (Sweden)

    Ariane Ribeiro Amorim

    2013-08-01

    Full Text Available Asymptomatic influenza virus infections in pigs are frequent and the lack of measures for controlling viral spread facilitates the circulation of different virus strains between pigs. The goal of this study was to demonstrate the circulation of influenza A virus strains among asymptomatic piglets in an abattoir in Brazil and discuss the potential public health impacts. Tracheal samples (n = 330 were collected from asymptomatic animals by a veterinarian that also performed visual lung tissue examinations. No slaughtered animals presented with any noticeable macroscopic signs of influenza infection following examination of lung tissues. Samples were then analysed by reverse transcription-polymerase chain reaction that resulted in the identification of 30 (9% influenza A positive samples. The presence of asymptomatic pig infections suggested that these animals could facilitate virus dissemination and act as a source of infection for the herd, thereby enabling the emergence of influenza outbreaks associated with significant economic losses. Furthermore, the continuous exposure of the farm and abattoir workers to the virus increases the risk for interspecies transmission. Monitoring measures of swine influenza virus infections and vaccination and monitoring of employees for influenza infection should also be considered. In addition regulatory agencies should consider the public health ramifications regarding the potential zoonotic viral transmission between humans and pigs.

  14. Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses.

    Science.gov (United States)

    Chen, Haifen; Zhou, Xinrui; Zheng, Jie; Kwoh, Chee-Keong

    2016-12-05

    The human influenza viruses undergo rapid evolution (especially in hemagglutinin (HA), a glycoprotein on the surface of the virus), which enables the virus population to constantly evade the human immune system. Therefore, the vaccine has to be updated every year to stay effective.