WorldWideScience

Sample records for human inducible nitric

  1. Constitutive expression of inducible nitric oxide synthase in the normal human colonic epithelium

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Normark, M

    2002-01-01

    Inducible nitric oxide synthase (iNOS) in the human colon is considered expressed only in inflammatory states such as ulcerative or collagenous colitis. As subtle iNOS labelling was previously observed in some colonic mucosal biopsies from a heterogeneous group of controls with non-inflamed bowel...

  2. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans.

    Science.gov (United States)

    Fisher, Naomi D L; Hughes, Meghan; Gerhard-Herman, Marie; Hollenberg, Norman K

    2003-12-01

    Consumption of flavonoid-rich beverages, including tea and red wine, has been associated with a reduction in coronary events, but the physiological mechanism remains obscure. Cocoa can contain extraordinary concentrations of flavanols, a flavonoid subclass shown to activate nitric oxide synthase in vitro. To test the hypothesis that flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in humans. The study prospectively assessed the effects of Flavanol-rich cocoa, using both time and beverage controls. Participants were blinded to intervention; the endpoint was objective and blinded. Pulse wave amplitude was measured on the finger in 27 healthy people with a volume-sensitive validated calibrated plethysmograph, before and after 5 days of consumption of Flavanol-rich cocoa [821 mg of flavanols/day, quantitated as (-)-epicatechin, (+)-catechin, and related procyanidin oligomers]. The specific nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) was infused intravenously on day 1, before cocoa, and on day 5, after an acute ingestion of cocoa. Four days of flavanol-rich cocoa induced consistent and striking peripheral vasodilation (P = 0.009). On day 5, pulse wave amplitude exhibited a large additional acute response to cocoa (P = 0.01). L-NAME completely reversed this vasodilation (P = 0.004). In addition, intake of flavanol-rich cocoa augmented the vasodilator response to ischemia. Flavanol-poor cocoa induced much smaller responses (P = 0.005), and none was induced in the time-control study. Flavanol-rich cocoa also amplified the systemic pressor effects of L-NAME (P = 0.005). In healthy humans, flavanol-rich cocoa induced vasodilation via activation of the nitric oxide system, providing a plausible mechanism for the protection that flavanol-rich foods induce against coronary events.

  3. Muscle contraction induced arterial shear stress increases endothelial nitric oxide synthase phosphorylation in humans.

    Science.gov (United States)

    Casey, Darren P; Ueda, Kenichi; Wegman-Points, Lauren; Pierce, Gary L

    2017-10-01

    We determined if local increases in brachial artery shear during repetitive muscle contractions induce changes in protein expression of endothelial nitric oxide synthase (eNOS) and/or phosphorylated (p-)eNOS at Ser1177, the primary activation site on eNOS, in endothelial cells (ECs) of humans. Seven young male subjects (25 ± 1 yr) performed 20 separate bouts (3 min each) of rhythmic forearm exercise at 20% of maximum over a 2-h period. Each bout of exercise was separated by 3 min of rest. An additional six male subjects (24 ± 1 yr) served as time controls (no exercise). ECs were freshly isolated from the brachial artery using sterile J-wires through an arterial catheter at baseline and again after the 2-h exercise or time control period. Expression of eNOS or p-eNOS Ser1177 in ECs was determined via immunofluorescence. Brachial artery mean shear rate was elevated compared with baseline and the time control group throughout the 2-h exercise protocol (P 0.05 for both). Our novel results suggest that elevations in brachial artery shear increase eNOS Ser1177 phosphorylation in the absence of changes in total eNOS in ECs of young healthy male subjects, suggesting that this model is sufficient to alter posttranslational modification of eNOS activity in vivo in humans.NEW & NOTEWORTHY Elevations in brachial artery shear in response to forearm exercise increased endothelial nitric oxide synthase Ser1177 phosphorylation in brachial artery endothelial cells of healthy humans. Our present study provides the first evidence in humans that muscle contraction-induced increases in conduit arterial shear lead to in vivo posttranslational modification of endothelial nitric oxide synthase activity in endothelial cells. Copyright © 2017 the American Physiological Society.

  4. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages

    NARCIS (Netherlands)

    Klimp, AH; Hollema, H; Kempinga, C; van der Zee, AGJ; de Vries, EGE; Daemen, T

    2001-01-01

    This study investigates whether and to what extent cyclooxygenase type-2 (COX-2) and inducible nitric oxide-synthase (iNOS), both known to have an immunosuppressive effect, are expressed in human ovarian tumors. Because COX-2 and iNOS can be expressed by activated macrophages, the presence of

  5. Chronic nitric oxide deprivation induces an adaptive antioxidant status in human endothelial cells.

    Science.gov (United States)

    Cattaneo, Maria Grazia; Cappellini, Elisa; Ragni, Maurizio; Tacchini, Lorenza; Scaccabarozzi, Diletta; Nisoli, Enzo; Vicentini, Lucia Maria

    2013-11-01

    In a previous work, we showed an increased cell motility due to the accumulation and transcriptional activation of the Hypoxia Inducible Factor-1α (HIF-1α) and a reduced mitochondrial energy production in an in vitro model of endothelial dysfunction (ED) represented by human endothelial cells (ECs) chronically deprived of nitric oxide (NO) by L-NAME treatment. In the present study, in the attempt to unravel the pathway(s) linking NO deficiency to HIF-1α accumulation and activation, we focused our attention on Reactive Oxygen Species (ROS). We found that ROS were partially involved in HIF-1α stabilization, but not in the pro-migratory phenotype. Regarding mitochondrial dysfunction, it did not require neither ROS generation nor HIF-1α activity, and was not due to autophagy. Very interestingly, while acute treatment with L-NAME induced a transient increase in ROS formation, chronic NO deprivation by long term L-NAME exposure drastically reduced cellular ROS content giving rise to an antioxidant environment characterized by an increase in superoxide dismutase-2 (SOD-2) expression and activity, and by nuclear accumulation of the transcription factor NF-E2-related factor-2 (Nrf2). These results might have important implications for our understanding of the consequences of NO deprivation in endothelium behavior and in the onset of cardiovascular diseases. © 2013.

  6. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase.

    Science.gov (United States)

    Xiao, Ran; Li, Shan; Cao, Qian; Wang, Xiuling; Yan, Qiujin; Tu, Xiaoning; Zhu, Ying; Zhu, Fan

    2017-06-01

    Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.

  7. Oxidative stress and inhibition of nitric oxide generation underlie methotrexate-induced senescence in human colon cancer cells.

    Science.gov (United States)

    Dabrowska, Magdalena; Uram, Lukasz; Zielinski, Zbigniew; Rode, Wojciech; Sikora, Ewa

    2017-07-21

    The response of human colon cancer C85 cells to methotrexate takes the form of reversible growth arrest of the type of stress-induced senescence. In the present study it is shown that during C85 cell progression into methotrexate-induced senescence, dihydrofolate reductase, the primary intracellular target for the drug, is stabilized at the protein level and its enzymatic activity, assayed in crude cellular extracts, decreases by 2-fold. Dihydrofolate reductase inhibition results in an increase in dihydrobiopterin level and an ultimate decrease in the tetrahydrobiopterin: dihydrobiopterin ratio in senescent cells. Endothelial nitric oxide synthase expression declines. Despite concomitant upregulation of inducible nitric oxide synthase expression, no nitric oxide generation in senescent cells is detected. Progressing oxidative stress accompanies establishment of the state of senescence. DNA damage, in the form of double strand-breaks, occurs at the highest level at the senescence initiation phase and decreases as cells progress into the senescence maintenance phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    OpenAIRE

    Ning Xia; Andrea Pautz; Ursula Wollscheid; Gisela Reifenberg; Ulrich Förstermann; Huige Li

    2014-01-01

    Artichoke (Cynara scolymus L.) is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects ...

  9. Vascular gene transfer of the human inducible nitric oxide synthase: characterization of activity and effects on myointimal hyperplasia.

    OpenAIRE

    E.; Tzeng; Shears, L. L.; Robbins, P. D.; Pitt, B.R.; Geller, D. A.; Watkins, S C; Simmons, R.L.; Billiar, T R

    1996-01-01

    BACKGROUND: Nitric oxide (NO) has been shown to decrease myointimal hyperplasia in injured blood vessels. We hypothesize inducible No synthase (iNOS) gene transfer even at low efficiency will provide adequate local no production to achieve this goal. MATERIALS AND METHODS: A retroviral vector containing the human iNOS cDNA (DFGiNOS) was used to transfer the iNOS gene into vascular cells and isolated blood vessels to answer the following questions: can vascular endothelial and smooth muscle ce...

  10. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    Plasma adenosine-5'-triphosphate (ATP) is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study...... investigated: 1) the role of nitric oxide (NO), prostaglandins and adenosine as mediators of ATP induced limb vasodilation and 2) the expression and distribution of purinergic P2 receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5-7 min of femoral intra.......05) and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP induced leg hyperemia or systemic variables. Real time PCR analysis of the mRNA content from the vastus lateralus muscle of 8...

  11. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-03-01

    Full Text Available Artichoke (Cynara scolymus L. is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC. Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h. Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  12. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    Science.gov (United States)

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-03-24

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  13. Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    EMANUELA FELLEY-BOSCO

    2002-01-01

    Full Text Available Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2+-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue, might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans

  14. Inducible nitric oxide synthase mediates DNA double strand breaks in Human T-Cell Leukemia Virus Type 1-induced leukemia/lymphoma.

    Science.gov (United States)

    Baydoun, Hicham H; Cherian, Mathew A; Green, Patrick; Ratner, Lee

    2015-08-12

    Adult T-cell leukemia/lymphoma (ATLL) is an aggressive and fatal malignancy of CD4(+) T-lymphocytes infected by the Human T-Cell Virus Type 1 (HTLV-1). The molecular mechanisms of transformation in ATLL have not been fully elucidated. However, genomic instability and cumulative DNA damage during the long period of latency is believed to be essential for HTLV-1 induced leukemogenesis. In addition, constitutive activation of the NF-κB pathway was found to be a critical determinant for transformation. Whether a connection exists between NF-κB activation and accumulation of DNA damage is not clear. We recently found that the HTLV-1 viral oncoprotein, Tax, the activator of the NF-κB pathway, induces DNA double strand breaks (DSBs). Here, we investigated whether any of the NF-κB target genes are critical in inducing DSBs. Of note, we found that inducible nitric oxide synthase (iNOS) that catalyzes the production of nitric oxide (NO) in macrophages, neutrophils and T-cells is over expressed in HTLV-1 infected and Tax-expressing cells. Interestingly, we show that in HTLV-1 infected cells, iNOS expression is Tax-dependent and specifically requires the activation of the classical NF-κB and JAK/STAT pathways. A dramatic reduction of DSBs was observed when NO production was inhibited, indicating that Tax induces DSBs through the activation of NO synthesis. Determination of the impact of NO on HTLV-1-induced leukemogenesis opens a new area for treatment or prevention of ATLL and perhaps other cancers in which NO is produced.

  15. Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?

    Science.gov (United States)

    Pontier, J-M; Buzzacott, P; Nastorg, J; Dinh-Xuan, A T; Lambrechts, K

    2014-05-30

    Previous studies have highlighted a decreased exhaled nitric oxide concentration (FE NO) in divers after hyperbaric exposure in a dry chamber or following a wet dive. The underlying mechanisms of this decrease remain however unknown. The aim of this study was to quantify the separate effects of submersion, hyperbaric hyperoxia exposure and decompression-induced bubble formation on FE NO after a wet dive. Healthy experienced divers (n=31) were assigned to either (i) a group making a scuba-air dive (Air dive), (ii) a group with a shallow oxygen dive protocol (Oxygen dive) or (iii) a group making a deep dive breathing a trimix gas mixture (deep-dive). Bubble signals were graded with the KISS score. Before and after each dive FE NO values were measured using a hand-held electrochemical analyzer. There was no change in post-dive values of FE NO values (expressed in ppb=parts per billion) in the Air dive group (15.1 ± 3.6 ppb vs. 14.3 ± 4.7 ppb, n=9, p=0.32). There was a significant decrease in post-dive values of FE NO in the Oxygen dive group (15.6 ± 6 ppb vs. 11.7 ± 4.7 ppb, n=9, p=0.009). There was an even more pronounced decrease in the deep dive group (16.4 ± 6.6 ppb vs. 9.4 ± 3.5 ppb, n=13, p0 (n=13) and percentage decrease in post-dive FE NO values (r=-0.53, p=0.03). Submersion and hyperbaric hyperoxia exposure cannot account entirely for these results suggesting the possibility that, in combination, one effect magnifies the other. A main finding of the present study is a significant relationship between reduction in exhaled NO concentration and dive-induced bubble formation. We postulate that exhaled NO concentration could be a useful index of decompression severity in healthy human divers. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Antigenic stimulation is more efficient than LPS in inducing nitric oxide production by human mononuclear cells on the in vitro granuloma reaction in schistosomiasis

    Directory of Open Access Journals (Sweden)

    D.M. Oliveira

    1999-11-01

    Full Text Available Nitric oxide (NO is an extremely important and versatile messenger in biological systems. It has been identified as a cytotoxic factor in the immune system, presenting anti- or pro-inflammatory properties under different circumstances. In murine monocytes and macrophages, stimuli by cytokines or lipopolysaccharide (LPS are necessary for inducing the immunologic isoform of the enzyme responsible for the high-output production of NO, nitric oxide synthase (iNOS. With respect to human cells, however, LPS seems not to stimulate NO production in the same way. Addressing this issue, we demonstrate here that peripheral blood mononuclear cells (PBMC obtained from schistosomiasis-infected patients and cultivated with parasite antigens in the in vitro granuloma (IVG reaction produced more nitrite in the absence of LPS. Thus, LPS-induced nitrite levels are easily detectable, although lower than those detected only with antigenic stimulation. Concomitant addition of LPS and L-N-arginine methyl ester (L-NAME restored the ability to produce detectable levels of nitrite, which had been lost with L-NAME treatment. In addition, LPS caused a mild decrease of the IVG reaction and its association with L-NAME was responsible for reversal of the L-NAME-exacerbating effect on the IVG reaction. These results show that LPS alone is not as good an NO inducer in human cells as it is in rodent cells or cell lines. Moreover, they provide evidence for interactions between LPS and NO inhibitors that require further investigation.

  17. Candidate pathways linking inducible nitric oxide synthase to a basal-like transcription pattern and tumor progression in human breast cancer.

    Science.gov (United States)

    Ambs, Stefan; Glynn, Sharon A

    2011-02-15

    Inducible nitric oxide synthase (NOS2) is an inflammation responsive enzyme (EC 1.14.13.39) that is induced during acute and chronic inflammation and tissue injury as part of the host defense and wound healing process. NOS2 up-regulation leads to increased nitric oxide (NO) production, the means by which this enzyme can initiate NO-dependent signal transduction, influence the redox state of cells and induce modifications of proteins, lipids, and DNA. Aberrant expression of NOS2 has been observed in many types of human tumors. In breast cancer, increased NOS2 is associated with markers of poor outcome and decreased survival. Growth factor and cytokine signaling, tissue remodeling, NF-kB activation, and hypoxia are candidate mechanisms that induce NOS2 in tumor epithelial and tumor-infiltrating cells. NOS2 induction will trigger the release of variable amounts of NO into the tumor microenvironment and can activate oncogenic pathways, including the Akt, epidermal growth factor receptor and c-Myc signaling pathways, and stimulate tumor microvascularization. Constitutively increased NO levels may also select for mutant p53 cells to overcome the tumor suppressor function of NO-activated wild-type p53. More recent findings suggest that NO induces stem cell-like tumor characteristics in breast cancer. In this review, we will discuss the effects of NO in tumor biology and disease progression with an emphasis on breast cancer, and will examine the mechanisms that link increased NO to a basal-like transcription pattern in human breast tumors and poor disease outcome.

  18. Immunobiology of Nitric Oxide and Regulation of Inducible Nitric Oxide Synthase.

    Science.gov (United States)

    Lee, Martin; Rey, Kevin; Besler, Katrina; Wang, Christine; Choy, Jonathan

    Nitric oxide (NO) is a bioactive gas that has multiple roles in innate and adaptive immune responses. In macrophages, nitric oxide is produced by inducible nitric oxide synthase upon microbial and cytokine stimulation. It is needed for host defense against pathogens and for immune regulation. This review will summarize the role of NO and iNOS in inflammatory and immune responses and will discuss the regulatory mechanisms that control inducible nitric oxide synthase expression and activity.

  19. Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs

    DEFF Research Database (Denmark)

    Iversen, Helle Klingenberg; Olesen, J

    1996-01-01

    Experimental "vascular" headache in humans may be used in characterizing new migraine drugs. The effects of sumatriptan on nitroglycerin-(NTG)-induced headache and arterial responses were therefore studied. Following a double-blind randomized crossover design, 10 healthy volunteers received.......5 versus 4 after placebo (p drugs. The results suggest...

  20. Structures of human constitutive nitric oxide synthases.

    Science.gov (United States)

    Li, Huiying; Jamal, Joumana; Plaza, Carla; Pineda, Stephanie Hai; Chreifi, Georges; Jing, Qing; Cinelli, Maris A; Silverman, Richard B; Poulos, Thomas L

    2014-10-01

    Mammals produce three isoforms of nitric oxide synthase (NOS): neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The overproduction of NO by nNOS is associated with a number of neurodegenerative disorders; therefore, a desirable therapeutic goal is the design of drugs that target nNOS but not the other isoforms. Crystallography, coupled with computational approaches and medicinal chemistry, has played a critical role in developing highly selective nNOS inhibitors that exhibit exceptional neuroprotective properties. For historic reasons, crystallography has focused on rat nNOS and bovine eNOS because these were available in high quality; thus, their structures have been used in structure-activity-relationship studies. Although these constitutive NOSs share more than 90% sequence identity across mammalian species for each NOS isoform, inhibitor-binding studies revealed that subtle differences near the heme active site in the same NOS isoform across species still impact enzyme-inhibitor interactions. Therefore, structures of the human constitutive NOSs are indispensible. Here, the first structure of human neuronal NOS at 2.03 Å resolution is reported and a different crystal form of human endothelial NOS is reported at 1.73 Å resolution.

  1. Role of microRNAs 221/222 on Statin Induced Nitric Oxide Release in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Alvaro Cerda

    2015-03-01

    Full Text Available Background: Nitric oxide (NO has been largely associated with cardiovascular protection through improvement of endothelial function. Recently, new evidence about modulation of NO release by microRNAs (miRs has been reported, which could be involved with statin-dependent pleiotropic effects, including anti-inflammatory properties related to vascular endothelium function. Objective: To evaluate the effects of cholesterol-lowering drugs including the inhibitors of cholesterol synthesis, atorvastatin and simvastatin, and the inhibitor of cholesterol absorption ezetimibe on NO release, NOS3 mRNA expression and miRs potentially involved in NO bioavailability. Methods: Human umbilical vein endothelial cells (HUVEC were exposed to atorvastatin, simvastatin or ezetimibe (0 to 5.0 μM. Cells were submitted to total RNA extraction and relative quantification of NOS3 mRNA and miRs -221, -222 and -1303 by qPCR. NO release was measured in supernatants by ozone-chemiluminescence. Results: Both statins increased NO levels and NOS3 mRNA expression but no influence was observed for ezetimibe treatment. Atorvastatin, simvastatin and ezetimibe down-regulated the expression of miR-221, whereas miR-222 was reduced only after the atorvastatin treatment. The magnitude of the reduction of miR-221 and miR-222 after treatment with statins correlated with the increment in NOS3 mRNA levels. No influence was observed on the miR-1303 expression after treatments. Conclusion: NO release in endothelial cells is increased by statins but not by the inhibitor of cholesterol absorption, ezetimibe. Our results provide new evidence about the participation of regulatory miRs 221/222 on NO release induction mediated by statins. Although ezetimibe did not modulate NO levels, the down-regulation of miR-221 could involve potential effects on endothelial function.

  2. Nitric oxide-induced hyperpermeability of human intestinal epithelial monolayers is augmented by inhibition of the amiloride-sensitive Na(+)-H+ antiport: potential role of peroxynitrous acid.

    Science.gov (United States)

    Unno, N; Menconi, M J; Fink, M P

    1997-08-01

    Nitric oxide (NO.) increases the permeability of cultured intestinal epithelial monolayers. NO. reacts with superoxide anion to form peroxynitrite anion, which can be protonated under mildly acidic conditions to form the potent and versatile oxidizing agent, peroxynitrous acid. We hypothesized that intracellular acidosis induced by the Na(+)-H+ antiport blocker, amiloride, would favor the formation of peroxynitrous acid and thereby augment hyperpermeability induced by the NO. donor, SIN-1. Caco-2BBe human intestinal epithelial monolayers were grown on permeable supports in bicameral chambers. The permeability of monolayers was assessed by measuring the transepithelial flux of fluorescein disulfonic acid (FS). Incubation of monolayers with SIN-1 increased permeability to FS. Adding amiloride augmented SIN-1-induced hyperpermeability. SIN-1 plus amiloride also decreased cellular adenosine triphosphate content and caused derangements of the actin-based cytoskeleton as demonstrated by fluorescence microscopy. Coincubation of monolayers with several free-radical or peroxynitrous acid scavengers (deferoxamine, mannitol, dimethyl sulfoxide, or ascorbate) ameliorated hyperpermeability induced by SIN-1 plus amiloride. Amiloride augments NO.-induced intestinal epithelial permeability, apparently by promoting the development of intracellular acidosis and thereby favoring the formation of the peroxynitrous acid.

  3. DMBT1 promotes basal and meconium-induced nitric oxide production in human lung epithelial cells in vitro

    DEFF Research Database (Denmark)

    Müller, Hanna; Weiss, Christel; Renner, Marcus

    2017-01-01

    Meconium aspiration syndrome (MAS) is characterized by surfactant inactivation and inflammation. As lung epithelial cells up-regulate nitric oxide (NO) in response to inflammation, the NO production following meconium exposition was examined in relation to expression of Deleted in Malignant Brain...

  4. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing.

    Science.gov (United States)

    Patruno, A; Amerio, P; Pesce, M; Vianale, G; Di Luzio, S; Tulli, A; Franceschelli, S; Grilli, A; Muraro, R; Reale, M

    2010-02-01

    Extremely low frequency (ELF) electromagnetic fields (EMF) are known to produce a variety of biological effects. Clinical studies are ongoing using EMF in healing of bone fractures and skin wounds. However, little is known about the mechanisms of action of ELF-EMF. Several studies have demonstrated that expression and regulation of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) are vital for wound healing; however, no reports have demonstrated a direct action of ELF-EMF in the modulation of these inflammatory molecules in human keratinocytes. The present study analysed the effect of ELF-EMF on the human keratinocyte cell line HaCaT in order to assess the mechanisms of action of ELF-EMF and to provide further support for their therapeutic use in wound healing. Exposed HaCaT cells were compared with unexposed control cells. At different exposure times, expression of inducible NOS (iNOS), endothelial NOS (eNOS) and COX-2 was evaluated by Western blot analysis. Modulation of iNOS and eNOS was monitored by evaluation of NOS activities, production of nitric oxide (NO) and O(2)(-) and expression of activator protein 1 (AP-1). In addition, catalase activity and prostaglandin (PG) E(2) production were determined. Effects of ELF-EMF on cell growth and viability were monitored. The exposure of HaCaT cells to ELF-EMF increased iNOS and eNOS expression levels. These ELF-EMF-dependent increased expression levels were paralled by increased NOS activities, and increased NO production. In addition, higher levels of AP-1 expression as well as a higher cell proliferation rate were associated with ELF-EMF exposure. In contrast, ELF-EMF decreased COX-2 expression, PGE(2) production, catalase activity and O(2)(-) production. Mediators of inflammation, such as reactive nitrogen and PGE(2), and keratinocyte proliferation are critical for the tissue regenerative processes. The ability of ELF-EMF to upmodulate NOS activities, thus nitrogen intermediates, as well as cell

  5. Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes

    Directory of Open Access Journals (Sweden)

    Ceretto Monica

    2007-06-01

    Full Text Available Abstract Background Enhanced production of nitric oxide (NO following upmodulation of the inducible isoform of NO synthase (iNOS by haemozoin (HZ, inflammatory cytokines and LPS may provide protection against Plasmodium falciparum malaria by killing hepatic and blood forms of parasites and inhibiting the cytoadherence of parasitized erythrocytes (RBC to endothelial cells. Monocytes and macrophages are considered to contribute importantly to protective upregulation of iNOS and production of NO. Data obtained with murine phagocytes fed with human HZ and synthetic HZ (sHZ indicate that supplemental treatment of those cells with IFN-gamma elicited significant increases in protein and mRNA expression of iNOS and NO production, providing a potential mechanism linking HZ phagocytosis and increased production of NO. Purpose of this study was to analyse the effect of P. falciparum HZ and sHZ supplemental to treatment with IFN-gamma and/or a stimulatory cytokine-LPS mix on iNOS protein and mRNA expression in immuno-purified human monocytes. Methods Adherent immunopurified human monocytes (purity >85%, and murine phagocytic cell lines RAW 264.7, N11 and ANA1 were fed or not with P. falciparum HZ or sHZ and treated or not with IFN-gamma or a stimulatory cytokine-LPS mix. Production of NO was quantified in supernatants, iNOS protein and mRNA expression were measured after immunoprecipitation and Western blotting and quantitative RT-PCT, respectively. Results Phagocytosis of HZ/sHZ by human monocytes did not increase iNOS protein and mRNA expression and NO production either after stimulation by IFN-gamma or the cytokine-LPS mix. By contrast, in HZ/sHZ-laden murine macrophages, identical treatment with IFN-gamma and the cytokine-LPS mix elicited significant increases in protein and mRNA expression of iNOS and NOS metabolites production, in agreement with literature data. Conclusion Results indicate that human monocytes fed or not with HZ/sHZ were constantly

  6. Nitric Oxide-Mediated Regulation of Gamma Interferon-Induced Bacteriostasis: Inhibition and Degradation of Human Indoleamine 2,3-Dioxygenase

    Science.gov (United States)

    Hucke, Christian; MacKenzie, Colin R.; Adjogble, Koku D. Z.; Takikawa, Osamu; Däubener, Walter

    2004-01-01

    Tryptophan depletion resulting from indoleamine 2,3-dioxygenase (IDO) activity within the kynurenine pathway is one of the most prominent gamma interferon (IFN-γ)-inducible antimicrobial effector mechanisms in human cells. On the other hand, nitric oxide (NO) produced by the inducible isoform of NO synthase (iNOS) serves a more immunoregulatory role in human cells and thereby interacts with tryptophan depletion in a number of ways. We investigated the effects of NO on IDO gene transcription, protein synthesis, and enzyme activity as well as on IDO-mediated bacteriostasis in the human epithelial cell line RT4. IFN-γ-stimulated RT4 cells were able to inhibit the growth of Staphylococcus aureus in an IDO-mediated fashion, and this bacteriostatic effect was abolished by endogenously produced NO. These findings were supported by experiments which showed that IDO activity in extracts of IFN-γ-stimulated cells is inhibited by the chemical NO donors diethylenetriamine diazeniumdiolate, S-nitroso-l-cysteine, and S-nitroso-N-acetyl-d,l-penicillamine. Furthermore, we found that both endogenous and exogenous NO strongly reduced the level of IDO protein content in RT4 cells. This effect was not due to a decrease in IDO gene transcription or mRNA stability. By using inhibitors of proteasomal proteolytic activity, we showed that NO production led to an accelerated degradation of IDO protein in the proteasome. This is the first report, to our knowledge, that demonstrates that the IDO is degraded by the proteasome and that NO has an effect on IDO protein stability. PMID:15102781

  7. Can nitric oxide induce migraine in normal individuals?

    DEFF Research Database (Denmark)

    Olesen, Jes; Ashina, Messoud

    2015-01-01

    migraine expression. The question is whether any person may express a migraine attack given a sufficiently strong stimulus or provocation. Here, we reviewed and discussed the ability of nitric oxide to induce migraine-like attacks in normal individuals. CONCLUSION: Experimental data show that normal...... individuals may develop a migraine-like attack and that the human data point to different ways of further developing existing animal and human models.......INTRODUCTION: For many years, scientists have debated the possibility that an individual "migraine threshold" determines the likelihood with which individuals may express migraine attacks. DISCUSSION: Recent discoveries provided evidence for both genetic and environmental influences on individual...

  8. Vascular endothelial growth factor-induced nitric oxide- and PGI2-dependent relaxation in human internal mammary arteries: a comparative study with KDR and Flt-1 selective mutants.

    Science.gov (United States)

    Wei, Wei; Jin, Hongkui; Chen, Zhi-Wu; Zioncheck, Thomas F; Yim, Anthony P C; He, Guo-Wei

    2004-11-01

    The role of the vascular endothelial growth factors (VEGF) receptors (KDR and Flt-1) and their characteristics in VEGF-induced vasodilation in human vessels is unclear. This study investigated the in vitro vasorelaxant effects of KDR-selective (KDR-SM) and Flt-1-selective mutants (Flt-1-SM) in the human internal mammary artery (IMA). IMA segments (n = 183) taken from 48 patients were studied in organ baths. The cumulative concentration (-12 to -8 log10M)-relaxation curves were established for VEGF, KDR-SM, Flt-1-SM, and placenta growth factor (PlGF) in the absence or presence of indomethacin (INDO, 7 microM), N-nitro-L-arginine (L-NNA, 300 microM), L-NNA + oxyhemoglobin (HbO, 20 microM), or INDO + L-NNA + HbO. The VEGF-induced relaxation was abolished in endothelium-denuded IMA. In the endothelium-intact vessel rings, VEGF (63.2 +/- 3.9%) induced significantly more (P < 0.001) relaxation than Flt-1-SM (28.5 +/- 4.3%, 95% CI 18.1-51.3%), and PlGF (26.0 +/- 4.7%, 95% CI 17.6-56.8%). The maximal relaxation induced by KDR-SM (53.0 +/- 4.0%) was only slightly less than that by VEGF (P = 0.075) but significantly more than that by Flt-1-SM (P = 0.001, 95% CI 7.8-41.1%). Pretreatment of INDO or L-NNA + HbO significantly (P < 0.001) inhibited the relaxation by VEGF (21.2 +/- 3.9% or 23.3 +/- 4.3%) and KDR-SM (9.8 +/- 8.2% or 10.1 +/- 17.8%). INDO + L-NNA + HbO completely inhibited the relaxation by VEGF, KDR-SM, or Flt-1-SM. KDR may be the dominant receptor in mediating the VEGF-mediated relaxation, which is regulated by both PGI2 and nitric oxide but probably not by endothelium-derived hyperpolarizing factor, in the human IMA. This study gives insight into the characteristics of the VEGF-mediated vasodilation and provides a scientific basis for potential clinical application of VEGF/KDR-SM in ischemic heart disease.

  9. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 and Lipid Peroxidation by Methanol Extract of Pericarpium Zanthoxyli. ... Production of iNOS induced by LPS was significantly (p < 0.05) inhibited by the extract, suggesting that the extract inhibits nitric oxide (NO) production by suppressing iNOS expression.

  10. Nitric oxide production and nitric oxide synthase expression in acute human renal allograft rejection

    NARCIS (Netherlands)

    Albrecht, EWJA; van Goor, H; Tiebosch, ATMG; Moshage, H; Tegzess, Adam; Stegeman, CA

    2000-01-01

    Background Nitric oxide (NO) is produced by nitric oxide synthases (NOS), which are either constitutively expressed in the kidney or inducible, in resident and infiltrating cells during inflammation and allograft rejection. NO is rapidly degraded to the stable end products nitrite and nitrate, which

  11. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the

  12. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase.

    Science.gov (United States)

    Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco

    2016-05-01

    (-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.

  13. Blastomyces dermatitidis Yeast Cells Inhibit Nitric Oxide Production by Alveolar Macrophage Inducible Nitric Oxide Synthase ▿

    Science.gov (United States)

    Rocco, Nicole M.; Carmen, John C.; Klein, Bruce S.

    2011-01-01

    The ability of pathogens to evade host antimicrobial mechanisms is crucial to their virulence. The dimorphic fungal pathogen Blastomyces dermatitidis can infect immunocompetent patients, producing a primary pulmonary infection that can later disseminate to other organs. B. dermatitidis possesses a remarkable ability to resist killing by alveolar macrophages. To date, no mechanism to explain this resistance has been described. Here, we focus on macrophage production of the toxic molecule nitric oxide as a potential target of subversion by B. dermatitidis yeast cells. We report that B. dermatitidis yeast cells reduce nitric oxide levels in the supernatants of activated alveolar macrophages. This reduction is not due to detoxification of nitric oxide, but rather to suppression of macrophage nitric oxide production. We show that B. dermatitidis yeast cells do not block upregulation of macrophage inducible nitric oxide synthase (iNOS) expression or limit iNOS access to its arginine substrate. Instead, B. dermatitidis yeast cells appear to inhibit iNOS enzymatic activity. Further investigation into the genetic basis of this potential virulence mechanism could lead to the identification of novel antifungal drug targets. PMID:21444664

  14. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    HP

    Purpose: To explore the antioxidant properties of the methanol extract of Pericarpium Zanthoxyli and its effect on inducible nitric oxide synthase (iNOS), cycleooxygenase-2 (COX-2) and lipopolysaccharides (LPS)-induced cell damage in macrophage cells. Methods: Anti-oxidant activities were tested by measuring free ...

  15. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    Nitric oxide (NO) is a key molecule involved in many physiology processes. The effects of NO on alleviating arsenic-induced oxidative damage in tall fescue leaves were investigated. Arsenic (25 M) treatment induced significantly accumulation of reactive oxygen species (ROS) and led to serious lipid peroxidation in tall ...

  16. Estetrol modulates endothelial nitric oxide synthesis in human endothelial cells

    Directory of Open Access Journals (Sweden)

    Maria Magdalena eMontt-Guevara

    2015-07-01

    Full Text Available Estetrol (E4 is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO is a key player for vascular function and disease during pregnancy and throughout ageing in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS in cultured human umbilical vein endothelial cells (HUVEC. E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2 and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use.

  17. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase.

    Science.gov (United States)

    Iwakiri, Yasuko

    2015-12-01

    The inducible form of nitric oxide synthase (iNOS) is expressed in hepatic cells in pathological conditions. Its induction is involved in the development of liver fibrosis, and thus iNOS could be a therapeutic target for liver fibrosis. This review summarizes the role of iNOS in liver fibrosis, focusing on 1) iNOS biology, 2) iNOS-expressing liver cells, 3) iNOS-related therapeutic strategies, and 4) future directions.

  18. Inducible nitric oxide synthase (iNOS) drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2

    Science.gov (United States)

    Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A.; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R.; Chipuk, Jerry E.; Grimm, Elizabeth A.; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G.

    2014-01-01

    Melanoma is one of the cancers of fastest-rising incidence in the world. iNOS is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K/AKT/mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p-P70S6K, p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of TSC2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Rheb, a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of mTOR pathway members. Exogenously-supplied NO was also sufficient to reverse mTOR pathway inhibition by the B-Raf inhibitor Vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers. PMID:24398473

  19. Expression of Inducible Nitric Oxide Synthase in the Epithelial ...

    African Journals Online (AJOL)

    Conclusion: iNOS was over expressed in OKCs when compared with DC and RC suggesting that iNOS may contribute to the aggressive behavior of OKC. This is yet another evidence to support that OKC is the neoplasm. Keywords: Dentigerous cyst, Immunohistochemistry, Inducible nitric oxide synthase, Odontogenic ...

  20. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes.

  1. Nitric oxide-donating aspirin induces G2/M phase cell cycle arrest in human cancer cells by regulating phase transition proteins.

    Science.gov (United States)

    Gao, Li; Williams, Jennie L

    2012-07-01

    NO-aspirin (NO-ASA), consisting of aspirin and a nitric oxide-releasing group, is safer than aspirin and effective in colon cancer prevention. Here, we examined the mechanism of action of NO-ASA by focusing primarily on its effects on the cell cycle. NO-ASA reduced the growth of several cell lines from colon, pancreas, skin, cervix and breast cancer much more potently than aspirin, with 24-h IC(50) values of 133-268 µM, while those of ASA were >1,000 µM. NO-ASA elevated the intracellular levels of reactive oxygen species, generating a state of oxidative stress. In all cell lines examined, NO-ASA induced cell cycle arrest in the G(2)/M phase transition accompanied by altered expression of G(2)/M transition-related proteins. In SW480 colon cancer cells NO-ASA modulated proteins controlling this transition. Thus, it markedly increased the levels of cyclin B1, decreased the expression of cyclin D1 and Cdc25C, and increased the Thr14/Tyr15-phosphorylation of Cdk1 while leaving unchanged its protein levels. These changes, including the G2/M arrest, were prevented by pretreating the cells with the anti-oxidant N-acetyl-cysteine, indicating that redox signaling is likely responsible for the cell cycle changes, a conclusion consistent with the known redox regulation of these proteins. Collectively, these results confirm the profound cytokinetic effect of NO-ASA and provide strong evidence that it regulates cell cycle transitions through its ability to induce oxidative stress, which activates redox signaling in the target cell.

  2. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  3. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage.

    Science.gov (United States)

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Komur, Baran; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  4. Nitric oxide supersensitivity

    DEFF Research Database (Denmark)

    Olesen, J; Iversen, Helle Klingenberg; Thomsen, L L

    1993-01-01

    Nitroglycerin, which may be regarded as a prodrug for nitric oxide, induces a mild to moderate headache in healthy subjects. In order to study whether migraine patients are more sensitive to nitric oxide than non-migrainous subjects, four different doses of intravenous nitroglycerin were given...... previously shown a similar supersensitivity to histamine which in human cerebral arteries activates endothelial H1 receptors and causes endothelial production of nitric oxide. Migraine patients are thus supersensitive to exogenous nitric oxide from nitroglycerin as well as to endothelially produced nitric...... oxide. It is suggested that nitric oxide may be partially or completely responsible for migraine pain....

  5. Atorvastatin prevents hypoxia-induced inhibition of endothelial nitric oxide synthase expression but does not affect heme oxygenase-1 in human microvascular endothelial cells

    NARCIS (Netherlands)

    Loboda, Agnieszka; Jazwa, Agnieszka; Jozkowicz, Alicj A.; Dorosz, Jerzy; Balla, Jozsef; Molema, Grietje; Dulak, Jozef

    Beneficial cardiovascular effects of statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are particularly assigned to the modulation of inflammation. Endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) are listed among the crucial protective,

  6. Prednisolone reduces nitric oxide-induced migraine

    DEFF Research Database (Denmark)

    Tfelt-Hansen, P; Daugaard, D; Lassen, L H

    2009-01-01

    BACKGROUND AND PURPOSE: Glyceryl trinitrate (GTN) induces delayed migraine attacks in migraine patients. The purpose of this study was to investigate whether pre-treatment with prednisolon could decrease this effect of GTN. METHODS: In this double-blind, randomized and placebo-controlled, crossover...... patients on the prednisolone day (P = 0.14). Prednisolone pre-treatment did not alter the summed or peak immediate headache responses to GTN significantly (P = 0.08, P = 0.07), whereas the peak headache scores during the following 12 h were significantly lower after prednisolone pre-treatment (median peak...

  7. Human blood platelets lack nitric oxide synthase activity.

    Science.gov (United States)

    Böhmer, Anke; Gambaryan, Stepan; Tsikas, Dimitrios

    2015-01-01

    Reports on expression and functionality of nitric oxide synthase (NOS) activity in human blood platelets and erythrocytes are contradictory. We used a specific gas chromatography-mass spectrometry (GC-MS) method to detect NOS activity in human platelets. The method measures simultaneously [(15)N]nitrite and [(15)N]nitrate formed from oxidized (15)N-labeled nitric oxide ((15)NO) upon its NOS-catalyzed formation from the substrate l-[guanidino-(15)N2]-arginine. Using this GC-MS assay, we did not detect functional NOS in non-stimulated platelets and in intact platelets activated by various agonists (adenosine diphosphate, collagen, thrombin, or von Willebrand factor) or lysed platelets. l-[guanidino-nitro]-Arginine-inhibitable NOS activity was measured after addition of recombinant human endothelial NOS to lysed platelets. Previous and recent studies from our group challenge expression and functionality of NOS in human platelets and erythrocytes.

  8. Nitric Oxide is Protective Against Mercury Induced Depression

    Directory of Open Access Journals (Sweden)

    Arezo Nahavandi

    2010-08-01

    Full Text Available A B S T R A C T Introduction: Mercury is the second most metal pollutant in the world and has the potential to induce many pathologic conditions, especially in nervous system, such as depression. Here we tried to find out if nitric oxide has any possible role in the pathophysiology of depression induced by this metal. Although the role of nitric oxide has been shown in mood control, here we use specific doses of nitric oxide inducer and/or inhibitors which had no effect on normal rats. Methods: 120 male wistar rats weighting 200-250 gram were divided into two main groups: control and methyl mercury(MM treated. Each main group was divided into four different sub-goups: Saline, L-Arginine, L-Name or 7-nitroindazole (7-NI respectively. The duration of taking MM or saline was daily for 15 days for both. After the 15th injection a forced swimming test was done. This test shows behavioral immobility (BI or latency of attempt to escape (LAE, as a depression indicator. Results: Our study showed that low dose L-arginine is protective against MM induced depression as it could turn behavioral immobility (BI to normal levels in groups taking MM plus L-Arginine, while in group taking just MM, BI was much longer showing the intensity of depression. L-Name and 7-NI did aggravated depression in MM groups but not control ones, on the other hand just in the case of 7-NI the result was significant. Discussion: Our results showed 1 MM could induce depression in rat 2 L-Arginine could improve depression to normal situation in MM group, while in control group has no effec 3 7-NI, a selective nNOS inhibitor can aggravate mental depression in intoxicated rats. These results showed the important role of nNOS in protection against MM induced depression.

  9. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    The aim of the present study was to investigate the physiological role of nitric oxide (NO) in mediating secretory processes in rat lacrimal acinar cells. In addition, we wanted to determine whether the acinar cells possess endogenous nitric oxide synthase (NOS) activity by measuring NO productio...... using the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2). We initiated investigations by adding NO from an external source by means of the NO-donor, S-nitroso-N-acetyl-penicillamine (SNAP). Cellular concentrations of cyclic guanosine 5'-phosphate (cGMP) ([cGMP]) were measured...... by radioimmunoassay (RIA), and we found that SNAP induced a fast increase in the [cGMP], amounting to 350% of the [cGMP] in resting cells. Moreover, addition of SNAP and elevating [cGMP] in fura-2 loaded lacrimal acinar cells, resulted in a cGMP-dependent protein kinase-mediated release of Ca2+ from intracellular...

  10. Involvement of nitric oxide in lipopolysaccharide induced anorexia.

    Science.gov (United States)

    Riediger, Thomas; Cordani, Caroline; Potes, Catarina Soares; Lutz, Thomas A

    2010-11-01

    Treatment with the bacterial endotoxin lipopolysaccharide (LPS) is a commonly used model to induce disease-related anorexia. Following LPS treatment inducible nitric oxide synthase (iNOS) is expressed in the hypothalamic arcuate nucleus (ARC), where nitric oxide (NO) inhibits orexigenic neurons. Intracellular STAT signaling is triggered by inflammatory stimuli and has been linked to the transcriptional regulation of iNOS. We evaluated whether pharmacological blockade of iNOS by the specific inhibitor 1400W attenuates LPS-induced anorexia. Furthermore, we hypothesized that the tolerance to the anorectic effect occurring after repeated LPS treatment is paralleled by a blunted STAT3 phosphorylation in the ARC. Rats treated with a subcutaneous injection of 1400W (10 mg/kg) showed an attenuated anorectic LPS response relative to control rats receiving only LPS (100 µg/kg; i.p.). Similarly, iNOS blockade attenuated LPS-induced adipsia, hyperthermia, inactivity and the concomitant drop in energy expenditure. While single LPS treatment increased STAT3 phosphorylation in the ARC, rats treated repeatedly with LPS showed no anorectic response and also no STAT3 phosphorylation in the ARC after the second and third LPS injections, respectively. Hence, pSTAT3 signaling in the ARC might be part of the intracellular cascades translating pro-inflammatory stimuli into suppression of food intake. The current findings substantiate a role of iNOS dependent NO formation in disease-related anorexia. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. High glucose inhibits the aspirin-induced activation of the nitric oxide/cGMP/cGMP-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in human platelets.

    Science.gov (United States)

    Russo, Isabella; Viretto, Michela; Barale, Cristina; Mattiello, Luigi; Doronzo, Gabriella; Pagliarino, Andrea; Cavalot, Franco; Trovati, Mariella; Anfossi, Giovanni

    2012-11-01

    Since hyperglycemia is involved in the "aspirin resistance" occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5-25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1-300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA-induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA-induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.

  12. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both......, glucagon, corticosterone and leukocyte- and differential-counts in normal rats injected once daily for 5 days with interleukin 1 beta (IL-1 beta) (0.8 microgram/rat = 4.0 micrograms/kg). Inhibition of both the constitutive and the inducible forms of nitric oxide synthase prevented IL-1 beta-induced fever...

  13. Extract of Meretrix meretrix Linnaeus induces angiogenesis in vitro and activates endothelial nitric oxide synthase

    Science.gov (United States)

    Liu, Ming; Wei, Jianteng; Wang, Hui; Ding, Lili; Zhang, Yuyan; Lin, Xiukun

    2012-09-01

    Meretrix meretrix Linnaeus has long been used as traditional Chinese medicine in oriental medicine. The angiogentic activity of the extract of M. meretrix was investigated in this study, using human umbilical vein endothelial cells (HUVECs). Extract of M. meretrix Linnaeus (AFG-25) was prepared with acetone and ethanol precipitation, and further separated by Sephadex G-25 column. The results show that AFG-25 promoted proliferation, migration, and capillary-like tube formation in HUVECs, and in the presence of eNOS inhibitor NMA, the tube formation induced by AFG-25 is inhibited significantly. Moreover, AFG-25 could also promote the activation of endothelial nitric oxide synthase (eNOS) and the resultant elevation of nitric oxide (NO) production. The results suggested that M. meretrix contains active ingredients with angiogentic activity and eNOS/NO signal pathway is in part involved in the proangiogenesis effect induced by AFG-25.

  14. Humic acid induces the endothelial nitric oxide synthase phosphorylation at Ser1177 and Thr495 Via Hsp90α and Hsp90β upregulation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Tanaka, Masato; Miyajima, Miki; Hishioka, Naoko; Nishimura, Ryo; Kihara, Yusuke; Hosokawa, Toshiyuki; Kurasaki, Masaaki; Tanaka, Shunitz; Saito, Takeshi

    2015-02-01

    Humic acid (HA) has been implicated as a contributory factor for blackfoot disease, which is an endemic peripheral vascular disease. We investigated the effect of HA on the regulation of endothelial nitric oxide (NO) synthase (eNOS) in human umbilical vein endothelial cells (HUVECs) to evaluate the involvement of eNOS and related factors in peripheral vascular impairment with HA exposure. Treatment of HUVECs with HA induced upregulation of eNOS. This result coincides with those of previous studies. Furthermore this is the first study to report that HA induces upregulation of heat shock protein (Hsp)90α, Hsp90β, eNOS phosphorylation at Ser1177, and eNOS phosphorylation at Thr495, as compared to that in the control. In contrast, treatment with BAPTA, an intracellular Ca(2+) chelator, inhibited upregulation of these proteins induced by HA. This study demonstrates that HA treatment leads to increases in both Hsp90α and Hsp90β proteins and indicates that Hsp90α leads to eNOS phosphorylation at Ser1177 and that Hsp90β leads to eNOS phosphorylation at Thr495, respectively. Upregulation of eNOS, Hsp90α, and Hsp90β in HUVECs is regulated by intracellular Ca(2+) accumulation induced by HA. These results suggest that upregulation of eNOS phosphorylation at Ser1177 and eNOS phosphorylation at Thr495 produce NO and superoxide anions, respectively, resulting in generation of peroxynitrite, which causes impairment of vascular endothelial cells. © 2013 Wiley Periodicals, Inc.

  15. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...... endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle....

  16. Danggui Buxue Tang, Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Induces Production of Nitric Oxide in Endothelial Cells: Signaling Mediated by Phosphorylation of Endothelial Nitric Oxide Synthase.

    Science.gov (United States)

    Gong, Amy G W; Lau, K M; Zhang, Laura M L; Lin, H Q; Dong, Tina T X; Tsim, Karl W K

    2016-03-01

    Danggui Buxue Tang, an ancient Chinese herbal decoction containing Astragali Radix and Angelicae Sinensis Radix at the weight ratio of 5:1, is used to mitigate menopausal syndromes in women. The pharmacological properties of Danggui Buxue Tang have been illustrated in bone development, blood enhancement, and immune stimulation. Here, we extended the possible pharmacological role of Danggui Buxue Tang in cardiovascular function. In cultured human umbilical vein endothelial cells, the application of Danggui Buxue Tang induced the release of nitric oxide and the phosphorylation of endothelial nitric oxide synthase and Akt kinase in time- and dose-dependent manners. The robust activation of nitric oxide signaling, however, required the boiling of Astragali Radix and Angelicae Sinensis Radix together, i.e., as Danggui Buxue Tang instead of other herbal extracts. The Danggui Buxue Tang-induced phosphorylation of endothelial nitric oxide synthase and Akt kinase in human umbilical vein endothelial cells were fully blocked by treatment with an endothelial nitric oxide synthase inhibitor (L-NAME), a PI3K/Akt inhibitor (LY294002), and a Ca(2+) chelator (BAPTA-AM). In parallel, the blockage of endothelial nitric oxide synthase and Akt activation subsequently fully abolished the Danggui Buxue Tang-induced nitric oxide production. Georg Thieme Verlag KG Stuttgart · New York.

  17. Kinetic study on the effects of extremely low frequency electromagnetic field on catalase, cytochrome P450 and inducible nitric oxide synthase in human HaCaT and THP-1 cell lines.

    Science.gov (United States)

    Patruno, A; Tabrez, S; Amerio, P; Pesce, M; Vianale, G; Franceschelli, S; Grilli, A; Kamal, M A; Reale, M

    2011-12-01

    Extremely low frequency electromagnetic fields (ELF-EMF) have been found to produce a variety of biological effects. These effects of ELF-EMF depend upon frequency, amplitude, and length of exposure, and are also related to intrinsic susceptibility and responsiveness of different cell types. Although the mechanism of this interaction is still obscure, ELF-EMF can influence cell proliferation, differentiation, cell cycle, apoptosis, DNA replication and protein expression. The aim of this study was to estimate various kinetic constants of catalase, cytochrome P450 and inducible nitric oxide synthase in response to ELF-EMF exposure in human HaCaT and THP-1 cell lines. In order to evaluate the effect of ELF-EMF on the modulation of cellular responses to an inflammatory stimulus, both cell lines were treated with lipopolysaccharide. To the best of our knowledge there is no available report on such type of kinetic study of selected enzymes in response to ELF-EMF in these cell lines. Therefore, the current study may reveal novel mechanism of ELFEMF biological interaction with the enzymological and hormonal systems of living organisms. These new insights may be important for ELF-EMF application particularly for wound healing, tissue regeneration, Parkinson's and Alzheimer's diseases.

  18. Hypergravity upregulates renal inducible nitric oxide synthase expression and nitric oxide production.

    Science.gov (United States)

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-05-24

    Exposure to hypergravity severely decreases renal blood flow, potentially causing renal dysfunction. Nitric oxide (NO), which is endogenously synthesized by inducible NO synthase (iNOS), plays an important role in the regulation of renal function. The purpose of this study was to examine the effect of hypergravity exposure on the production of NO in kidneys. To determine whether hypergravity induces renal hypoxia and alters renal iNOS expression and NO production, mice were exposed to short-term hypergravity at +3Gz for 1 h. The time course of iNOS mRNA expression, hypoxia-inducible factor (HIF)-1α expression, and NO production was examined. Renal HIF-1α levels were significantly elevated immediately after centrifugation, and this increase was sustained for 3 h post-exposure. iNOS mRNA levels were also significantly increased immediately after exposure and were maintained during the reoxygenation period. Immunohistochemical staining for iNOS revealed that the cortical tubular epithelium exhibited moderate to strong cytoplasmic iNOS immunoreactivity immediately after hypergravity exposure and during the reoxygenation period. The time course of NO production was similar to that of iNOS expression. Our results suggest that both hypoxia and reoxygenation might be involved in the upregulation of HIF-1α in the kidneys of mice exposed to hypergravity. Significant increases in renocortical iNOS expression immediately after centrifugation and during the reoxygenation period suggest that iNOS expression induced by hypergravity exposure might play a protective role against hypoxia/reoxygenation injury in the renal cortex. Further investigations are necessary to clarify the role of iNOS and NO in kidneys exposed to hypergravity.

  19. Inducible nitric oxide synthase is responsible for nitric oxide release from murine pituicytes

    DEFF Research Database (Denmark)

    Kjeldsen, T H; Rivier, C; Lee, S

    2003-01-01

    This study investigated whether pituicytes were able to produce and release nitric oxide (NO), and which type of nitric oxide synthase (NOS) would be responsible for this phenomenon. Lipopolysaccharide (LPS) 1 micro g/ml was used as inflammatory mediator. Because pituicytes are known to secrete...

  20. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    Science.gov (United States)

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  1. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    Science.gov (United States)

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  2. Do tobacco stimulate the production of nitric oxide by up regulation of inducible nitric oxide synthesis in cancer: Immunohistochemical determination of inducible nitric oxide synthesis in oral squamous cell carcinoma - A comparative study in tobacco habituers and non-habituers

    Directory of Open Access Journals (Sweden)

    B Karthik

    2014-01-01

    Conclusions: The results of the present study indicate the enhanced expression in OSCC of tobacco habituers when compared to OSCC of tobacco non-habituers indicating the effect of tobacco on nitric oxide. Carcinogenic chemical compounds in Tobacco induce nitric oxide production by iNOS, by its tumor-promoting effects which may enhance the process of carcinogenesis.

  3. Synthesis of nitric oxide in human osteoblasts in response to physiologic stimulation of electrotherapy.

    Science.gov (United States)

    Hamed, Ayman; Kim, Paul; Cho, Michael

    2006-12-01

    Electrotherapy for bone healing, remodeling and wound healing may be mediated by modulation of nitric oxide (NO). Using NO-specific fluorophore (DAF-2), we report here that application of non-invasive, physiologic electrical stimulation induces NO synthesis in human osteoblasts, and that such NO generation is comparable to that induced by estrogen treatment. For example, application of a sinusoidal 1 Hz, 2 V/cm (peak to peak) electrical stimulation (ES) increases NO-bound DAF-2 fluorescence intensity by a 2-fold within 60 min exposure by activating nitric oxide synthase (NOS). Increase in the NO level is found to depend critically on the frequency and strength of ES. While the frequency of 1 Hz ES seems optimal, the ES strength >0.5 V/cm is required to induce significant NO increase, however. Nitric oxide synthesis in response to ES is completely prevented by blocking estrogen receptors using a competitive inhibitor, suggesting that NO generation is likely initiated by activation of estrogen receptors at the cell surface. Based on these findings, physiologic stimulation of electrotherapy appears to represent a potential non-invasive, non-genomic, and novel physical technique that could be used to regulate NO-mediated bone density and facilitate bone remodeling without adverse effects associated with hormone therapy.

  4. Inducible nitric oxide synthase immunoreactivity in healthy rat pancreas.

    Science.gov (United States)

    Keklikoglu, Nurullah

    2008-01-01

    Nitric oxide (NO) is produced by NO synthase (NOS) isoforms: neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS). It is believed that, while nNOS and eNOS are effective in regulation of normal physiological processes, iNOS is expressed at an increasing rate especially in inflammatory process. The aim of this study was to determine the presence of iNOS immunoreactivity (iNOS-IR) and, to compare the iNOS-IR in islet of Langerhans cells (LC), acinar cells (AC), centroacinar cells (CC) and ductal cells (DC) by immunohistochemical (IHC) method in healthy rat pancreata. This study revealed the presence of iNOS-IR in all cell types except AC. Statistical analysis revealed a highly significant difference (preseach related to diabetes, it should not be disregarded that iNOS may be constitutively present in pancreatic islets.

  5. Effects of alpha-tocopherol on gingival expression of inducible nitric ...

    African Journals Online (AJOL)

    2015-09-01

    or insulin on the number of gingival inducible nitric oxide synthase (iNOS) positive cells in rats with experimental periodontitis with or without streptozotocin (STZ)-induced diabetes. Materials and Methods: A total of 60 ...

  6. Role of Reactive Oxygen Species and Nitric Oxide in Mediating Chemotherapeutic Drug Induced Bystander Response in Human Cancer Cells Exposed In-Vitro

    OpenAIRE

    Chinnadurai, Mani; Rao, Bhavna S; Deepika, Ramasamy; Paul, Solomon F.D.; Venkatachalam, Perumal

    2012-01-01

    Background The intention of cancer chemotherapy is to control the growth of cancer cells using chemical agents. However, the occurrence of second malignancies has raised concerns, leading to re-evaluation of the current strategy in use for chemotherapeutic agents. Although the mechanisms involved in second malignancy remain ambiguous, therapeutic-agent-induced non-DNA targeted effects like bystander response and genomic instability cannot be eliminated completely. Hence, Bleomycin (BLM) and N...

  7. Dispersal of human and plant pathogens biofilms via nitric oxide donors at 4 °C.

    Science.gov (United States)

    Marvasi, Massimiliano; Durie, Ian A; Henríquez, Tania; Satkute, Aiste; Matuszewska, Marta; Prado, Raphael Carvalho

    2016-12-01

    Recent studies suggest that nitric oxide donors capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of biofilms. Encased in extracellular polymeric substances, human and plant pathogens within biofilms are significantly more resistant to sanitizers. This is particularly a problem in refrigerated environments where food is processed. In an exercise aimed to study the potential of nitric oxide donors as biofilm dispersal in refrigerated conditions, we compared the ability of different nitric oxide donors (SNAP, NO-aspirin and Noc-5) to dislodge biofilms formed by foodborne, human and plant pathogens treated at 4 °C. The donors SNAP and Noc-5 were efficient in dispersing biofilms formed by Salmonella enterica, pathogenic Escherichia coli and Listeria innocua. The biomasses were decreased up to 30 % when compared with the untreated controls. When the plant pathogens Pectobacterium sp. and Xanthomonas sp. were tested the dispersion was mainly limited to Pectobacterium carotovorum biofilms, decreasing up to 15 % after exposure to molsidomine. Finally, the association of selected nitric oxide donors with sanitizers (DiQuat, H2O2, peracetic acid and PhenoTek II) was effective in dispersing biofilms. The best dispersal was achieved by pre-treating P. carotovorum with molsidomine and then peracetic acid. The synergistic effect was estimated up to ~35 % in dispersal when compared with peracetic acid alone. The association of nitric oxide donors with sanitizers could provide a foundation for an improved sanitization procedure for cleaning refrigerate environments.

  8. Regulation of prostaglandin generation in carrageenan-induced pleurisy by inducible nitric oxide synthase in knockout mice.

    NARCIS (Netherlands)

    Rossi, A.; Cuzzocrea, S.; Mazzon, E.; Serraino, I.; Sarro, A. de; Dugo, L.; Felice, M.R.; Loo, F.A.J. van de; Rosa, M. Di; Musci, G.; Caputi, A.P.; Sautebin, L.

    2003-01-01

    In the present study, by comparing the responses in wild-type mice (iNOSWT) and mice lacking (iNOSKO) the inducible (or type 2) nitric oxide synthase (iNOS), we investigated the correlation between endogenous nitric oxide (NO) and prostaglandin (PG) generation in carrageenan-induced pleurisy. The

  9. Mycobacterial glycolipids di-O-acylated trehalose and tri-O-acylated trehalose downregulate inducible nitric oxide synthase and nitric oxide production in macrophages.

    Science.gov (United States)

    Espinosa-Cueto, Patricia; Escalera-Zamudio, Marina; Magallanes-Puebla, Alejandro; López-Marín, Luz María; Segura-Salinas, Erika; Mancilla, Raúl

    2015-06-23

    Tuberculosis (TB) remains a serious human health problem that affects millions of people in the world. Understanding the biology of Mycobacterium tuberculosis (Mtb) is essential for tackling this devastating disease. Mtb possesses a very complex cell envelope containing a variety of lipid components that participate in the establishment of the infection. We have previously demonstrated that di-O-acylated trehalose (DAT), a non-covalently linked cell wall glycolipid, inhibits the proliferation of T lymphocytes and the production of cytokines. In this work we show that DAT and the closely related tri-O-acylated trehalose (TAT) inhibits nitric oxide (NO) production and the inducible nitric oxide synthase (iNOS) expression in macrophages (MØ). These findings show that DAT and TAT are cell-wall located virulence factors that downregulate an important effector of the immune response against mycobacteria.

  10. Electron transfer in a human inducible nitric oxide synthase oxygenase/FMN construct co-expressed with the N-terminal globular domain of calmodulin

    Science.gov (United States)

    Fan, Weihong; Dupont, Andrea; Guillemette, J. Guy; Ghosh, Dipak K.

    2010-01-01

    The FMN–heme intraprotein electron transfer (IET) kinetics in a human iNOS oxygenase/FMN (oxyFMN) construct co-expressed with NCaM, a calmodulin (CaM) construct that includes only its N-terminal globular domain, were determined by laser flash photolysis. The IET rate constant is significantly decreased by nearly 4-fold (compared to the iNOS oxyFMN co-expressed with full length CaM). This supports an important role of full length CaM in proper interdomain FMN/heme alignment in iNOS. The IET process was not observed with added excess EDTA, suggesting that Ca2+ depletion results in the FMN domain moving away from the heme domain. The results indicate that a Ca2+-dependent reorganization of the NCaM construct could cause a major modification of the NCaM/iNOS association resulting in a loss of IET. PMID:20868689

  11. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    Science.gov (United States)

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  12. Smoking and gingivitis: focus on inducible nitric oxide synthase, nitric oxide and basic fibroblast growth factor.

    Science.gov (United States)

    Özdemir, B; Özmeric, N; Elgün, S; Barış, E

    2016-10-01

    Periodontal disease pathogenesis has been associated with smoking. Gingivitis is a mild and reversible form of periodontal disease and it tends to progress to periodontitis only in susceptible individuals. In the present study, we aimed to examine the impact of smoking on host responses in gingivitis and to evaluate and compare the inducible nitric oxide synthase (iNOS) activity in gingival tissue and NO and basic fibroblast growth factor (bFGF) levels in the gingival crevicular fluid of patients with gingivitis and healthy individuals. Forty-one participants were assigned to the gingivitis-smoker (n = 13), gingivitis (n = 13), healthy-smoker (n = 7) and healthy groups (n = 8). Clinical indices were recorded; gingival biopsy and gingival crevicular fluid samples were obtained from papillary regions. iNOS expression was evaluated by immunohistochemical staining. The immunoreactive cells were semiquantitatively assessed. For the quantitative determination of nitrite and nitrate in gingival crevicular fluid, the NO assay kit was used. The amount of bFGF in gingival crevicular fluid was determined by enzyme-linked immunosorbent assay. The gingivitis-smoker group demonstrated a stronger iNOS expression than the non-smoker gingivitis group. iNOS expression intensity was lower in the non-smoker healthy group compared to that in healthy-smokers. No significant gingival crevicular fluid NO and bFGF level changes were observed between groups. Among patients with gingivitis, a positive correlation was detected between gingival crevicular fluid NO and bFGF levels (r = 0.806, p = 0.001). Our data suggest that smoking has significant effects on iNOS expression but not on gingival crevicular fluid NO or bFGF levels in healthy and patients with gingivitis. However, our results suggest that bFGF might be involved in the regulation of NO production via iNOS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Nitric oxide regulates the aggregation of stimulated human neutrophils.

    Science.gov (United States)

    Forslund, T; Nilsson, H M; Sundqvist, T

    2000-08-02

    Neutrophil aggregation is mediated by both CD18 integrin and L-selectin. Nitric oxide attenuates the integrin-mediated adhesion of neutrophils to collagen and to endothelium and may therefore affect aggregation as well. FMLP-stimulated neutrophils exposed to l-arginine showed increased and prolonged aggregation, whereas cells pretreated with L-NAME did not differ from FMLP-stimulated controls. Nitric oxide is known to induce ADP ribosylation of G-actin, which inhibits polymerization. We detected equivalent levels of total F-actin in cells pretreated with l-arginine or L-NAME and non-pretreated controls. However, neutrophils pretreated with l-arginine and stimulated by CD18 integrin cross-linking exhibited a more limited increase in total F-actin, compared to control and L-NAME-pretreated cells. Thus at least two signaling pathways may be involved FMLP-stimulated aggregation, mediated by CD18 integrins. More specifically, it is plausible that FMLP-receptor signaling upregulates CD18 integrins and endogenous NO subsequently modulates CD18-mediated signaling to prolong aggregation, possibly through ADP-ribosylation of actin. Copyright 2000 Academic Press.

  14. Bone marrow-derived versus parenchymal sources of inducible nitric oxide synthase in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonniere, Lyne; Hassan-Zahraee, Mina

    2004-01-01

    The role of nitric oxide (NO) in central nervous system (CNS) inflammation is uncertain. Whereas experimental autoimmune encephalomyelitis (EAE) is exacerbated in mice deficient in inducible nitric oxide synthase (iNOS), inhibitor studies have suggested a pro-inflammatory role for NO. These discr...

  15. Nitric oxide transport in normal human thoracic aorta: effects of hemodynamics and nitric oxide scavengers.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available Despite the crucial role of nitric oxide (NO in the homeostasis of the vasculature, little quantitative information exists concerning NO transport and distribution in medium and large-sized arteries where atherosclerosis and aneurysm occur and hemodynamics is complex. We hypothesized that local hemodynamics in arteries may govern NO transport and affect the distribution of NO in the arteries, hence playing an important role in the localization of vascular diseases. To substantiate this hypothesis, we presented a lumen/wall model of the human aorta based on its MRI images to simulate the production, transport and consumption of NO in the arterial lumen and within the aortic wall. The results demonstrated that the distribution of NO in the aorta was quite uneven with remarkably reduced NO bioavailability in regions of disturbed flow, and local hemodynamics could affect NO distribution mainly via flow dependent NO production rate of endothelium. In addition, erythrocytes in the blood could moderately modulate NO concentration in the aorta, especially at the endothelial surface. However, the reaction of NO within the wall could only slightly affect NO concentration on the luminal surface, but strongly reduce NO concentration within the aortic wall. A strong positive correlation was revealed between wall shear stress and NO concentration, which was affected by local hemodynamics and NO reaction rate. In conclusion, the distribution of NO in the aorta may be determined by local hemodynamics and modulated differently by NO scavengers in the lumen and within the wall.

  16. Nitric oxide induces morphological changes in cultured neurohypophysial astrocytes.

    Science.gov (United States)

    Ramsell, K D; Cobbett, P

    1996-03-01

    Cultured pituicytes, derived from the neurohypophysis of adult rats, have previously been reported to change from a non-stellate form to a stellate form when incubated in medium containing a beta-adrenoreceptor agonist. This study was designed to determine whether the same morphological change could be induced by direct activation of adenylate cyclase or of soluble guanylate cyclase. The fraction of stellate cells was normally low (< 0.25) when the pituicytes were incubated (90 min) in a HEPES buffered salt solution (HBSS); most pituicytes had an amorphous protoplasmic appearance. The fraction of stellate cells was significantly increased when pituicytes were incubated in HBSS supplemented with isoproterenol (10 microM) or forskolin (5 microM) or with either of the nitric oxide donors nitroprusside (10-25 microM) and 3-morpholinosydnonimine (SIN-1; 10 microM). The effect of forskolin was mimicked by 8-bromo cyclic AMP, a membrane permeable analog of cyclic AMP, but not by the inactive forskolin analog 1, 9 dideoxyforskolin. The effect of nitroprusside was blocked by methylene blue, an inhibitor of soluble guanylate cyclase, and was mimicked by 8-bromo cyclic GMP, a membrane permeable analog of cyclic GMP. These results demonstrate that activation of adenylate cyclase and also of soluble guanylate cyclase can induce pituicytes to undergo morphological changes in vitro. The data suggest that the activity of both enzymes may be important in control of the plastic relationship that exists between neuronal and glial elements in the neurohypophysis in vivo.

  17. Influence of nitric oxide on histamine and carbachol – induced ...

    African Journals Online (AJOL)

    The study aimed to determine the influence of nitric oxide (NO) on the action of histamine and carbachol on acid secretion in the common African toad – Bufo regularis. Gastric acidity was determined by titration method. The acid secretion was determined when nitric oxide was absent following administration of NO synthase ...

  18. Nitric oxide modulates interleukin-2-induced proliferation in CTLL-2 cells

    Directory of Open Access Journals (Sweden)

    J. Padrón

    1996-01-01

    Full Text Available The role of the L-arginine–nitric oxide metabolic pathway was explored for interleukin-2-induced proliferation in the cytotoxic T lymphocyte clone CTLL-2. Specific inhibition of nitric oxide synthase significantly diminished, in a concentration-dependent manner, 3H-thymidine uptake of CTLL-2 cells in response to different concentrations of interleukin 2. Withdrawal of L-arginine from culture medium resulted as potent as the higher inhibition obtained when blocking nitric oxide synthase with L-arginine analogues. Furthermore, intermedial concentrations of Larginine and exogenous nitric oxide donors were found for achieving optimal IL2-induced proliferation of CTLL-2. These findings prompted us to suggest that intra- and/or inter-cellular nitric oxide signalling may contribute to the modulation of the IL2 mitogenic effect upon cytotoxic T lymphocytes.

  19. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase.

    Science.gov (United States)

    Khan, Sitara G; Melikian, Narbeh; Shabeeh, Husain; Cabaco, Ana R; Martin, Katherine; Khan, Faisal; O'Gallagher, Kevin; Chowienczyk, Philip J; Shah, Ajay M

    2017-09-01

    Mental stress-induced ischemia approximately doubles the risk of cardiac events in patients with coronary artery disease, yet the mechanisms underlying changes in coronary blood flow in response to mental stress are poorly characterized. Neuronal nitric oxide synthase (nNOS) regulates basal coronary blood flow in healthy humans and mediates mental stress-induced vasodilation in the forearm. However, its possible role in mental stress-induced increases in coronary blood flow is unknown. We studied 11 patients (6 men and 5 women, mean age: 58 ± 14 yr) undergoing elective diagnostic cardiac catheterization and assessed the vasodilator response to mental stress elicited by the Stroop color-word test. Intracoronary substance P (20 pmol/min) and isosorbide dinitrate (1 mg) were used to assess endothelium-dependent and -independent vasodilation, respectively. Coronary blood flow was estimated using intracoronary Doppler recordings and quantitative coronary angiography to measure coronary artery diameter. Mental stress increased coronary flow by 34 ± 7.0% over the preceding baseline during saline infusion (P nitric oxide synthase in the human coronary circulation.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/nnos-and-coronary-flow-during-mental-stress/. Copyright © 2017 the American Physiological Society.

  20. Role of Rutin on Nitric Oxide Synthesis in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Azizah Ugusman

    2014-01-01

    Full Text Available Nitric oxide (NO, produced by endothelial nitric oxide synthase (eNOS, is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC. HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H2O2; treatment with 300 μM rutin; and concomitant induction with rutin and H2O2 for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P<0.01. In the oxidative stress-induced HUVEC, rutin successfully induced cells’ NO production (P<0.01. Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P<0.05, eNOS protein synthesis (P<0.01, and eNOS activity (P<0.05. Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells.

  1. Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Saltin, Bengt; Kemppainen, Jukka

    2013-01-01

    The role of nitric oxide in controlling substrate metabolism in humans is incompletely understood.......The role of nitric oxide in controlling substrate metabolism in humans is incompletely understood....

  2. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  3. Inducible nitric oxide synthase immunoreactivity in healthy rat pancreas.

    Directory of Open Access Journals (Sweden)

    Nurullah Keklikoglu

    2008-06-01

    Full Text Available Nitric oxide (NO is produced by NO synthase (NOS isoforms: neuronal NOS (nNOS, endothelial NOS (eNOS and inducible NOS (iNOS. It is believed that, while nNOS and eNOS are effective in regulation of normal physiological processes, iNOS is expressed at an increasing rate especially in inflammatory process. The aim of this study was to determine the presence of iNOS immunoreactivity (iNOS-IR and, to compare the iNOS-IR in islet of Langerhans cells (LC, acinar cells (AC, centroacinar cells (CC and ductal cells (DC by immunohistochemical (IHC method in healthy rat pancreata. This study revealed the presence of iNOS-IR in all cell types except AC. Statistical analysis revealed a highly significant difference (p<0.001 with respect to iNOS-IR in comparison of all cell types. However, binary comparison of cell types revealed no significant differences between LC and DC (p=0.136, significant differences LC and CC, CC and DC (p=0.001 and 0.022, respectively and a highly significant differences LC and AC, AC and DC (P<0.001. The results of this study indicate that iNOS-IR is present in almost all LC. Thus, especially in reseach related to diabetes, it should not be disregarded that iNOS may be constitutively present in pancreatic islets.

  4. In vivo Expression of Inducible Nitric Oxide Synthase in Experimentally Induced Neurologic Diseases

    Science.gov (United States)

    Koprowski, Hilary; Zheng, Yong Mu; Heber-Katz, Ellen; Fraser, Nigel; Rorke, Lucy; Fu, Zhen Fang; Hanlon, Cathleen; Dietzschold, Bernhard

    1993-04-01

    The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.

  5. Exhaled nitric oxide dynamics in asthmatic reactions induced by diisocyanates.

    Science.gov (United States)

    Mason, P; Scarpa, M C; Guarnieri, G; Giordano, G; Baraldi, E; Maestrelli, P

    2016-12-01

    Isocyanate-induced asthmatic reactions are associated with delayed increase in fractional exhaled nitric oxide measured at expiratory flow of 50 mL/s (FeNO50), a biomarker of airway inflammation. The time course of FeNO increase is compatible with the activation of NO synthase, but the origin of NO production in the lung is undetermined. The aim of this study was to define the dynamics of airway and alveolar NO during specific inhalation challenge (SIC) with isocyanates and the role of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase. Spirometry, exhaled NO parameters (FeNO50, bronchial wall NO concentration, NO airway diffusing capacity, NO flux to luminal space, alveolar NO) and ADMA levels in exhaled breath condensate were measured before and at intervals up to 24 h after exposure to isocyanates. The results were compared between 17 SIC-positive and eight SIC-negative subjects. A significant FeNO50 increase in SIC-positive subjects was detected 24 h after exposure and was associated with the augmented NO flux from airway wall to the lumen, whereas airway NO diffusion and alveolar NO were not affected. The changes in NO dynamics were specific for the subjects who developed an asthmatic reaction, but were independent from the pattern and magnitude of bronchoconstriction. There was no evidence that exhaled NO is modulated by the changes in ADMA concentration. Because isocyanate-induced increase in FeNO50 was almost exclusively determined by the increase in NO flux, the use of FeNO50 appears adequate to monitor the exhaled NO dynamics during SIC. FeNO50 measurement may provide additional information to spirometry, because bronchoconstriction and airway inflammatory responses are dissociated. © 2016 John Wiley & Sons Ltd.

  6. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents

    Directory of Open Access Journals (Sweden)

    Siqueira Francisco JWS

    2011-08-01

    Full Text Available Abstract Background Methotrexate treatment has been associated to intestinal epithelial damage. Studies have suggested an important role of nitric oxide in such injury. The aim of this study was to investigate the role of nitric oxide (NO, specifically iNOS on the pathogenesis of methotrexate (MTX-induced intestinal mucositis. Methods Intestinal mucositis was carried out by three subcutaneous MTX injections (2.5 mg/kg in Wistar rats and in inducible nitric oxide synthase knock-out (iNOS-/- and wild-type (iNOS+/+ mice. Rats were treated intraperitoneally with the NOS inhibitors aminoguanidine (AG; 10 mg/Kg or L-NAME (20 mg/Kg, one hour before MTX injection and daily until sacrifice, on the fifth day. The jejunum was harvested to investigate the expression of Ki67, iNOS and nitrotyrosine by immunohistochemistry and cell death by TUNEL. The neutrophil activity by myeloperoxidase (MPO assay was performed in the three small intestine segments. Results AG and L-NAME significantly reduced villus and crypt damages, inflammatory alterations, cell death, MPO activity, and nitrotyrosine immunostaining due to MTX challenge. The treatment with AG, but not L-NAME, prevented the inhibitory effect of MTX on cell proliferation. MTX induced increased expression of iNOS detected by immunohistochemistry. MTX did not cause significant inflammation in the iNOS-/- mice. Conclusion These results suggest an important role of NO, via activation of iNOS, in the pathogenesis of intestinal mucositis.

  7. Inflammasome-derived IL-1β production induces nitric oxide-mediated resistance to Leishmania.

    Science.gov (United States)

    Lima-Junior, Djalma S; Costa, Diego L; Carregaro, Vanessa; Cunha, Larissa D; Silva, Alexandre L N; Mineo, Tiago W P; Gutierrez, Fredy R S; Bellio, Maria; Bortoluci, Karina R; Flavell, Richard A; Bozza, Marcelo T; Silva, João S; Zamboni, Dario S

    2013-07-01

    Parasites of the Leishmania genus are the causative agents of leishmaniasis in humans, a disease that affects more than 12 million people worldwide. These parasites replicate intracellularly in macrophages, and the primary mechanisms underlying host resistance involve the production of nitric oxide (NO). In this study we show that the Nlrp3 inflammasome is activated in response to Leishmania infection and is important for the restriction of parasite replication both in macrophages and in vivo as demonstrated through the infection of inflammasome-deficient mice with Leishmania amazonensis, Leishmania braziliensis and Leishmania infantum chagasi. Inflammasome-driven interleukin-1β (IL-1β) production facilitated host resistance to infection, as signaling through IL-1 receptor (IL-1R) and MyD88 was necessary and sufficient to trigger inducible nitric oxide synthase (NOS2)-mediated production of NO. In this manuscript we identify a major signaling platform for host resistance to Leishmania spp. infection and describe the molecular mechanisms underlying Leishmania-induced NO production.

  8. Inorganic Polyphosphate Suppresses Lipopolysaccharide-Induced Inducible Nitric Oxide Synthase (iNOS) Expression in Macrophages

    Science.gov (United States)

    Harada, Kana; Shiba, Toshikazu; Doi, Kazuya; Morita, Koji; Kubo, Takayasu; Makihara, Yusuke; Piattelli, Adriano; Akagawa, Yasumasa

    2013-01-01

    In response to infection, macrophages produce a series of inflammatory mediators, including nitric oxide (NO), to eliminate pathogens. The production of these molecules is tightly regulated via various mechanisms, as excessive responses are often detrimental to host tissues. Here, we report that inorganic polyphosphate [poly(P)], a linear polymer of orthophosphate ubiquitously found in mammalian cells, suppresses inducible nitric oxide synthase (iNOS) expression induced by lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, in mouse peritoneal macrophages. Poly(P) with longer chains is more potent than those with shorter chains in suppressing LPS-induced iNOS expression. In addition, poly(P) decreased LPS-induced NO release. Moreover, poly(P) suppressed iNOS mRNA expression induced by LPS stimulation, thereby indicating that poly(P) reduces LPS-induced iNOS expression by down-regulation at the mRNA level. In contrast, poly(P) did not affect the LPS-induced release of TNF, another inflammatory mediator. Poly(P) may serve as a regulatory factor of innate immunity by modulating iNOS expression in macrophages. PMID:24040305

  9. Expression of Inducible Nitric Oxide Synthase in Skin Lesions of Patients with American Cutaneous Leishmaniasis

    Science.gov (United States)

    Qadoumi, Muna; Becker, Inge; Donhauser, Norbert; Röllinghoff, Martin; Bogdan, Christian

    2002-01-01

    Cytokine-inducible (or type 2) nitric oxide synthase (iNOS) is indispensable for the resolution of Leishmania major or Leishmania donovani infections in mice. In contrast, little is known about the expression and function of iNOS in human leishmaniasis. Here, we show by immunohistological analysis of skin biopsies from Mexican patients with local (LCL) or diffuse (DCL) cutaneous leishmaniasis that the expression of iNOS was most prominent in LCL lesions with small numbers of parasites whereas lesions with a high parasite burden (LCL or DCL) contained considerably fewer iNOS-positive cells. This is the first study to suggest an antileishmanial function of iNOS in human Leishmania infections in vivo. PMID:12117977

  10. Inducible nitric oxide synthase haplotype associated with migraine and aura.

    Science.gov (United States)

    de O S Mansur, Thiago; Gonçalves, Flavia M; Martins-Oliveira, Alisson; Speciali, Jose G; Dach, Fabiola; Lacchini, Riccardo; Tanus-Santos, Jose E

    2012-05-01

    Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C(-1026)A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman(®) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C(-1026)A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

  11. Modulation of inducible nitric oxide synthase expression by sumoylation

    Directory of Open Access Journals (Sweden)

    Feinstein Douglas L

    2009-03-01

    Full Text Available Abstract Background In astrocytes, the inflammatory induction of Nitric Oxide Synthase type 2 (NOS2 is inhibited by noradrenaline (NA at the transcriptional level however its effects on specific transcription factors are not fully known. Recent studies show that the activity of several transcription factors including C/EBPβ, which is needed for maximal NOS2 expression, is modulated by conjugation of the small molecular weight protein SUMO. We examined whether the expression of SUMO Related Genes (SRGs: SUMO-1, the conjugating enzyme Ubc9, and the protease SENP1 are affected by inflammatory conditions or NA and whether SUMO-1 regulates NOS2 through interaction with C/EBPβ. Methods Bacterial endotoxin lipopolysaccharide (LPS was used to induce inflammatory responses including NOS2 expression in primary astrocytes. The mRNA levels of SRGs were determined by QPCR. A functional role for SUMOylation was evaluated by determining effects of over-expressing SRGs on NOS2 promoter and NFκB binding-element reporter constructs. Interactions of SUMO-1 and C/EBPβ with the NOS2 promoter were examined by chromatin immunoprecipitation assays. Interactions of SUMO-1 with C/EBPβ were examined by immunoprecipitation and Western blot analysis and by fluorescence resonance energy transfer (FRET assays. Results LPS decreased mRNA levels of SUMO-1, Ubc9 and SENP1 in primary astrocytes and a similar decrease occurred during normal aging in brain. NA attenuated the LPS-induced reductions and increased SUMO-1 above basal levels. Over-expression of SUMO-1, Ubc9, or SENP1 reduced the activation of a NOS2 promoter, whereas activation of a 4 × NFκB binding-element reporter was only reduced by SUMO-1. ChIP studies revealed interactions of SUMO-1 and C/EBPβ with C/EBP binding sites on the NOS2 promoter that were modulated by LPS and NA. SUMO-1 co-precipitated with C/EBPβ and a close proximity was confirmed by FRET analysis. Conclusion Our results demonstrate that

  12. Alterations of inducible and constitutive nitric oxide synthase after hippocampal injury in rats.

    Science.gov (United States)

    Safari, M; Ghahari, L

    2009-08-15

    The aim of this study was to study the changes of inducible and constitutive Nitric Oxide Synthase (NOS) after brain injury. In order to brain injury 42 wistar rats were submitted and divided in 7 groups. Nitric oxide synthase activities were assayed at different times after injury. Present results showed that a significant increase of iNOS and cNOS activity 8 h after lesion. In conclusion, both isoformes of NOS increase at different time after brain injury.

  13. An inducible nitric oxide synthase polymorphism is associated with the risk of recurrent depressive disorder.

    Science.gov (United States)

    Gałecki, Piotr; Maes, Michael; Florkowski, Antoni; Lewiński, Andrzej; Gałecka, Elżbieta; Bieńkiewicz, Małgorzata; Szemraj, Janusz

    2010-12-17

    Evidence indicates that depressive disorder is a heterogenic disease, and oxidative stress, inflammation and impairment of neurogenesis play a role in its aetiology. Moreover, there are data suggesting that genetic factors affect the development of depression. Nitric oxide (NO) is a biological molecule with both a beneficial and a detrimental role in brain. One of the three enzymes generating NO is inducible nitric oxide synthase (iNOS). Recent studies have shown that depressed patients are characterised by excessive NO production. In addition, iNOS inhibitors are effective in depression treatment. This study investigated the importance of a functional single nucleotide polymorphism (SNP), -1026C/A, located in the promoter region of the human NOS2A gene, for the risk of recurrent depressive disorder (RDD) vulnerability. The study was carried out in a group of 181 patients with RDD and 149 ethnically matched controls. Genotyping was performed by direct sequencing of the polymerase chain reaction (PCR) products. The genotype distribution of the -1026C/A polymorphism between depressed patients and healthy controls was significantly different. Individuals who were homozygous for the CC genotype exhibited an increased risk of developing RDD. In conclusion we cautiously conclude that polymorphism in the NOS2A gene promoter may play a role in the background of RDD. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    Science.gov (United States)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  15. Methanol Extract of Codonopsis pilosula Inhibits Inducible Nitric ...

    African Journals Online (AJOL)

    Purpose: To evaluate the mechanism of antioxidant activity of the methanol extract of Codonopsis pilosula. Methods: Anti-oxidative properties were assessed by measuring free radical scavenging activity, nitric oxide (NO) levels, protein oxidation and reducing power, while the mechanism of antioxidative effect of ...

  16. Ubiquitination of inducible nitric oxide synthase is required for its degradation

    Science.gov (United States)

    Kolodziejski, Pawel J.; Musial, Aleksandra; Koo, Ja-Seok; Eissa, N. Tony

    2002-01-01

    Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. We have previously shown that iNOS is degraded through the 26S proteasome. Targeting of proteins for proteasomal degradation may or may not require their covalent linkage to multiubiquitin chains (ubiquitination). In addition, ubiquitination of a protein can serve functions other than signaling proteolysis. In this context, it is not known whether iNOS is subject to ubiquitination or whether ubiquitination is required for its degradation. In this study, we show that iNOS, expressed in HEK293 cells or induced in primary bronchial epithelial cells, A549 cells, or murine macrophages, is subject to ubiquitination. To investigate whether iNOS ubiquitination is required for its degradation, HEK293T cells were cotransfected with plasmids containing cDNAs of human iNOS and of the dominant negative ubiquitin mutant K48R. Disruption of ubiquitination by K48R ubiquitin resulted in inhibition of iNOS degradation. ts20 is a mutant cell line that contains a thermolabile ubiquitin-activating enzyme (E1) that is inactivated at elevated temperature, preventing ubiquitination. Incubation of ts20 cells, stably expressing human iNOS, at the nonpermissive temperature (40°C) resulted in inhibition of iNOS degradation and marked accumulation of iNOS. These studies indicate that iNOS is subject to ubiquitination and that ubiquitination is required for its degradation. PMID:12221289

  17. A Metronidazole-Resistant Isolate of Blastocystis spp. Is Susceptible to Nitric Oxide and Downregulates Intestinal Epithelial Inducible Nitric Oxide Synthase by a Novel Parasite Survival Mechanism ▿

    Science.gov (United States)

    Mirza, Haris; Wu, Zhaona; Kidwai, Fahad; Tan, Kevin S. W.

    2011-01-01

    Blastocystis, one of the most common parasites colonizing the human intestine, is an extracellular, noninvasive, luminal protozoan with controversial pathogenesis. Blastocystis infections can be asymptomatic or cause intestinal symptoms of vomiting, diarrhea, and abdominal pain. Although chronic infections are frequently reported, Blastocystis infections have also been reported to be self-limiting in immunocompetent patients. Characterizing the host innate response to Blastocystis would lead to a better understanding of the parasite's pathogenesis. Intestinal epithelial cells produce nitric oxide (NO), primarily on the apical side, in order to target luminal pathogens. In this study, we show that NO production by intestinal cells may be a host defense mechanism against Blastocystis. Two clinically relevant isolates of Blastocystis, ST-7 (B) and ST-4 (WR-1), were found to be susceptible to a range of NO donors. ST-7 (B), a metronidazole-resistant isolate, was found to be more sensitive to nitrosative stress. Using the Caco-2 model of human intestinal epithelium, Blastocystis ST-7 (B) but not ST-4 (WR-1) exhibited dose-dependent inhibition of Caco-2 NO production, and this was associated with downregulation of inducible nitric oxide synthase (iNOS). Despite its higher susceptibility to NO, Blastocystis ST-7 (B) may have evolved unique strategies to evade this potential host defense by depressing host NO production. This is the first study to highlight a strain-to-strain variation in the ability of Blastocystis to evade the host antiparasitic NO response. PMID:21930763

  18. A metronidazole-resistant isolate of Blastocystis spp. is susceptible to nitric oxide and downregulates intestinal epithelial inducible nitric oxide synthase by a novel parasite survival mechanism.

    Science.gov (United States)

    Mirza, Haris; Wu, Zhaona; Kidwai, Fahad; Tan, Kevin S W

    2011-12-01

    Blastocystis, one of the most common parasites colonizing the human intestine, is an extracellular, noninvasive, luminal protozoan with controversial pathogenesis. Blastocystis infections can be asymptomatic or cause intestinal symptoms of vomiting, diarrhea, and abdominal pain. Although chronic infections are frequently reported, Blastocystis infections have also been reported to be self-limiting in immunocompetent patients. Characterizing the host innate response to Blastocystis would lead to a better understanding of the parasite's pathogenesis. Intestinal epithelial cells produce nitric oxide (NO), primarily on the apical side, in order to target luminal pathogens. In this study, we show that NO production by intestinal cells may be a host defense mechanism against Blastocystis. Two clinically relevant isolates of Blastocystis, ST-7 (B) and ST-4 (WR-1), were found to be susceptible to a range of NO donors. ST-7 (B), a metronidazole-resistant isolate, was found to be more sensitive to nitrosative stress. Using the Caco-2 model of human intestinal epithelium, Blastocystis ST-7 (B) but not ST-4 (WR-1) exhibited dose-dependent inhibition of Caco-2 NO production, and this was associated with downregulation of inducible nitric oxide synthase (iNOS). Despite its higher susceptibility to NO, Blastocystis ST-7 (B) may have evolved unique strategies to evade this potential host defense by depressing host NO production. This is the first study to highlight a strain-to-strain variation in the ability of Blastocystis to evade the host antiparasitic NO response.

  19. Oxidative stress, nitric oxide production, and renal sodium handling in leptin-induced hypertension.

    Science.gov (United States)

    Beltowski, Jerzy; Wójcicka, Grazyna; Marciniak, Andrzej; Jamroz, Anna

    2004-04-30

    Chronic hyperleptinemia induces arterial hypertension in experimental animals and may contribute to the development of hypertension in obese humans; however, the mechanism of hypertensive effect of leptin is not completely elucidated. We investigated the effect of leptin on whole-body oxidative stress, nitric oxide production, and renal sodium handling. The study was performed on male Wistar rats divided into 3 groups: 1) control, fed standard chow ad libitum, 2) leptin-treated group, receiving leptin injections (0.25 mg/kg twice daily s.c. for 7 days), 3) pair-fed group, in which food intake was adjusted to the leptin group. Leptin caused 30.5% increase in systolic blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes in animals receiving leptin was 46.4% and 49.2% higher, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals, increased by 52.5% in the renal cortex and by 48.4% in the renal medulla following leptin treatment, whereas aconitase activity decreased in these regions of the kidney by 45.3% and 39.2%, respectively. Urinary excretion of nitric oxide metabolites (NOx) was 55.0% lower, and fractional excretion of NOx was 55.8% lower in the leptin-treated group. Urinary excretion of cGMP decreased in leptin-treated rats by 26.3%. Following leptin treatment, absolute and fractional sodium excretion decreased by 35.0% and 41.2%, respectively. These results indicate that hyperleptinemia induces systemic and intrarenal oxidative stress, decreases the amount of bioactive NO possibly due to its degradation by reactive oxygen species, and causes renal sodium retention by stimulating tubular sodium reabsorption. NO deficiency and abnormal renal Na+ handling may contribute to leptin-induced hypertension.

  20. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction

    Science.gov (United States)

    Chang, Jennifer; Fedinec, Alexander L.; Kuntamallappanavar, Guruprasad; Leffler, Charles W.; Bukiya, Anna N.

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from “energy drinks”) continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40–70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS−/−) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  1. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction.

    Science.gov (United States)

    Chang, Jennifer; Fedinec, Alexander L; Kuntamallappanavar, Guruprasad; Leffler, Charles W; Bukiya, Anna N; Dopico, Alex M

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  2. Effects of alpha‑tocopherol on gingival expression of inducible nitric ...

    African Journals Online (AJOL)

    or insulin on the number of gingival inducible nitric oxide synthase (iNOS) positive cells in rats with experimental periodontitis with or without streptozotocin (STZ)‑induced diabetes. Materials and Methods: A total of 60 Sprague‑Dawley rats were ...

  3. Inducible nitric oxide synthase and guinea-pig ileitis induced by adjuvant

    Directory of Open Access Journals (Sweden)

    N. D. Seago

    1995-01-01

    Full Text Available We sought to establish a model of inflammatory bowel disease by augmenting the activity of the local immune system with Freund's complete adjuvant, and to determine if inducible nitric oxide synthase (iNOS expression and peroxynitrite formation accompanied the inflammatory condition. In anaesthetized guinea-pigs, a loop of distal ileum received intraluminal 50% ethanol followed by Freund's complete adjuvant. Control animals were sham operated. When the animals were killed 7 or 14 days later, loop lavage fluid was examined for nitrite and PGE2 levels; mucosal levels of granulocyte and macrophages were estimated by myeloperoxidase (MPO and N-acetyl-D-glucosaminidase (NAG activity, respectively. Cellular localization if iNOS and peroxynitrite formation were determined by immunohistochemistry with polyclonal antibodies directed against peptide epitopes of mouse iNOS and nitrotyrosine, respectfully. Adjuvant administration resulted in a persistent ileitis, featuring gut thickening, crypt hyperplasia, villus tip swelling and disruption, and cellular infiltration. Lavage levels of PGE2 and nitrite were markedly elevated by adjuvant treatment. Immunoreactive iNOS and nitrotyrosine bordered on detectability in normal animals but were markedly evident with adjuvant treatment at day 7 and particularly day 14. Immunohistochemistry suggested that enteric neurons and epithelia were major sites of iNOS activity and peroxynitrite formation. We conclude that local administration of adjuvant establishes a chronic ileitis. Inducible nitric oxide synthase may contribute to the inflammatory process.

  4. Apoptosis of bladder transitional cell carcinoma T24 cells induced by adenovirus-mediated inducible nitric oxide synthase gene transfection.

    Science.gov (United States)

    Tan, Jing; Zeng, Qing; Jiang, Xian-Zheng; He, Le-Ye; Wang, Jin-Rong; Yao, Kun; Wang, Chang-Hui

    2013-10-01

    To investigate the effects of adenovirus-mediated inducible nitric oxide synthase gene transfection on bladder transitional cell carcinoma T24 cells, and to provide novel insights and approaches to clinical therapies against bladder transitional cell carcinoma. Firstly, construct recombinant adenovirus vector pAd-iNOS of iNOS, followed by transfection of pAd-iNOS into HECK293 packaging cells. Thirdly, harvest recombinant adenovirus rAd-iNOS after amplification and purification procedures. Finally, transfect the recombinant adenovirus rAd-iNOS into human bladder carcinoma T24 cells and examine the effect of rAd-iNOS transfection on apoptosis of T24 and possible mechanism. As shown by this study, the recombinant adenovirus rAd-iNOS was constructed successfully. The virus titer was 5.8×10(8) PFU/mL and recombinant was verified by PCR analysis. Transfection of adenovirus rAd-iNOS into T24 cells could induce secretion of high NO concentration, P53 protein expression up-regulation, as well as promotion of T24 cell apoptosis. The transfection of human bladder carcinoma T24 cells from recombinant adenovirus rAd-iNOS was confirmed to induce intracellular iNOS over-expression, high production of NO, up-regulation of intracellular P53 expression and promotion of cell apoptosis.

  5. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease.

    Science.gov (United States)

    Wang, Liqun; Hagemann, Tracy L; Kalwa, Hermann; Michel, Thomas; Messing, Albee; Feany, Mel B

    2015-11-26

    Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction.

  6. Nitric oxide synthase inhibitor aminoguanidine potentiates iminodipropionitrile-induced neurotoxicity in rats.

    Science.gov (United States)

    Tariq, M; Khan, H A; Al Deeb, S; Al Moutaery, K

    1999-11-26

    This investigation was undertaken to study the effect of nitric oxide synthase inhibitor, aminoguanidine on iminodipropionitrile (IDPN)-induced neurobehavioral and vestibular toxicity in rats. The dyskinetic syndrome was produced in male Wistar rats by i.p. injections of IDPN (100 mg/kg) for 6 days. Aminoguanidine was administered orally in the doses of 50, 150 and 300 mg/kg, 60 min before IDPN in three different groups. Control rats received vehicle only, whereas another group was treated with 300 mg/kg of aminoguanidine alone (without IDPN). Our results showed that aminoguanidine significantly and dose dependently exacerbated the incidence and intensity of IDPN-induced dyskinetic head movements. Aminoguanidine potentiated IDPN-induced loss of air righting reflex. The histopathological examination of inner ear showed aggravation of IDPN-induced degeneration of sensory hair cells in the crista ampullaris by aminoguanidine. These results suggest the role of nitric oxide in IDPN-induced neurobehavioral and vestibular toxicity.

  7. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Tran, E H; Hardin-Pouzet, H; Verge, G

    1997-01-01

    Nitric oxide (NO), produced by inducible NO synthase (iNOS), may play a role in inflammatory demyelinating diseases of the central nervous system (CNS). We show upregulation of iNOS mRNA in CNS of SJL/J mice with experimental allergic encephalomyelitis (EAE). Using antibodies against mouse i...

  8. 7-Nitro indazole, an inhibitor of neuronal nitric oxide synthase, attenuates pilocarpine-induced seizures

    NARCIS (Netherlands)

    R. van Leeuwen (Redmer); R. de Vries (René); E. Dzoljic (Eleonora)

    1995-01-01

    textabstract7-Nitro indazole (25–100 mg/kg i.p.), an inhibitor of neuronal nitric oxide (NO) synthase, attenuated the severity of pilocarpine (300 mg/kg i.p.)-induced seizures in mice. This indicates that the decreased neuroexcitability of the central nervous system (CNS) following administration of

  9. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  10. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  11. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Naomi G Iwata

    Full Text Available Intake of trans fatty acids (TFA, which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived-dairy products and meat on endothelial NF-κB activation and nitric oxide (NO production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans, Linoelaidic (trans-C18:2 (9 trans, 12 trans, and Transvaccenic (trans-C18:1 (11 trans for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation.

  12. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation.

    Science.gov (United States)

    Sobrino, Agua; Vallejo, Susana; Novella, Susana; Lázaro-Franco, Macarena; Mompeón, Ana; Bueno-Betí, Carlos; Walther, Thomas; Sánchez-Ferrer, Carlos; Peiró, Concepción; Hermenegildo, Carlos

    2017-04-01

    The Mas receptor is involved in the angiotensin (Ang)-(1-7) vasodilatory actions by increasing nitric oxide production (NO). We have previously demonstrated an increased production of Ang-(1-7) in human umbilical vein endothelial cells (HUVEC) exposed to estradiol (E2), suggesting a potential cross-talk between E2 and the Ang-(1-7)/Mas receptor axis. Here, we explored whether the vasoactive response and NO-related signalling exerted by E2 are influenced by Mas. HUVEC were exposed to 10nM E2 for 24h in the presence or absence of the selective Mas receptor antagonist A779, and the estrogen receptor (ER) antagonist ICI182780 (ICI). E2 increased Akt and endothelial nitric oxide synthase (eNOS) mRNA and protein expression, measured by RT-PCR and Western blot, respectively. Furthermore, E2 increased Akt activity (determined by the levels of phospho-Ser(473)) and eNOS activity (by the enhanced phosphorylation of Ser(1177), the activated form), resulting in increased NO production, which was measured by the fluorescence probe DAF-2-FM. These signalling events were dependent on ER and Mas receptor activation, since they were abolished in the presence of ICI or A779. In ex-vivo functional experiments performed with a small-vessel myograph in isolated mesenteric vessels from wild-type mice pre-contracted with noradrenaline, the relaxant response to physiological concentrations of E2 was blocked by ICI and A779, to the same extent to that obtained in the vessels isolated from Mas-deficient. In conclusion, E2 induces NO production and vasodilation through mechanisms that require Mas receptor activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Regulation of Injury-Induced Neurogenesis by Nitric Oxide

    Science.gov (United States)

    Carreira, Bruno P.; Carvalho, Caetana M.; Araújo, Inês M.

    2012-01-01

    The finding that neural stem cells (NSCs) are able to divide, migrate, and differentiate into several cellular types in the adult brain raised a new hope for restorative neurology. Nitric oxide (NO), a pleiotropic signaling molecule in the central nervous system (CNS), has been described to be able to modulate neurogenesis, acting as a pro- or antineurogenic agent. Some authors suggest that NO is a physiological inhibitor of neurogenesis, while others described NO to favor neurogenesis, particularly under inflammatory conditions. Thus, targeting the NO system may be a powerful strategy to control the formation of new neurons. However, the exact mechanisms by which NO regulates neural proliferation and differentiation are not yet completely clarified. In this paper we will discuss the potential interest of the modulation of the NO system for the treatment of neurodegenerative diseases or other pathological conditions that may affect the CNS. PMID:22997523

  14. A large blood pressure-raising effect of nitric oxide synthase inhibition in humans

    Science.gov (United States)

    Sander, M.; Chavoshan, B.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    In experimental animals, systemic administration of nitric oxide synthase (NOS) inhibitors causes large increases in blood pressure that are in part sympathetically mediated. The aim of this study was to determine the extent to which these conclusions can be extrapolated to humans. In healthy normotensive humans, we measured blood pressure in response to two NOS inhibitors, NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-arginine methyl ester (L-NAME), the latter of which recently became available for use in humans. The major new findings are 3-fold. First, L-NAME produced robust increases in blood pressure that were more than 2 times larger than those previously reported in humans with L-NMMA and approximated those seen in experimental animals. L-NAME (4 mg/kg) raised mean arterial pressure by 24+/-2 mm Hg (n=27, P<0.001), whereas in subjects who received both inhibitors, a 12-fold higher dose of L-NMMA (50 mg/kg) raised mean arterial pressure by 15+/-2 mm Hg (n=4, P<0.05 vs L-NAME). Second, the L-NAME-induced increases in blood pressure were caused specifically by NOS inhibition because they were reversed by L-arginine (200 mg/kg, n=12) but not D-arginine (200 mg/kg, n=6) and because NG-nitro-D-arginine methyl ester (4 mg/kg, n=5) had no effect on blood pressure. Third, in humans, there is an important sympathetic component to the blood pressure-raising effect of NOS inhibition. alpha-Adrenergic blockade with phentolamine (0.2 mg/kg, n=9) attenuated the L-NAME-induced increase in blood pressure by 40% (P<0.05). From these data, we conclude that pharmacological inhibition of NOS causes large increases in blood pressure that are in part sympathetically mediated in humans as well as experimental animals.

  15. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  16. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin

    NARCIS (Netherlands)

    Lechner, Matthias; Lirk, Philipp; Rieder, Josef

    2005-01-01

    Inducible nitric oxide synthase (iNOS) is one of three key enzymes generating nitric oxide (NO) from the amino acid l-arginine. iNOS-derived NO plays an important role in numerous physiological (e.g. blood pressure regulation, wound repair and host defence mechanisms) and pathophysiological

  17. Effects of incretin agonists on endothelial nitric oxide synthase expression and nitric oxide synthesis in human coronary artery endothelial cells exposed to TNFα and glycated albumin.

    Science.gov (United States)

    Garczorz, Wojciech; Francuz, Tomasz; Siemianowicz, Krzysztof; Kosowska, Agnieszka; Kłych, Agnieszka; Aghdam, Mohammad Reza F; Jagoda, Krystyna

    2015-02-01

    There have been a number of beneficial effects of incretin agonists on the cardiovascular system. Glycated albumin (GA) and tumor necrosis factor (TNFα) may lead to endothelial dysfunction. Due to reports of cardioprotective effects of incretin agonist, we wanted to determine if GLP-1 and exendin-4 can reverse diminished production of nitric oxide (NO) after treatment with TNFα and GA. The objective of our experiment was to study the interaction between incretin agonists and proinflammatory substances like TNFα and GA on production of NO in HCAEC. Human vascular endothelial cells from the coronary artery (HCAEC) were used. The mRNA expression and protein level of endothelial nitric oxide synthase (eNOS) and inducible (iNOS) were quantified. NO production was measured in cells using DAF-FM/DA and flow cytometry. TNFα (10 ng/mL) decreased eNOS: mRNA by 90% and protein level by 31%. TNFα also decreased NO by 33%. GA (500 μg/mL) neither affected eNOS expression nor the protein level, but inhibited nearly all formation of NO in endothelium. GLP-1 (100 nM) and exendin-4 (1 and 10nM) decreased the amount of NO compared to control. Incubation of HCAEC with TNFα and incretin agonists did not change or moderately reduce the amount of NO compared to TNFα alone. TNFα and GA decrease production of NO in HCAEC, presumably by inducing reactive oxygen species or eNOS uncoupling. Incretin agonists in tested concentrations in the presence of l-arginine were not able to reverse this effect and instead led to a further reduction in NO production. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Nitric Oxide-Induced Polycystic Ovaries in The Wistar Rat

    Directory of Open Access Journals (Sweden)

    Fatemeh Hassani

    2012-01-01

    Full Text Available Background: Nitric oxide (NO involves in polycystic ovary syndrome (PCOS, a causeof infertility in women during the reproductive age. The PCOS is now categorized as aninflammatory phenomenon. The aim of this study was to evaluate the role of NO, a proinflammatoryagent, in this syndrome at histological and biochemical levels.Materials and Methods: In this experimental study, animals were female Wistar rats(weighing 200-250 g kept under standard conditions. L-Arginine (50-200 mg/kg, a precursorof NO, was injected intra-peritoneally (i.p. through a period ranging from 9 to14 days/once a day. The rats' estrous cycle was studied using Papanicolaou test; those showing phaseof Diestrous were grouped into experimental and control groups. The control group solelyreceived saline (1 ml/kg, i.p. throughout all experiments. To evaluate the inflammatory effectof NO, the rats were treated an anti-inflammatory agent, naloxone hydrochloride (0.4 mg/kg,i.p., prior to L-arginine. At the end of the treatment period all animals’ ovaries were assessedfor histopathological and histochemical investigations. Also, activation of NO synthase (NOSin the experiments was studied using NADPH-diaphorase technique.Results: The ovaries of rats treated with L-arginine showed polycystic characteristics incontrast to those collected from control or naloxone pretreated groups, based on image analysis.A difference in enzyme activation was also shown in the sections that belonged to thegroups that received L-arginine when compared with the pre-naloxone and control groups.Conclusion: Based on these results, we believe that NO may play a major role in thepathophysiology of PCOS.

  19. Expression of inducible nitric oxide synthase and effects of L-arginine on colonic nitric oxide production and fluid transport in patients with "minimal colitis"

    DEFF Research Database (Denmark)

    Perner, Anders; Andresen, Lars; Normark, Michel

    2005-01-01

    Some patients with idiopathic, chronic diarrhoea have minimal, non-specific colonic inflammation. As nitric oxide (NO) acts as a secretagogue in the colon, we studied the expression of inducible NO synthase (iNOS) in mucosal biopsies and the effects of NOS stimulation on colonic transfer of fluid...

  20. Suppression of azoxymethane-induced colonic aberrant crypt foci by a nitric oxide synthase inhibitor.

    Science.gov (United States)

    Kawamori, T; Takahashi, M; Watanabe, K; Ohta, T; Nakatsugi, S; Sugimura, T; Wakabayashi, K

    2000-01-01

    Nitric oxide synthase (NOS), an important bioregulator of a variety of biological processes, is overexpressed in colonic tumors of humans and rodents. In this study, effects of L-N(G)-nitroarginine methyl ester (L-NAME), a NOS inhibitor, on development of aberrant crypt foci (ACF) induced by azoxymethane (AOM) in F344 male rats were investigated. Six-week-old male F344 rats were fed diets containing 0 or 100 ppm L-NAME, and given s.c. injections of AOM at 15 mg/kg body wt, once a week for 2 weeks. At 17 weeks of age, all animals were sacrificed and their colons were evaluated for numbers of ACF. Feeding of 100 ppm L-NAME inhibited the development of ACF in different sizes by 24-39%, those containing four or more crypts being most markedly affected. Assessment of silver-stained nucleolar organizer regions protein (AgNORs)/nucleus further revealed a 44% reduction by administration of L-NAME. These results suggest that the NOS inhibitor, L-NAME, may be an effective chemopreventive agent against colon carcinogenesis due to depression of cell proliferation.

  1. The role of constitutive nitric-oxide synthase in ultraviolet B light-induced nuclear factor κB activity.

    Science.gov (United States)

    Tong, Lingying; Wu, Shiyong

    2014-09-19

    NF-κB is a transcription factor involved in many signaling pathways that also plays an important role in UV-induced skin tumorigenesis. UV radiation can activate NF-κB, but the detailed mechanism remains unclear. In this study, we provided evidence that the activation of constitutive nitric-oxide synthase plays a role in regulation of IκB reduction and NF-κB activation in human keratinocyte HaCaT cells in early phase (within 6 h) post-UVB. Treating the cells with l-NAME, a selective inhibitor of constitutive nitric-oxide synthase (cNOS), can partially reverse the IκB reduction and inhibit the DNA binding activity as well as nuclear translocation of NF-κB after UVB radiation. A luciferase reporter assay indicates that UVB-induced NF-κB activation is totally diminished in cNOS null cells. The cNOS-mediated reduction of IκB is likely due to the imbalance of nitric oxide/peroxynitrite because treating the cells with lower (50 μm), but not higher (100-500 μm), concentration of S-nitroso-N-acetylpenicillamine (SNAP) can reverse the effect of l-NAME in partial restore IκB level post-UVB. Our data also showed that NF-κB activity was required for maintaining a stable IκB kinase α subunit (IKKα) level because treating the cells with NF-κB or cNOS inhibitors could reduce IKKα level upon UVB radiation. In addition, our data demonstrated that although NF-κB protects cells from UVB-induced death, its pro-survival activity was likely neutralized by the pro-death activity of peroxynitrite after UVB radiation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis.

    Science.gov (United States)

    Tendler, D S; Bao, C; Wang, T; Huang, E L; Ratovitski, E A; Pardoll, D A; Lowenstein, C J

    2001-05-01

    Activated macrophages play a central role in antitumor immunity. However, the stimuli that activate macrophages to kill tumor cells are not completely understood. Because the center of solid tumors can be hypoxic, we hypothesized that hypoxia may be an important signal in activating macrophages to kill tumor cells. Hypoxia stimulates IFN-primed macrophages to express the inducible nitric oxide synthase (NOS2) and to synthesize nitric oxide (NO). We show that this synergy between IFN and hypoxia is mediated by the direct interaction of the hypoxia inducible factor-1 (HIF-1) and IFN regulatory factor-1 (IRF-1), which are both required for the hypoxic transcription of NOS2. This interaction between HIF-1 and IRF-1 may explain the mechanism by which macrophages infiltrating into tumors are activated to express NOS2 and to produce NO, a mediator of tumor apoptosis.

  3. PPARγ affects nitric oxide in human umbilical vein endothelial cells exposed to Porphyromonas gingivalis.

    Science.gov (United States)

    Li, Peng; Zhang, Dakun; Wan, Meng; Liu, Jianru

    2016-08-01

    Porphyromonas gingivalis induces nitric oxide (NO) synthesis in human umbilical vein endothelial cells (HUVECs). Peroxisome proliferator-activated receptor (PPARγ) has an anti-inflammation function, and its involvement in this NO induction process requires elucidation. Here, we focused on PPARγ expression in HUVECs exposed to P. gingivalis, and investigated its effects on NO synthesis. HUVECs were time-dependently stimulated by P. gingivalis W83 for 0-24h. PPARγ expression was assessed at the mRNA and protein levels, and PPARγ activation was measured using dual-luciferase reporter assays. NO synthesis and NO synthase (NOS) expression in response to P. gingivalis were examined in HUVECs pretreated with representative PPARγ agonist (15-deoxy-Δ12,14-prostaglandin J2 10μM) or antagonist (GW9662 10μM). In addition, NO synthesis and NOS expression in the P. gingivalis infected and control groups were detected. The PPARγ mRNA level in HUVECs increased after exposure to P. gingivalis for 1h and its protein level increased at 2h. Luciferase-induced PPARγ increased in P. gingivalis-exposed HUVECs. NO synthesis in the infected group at 4h, and in the PPARγ-activated group at 8h, was higher than that in controls. Inducible NOS increased in the infected and PPARγ-activated groups at 4 and 8h. The total endothelial NOS (eNOS) and phospho-eNOS levels were lower in the infected group than controls, but did not change in the PPARγ-activated group. Activated PPARγ induces NO generation through the NOS pathway in HUVECs exposed to P. gingivalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Inducible and neuronal nitric oxide synthases exert contrasting effects during rat intestinal recovery following fasting.

    Science.gov (United States)

    Ito, Junta; Uchida, Hiroyuki; Machida, Naomi; Ohtake, Kazuo; Saito, Yuki; Kobayashi, Jun

    2017-04-01

    We investigated the effects of endogenous inducible (iNOS) and neuronal nitric oxide synthase on recovery from intestinal mucosal atrophy caused by fasting-induced apoptosis and decreased cell proliferation during refeeding in rats. Rats were divided into five groups, one of which was fed ad libitum, and four of which underwent 72 h of fasting, followed by refeeding for 0, 6, 24, and 48 h, respectively. iNOS and neuronal nitric oxide synthase mRNA and protein levels in jejunal tissues were measured, and mucosal height was histologically evaluated. Apoptotic indices, interferon-γ (IFN-γ) transcription levels, nitrite levels (as a measure of nitric oxide [NO] production),8-hydroxydeoxyguanosine formation (indicating reactive oxygen species [ROS] levels), crypt cell proliferation, and the motility indices (MI) were also estimated. Associations between mucosal height and NOS protein levels were determined using Spearman's rank correlation test. Notably, we observed significant increases in mucosal height and in neuronal nitric oxide synthase mRNA and protein expression as refeeding time increased. Indeed, there was a significant positive correlation between neuronal nitric oxide synthase protein level and mucosal height during the 48-h refeeding period ( r = 0.725, P fasting. Our finding suggests that refeeding likely repairs fasting-induced jejunal atrophy by suppressing iNOS expression and subsequently inhibiting NO, ROS, and IFN-γ as apoptosis mediators, and by promoting neuronal nitric oxide synthase production and inducing crypt cell proliferation via mechanical stimulation. Impact statement Besides providing new data confirming the involvement of iNOS and nNOS in intestinal mucosal atrophy caused by fasting, this study details their expression and function during recovery from this condition following refeeding. We demonstrate a significant negative correlation between iNOS and nNOS levels during refeeding, and associate this with cell proliferation

  5. Crosstalk between nitric oxide and hypoxia-inducible factor signaling pathways: an update

    OpenAIRE

    Hendrickson MD; Poyton RO

    2015-01-01

    Marina D Hendrickson, Robert O Poyton Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA Abstract: Hypoxia-inducible factor-1 (HIF-1) is responsible for cellular adaptations to hypoxia. While oxygen (O2) negatively regulates its stability, many other factors affect HIF-1 stability and activity, including nitric oxide (NO). NO derived from l-arginine and nitrite (NO2–) could nitrosylate or nitrate HIF-1 and multiple proteins involv...

  6. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... alleviated arsenic-induced electrolyte leakage and malondiadehyde (MDA) content in tall fescue leaves, ... 1, singlet oxygen) increased and ..... However, ONOO- can be protonated and decomposed to a nitrate anion and a proton, or it can react with hydrogen peroxide to yield a nitrite anion and oxygen.

  7. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    Science.gov (United States)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  8. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig.

    Science.gov (United States)

    Hong, Sung Hwa; Park, Sook Kyung; Cho, Yang-Sun; Lee, Hyun-Seok; Kim, Ki Ryung; Kim, Myung Gu; Chung, Won-Ho

    2006-01-01

    Gentamicin is a well-known ototoxic aminoglycoside. However, the mechanism underlying this ototoxicity remains unclear. One of the mechanisms which may be responsible for this ototoxicity is excitotoxic damage to hair cells. The overstimulation of the N-methyl-d-aspartate (NMDA) receptors increases the production of nitric oxide (NO), which induces oxidative stress on hair cells. In order to determine the mechanism underlying this excitotoxicity, we treated guinea pigs with gentamicin by placing gentamicin (0.5 mg) pellets into a round window niche. After the sacrifice of the animals, which occurred at 3, 7 and 14 days after the treatment, the numbers of hair cells in the animals were counted with a scanning electron microscope. We then performed immunostaining using neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS) and nitrotyrosine antibodies. The number of hair cells in the animals was found to decrease significantly after 7 days. nNOS and iNOS expression levels were observed to have increased 3 days after treatment. Nitrotyrosine was expressed primarily at the calyceal afferents of the type I hair cells 3 days after treatment. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining revealed positive hair cells 3 days after treatment. Our results suggest that inner ear treatment with gentamicin may upregulate nNOS and iNOS to induce oxidative stress in the calyceal afferents of type I hair cells, via nitric oxide overproduction.

  9. Vaccinium myrtillus ameliorates unpredictable chronic mild stress induced depression: possible involvement of nitric oxide pathway.

    Science.gov (United States)

    Kumar, Baldeep; Arora, Vipin; Kuhad, Anurag; Chopra, Kanwaljit

    2012-04-01

    Chronic unpredictable stressors can produce a situation similar to clinical depression and such animal models can be used for the preclinical evaluation of antidepressants. Nitric oxide, a secondary messenger molecule, has been implicated in neurotransmission, synaptic plasticity, learning, aggression and depression. Vaccinium myrtillus (bilberry) extract is a potent inhibitor of reactive oxygen/nitrogen species and cytokine production. The present study investigated the role of nitric oxide in the antidepressant action of Vaccinium myrtillus in unpredictable chronic mild stress-induced depression in mice. Animals were subjected to different stress paradigms daily for a period of 21 days to induce depressive-like behavior. Pretreatment with L-arginine significantly reversed the protective effect of bilberry (500 mg/kg) on chronic stress-induced behavioral (immobility period, sucrose preference) and biochemical (lipid peroxidation and nitrite levels; endogenous antioxidant activities) in stressed mice. Furthermore, L-NAME (10 mg/kg) pretreatment with a sub-effective dose of bilberry (250 mg/kg) significantly potentiated the protective effect of bilberry extract. The study revealed that modulation of the nitric oxide pathway might be involved in antidepressant-like effects of Vaccinium myrtillus in stressed mice. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Manganese-induced effects on cerebral trace element and nitric oxide of Hyline cocks.

    Science.gov (United States)

    Liu, Xiaofei; Zuo, Nan; Guan, Huanan; Han, Chunran; Xu, Shi Wen

    2013-08-01

    Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg(-1). After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.

  11. Amygdalin suppresses lipopolysaccharide-induced expressions of cyclooxygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells.

    Science.gov (United States)

    Yang, Hye-Young; Chang, Hyun-Kyung; Lee, Jin-Woo; Kim, Young-Sick; Kim, Hong; Lee, Myoung-Hwa; Shin, Mal-Soon; Ham, Dae-Hyun; Park, Hun-Kuk; Lee, Hyejung; Kim, Chang-Ju

    2007-01-01

    Amygdalin (D-mandelonitrile-beta-D-gentiobioside) is a cynogenic compound found in sweet and bitter almonds, Persicae semen and Armeniacae semen. Amygdalin has been used for the treatment of cancers and for the relief of the pain. We made an aqueous extraction of amygdalin from Armeniacae semen. In this study, the effect of amygdalin on the lipopolysaccharide (LPS)-induced inflammation was investigated. The effects of amygdalin extracted from Armeniacae semen on the LPS-stimulated mRNA expressions of cyclooxygenase (COX)-1, COX-2 and inducible nitric oxide synthase (iNOS) in the mouse BV2 microglial cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR). The effects of amygdalin on the prostaglandins E(2) synthesis and the nitric oxide production were also studied by performing prostaglandins E(2) immunoassay and by detecting nitric oxide. The present results showed that amygdalin suppressed the prostaglandin E(2) synthesis and the nitric oxide production by inhibiting the LPS-stimulated mRNA expressions of COX-2 and iNOS in the mouse BV2 cells. These results show that amygdalin exerts anti-inflammatory and analgesic effects and it dose so probably by suppressing the mRNA expressions of COX-2 and iNOS.

  12. Localization of nitric oxide synthase and haemoxygenase, and functional effects of nitric oxide and carbon monoxide in the pig and human intravesical ureter.

    Science.gov (United States)

    Iselin, C E; Alm, P; Schaad, N C; Larsson, B; Graber, P; Andersson, K E

    1997-01-01

    The distribution of nitric oxide synthase (NOS)-immunoreactive (IR) and haemoxygenase (HO)-IR nerves was investigated in the pig and human intravesical ureter (IVU). NOS activity was measured by monitoring the conversion of [3H]-arginine to [3H]-citrulline. Effects of NO and resulting changes in cyclic nucleotide concentrations were assessed in vitro. The effects of carbon monoxide (CO) on IVU motility was also tested. Immunohistochemistry revealed an abundant overall innervation of the IVU and numerous NOS-IR nerves. Nerve trunks were also found expressing immunoreactivity for HO-1, one of the enzymes synthetising CO. Similar profiles of nerve structures expressing immunoreactivities for NOS and tyrosine-hydroxylase (TH), as well as NOS and vasoactive intestinal peptide (VIP) were demonstrated. In the pig IVU, measurement of NOS activity revealed a moderate calcium-dependent catalytic activity, NO and the NO-donor SIN-1 reduced in a concentration-dependent manner serotonin-induced contractions of pig and human IVU, and the spontaneous contractions of pig IVU. In pig IVU strips precontracted with the thromboxane analogue U-46619, tetrodotoxin-sensitive relaxations were abolished by the NOS inhibitor NG-nitro-L-arginine. CO exerted no significant effect on spontaneous or induced contractions in the pig and human IVU. In precontracted strips of the pig and human IVU exposed to SIN-1 or NO, significant increases of cyclic GMP levels were measured in comparison to control preparations. The results suggest that the L-arginine/NO/cyclic GMP pathway may play a role in the regulation of the valve function in the uretero-vesical junction (UVJ). A role for CO in the UVJ has yet to be established.

  13. Nitric oxide increases Wnt-induced secreted protein-1 (WISP-1/CCN4) expression and function in colitis.

    Science.gov (United States)

    Wang, Hongying; Zhang, Rui; Wen, Shoubin; McCafferty, Donna-Marie; Beck, Paul L; MacNaughton, Wallace K

    2009-04-01

    Nitric oxide (NO) derived from the inducible NO synthase (iNOS) is an important and complex mediator of inflammation in the intestine. Wnt-inducible secreted protein (WISP)-1 (CCN4), a member of the connective tissue growth factor family, is involved in tissue repair. We sought to determine the relationship between iNOS and WISP-1 in colitis. By analyzing human colonic biopsy samples, we showed that the expression of mRNA for both iNOS and WISP-1 was significantly higher in ulcerative colitis samples compared with control tissue. The upregulation of WISP-1 was positively correlated with iNOS expression in two models of colitis, induced by intrarectal trinitrobenzenesulfonic acid (TNBS) or occurring spontaneously in IL-10 deficient mice. Loss of iNOS, studied using iNOS(-/-) mice in both TNBS-induced and IL-10(-/-) colitis models, significantly attenuated the colitis-related WISP-1 increase. In human colonic epithelial cell lines, the NO donor, DETA-NONOate, elevated WISP-1 mRNA and protein expression through a beta-catenin and CREB-dependent, but Wnt-1-independent, pathway. In addition, NO-induced WISP-1 directly induced secretion of soluble collagen in colonic fibroblast cells. NO increases WISP-1 expression both in vitro and in vivo, suggesting a new role for iNOS and NO in colitis.

  14. The inhibition of the constitutive and inducible nitric oxide synthase isoforms by indazole agents.

    Science.gov (United States)

    Wolff, D J; Gribin, B J

    1994-06-01

    Citrulline formation by Ca(2+)-calmodulin (CaM)-dependent nitric oxide synthase from bovine brain is inhibited reversibly by indazole, 5-nitro-, 6-nitro-, and 7-nitroindazole with IC50 values of 2.3 mM, 1.15 mM, 40 microM, and 2.5 microM, respectively. Inhibition of citrulline formation by 7-nitroindazole exhibited a Ki value of 0.16 microM and was competitive versus both arginine substrate and (6R)-5,6,7,8-tetrahydrobiopterin cofactor. The NADPH oxidase activity of bovine brain CaM-dependent nitric oxide synthase was inhibited by 7-nitroindazole with an IC50 value of 0.6 microM. Citrulline formation by the interferon-gamma/lipopolysaccharide-inducible nitric oxide synthase of murine macrophages (264.7 cell line) is inhibited reversibly by indazole, 5-nitro-, 6-nitro-, and 7-nitroindazole with IC50 values of 470, 240, 56, and 20 microM, respectively. Inhibition of citrulline formation by 7-nitroindazole exhibited a Ki value of 1.6 microM and was noncompetitive versus arginine substrate but competitive versus (6R)-5,6,7,8-tetrahydrobiopterin cofactor. None of the indazoles tested inhibited the cytochrome c reductase activity of either nitric oxide synthase isoform at concentrations up to 1000-fold higher than their IC50 values for inhibition of citrulline formation. These observations are consistent with the proposal that the indazoles exert their inhibitory actions by interaction with the heme-iron of nitric oxide synthase such that oxygen does not bind.

  15. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  16. L-Arginine is not the limiting factor for nitric oxide synthesis by human alveolar macrophages in vitro

    NARCIS (Netherlands)

    Muijsers, RBR; ten Hacken, NHT; Van Ark, [No Value; Folkerts, G; Nijkamp, FP; Postma, DS

    2001-01-01

    Unlike murine mononuclear phagocytes, human macrophages do not release high amounts of nitric oxide (NO) in vitro despite the presence of nitric oxide synthase (NOS). To determine whether this limited NO synthesis in vitro is due to limited availability of the NOS substrate L-arginine, and putative

  17. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  18. Anticonvulsion effect of acupuncture might be related to the decrease of neuronal and inducible nitric oxide synthases.

    Science.gov (United States)

    Yang, R; Huang, Z N; Cheng, J S

    1999-01-01

    To measure the levels of hippocampal nitric oxide synthase isoforms in penicillin induced epilepsy and to test the effect of electroacupuncture (EA) on changes of these levels during epilepsy, we injected penicillin into rat hippocampus to make an epilepsy model and performed electroacupuncture treatment on "Feng Fu" (DU 16) and "Jin Suo" (DU 8) points in Wistar rats. Nitric oxide synthase (NOS) mRNA levels of rat hippocampus were determined by reverse transcription-polymerase chain reaction (RT-PCR). The neuronal nitric oxide synthase (nNOS) mRNA markedly increased (pepilepsy, whereas no significant change in epithelial nitric oxide synthase (eNOS) mRNA was observed. EA inhibited the epilepsy and decreased nNOS (pepilepsy caused an increase in nNOS and iNOS, and the EA anticonvulsant effect might be related to the decrease of these nitric oxide synthases.

  19. Vasomotor control in mice overexpressing human endothelial nitric oxide synthase.

    Science.gov (United States)

    van Deel, Elza D; Merkus, Daphne; van Haperen, Rien; de Waard, Monique C; de Crom, Rini; Duncker, Dirk J

    2007-08-01

    Nitric oxide (NO) plays a key role in regulating vascular tone. Mice overexpressing endothelial NO synthase [eNOS-transgenic (Tg)] have a 20% lower systemic vascular resistance (SVR) than wild-type (WT) mice. However, because eNOS enzyme activity is 10 times higher in tissue homogenates from eNOS-Tg mice, this in vivo effect is relatively small. We hypothesized that the effect of eNOS overexpression is attenuated by alterations in NO signaling and/or altered contribution of other vasoregulatory pathways. In isoflurane-anesthetized open-chest mice, eNOS inhibition produced a significantly greater increase in SVR in eNOS-Tg mice compared with WT mice, consistent with increased NO synthesis. Vasodilation to sodium nitroprusside (SNP) was reduced, whereas the vasodilator responses to phosphodiesterase-5 blockade and 8-bromo-cGMP (8-Br-cGMP) were maintained in eNOS-Tg compared with WT mice, indicating blunted responsiveness of guanylyl cyclase to NO, which was supported by reduced guanylyl cyclase activity. There was no evidence of eNOS uncoupling, because scavenging of reactive oxygen species (ROS) produced even less vasodilation in eNOS-Tg mice, whereas after eNOS inhibition the vasodilator response to ROS scavenging was similar in WT and eNOS-Tg mice. Interestingly, inhibition of other modulators of vascular tone [including cyclooxygenase, cytochrome P-450 2C9, endothelin, adenosine, and Ca-activated K(+) channels] did not significantly affect SVR in either eNOS-Tg or WT mice, whereas the marked vasoconstrictor responses to ATP-sensitive K(+) and voltage-dependent K(+) channel blockade were similar in WT and eNOS-Tg mice. In conclusion, the vasodilator effects of eNOS overexpression are attenuated by a blunted NO responsiveness, likely at the level of guanylyl cyclase, without evidence of eNOS uncoupling or adaptations in other vasoregulatory pathways.

  20. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Selenium (Se is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO in the root of Brassica rapa under Se(IV stress. Se(IV-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR- and nitric oxide synthase (NOS-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  1. Treatment Of Sunitinib-Induced Hypertension In Solid Tumors By Nitric Oxid Donors

    Directory of Open Access Journals (Sweden)

    Luís A. Leon

    2015-08-01

    Hypertension (HT is one of the most common adverse effects of angiogenesis inhibitors. Hypertension observed in clinical trials appears to correlate with the potency of VEGF kinase inhibitor against VEGFR-2: agents with higher potency are associated with a higher incidence of hypertension. Although the exact mechanism by TKIs induce hypertension has not yet been completely clarified, two key hypotheses have been postulated. First, some studies have pointed to a VEGF inhibitors-induced decrease in nitric oxide synthase (NOS and nitric oxide (NO production, that can result in vasoconstriction and increased blood pressure. VEGF, mediated by PI3K/Akt and MAPK pathway, upregulates the endothelial nitric oxide synthase enzyme leading to up-regulation of NO production. So inhibition of signaling through the VEGF pathway would lead to a decrease in NO production, resulting in an increase in vascular resistance and blood pressure. Secondly a decrease in the number of microvascular endothelial cells and subsequent depletion of normal microvessel density (rarefaction occurs upon VEGF signaling inhibition.

  2. Crosstalk between nitric oxide and hypoxia-inducible factor signaling pathways: an update

    Directory of Open Access Journals (Sweden)

    Hendrickson MD

    2015-06-01

    Full Text Available Marina D Hendrickson, Robert O Poyton Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA Abstract: Hypoxia-inducible factor-1 (HIF-1 is responsible for cellular adaptations to hypoxia. While oxygen (O2 negatively regulates its stability, many other factors affect HIF-1 stability and activity, including nitric oxide (NO. NO derived from l-arginine and nitrite (NO2– could nitrosylate or nitrate HIF-1 and multiple proteins involved in HIF-1 regulation, and can allow HIF-1 to escape normoxic degradation. In turn, HIF-1 can increase NO production through multiple mechanisms, including increased inducible nitric oxide synthase (iNOS expression and subunit 4-2 of cytochrome c oxidase (COX4-2 expression. There is therefore a high degree of crosstalk between HIF-1 and NO signaling. As such, many cellular responses to NO are mediated by HIF-1, and vice versa. This includes, but is not limited to, angiogenesis, apoptosis, senescence, and metabolic changes. These pathways all have important functions in normal physiology and when altered can contribute or, in some cases, lead to pathogenesis. Keywords: HIF, nitric oxide, Cco/NO mitochondrial signaling, ROS/RNS, cancer

  3. Glutamate-induced production of nitric oxide in guinea pig vestibular sensory cells.

    Science.gov (United States)

    Takumida, M; Anniko, M

    2000-06-01

    Glutamate-induced production of nitric oxide (NO) in the vestibular organ of the guinea pig was investigated using the new fluorescence indicator, DAF-2DA, for direct detection of NO. Utricular maculae and isolated vestibular sensory cells were examined to locate NO production sites. The fluorescence intensity of the sensory cells was augmented by stimulation with glutamate, NMDA and AMPA. This is the first direct evidence of NO production in the vestibular end organs. NO may play an important role in the glutamate-induced ototoxicity and also be involved in disease of the inner ear.

  4. Lipopolysaccharide-induced expression of nitric oxide synthase II in the guinea pig vestibular end organ.

    Science.gov (United States)

    Takumida, M; Anniko, M

    1998-01-01

    The purpose of the investigation was to ascertain whether inoculation of bacterial lipopolysaccharide (LPS) into the vestibular organ of the guinea pig might induce formation of nitric oxide synthase (NOS) II. Forty-eight hours after the animals were injected with 1 mg transtympanic LPS, varying degrees of impaired caloric responses were observed with similar degeneration of vestibular hair cells. These effects could be blocked with N-nitro-L-arginine methylester, a competitive inhibitor of NOS. Findings suggested that NOS II, which was not normally detectable in the guinea pig vestibular organ but was present following inoculation of LPS, produced the nitric oxide as the toxic factor causing cell damage. If true, LPS may represent a reproducible method for studying the vestibular pathogenesis of inner ear disease.

  5. Nitric oxide prevents axonal degeneration by inducing HIF-1-dependent expression of erythropoietin.

    Science.gov (United States)

    Keswani, Sanjay C; Bosch-Marcé, Marta; Reed, Nicole; Fischer, Angela; Semenza, Gregg L; Höke, Ahmet

    2011-03-22

    Nitric oxide (NO) is a signaling molecule that can trigger adaptive (physiological) or maladaptive (pathological) responses to stress stimuli in a context-dependent manner. We have previously reported that NO may signal axonal injury to neighboring glial cells. In this study, we show that mice deficient in neuronal nitric oxide synthase (nNOS-/-) are more vulnerable than WT mice to toxin-induced peripheral neuropathy. The administration of NO donors to primary dorsal root ganglion cultures prevents axonal degeneration induced by acrylamide in a dose-dependent manner. We demonstrate that NO-induced axonal protection is dependent on hypoxia-inducible factor (HIF)-1-mediated transcription of erythropoietin (EPO) within glial (Schwann) cells present in the cultures. Transduction of Schwann cells with adenovirus AdCA5 encoding a constitutively active form of HIF-1α results in amelioration of acrylamide-induced axonal degeneration in an EPO-dependent manner. Mice that are partially deficient in HIF-1α (HIF-1α+/-) are also more susceptible than WT littermates to toxic neuropathy. Our results indicate that NO→HIF-1→EPO signaling represents an adaptive mechanism that protects against axonal degeneration.

  6. [Nitric oxide].

    Science.gov (United States)

    Rovira, I

    1995-01-01

    Nitric oxide was identified as the relaxing factor derived from the endothelium in 1987. Nitric oxide synthesis allows the vascular system to maintain a state of vasodilation, thereby regulating arterial pressure. Nitric oxide is also found in platelets, where it inhibits adhesion and aggregation; in the immune system, where it is responsible for the cytotoxic action of macrophages; and in the nervous system, where it acts as neurotransmitter. A deficit in endogenous synthesis of nitric oxide contributes to such conditions as essential arterial hypertension, pulmonary hypertension and heart disease. An excess of nitrous oxide induced by endotoxins and cytokinins, meanwhile, is believed to be responsible for hypotension in septic shock and for hyperdynamic circulatory state in cirrhosis of the liver. Nitric oxide has also been implicated in the rejection of transplanted organs and in cell damage after reperfusion. Inhaled nitrous oxide gas reduces pulmonary hypertension without triggering systemic hypotension in both experimental and clinical conditions. It also produces selective vasodilation when used to ventilate specific pulmonary areas, thereby improving the ventilation/perfusion ratio and, hence, oxygenation. Nitric oxide inhalation is effective in pulmonary hypertension-coincident with chronic obstructive lung disease, in persistent neonatal pulmonary hypertension and in pulmonary hypertension with congenital or acquired heart disease. Likewise, it reduces intrapulmonary shunt in acute respiratory failure and improves gas exchange. Under experimental conditions nitric oxide acts as a bronchodilator, although it seems to be less effective for this purpose in clinical use.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Ferulic acid and its water-soluble derivatives inhibit nitric oxide production and inducible nitric oxide synthase expression in rat primary astrocytes.

    Science.gov (United States)

    Kikugawa, Masaki; Ida, Tomoaki; Ihara, Hideshi; Sakamoto, Tatsuji

    2017-08-01

    We recently reported that two water-soluble derivatives of ferulic acid (1-feruloyl glycerol, 1-feruloyl diglycerol) previously developed by our group exhibited protective effects against amyloid-β-induced neurodegeneration in vitro and in vivo. In the current study, we aimed to further understand this process by examining the derivatives' ability to suppress abnormal activation of astrocytes, the key event of neurodegeneration. We investigated the effects of ferulic acid (FA) derivatives on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in rat primary astrocytes. The results showed that these compounds inhibited NO production and iNOS expression in a concentration-dependent manner and that the mechanism underlying these effects was the suppression of the nuclear factor-κB pathway. This evidence suggests that FA and its derivatives may be effective neuroprotective agents and could be useful in the treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease.

  8. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  9. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    Science.gov (United States)

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-02

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity.

  10. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    Science.gov (United States)

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  11. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling.

    Science.gov (United States)

    Chakraborty, Shreeta; Ain, Rupasri

    2017-04-21

    Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression. © 2017 by The American Society for

  12. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  13. High nitric oxide production, secondary to inducible nitric oxide synthase expression, is essential for regulation of the tumour-initiating properties of colon cancer stem cells.

    Science.gov (United States)

    Puglisi, Maria Ausiliatrice; Cenciarelli, Carlo; Tesori, Valentina; Cappellari, Marianna; Martini, Maurizio; Di Francesco, Angela Maria; Giorda, Ezio; Carsetti, Rita; Ricci-Vitiani, Lucia; Gasbarrini, Antonio

    2015-08-01

    Chronic inflammation is a leading cause of neoplastic transformation in many human cancers and especially in colon cancer (CC), in part due to tumour promotion by nitric oxide (NO) generated at inflammatory sites. It has also been suggested that high NO synthesis, secondary to inducible NO synthase (iNOS) expression, is a distinctive feature of cancer stem cells (CSCs), a small subset of tumour cells with self-renewal capacity. In this study we explored the contribution of NO to the development of colon CSC features and evaluated potential strategies to treat CC by modulating NO production. Our data show an integral role for endogenous NO and iNOS activity in the biology of colon CSCs. Indeed, colon CSCs with high endogenous NO production (NO(high)) displayed higher tumourigenic abilities than NO(low) fractions. The blockade of endogenous NO availability, using either a specific iNOS inhibitor or a genetic knock-down of iNOS, resulted in a significant reduction of colon CSC tumourigenic capacities in vitro and in vivo. Interestingly, analysis of genes altered by iNOS-directed shRNA showed that the knockdown of iNOS expression was associated with a significant down-regulation of signalling pathways involved in stemness and tumour progression in colon CSCs. These findings confirm that endogenous NO plays an important role in defining the stemness properties of colon CSCs through cross-regulation of several cellular signalling pathways. This discovery could shed light on the mechanisms by which NO induces the growth and invasiveness of CC, providing new insights into the link between inflammation and colon tumourigenesis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Inducible Nitric Oxide Synthase in Heart Tissue and Nitric Oxide in Serum of Trypanosoma cruzi-Infected Rhesus Monkeys: Association with Heart Injury

    Science.gov (United States)

    Carvalho, Cristiano Marcelo Espinola; Silverio, Jaline Coutinho; da Silva, Andrea Alice; Pereira, Isabela Resende; Coelho, Janice Mery Chicarino; Britto, Constança Carvalho; Moreira, Otacílio Cruz; Marchevsky, Renato Sergio; Xavier, Sergio Salles; Gazzinelli, Ricardo Tostes; da Glória Bonecini-Almeida, Maria; Lannes-Vieira, Joseli

    2012-01-01

    Background The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO) levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2) is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2 −/−) mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. Methodology Rhesus monkeys and C57BL/6 and Nos2 −/− mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG), echocardiogram (ECHO), creatine kinase heart isoenzyme (CK-MB) activity levels in serum and connexin 43 (Cx43) expression in the cardiac tissue. Results Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC). Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2 −/− mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. Conclusion T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute to CCC

  15. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  16. Role of inducible nitric oxide synthase and interleukin-6 expression in estimation of skin burn age and vitality.

    Science.gov (United States)

    Abo El-Noor, Mona M; Elgazzar, Fatma M; Alshenawy, Hanan A

    2017-11-01

    Estimation of age and vitality of burn injury both in the living and dead is essential in forensic practice. Nitric oxide and interleukin-6 (IL-6) play an important role in skin burn healing. In this study, the expression of inducible nitric oxide synthase (iNOS) and IL-6 proteins during skin burn healing in rats was studied for purposes of burn dating and to differentiate between ante-mortem and post-mortem burn. Ante-mortem skin burns were created on forty five rats. Normal and burnt skin samples were taken at 1, 3, 5, 7, 9, 11, 13, 15 and 21 days following burn induction (5 rats for each stage). Post-mortem burn was inflicted 6 h after scarification in another five rats. There was a statistically significant difference in both iNOS and IL-6 expression between the different time intervals of the ante-mortem burn. Expression of both iNOS and IL-6 decreased remarkably in the post-mortem burn with a statistically significant difference from ante-mortem intervals. A statistically significant positive association between the two markers was found. These results indicate that both iNOS and IL-6 expression in ante-mortem burnt skin was time dependent and significantly differed from post-mortem burn. Further research on humans is recommended. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  17. Neuronal nitric oxide synthase contributes to pentylenetetrazole-kindling-induced hippocampal neurogenesis.

    Science.gov (United States)

    Zhu, Xinjian; Dong, Jingde; Shen, Kai; Bai, Ying; Chao, Jie; Yao, Honghong

    2016-03-01

    Neuronal nitric oxide synthase (nNOS), the major nitric oxide synthase isoform in the mammalian brain, is implicated in the pathophysiology of several neurological conditions, including epilepsy. Neurogenesis in hippocampal dentate gyrus (DG) persists throughout life in the adult brain. Alterations in this process occur in many neurological diseases, including epilepsy. Few studies, however, have addressed the role of nNOS in hippocampal DG neurogenesis in epileptic brain. The present study, therefore, investigated the role of nNOS in pentylenetetrazole (PTZ)-kindling-induced neurogenesis in hippocampal DG. Our results showed that nNOS expression and enzymatic activity were significantly increased in the hippocampus of PTZ-kindled mice. Meanwhile, these PTZ-kindled mice were characterized by significant enhancement of new born cells proliferation and survival in hippocampal DG, and these survived cells are co-labeled with NeuN and GFAP. Selective inhibition of nNOS by 7-NI, however, suppressed PTZ-kindling-induced hippocampal DG new born cells proliferation and survival, suggesting that nNOS contributes to PTZ-kindling-induced hippocampal neurogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Bisabolol-induced gastroprotection against acute gastric lesions: role of prostaglandins, nitric oxide, and KATP+ channels.

    Science.gov (United States)

    Bezerra, S B; Leal, L K A M; Nogueira, N A P; Pinto, N A N; Campos, A R

    2009-12-01

    The effects of Matricaria recutita and alpha-bisabolol, a bioactive component from Chamomile species, were investigated against gastric damage induced by absolute ethanol (96%, 1 mL per animal) in rats. The effects of M. recutita extract and alpha-bisabolol on gastric mucosal damage were assessed by determination of changes in mean gastric lesion area. Mechanistic studies were carried out at with 100 mg=kg alpha-bisabolol. We further examined the possible participation of prostaglandins, nitric oxide, and KATP+ channels in its mechanism. M. recutita reduced gastric damage in all doses tested. Alpha-bisabolol at oral doses of 50 and 100 mg=kg markedly attenuated the gastric lesions induced by ethanol to the extent of 87% and 96%, respectively. Pretreatments with the nitric oxide antagonist N-nitro-l-arginine methyl ester (10 mg=kg, i.p.) or with indomethacin, an inhibitor of cyclooxygenase, failed to block effectively the gastroprotective effect of alpha-bisabolol. Furthermore, the alpha-bisabolol effect was significantly reduced in rats pretreated with glibenclamide, an inhibitor of KATP+ channel activation. Thus we provide evidence that alpha-bisabolol reduces the gastric damage induced by ethanol, at least in part, by the mechanism of activation of KATP+ channels.

  19. Chamomile, an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity

    OpenAIRE

    Bhaskaran, Natarajan; Shukla, Sanjeev; Srivastava, Janmejai K.; Gupta, Sanjay

    2010-01-01

    Chamomile has long been used in traditional medicine for the treatment of inflammation-related disorders. In this study we aimed to investigate the inhibitory effects of chamomile on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and to explore its potential anti-inflammatory mechanisms using RAW 264.7 macrophages. Chamomile treatment inhibited LPS-induced NO production and significantly blocked IL-1β , IL-6 and TNFα-induced NO levels in RAW 264.7 macropha...

  20. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation.

    Science.gov (United States)

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo

    2016-11-01

    Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.

  1. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    Science.gov (United States)

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  2. iNOS-Derived Nitric Oxide Induces Integrin-Linked Kinase Endocytic Lysosome-Mediated Degradation in the Vascular Endothelium.

    Science.gov (United States)

    Reventun, Paula; Alique, Matilde; Cuadrado, Irene; Márquez, Susana; Toro, Rocío; Zaragoza, Carlos; Saura, Marta

    2017-07-01

    ILK (integrin-linked kinase) plays a key role in controlling vasomotor tone and is decreased in atherosclerosis. The objective of this study is to test whether nitric oxide (NO) regulates ILK in vascular remodeling. We found a striking correlation between increased levels of inducible nitric oxide and decreased ILK levels in human atherosclerosis and in a mouse model of vascular remodeling (carotid artery ligation) comparing with iNOS (inducible NO synthase) knockout mice. iNOS induction produced the same result in mouse aortic endothelial cells, and these effects were mimicked by an NO donor in a time-dependent manner. We found that NO decreased ILK protein stability by promoting the dissociation of the complex ILK/Hsp90 (heat shock protein 90)/eNOS (endothelial NO synthase), leading to eNOS uncoupling. NO also destabilized ILK signaling platform and lead to decreased levels of paxillin and α-parvin. ILK phosphorylation of its downstream target GSK3-β (glycogen synthase kinase 3 beta) was decreased by NO. Mechanistically, NO increased ILK ubiquitination mediated by the E3 ubiquitin ligase CHIP (C terminus of HSC70-interacting protein), but ILK ubiquitination was not followed by proteasome degradation. Alternatively, NO drove ILK to degradation through the endocytic-lysosomal pathway. ILK colocalized with the lysosome marker LAMP-1 (lysosomal-associated membrane protein 1) in endothelial cells, and inhibition of lysosome activity with chloroquine reversed the effect of NO. Likewise, ILK colocalized with the early endosome marker EEA1 (early endosome antigen 1). ILK endocytosis proceeded via dynamin because a specific inhibitor of dynamin (Dyngo 4a) was able to reverse ILK endocytosis and its lysosome degradation. Endocytosis regulates ILK signaling in vascular remodeling where there is an overload of inducible NO, and thus its inhibition may represent a novel target to fight atherosclerotic disease. © 2017 American Heart Association, Inc.

  3. Acoustic stimulation promotes the expression of inducible nitric oxide synthase in the vestibule of guinea pigs.

    Science.gov (United States)

    Watanabe, Ken-ichi; Inai, Shunta; Hess, Alexander; Michel, Olaf; Yagi, Toshiaki

    2004-08-01

    Loud acoustic stimulation is known to cause inner ear disturbance. We examined immunohistochemically the vestibule of 12 guinea pigs after acoustic stimulation. The animals were divided into two equal groups: a control group and an acoustic stimulation group. The temporal bones were fixed by means of a cardiac infusion of fixative and immunohistochemically stained for inducible nitric oxide synthase (iNOS). The temporal bones in the control group did not show any iNOS. In the acoustic stimulation group, immunoreactivity for iNOS was detected in the supporting cells and sensory cells of the sensory epithelium, in the dark cell areas and in the vestibular ganglion cells. These findings suggest that free radicals are involved in the pathogenesis of noise-induced inner ear damage. Furthermore, free radicals may cause vestibular damage, as is seen in noise-induced inner ear damage.

  4. Pseudoguaianolides isolated from Inula britannica var. chinenis as inhibitory constituents against inducible nitric oxide synthase.

    Science.gov (United States)

    Lee, Hyun-Tai; Yang, Seung-Won; Kim, Kyeong Ho; Seo, Eun-Kyoung; Mar, Woongchon

    2002-04-01

    Three pseudoguaianolide type sesquiterpenes, bigelovin (1), 2,3-dihydroaromaticin (2), and ergolide (3) were isolated as inhibitory constituents against inducible nitric oxide synthase (iNOS) from the flowers of Inula britannica var. chinensis. Bigelovin (1) exhibited a highly potent inhibitory activity on lipopolysaccharide (LPS)-induced iNOS in murine macrophage RAW 264.7 cells with an IC50 value of 0.46 mM, which is about 8 times more potent than the known selective inhibitor of iNOS, L-N6-(1-iminoethyl)lysine (IC50 3.49 microM). 2,3-Dihydroaromaticin (2) and ergolide (3) also exhibited potent inhibitory activities on LPS-induced iNOS with IC50 values of 1.05 and 0.69 microM, respectively.

  5. Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages.

    Science.gov (United States)

    Ashino, Takashi; Yamanaka, Rieko; Yamamoto, Masayuki; Shimokawa, Hiroaki; Sekikawa, Kenji; Iwakura, Yoichiro; Shioda, Seiji; Numazawa, Satoshi; Yoshida, Takemi

    2008-04-01

    Heme oxygenase-1 (HO-1) is induced under infectious diseases in macrophages. We performed experiments using various gene deficient mouse-derived macrophages to determine a detailed induction mechanism of HO-1 by lipopolysaccharide (LPS) and the functional role of HO-1 induction in macrophages. LPS (1 microg/mL) maximally induced inducible nitric oxide synthase (iNOS) and HO-1 mRNAs in wild-type (WT) macrophages at 6h and 12h after treatment, respectively, and liberated tumor necrosis factor alpha (TNFalpha) from WT macrophages. LPS also induced iNOS and HO-1 in TNFalpha(-/-) macrophages, but not in iNOS(-/-) macrophages. Interestingly, although LPS strongly induced iNOS, it failed to induce HO-1 almost completely in nuclear-factor erythroid 2-related factor 2 (Nrf2)(-/-) macrophages. The LPS-induced iNOS gene expression was suppressed by pretreatment with HO-1 inducers, hemin and Co-protoporphyrin (CoPP), but not with HO-1 inhibitor, Sn-protoporphyrin in WT macrophages. In the Nrf2(-/-) macrophages, the ability of CoPP to induce HO-1 and its inhibitory effect on the LPS-induced iNOS gene expression were lower than seen in WT macrophages. The present findings suggest that HO-1 is induced via NO-induced nuclear translocation of Nrf2, and the enzymatic function of HO-1 inhibits the overproduction of NO in macrophages.

  6. Red blood cell storage increases hypoxia-induced nitric oxide bioavailability and methemoglobin formation in vitro and in vivo

    NARCIS (Netherlands)

    Almac, Emre; Bezemer, Rick; Hilarius-Stokman, Petra M.; Goedhart, Peter; de Korte, Dirk; Verhoeven, Arthur J.; Ince, Can

    2014-01-01

    In this study we investigated whether storage of red blood cells (RBCs) leads to alterations in nitrite reductase activity, hence in altered hypoxia-induced nitric oxide (NO) bioavailability and methemoglobin formation. Hypoxia-induced NO bioavailability and methemoglobin formation were measured in

  7. Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus.

    Directory of Open Access Journals (Sweden)

    Nobuo Ueda

    Full Text Available Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO is synthesised by nitric oxide synthase (NOS, which is a client protein of the molecular chaperon heat shock protein 90 (HSP90. It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation

  8. Hypobaric hypoxia induced arginase expression limits nitric oxide availability and signaling in rodent heart.

    Science.gov (United States)

    Singh, Manjulata; Padhy, Gayatri; Vats, Praveen; Bhargava, Kalpana; Sethy, Niroj Kumar

    2014-06-01

    This study was aimed to evaluate regulation of cardiac arginase expression during hypobaric hypoxia and subsequent effect on nitric oxide availability and signaling. Rats were exposed to hypobaric hypoxia (282mmHg for 3h) and ARG1 expression was monitored. The expression levels of eNOS and eNOS(Ser1177) were determined by Western blotting, cGMP levels were measured by ELISA and amino acid concentrations were measured by HPLC analysis. Transcription regulation of arginase was monitored by chromatin immunoprecipitation (ChIP) assay with anti-c-Jun antibody for AP-1 consensus binding site on ARG1 promoter. Arginase activity was inhibited by intra-venous dose of N-(ω)-hydroxy-nor-l-arginine (nor-NOHA) prior to hypoxia exposure and subsequent effect on NO availability and oxidative stress were evaluated. Hypobaric hypoxia induced cardiac arginase expression by recruiting c-Jun to AP-1 binding site on ARG1 promoter. This increased expression redirected l-arginine towards arginase and resulted in limited endothelial nitric oxide synthase (eNOS) activity, nitric oxide (NO) availability and cGMP mediated signaling. Inhibition of arginase restored the eNOS activity, promoted cardiac NO availability and ameliorated peroxynitrite formation during hypoxia. Hypoxic induced arginase under transcription control of AP-1 reciprocally regulates eNOS activity and NO availability in the heart. This also results in cardiac oxidative stress. This study provides understanding of hypoxia-mediated transcriptional regulation of arginase expression in the heart and its subsequent effect on eNOS activity, NO availability and signaling as well as cardiac oxidative stress. This information will support the use of arginase inhibitors as therapeutics for pathological hypoxia. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Nitric oxide mediates the anticonvulsant effects of thalidomide on pentylenetetrazole-induced clonic seizures in mice.

    Science.gov (United States)

    Payandemehr, Borna; Rahimian, Reza; Gooshe, Maziar; Bahremand, Arash; Gholizadeh, Ramtin; Berijani, Sina; Ahmadi-Dastgerdi, Mohammad; Aminizade, Mehdi; Sarreshte-Dari, Ali; Dianati, Vahid; Amanlou, Massoud; Dehpour, Ahmad Reza

    2014-05-01

    Thalidomide is an old glutamic acid derivative which was initially used as a sedative medication but withdrawn from the market due to the high incidence of teratogenicity. Recently, it has reemerged because of its potential for counteracting number of diseases, including neurodegenerative disorders. Other than the antiemetic and hypnotic aspects, thalidomide exerts some anticonvulsant properties in experimental settings. However, the underlying mechanisms of thalidomide actions are not fully realized yet. Some investigations revealed that thalidomide could elicit immunomodulatory or neuromodulatory properties by affecting different targets, including cytokines (such as TNF α), neurotransmitters, and nitric oxide (NO). In this regard, we used a model of clonic seizure induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether the anticonvulsant effect of thalidomide is affected through modulation of the l-arginine-nitric oxide pathway or not. Injection of a single effective dose of thalidomide (10 mg/kg, i.p. or higher) significantly increased the seizure threshold (Pthalidomide. On the other hand, NOS inhibitors [l-NAME and 7-NI] augmented the anticonvulsant effect of a subeffective dose of thalidomide (1 and 5 mg/kg, i.p.) at relatively low doses. Meanwhile, several doses of aminoguanidine [an inducible NOS inhibitor] (20, 50 and 100 mg/kg) failed to alter the anticonvulsant effect of thalidomide significantly. In summary, our findings demonstrated that the l-arginine-nitric oxide pathway can be involved in the anticonvulsant properties of thalidomide, and the role of constitutive nNOS is prominent in the reported neuroprotective feature. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  11. Effect of angiotensin II and its receptor antagonists on human corpus cavernous contractility and oxidative stress: modulation of nitric oxide mediated relaxation.

    Science.gov (United States)

    Ertemi, Hani; Mumtaz, Faiz H; Howie, Alexander J; Mikhailidis, Dimitri P; Thompson, Cecil S

    2011-06-01

    To our knowledge the interaction between angiotensin II and nitric oxide in the control of human corpus cavernous function has not been assessed previously. We determined the presence and role of angiotensin II and its receptors in human penile function. Corpus cavernous tissue was obtained from 35 patients undergoing gender reassignment surgery. Immunohistochemical analysis was done to determine angiotensin II peptide tissue distribution. Organ bath studies were done to determine the angiotensin II/nitric oxide interaction on corpus cavernous smooth muscle function. The role of oxidative stress in the angiotensin II response was also examined using the nicotinamide adenine dinucleotide phosphate oxidase inhibitor apocynin. Angiotensin II was distributed in arteriolar endothelium, endothelium lining sinusoids and smooth muscle cells, and caused dose dependent contraction of human corpus cavernous smooth muscle strips that was inhibited by the angiotensin type 1 receptor antagonist losartan. Relaxation of corpus cavernous smooth muscle induced by the nitric oxide donor sodium nitroprusside or electrical field stimulation was potentiated by losartan. Apocynin decreased angiotensin II induced corpus cavernous contraction. Angiotensin II and nitric oxide interact to modulate human cavernous function since losartan potentiated sodium nitroprusside and electrical field stimulation mediated corpus cavernous smooth muscle relaxation. The angiotensin II response involves the production of superoxide and the development of oxidative stress. These findings support the role of angiotensin II in the regulation of human penile smooth muscle tone and suggest that angiotensin type 1 receptor inhibition may be a therapeutic approach to erectile dysfunction. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after {alpha}-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Shaopeng [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-02-03

    Low-dose {alpha}-particle exposures comprise 55% of the environmental dose to the human population and have been shown to induce bystander responses. Previous studies showed that bystander effect could induce stimulated cell growth or genotoxicity, such as excessive DNA double strand breaks (DSBs), micronuclei (MN), mutation and decreased cell viability, in the bystander cell population. In the present study, the stimulated cell growth, detected with flow cytometry (FCM), and the increased MN and DSB, detected with p53 binding protein 1 (53BP1) immunofluorescence, were observed simultaneously in the bystander cell population, which were co-cultured with cells irradiated by low-dose {alpha}-particles (1-10 cGy) in a mixed system. Further studies indicated that nitric oxide (NO) and transforming growth factor {beta}1 (TGF-{beta}1) played very important roles in mediating cell proliferation and inducing MN and DSB in the bystander population through treatments with NO scavenger and TGF-{beta}1 antibody. Low-concentrations of NO, generated by spermidine, were proved to induce cell proliferation, DSB and MN simultaneously. The proliferation or shortened cell cycle in bystander cells gave them insufficient time to repair DSBs. The increased cell division might increase the probability of carcinogenesis in bystander cells since cell proliferation increased the probability of mutation from the mis-repaired or un-repaired DSBs.

  13. Endothelial dysfunction in rats with ligature-induced periodontitis: Participation of nitric oxide and cycloxygenase-2-derived products.

    Science.gov (United States)

    Campi, Paula; Herrera, Bruno Schneider; de Jesus, Flavia Neto; Napolitano, Mauro; Teixeira, Simone Aparecida; Maia-Dantas, Aline; Spolidorio, Luis Carlos; Akamine, Eliana Hiromi; Mayer, Marcia Pinto Alves; de Carvalho, Maria Helena Catelli; Costa, Soraia Katia Pereira; Muscara, Marcelo Nicolas

    2016-03-01

    Considering the evident relationship between periodontitis and cardiovascular diseases in humans, we aimed to study the in vitro vascular reactivity of aorta rings prepared from rats with ligature-induced periodontitis. Seven days after the induction of unilateral periodontitis, the animals were euthanised; rings were prepared from the descending abdominal aortas and mounted in tissue baths for the in vitro measurement of the isometric force responses to norepinephrine (NE) and acetylcholine (ACh), as well as in the presence of inhibitors of nitric oxide synthase (NOS) and cycloxygenase (COX) isoenzymes. Aortic COX and NOS gene expressions were analysed by RT-PCR, as well as protein COX-2 expression by Western blot. Periodontitis resulted in significant alveolar bone loss and did not affect arterial pressure. However, both NE-induced contraction and ACh-induced relaxation were significantly decreased and related to the presence of endothelium. Diminished eNOS and augmented COX-2 and iNOS expressions were found in the aortas from rats with periodontitis, and the pharmacological inhibition of COX-2 or iNOS improved the observed vasomotor deficiencies. We can thus conclude that periodontitis induces significant endothelial dysfunction in rat aorta which is characterized by decreased eNOS expression and mediated by upregulated iNOS and COX-2 products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Nagane, Masaki, E-mail: nagane@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan); Yasui, Hironobu, E-mail: yassan@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan); Yamamori, Tohru, E-mail: yamamorit@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan); Zhao, Songji, E-mail: zsi@med.hokudai.ac.jp [Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Kuge, Yuji, E-mail: kuge@med.hokudai.ac.jp [Central Institute of Isotope Science, Hokkaido University, Sapporo (Japan); Tamaki, Nagara, E-mail: natamaki@med.hokudai.ac.jp [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Kameya, Hiromi, E-mail: kameya@affrc.go.jp [Food Safety Division, National Food Research Institute, Tsukuba (Japan); Nakamura, Hideo, E-mail: naka@science-edu.org [Department of Chemistry, Hokkaido University of Education, Hakodate (Japan); Fujii, Hirotada, E-mail: hgfujii@sapmed.ac.jp [Center for Medical Education, Sapporo Medical University, Sapporo (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan)

    2013-08-02

    Highlights: •IR-induced NO increased tissue perfusion and pO{sub 2}. •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO{sub 2} in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy.

  15. Interaction of nitric oxide with human heme oxygenase-1.

    Science.gov (United States)

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.

  16. Therapeutic strategies to address neuronal nitric oxide synthase deficiency and the loss of nitric oxide bioavailability in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Timpani, Cara A; Hayes, Alan; Rybalka, Emma

    2017-05-25

    Duchenne Muscular Dystrophy is a rare and fatal neuromuscular disease in which the absence of dystrophin from the muscle membrane induces a secondary loss of neuronal nitric oxide synthase and the muscles capacity for endogenous nitric oxide synthesis. Since nitric oxide is a potent regulator of skeletal muscle metabolism, mass, function and regeneration, the loss of nitric oxide bioavailability is likely a key contributor to the chronic pathological wasting evident in Duchenne Muscular Dystrophy. As such, various therapeutic interventions to re-establish either the neuronal nitric oxide synthase protein deficit or the consequential loss of nitric oxide synthesis and bioavailability have been investigated in both animal models of Duchenne Muscular Dystrophy and in human clinical trials. Notably, the efficacy of these interventions are varied and not always translatable from animal model to human patients, highlighting a complex interplay of factors which determine the downstream modulatory effects of nitric oxide. We review these studies herein.

  17. Selective Irreversible Inhibition of Neuronal and Inducible Nitric-oxide Synthase in the Combined Presence of Hydrogen Sulfide and Nitric Oxide.

    Science.gov (United States)

    Heine, Christian L; Schmidt, Renate; Geckl, Kerstin; Schrammel, Astrid; Gesslbauer, Bernd; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2015-10-09

    Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10(-5) and ∼7.9·10(-5) m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10(-5) m at pH 6.0 and increased to ∼8.3·10(-5) m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10(-5) m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0-6.1·10(-4) m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3-2.0·10(-5) m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. [Effects of obstructive sleep apnea style intermittent hypoxia on endothelin-1, nitric oxide, and nitric oxide synthase in endothelium: experiment with human umbilical vein endothelial cells].

    Science.gov (United States)

    Zhao, Hai-yan; Chen, Bao-yuan; Cao, Jie; Feng, Jing; Guo, Mei-nan

    2007-08-21

    To investigate the effects of intermittent hypoxia (IH) on the expression of endothelin-1 (ET-1), nitric oxide (NO), and nitric oxide synthase (NOS) in endothelium, and to evaluate the role of functional disorder of endothelium in the mechanism of obstructive sleep apnea syndrome (OSAS) induced hypertension. Human umbilical vein endothelial cells (HUVECs) of the line ECV304 were cultured and divided into 4 groups: IH group (exposed to 1.5% O(2) for 15 s and 21% O(2) for 1 min 15 s, 3 min 45 s, 5 min 15 s, or 8 min 15 s respectively alternatively with 60 episodes), intermittent normal oxygen group (exposed to 21% O(2) for 15 s and 225 s alternatively with 60 episodes), continuous hypoxia group (exposed to 1.5% for 15 min), and blank control group. Then the culture fluid was collected. The levels of activity of ET-1 (EIA) NO, and NOS were detected by enzyme immune assay, nitric acid reductase method, and chemical colorimetric analysis respectively. RT-PCR was used to detect the mRNA expression of endothelial NOS (eNOS). Compared with those of the intermittent normal oxygen group and blank control groups the ET-1 levels of the 4 IH sub groups were significantly higher (F = 28.453, P = 0.000), the NO levels ere significantly lower F = 65.252, P = 0.000), the NOS activity levels were significantly lower (F = 5.969, P = 0.008), and eNOS mRNA was significantly down-regulated (F = 16.630, P = 0.000). Compared with continuous hypoxia group with the exposure time equivalent to the accumulated hypoxia time (15 s with 60 episodes) of the IH group, the ET-1 level was significantly higher (t = 2.742, P = 0.024), the NO level was significantly lower (t = 3.347, P = 0.004), the NOS activity level was significantly lower (t = 3.989, P = 0.004), and the eNOS mRNA expression was down-regulated (t = 5.045, P = 0.000). In the different IH group along with the prolongation of the re-oxygenation time from 105 s to 495 s, while maintaining the duration of hypoxic episodes at 15 s, the ET

  19. Expression of Inducible Nitric Oxide Synthase (iNOS) in Microglia of the Developing Quail Retina

    Science.gov (United States)

    Sierra, Ana; Navascués, Julio; Cuadros, Miguel A.; Calvente, Ruth; Martín-Oliva, David; Ferrer-Martín, Rosa M.; Martín-Estebané, María; Carrasco, María-Carmen; Marín-Teva, José L.

    2014-01-01

    Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid

  20. Endogenous nitric oxide protects against platelet-activating factor-induced bowel injury in the rat.

    Science.gov (United States)

    MacKendrick, W; Caplan, M; Hsueh, W

    1993-08-01

    Platelet-activating factor (PAF) causes bowel necrosis in animal models that is histologically identical to that seen in neonatal necrotizing enterocolitis, but little is known about endogenous mechanisms that might protect against PAF-induced bowel injury. We hypothesized that endogenous nitric oxide might represent such a protective mechanism. Adult male Sprague-Dawley rats were pretreated with 2.5 mg/kg NG-nitro-L-arginine methyl ester (L-NAME), a potent nitric oxide synthase inhibitor, and given injections of 1.5 micrograms/kg PAF 15 min later. Animals treated with normal saline placebo, L-NAME alone, and PAF alone were also studied. Superior mesenteric artery blood flow and blood pressure were continuously recorded. At the end of 2 h or upon death of the animal, hematocrit was measured and intestinal samples were taken for histologic examination and determination of myeloperoxidase activity, a measure of intestinal neutrophil content. Compared with animals given PAF alone, animals pretreated with L-NAME followed by PAF developed significantly worse bowel injury (median injury scores: 2.5 versus 0.5, p = 0.005), hemoconcentration (final hematocrit 65.2 +/- 2.0% versus 53.9 +/- 1.0%, p < 0.001), and intestinal myeloperoxidase activity (12.45 +/- 1.94 U/g versus 6.51 +/- 0.57 U/g, p < 0.01). The last two effects were further accentuated when 10 mg/kg L-NAME was given before PAF. Treatment with sodium nitroprusside, a nitric oxide donor, for 10 min before and after PAF administration reversed the effects of L-NAME. Animals pretreated with phenylephrine rather than L-NAME did not develop worse injury than animals treated with PAF alone despite comparable reductions in superior mesenteric blood flow before PAF treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Inducible nitric oxide synthase expression is upregulated in oral submucous fibrosis

    Directory of Open Access Journals (Sweden)

    Rajendran R

    2007-01-01

    Full Text Available Objective: We tested the hypothesis that inducible nitric oxide synthase (iNOS modulates angiogenesis in human models and this information could be extrapolated in elucidating the pathophysiology of oral submucous fibrosis (OSF. A hypothesis which looks inadequate, but is deep rooted in literature is the epithelial alteration ("atrophy" seen in OSF and the events that lead to its causation. This aspect was tried to be addressed and an alternative pathogenetic pathway for the disease is proposed. Materials and Methods: This immunohistochemical study sought to investigate the expression of iNOS in OSF samples (n= 30 a using monospecific antibody (SC- 2050, Santa Cruz Biotechnology, Inc to the protein and also to correlate it with different grades of epithelial dysplasia associated with the disease. Twenty (20 healthy adults acted as controls. Results: iNOS staining was not demonstrated in normal oral epithelium. In oral epithelial dysplasia, staining was seen in all cases (100% in the basal layers of the epithelium and in 30% of cases it extended into the parabasal compartments as well. iNOS staining was uniformly positive in moderate dysplasia with an increase in intensity and distribution noted as the severity of dysplasia progressed. There were highly significant differences in overall positivity for iNOS in epithelium between cases and controls (Mann-Whitney U = 11.000, Wilcoxon W = 221.00, P = 0.000. Significant comparisons were made of mild Vs moderate dysplasia (Mann-Whitney U = 48.000, P = 0.014 Conclusions: This study supports our earlier morphological assessment (image analysis of the nature of vascularity in OSF mucosa. The significant vasodilation noticed in these cases argues against the concept of ischemic atrophy of the epithelium. This observation of vascularity and iNOS expression helped to explain the vasodilation noticed (sinusoids in this disease; NO being a net vasodilator. The mechanism of activation of iNOS in dysplasia is

  2. Nitric Oxide Mediates Bleomycin-Induced Angiogenesis and Pulmonary Fibrosis via Regulation of VEGF

    Science.gov (United States)

    Iyer, Anand Krishnan V.; Ramesh, Vani; Castro, Carlos A.; Kaushik, Vivek; Kulkarni, Yogesh M.; Wright, Clayton A.; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-01-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis. PMID:25919965

  3. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene......-related peptide (CGRP) systems on the GTN-induced neuronal activation in this model. MATERIALS AND METHODS: The femoral vein was catheterised in rats and GTN was infused (4 µg/kg/min, for 20 minutes, intravenously). Immunohistochemistry was performed to analyse Fos, nNOS and CGRP and Western blot for measuring n......NOS protein expression. The effect of olcegepant, L-nitro-arginine methyl ester (L-NAME) and neurokinin (NK)-1 receptor antagonist L-733060 were analysed on Fos activation. RESULTS: GTN-treated rats showed a significant increase of nNOS and CGRP in dura mater and CGRP in the trigeminal nucleus caudalis (TNC...

  4. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  5. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  6. Dexamethasone prevents granulocyte-macrophage colony-stimulating factor-induced nuclear factor-κB activation, inducible nitric oxide synthase expression and nitric oxide production in a skin dendritic cell line

    Directory of Open Access Journals (Sweden)

    Ana Luísa Vital

    2003-01-01

    Full Text Available Aims: Nitric oxide (NO has been increasingly implicated in inflammatory skin diseases, namely in allergic contact dermatitis. In this work, we investigated the effect of dexamethasone on NO production induced by the epidermal cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF in a mouse fetal skin dendritic cell line.

  7. Inhaled nitric oxide exacerbated phorbol-induced acute lung injury in rats.

    Science.gov (United States)

    Lin, Hen I; Chu, Shi Jye; Hsu, Kang; Wang, David

    2004-01-01

    In this study, we determined the effect of inhaled nitric oxide (NO) on the acute lung injury induced by phorbol myristate acetate (PMA) in isolated rat lung. Typical acute lung injury was induced successfully by PMA during 60 min of observation. PMA (2 microg/kg) elicited a significant increase in microvascular permeability, (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/body weight ratio, pulmonary arterial pressure (PAP) and protein concentration of the bronchoalveolar lavage fluid. Pretreatment with inhaled NO (30 ppm) significantly exacerbated acute lung injury. All of the parameters reflective of lung injury increased significantly except PAP (P<0.05). Coadministration of Nomega-nitro-L-arginine methyl ester (L-NAME) (5 mM) attenuated the detrimental effect of inhaled NO in PMA-induced lung injury, except for PAP. In addition, L-NAME (5 mM) significantly attenuated PMA-induced acute lung injury except for PAP. These experimental data suggest that inhaled NO significantly exacerbated acute lung injury induced by PMA in rats. L-NAME attenuated the detrimental effect of inhaled NO.

  8. The nitric oxide donor, isosorbide dinitrate, induces a cephalic cutaneous hypersensitivity, associated with sensitization of the medullary dorsal horn.

    Science.gov (United States)

    Flores Ramos, José María; Devoize, Laurent; Descheemaeker, Amélie; Molat, Jean-Louis; Luccarini, Philippe; Dallel, Radhouane

    2017-03-06

    Nitric oxide donors are known to produce headache in healthy as well as migraine subjects, and to induce extracephalic cutaneous hypersensitivity in rodents. However, little is known on the effect of nitric oxide donors on cephalic cutaneous sensitivity. Combining behavioral, immunohistochemical, and in vivo electrophysiological approaches, this study investigated the effect of systemic administration of the nitric oxide donor, isosorbide dinitrate (ISDN), on cephalic and extracephalic cutaneous sensitivity and on neuronal activation within the medullary dorsal horn (MDH) in the rat. Systemic administration of ISDN increased selectively the first phase and interphase of the facial formalin test, but had no effect on the hindpaw formalin one. Monitoring neuronal activity within the MDH with phospho-ERK1/2 immunoreactivity revealed that ISDN alone did not activate MDH neurons, but significantly increased the number of formalin-evoked phospho-ERK1/2-immunoreactive cells in the ipsilateral, but not contralateral, MDH. Using in vivo electrophysiological unit recordings, we show that ISDN administration never affected the spontaneous activity of trigeminal wide dynamic range neurons, but, facilitated C-fiber-evoked responses in half the neurons tested. This research demonstrates that a nitric oxide donor, isosorbide dinitrate, induces selectively cephalic hyperalgesia that arises as a consequence of central sensitization in pain pathways that subserve meningeal nociception. This model better mimics the clinical condition and offers another possibility of studying the role of nitric oxide donor in the physiopathology of headache. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells.

    Science.gov (United States)

    Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd

    2010-07-01

    Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  10. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Azizah Ugusman

    2010-01-01

    Full Text Available OBJECTIVE: Nitric oxide produced by endothelial nitric oxide synthase (eNOS possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs. METHODS: HUVECs were divided into four groups: control, treatment with 180 μM hydrogen peroxide (H2O2, treatment with 150 μg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H2O2 for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. RESULTS: Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. CONCLUSION: Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  11. Mycobacteria exploit nitric oxide-induced transformation of macrophages into permissive giant cells.

    Science.gov (United States)

    Gharun, Kourosh; Senges, Julia; Seidl, Maximilian; Lösslein, Anne; Kolter, Julia; Lohrmann, Florens; Fliegauf, Manfred; Elgizouli, Magdeldin; Vavra, Martina; Schachtrup, Kristina; Illert, Anna L; Gilleron, Martine; Kirschning, Carsten J; Triantafyllopoulou, Antigoni; Henneke, Philipp

    2017-11-02

    Immunity to mycobacteria involves the formation of granulomas, characterized by a unique macrophage (MΦ) species, so-called multinucleated giant cells (MGC). It remains unresolved whether MGC are beneficial to the host, that is, by prevention of bacterial spread, or whether they promote mycobacterial persistence. Here, we show that the prototypical antimycobacterial molecule nitric oxide (NO), which is produced by MGC in excessive amounts, is a double-edged sword. Next to its antibacterial capacity, NO propagates the transformation of MΦ into MGC, which are relatively permissive for mycobacterial persistence. The mechanism underlying MGC formation involves NO-induced DNA damage and impairment of p53 function. Moreover, MGC have an unsurpassed potential to engulf mycobacteria-infected apoptotic cells, which adds a further burden to their antimycobacterial capacity. Accordingly, mycobacteria take paradoxical advantage of antimicrobial cellular efforts by driving effector MΦ into a permissive MGC state. © 2017 The Authors.

  12. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production.

    Science.gov (United States)

    Park, So Young; Hong, Seong Su; Han, Xiang Hua; Hwang, Ji Sang; Lee, Dongho; Ro, Jai Seup; Hwang, Bang Yeon

    2007-01-01

    A new butyrolactone sesquilignan, isolappaol C (1), together with four known lignans, lappaol C (2), lappaol D (3), lappaol F (4), and diarctigenin (5), were isolated from the methanolic extract of the seeds from the Arctium lappa plant. The structure of isolappaol C (1) was determined by spectral analysis including 1D- and 2D-NMR. All the isolates were evaluated for their inhibitory effects on the LPS-induced nitric oxide production using murine macrophage RAW264.7 cells. Lappaol F (4) and diarctigenin (5) strongly inhibited NO production in the LPS-stimulated RAW264.7 cells with IC(50) values of 9.5 and 9.6 microM, respectively.

  13. Nitric oxide is involved in phosphorus deficiency-induced cluster root development and citrate exudation in white lupin

    Science.gov (United States)

    White lupin (Lupinus albus) forms specialized cluster roots characterized by exudation of organic anions under phosphorus (P) deficiency. Here, we evaluated the role of nitric oxide (NO) in P deficiency-induced cluster-root formation and citrate exudation in white lupin. Plants were treated with NO ...

  14. The expression of cyclooxygenase 2 and inducible nitric oxide synthase indicates no active inflammation in vulvar vestibulitis.

    Science.gov (United States)

    Bohm-Starke, N; Falconer, C; Rylander, E; Hilliges, M

    2001-07-01

    Although women with vulvar vestibulitis syndrome have principal symptoms of inflammation such as local erythema and pain in the mucosa around the vaginal introitus, it is not clear if vestibulitis is an inflammatory condition. Cyclooxygenase 2 and inducible nitric oxide synthase are known to be upregulated during inflammation. The aim of the present study was to analyze the expression of these enzymes in the vestibular mucosa in order to evaluate the inflammatory activity in the tissue. Ten women fulfilling Friedrich's criteria of vulvar vestibulitis syndrome and ten control subjects were included in the study. Punch biopsies were obtained from the vestibular mucosa for analysis of cyclooxygenas 2 and inducible nitric oxide synthase, using indirect immunohistochemistry and Western dot-blot analyses. Both methods used showed low expression of cyclooxygenas 2 and inducible nitric oxide synthase in the vestibular mucosa of all women. There was no difference observed between the groups. There is a low expression of the inflammatory markers cyclooxygenas 2 and inducible nitric oxide synthase in the vestibular mucosa of women with vulvar vestibulitis syndrome as well as in healthy control subjects. The results indicate no active inflammation present and imply that topical corticosteroids in the treatment of vulvar vestibulitis are unfounded.

  15. The Mechanism of Helium-Induced Preconditioning: A Direct Role for Nitric Oxide in Rabbits

    Science.gov (United States)

    Pagel, Paul S.; Krolikowski, John G.; Pratt, Phillip F.; Shim, Yon Hee; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2008-01-01

    BACKGROUND Helium produces preconditioning against myocardial infarction by activating prosurvival signaling, but whether nitric oxide (NO) generated by endothelial NO synthase plays a role in this phenomenon is unknown. We tested the hypothesis that NO mediates helium-induced cardioprotection in vivo. METHODS Rabbits (n = 62) instrumented for hemodynamic measurement were subjected to a 30-min left anterior descending coronary artery occlusion and 3 h reperfusion, and received 0.9% saline (control) or three cycles of 70% helium–30% oxygen administered for 5 min interspersed with 5 min of an air–oxygen mixture before left anterior descending coronary artery occlusion in the absence or presence of pretreatment with the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg), the selective inducible NOS inhibitor aminoguanidine hydrochloride (AG; 300 mg/kg), or selective neuronal NOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg). In additional rabbits, the fluorescent probe 4,5-diaminofluroscein diacetate (DAF-2DA) and confocal laser microscopy were used to detect NO production in the absence or presence of helium with or without L-NAME pretreatment. RESULTS Helium reduced (P helium-induced cardioprotection. Helium enhanced DAF-2DA fluorescence compared with control (26 ± 8 vs 15 ± 5 U, respectively). Pretreatment with L-NAME abolished these helium-induced increases in DAF-2DA fluorescence. CONCLUSIONS The results indicate that cardioprotection by helium is mediated by NO that is probably generated by endothelial NOS in vivo. PMID:18713880

  16. Regulation of the inducible nitric oxide synthase and sodium pump in type 1 diabetes.

    Science.gov (United States)

    Zakula, Zorica; Koricanac, Goran; Putnikovic, Biljana; Markovic, Ljiljana; Isenovic, Esma R

    2007-01-01

    Insulin-like growth factor-1 (IGF-1) is a hormone and growth factor closely related to insulin. The autocrine/paracrine actions of IGF-1 involve activation of inducible nitric oxide synthase (iNOS) and the Na(+), K(+)-ATPase sodium pump in cardiovascular tissues. Data from literature indicate that iNOS is expressed in vascular smooth muscle cells (VSMC) and that IGF-1-induced release of NO is both rapid and delayed. We hypothesize that impaired IGF-1-induced sodium pump activity/expression in rats with type 1 diabetes is related to activation of phosphatidylinositol 3 kinase (PI3K)/cytosolic phospholipase 2 (cPLA(2))/protein kinase B (Akt) signaling, and that IGF-1 prevents acute and chronic dysfunction of iNOS and sodium pump activity in a chemically induced model of type 1 diabetes, the streptozotocin-treated rat heart (STZ). Understanding how iNOS and sodium pump activity are regulated by IGF-1 activation of the PI3K/cPLA(2)/Akt cascade should provide novel and fundamental knowledge regarding the regulatory actions of IGF-1 in promoting vasodilation. Since insulin resistance is currently a major focus of research, the use of IGF-1 to improve insulin resistance and glucose metabolism has opened a new arena for treatment of comorbid conditions. Future investigations should now focus on mechanisms of action of IGF-1 and its clinical applicability.

  17. [Effect of hydrogen sulfide on inducible nitric oxide synthase in kidneys of Type 1 diabetic rats].

    Science.gov (United States)

    Yang, Rui; Jia, Qiang; Ma, Shanfeng; Cui, Shujun; Liu, Xiaofen; Wang, Yuanyuan; Gao, Qin

    2017-04-28

    To investigate effects of hydrogen sulfide (H2S) on inducible nitric oxide synthase (iNOS) in kidneys of Type 1 diabetic rats.
 Methods: Thirty-two male SD rats were randomly divided into four groups: A normal control (NC) group, a diabetes mellitus (DM) group, a NaHS (NaHS+DM) group, and a NaHS control (NaHS) group (n=8 per group). Type 1 diabetes was induced by a single intraperitoneal injection of streptozotocin (55 mg/kg). After successful establishment of models, the rats in NaHS+DM and NaHS groups were injected with NaHS solution (56 μmol/kg) intraperitoneally. Eight weeks later, the activities of total nitric oxide synthase (T-NOS) and iNOS, as well as the level of nitric oxide (NO) were detected in serum and renal tissues, respectively. The activity of glutathione peroxidase (GSH-Px) was determined in renal tissues. The ultrastructures of renal tissues were observed by transmission electron microscope. The protein expression of iNOS in renal tissues was detected by Western blot.
 Results: Compared with the NC group, there was no significant difference in the various indexes in the NaHS group (P>0.05). However, in the DM group, the activities of T-NOS and iNOS, and the level of NO were all increased significantly in serum and renal tissues, while the activity of GSH-Px was decreased in renal tissues. Under the electronic microscope, the thickening of the glomerular capillary basement membrane, the proliferation of mesangial matrix, and the foot fusion were observed. The protein expression of iNOS was increased obviously in renal tissues in the DM group (P<0.01). Compared with the DM group, the activities of T-NOS and iNOS and the level of NO were all decreased in serum and renal tissues, while the activity of GSH-Px was increased in renal tissues in the NaHS+DM group (P<0.01). The renal ultrastructural damages were ameliorated obviously. The protein expression of iNOS was decreased significantly (P<0.01).
 Conclusion: H2S exerts a protective effect on

  18. Nitric oxide and prostaglandins in the clenbuterol-induced ACTH and corticosterone secretion.

    Science.gov (United States)

    Gadek-Michalska, A; Bugajski, A J; Bugajski, J

    2008-03-01

    The present study was designed to determine the involvement of nitric oxide (NO) and prostaglandins (PG) in the stimulatory action of clenbuterol, a selective beta(2)-adrenergic receptor agonist on hypothalamic-pituitary-adrenal (HPA) axis under basal and social crowding stress conditions. Clenbuterol given i.c.v. (10 microg) or i.p. (0.2 mg/kg) considerably increased ACTH and corticosterone secretion. A selective beta(2)-receptor antagonist compound ICI 118551 and non-selective beta-receptor antagonist propranolol given by either route reduced the stimulatory action of clenbuterol. Crowding stress (21 rats in a cage for 7) for 3-7 days significantly reduced the i.c.v. clenbuterol-induced ACTH and corticosterone secretion and i.p. clenbuterol-elicited ACTH secretion. L-NAME, mainly endothelial nitric oxide synthase (NOS) blocker, stronger than L-NNA, a neuronal NOS blocker, reduced the clenbuterol-evoked ACTH and corticosterone secretion in control rats but did not significantly alter this secretion already reduced by crowding stress. Piroxicam, predominantly constitutive cyclooxygenase (COX-1) inhibitor, given i.p. significantly diminished the i.p. clenbuterol-induced ACTH and corticosterone secretion in control rats and tended to reverse the reduction of ACTH secretion by crowding stress. These results indicate that clenbuterol, a selective beta(2)-adrenoceptor agonist, is much stronger stimulator of the HPA axis than isoprenaline, a non-selective beta-receptor agonist. Social crowding stress reduces to a larger extent the HPA response to beta(2)-receptor stimulation. Likewise, in the HPA axis stimulation via beta(2)-adrenoceptors endogenous NO and prostaglandins are significantly involved. Beta2-adrenoceptor is a dominant functional subtype of beta-receptor in the stimulatory and modulatory signals regulating the HPA axis activity under basal and social stress conditions.

  19. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  20. Inhaled nitric oxide pretreatment but not posttreatment attenuates ischemia-reperfusion-induced pulmonary microvascular leak.

    Science.gov (United States)

    Chetham, P M; Sefton, W D; Bridges, J P; Stevens, T; McMurtry, I F

    1997-04-01

    Ischemia-reperfusion (I/R) pulmonary edema probably reflects a leukocyte-dependent, oxidant-mediated mechanism. Nitric oxide (NO) attenuates leukocyte-endothelial cell interactions and I/R-induced microvascular leak. Cyclic adenosine monophosphate (cAMP) agonists reverse and prevent I/R-induced microvascular leak, but reversal by inhaled NO (INO) has not been tested. In addition, the role of soluble guanylyl cyclase (sGC) activation in the NO protection effect is unknown. Rat lungs perfused with salt solution were grouped as either I/R, I/R with INO (10 or 50 ppm) on reperfusion, or time control. Capillary filtration coefficients (Kfc) were estimated 25 min before ischemia (baseline) and after 30 and 75 min of reperfusion. Perfusate cell counts and lung homogenate myeloperoxidase activity were determined in selected groups. Additional groups were treated with either INO (50 ppm) or isoproterenol (ISO-10 microM) after 30 min of reperfusion. Guanylyl cyclase was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ-15 microM), and Kfc was estimated at baseline and after 30 min of reperfusion. (1) Inhaled NO attenuated I/R-induced increases in Kfc. (2) Cell counts were similar at baseline. After 75 min of reperfusion, lung neutrophil retention (myeloperoxidase activity) and decreased perfusate neutrophil counts were similar in all groups. (3) In contrast to ISO, INO did not reverse microvascular leak. (4) 8-bromoguanosine 3',5'-cyclic monophosphate (8-br-cGMP) prevented I/R-induced microvascular leak in ODQ-treated lungs, but INO was no longer effective. Inhaled NO attenuates I/R-induced pulmonary microvascular leak, which requires sGC activation and may involve a mechanism independent of inhibition of leukocyte-endothelial cell interactions. In addition, INO is ineffective in reversing I/R-induced microvascular leak.

  1. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings.

    Science.gov (United States)

    Chen, Juan; Liu, Xiang; Wang, Chao; Yin, Shan-Shan; Li, Xiu-Ling; Hu, Wen-Jun; Simon, Martin; Shen, Zhi-Jun; Xiao, Qiang; Chu, Cheng-Cai; Peng, Xin-Xiang; Zheng, Hai-Lei

    2015-10-30

    Nitric oxide (NO) has been found to function in enhancing plant tolerance to various environmental stresses. However, role of NO in relieving zinc oxide nanoparticles (ZnO NPs)-induced phytotoxicity remains unknown. Here, sodium nitroprusside (SNP, a NO donor) was used to investigate the possible roles and the regulatory mechanisms of NO in counteracting ZnO NPs toxicity in rice seedlings. Our results showed that 10 μM SNP significantly inhibited the appearance of ZnO NP toxicity symptoms. SNP addition significantly reduced Zn accumulation, reactive oxygen species production and lipid peroxidation caused by ZnO NPs. The protective role of SNP in reducing ZnO NPs-induced oxidative damage is closely related to NO-mediated antioxidant system. A decrease in superoxide dismutase activity, as well as an increase in reduced glutathione content and peroxidase, catalase and ascorbate peroxidase activity was observed under SNP and ZnO NPs combined treatments, compared to ZnO NPs treatment alone. The relative transcript abundance of corresponding antioxidant genes exhibited a similar change. The role of NO in enhancing ZnO NPs tolerance was further confirmed by genetic analysis using a NO excess mutant (noe1) and an OsNOA1-silenced plant (noa1) of rice. Together, this study provides the first evidence indicating that NO functions in ameliorating ZnO NPs-induced phytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bixa orellana leaves extract inhibits bradykinin-induced inflammation through suppression of nitric oxide production.

    Science.gov (United States)

    Yoke Keong, Y; Arifah, A K; Sukardi, S; Roslida, A H; Somchit, M N; Zuraini, A

    2011-01-01

    The present study was conducted to assess the anti-inflammatory effect of a crude aqueous extract of Bixa orellana leaves (AEBO) and to examine the possible involvement of nitric oxide (NO) in its anti-inflammatory mechanism. The air-dried, powdered leaves were soaked in distilled water (1:20 w/v) at 50°C for 24 h and the supernatant obtained was freeze-dried (yield 8.5% w/w). The dosage was recorded as the mass of extract per kg b.w. of rats in all inflammatory assays (bradykinin-induced paw edema, peritoneal vascular permeability and NO assay). Pretreatment with AEBO for 4 consecutive days exhibited significant inhibitory activity against inflammatory models, the bradykinin-induced hind paw edema model and bradykinin-induced increased peritoneal vascular permeability at both doses in dose-dependent manner. In addition, AEBO was also found to significantly suppress the production of NO at doses of 50 and 150 mg/kg. This study provides scientific data to support the traditional use of B. orellana leaves in treating inflammation. Results from this study suggest that AEBO exerts anti-inflammatory effects. Part of this anti-inflammatory effect may be associated with its antibradykinin activity and may be related to a reduction of the NO production. Copyright © 2011 S. Karger AG, Basel.

  3. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury.

    Science.gov (United States)

    Farag, Mohamed; Najeeb, Ullah; Yang, Jinghua; Hu, Zhongyuan; Fang, Zhang Ming

    2017-02-01

    Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L-1) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH-1 and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst. Copyright © 2016. Published by Elsevier Masson SAS.

  4. Possible involvement of nitric oxide and peroxynitrite in the pathogenesis of human vocal polyps and nodules.

    Science.gov (United States)

    Kang, Bor-Hwang; Hsiung, Ming-Wang; Wang, Hsing-Won

    2005-01-01

    Nitric oxide (NO) is a molecule involved in multiple functions including vasodilatation, neural transmission, immune response and inflammation. However, the role of NO in the pathophysiology of vocal cord diseases is not clear. The present study investigated the possible involvement of NO and its toxic metabolite, peroxynitrite, in the pathogenesis of vocal polyps and nodules. Vocal polyps and nodules were obtained from patients receiving surgery for their conditions. Immunohistochemistry was applied to evaluate the expression of the inducible form of nitric oxide synthase (iNOS) as well as the production of peroxynitrite represented by the formation of its biological footprint, 3-nitrotyrosine (3-NT). Each section was given a score of 0 to 4 according to the labeling intensity seen, with the highest number representing the highest labeling intensity. The results showed that vocal polyp had an average iNOS labeling score of 3.2, which was significantly higher than the value of 1.9 in vocal nodules. The average labeling score of 3-NT was 2.8 in vocal polyps, which was also significantly higher than the value of 1.8 in vocal nodules. There was also a positive correlation between the level of iNOS expression and the extent of 3-NT formation. These results suggest that increased peroxynitrite production, resulting from increased iNOS expression and NO formation, may have an important pathogenic role in these vocal diseases.

  5. PKC-Dependent Signaling Pathways within PAG and Thalamus Contribute to the Nitric Oxide-Induced Nociceptive Behavior

    OpenAIRE

    Galeotti, Nicoletta; Ghelardini, Carla

    2013-01-01

    Nitric oxide (NO) is an important molecule involved in nociceptive processing in the central nervous system. The release of NO within the spinal cord has long been implicated in the mechanisms underlying exaggerated pain sensitivity, and administration of NO donors can induce hyperalgesia. To elucidate the supraspinal mechanism responsible for NO-induced nociceptive hypersensitivity, we investigated the modulation of protein kinase C (PKC) and downstream effectors following treatment with the...

  6. Iodinated contrast media inhibit oxygen consumption in freshly isolated proximal tubular cells from elderly humans and diabetic rats: Influence of nitric oxide.

    Science.gov (United States)

    Liss, Per; Hansell, Peter; Fasching, Angelica; Palm, Fredrik

    2016-01-01

    Objectives Mechanisms underlying contrast medium (CM)-induced nephropathy remain elusive, but recent attention has been directed to oxygen availability. The purpose of this study was to evaluate the effect of the low-osmolar CM iopromide and the iso-osmolar CM iodixanol on oxygen consumption (QO2) in freshly isolated proximal tubular cells (PTC) from kidneys ablated from elderly humans undergoing nephrectomy for renal carcinomas and from normoglycemic or streptozotocin-diabetic rats. Materials PTC were isolated from human kidneys, or kidneys of normoglycemic or streptozotocin-diabetic rats. QO2 was measured with Clark-type microelectrodes in a gas-tight chamber with and without each CM (10 mg I/mL medium). L-NAME was used to inhibit nitric oxide (NO) production caused by nitric oxide synthase. Results Both CM reduced QO2 in human PTC (about -35%) which was prevented by L-NAME. PTC from normoglycemic rats were unaffected by iopromide, whereas iodixanol decreased QO2 (-34%). Both CM decreased QO2 in PTC from diabetic rats (-38% and -36%, respectively). L-NAME only prevented the effect of iopromide in the diabetic rat PTC. Conclusions These observations demonstrate that CM can induce NO release from isolated PTC in vitro, which affects QO2. Our results suggest that the induction of NO release and subsequent effect on the cellular oxygen metabolism are dependent on several factors, including CM type and pre-existing risk factors for the development of CM-induced nephropathy.

  7. L-arginine, a nitric oxide precursor, reduces dapsone-induced methemoglobinemia in rats

    Directory of Open Access Journals (Sweden)

    Natália Valadares de Moraes

    2012-03-01

    Full Text Available Dapsone use is frequently associated to hematological side effects such as methemoglobinemia and hemolytic anemia, which are related to N-hydroxylation mediated by the P450 enzyme system. The aim of the present study was to evaluate the influence of L-arginine supplementation, a precursor for the synthesis of nitric oxide, as single or multiple dose regimens on dapsone-induced methemoglobinemia. Male Wistar rats were treated with L-arginine at 5, 15, 30, 60 and 180 mg/kg doses (p.o., gavage in single or multiple dose regimens 2 hours prior to dapsone administration (40 mg/kg, i.p.. The effect of the nitric oxide synthase inhibitor L-NAME was investigated by treatment with multiple doses of 30 mg/kg (p.o., gavage 2 hours before dapsone administration. Blood samples were collected 2 hours after dapsone administration. Erythrocytic methemoglobin levels were assayed by spectrophotometry. The results showed that multiple dose supplementations with 5 and 15 mg/kg L-arginine reduced dapsone-induced methemoglobin levels. This effect is mediated by nitric oxide formation, since the reduction in methemoglobin levels by L-arginine is blocked by simultaneous administration with L-NAME, a nitric oxide synthase inhibitor.O uso da dapsona é frequentemente associado a efeitos adversos hematológicos, como a metemoglobinemia e anemia hemolítica, ambos relacionados com a N-hidroxilação mediada pelo sistema P450. O objetivo do estudo foi avaliar a influência da suplementação de L-arginina, um precursor da síntese de óxido nítrico, administrado em regime de dose única ou múltipla na metemoglobinemia induzida pela dapsona. Ratos machos Wistar foram tratados com L-arginina (po, gavagem em dose única ou múltipla de 5, 15, 30, 60 e 180 mg/kg 2 horas antes da administração de dapsona (40 mg/kg, ip. O efeito do L-NAME, um inibidor de óxido nítrico sintase (NOS, foi avaliado através do tratamento com doses múltiplas de 30 mg/kg. Amostras de sangue

  8. Dual effect of interferon (IFNγ)-induced nitric oxide on tumorigenesis and intracellular bacteria.

    Science.gov (United States)

    Zea, Arnold H; Aiyar, Ashok; Tate, David

    2014-01-01

    Nitric oxide (NO) is a key messenger involved in numerous physiological functions including inflammatory and immune responses. The functions of NO and their underlying mechanisms have been elucidated by extensive studies over the past 10 years. However, the complexity of the interactions between different levels of NO and multiple aspects of tumor development/progression as well as bacterial pathogenesis has led to apparently conflicting findings. The precise role of NO in bacterial and tumor pathogenesis involves a multitude of inter- and intracellular signaling pathways in which interferon gamma signaling and L-arginine metabolism are the major pathways involved in NO synthesis and regulation. The availability of the amino acid L-Arg can be a key factor to control the expression of inducible nitric oxide synthase (NOS2) and cellular NO levels. The role played by the NOS2/NO system both in bacterial pathogenesis and in tumor development is complex due to the dual role these molecules can play promoting or inhibiting infections and cancer. This duality brings to the table a double challenge to determine the net impact of NO on cancer or bacterial behavior and to define the therapeutic role of NO-centered anticancer or antibacterial strategies. We believe that a comprehensive and dynamic understanding of the cascade of molecular and cellular events underlying tumor biology and bacterial pathogenesis that are affected by NO will allow researchers to exploit the potential antitumor and antibacterial properties of drugs interfering with NO metabolism. The contrasting roles of NO/NOS2 in these processes are clarified in this chapter. © 2014 Elsevier Inc. All rights reserved.

  9. Role of Nitric Oxide in Stress-Induced Anxiety: From Pathophysiology to Therapeutic Target.

    Science.gov (United States)

    Kumar, A; Chanana, P

    2017-01-01

    Stress is often marked by a state of hyperarousal to aid the initiation of necessary stress response for the successful management of stressful stimuli. It can be manifested as a challenge (stimulus) that requires behavioral, psychological, and physiological adaptations for the maintenance of a state of homeostasis in response to stressful stimuli. In an organism, miscellaneous stressors trigger a wide spectrum of alterations in hormonal and neuronal physiologies, resulting in behavioral (anxiety and depression disorders, diminished food intake and gastrointestinal dysfunctions, decline in sexual behavior, diabetes, and loss of cognitive function) and other physiological responses. Stress serves as a potent etiological link to development of several neuropsychiatric diseases such as depression, anxiety, and cognitive impairments. Exposure to stressful stimuli has been found to be associated with activation of nitric oxide synthase and generation of NO which reacts with spontaneous oxygen species to aid formation of active nitrogen radicals. High concentrations of reactive nitrogen radicals may cause damage to intracellular proteins, in addition to causing impairment to components of the mitochondrial transport chain, leading to cellular energy deficiency. This may further serve as an etiological link to the development of secondary neurological diseases associated with chronic stress. Also, during stress exposure, pharmacological inhibition of nitric oxide production displays reduction in indicators of anxiety- and depressive-like behavior in animal models. Therefore, the purpose of this chapter is to present an overview on the role of NO in stress-evoked emergence of secondary neurological disorders like anxiety as well as citing examples where NO has been used as a therapeutic target for the management of stress-induced anxiety-like behavior. © 2017 Elsevier Inc. All rights reserved.

  10. Nitric Oxide Synthase Promotes Distension-Induced Tracheal Venular Leukocyte Adherence

    Science.gov (United States)

    Moldobaeva, Aigul; Rentsendorj, Otgonchimeg; Jenkins, John; Wagner, Elizabeth M.

    2014-01-01

    The process of leukocyte recruitment to the airways in real time has not been extensively studied, yet airway inflammation persists as a major contributor to lung pathology. We showed previously in vivo, that neutrophils are recruited acutely to the large airways after periods of airway distension imposed by the application of positive end-expiratory pressure (PEEP). Given extensive literature implicating products of nitric oxide synthase (NOS) in lung injury after ventilatory over-distension, we questioned whether similar mechanisms exist in airway post-capillary venules. Yet, endothelial nitric oxide has been shown to be largely anti-inflammatory in other systemic venules. Using intravital microscopy to visualize post-capillary tracheal venules in anesthetized, ventilated mice, the number of adherent leukocytes was significantly decreased in eNOS-/- mice under baseline conditions (2±1 cell/60 min observation) vs wild type (WT) C57BL/6 mice (7±2 cells). After exposure to PEEP (8 cmH2O for 1 min; 5 times), adherent cells increased significantly (29±5 cells) in WT mice while eNOS-/- mice demonstrated a significantly decreased number of adherent cells (11±4 cells) after PEEP. A similar response was seen when thrombin was used as the pro-inflammatory stimulus. In addition, mouse tracheal venular endothelial cells studied in vitro after exposure to cyclic stretch (18% elongation) or thrombin both demonstrated increased p-selectin expression that was significantly attenuated by NG-nitro-L-arginine methyl ester, N-acetylcysteine amide (NACA) and excess BH4. In vivo treatment with the ROS inhibitor NACA or co-factor BH4 abolished completely the PEEP-induced leukocyte adherence. These results suggest that pro-inflammatory stimuli cause leukocyte recruitment to tracheal endothelium in part due to eNOS uncoupling. PMID:25181540

  11. Role of Polymorphisms of Inducible Nitric Oxide Synthase and Endothelial Nitric Oxide Synthase in Idiopathic Environmental Intolerances

    Directory of Open Access Journals (Sweden)

    Chiara De Luca

    2015-01-01

    Full Text Available Oxidative stress and inflammation play a pathogenetic role in idiopathic environmental intolerances (IEI, namely, multiple chemical sensitivity (MCS, fibromyalgia (FM, and chronic fatigue syndrome (CFS. Given the reported association of nitric oxide synthase (NOS gene polymorphisms with inflammatory disorders, we aimed to investigate the distribution of NOS2A −2.5 kb (CCTTTn as well as Ser608Leu and NOS3 −786T>C variants and their correlation with nitrite/nitrate levels, in a study cohort including 170 MCS, 108 suspected MCS (SMCS, 89 FM/CFS, and 196 healthy subjects. Patients and controls had similar distributions of NOS2A Ser608Leu and NOS3 −786T>C polymorphisms. Interestingly, the NOS3 −786TT genotype was associated with increased nitrite/nitrate levels only in IEI patients. We also found that the NOS2A −2.5 kb (CCTTT11 allele represents a genetic determinant for FM/CFS, and the (CCTTT16 allele discriminates MCS from SMCS patients. Instead, the (CCTTT8 allele reduces by three-, six-, and tenfold, respectively, the risk for MCS, SMCS, and FM/CFS. Moreover, a short number of (CCTTT repeats is associated with higher concentrations of nitrites/nitrates. Here, we first demonstrate that NOS3 −786T>C variant affects nitrite/nitrate levels in IEI patients and that screening for NOS2A −2.5 kb (CCTTTn polymorphism may be useful for differential diagnosis of various IEI.

  12. Expression of inducible nitric oxide synthase and nitric oxide production in the mud-dwelled air-breathing singhi catfish, Heteropneustes fossilis under condition of water shortage.

    Science.gov (United States)

    Choudhury, Mahua G; Saha, Nirmalendu

    2012-12-01

    Nitric oxide (NO) is known to be an important regulator molecule for regulating the multiple signaling pathways and also to play diverse physiological functions in mammals including that of adaptation to various stresses. The present study reports on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) enzyme that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis) while dwelling inside the mud peat under semidry conditions. Desiccation stress, due to mud-dwelling for 2 weeks, led to significant increase of NO concentration in different tissues and in plasma of singhi catfish, and also the increase of NO efflux from the perfused liver with an accompanying increase of toxic ammonia level in different tissues. Mud-dwelling also resulted to induction of iNOS activity, expression of iNOS protein in different tissues after 7 days with further increase after 14 days, which otherwise was not detectable in control fish. Further, mud-dwelling also resulted to a significant expression of iNOS mRNA after 7 days with a more increase of mRNA level after 14 days, suggesting that the desiccation stress caused transcriptional regulation of iNOS gene. Immunocytochemical analysis indicated the zonal specific expression of iNOS protein in different tissues. Desiccation stress also led to activation and nuclear translocation of nuclear factor кB (NFкB) in hepatic cells. These results suggest that the activation of iNOS gene under desiccation-induced stresses such as high ammonia load was probably mediated through the activation of one of the major transcription factors, the NFкB. This is the first report of desiccation-induced induction of iNOS gene, iNOS protein expression leading to more generation of NO while living inside the mud peat under condition of water shortage in any air-breathing teleosts. 2012 Elsevier Inc. All rights reserved

  13. Experimental Model of Zymosan-Induced Arthritis in the Rat Temporomandibular Joint: Role of Nitric Oxide and Neutrophils

    Directory of Open Access Journals (Sweden)

    Hellíada Vasconcelos Chaves

    2011-01-01

    Full Text Available Aims. To establish a new model of zymosan-induced temporomandibular joint (TMJ arthritis in the rat and to investigate the role of nitric oxide. Methods. Inflammation was induced by an intra-articular injection of zymosan into the left TMJ. Mechanical hypernociception, cell influx, vascular permeability, myeloperoxidase activity, nitrite levels, and histological changes were measured in TMJ lavages or tissues at selected time points. These parameters were also evaluated after treatment with the nitric oxide synthase (NOS inhibitors L-NAME or 1400 W. Results. Zymosan-induced TMJ arthritis caused a time-dependent leucocyte migration, plasma extravasation, mechanical hypernociception, and neutrophil accumulation between 4 and 24 h. TMJ immunohistochemical analyses showed increased inducible NOS expression. Treatment with L-NAME or 1400 W inhibited these parameters. Conclusion. Zymosan-induced TMJ arthritis is a reproducible model that may be used to assess both the mechanisms underlying TMJ inflammation and the potential tools for therapies. Nitric oxide may participate in the inflammatory temporomandibular dysfunction mechanisms.

  14. Melatonin can attenuate ciprofloxacin induced nephrotoxicity: Involvement of nitric oxide and TNF-α.

    Science.gov (United States)

    Shaki, Fatemeh; Ashari, Sorour; Ahangar, Nematollah

    2016-12-01

    Ciprofloxacin is a synthetic broad-spectrum antimicrobial agent of fluoroquinolone family. The aim of our investigation was to evaluate the role of oxidative damage and inflammation in nephrotoxic potential of Ciprofloxacin and protective effects of melatonin against its nephrotoxicity in male Wistar rats. The animals were divided into six groups: Control, ciprofloxacin (100mg/kg/day, i.p), ciprofloxacin with three doses (2.5, 5 and 10mg/kg/day) of melatonin and a group which received ciprofloxacin (100mg/kg/day) plus vitamin E (100mg/kg/day) for 8 consecutive days. 24h after last injection, the animals were euthanized and kidney tissues were separated. Finally reactive oxygen species, glutathione content, lipid peroxidation, protein carbonyl, nitric oxide and TNF-α were evaluated. Also, pathological examination and measuring of kidney biochemical markers (BUN and Cr) were done. The administration of ciprofloxacin for 8days resulted in significant increase (Pmelatonin was able to protect against deterioration in nephrotoxic markers and suppressed the increase in oxidative stress and inflammatory markers. Our study showed the critical role of oxidative damage and inflammation in ciprofloxacin-induced nephrotoxicity that markedly inhibited by administration of melatonin. So, melatonin can be suggested for prevention of ciprofloxacin-induced nephrotoxicity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Exogenous nitric oxide-induced postharvest disease resistance in citrus fruit to Colletotrichum gloeosporioides.

    Science.gov (United States)

    Zhou, Yahan; Li, Shunmin; Zeng, Kaifang

    2016-01-30

    Nitric oxide (NO) is an important signaling molecule involved in numerous plant responses to biotic and abiotic stresses. To investigate the effects of NO on the control of postharvest anthracnose caused by Colletotrichum gloeosporioides in citrus fruit and its possible mechanisms, citrus fruit were treated with an NO donor. The results showed that exogenous NO released from 50 µmol L(-1) sodium nitroprusside aqueous solution could effectively reduce the disease incidence and lesion diameter of citrus fruit inoculated with C. gloeosporioides during storage at 20 °C. Exogenous NO could regulate hydrogen peroxide levels, stimulate the synthesis of phenolic compounds, and induce phenylalanine ammonia-lyase, peroxidase, polyphenol oxidase, catalase activities, and the ascorbate-glutathione cycle. Furthermore, exogenous NO could inhibit weight loss, improve the ascorbic acid and titratable acidity content, and delay the increase in total soluble solids content in citrus fruit during storage at 20 °C. The results suggest that the use of exogenous NO is a potential method for inducing the disease resistance of fruit to fungal pathogens and for extending the postharvest life of citrus fruit. © 2015 Society of Chemical Industry.

  16. Involvement of Nitric Oxide in a Rat Model of Carrageenin-Induced Pleurisy

    Directory of Open Access Journals (Sweden)

    Masahiro Iwata

    2010-01-01

    Full Text Available Some evidence indicates that nitric oxide (NO contributes to inflammation, while other evidence supports the opposite conclusion. To clarify the role of NO in inflammation, we studied carrageenin-induced pleurisy in rats treated with an NO donor (NOC-18, a substrate for NO formation (L-arginine, and/or an NO synthase inhibitor (S-(2-aminoethyl isothiourea or NG-nitro-L-arginine. We assessed inflammatory cell migration, nitrite/nitrate values, lipid peroxidation and pro-inflammatory mediators. NOC-18 and L-arginine reduced the migration of inflammatory cells and edema, lowered oxidative stress, and normalized antioxidant enzyme activities. NO synthase inhibitors increased the exudate formation and inflammatory cell number, contributed to oxidative stress, induced an oxidant/antioxidant imbalance by maintaining high O−2, and enhanced the production of pro-inflammatory mediators. L-arginine and NOC-18 reversed the proinflammatory effects of NO synthase inhibitors, perhaps by reducing the expression of adhesion molecules on endothelial cells. Thus, our results indicate that NO is involved in blunting—not enhancing—the inflammatory response.

  17. T cell–derived inducible nitric oxide synthase switches off TH17 cell differentiation

    Science.gov (United States)

    Yang, Jianjun; Zhang, Ruihua; Lu, Geming; Shen, Yu; Peng, Liang; Zhu, Chen; Cui, Miao; Wang, Weidong; Arnaboldi, Paul; Tang, Meng; Gupta, Monica; Qi, Chen-Feng; Jayaraman, Padmini; Zhu, Hongfa; Jiang, Bo; Chen, Shu-hsia; He, John Cijiang; Ting, Adrian T.; Zhou, Ming-Ming; Kuchroo, Vijay K.; Morse, Herbert C.; Ozato, Keiko; Sikora, Andrew G.

    2013-01-01

    RORγt is necessary for the generation of TH17 cells but the molecular mechanisms for the regulation of TH17 cells are still not fully understood. We show that activation of CD4+ T cells results in the expression of inducible nitric oxide synthase (iNOS). iNOS-deficient mice displayed enhanced TH17 cell differentiation but without major effects on either TH1 or TH2 cell lineages, whereas endothelial NOS (eNOS) or neuronal NOS (nNOS) mutant mice showed comparable TH17 cell differentiation compared with wild-type control mice. The addition of N6-(1-iminoethyl)-l-lysine dihydrochloride (L-NIL), the iNOS inhibitor, significantly enhanced TH17 cell differentiation, and S-nitroso-N-acetylpenicillamine (SNAP), the NO donor, dose-dependently reduced the percentage of IL-17–producing CD4+ T cells. NO mediates nitration of tyrosine residues in RORγt, leading to the suppression of RORγt-induced IL-17 promoter activation, indicating that NO regulates IL-17 expression at the transcriptional level. Finally, studies of an experimental model of colitis showed that iNOS deficiency results in more severe inflammation with an enhanced TH17 phenotype. These results suggest that NO derived from iNOS in activated T cells plays a negative role in the regulation of TH17 cell differentiation and highlight the importance of intrinsic programs for the control of TH17 immune responses. PMID:23797094

  18. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  19. Hydrophilic, Potent, and Selective 7-Substituted 2-Aminoquinolines as Improved Human Neuronal Nitric Oxide Synthase Inhibitors.

    Science.gov (United States)

    Pensa, Anthony V; Cinelli, Maris A; Li, Huiying; Chreifi, Georges; Mukherjee, Paramita; Roman, Linda J; Martásek, Pavel; Poulos, Thomas L; Silverman, Richard B

    2017-08-24

    Neuronal nitric oxide synthase (nNOS) is a target for development of antineurodegenerative agents. Most nNOS inhibitors mimic l-arginine and have poor bioavailability. 2-Aminoquinolines showed promise as bioavailable nNOS inhibitors but suffered from low human nNOS inhibition, low selectivity versus human eNOS, and significant binding to other CNS targets. We aimed to improve human nNOS potency and selectivity and reduce off-target binding by (a) truncating the original scaffold or (b) introducing a hydrophilic group to interrupt the lipophilic, promiscuous pharmacophore and promote interaction with human nNOS-specific His342. We synthesized both truncated and polar 2-aminoquinoline derivatives and assayed them against recombinant NOS enzymes. Although aniline and pyridine derivatives interact with His342, benzonitriles conferred the best rat and human nNOS inhibition. Both introduction of a hydrophobic substituent next to the cyano group and aminoquinoline methylation considerably improved isoform selectivity. Most importantly, these modifications preserved Caco-2 permeability and reduced off-target CNS binding.

  20. Role of nitric oxide in glucose-, fructose and galactose-induced ...

    African Journals Online (AJOL)

    Previous studies have shown that the infusion of glucose, fructose and galactose resulted in significant increases in intestinal glucose uptake (IGU) and the role of nitric oxide in these responses was not known. The present study was designed to investigate the role of nitric oxide in the observed increases in IGU.

  1. Evidence for sodium azide as an artifact mediating the modulation of inducible nitric oxide synthase by C-reactive protein.

    Science.gov (United States)

    Lafuente, Nuria; Azcutia, Verónica; Matesanz, Nuria; Cercas, Elena; Rodríguez-Mañas, Leocadio; Sánchez-Ferrer, Carlos F; Peiró, Concepción

    2005-03-01

    C-reactive protein (CRP) is an acute-phase protein identified as a cardiovascular risk marker. In recent years, an increasing number of studies have investigated the possible direct effects of CRP on the vasculature, using mainly commercial CRP. In the present work, a potential role for CRP as a modulator of inducible nitric oxide synthase (iNOS) induction was explored. Cultured human aortic vascular smooth muscle cells (HASMC) were stimulated for 18 hours with 10 ng/mL interleukin-1beta (IL-1beta), resulting in a marked increase of iNOS levels and NO production, as determined by Western blotting and nitrite measurement, respectively. Commercial CRP (1 to 100 microg/mL) concentration-dependently inhibited the effects elicited by IL-1beta. Unexpectedly, similar results were observed when the commercial CRP solution was replaced by the corresponding vehicle medium containing growing concentrations of sodium azide. The inhibitory effects of commercial CRP or vehicle medium were lost on sodium azide removal by dialysis. In conclusion, sodium azide from the commercial CRP solution, but not CRP itself, mainly accounts for the inhibitory effect on IL-1beta-evoked iNOS induction and NO release. Care should be taken before attributing any biologic role to commercial CRP containing sodium azide.

  2. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  3. Role of nitric oxide in hypoxia-induced hyperventilation and hypothermia: participation of the locus coeruleus

    Directory of Open Access Journals (Sweden)

    Fabris G.

    1999-01-01

    Full Text Available Hypoxia elicits hyperventilation and hypothermia, but the mechanisms involved are not well understood. The nitric oxide (NO pathway is involved in hypoxia-induced hypothermia and hyperventilation, and works as a neuromodulator in the central nervous system, including the locus coeruleus (LC, which is a noradrenergic nucleus in the pons. The LC plays a role in a number of stress-induced responses, but its participation in the control of breathing and thermoregulation is unclear. Thus, in the present study, we tested the hypothesis that LC plays a role in the hypoxia-induced hypothermia and hyperventilation, and that NO is involved in these responses. Electrolytic lesions were performed bilaterally within the LC in awake unrestrained adult male Wistar rats weighing 250-350 g. Body temperature and pulmonary ventilation (VE were measured. The rats were divided into 3 groups: control (N = 16, sham operated (N = 7 and LC lesioned (N = 19, and each group received a saline or an NG-nitro-L-arginine methyl ester (L-NAME, 250 µg/µl intracerebroventricular (icv injection. No significant difference was observed between control and sham-operated rats. Hypoxia (7% inspired O2 caused hyperventilation and hypothermia in both control (from 541.62 ± 35.02 to 1816.18 ± 170.7 and 36.3 ± 0.12 to 34.4 ± 0.09, respectively and LC-lesioned rats (LCLR (from 694.65 ± 63.17 to 2670.29 ± 471.33 and 36 ± 0.12 to 35.3 ± 0.12, respectively, but the increase in VE was higher (P<0.05 and hypothermia was reduced (P<0.05 in LCLR. L-NAME caused no significant change in VE or in body temperature under normoxia, but abolished both the hypoxia-induced hyperventilation and hypothermia. Hypoxia-induced hyperventilation was reduced in LCLR treated with L-NAME. L-NAME also abolished the hypoxia-induced hypothermia in LCLR. The present data indicate that hypoxia-induced hyperventilation and hypothermia may be related to the LC, and that NO is involved in these responses.

  4. Effects of nitric oxide on human spermatozoa activity, fertilization and mouse embryonic development.

    Science.gov (United States)

    Wu, T-P; Huang, B-M; Tsai, H-C; Lui, M-C; Liu, M-Y

    2004-01-01

    This study was conducted to investigate the effects of nitric oxide (NO) on human sperm activity, human sperm-oocyte fusion and mouse embryonic development. Results showed that various concentrations of NO synthase blocker, N(omega)-nitro-L-arginine methyl ester, did not affect sperm cell motility at 0, 1, 2 or 4 hr, respectively. In contrast, sodium nitroprusside (SNP) significantly inhibited sperm cell motility and caused apoptosis. The adversely dose-dependent effect was only observed if SNP was freshly prepared. Adenosine triphosphate reversed the hazardous effect of SNP on sperm activity/viability. Hemoglobin neutralized the adverse effect of SNP. In hemi-zona sperm fusion test, the number of sperm bound to the zona in the presence of 10(-4) M SNP was significantly less than the control group. SNP at 10(-4) M caused all mouse embryonic development arrest. 46% and 56% of zygote reached the blastocyst stage with the treatment of 10(-6) M and 10(-8) M SNP, respectively, while the control reached 70%. NO adversely affected human sperm activity, human sperm-zona binding and embryonic development. It would appear that high concentration of NO may potentially decrease fertility.

  5. Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats.

    Science.gov (United States)

    Kao, Shang Jyh; Peng, Tai-Chu; Lee, Ru Ping; Hsu, Kang; Chen, Chao-Fuh; Hung, Yu-Kuen; Wang, David; Chen, Hsing I

    2003-01-01

    Nitric oxide (NO) has been reported to play a role in lung injury (LI) induced by ischemia-reperfusion (I/R). However, controversy exists as to the potential beneficial or detrimental effect of NO. In the present study, an in situ, perfused rat lung model was used to study the possible role of NO in the LI induced by I/R. The filtration coefficient (Kfc), lung weight gain (LWG), protein concentration in the bronchoalveolar lavage (PCBAL), and pulmonary arterial pressure (PAP) were measured to evaluate the degree of pulmonary hypertension and LI. I/R resulted in increased Kfc, LWG, and PCBAL. These changes were exacerbated by inhalation of NO (20-30 ppm) or 4 mM L-arginine, an NO precursor. The permeability increase and LI caused by I/R could be blocked by exposure to 5 mM N omega-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), and this protective effect of L-NAME was reversed with NO inhalation. Inhaled NO prevented the increase in PAP caused by I/R, while L-arginine had no such effect. L-NAME tended to diminish the I/R-induced elevation in PAP, but the suppression was not statistically significant when compared to the values in the I/R group. These results indicate that I/R increases Kfc and promotes alveolar edema by stimulating endogenous NO synthesis. Exogenous NO, either generated from L-arginine or delivered into the airway, is apparently also injurious to the lung following I/R. Copyright 2003 National Science Council, ROC and S. Karger AG, Basel

  6. The Peptidylarginine Deiminase Inhibitor Cl-Amidine Suppresses Inducible Nitric Oxide Synthase Expression in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Byungki Jang

    2017-10-01

    Full Text Available The conversion of peptidylarginine into peptidylcitrulline by calcium-dependent peptidylarginine deiminases (PADs has been implicated in the pathogenesis of a number of diseases, identifying PADs as therapeutic targets for various diseases. The PAD inhibitor Cl-amidine ameliorates the disease course, severity, and clinical manifestation in multiple disease models, and it also modulates dendritic cell (DC functions such as cytokine production, antigen presentation, and T cell proliferation. The beneficial effects of Cl-amidine make it an attractive compound for PAD-targeting therapeutic strategies in inflammatory diseases. Here, we found that Cl-amidine inhibited nitric oxide (NO generation in a time- and dose-dependent manner in maturing DCs activated by lipopolysaccharide (LPS. This suppression of NO generation was independent of changes in NO synthase (NOS enzyme activity levels but was instead dependent on changes in inducible NO synthase (iNOS transcription and expression levels. Several upstream signaling pathways for iNOS expression, including the mitogen-activated protein kinase, nuclear factor-κB p65 (NF-κB p65, and hypoxia-inducible factor 1 pathways, were not affected by Cl-amidine. By contrast, the LPS-induced signal transducer and the activator of transcription (STAT phosphorylation and activator protein-1 (AP-1 transcriptional activities (c-Fos, JunD, and phosphorylated c-Jun were decreased in Cl-amidine-treated DCs. Inhibition of Janus kinase/STAT signaling dramatically suppressed iNOS expression and NO production, whereas AP-1 inhibition had no effect. These results indicate that Cl-amidine-inhibited STAT activation may suppress iNOS expression. Additionally, we found mildly reduced cyclooxygenase-2 expression and prostaglandin E2 production in Cl-amidine-treated DCs. Our findings indicate that Cl-amidine acts as a novel suppressor of iNOS expression, suggesting that Cl-amidine has the potential to ameliorate the effects of

  7. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease.

    Science.gov (United States)

    Olson, Nels; van der Vliet, Albert

    2011-08-01

    Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O(2)) consumption and re-distribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders

  8. Involvement of nitric oxide in myotoxicity produced by diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh C. [Toxicology Department, Breathitt Veterinary Center, Murray State University, PO Box 2000, Hopkinsville, KY 42240 (United States); Milatovic, Dejan [Department of Pathology, Medical Center North, Vanderbilt University, Nashville, Tennessee (United States); Dettbarn, Wolf-D. [Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (United States)

    2002-12-01

    Oxidative stress, as determined by increased lipid peroxidation, has been implicated in the pathology of myotoxicity. As a model system to study the response of muscle to oxidative insults, we have studied the effects of diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity on levels of nitric oxide (NO) and energy metabolites in rat skeletal muscles. In in vivo experiments, citrulline levels as indicators of NO and NO synthase (NOS), and ATP and phosphocreatine (PCr) as indicators of mitochondrial dysfunction, were determined using HPLC methods 15 min, 30 min, 60 min, 2 h, and 24 h after intoxication. Within 15 min of DFP exposure, with onset of fasciculations, citrulline levels were significantly elevated in all three muscles [soleus, extensor digitorum longus (EDL), and diaphragm]. Maximum increases in citrulline (272-288%) were noted 60 min after DFP injection. At this time point, acetylcholinesterase activity was reduced by 90-96% (soleus < diaphragm < EDL). The levels of ATP and PCr were maximally reduced (30-43%), and total adenine nucleotides, and total creatine compounds showed declines. The findings revealed that the increase in NOS activity and NO was greater than the decrease of ATP and PCr. Since memantine (MEM) has been shown to reduce nerve and muscle hyperactivity, we have studied the possible protective effect of MEM on the DFP-induced biochemical changes. Pretreatment with MEM (18 mg/kg s.c.) and atropine sulfate (16 mg/kg s.c.), 60 min and 15 min, respectively, before DFP injection prevented the increase in citrulline and muscle hyperactivity and the decrease in ATP and PCr. These data suggest that free radical reactions by depleting high-energy phosphates may be initiating the cascade of events leading to myotoxicity during DFP-induced muscle hyperactivity. (orig.)

  9. Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L.

    Science.gov (United States)

    Li, Xin; Zhang, Lan; Ahammed, Golam Jalal; Li, Zhi-Xin; Wei, Ji-Peng; Shen, Chen; Yan, Peng; Zhang, Li-Ping; Han, Wen-Yan

    2017-07-01

    Flavonoids are one of the key secondary metabolites determining the quality of tea. Although exogenous brassinosteroid (BR), a steroidal plant hormone, can stimulate polyphenol biosynthesis in tea plants (Camellia sinensis L.), the relevance of endogenous BR in flavonoid accumulation and the underlying mechanisms remain largely unknown. Here we show that BR enhances flavonoid concentration in tea leaves by inducing an increase in the endogenous concentration of nitric oxide (NO). Notably, exogenous BR increased levels of flavonoids as well as NO in a concentration dependent manner, while suppression of BR levels by an inhibitor of BR biosynthesis, brassinazole (BRz), decreased the concentrations of both flavonoids and NO in tea leaves. Interestingly, combined treatment of BR and BRz reversed the inhibitory effect of BRz alone on the concentrations of flavonoids and NO. Likewise, exogenous NO also increased flavonoids and NO levels dose-dependently. When the NO level in tea leaves was suppressed by using a NO scavenger, 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), flavonoid concentration dramatically decreased. Although individual application of 0.1μM BR increased the concentrations of flavonoids and NO, combined treatment with exogenous NO scavenger, cPTIO, reversed the effect of BR on flavonoid concentration. Furthermore, BR or sodium nitroprusside (SNP) promoted but cPTIO inhibited the transcription and activity of phenylalanine ammonia-lyase (PAL) in leaves, while combined treatment of BR with SNP or cPTIO had no additive effect. The results of this study suggest that an optimal level of endogenous NO is essential for BR-induced promotion of flavonoid biosynthesis in tea leaves. In conclusion, this study unveiled a crucial mechanism of BR-induced flavonoid biosynthesis, which might have potential implication in improving the quality of tea. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Bronchoconstriction induced by citric acid inhalation in guinea pigs: role of tachykinins, bradykinin, and nitric oxide.

    Science.gov (United States)

    Ricciardolo, F L; Rado, V; Fabbri, L M; Sterk, P J; Di Maria, G U; Geppetti, P

    1999-02-01

    Gastroesophageal acid reflux into the airways can trigger asthma attacks. Indeed, citric acid inhalation causes bronchoconstriction in guinea pigs, but the mechanism of this effect has not been fully clarified. We investigated the role of tachykinins, bradykinin, and nitric oxide (NO) on the citric acid- induced bronchoconstriction in anesthetized and artificially ventilated guinea pigs. Citric acid inhalation (2-20 breaths) caused a dose-dependent increase in total pulmonary resistance (RL). RL value obtained after 10 breaths of citric acid inhalation was not significantly different from the value obtained after 20 breaths (p = 0.22). The effect produced by a half-submaximum dose of citric acid (5 breaths) was halved by the bradykinin B2 receptor antagonist HOE 140 (0.1 micromol x kg-1, intravenous) and abolished by the tachykinin NK2 receptor antagonist SR 48968 (0.3 micromol x kg-1, intravenous). Bronchoconstriction induced by a submaximum dose of citric acid (10 breaths) was partially reduced by the administration of HOE 140, SR 48968, or the NK1 receptor antagonist CP-99,994 (8 micromol x kg-1, intravenous) alone and completely abolished by the combination of SR 48968 and CP-99,994. Pretreatment with the NO synthase inhibitor, L-NMMA (1 mM, 10 breaths every 5 min for 30 min) increased in an L-arginine-dependent manner the effect of citric acid inhalation on RL. HOE 140 and CP-99,994 markedly reduced the L-NMMA-potentiated bronchoconstriction to inhaled citric acid. We conclude that citric acid-induced bronchoconstriction is caused by tachykinin release from sensory nerves, which, in part, is mediated by endogenously released bradykinin. Simultaneous release of NO by citric acid inhalation counteracts tachykinin-mediated bronchoconstriction. Our study suggests a possible implication of these mechanisms in asthma associated with gastroesophageal acid reflux and a potential therapeutic role of tachykinin and bradykinin antagonists.

  11. Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice.

    Science.gov (United States)

    Hu, Yang; Ding, Wenting; Zhu, Xiaonan; Chen, Ruzhu; Wang, Xuelan

    2016-04-01

    Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.

  12. Inhibition of nitric oxide synthases abrogates pregnancy-induced uterine vascular expansive remodeling.

    Science.gov (United States)

    Osol, George; Barron, Carolyn; Gokina, Natalia; Mandala, Maurizio

    2009-01-01

    It was the aim of this study to test the hypothesis that hypertension and/or inhibition of nitric oxide (NO) synthases alters uterine vascular remodeling during pregnancy. Using a model of hypertension (NO synthase inhibition with L-NAME) in nonpregnant and pregnant rats, comparisons were made with age-matched controls, as well as with animals receiving hydralazine along with L-NAME to maintain normotension in the presence of NO synthase inhibition. Circumferential and axial remodeling of large (main uterine, MUA) and small (premyometrial radial) arteries were quantified and compared. L-NAME treatment prevented expansive circumferential remodeling of the MUA; cotreatment with hydralazine was without effect. Circumferential remodeling of smaller premyometrial radial arteries was also significantly attenuated in hypertensive pregnant animals, while premyometrial radial arteries from rats receiving hydralazine with L-NAME were of intermediate diameter. Neither hypertension nor NO synthase inhibition had any effect on the substantial (200-300%) axial growth of MUA or premyometrial radial arteries. NO plays a major role in facilitating pregnancy-induced expansive remodeling in the uterine circulation, particularly in larger arteries. Some beneficial effects of hydralazine on expansive circumferential remodeling were noted in smaller radial vessels, and these may be linked to its prevention of systemic hypertension and/or to local effects on the arterial wall. Neither NO synthase inhibition nor hypertension had any effect on arterial longitudinal growth.

  13. Contribution of myeloperoxidase and inducible nitric oxide synthase to pathogenesis of psoriasis

    Directory of Open Access Journals (Sweden)

    Nursel Dilek

    2016-12-01

    Full Text Available Introduction : Histological changes of psoriasis include invasion of neutrophils into the epidermis and formation of Munro abscesses in the epidermis. Neutrophils are the predominant white blood cells in circulation when stimulated; they discharge the abundant myeloperoxidase (MPO enzyme that uses hydrogen peroxide to oxidize chloride for killing ingested bacteria. Aim: To investigate the contribution of neutrophils to the pathogenesis of psoriasis at the blood and tissue levels through inducible nitric oxide synthase (iNOS and MPO. Material and methods: A total of 50 adult patients with a chronic plaque form of psoriasis and 25 healthy controls were enrolled to this study. Serum MPO and iNOS levels were measured using ELISA method. Two biopsy specimens were taken in each patient from the center of the lesion and uninvolved skin. Immunohistochemistry was performed for MPO and iNOS on both normal and psoriasis vulgaris biopsies. Results: While a significant difference between serum myeloperoxidase levels were detected, a similar statistical difference between participants in the serum iNOS levels was not found. In immunohistochemistry, intensely stained leukocytes with MPO and intensely staining with iNOS in psoriatic skin was observed. Conclusions : Neutrophils in psoriasis lesions are actively producing MPO and this indirectly triggers the synthesis of iNOS. Targeting of MPO or synthesis of MPO in the lesion area may contribute to development of a new treatment option.

  14. Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide Synthase-Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Takashi Kitano

    2017-01-01

    Full Text Available Background. We investigated the effects of loss of inducible nitric oxide synthase (iNOS on the healing process of cutaneous excisional injury by using iNOS-null (KO mice. Population of granulation tissue-related cell types, that is, myofibroblasts and macrophages, growth factor expression, and reepithelialization were evaluated. Methods. KO and wild type (WT mice of C57BL/6 background were used. Under general anesthesia two round full-thickness excision wounds of 5.0 mm in diameter were produced in dorsal skin. After specific intervals of healing, macroscopic observation, histology, immunohistochemistry, and real-time reverse transcription-polymerase chain reaction (RT-PCR were employed to evaluate the healing process. Results. The loss of iNOS retards granulation tissue formation and reepithelialization in excision wound model in mice. Detailed analyses showed that myofibroblast appearance, macrophage infiltration, and mRNA expression of transforming growth factor b and of collagen 1α2 were all suppressed by lacking iNOS. Conclusions. iNOS is required in the process of cutaneous wound healing. Lacking iNOS retards macrophage invasion and its expression of fibrogenic components that might further impair fibrogenic behaviors of fibroblasts.

  15. Role of nitric oxide in the radiation-induced bystander effect.

    Science.gov (United States)

    Yakovlev, Vasily A

    2015-12-01

    Cells that are not irradiated but are affected by "stress signal factors" released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Wanyi Yen

    Full Text Available Due to its unique location, the endothelial surface glycocalyx (ESG at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO production in post-capillary venules and arterioles of rat mesentery under reduced (low and normal (high flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS inhibitor, NG-monomethyl-L-arginine (L-NMMA. Rats (SD, 250-300 g were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s and for ~60 min under a high flow (~1000 μm/s. In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.

  17. Spinal motoneuron synaptic plasticity after axotomy in the absence of inducible nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Zanon Renata G

    2010-05-01

    Full Text Available Abstract Background Astrocytes play a major role in preserving and restoring structural and physiological integrity following injury to the nervous system. After peripheral axotomy, reactive gliosis propagates within adjacent spinal segments, influenced by the local synthesis of nitric oxide (NO. The present work investigated the importance of inducible nitric oxide synthase (iNOS activity in acute and late glial responses after injury and in major histocompatibility complex class I (MHC I expression and synaptic plasticity of inputs to lesioned alpha motoneurons. Methods In vivo analyses were carried out using C57BL/6J-iNOS knockout (iNOS-/- and C57BL/6J mice. Glial response after axotomy, glial MHC I expression, and the effects of axotomy on synaptic contacts were measured using immunohistochemistry and transmission electron microscopy. For this purpose, 2-month-old animals were sacrificed and fixed one or two weeks after unilateral sciatic nerve transection, and spinal cord sections were incubated with antibodies against classical MHC I, GFAP (glial fibrillary acidic protein - an astroglial marker, Iba-1 (an ionized calcium binding adaptor protein and a microglial marker or synaptophysin (a presynaptic terminal marker. Western blotting analysis of MHC I and nNOS expression one week after lesion were also performed. The data were analyzed using a two-tailed Student's t test for parametric data or a two-tailed Mann-Whitney U test for nonparametric data. Results A statistical difference was shown with respect to astrogliosis between strains at the different time points studied. Also, MHC I expression by iNOS-/- microglial cells did not increase at one or two weeks after unilateral axotomy. There was a difference in synaptophysin expression reflecting synaptic elimination, in which iNOS-/- mice displayed a decreased number of the inputs to alpha motoneurons, in comparison to that of C57BL/6J. Conclusion The findings herein indicate that i

  18. Immune control of Chlamydial growth in the human epithelial cell line RT4 involves multiple mechanisms that include nitric oxide induction, tryptophan catabolism and iron deprivation.

    Science.gov (United States)

    Igietseme, J U; Ananaba, G A; Candal, D H; Lyn, D; Black, C M

    1998-01-01

    The antimicrobial activity of T cell-derived cytokines, especially interferon (IFN)-gamma, against intracellular pathogens, such as Chlamydia trachomatis, involves the induction of 3 major biochemical processes: tryptophan catabolism, nitric oxide (NO) induction and intracellular iron (Fe) deprivation. Since the epithelial cell is the natural target of chlamydial infection, the presence of these antimicrobial systems in the cell would suggest that they may be involved in T cell control of intracellular multiplication of Chlamydia. However, the controversy over whether these 3 antimicrobial processes are present in both mice and humans has precluded the assessment of the relative contribution of each of the 3 mechanisms to chlamydial inhibition in the same epithelial cell from either mice or humans. In the present study, we identified a Chlamydia-susceptible human epithelial cell line, RT4, that possesses the 3 antimicrobial systems, and we examined the role of nitric oxide (NO) induction, and deprivation of tryptophan or Fe in cytokine-induced inhibition of chlamydiae. It was found that the 3 antimicrobial systems contributed to cytokine-mediated inhibition of the intracellular growth of Chlamydia. NO induction accounted for approximately 20% of the growth inhibition; tryptophan catabolism contributed approximately 30%; iron deprivation was least effective; but the combination of the 3 systems accounted for greater than 60% of the inhibition observed. These results indicate that immune control of chlamydial growth in human epithelial cells may involve multiple mechanisms that include NO induction, tryptophan catabolism and Fe deprivation.

  19. Inhibition or knock out of Inducible nitric oxide synthase result in resistance to bleomycin-induced lung injury

    Directory of Open Access Journals (Sweden)

    Crimi Nunzio

    2005-06-01

    Full Text Available Abstract Background In the present study, by comparing the responses in wild-type mice (WT and mice lacking (KO the inducible (or type 2 nitric oxide synthase (iNOS, we investigated the role played by iNOS in the development of on the lung injury caused by bleomycin administration. When compared to bleomycin-treated iNOSWT mice, iNOSKO mice, which had received bleomycin, exhibited a reduced degree of the (i lost of body weight, (ii mortality rate, (iii infiltration of the lung with polymorphonuclear neutrophils (MPO activity, (iv edema formation, (v histological evidence of lung injury, (vi lung collagen deposition and (vii lung Transforming Growth Factor beta1 (TGF-β1 expression. Methods Mice subjected to intratracheal administration of bleomycin developed a significant lung injury. Immunohistochemical analysis for nitrotyrosine revealed a positive staining in lungs from bleomycin-treated iNOSWT mice. Results The intensity and degree of nitrotyrosine staining was markedly reduced in tissue section from bleomycin-iNOSKO mice. Treatment of iNOSWT mice with of GW274150, a novel, potent and selective inhibitor of iNOS activity (5 mg/kg i.p. also significantly attenuated all of the above indicators of lung damage and inflammation. Conclusion Taken together, our results clearly demonstrate that iNOS plays an important role in the lung injury induced by bleomycin in the mice.

  20. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism.

    Science.gov (United States)

    Elks, Philip M; Brizee, Sabrina; van der Vaart, Michiel; Walmsley, Sarah R; van Eeden, Fredericus J; Renshaw, Stephen A; Meijer, Annemarie H

    2013-01-01

    Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α) transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm) zebrafish model of TB to investigate effects on the host's ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS) in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS) signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for therapeutic

  1. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Philip M Elks

    Full Text Available Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb, becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm zebrafish model of TB to investigate effects on the host's ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for

  2. Trifluoperazine-Induced Suicidal Erythrocyte Death and S-Nitrosylation Inhibition, Reversed by the Nitric Oxide Donor Sodium Nitroprusside

    Directory of Open Access Journals (Sweden)

    Mehrdad Ghashghaeinia

    2017-08-01

    Full Text Available Background and Purpose: The high potency antipsychotic drug trifluoperazine (10-[3-(4-methyl-1-piperazinyl-propyl]-2-(trifluoromethyl-(10H-phenothiazine dihydrochloride; TFP may either counteract or promote suicidal cell death or apoptosis. Similar to apoptosis, erythrocytes may enter eryptosis, characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis can be stimulated by an increase in cytoplasmic Ca2+ concentration ([Ca2+]i and inhibited by nitric oxide (NO. We explored whether TFP treatment of erythrocytes induces phosphatidylserine exposure, cell shrinkage, and calcium influx, whether it impairs S-nitrosylation and whether these effects are inhibited by NO. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and protein nitrosylation from fluorescence switch of the Bodipy-TMR/Sypro Ruby signal. Results: Exposure of human erythrocytes to TFP significantly enhanced the percentage of annexin-V-binding cells, raised [Ca2+]i, and decreased S-nitrosylation. The effect of TFP on annexin-V-binding was not affected by removal of extracellular Ca2+ alone, but was significantly inhibited by pre-treatment with sodium nitroprusside (SNP, an effect significantly augmented by additional removal of extracellular Ca2+. A 3 hours treatment with 0.1 µM Ca2+ ionophore ionomycin triggered annexin-V-binding and cell shrinkage, effects fully reversed by removal of extracellular Ca2+. Conclusions: TFP induces eryptosis and decreases protein S-nitrosylation, effects blunted by nitroprusside. The effect of nitroprusside is attenuated in the presence of extracellular Ca2+.

  3. Endothelial Nitric Oxide Synthase Uncoupling: A Novel Pathway in OSA Induced Vascular Endothelial Dysfunction

    OpenAIRE

    Varadharaj, Saradhadevi; Porter, Kyle; Pleister, Adam; Wannemacher, Jacob; Sow, Angela; Jarjoura, David; Zweier, Jay L.; Khayat, Rami N.

    2014-01-01

    The mechanism of vascular endothelial dysfunction (VED) and cardiovascular disease in obstructive sleep apnea (OSA) is unknown. We performed a comprehensive evaluation of endothelial nitric oxide synthase (eNOS) function directly in the microcirculatory endothelial tissue of OSA patients who have very low cardiovascular risk status. Nineteen OSA patients underwent gluteal biopsies before, and after effective treatment of OSA. We measured superoxide (O2−·) and nitric oxide (NO) in the microcir...

  4. Nitric oxide-dependent vasodilation and Ca2+ signalling induced by erythrodiol in rat aorta

    Directory of Open Access Journals (Sweden)

    Fidèle Ntchapda

    2015-06-01

    Full Text Available Objective: To evaluate the pharmacological property of erythrodiol, a natural triterpenoid contained in propolis, as vasodilatory agent, and to determine its mechanism of action. Methods: Rats aortic rings were isolated and suspended in organ baths, and the effects of erythrodiol were studied by means of isometric tension recording experiments. Nitric oxide (NO was detected by ozone-induced chemiluminescence. The technique used to evaluate changes in intracellular Ca2+ concentration in intact endothelium was opened aortic ring and loaded with 16 µmol Fura-2/AM for 60 min at room temperature, washed and fixed by small pins with the luminal face up. In situ, ECs were visualized by an upright epifluorescence Axiolab microscope (Carl Zeiss, Oberkochen, Germany equipped with a Zeiss×63 Achroplan objective (water immersion, 2.0 mm working distance, 0.9 numerical apertures. ECs were excited alternately at 340 and 380 nm, and the emitted light was detected at 510 nm. Results: In aortic rings with intact endothelium pre-contracted with norepinephrine (10-4 mol/L, the addition of erythrodiol (10-8-10-4 mol/L induced vasorelaxation in a concentration-dependent manner; in endothelium-denuded rings, the relaxant response induced by erythrodiol was almost completely abolished suggesting that vasorelaxation was endothelium-dependent. They had almost no relaxant effect on depolarised or endothelium-denuded aortic segments. The relaxation was significantly attenuated by pre-treatment with the NO synthase inhibitor Nvnitro-L-arginine-methylester. Erythrodiol (10-4 mol/L was able to significantly increase NOx levels. This effect was completely abolished after removal of the vascular endothelium. Erythrodiol (100 µmol/L caused a slow, long-lasting increase in intracellular Ca2+ concentration. These results further supported the hypothesis that erythrodiol can induce activation of the NO/soluble guanylate cyclase/cyclic guanosine monophosphate pathway, as

  5. S-Adenosylmethionine modulates inducible nitric oxide synthase gene expression in rat liver and isolated hepatocytes.

    Science.gov (United States)

    Majano, P L; García-Monzón, C; García-Trevijano, E R; Corrales, F J; Cámara, J; Ortiz, P; Mato, J M; Avila, M A; Moreno-Otero, R

    2001-12-01

    Hepatocellular availability of S-adenosylmethionine, the principal biological methyl donor, is compromised in situations of liver damage. S-Adenosylmethionine administration alleviates experimental liver injury and increases survival in cirrhotic patients. The mechanisms behind these beneficial effects of S-adenosylmethionine are not completely known. An inflammatory component is common to many of the pathological conditions in which S-adenosylmethionine grants protection to the liver. This notion led us to study the effect of S-adenosylmethionine administration on hepatic nitric oxide synthase-2 induction in response to bacterial lipopolysaccharide and proinflammatory cytokines. The effect of S-adenosylmethionine on nitric oxide synthase-2 expression was assessed in rats challenged with bacterial lipopolysaccharide and in isolated rat hepatocytes treated with proinflammatory cytokines. Interactions between S-adenosylmethionine and cytokines on nuclear factor kappa B activation and nitric oxide synthase-2 promoter transactivation were studied in isolated rat hepatocytes and HepG2 cells, respectively. S-Adenosylmethionine attenuated the induction of nitric oxide synthase-2 in the liver of lipopolysaccharide-treated rats and in cytokine-treated hepatocytes. S-Adenosylmethionine accelerated the resynthesis of inhibitor kappa B alpha, blunted the activation of nuclear factor kappa B and reduced the transactivation of nitric oxide synthase-2 promoter. Our findings indicate that the hepatoprotective actions of S-adenosylmethionine may be mediated in part through the modulation of nitric oxide production.

  6. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    Science.gov (United States)

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Expression of inducible nitric oxide synthase (iNOS/NOS II) in the hydropic vestibule after injection of keyhole limpet hemocyanin into the endolymphatic sac of guinea pigs.

    Science.gov (United States)

    Watanabe, K; Tomiyama, S; Jinnouchi, K; Hess, A; Michel, O; Yagi, T

    2001-01-01

    This study was undertaken to examine the expression of inducible nitric oxide synthase (iNOS / NOS II) in the hydropic vestibule of guinea pigs. Animals were systemically sensitized with 500 microg of keyhole limpet hemocyanin. Two weeks after the first injection, keyhole limpet hemocyanin (100 microg/5 microl) was injected into the endolymphatic sac following the intradural approach, and the next day temporal bones were removed for the immunohistochemical examination. Endolymphatic hydrops was evidenced by the expansion of the Reissner's membrane in the cochlea after direct injection of keyhole limpet hemocyanin into the endolymphatic sac. Inducible nitric oxide synthase expression was increased in the sensory cells, supporting cells and vestibular ganglion cells, while temporal bones, where only phosphate buffered saline was injected, did not show any inducible nitric oxide synthase immunoreactivity. High levels of inducible nitric oxide synthase-catalyzed nitric oxide were detected prior to the development of the inner ear dysfunction. Our results suggest that the occurrence of inducible nitric oxide synthase immunoreactivity parallels the inner ear disturbance as seen in endolymphatic hydrops.

  8. The Effect of Artemisia fragrans Willd: Essential Oil on Inducible Nitric Oxide Synthase Gene Expression and Nitric Oxide Production in Lipopolysaccharide-stimulated Murine Macrophage Cell Line.

    Science.gov (United States)

    Farghadan, Maryam; Ghafoori, Hosein; Vakhshiteh, Faezeh; Shahzadeh Fazeli, Seyed Abolhassan; Farzaneh, Parvaneh; Kokhaei, Parviz

    2016-12-01

    The genus Artemisia is estimated to comprise over 800 species with anti-cancer, anti-fungal, anti-oxidant and anti-inflammatory properties. Artemisia fragrans (A. fragrans), a species that belongs to genus Artemisia, is rich in monoterpenes and sesquiterpenes derivatives. Due to anti-inflammatory properties of monoterpenes and sesquiterpenes, we aimed to investigate the effect of A. fragrans essential oil on mRNA expression of inducible nitric oxide synthase (iNOS) gene and nitric oxide (NO) production in Lipopolysaccharide (LPS) -stimulated RAW264.7 cell line. NO, which is synthesized by iNOS, is the main macrophage-derived inflammatory mediator. The oil obtained from the A. fragrans was prepared from aerial parts of the plant. Chemical composition of essential oil was analyzed by gas chromatography-mass spectrometry (GC/MS).The cytotoxicity of various concentrations of essential oil was evaluated by mitochondrial reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test assay. The effect of different doses (1.75-7 mg/mL) of A. fragrans oil on mRNA expression of iNOS gene and NO production in LPS-stimulated RAW 264.7 cells was assessed by real-time PCR method and Griess reagent, respectively. In GC/MS analyses of A. fragrans oil, 32 compounds were identified. The main components of the oil were camphor and 1, 8-cineole. The results demonstrated that the essential oil of A. fragrans (1.75- 7 mg/mL), in a dose-dependent manner, inhibits mRNA expression of iNOS induced by LPS in the RAW264.7 cells without cytotoxic effect even at higher doses. The results of iNOS were consistent with the results of NO production. Our preliminary results suggest the possible anti-inflammatory effect of A. fragrans. Further studies are needed to determine the full pharmacokinetics of A. fragrans activity in vivo.

  9. Inhibition of inducible nitric oxide synthase expression and nitric oxide production in plateau pika (Ochotona curzoniae) at high altitude on Qinghai-Tibet Plateau.

    Science.gov (United States)

    Xie, Ling; Zhang, Xuze; Qi, Delin; Guo, Xinyi; Pang, Bo; Du, Yurong; Zou, Xiaoyan; Guo, Songchang; Zhao, Xinquan

    2014-04-30

    Nitric oxide (NO), a potent vasodilator, plays an important role in preventing hypoxia induced pulmonary hypertension. Endogenous NO is synthesized by nitric oxide synthases (NOSs) from l-arginine. In mammals, three different NOSs have been identified, including neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS). Plateau pika (Ochotona curzoniae) is a typical hypoxia tolerant mammal that lives at 3000-5000 m above sea level on the Qinghai-Tibet Plateau. The aim of this study was to investigate whether NOS expression and NO production are regulated by chronic hypoxia in plateau pika. Quantitative real-time PCR and western blot analyses were conducted to quantify relative abundances of iNOS and eNOS transcripts and proteins in the lung tissues of plateau pikas at different altitudes (4550, 3950 and 3200 m). Plasma NO metabolites, nitrite/nitrate (NO(x)⁻) levels were also examined by Ion chromatography to determine the correlation between NO production and altitude level. The results revealed that iNOS transcript levels were significantly lower in animals at high altitudes (decreased by 53% and 57% at altitude of 3950 and 4550 m compared with that at 3200 m). Similar trends in iNOS protein abundances were observed (26% and 41% at 3950 and 4550 m comparing with at 3200 m). There were no significant differences in eNOS mRNA and protein levels in the pika lungs among different altitudes. The plasma NO(x)⁻ levels of the plateau pikas at high altitudes significantly decreased (1.65±0.19 μg/mL at 3200 m to 0.44±0.03 μg/mL at 3950 m and 0.24±0.01 μg/mL at 4550 m). This is the first evidence describing the effects of chronic hypoxia on NOS expression and NO levels in the plateau pika in high altitude adaptation. We conclude that iNOS expression and NO production are suppressed at high altitudes, and the lower NO concentration at high altitudes may serve crucial roles for helping the plateau pika to survive at hypoxic environment. Copyright © 2014

  10. Inducible Nitric Oxide Synthase Promoter Haplotypes and Residential Traffic-Related Air Pollution Jointly Influence Exhaled Nitric Oxide Level in Children.

    Directory of Open Access Journals (Sweden)

    Muhammad T Salam

    Full Text Available Exhaled nitric oxide (FeNO, a biomarker of airway inflammation, predicts asthma risk in children. We previously found that the promoter haplotypes in inducible nitric oxide synthase (NOS2 and exposure to residential traffic independently influence FeNO level. Because NOS2 is inducible by environmental exposures such as traffic-related exposure, we tested the hypothesis that common NOS2 promoter haplotypes modulate the relationship between residential traffic-related exposure and FeNO level in children.In a cross-sectional population-based study, subjects (N = 2,457; 7-11 year-old were Hispanic and non-Hispanic white children who participated in the Southern California Children's Health Study and had FeNO measurements. For residential traffic, lengths of local roads within circular buffers (50m, 100m and 200m radii around homes around the subjects' homes were estimated using geographic information system (GIS methods. We interrogated the two most common NOS2 promoter haplotypes that were found to affect FeNO level.The relationship between local road lengths within 100m and 200m circular buffers and FeNO level varied significantly by one of the NOS2 promoter haplotypes (P-values for interaction between road length and NOS2 promoter haplotype = 0.02 and 0.03, respectively. In children who had ≤250m of local road lengths within 100m buffer around their homes, those with two copies of the haplotype had significantly lower FeNO (adjusted geometric mean = 11.74ppb; 95% confidence intervals (CI: 9.99 to 13.80 than those with no copies (adjusted geometric mean = 15.28ppb; 95% CI: 14.04 to 16.63 with statistically significant trend of lower FeNO level with increasing number of haplotype copy (P-value for trend = 0.002. In contrast, among children who had >250m of local road lengths within 100m buffer, FeNO level did not significantly differ by the haplotype copy-number (P-value for trend = 0.34. Similar interactive effects of this haplotype and local

  11. Inducible Nitric Oxide Synthase Promoter Haplotypes and Residential Traffic-Related Air Pollution Jointly Influence Exhaled Nitric Oxide Level in Children.

    Science.gov (United States)

    Salam, Muhammad T; Lin, Pi-Chu; Eckel, Sandrah P; Gauderman, W James; Gilliland, Frank D

    2015-01-01

    Exhaled nitric oxide (FeNO), a biomarker of airway inflammation, predicts asthma risk in children. We previously found that the promoter haplotypes in inducible nitric oxide synthase (NOS2) and exposure to residential traffic independently influence FeNO level. Because NOS2 is inducible by environmental exposures such as traffic-related exposure, we tested the hypothesis that common NOS2 promoter haplotypes modulate the relationship between residential traffic-related exposure and FeNO level in children. In a cross-sectional population-based study, subjects (N = 2,457; 7-11 year-old) were Hispanic and non-Hispanic white children who participated in the Southern California Children's Health Study and had FeNO measurements. For residential traffic, lengths of local roads within circular buffers (50m, 100m and 200m radii around homes) around the subjects' homes were estimated using geographic information system (GIS) methods. We interrogated the two most common NOS2 promoter haplotypes that were found to affect FeNO level. The relationship between local road lengths within 100m and 200m circular buffers and FeNO level varied significantly by one of the NOS2 promoter haplotypes (P-values for interaction between road length and NOS2 promoter haplotype = 0.02 and 0.03, respectively). In children who had ≤250m of local road lengths within 100m buffer around their homes, those with two copies of the haplotype had significantly lower FeNO (adjusted geometric mean = 11.74ppb; 95% confidence intervals (CI): 9.99 to 13.80) than those with no copies (adjusted geometric mean = 15.28ppb; 95% CI: 14.04 to 16.63) with statistically significant trend of lower FeNO level with increasing number of haplotype copy (P-value for trend = 0.002). In contrast, among children who had >250m of local road lengths within 100m buffer, FeNO level did not significantly differ by the haplotype copy-number (P-value for trend = 0.34). Similar interactive effects of this haplotype and local road

  12. Hepatic inducible nitric oxide synthase expression increases upon exposure to hypergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S. [Sungkyunkwan University School of Medicine, Samsung Medical Center, Department of Pathology and Translational Genomics, Seoul (Korea, Republic of); Republic of Korea Air Force Medical Center, Aerospace Medicine Research Center, Cheongju (Korea, Republic of); Jung, Y.Y. [Sungkyunkwan University School of Medicine, Samsung Medical Center, Department of Pathology and Translational Genomics, Seoul (Korea, Republic of); Do, S.I. [Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Department of Pathology, Seoul (Korea, Republic of)

    2014-08-29

    Stimulation by a number of conditions, including infection, cytokines, mechanical injury, and hypoxia, can upregulate inducible nitric oxide synthase (iNOS) in hepatocytes. We observed that exposure to hypergravity significantly upregulated the transcription of the hepatic iNOS gene. The aim of this study was to confirm our preliminary data, and to further investigate the distribution of the iNOS protein in the livers of mice exposed to hypergravity. ICR mice were exposed to +3 Gz for 1 h. We investigated the time course of change in the iNOS expression. Hepatic iNOS mRNA expression progressively increased in centrifuged mice from 0 to 12 h, and then decreased rapidly by 18 h. iNOS mRNA levels in the livers of centrifuged mice was significantly higher at 3, 6, and 12 h than in uncentrifuged control mice. The pattern of iNOS protein expression paralleled that of the mRNA expression. At 0 and 1 h, weak cytoplasmic iNOS immunoreactivity was found in some hepatocytes surrounding terminal hepatic venules. It was noted that at 6 h there was an increase in the number of perivenular hepatocytes with moderate to strong cytoplasmic immunoreactivity. The number of iNOS-positive hepatocytes was maximally increased at 12 h. The majority of positively stained cells showed a strong intensity of iNOS expression. The expression levels of iNOS mRNA and protein were significantly increased in the livers of mice exposed to hypergravity. These results suggest that exposure to hypergravity significantly upregulates iNOS at both transcriptional and translational levels.

  13. Inducible nitric oxide synthase expression is increased in the alveolar compartment of asthmatic patients.

    Science.gov (United States)

    Tufvesson, E; Andersson, C; Weidner, J; Erjefält, J S; Bjermer, L

    2017-04-01

    Increased exhaled nitric oxide (NO) levels in asthma are suggested to be through inducible NO synthase (iNOS). The aim of this study was to investigate the expression of iNOS in bronchoalveolar lavage (BAL) cells and tissue from central and peripheral airways and compare it with the exhaled bronchial and alveolar NO levels in patients with asthma vs a control group. Thirty-two patients with asthma (defined as controlled or uncontrolled according to Asthma Control Test score cut-off: 20) and eight healthy controls were included. Exhaled NO was measured, and alveolar concentration and bronchial flux were calculated. iNOS was measured in central and peripheral lung biopsies, as well as BAL cells. Bronchoalveolar lavage macrophages were stimulated in vitro, and iNOS expression and NO production were investigated. Expression of iNOS was increased in central airway tissue and the alveolar compartment in uncontrolled as compared to controlled asthmatics and healthy controls. There were no differences, however, in iNOS mRNA levels in total BAL cells in uncontrolled as compared to controlled asthma. Bronchoalveolar lavage cell mRNA levels of iNOS or iNOS expression in central and alveolar tissue did not relate to alveolar NO, nor to bronchial flux of NO. In vitro stimulation with leukotriene D4 increased iNOS mRNA levels and NO production in cultured BAL macrophages. The levels of both bronchial and alveolar iNOS are increased in uncontrolled as compared to controlled asthma. However, levels of iNOS in BAL macrophages were not reflected by alveolar NO. Both central and distal iNOS levels may reflect responsiveness to steroid treatment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Anandamide Induces Sperm Release from Oviductal Epithelia through Nitric Oxide Pathway in Bovines

    Science.gov (United States)

    Osycka-Salut, Claudia; Gervasi, María Gracia; Pereyra, Elba; Cella, Maximiliano; Ribeiro, María Laura; Franchi, Ana María; Perez-Martinez, Silvina

    2012-01-01

    Mammalian spermatozoa are not able to fertilize an egg immediately upon ejaculation. They acquire this ability during their transit through the female genital tract in a process known as capacitation. The mammalian oviduct acts as a functional sperm reservoir providing a suitable environment that allows the maintenance of sperm fertilization competence until ovulation occurs. After ovulation, spermatozoa are gradually released from the oviductal reservoir in the caudal isthmus and ascend to the site of fertilization. Capacitating-related changes in sperm plasma membrane seem to be responsible for sperm release from oviductal epithelium. Anandamide is a lipid mediator that participates in the regulation of several female and male reproductive functions. Previously we have demonstrated that anandamide was capable to release spermatozoa from oviductal epithelia by induction of sperm capacitation in bovines. In the present work we studied whether anandamide might exert its effect by activating the nitric oxide (NO) pathway since this molecule has been described as a capacitating agent in spermatozoa from different species. First, we demonstrated that 1 µM NOC-18, a NO donor, and 10 mM L-Arginine, NO synthase substrate, induced the release of spermatozoa from the oviductal epithelia. Then, we observed that the anandamide effect on sperm oviduct interaction was reversed by the addition of 1 µM L-NAME, a NO synthase inhibitor, or 30 µg/ml Hemoglobin, a NO scavenger. We also demonstrated that the induction of bull sperm capacitation by nanomolar concentrations of R(+)-methanandamide or anandamide was inhibited by adding L-NAME or Hemoglobin. To study whether anandamide is able to produce NO, we measured this compound in both sperm and oviductal cells. We observed that anandamide increased the levels of NO in spermatozoa, but not in oviductal cells. These findings suggest that anandamide regulates the sperm release from oviductal epithelia probably by activating the NO

  15. Anandamide induces sperm release from oviductal epithelia through nitric oxide pathway in bovines.

    Directory of Open Access Journals (Sweden)

    Claudia Osycka-Salut

    Full Text Available Mammalian spermatozoa are not able to fertilize an egg immediately upon ejaculation. They acquire this ability during their transit through the female genital tract in a process known as capacitation. The mammalian oviduct acts as a functional sperm reservoir providing a suitable environment that allows the maintenance of sperm fertilization competence until ovulation occurs. After ovulation, spermatozoa are gradually released from the oviductal reservoir in the caudal isthmus and ascend to the site of fertilization. Capacitating-related changes in sperm plasma membrane seem to be responsible for sperm release from oviductal epithelium. Anandamide is a lipid mediator that participates in the regulation of several female and male reproductive functions. Previously we have demonstrated that anandamide was capable to release spermatozoa from oviductal epithelia by induction of sperm capacitation in bovines. In the present work we studied whether anandamide might exert its effect by activating the nitric oxide (NO pathway since this molecule has been described as a capacitating agent in spermatozoa from different species. First, we demonstrated that 1 µM NOC-18, a NO donor, and 10 mM L-Arginine, NO synthase substrate, induced the release of spermatozoa from the oviductal epithelia. Then, we observed that the anandamide effect on sperm oviduct interaction was reversed by the addition of 1 µM L-NAME, a NO synthase inhibitor, or 30 µg/ml Hemoglobin, a NO scavenger. We also demonstrated that the induction of bull sperm capacitation by nanomolar concentrations of R(+-methanandamide or anandamide was inhibited by adding L-NAME or Hemoglobin. To study whether anandamide is able to produce NO, we measured this compound in both sperm and oviductal cells. We observed that anandamide increased the levels of NO in spermatozoa, but not in oviductal cells. These findings suggest that anandamide regulates the sperm release from oviductal epithelia probably by

  16. Involvement of nitric oxide generation in noise-induced temporary threshold shift in guinea pigs.

    Science.gov (United States)

    Chen, Yuh-Shyang; Tseng, Fen-Yu; Liu, Tien-Chen; Lin-Shiau, Shoei Yn; Hsu, Chuan-Jen

    2005-05-01

    The present study explored the role of endogenous nitric oxide (NO) in the temporary threshold shift caused by acoustic trauma. Guinea pigs were exposed to broadband white noise at a level of 105+/-2dB sound pressure level (SPL) for 10min, causing a temporary threshold shift (TTS). The guinea pigs were divided into six groups (N-1 to N-6) according to survival days after noise exposure (0, 1, 2, 3, 7, 28days). Auditory brainstem responses (ABR) were recorded before noise exposure, immediately after noise exposure and before sacrifice. Immediately after animals were sacrificed, the stria vascularis and the spiral ligament of the lateral wall of each individual cochlea were harvest as a unit and prepared for assay of NO. There was a significant correlation (Pconcentration and final ABR threshold in the noise exposure groups. But the return of ABR threshold to pre-noise-exposed level is early than that of NO concentration. An average 16.2dB threshold shift was found immediately after noise exposure. The threshold returned to the pre-noise-exposed level on the second post-exposure day. Comparing to unexposed control animals, the NO concentration increased nearly threefold immediately following noise exposure and decreased to twofold when the hearing threshold had returned to the pre-noise-exposed level. On the seventh post-exposure day the NO concentration was not different from that in unexposed control animals. Those findings indicate that endogenous NO is generated in the noise-induced temporal threshold shift and its concentration is correlated with the hearing loss.

  17. Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    M. Chacur

    2010-04-01

    Full Text Available Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO. In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT. Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test and allodynia (von Frey hair test. Control animals did not present any alteration (sham-animals. The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL, blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30 in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%. Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%, reaching the greatest increase (60% 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

  18. Croton schiedeanus Schltd prevents experimental hypertension in rats induced by nitric oxide deficit

    Directory of Open Access Journals (Sweden)

    María Teresa Páez

    2013-12-01

    Full Text Available Croton schiedeanus Schltd (N.V.: "almizclillo" is a plant used in traditional medicine as an antihypertensive in Colombia. It contains flavonoid, diterpenoid and fenilbutanoid metabolites that have vasodilatation effects linked to the NO/cGMP pathway. This work aimed to assess the capacity of a 96% EtOH extract to prevent the hypertension induced by nitric oxide (NO deficiency in rats. The NO synthase inhibitor L-NAME (10 mg/kg/d, i.p was administered during five weeks to three groups of rats (6-7 animals: C. Schiedeanus (200 mg/kg/d, p.o, enalapril (reference, 10 mg/kg/d, p.o and vehicle (control: olive oil 1 ml/kg/d, p.o. In addition, the blank group received only vehicle. The arterial blood pressure (BP and heart rate (HR were measured daily for six weeks. After sacrificing the animals, the aortic rings were isolated, contraction was triggered with phenylephrine (PE 10-6 M and relaxant responses were achieved with cumulative concentrations of acetylcholine (ACh, 10-10 - 10-4 M. L-NAME increased the systolic arterial pressure in the control group, attaining mean values of 131 mm Hg at week 5, whereas the C. schiedeanus, enalapril and blank groups maintained blood pressure under 100 mm Hg. The capacity of PE to contract aortic rings was greater in the C. schiedeanus, enalapril and blank groups than in the control group (2157, 2005, 1910 and 1646 mg, respectively. The pEC50 values for ACh were as follows: C. Schiedeanus (6.89 >enalapril (6.39 > blank (5.68 > control (5.09. These results give support to C. Schiedeanus as a natural antihypertensive source.

  19. The Role of Nitric Oxide in Doxorubicin-Induced Cardiotoxicity: Experimental Study

    Directory of Open Access Journals (Sweden)

    Ayşenur Bahadır

    2014-03-01

    Full Text Available OBJECTIVE: We evaluated the myocardial damage in rats treated with doxorubicin (DOX alone and in combination with nitric oxide synthase (NOS inhibitors. METHODS: Twenty-four male Sprague Dawley rats (12 weeks old, weighing 262±18 g were randomly assigned into 4 groups (n=6. Group I was the control group. In Group II, rats were treated with intraperitoneal (ip injections of 3 mg/kg DOX once a week for 5 weeks. In Group III, rats received weekly ip injections of 30 mg/kg L-NAME (nonspecific NOS inhibitor 30 min before DOX injections for 5 weeks. In Group IV, rats received weekly ip injections of 3 mg/kg L-NIL (inducible NOS inhibitor 30 min before DOX injections for 5 weeks. Rats were weighed 2 times a week. At the end of 6 weeks, hearts were excised and then fixed for light and electron microscopy evaluation and tissue lipid peroxidation (malondialdehyde. Blood samples were also obtained for measuring plasma lipid peroxidation. RESULTS: Weight loss was observed in Group II, Group III, and Group IV. Weight loss was statistically significant in the DOX group. Findings of myocardial damage were significantly higher in animals treated with DOX only than in the control group. Histopathological findings of cardiotoxicity in rats treated with DOX in combination with L-NAME and L-NIL were not significantly different compared with the control group. The level of plasma malondialdehyde in the DOX group (9.3±3.4 μmol/L was higher than those of all other groups. CONCLUSION: Our results showed that DOX cardiotoxicity was significantly decreased when DOX was given with NO synthase inhibitors.

  20. Aspirin induces nitric oxide release from vascular endothelium: a novel mechanism of action.

    Science.gov (United States)

    Taubert, D; Berkels, R; Grosser, N; Schröder, H; Gründemann, D; Schömig, E

    2004-09-01

    1. The study was designed to test the hypothesis that aspirin may stimulate nitric oxide (NO) release from vascular endothelium, a pivotal factor for maintenance of vascular homeostasis. 2. Clinical evidence suggests that low-dose aspirin may improve vascular endothelial function. Since other cyclooxygenase (COX) inhibitors showed no beneficial vascular effects, aspirin may exhibit a vasculoprotective, COX-independent mechanism. 3. Luminal NO release was monitored in real time on dissected porcine coronary arteries (PCA) by an amperometric, NO-selective sensor. Additionally, endothelial NO synthase (eNOS) activity was measured in EA.hy 926 cell homogenates by an l-[(3)H]citrulline/l-[(3)H]arginine conversion assay. Superoxide scavenging capacity was assessed by lucigenin-enhanced luminescence. 4. Aspirin induced an immediate concentration-dependent NO release from PCA with an EC(50) of 50 nm and potentiated the NO stimulation by the receptor-dependent agonist substance P. These effects were independent of an increase in intracellular calcium and could be mimicked by stimulation with acetylating aspirin derivatives. The aspirin metabolite salicylic acid or the reversible cyclooxygenase inhibitor indomethacin failed to modulate NO release. Incubation of soluble eNOS for 15 min with 100 microm aspirin or acetylating aspirin analogues increased the l-[(3)H]citrulline yield by 40-80%, while salicylic acid had no effect. Aspirin and salicylic acid showed a similar, but only modest, magnitude and velocity of superoxide scavenging. 5. Our findings demonstrate that therapeutically relevant concentrations of aspirin elicit NO release from vascular endothelium. This effect appears to be due to a direct acetylation of the eNOS protein, but is independent of COX inhibition or inhibition of superoxide-mediated NO degradation.

  1. Nitric oxide synthase inhibitor improves de novo and long-term L-DOPA-induced dyskinesia in hemiparkinsonian rats

    Directory of Open Access Journals (Sweden)

    Fernando Eduardo Padovan-Neto

    2011-06-01

    Full Text Available Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (L-DOPA-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of L-DOPA-induced abnormal involuntary movements in 6-hydroxydopamine (6-OHDA-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-L-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated abnormal involuntary movements induced by chronic and acute L-DOPA. In contrast, rotational behavior was attenuated only after chronic L-DOPA. L-DOPA improved stepping test performance, and its chronic administration did not alter open field behavior. Our results indicated a correlation between apomorphine-induced rotation and the decrease in the number of adjusting steps performed with the contralateral forepaw in the 6-OHDA-lesioned rats.The 6-OHDA lesion and the L-DOPA treatment induced a bilateral increase (1.5 times in the nNOS protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic L-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under L-DOPA acute and chronic treatment. The L-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that L-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the L-DOPA structural modifications in the parkinsonian brain. Taken together, these data provided a rationale

  2. Korean mistletoe lectin (KML-IIU) and its subchains induce nitric oxide (NO) production in murine macrophage cells.

    Science.gov (United States)

    Kang, Tae Bong; Yoo, Yung Choon; Lee, Kwan Hee; Yoon, Ho Sup; Her, Erk; Kim, Jong Bae; Song, Seong Kyu

    2008-03-01

    Synthesis of nitric oxide (NO) is one of the important effector functions of innate immune cells. Although several reports have indicated mistletoe lectins induce immune cells to produce cytokines, studies regarding the activities of the lectins in the production of NO have been very limited. Here, we report on the induction of NO synthesis in a murine macrophage cell line, RAW264.7, by Korean mistletoe lectin (KML-IIU). When the macrophage cells were treated with KML-IIU in the presence of a suboptimal concentration of IFN-gamma, NO production was induced in a concentration-dependent manner. Significantly higher levels of NO were induced by subchains of the KML-IIU (A and B), which have lower toxicities, as compared to the hololectin. Furthermore, expression of the inducible nitric oxide synthase (iNOS) gene was elevated in accordance with the level of NO production. When the synthase was inhibited by iNOS inhibitors (L-NIL and L-NAME), NO production was specifically reduced in a concentration-dependent manner. Our studies demonstrate that the KML-IIU and its subchains induce NO production in murine macrophage cells via activation of the iNOS gene expression, suggesting that the KML-IIU subchains may be used as an immunomodulator to enhance the effector functions of innate immune cells.

  3. The effect of thalidomide on ethanol-induced gastric mucosal damage in mice: involvement of inflammatory cytokines and nitric oxide.

    Science.gov (United States)

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-01-05

    Excessive ethanol ingestion causes gastric mucosal damage through the inflammatory and oxidative processes. The present study was aimed to evaluate the protective effect of thalidomide on ethanol-induced gastric mucosal damage in mice. The animals were pretreated with vehicle or thalidomide (30 or 60 mg/kg, orally), and one hour later, the gastric mucosal injury was induced by oral administration of acidified ethanol. The animals were euthanized one hour after ethanol ingestion, and gastric tissues were collected to biochemical analyzes. The gastric mucosal lesions were assessed by macroscopic and histopathological examinations. The results showed that treatment of mice with thalidomide prior to the administration of ethanol dose-dependently reduced the gastric ulcer index. Thalidomide pretreatment significantly reduced the levels of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6], malondialdehyde (MDA) and myeloperoxidase (MPO) activity. In addition, thalidomide significantly inhibited ethanol-induced nitric oxide (NO) overproduction in gastric tissue. Histological observations showed that ethanol-induced gastric mucosal damage was attenuated by thalidomide pretreatment. It seems that thalidomide as an anti-inflammatory agent may have a protective effect against alcohol-induced mucosal damage by inhibition of neutrophil infiltration and reducing the production of nitric oxide and inflammatory cytokines in gastric tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Chamomile, an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity

    Science.gov (United States)

    Bhaskaran, Natarajan; Shukla, Sanjeev; Srivastava, Janmejai K; Gupta, Sanjay

    2010-01-01

    Chamomile has long been used in traditional medicine for the treatment of inflammation-related disorders. In this study we aimed to investigate the inhibitory effects of chamomile on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and to explore its potential anti-inflammatory mechanisms using RAW 264.7 macrophages. Chamomile treatment inhibited LPS-induced NO production and significantly blocked IL-1β , IL-6 and TNFα-induced NO levels in RAW 264.7 macrophages. Chamomile caused reduction in LPS-induced iNOS mRNA and protein expression. In RAW 264.7 macrophages, LPS-induced DNA binding activity of RelA/p65 was significantly inhibited by chamomile, an effect that was mediated through the inhibition of IKKβ , the upstream kinase regulating NF-κ B/Rel activity, and degradation of inhibitory factor-κ B. These results demonstrate that chamomile inhibits NO production and iNOS gene expression by inhibiting RelA/p65 activation and supports the utilization of chamomile as an effective anti-inflammatory agent. PMID:21042790

  5. Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity.

    Science.gov (United States)

    Bhaskaran, Natarajan; Shukla, Sanjeev; Srivastava, Janmejai K; Gupta, Sanjay

    2010-12-01

    Chamomile has long been used in traditional medicine for the treatment of inflammation-related disorders. In this study we investigated the inhibitory effects of chamomile on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and explored its potential anti-inflammatory mechanisms using RAW 264.7 macrophages. Chamomile treatment inhibited LPS-induced NO production and significantly blocked IL-1β, IL-6 and TNFα-induced NO levels in RAW 264.7 macrophages. Chamomile caused reduction in LPS-induced iNOS mRNA and protein expression. In RAW 264.7 macrophages, LPS-induced DNA binding activity of RelA/p65 was significantly inhibited by chamomile, an effect that was mediated through the inhibition of IKKβ, the upstream kinase regulating NF-κB/Rel activity, and degradation of inhibitory factor-κB. These results demonstrate that chamomile inhibits NO production and iNOS gene expression by inhibiting RelA/p65 activation and supports the utilization of chamomile as an effective anti-inflammatory agent.

  6. Clinical Effects, Exhaled Breath Condensate pH and Exhaled Nitric Oxide in Humans After Ethyl Acrylate Exposure.

    Science.gov (United States)

    Hoffmeyer, F; Bünger, J; Monsé, C; Berresheim, H; Jettkant, B; Beine, A; Brüning, T; Sucker, K

    Ethyl acrylate is an irritant known to affect the upper airways and eyes. An increase of the eye blink frequency in humans was observed during exposure to 5 ppm. Studies on the lower airways are scant and our study objective was the evaluation of pH in exhaled breath condensate (EBC-pH) and nitric oxide in exhaled breath (FeNO) as markers of inflammation. Sixteen healthy volunteers were exposed for 4 h to ethyl acrylate at a concentration of 5 ppm and to sham (0.05 ppm) in an exposure laboratory. Clinical irritation symptoms, EBC-pH (at a pCO2 of 5.33 kPa) and FeNO were assessed before and after exposure. Differences after ethyl acrylate exposure were adjusted for those after sham exposure. 5 ppm ethyl acrylate induced clinical signs of local irritation in the nose and eyes, but not in lower airways. Exposure produced a subtle, but statistically significant, decrease in breathing frequency (1 breath/min; p = 0.017) and a lower EBC-pH (by 0.045 units; p = 0.037). Concerning FeNO, we did not observe significant changes compared to sham exposure. We conclude that local effects induced by 5 ppm ethyl acrylate consist of sensory irritation of eyes and nose. In addition, acute ethyl acrylate exposure to 5 ppm resulted in a net decrease of EBC-pH. Whether that can be interpreted in terms of additional lower airway irritation or already inflammatory alterations set in needs further investigations.

  7. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  8. N-nitro-L-arginine, a nitric oxide synthase inhibitor, aggravates iminodipropionitrile-induced neurobehavioral and vestibular toxicities in rats.

    Science.gov (United States)

    Khan, Haseeb Ahmad

    2012-11-01

    Exposure of iminodipropionitrile (IDPN) to rodents produces permanent behavioral syndrome characterized by repetitive head movements, circling and back walking. Other synthetic nitriles of industrial importance such as crotonitrile and allylnitrile are also able to produce similar motor deficits in experimental animals. However, due to the well-defined behavioral deficits and their easy quantification, IDPN-induced behavioral syndrome is a preferential animal model to test the interaction of various agents with synthetic nitriles. This study reports the effect of non-specific nitric oxide synthase inhibitor, N-nitro-L-arginine (NARG) on IDPN-induced neurobehavioral toxicity in adult male Wistar rats. Four groups of animals were given i.p. injections of IDPN (100 mg/kg) for 6 days. These rats were treated with oral administration of NARG in the doses of 0 (IDPN alone group), 50, 150 and 300 mg/kg, 60 min before IDPN, respectively. Control rats received vehicle only, whereas another group was treated with 300 mg/kg of NARG alone (without IDPN). The results showed that NARG significantly exacerbated the incidence and intensity of IDPN-induced dyskinetic head movements, circling and back walking. The histology of inner ear showed massive degeneration of the sensory hair cells in the crista ampullaris of rats receiving the combined treatment with IDPN and NARG, suggesting a possible role of nitric oxide in IDPN-induced neurobehavioral syndrome in rats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension.

    Science.gov (United States)

    Jaitovich, Ariel; Jourd'heuil, David

    2017-01-01

    Pulmonary hypertension (PH) is characterized by increased vasoconstriction and smooth muscle cell hyperplasia driving pathological vascular remodeling of arterial vessels. In this short review, we discuss the primary source of reactive oxygen species (ROS) and nitric oxide (NO) relevant to PH and the mechanism by which dysregulation of their production contributes to PH. Specifically, hypoxia-induced PH is associated with diminished endothelial nitric oxide synthase (eNOS)-derived NO production and increased production of superoxide (O 2 •- ) through eNOS uncoupling and defective mitochondrial respiration. This drives the inhibition of the NO/soluble guanylate cyclase (sGC) pathway and activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) with consequential dysregulation of the pulmonary vasculature. Therapeutics aimed at increasing NO or cGMP bioavailabilities are amenable to hypoxia disease-induced PH. Similarly, strategies targeting HIF-1α are now considered. Overall, pulmonary hypertension including hypoxia-induced PH offers unique opportunities for the rational development of therapeutics centered on modulating redox signaling.

  10. Inhibition of IFN-γ-Induced Nitric Oxide Dependent Antimycobacterial Activity by miR-155 and C/EBPβ

    Directory of Open Access Journals (Sweden)

    Yongwei Qin

    2016-04-01

    Full Text Available miR-155 (microRNA-155 is an important non-coding RNA in regulating host crucial biological regulators. However, its regulatory function in mycobacterium infection remains unclear. Our study demonstrates that miR-155 expression is significantly increased in macrophages after Mycobacterium marinum (M.m infection. Transfection with anti-miR-155 enhances nitric oxide (NO synthesis and decreases the mycobacterium burden, and vice versa, in interferon γ (IFN-γ activated macrophages. More importantly, miR-155 can directly bind to the 3′UTR of CCAAT/enhancer binding protein β (C/EBPβ, a positive transcriptional regulator of nitric oxide synthase (NOS2, and regulate C/EBPβ expression negatively. Knockdown of C/EBPβ inhibit the production of nitric oxide synthase and promoted mycobacterium survival. Collectively, these data suggest that M.m-induced upregulation of miR-155 downregulated the expression of C/EBPβ, thus decreasing the production of NO and promoting mycobacterium survival, which may provide an insight into the function of miRNA in subverting the host innate immune response by using mycobacterium for its own profit. Understanding how miRNAs partly regulate microbicidal mechanisms may represent an attractive way to control tuberculosis infectious.

  11. Effects of nitric oxide synthesis inhibition on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in the rat brain.

    Science.gov (United States)

    Abekawa, T; Ohmori, T; Koyama, T

    1996-01-01

    We examined effects of nitric oxide (NO.) synthesis inhibition on methamphetamine (MA)-induced dopaminergic and serotonergic neurotoxicity. The toxic dose of MA (5 mg/kg, sc, x4) significantly decreased contents of dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum (ST), and significantly decreased contents of serotonin (5-HT) in the ST, nucleus accumbens (NA) and medial frontal contex (MFC). Coadministration with a NO. synthase inhibitor, N omega-nitro-L-arginine methyl ester (LNAME) (30 mg/kg, i.p., x2), reduced the MA-induced decreases in contents of DA, DOPAC and HVA in the ST, but not reduced the MA-induced decreases in contents of 5-HT in the ST, NA and MFC. These findings suggest that the MA-induced dopaminergic, but not serotonergic neurotoxicity, may be related to the neural process such as NO. formation caused by the activation of postsynaptic DA receptor.

  12. Effect of sildenafil citrate on interleukin-1β-induced nitric oxide synthesis and iNOS expression in SW982 cells

    Science.gov (United States)

    Kim, Kyung-Ok; Park, Shin-Young; Han, Chang-Woo; Chung, Hyun Kee; Ryu, Dae-Hyun

    2008-01-01

    The purpose of this study was to identify the effect of sildenafil citrate on IL-1β-induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1β stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1β-induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1β treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1β-induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1β-induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines. PMID:18587266

  13. Sildenafil Effect on Nitric Oxide Secretion by Normal Human Endometrial Epithelial Cells Cultured In vitro

    Directory of Open Access Journals (Sweden)

    Farzaneh Chobsaz

    2011-01-01

    Full Text Available Background: Sildenafil is a selective inhibitor of cyclic-guanosine monphosphat-specificphosphodiesterase type 5. It increases intracellular nitric oxide (NO production in some cells.There are reports on its positive effect on uterine circulation, endometrial thickness, and infertilityimprovement. Endometrial epithelial cells (EEC play an important role in embryo attachment andimplantation. The present work investigates the effect of sildenafil on human EEC and their NOsecretion in vitro.Materials and Methods: In this experimental in vitro study, endometrial biopsies (n=10 werewashed in a phosphate buffered solution (PBS and digested with collagenase I (2 mg/ml in DMEM/F12 medium at 37°C for 90 minutes. Epithelial glands were collected by sequential filtrationthrough nylon meshes (70 and 40 μm pores, respectively. Epithelial glands were then treated withtrypsin to obtain individual cells. The cells were counted and divided into four groups: control and1, 10, and 20 μM sildenafil concentrations. Cells were cultured for 15 days at 37ºC and 5% CO2; themedia were changed every 3 days, and their supernatants were collected for the NO assay. NO wasmeasured by standard Greiss methods. Data were analyzed by one way ANOVA.Results: There was no significant difference between groups in cell count and NO secretion, but thelevel of NO increased slightly in the experimental groups. The 10 μM dose showed the highest cellcount. EEC morphology changed into long spindle cells in the case groups.Conclusion: Sildenafil (1, 10, and 20 μM showed a mild proliferative effect on human EECnumbers, but no significant change was seen in NO production.

  14. Immunocytochemical localization of inducible nitric oxide synthase and transforming growth factor-beta (TGF-beta) in leprosy lesions.

    Science.gov (United States)

    Khanolkar-Young, S; Snowdon, D; Lockwood, D N

    1998-09-01

    Inducible nitric oxide synthase (iNOS) and TGF-beta were localized by immunocytochemistry in skin lesions from patients across the leprosy spectrum, and from patients undergoing reversal reaction. iNOS expression was highest at the tuberculoid pole of the spectrum, and increased during reversal reaction. TGF-beta was observed throughout the leprosy spectrum, but was highest at the lepromatous pole. Levels of TGF-beta decreased during reversal reaction. Reduced levels of TGF-beta may contribute to unregulated inflammatory responses during reactional episodes.

  15. Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease

    DEFF Research Database (Denmark)

    Manjunatha, G.; Raj, S. Niranjan; Shetty, Nandini Prasad

    2008-01-01

    Nitric oxide (NO) donors Nitroso-R-Salt, 2-Nitroso-1-Naphthol and Sodium Nitro Prusside (SNP) were evaluated for their effectiveness in protecting pearl millet [(Pennisetum glaucum L.) R. Br.] plants against downy mildew disease caused by Sclerospora graminicola [(Sacc). Schroet]. Optimization...... between the inducer treatment and subsequent pathogen inoculation was necessary for maximum resistance development. Disease protection ability of NO donors was also validated as durable in nature. Conversely, prior-treatment with NO scavenger 2-4-carboxyphenyl-4,4,5,5 tetrazoline-1-oxyl-3-oxide potassium...

  16. Nitric oxide and heat shock protein 90 co-regulate temperature-induced bleaching in the soft coral Eunicea fusca

    Science.gov (United States)

    Ross, Cliff

    2014-06-01

    Coral bleaching represents a complex physiological process that is affected not only by environmental conditions but by the dynamic internal cellular biology of symbiotic dinoflagellates ( Symbiodinium spp.) and their cnidarian hosts. Recently, nitric oxide (NO) has emerged as a key molecule involved with the expulsion of Symbiodinium from host cnidarian cells. However, the site of production remains under debate, and the corresponding signaling pathways within and between host and endosymbiont remain elusive. In this study, using freshly isolated Symbiodinium from the soft coral Eunicea fusca, I demonstrate that thermally induced stress causes an upregulation in Symbiodinium heat shock protein 90 (Hsp90). In turn, Hsp90 shows a concomitant ability to enhance the activity of a constitutively expressed isoform of NO synthase. The resulting production of NO constitutes a signaling molecule capable of inducing Symbiodinium expulsion. Using nitric oxide synthase (NOS) and Hsp90 polyclonal antibodies, thermal stress-induced Hsp90 was shown to co-immunoprecipitate with a constitutive isoform of NOS. The specific blocking of Hsp90 activity, with the Hsp90 inhibitor geldanamycin, was capable of inhibiting NO production implicating the involvement of a coordinated regulatory system. These results have strong evolutionary implications for Hsp90-NOS chaperone complexes among biological kingdoms and provide evidence for a new functional role in symbiotic associations.

  17. Nitric Oxide Functions as a Signal in Ultraviolet-B-Induced Baicalin Accumulation in Scutellaria baicalensis Suspension Cultures

    Directory of Open Access Journals (Sweden)

    Jin-Jie Zhang

    2014-03-01

    Full Text Available Stress induced by ultraviolet-B (UV-B irradiation stimulates the accumulation of various secondary metabolites in plants. Nitric oxide (NO serves as an important secondary messenger in UV-B stress-induced signal transduction pathways. NO can be synthesized in plants by either enzymatic catalysis or an inorganic nitrogen pathway. The effects of UV-B irradiation on the production of baicalin and the associated molecular pathways in plant cells are poorly understood. In this study, nitric oxide synthase (NOS activity, NO release and the generation of baicalin were investigated in cell suspension cultures of Scutellaria baicalensis exposed to UV-B irradiation. UV-B irradiation significantly increased NOS activity, NO release and baicalin biosynthesis in S. baicalensis cells. Additionally, exogenous NO supplied by the NO donor, sodium nitroprusside (SNP, led to a similar increase in the baicalin content as the UV-B treatment. The NOS inhibitor, Nω-nitro-l-arginine (LNNA, and NO scavenger, 2-(4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO partially inhibited UV-B-induced NO release and baicalin accumulation. These results suggest that NO is generated by NOS or NOS-like enzymes and plays an important role in baicalin biosynthesis as part of the defense response of S. baicalensis cells to UV-B irradiation.

  18. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling.

    Science.gov (United States)

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H 2 O 2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.

  19. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling*#

    Science.gov (United States)

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    2016-01-01

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato’s response to chilling stress. PMID:27921397

  20. Quebrachitol-induced gastroprotection against acute gastric lesions: role of prostaglandins, nitric oxide and K+ ATP channels.

    Science.gov (United States)

    de Olinda, T M; Lemos, T L G; Machado, L L; Rao, V S; Santos, F A

    2008-05-01

    The effect of Quebrachitol (2-O-methyl-L-inositol), a bioactive component from Magonia glabrata fruit extract was investigated against gastric damage induced by absolute ethanol (96%, 0.2 ml/animal) and indomethacin (30 mg/kg, p.o.), in mice. Quebrachitol at oral doses of 12.5, 25, and 50mg/kg markedly attenuated the gastric lesions induced by ethanol to the extent of 69%, 64%, and 53% and against indomethacin by 55%, 59%, and 26%, respectively. While pretreatment with TRPV1 antagonist capsazepine (5mg/kg, i.p.) failed to block effectively the gastroprotective effect of quebrachitol (25mg/kg) against ethanol damage, the non-selective cyclooxygenase inhibitor indomethacin (10mg/kg, p.o.), almost abolished it. Furthermore, quebrachitol effect was significantly reduced in mice pretreated with L-NAME, or glibenclamide, the respective inhibitors of nitric oxide synthase and K(+)(ATP) channel activation. Thus we provide the first evidence that quebrachitol reduces the gastric damage induced by ethanol and indomethacin, at least in part, by mechanisms that involve endogenous prostaglandins, nitric oxide release, and or the activation of K(+)(ATP) channels.

  1. Human upper airway epithelium produces nitric oxide in response to Staphylococcus epidermidis.

    Science.gov (United States)

    Carey, Ryan M; Chen, Bei; Adappa, Nithin D; Palmer, James N; Kennedy, David W; Lee, Robert J; Cohen, Noam A

    2016-12-01

    Nitric oxide (NO) is produced by sinonasal epithelial cells as part of the innate immune response against bacteria. We previously described bitter-taste-receptor-dependent and -independent NO responses to product(s) secreted by Pseudomonas aeruginosa and Staphylococcus aureus, respectively. We hypothesized that sinonasal epithelium would be able to detect the gram-positive, coagulase-negative bacteria Staphylococcus epidermidis and mount a similar NO response. Sinonasal air-liquid interface cultures were treated with conditioned medium (CM) from lab strains and clinical isolates of coagulase-negative staphylococci and S aureus. NO production was quantified by fluorescence imaging. Bitter taste receptor signaling inhibitors were utilized to characterize the pathway responsible for NO production in response to S epidermidis CM. S epidermidis CM contains a low-molecular-weight, heat, and protease-stabile product that induces an NO synthase (NOS)-mediated NO production that is less robust than the response triggered by S aureus CM. The S epidermidis CM-stimulated NO response is not inhibited by antagonists of phospholipase C isoform β-2 nor the transient receptor potential melastatin isoform 5 ion channel, both critical to bitter taste signaling. This study identifies an NO-mediated innate defense response in sinonasal epithelium elicited by S epidermidis product(s). The active bacterial product is likely a small, nonpeptide molecule that stimulates a pathway independent of bitter taste receptors. Although the NO response to S epidermidis is less vigorous compared with S aureus, the product(s) share similar characteristics. Together, the responses to staphylococci species may help explain the pathophysiology of upper respiratory infections. © 2016 ARS-AAOA, LLC.

  2. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    Science.gov (United States)

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. © 2013 American Institute of Chemical Engineers.

  3. YAP Induces Human Naive Pluripotency

    Directory of Open Access Journals (Sweden)

    Han Qin

    2016-03-01

    Full Text Available The human naive pluripotent stem cell (PSC state, corresponding to a pre-implantation stage of development, has been difficult to capture and sustain in vitro. We report that the Hippo pathway effector YAP is nuclearly localized in the inner cell mass of human blastocysts. Overexpression of YAP in human embryonic stem cells (ESCs and induced PSCs (iPSCs promotes the generation of naive PSCs. Lysophosphatidic acid (LPA can partially substitute for YAP to generate transgene-free human naive PSCs. YAP- or LPA-induced naive PSCs have a rapid clonal growth rate, a normal karyotype, the ability to form teratomas, transcriptional similarities to human pre-implantation embryos, reduced heterochromatin levels, and other hallmarks of the naive state. YAP/LPA act in part by suppressing differentiation-inducing effects of GSK3 inhibition. CRISPR/Cas9-generated YAP−/− cells have an impaired ability to form colonies in naive but not primed conditions. These results uncover an unexpected role for YAP in the human naive state, with implications for early human embryology.

  4. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....

  5. The role of HYAL2 in LSS-induced glycocalyx impairment and the PKA-mediated decrease in eNOS-Ser-633 phosphorylation and nitric oxide production.

    Science.gov (United States)

    Kong, Xiangquan; Chen, Liang; Ye, Peng; Wang, Zhimei; Zhang, Junjie; Ye, Fei; Chen, Shaoliang

    2016-12-15

    Hyaluronan (HA) in the endothelial glycocalyx serves as a mechanotransducer for high-shear-stress-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. Low shear stress (LSS) has been shown to contribute to endothelial inflammation and atherosclerosis by impairing the barrier and mechanotransduction properties of the glycocalyx. Here we focus on the possible role of hyaluronidase 2 (HYAL2) in LSS-induced glycocalyx impairment and the resulting alterations in eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVECs). We show that LSS strongly activates HYAL2 to degrade HA in the glycocalyx. The dephosphorylation of eNOS-Ser-633 under LSS was triggered after HA degradation by hyaluronidase and prevented by repairing the glycocalyx with high-molecular weight hyaluronan. Knocking down HYAL2 in HUVECs protected against HA degradation in the glycocalyx by inhibiting the expression and activity of HYAL2 and further blocked the dephosphorylation of eNOS-Ser-633 and the decrease in NO production in response to LSS. The LSS-induced dephosphorylation of PKA was completely abrogated in HYAL2 siRNA-transfected HUVECs. The LSS-induced dephosphorylation of eNOS-Ser-633 was also reversed by the PKA activator 8-Br-cAMP. We thus suggest that LSS inhibits eNOS-Ser-633 phosphorylation and, at least partially, NO production by activating HYAL2 to degrade HA in the glycocalyx. © 2016 Kong et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Nitric oxide, as a downstream signal, plays vital role in auxin induced cucumber tolerance to sodic alkaline stress.

    Science.gov (United States)

    Gong, Biao; Miao, Li; Kong, Wenjie; Bai, Ji-Gang; Wang, Xiufeng; Wei, Min; Shi, Qinghua

    2014-10-01

    Nitric oxide (NO) and auxin (indole-3-acetic acid; IAA) play vital roles in regulating plants tolerance to abiotic stresses. This study showed that both NO and IAA could induce cucumber plants tolerance to sodic alkaline stress, which depended on their roles in regulating reactive oxygen species (ROS) scavenging, antioxidative enzymes activities, Na(+) accumulation and protecting photosystems II (PSII) from damage. In addition, IAA has significant effect on NO accumulation in cucumber root, which could be responsible for IAA-induced sodic alkaline stress tolerance. Further investigation indicated that the function of IAA could be abolished by NO scavenger (cPTIO). On the contrary, IAA transport inhibitor (NPA) showed no significant effects on abolishing the function of NO. Based on these results, it could be concluded that NO is an essential downstream signal for IAA-induced cucumber tolerance to sodic alkaline stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Diagnostic accuracy of exhaled nitric oxide in exercise-induced bronchospasm: Systematic review

    Directory of Open Access Journals (Sweden)

    L.A.S. Feitosa

    2012-07-01

    Full Text Available Introduction: The gold-standard method for the diagnosis of exercise-induced bronchospasm (EIB is an exercise test combined with spirometry. However, this test is expensive, time consuming and requires specialized equipment and trained personnel. Exhaled nitric oxide (eNO is a fast, easy, noninvasive method for the diagnosis of EIB. The aim of the present study was to assess the accuracy of the measurement of eNO for the diagnosis of EIB through a systematic review of the literature. Methods: A search was carried out in the PubMed, Lilacs, SciELO and SCOPUS databases by two independent researchers. Results: Fifty-six papers were found. Following the application of the eligibility criteria to the title, abstract and text, six papers remained for analysis. There was a significant heterogeneity in sex (X2 = 56.44, p = 0.000 and clinical spectrum (X2 = 504.00, p = 0.000 between studies. In children between 3.8 and 7.8 years old a cutoff point >28 ppb EIB can be ruled in and in children between 5 and 16 years old at a cutoff point 12. Four papers reported negative predictive values above 88%. Conclusion: The measurement of eNO seems to be effective for ruling in and ruling out EIB in some specific groups. Therefore, the meansurement of eNO levels could be an important tool to safely avoid the need for an exercise test when the result is negative, reducing the individual and economic impact of this disease. Resumo: Introdução: O método padrão de ouro para o diagnóstico de broncoespasmos induzidos por exercício (BIE é a prova de esforço combinada com a espirometria. Contudo, esta prova é dispendiosa, demorada e requer equipamento específico e pessoal especializado. O óxido nítrico exalado (eNO é um método rápido, simples e não invasivo para o diagnóstico de BIE. O objectivo do presente estudo foi o de aferir a acurácia do eNO para o diagnóstico do BIE através da revisão sistemática da literatura. Métodos: Foi efectuada

  8. The effect of the nitric oxide synthesis inhibitor L-NAME on amitriptyline-induced hypotension in rats.

    Science.gov (United States)

    Tuncok, Yesim; Kalkan, Sule; Murat, Nergis; Arkan, Filiz; Guven, Hulya; Aygoren, Oguz; Kurt, Serdar

    2002-01-01

    Hypotension induced by tricyclic antidepressants is multifactorial. Previous animal experiments suggest a contribution from nitric oxide production. Our study aimed to evaluate the role of nitric oxide in amitriptyline-induced hypotension using N-nitro-L-arginine methyl ester, a nitric oxide synthesis inhibitor, and 3-morpholino sydnonimine, a nitric oxide donor, in anesthetized rats. Amitriptyline intoxication was induced by the continuous infusion of amitriptyline 0.625 mg/kg/min throughout the experiment in anesthetized rats. Fifteen and 25 minutes after amitriptyline infusion began, two bolus doses of 10 mg/kg of N-nitro-L-arginine methyl ester (n = 8) or an equivalent volume of 5% dextrose solution (n = 8) was administered to each rat (Protocol 1). To investigate whether the effect of N-nitro-L-arginine methyl ester on blood pressure is counteracted by 3-morpholino sydnonimine, after the same protocol of amitriptyline infusion and 5 minutes after an N-nitro-L-arginine methyl ester bolus, a bolus of 3000 nmol/kg of 3-morpholino sydnonimine was administered (n = 8) to each rat (Protocol 2). To investigate the effect of N-nitro-L-arginine methyl ester on 3-morpholino sydnonimine induced hypotension, a group of rats received a continuous infusion of 0.54 mg/kg/h of 3-morpholino sydnonimine until 50% reduction was observed in mean arterial blood pressure followed by a bolus dose of 10 mg/kg of N-nitro-L-arginine methyl ester (n = 6) or 5% dextrose solution (n = 6) (Protocol 3). Outcome measures included mean arterial blood pressure, heart rate, and QRS duration in electrocardiogram. Student's t test and survival analysis were used for selected comparisons. For all parameters, the treatment groups were similar at baseline and at postamitriptyline periods before therapy was rendered. Amitriptyline infusion significantly reduced mean arterial blood pressure by 50.8 +/- 2.2% and prolonged QRS by 23.9 +/- 7.2% after 15 minutes. In Protocol 1, N-nitro-L-arginine methyl

  9. Glutamine and citrulline concentrations reflect nitric oxide synthesis in the human nervous system.

    Science.gov (United States)

    Pérez-Neri, I; Ramírez-Bermúdez, J; Ojeda-López, C; Montes, S; Soto-Hernández, J L; Ríos, C

    2017-08-31

    Although citrulline is produced by nitric oxide (NO) synthase upon activation of the NMDA glutamate receptor, nitrite and nitrate (NOx) concentration is considered the best marker of NO synthesis, as citrulline is also metabolised by other enzymes. This study analyses the correlation between human cerebrospinal fluid NOx and citrulline concentrations in order to determine the extent to which citrulline reflects NO synthesis and glutamatergic neurotransmission. Participants were patients with acute neurological diseases undergoing lumbar puncture (n=240). NOx and amino acid concentrations were determined by HPLC. NOx concentrations did not vary significantly where infection (p=0,110) or inflammation (p=0,349) were present. Multiple regression analysis showed that NOx concentration was correlated with glutamine (r=-0,319, p<0,001) and citrulline concentrations (r=0,293, p=0,005) but not with the citrulline/arginine ratio (r=-0,160, p=0,173). ANCOVA confirmed that NOx concentration was correlated with citrulline concentration (F=7,6, p=0,007) but not with the citrulline/arginine ratio (F=2,2, p=0,136), or presence of infection (F=1,8, p=0,173) or inflammation (F=1,4, p=0,227). No association was found between NOx and arginine or glutamate concentrations. The results suggest that CSF citrulline concentration reflects NOx synthesis to some extent, despite the contribution of other metabolic pathways. In addition, this study shows that glutamine is an important modulator of NO synthase activity, and that arginine and glutamate are not correlated with NOx. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Vascular endothelial growth factor and nitric oxide synthase expression in human tooth germ development.

    Science.gov (United States)

    Mastrangelo, F; Sberna, M T; Tettamanti, L; Cantatore, G; Tagliabue, A; Gherlone, E

    2016-01-01

    Vascular Endothelia Growth Factor (VEGF) and Nitric Oxide Synthase (NOS) expression, were evaluated in human tooth germs at two different stages of embryogenesis, to clarify the role of angiogenesis during tooth tissue differentiation and growth. Seventy-two third molar germ specimens were selected during oral surgery. Thirty-six were in the early stage and 36 in the later stage of tooth development. The samples were evaluated with Semi-quantitative Reverse Transcription-Polymerase chain Reaction analyses (RT-PcR), Western blot analysis (WB) and immunohistochemical analysis. Western blot and immunohistochemical analysis showed a VEGF and NOS 1-2-3 positive reaction in all samples analysed. VEGF high positive decrease reaction was observed in stellate reticulum cells, ameloblast and odontoblast clusters in early stage compared to later stage of tooth germ development. Comparable VEGF expression was observed in endothelial cells of early and advanced stage growth. NOS1 and NOS3 expressions showed a high increased value in stellate reticulum cells, and ameloblast and odontoblast clusters in advanced stage compared to early stage of development. The absence or only moderate positive reaction of NOS2 was detected in all the different tissues. Positive NOS2 expression showed in advanced stage of tissue development compared to early stage. The action of VEGF and NOS molecules are important mediators of angiogenesis during dental tissue development. VEGF high positive expression in stellate reticulum cells in the early stage of tooth development compared to the later stage and the other cell types, suggests a critical role of the stellate reticulum during dental embryo-morphogenesis.

  11. Human odontoblast-like cells produce nitric oxide with antibacterial activity upon TLR2 activation

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eFARGES

    2015-06-01

    Full Text Available The penetration of cariogenic oral bacteria into enamel and dentin during the caries process triggers an immune/inflammatory response in the underlying pulp tissue, the reduction of which is considered a prerequisite to dentinogenesis-based pulp regeneration. If the role of odontoblasts in dentin formation is well known, their involvement in the antibacterial response of the dental pulp to cariogenic microorganisms has yet to be elucidated. Our aim here was to determine if odontoblasts produce nitric oxide (NO with antibacterial activity upon activation of Toll-like receptor-2 (TLR2, a cell membrane receptor involved in the recognition of cariogenic Gram-positive bacteria. Human odontoblast-like cells differentiated from dental pulp explants were stimulated with the TLR2 synthetic agonist Pam2CSK4. We found that NOS1, NOS2 and NOS3 gene expression was increased in Pam2CSK4-stimulated odontoblast-like cells compared to unstimulated ones. NOS2 was the most up-regulated gene. NOS1 and NOS3 proteins were not detected in Pam2CSK4-stimulated or control cultures. NOS2 protein synthesis, NOS activity and NO extracellular release were all augmented in stimulated samples. Pam2CSK4-stimulated cell supernatants reduced Streptococcus mutans growth, an effect counteracted by the NOS inhibitor L-NAME. In vivo, the NOS2 gene was up-regulated in the inflamed pulp of carious teeth compared with healthy ones. NOS2 protein was immunolocalized in odontoblasts situated beneath the caries lesion but not in pulp cells from healthy teeth. These results suggest that odontoblasts may participate to the antimicrobial pulp response to dentin-invading Gram-positive bacteria through NOS2-mediated NO production. They might in this manner pave the way for accurate dental pulp healing and regeneration.

  12. Sequential expression of endothelial nitric oxide synthase, inducible nitric oxide synthase, and nitrotyrosine in odontoblasts and pulp cells during dentin repair after tooth preparation in rat molars.

    Science.gov (United States)

    Mei, Yu Feng; Yamaza, Takayoshi; Atsuta, Ikiru; Danjo, Atsushi; Yamashita, Yoshio; Kido, Mizuho A; Goto, Masaaki; Akamine, Akifumi; Tanaka, Teruo

    2007-04-01

    Nitric oxide (NO) stimulates osteoblast differentiation, but whether NO contributes to odontoblast differentiation during dentin repair is unknown. By using reverse transcription/polymerase chain reaction and immunostaining, we investigated the gene expression and/or immunolocalization of endothelial NO synthase (eNOS), inducible NOS (iNOS), and nitrotyrosine (a biomarker for NO-derived peroxinitrite), and alkaline phosphatase (ALP) and osteocalcin (early and terminal differentiation markers of odontoblasts, respectively) in dental pulp tissue after rat tooth preparation. At the early stage (1-3 days) post-preparation, markedly increased expression of iNOS and nitrotyrosine was found in odontoblasts and pulp cells beneath the cavity, whereas eNOS expression was significantly decreased. ALP mRNA expression was significantly increased after 1 day but decreased after 3 days, whereas ALP activity was weak in the dentin-pulp interface under the cavity after 1 day but strong after 3 days. Osteocalcin mRNA expression was significantly increased at this stage. At 7 days post-preparation, tertiary dentin was formed under the cavity. All the molecules studied were expressed at control levels in odontoblasts/pulp cells beneath the cavity. These findings show that abundant NO is released from odontoblasts and pulp cells at an early stage after tooth preparation and indicate that, after tooth preparation, the up-regulation of iNOS and nitrotyrosine in odontoblasts is synchronized with increased cellular expression of ALP and osteocalcin. Therefore, the NO synthesized by iNOS after tooth preparation probably participates in regulating odontoblast differentiation during tertiary dentinogenesis.

  13. Sepiapterin decreases acute rejection and apoptosis in cardiac transplants independently of changes in nitric oxide and inducible nitric-oxide synthase dimerization.

    Science.gov (United States)

    Pieper, Galen M; Ionova, Irina A; Cooley, Brian C; Migrino, Raymond Q; Khanna, Ashwani K; Whitsett, Jennifer; Vásquez-Vivar, Jeannette

    2009-06-01

    Tetrahydrobiopterin (BH(4)), a cofactor of inducible nitric-oxide synthase (iNOS), is an important post-translational regulator of NO bioactivity. We examined whether treatment of cardiac allograft recipients with sepiapterin [S-(-)-2-amino-7,8-dihydro-6-(2-hydroxy-1-oxopropyl)-4-(1H)-pteridinone], a precursor of BH(4), inhibited acute rejection and apoptosis in cardiac transplants. Heterotopic cardiac transplantation was performed in Wistar-Furth donor to Lewis recipient strain rats. Recipients were treated daily after transplantation with 10 mg/kg sepiapterin. Grafts were harvested on post-transplant day 6 for analysis of BH(4) (high-performance liquid chromatography), expression of inflammatory cytokines (reverse transcription- and real-time polymerase chain reaction), iNOS (Western blots), and NO (Griess reaction and NO analyzer). Histological rejection grade was scored, and graft function was determined by echocardiography. Apoptosis, protein nitration, and oxidative stress were determined by immunohistochemistry. Treatment of allografts with sepiapterin increased cardiac BH(4) levels by 3-fold without changing protein levels of GTP cyclohydrolase, the enzyme that regulates de novo BH(4) synthesis. Sepiapterin decreased inflammatory cell infiltrate and significantly inhibited histological rejection scores and apoptosis similar in magnitude to cyclosporine. Sepiapterin also decreased nitrative and oxidative stress. Sepiapterin caused a smaller increase in left ventricular mass versus untreated allografts but without improving fractional shortening. Sepiapterin did not alter tumor necrosis factor-alpha and interferon-gamma expression, whereas it decreased interleukin (IL)-2 expression. Sepiapterin did not change total iNOS protein or monomer levels, or plasma and tissue NO metabolites levels. It is concluded that the mechanism(s) of antirejection are due in part to decreased apoptosis, protein nitration, and oxidation of cardiomyocytes, which seems to be

  14. Hypotonic swelling promotes nitric oxide release in cardiac ventricular myocytes: impact on swelling-induced negative inotropic effect.

    Science.gov (United States)

    Gonano, Luis Alberto; Morell, Malena; Burgos, Juan Ignacio; Dulce, Raul Ariel; De Giusti, Verónica Celeste; Aiello, Ernesto Alejandro; Hare, Joshua Michael; Vila Petroff, Martin

    2014-12-01

    Cardiomyocyte swelling occurs in multiple pathological situations and has been associated with contractile dysfunction, cell death, and enhanced propensity to arrhythmias. We investigate whether hypotonic swelling promotes nitric oxide (NO) release in cardiomyocytes, and whether it impacts on swelling-induced contractile dysfunction. Superfusing rat cardiomyocytes with a hypotonic solution (HS; 217 mOsm), increased cell volume, reduced myocyte contraction and Ca(2+) transient, and increased NO-sensitive 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) fluorescence. When cells were exposed to HS + 2.5 mM of the NO synthase inhibitor l-NAME, cell swelling occurred in the absence of NO release. Swelling-induced NO release was also prevented by the nitric oxide synthase 1 (NOS1) inhibitor, nitroguanidine, and significantly reduced in NOS1 knockout mice. Additionally, colchicine (inhibitor of microtubule polymerization) prevented the increase in DAF-FM fluorescence induced by HS, indicating that microtubule integrity is necessary for swelling-induced NO release. The swelling-induced negative inotropic effect was exacerbated in the presence of either l-NAME, nitroguandine, the guanylate cyclase inhibitor, ODQ, or the PKG inhibitor, KT5823, suggesting that NOS1-derived NO provides contractile support via a cGMP/PKG-dependent mechanism. Indeed, ODQ reduced Ca(2+) wave velocity and both ODQ and KT5823 reduced the HS-induced increment in ryanodine receptor (RyR2, Ser2808) phosphorylation, suggesting that in this context, cGMP/PKG may contribute to preserve contractile function by enhancing sarcoplasmic reticulum Ca(2+) release. Our findings suggest a novel mechanism for NO release in cardiomyocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hypotonic swelling. Published on behalf of the European Society of Cardiology. All rights reserved. © The

  15. Lifelong physical activity prevents an age-related reduction in arterial and skeletal muscle nitric oxide bioavailability in humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Blackwell, James R; Damsgaard, Ramsus

    2012-01-01

    circulation and in the musculature of sedentary ageing humans due to increased oxidative stress. Lifelong physical activity opposes this effect within the trained musculature and in the arterial circulation. The lower blood flow response to leg exercise in ageing humans is not associated with a reduced......Ageing has been proposed to be associated with increased levels of reactive oxygen species (ROS) that scavenge nitric oxide (NO). In eight young sedentary (23±1 years; Y), eight older lifelong sedentary (66±2 years; OS) and eight older lifelong physically active subjects (62±2 years; OA), we...

  16. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  17. Signal transduction mechanisms and nitric oxide in hypoxic and ischemic human cardiac ventricular cell.

    Science.gov (United States)

    Corbucci, G C; Ricchi, A; Lettieri, B; Mastronardi, P

    2001-11-01

    Nitric oxide (NO) plays a well-known role in regulating endocellular adaptive changes to acute hypoxia and ischemia. The reversible inhibition of complex IV of the mitochondrial respiratory chain fulfils a cytoprotective function, whereas the progressive inhibition of complex I and II reveals the onset of irreversible oxidative damage due to persistent NO production in response to prolonged hypoxia and/or ischemia. In hypoxic or ischemic human myocardial cells, death may be caused by apoptosis or necrosis following the activation of the biomolecular signal transduction mechanisms. The activation of MAPK (mitogen-activated protein kinase) followed by ERK (extracellular regulated kinase) and p21waf is necessary in this respect. The myocardial cell is well known for its postmitotic nature and through their activation these kinases aim to repair DNA damaged by oxidative stress in order to guarantee the survival of the cell itself. A direct correlation has been found between the activation of these kinases and NO production. It was decided to carry out this study in hypoxic and ischemic human heart ventricular tissue in order to confirm this connection. In 10 patients undergoing cardiac valvular replacement, ventricular samples were collected before aortic clamping, after 15 min of ischemia and after 60 minutes during which the patients received doses of hematic cardioplegic solution at regular intervals. The results show a rapid increase in NO production in response to ischemia followed by a tendency for levels of this element to fall. MAPK, ERK and p21waf activation was parallel to No production, irrespective of the repeated administration of hematic cardioplegic solution. The heart tissue examined 60 minutes after aortic clamping came from a ventricular area subject to preconditioning mechanisms. In view of this, the data obtained must be seen in terms of the close correlation between the mitochondrial action played by NO and the contemporary and consequent

  18. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  19. Influence of cholesterol and fish oil dietary intake on nitric oxide-induced apoptosis in vascular smooth muscle cells.

    Science.gov (United States)

    Perales, Sonia; Alejandre, Ma José; Palomino-Morales, Rogelio; Torres, Carolina; Linares, Ana

    2010-04-01

    Apoptosis of vascular smooth muscle cells (SMC) is critically involved in the progression of atherosclerosis. We previously reported that dietary cholesterol intake induces changes in SMC at molecular and gene expression levels. The objectives of the present study were to investigate the differential response to nitric oxide of vascular SMC obtained from chicks after cholesterol and fish oil dietary intake and to examine effects on the main pro-apoptotic and anti-apoptotic genes. Dietary cholesterol intake reduced the Bcl-2/Bax (anti-apoptotic/pro-apoptotic) protein ratio in SMC, making them more susceptible to apoptosis. When cholesterol was withdrawn and replaced with a fish oil-enriched diet, the Bcl-xl/Bax protein ratio significantly increased, reversing the changes induced by cholesterol. The decrease in c-myc gene expression after apoptotic stimuli and the increase in Bcl-xl/Bax ratio indicate that fish oil has a protective role against apoptosis in SMC. Nitroprussiate-like nitric oxide donors exerted an intensive action on vascular SMC cultures. However, SMC-C (isolated from animals fed with control diet) and SMC-Ch (isolated from animals fed with cholesterol-enriched diet) responded differently to nitric oxide, especially in their bcl-2 and bcl-xl gene expression. SMC isolated from animals fed with cholesterol-enriched and then fish oil-enriched diet (SMC-Ch-FO cultures) showed an intermediate apoptosis level (Bcl-2/Bax ratio) between SMC-C and SMC-Ch, induction of c-myc expression and elevated p53 expression. These findings indicate that fish oil protects SMC against apoptosis. Copyright 2009 Elsevier Inc. All rights reserved.

  20. The effect of weight loss on serum concentrations of nitric oxide induced by short - term exercise in obese women

    Directory of Open Access Journals (Sweden)

    M Olszanecka-Glinianowicz

    2009-07-01

    Full Text Available Objective: The aim of present study was to examine the effect of weight loss comprising regular moderate physical activity on resting serum concentrations of nitric oxide metabolites and exercise induced NO release. Materials and Methods: The study was carried out in 43 obese women without additional diseases (age 41.8±11.9y, body weight 94.5±15.1kg, BMI 36.5±4.6kg/m2. All obese patients participated in a 3-month weight reduction programme that consisted of 1 a group instruction in behavioural and dietary methods of weight control every two weeks; 2 1000-1400kcal/day balanced diet, and 3 moderate physical exercises (30 minutes, 3 times a week. Before and after treatment body mass and height were measured, body mass index (BMI was calculated. Body composition was determined by impedance analysis using a Bodystat analyser. The serum concentration of nitric oxide metabolites before and after exercise was measured using spectrophotometry method by Griess. The serum concentrations of lactate before and after exercise were measured with the use of strip test (ACCUSPORT analyzer. Serum concentration of insulin was measured with the use of RIA. Plasma glucose, cholesterol, HDL cholesterol and triglicerydes were determined by enzymatic procedure. Results: The mean weight loss during treatment was 8.3±4.3 kg. We did not observe differences between resting serum concentrations of NO and lactate before and after weight loss. During exercise serum NO concentrations increased significantly both before and after weight loss treatment. After the weight reduction treatment, the time of exercise test increased significantly P<0.005, but there were no significant differences between the value of NO before and after weight loss. Conclusion: 3 – month regular physical activity and weight loss did not influence exercise-induced nitric oxide production.

  1. Mechanism of resveratrol-induced relaxation in the human gallbladder.

    Science.gov (United States)

    Tsai, Ching-Chung; Lee, Ming-Che; Tey, Shu-Leei; Liu, Ching-Wen; Huang, Shih-Che

    2017-05-08

    Resveratrol is a polyphenolic compound extracted from plants and is also a constituent of red wine. Resveratrol produces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Although resveratrol has been reported to cause relaxation of the guinea pig gallbladder, limited data are available about the effect of resveratrol on the gallbladder smooth muscle in humans. The purpose of this study was to investigate the relaxation effects of resveratrol in human gallbladder muscle strips. We studied the relaxant effects of resveratrol in human gallbladder. In addition, we also investigated mechanism of resveratrol-induced relaxation in human gallbladder by tetraethylammonium (a non-selective potassium channels blocker), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channel), glibenclamide (an ATP-sensitive potassium channel blocker), charybdotoxin (an inhibitor of large conductance calcium-activated potassium channels and slowly inactivating voltage-gated potassium channels), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-Nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na+ channel blocker), and ω-conotoxin GVIA (a selective neuronal Ca2+ channel blocker). The present study showed that resveratrol has relaxant effects in human gallbladder muscle strips. In addition, we found that resveratrol-induced relaxation in human gallbladder is associated with nitric oxide, ATP-sensitive potassium channel, and large conductance calcium-activated potassium channel pathways. This study provides the first evidence concerning the relaxant effects of resveratrol in human gallbladder muscle strips. Furthermore, these results demonstrate that resveratrol is a potential new drug or health supplement in the treatment of biliary

  2. Inhibition of neuronal and inducible nitric oxide synthase does not affect the analgesic effects of NMDA antagonists in visceral inflammatory pain.

    Science.gov (United States)

    Srebro, Dragana; Vučković, Sonja; Prostran, Milica

    2016-01-01

    Previously we described the antinociceptive effect of magnesium sulfate and dizocilpine (MK-801) in the visceral and somatic rat models of pain. In the somatic model of pain, we established the influence of selective inhibitors of neuronal and inducible nitric oxide synthase on the antihyperalgesic effects of magnesium sulfate and dizocilpine. Therefore, the objective of the present study was to determine in the rat model of visceral pain whether same mechanisms are involved in the antinociceptive action of magnesium sulfate and dizocilpine. Analgesic activity was assessed using the acetic acid-induced writhing test in rats. Subcutaneous injection of either magnesium sulfate (15 mg/kg) or dizocilpine (0.01 mg/kg) decreased the number of writhes by about 60 and 70%, respectively. The role of nitric oxide on the effects of magnesium sulfate and dizocilpine was evaluated using selective inhibitor of neuronal (N-ω-Propyl-L-arginine hydrochloride (L-NPA)) and inducible (S-methylisothiourea (SMT)) nitric oxide synthase, which per se did not affect the number of writhes. We observed that the antinociceptive effect of magnesium sulfate or dizocilpine did not change in the presence of L-NPA (2 and 10 mg/kg, i.p.) and SMT (0.015 and 10 mg/kg, i.p.). We conclude that, nitric oxide produced by neuronal and inducible nitric oxide synthase does not modulate the effects of magnesium sulfate and dizocilpine in the visceral inflammatory model of pain in the rat.

  3. Inhibition of nitric oxide synthase induces ultrastructural changes in the neurohypophysis of dehydrated rats.

    Science.gov (United States)

    Beagley, G H; Cobbett, P

    1997-02-07

    Neuroglial relation in the rat neurohypophysis have been shown previously to change significantly after an acute dehydration stimulus. Here, we demonstrate a significant role for nitric oxide as a mediator of this response. Adult male rats were injected (i.p.) with 1.5 M NaCl or with 1.5 M NaCl and N omega-nitro-L-arginine methyl ester (L-NAME) an inhibitor of nitric oxide synthase. Five hours after the dehydration stimulus, animals were perfusion fixed and the ultrastructure of their neurohypophyses examined. Neurohypophyses of animals injected with L-NAME and NaCl had significantly less contact between the basal lamina and the membrane of axon terminals than those of animals injected only with NaCl. There was also a significantly larger number of axonal profiles enclosed within neurohypophysial astrocytes in L-NAME and NaCl injected animals than in animals injected only with NaCl.

  4. Interactions between Nitric Oxide and Hypoxia-Inducible Factor Signaling Pathways in Inflammatory Disease

    OpenAIRE

    Olson, Nels; van der Vliet, Albert

    2011-01-01

    Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O2) consumption and redistribution, the ability of NO to regulate various aspects of hypo...

  5. Aspirin induces nitric oxide release from vascular endothelium: a novel mechanism of action

    OpenAIRE

    Taubert, D; Berkels, R; Grosser, N; Schröder, H; Gründemann, D; Schömig, E

    2004-01-01

    The study was designed to test the hypothesis that aspirin may stimulate nitric oxide (NO) release from vascular endothelium, a pivotal factor for maintenance of vascular homeostasis.Clinical evidence suggests that low-dose aspirin may improve vascular endothelial function. Since other cyclooxygenase (COX) inhibitors showed no beneficial vascular effects, aspirin may exhibit a vasculoprotective, COX-independent mechanism.Luminal NO release was monitored in real time on dissected porcine coron...

  6. Nitric Oxide Induces Ataxia Telangiectasia Mutated (ATM) Protein-dependent γH2AX Protein Formation in Pancreatic β Cells*

    Science.gov (United States)

    Oleson, Bryndon J.; Broniowska, Katarzyna A.; Schreiber, Katherine H.; Tarakanova, Vera L.; Corbett, John A.

    2014-01-01

    In this study, the effects of cytokines on the activation of the DNA double strand break repair factors histone H2AX (H2AX) and ataxia telangiectasia mutated (ATM) were examined in pancreatic β cells. We show that cytokines stimulate H2AX phosphorylation (γH2AX formation) in rat islets and insulinoma cells in a nitric oxide- and ATM-dependent manner. In contrast to the well documented role of ATM in DNA repair, ATM does not appear to participate in the repair of nitric oxide-induced DNA damage. Instead, nitric oxide-induced γH2AX formation correlates temporally with the onset of irreversible DNA damage and the induction of apoptosis. Furthermore, inhibition of ATM attenuates cytokine-induced caspase activation. These findings show that the formation of DNA double strand breaks correlates with ATM activation, irreversible DNA damage, and ATM-dependent induction of apoptosis in cytokine-treated β cells. PMID:24610783

  7. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress.

    Science.gov (United States)

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans.

  8. The mechanism of the nitric oxide-mediated enhancement of tert-butylhydroperoxide-induced DNA single strand breakage

    Science.gov (United States)

    Guidarelli, Andrea; Clementi, Emilio; Sciorati, Clara; Cantoni, Orazio

    1998-01-01

    Caffeine (Cf) enhances the DNA cleavage induced by tert-butylhydroperoxide (tB-OOH) in U937 cells via a mechanism involving Ca2+-dependent mitochondrial formation of DNA-damaging species (Guidarelli et al., 1997b). Nitric oxide (NO) is not involved in this process since U937 cells do not express the constitutive nitric oxide synthase (cNOS).Treatment with the NO donors S-nitroso-N-acetyl-penicillamine (SNAP, 10 μM), or S-nitrosoglutathione (GSNO, 300 μM), however, potentiated the DNA strand scission induced by 200 μM tB-OOH. The DNA lesions generated by tB-OOH alone, or combined with SNAP, were repaired with superimposable kinetics and were insensitive to anti-oxidants and peroxynitrite scavengers but suppressed by iron chelators.SNAP or GSNO did not cause mitochondrial Ca2+ accumulation but their enhancing effects on the tB-OOH-induced DNA strand scission were prevented by ruthenium red, an inhibitor of the calcium uniporter of mitochondria. Furthermore, the enhancing effects of both SNAP and GSNO were identical to and not additive with those promoted by the Ca2+-mobilizing agents Cf or ATP.The SNAP- or GSNO-mediated enhancement of the tB-OOH-induced DNA cleavage was abolished by the respiratory chain inhibitors rotenone and myxothiazol and was not apparent in respiration-deficient cells.It is concluded that, in cells which do not express the enzyme cNOS, exogenous NO enhances the accumulation of DNA single strand breaks induced by tB-OOH via a mechanism involving inhibition of complex III. PMID:9846647

  9. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress.

    Directory of Open Access Journals (Sweden)

    Juanjuan Fu

    Full Text Available Nitric oxide (NO and 5-aminolevulinic acid (ALA are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA, hydrogen peroxide (H2O2 and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans.

  10. Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Thaning, Pia

    2010-01-01

    One major unresolved issue in muscle blood flow regulation is that of the role of circulating versus interstitial vasodilatory compounds. The present study determined adenosine-induced formation of NO and prostacyclin in the human muscle interstitium versus in femoral venous plasma to elucidate....... In young healthy humans, microdialysate was collected at rest, during arterial infusion of adenosine, and during interstitial infusion of adenosine through microdialysis probes inserted into musculus vastus lateralis. Muscle interstitial NO and prostacyclin increased with arterial and interstitial infusion...... of adenosine. The addition of adenosine to skeletal muscle cells increased NO formation (fluorochrome 4-amino-5-methylamino-2',7-difluorescein fluorescence), whereas prostacyclin levels remained unchanged. The addition of adenosine to microvascular endothelial cells induced an increase in NO and prostacyclin...

  11. Neuronal Nitric Oxide Synthase Negatively Regulates Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration.

    Science.gov (United States)

    Singh, Brajesh Kumar; Kumar, Vinod; Chauhan, Amit Kumar; Dwivedi, Ashish; Singh, Shweta; Kumar, Ashutosh; Singh, Deepali; Patel, Devendra Kumar; Ray, Ratan Singh; Jain, Swatantra Kumar; Singh, Chetna

    2017-05-01

    The study aimed to investigate the role of NO and neuronal NO synthase (nNOS) in Zn-induced neurodegeneration. Animals were treated with zinc sulfate (20 mg/kg), twice a week, for 2-12 weeks along with control. In a few sets, animals were also treated with/without a NO donor, sodium nitroprusside (SNP), or S-nitroso-N-acetyl penicillamine (SNAP) for 12 weeks. Moreover, human neuroblastoma (SH-SY-5Y) cells were also employed to investigate the role of nNOS in Zn-induced toxicity in in vitro in the presence/absence of nNOS inhibitor, 7-nitroindazole (7-NI). Zn caused time-dependent reduction in nitrite content and total/nNOS activity/expression. SNP/SNAP discernibly alleviated Zn-induced neurobehavioral impairments, dopaminergic neurodegeneration, tyrosine hydroxylase (TH) expression, and striatal dopamine depletion. NO donors also salvage from Zn-induced increase in lipid peroxidation (LPO), mitochondrial cytochrome c release, and caspase-3 activation. While Zn elevated LPO content, it attenuated nitrite content, nNOS activity, and glutathione level along with the expression of TH and nNOS in SH-SY-5Y cells. 7-NI further augmented Zn-induced changes in the cell viability, oxidative stress, and expression of TH and nNOS. The results obtained thus demonstrate that Zn inhibits nNOS that partially contributes to an increase in oxidative stress, which subsequently leads to the nigrostriatal dopaminergic neurodegeneration.

  12. Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings

    Science.gov (United States)

    Pető, Andrea; Lehotai, Nóra; Lozano-Juste, Jorge; León, José; Tari, Irma; Erdei, László; Kolbert, Zsuzsanna

    2011-01-01

    Background and Aims Plants are able to adapt to the environment dynamically through regulation of their growth and development. Excess copper (Cu2+), a toxic heavy metal, induces morphological alterations in plant organs; however, the underlying mechanisms are still unclear. With this in mind, the multiple signalling functions of nitric oxide (NO) in plant cells and its possible regulatory role and relationship with auxin were examined during Cu2+-induced morphological responses. Methods Endogenous auxin distribution was determined by microscopic observation of X-Gluc-stained DR5::GUS arabidopsis, and the levels of NO, superoxide and peroxynitrite were detected by fluorescence microscopy. As well as wild-type, NO-overproducer (nox1) and -deficient (nia1nia2 and nia1nia2noa1-2) arabidopsis plants were used. Key Results Cu2+ at a concentration of 50 µm resulted in a large reduction in cotyledon area and hypocotyl and primary root lengths, accompanied by an increase in auxin levels. In cotyledons, a low Cu2+ concentration promoted NO accumulation, which was arrested by nitric oxide synthase or nitrate reductase inhibitors. The 5-μm Cu2+-induced NO synthesis was not detectable in nia1nia2 or nia1nia2noa1-2 plants. In roots, Cu2+ caused a decrease of the NO level which was not associated with superoxide and peroxynitrite formation. Inhibition of auxin transport resulted in an increase in NO levels, while exogenous application of an NO donor reduced DR5::GUS expression. The elongation processes of nox1 were not sensitive to Cu2+, but NO-deficient plants showed diverse growth responses. Conclusions In plant organs, Cu2+ excess results in severe morphological responses during which the endogenous hormonal balance and signal transduction are affected. Auxin and NO negatively regulate each other's level and NO intensifies the metal-induced cotyledon expansion, but mitigates elongation processes under Cu2+ exposure. PMID:21856638

  13. Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20).

    Science.gov (United States)

    Burrows, Natalie; Cane, Gaelle; Robson, Mathew; Gaude, Edoardo; Howat, William J; Szlosarek, Peter W; Pedley, R Barbara; Frezza, Christian; Ashcroft, Margaret; Maxwell, Patrick H

    2016-03-14

    The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours.

  14. Protective role of theophylline and their interaction with nitric oxide (NO) in adjuvant-induced rheumatoid arthritis in rats.

    Science.gov (United States)

    Pal, Rishi; Chaudhary, Manju J; Tiwari, Prafulla C; Babu, Suresh; Pant, K K

    2015-12-01

    Theophylline (non-specific PDE inhibitor) and their interactions with nitric oxide modulators were evaluated in adjuvant-induced arthritic model of rats. Wistar rats (200-300g), 8 animals per group were used in the study. The animals were injected with 0.1mL of squalene and 0.2mL of complete Freund's adjuvant on day (0) in sub-planter region of right hind paw controls received only saline. The treatment with theophylline and nitric oxide modulators were done from day 14 to day 28. Arthritis indexes, ankle diameter, paw volume, and body weight were determined to assess RA progression from day (0) to day 28. On day 28 animals were sacrificed and their blood collected for IL-10 and TNF-α cytokine levels and hind paw for pathological analysis. Synovial fluid from joint spaces of CFA inoculated rats was collected to estimate TNF-α level in synovial fluid. The data obtained was analyzed by two-way ANOVA followed by the Newman-Keuls post-hoc test. Theophylline (10 and 20mg/kg) significantly decreased adjuvant induced increased arthritis-index, paw volume and ankle diameter (ptheophylline 20mg/kg suppressed TNF-α and elevates IL-10 level as well as reversed adjuvant-induced elevated arthritic parameters as compared to only adjuvant and prednisone group (ptheophylline 20mg/kg significantly reduces synovial TNF-α level as compared to adjuvant only group. Theophylline 20mg/kg+L-NAME 10mg/kg significantly reversed these adjuvant-induced changes in immunological, histopathological and arthritis parameters (p<0.05). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. PKC-Dependent Signaling Pathways within PAG and Thalamus Contribute to the Nitric Oxide-Induced Nociceptive Behavior.

    Science.gov (United States)

    Galeotti, Nicoletta; Ghelardini, Carla

    2013-01-01

    Nitric oxide (NO) is an important molecule involved in nociceptive processing in the central nervous system. The release of NO within the spinal cord has long been implicated in the mechanisms underlying exaggerated pain sensitivity, and administration of NO donors can induce hyperalgesia. To elucidate the supraspinal mechanism responsible for NO-induced nociceptive hypersensitivity, we investigated the modulation of protein kinase C (PKC) and downstream effectors following treatment with the NO donors nitroglycerin and sodium nitroprusside. Both compounds induced a prolonged cold allodynia and heat hyperalgesia, increased levels of c-Fos and IL-1β, and activated NF-κB within periaqueductal grey matter and thalamus. Simultaneously, an increased expression and phosphorylation of PKC γ and ε were detected. To clarify the cellular mechanism involved in the NO-induced hypernociception, we examined the expression of transcription factors that act as PKC downstream effectors. A dramatic hyperphosphorylation of CREB and STAT1 was observed. The i.c.v. administration of the PKC blocker calphostin C prevented the NO-induced hypernociception, the hyperphosphorylation of CREB and STAT1, and partially reduced NF-κB activation. Conversely, the increase of IL-1β was unmodified by calphostin C. These results suggest the relevance of cerebral PKC-mediated CREB and STAT1 activation in the NO donor-induced nociceptive behavior.

  16. Leptin Inhibits the Proliferation of Vascular Smooth Muscle Cells Induced by Angiotensin II through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Amaia Rodríguez

    2010-01-01

    Full Text Available Objective. This study was designed to investigate whether leptin modifies angiotensin (Ang II-induced proliferation of aortic vascular smooth muscle cells (VSMCs from 10-week-old male Wistar and spontaneously hypertensive rats (SHR, and the possible role of nitric oxide (NO. Methods. NO and NO synthase (NOS activity were assessed by the Griess and 3H-arginine/citrulline conversion assays, respectively. Inducible NOS (iNOS and NADPH oxidase subutnit Nox2 expression was determined by Western-blot. The proliferative responses to Ang II were evaluated through enzymatic methods. Results. Leptin inhibited the Ang II-induced proliferative response of VSMCs from control rats. This inhibitory effect of leptin was abolished by NOS inhibitor, NMMA, and iNOS selective inhibitor, L-NIL, and was not observed in leptin receptor-deficient fa/fa rats. SHR showed increased serum leptin concentrations and lipid peroxidation. Despite a similar leptin-induced iNOS up-regulation, VSMCs from SHR showed an impaired NOS activity and NO production induced by leptin, and an increased basal Nox2 expression. The inhibitory effect of leptin on Ang II-induced VSMC proliferation was attenuated. Conclusion. Leptin blocks the proliferative response to Ang II through NO-dependent mechanisms. The attenuation of this inhibitory effect of leptin in spontaneous hypertension appears to be due to a reduced NO bioavailability in VSMCs.

  17. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yoshioka

    2016-02-01

    Full Text Available Dopamine (DA has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS-induced nitric oxide (NO production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (−-(6aR,12bR-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208–243 and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ, accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  18. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis.

    Science.gov (United States)

    Du, Jing; Li, Manli; Kong, Dongdong; Wang, Lei; Lv, Qiang; Wang, Jinzheng; Bao, Fang; Gong, Qingqiu; Xia, Jinchan; He, Yikun

    2014-07-01

    After germination, cotyledons undertake the major role in supplying nutrients to the pre-photoautorophy angiosperm seedlings until they senesce. Like other senescence processes, cotyledon senescence is a programmed degenerative process. Nitric oxide can induce premature cotyledon senescence in Arabidopsis thaliana, yet the underlying mechanism remains elusive. A screen for genetic mutants identified the nes1 mutant, in which cotyledon senescence was accelerated by nitric oxide. Map-based cloning revealed that NES1 is allelic to a previously reported mitotic checkpoint family gene, MAD1. The nes1/mad1 mutants were restored to the wild type, in response to nitric oxide, by transforming them with pNES1::NES1. Ectopic expression of NES1 in the wild type delayed nitric oxide-mediated cotyledon senescence, confirming the repressive role of NES1. Moreover, two positive regulators of leaf senescence, the ethylene signalling component EIN2 and the transcription factor ORE1/AtNAC2/ANAC092, were found to function during nitric oxide-induced senescence in cotyledons. The block of ORE1 function delayed senescence and ectopic expression induced the process, revealing the positive role of ORE1. EIN2 was required to induce ORE1. Furthermore, the genetic interaction analysis between NES1 and ORE1 showed that the ore1 loss-of-function mutants were epistatic to nes1, suggesting the dominant role of ORE1 and the antagonistic role of NES1 during nitric oxide-induced cotyledon senescence in Arabidopsis. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Nitric oxide gas phase release in human small airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Suresh Vinod

    2009-01-01

    Full Text Available Abstract Background Asthma is a chronic airway inflammatory disease characterized by an imbalance in both Th1 and Th2 cytokines. Exhaled nitric oxide (NO is elevated in asthma, and is a potentially useful non-invasive marker of airway inflammation. However, the origin and underlying mechanisms of intersubject variability of exhaled NO are not yet fully understood. We have previously described NO gas phase release from normal human bronchial epithelial cells (NHBEs, tracheal origin. However, smaller airways are the major site of morbidity in asthma. We hypothesized that IL-13 or cytomix (IL-1β, TNF-α, and IFN-γ stimulation of differentiated small airway epithelial cells (SAECs, generation 10–12 and A549 cells (model cell line of alveolar type II cells in culture would enhance NO gas phase release. Methods Confluent monolayers of SAECs and A549 cells were cultured in Transwell plates and SAECs were allowed to differentiate into ciliated and mucus producing cells at an air-liquid interface. The cells were then stimulated with IL-13 (10 ng/mL or cytomix (10 ng/mL for each cytokine. Gas phase NO release in the headspace air over the cells was measured for 48 hours using a chemiluminescence analyzer. Results In contrast to our previous result in NHBE, baseline NO release from SAECs and A549 is negligible. However, NO release is significantly increased by cytomix (0.51 ± 0.18 and 0.29 ± 0.20 pl.s-1.cm-2, respectively reaching a peak at approximately 10 hours. iNOS protein expression increases in a consistent pattern both temporally and in magnitude. In contrast, IL-13 only modestly increases NO release in SAECs reaching a peak (0.06 ± 0.03 pl.s-1.cm-2 more slowly (30 to 48 hours, and does not alter NO release in A549 cells. Conclusion We conclude that the airway epithelium is a probable source of NO in the exhaled breath, and intersubject variability may be due, in part, to variability in the type (Th1 vs Th2 and location (large vs small airway

  20. U-Bang-Haequi Tang: A Herbal Prescription that Prevents Acute Inflammation through Inhibition of NF-κB-Mediated Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Min Hwangbo

    2014-01-01

    Full Text Available Since antiquity, medical herbs have been prescribed for both treatment and preventative purposes. Herbal formulas are used to reduce toxicity as well as increase efficacy in traditional Korean medicine. U-bang-haequi tang (UBT is a herbal prescription containing Arctii fructus and Forsythia suspensa as its main components and has treated many human diseases in traditional Korean medicine. This research investigated the effects of UBT against an acute phase of inflammation. For this, we measured induction of nitric oxide (NO and related proteins in macrophage cell line stimulated by lipopolysaccharide (LPS. Further, paw swelling was measured in carrageenan-treated rats. Carrageenan significantly induced activation of inflammatory cells and increases in paw volume, whereas oral administration of 0.3 or 1 g/kg/day of UBT inhibited the acute inflammatory response. In RAW264.7 cells, UBT inhibited mRNA and protein expression levels of iNOS. UBT treatment also blocked elevation of NO production, nuclear translocation of NF-κB, phosphorylation of Iκ-Bα induced by LPS. Moreover, UBT treatment significantly blocked the phosphorylation of p38 and c-Jun NH2-terminal kinases by LPS. In conclusion, UBT prevented both acute inflammation in rats as well as LPS-induced NO and iNOS gene expression through inhibition of NF-κB in RAW264.7 cells.

  1. Interleukin-1 beta-induced nitric oxide production from isolated rat islets is modulated by D-glucose and 3-isobutyl-1-methyl xanthine

    DEFF Research Database (Denmark)

    Andersen, H U; Mauricio, D; Karlsen, Allan Ertman

    1996-01-01

    -glucose-mediated modulation of interleukin-1 beta effects on insulin release from isolated rat islets was related to modulation of nitric oxide production. Further, we wished to investigate the effects of agents increasing the intracellular concentration of cAMP on interleukin-1 beta-induced nitrite production. We......Interleukin-1 beta has been proposed to cause selective beta-cell destruction via the induction of nitric oxide synthesis. The cytotoxic effect of interleukin-1 beta is modulated by the concentration of D-glucose in the medium. The aim of this study was to investigate if D...... effects on acute insulin release was found at high (28 mmol/l) concentrations of D-glucose, and blocking nitrite production by the L-arginine analog aminoguanidine, which selectively inhibits the cytokine-inducible nitric oxide synthase, did not result in protection against the inhibitory action...

  2. Differential Expression of Nitric Oxide Synthase Isoforms nNOS and iNOS in Patients with Non-Segmental Generalized Vitiligo

    Directory of Open Access Journals (Sweden)

    Mario Vaccaro

    2017-11-01

    Full Text Available Nitric oxide (NO is involved in several biological processes, but its role in human melanogenesis is still not well understood. Exposure to UVA and UVB induces nitric oxide production in keratinocytes and melanocytes through the activation of constitutive nitric oxide synthase, increasing tyrosinase activity and melanin synthesis, whereas inducible nitric oxide synthase over expression might be involved in hypopigmentary disorders. The aim of this study was to evaluate whether inducible nitric oxide synthase and neuronal nitric oxide synthase expression were modified in vitiligo skin compared to healthy controls. Skin biopsies were obtained from inflammatory/lesional and white/lesional skin in 12 patients with active, non-segmental vitiligo; site-matched biopsies of normal skin from eight patients were used as controls. Nitric oxide synthase isoforms expression was evaluated by confocal laser scanning microscopy and Western Blot analysis. Inducible nitric oxide synthase expression was significantly increased in inflammatory/lesional skin compared to healthy skin; melanocytes showed a moderate neuronal nitric oxide synthase expression in white/lesional skin, demonstrating that metabolic function still goes on. The obtained data demonstrated that vitiligo lesions were characterized by modifications of nitric oxide synthase isoforms, thus confirming the hypothesis that nitric oxide imbalance is involved in vitiligo and supporting the idea that nitric oxide synthase inhibitors might be used as a possible therapeutic approach for the management of vitiligo.

  3. Differential Expression of Nitric Oxide Synthase Isoforms nNOS and iNOS in Patients with Non-Segmental Generalized Vitiligo.

    Science.gov (United States)

    Vaccaro, Mario; Irrera, Natasha; Cutroneo, Giuseppina; Rizzo, Giuseppina; Vaccaro, Federico; Anastasi, Giuseppe P; Borgia, Francesco; Cannavò, Serafinella P; Altavilla, Domenica; Squadrito, Francesco

    2017-11-26

    Nitric oxide (NO) is involved in several biological processes, but its role in human melanogenesis is still not well understood. Exposure to UVA and UVB induces nitric oxide production in keratinocytes and melanocytes through the activation of constitutive nitric oxide synthase, increasing tyrosinase activity and melanin synthesis, whereas inducible nitric oxide synthase over expression might be involved in hypopigmentary disorders. The aim of this study was to evaluate whether inducible nitric oxide synthase and neuronal nitric oxide synthase expression were modified in vitiligo skin compared to healthy controls. Skin biopsies were obtained from inflammatory/lesional and white/lesional skin in 12 patients with active, non-segmental vitiligo; site-matched biopsies of normal skin from eight patients were used as controls. Nitric oxide synthase isoforms expression was evaluated by confocal laser scanning microscopy and Western Blot analysis. Inducible nitric oxide synthase expression was significantly increased in inflammatory/lesional skin compared to healthy skin; melanocytes showed a moderate neuronal nitric oxide synthase expression in white/lesional skin, demonstrating that metabolic function still goes on. The obtained data demonstrated that vitiligo lesions were characterized by modifications of nitric oxide synthase isoforms, thus confirming the hypothesis that nitric oxide imbalance is involved in vitiligo and supporting the idea that nitric oxide synthase inhibitors might be used as a possible therapeutic approach for the management of vitiligo.

  4. Nitric oxide-dependent vasorelaxation induced by extractive solutions and fractions of Maytenus ilicifolia Mart ex Reissek (Celastraceae) leaves.

    Science.gov (United States)

    Rattmann, Yanna D; Cipriani, Thales R; Sassaki, Guilherme L; Iacomini, Marcello; Rieck, Lia; Marques, Maria C A; da Silva-Santos, José E

    2006-04-06

    This study reveals that an ethanolic supernatant obtained from an aqueous extractive solution prepared from residues of methanolic extracts of ground leaves of Maytenus ilicifolia is able to cause a concentration- and endothelium-dependent relaxation in pre-contract rat aorta rings, with EC(50) of 199.7 (190-210) microg/ml. The non-selective nitric oxide synthase inhibitors l-NAME and l-NMMA abolished this effect, while superoxide dismutase and MnTBAP (a non-enzymatic superoxide dismutase mimetic) enhanced it. Further, relaxation induced by this ethanolic supernatant have been strongly inhibited by the guanylate cyclase inhibitors methylene blue and ODQ, as well as by the potassium channel blockers 4-aminopyridine and tetraethylammonium, but was unchanged by the cyclooxygenase inhibitor indomethacin and the membrane receptor antagonists atropine, HOE-140 and pirilamine. Partition of the ethanolic supernatant between H(2)O and EtOAc generated a fraction several times more potent, able to fully relax endothelium-intact aorta rings with an EC(50) of 4.3 (3.9-4.8) microg/ml. (13)C NMR spectrum of this fraction showed signals typical of catechin. This study reveals that the leaves of M. ilicifolia possess one or more potent substances able to relax endothelium-intact rat aorta rings, an event that appears to involve nitric oxide production, guanylate cyclase activation and potassium channel opening.

  5. Suppressive effects of coumarins from Mammea siamensis on inducible nitric oxide synthase expression in RAW264.7 cells.

    Science.gov (United States)

    Morikawa, Toshio; Sueyoshi, Mayumi; Chaipech, Saowanee; Matsuda, Hisashi; Nomura, Yukiko; Yabe, Mikuko; Matsumoto, Tomoko; Ninomiya, Kiyofumi; Yoshikawa, Masayuki; Pongpiriyadacha, Yutana; Hayakawa, Takao; Muraoka, Osamu

    2012-08-15

    A methanol extract of the flowers of Mammea siamensis (Calophyllaceae) was found to inhibit nitric oxide (NO) production in lipopolysaccharide-activated RAW264.7 cells. From the extract, two new geranylated coumarins, mammeasins A (1) and B (2), were isolated together with 17 known compounds including 15 coumarins. The structures of 1 and 2 were determined on the basis of their spectroscopic properties as well as of their chemical evidence. Among the isolates, 1 (IC(50) = 1.8 μM), 2 (6.4 μM), surangins B (3, 5.0 μM), C (4, 6.8 μM), and D (5, 6.2 μM), kayeassamins E (7, 6.1 μM), F (8, 6.0 μM), and G (9, 0.8 μM), mammea A/AD (11, 1.3 μM), and mammea E/BB (16, 7.9 μM) showed NO production inhibitory activity. Compounds 1, 9, and 11 were found to inhibit induction of inducible nitric oxide synthase (iNOS). With regard to mechanism of action of these active constituents (1, 9, and 11), suppression of STAT1 activation is suggested to be mainly involved in their suppression of iNOS induction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils.

    Science.gov (United States)

    Sureda, Antoni; Batle, Juan M; Capó, Xavier; Martorell, Miquel; Córdova, Alfredo; Tur, Josep A; Pons, Antoni

    2014-09-01

    Scuba diving, characterized by hyperoxia and hyperbaria, could increase reactive oxygen species production which acts as signaling molecules to induce adaptation against oxidative stress. The aim was to study the effects of scuba diving immersion on neutrophil inflammatory response, the induction of oxidative damage, and the NO synthesis. Nine male divers performed a dive at 50 m depth for a total time of 35 min. Blood samples were obtained at rest before the dive, after the dive, and 3 h after the diving session. Markers of oxidative and nitrosative damage, nitrite, and the gene expression of genes related with the synthesis of nitric oxide and lipid mediators, cytokine synthesis, and inflammation were determined in neutrophils. The mRNA levels of genes related with the inflammatory and immune response of neutrophils, except TNF-α, myeloperoxidase, and toll-like receptor (TLR) 2, significantly increased after the recovery period respect to predive and postdive levels. NF-κB, IL-6, and TLR4 gene expression reported significant differences immediately after diving respect to the predive values. Protein nitrotyrosine levels significantly rose after diving and remained high during recovery, whereas no significant differences were reported in malondialdehyde. Neutrophil nitrite levels as indicative of inducible nitric oxide synthase (iNOS) activity progressively increased after diving and recovery. The iNOS protein levels maintained the basal values in all situations. Scuba diving which combines hyperoxia, hyperbaria, and acute exercise induces nitrosative damage with increased nitrotyrosine levels and an inflammatory response in neutrophils. Copyright © 2014 the American Physiological Society.

  7. Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging

    Science.gov (United States)

    Gordish, Kevin L.

    2014-01-01

    Resveratrol is suggested to have beneficial cardiovascular and renoprotective effects. Resveratrol increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. We hypothesized resveratrol acts as an acute renal vasodilator, mediated through increased NO production and scavenging of reactive oxygen species (ROS). In anesthetized rats, we found 5.0 mg/kg body weight (bw) of resveratrol increased renal blood flow (RBF) by 8% [from 6.98 ± 0.42 to 7.54 ± 0.17 ml·min−1·gram of kidney weight−1 (gkw); n = 8; P resveratrol before and after 10 mg/kg bw of the NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME). l-NAME reduced the increase in RBF to resveratrol by 54% (from 0.59 ± 0.05 to 0.27 ± 0.06 ml·min−1·gkw−1; n = 10; P resveratrol before and after 1 mg/kg bw tempol, a superoxide dismutase mimetic. Resveratrol increased RBF 7.6% (from 5.91 ± 0.32 to 6.36 ± 0.12 ml·min−1·gkw−1; n = 7; P resveratrol-induced increase in RBF (from 0.45 ± 0.12 to 0.10 ± 0.05 ml·min−1·gkw−1; n = 7; P Resveratrol-induced vasodilation remained unaffected. We conclude intravenous resveratrol acts as an acute renal vasodilator, partially mediated by increased NO production/NO bioavailability and superoxide scavenging but not by inducing vasodilatory cyclooxygenase products. PMID:24431202

  8. Effects of an endogenous nitric oxide synthase inhibitor on phorbol myristate acetate-induced acute lung injury in rats.

    Science.gov (United States)

    Lin, Hen I; Chu, Shi Jye; Wang, David; Chen, Hsing I; Hsu, Kang

    2003-01-01

    1. In the present study, we determined whether the endogenous nitric oxide (NO) synthase (NOS) inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME) could ameliorate the acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in rat isolated lung. 2. Typical ALI was induced successfully by PMA during 60 min of observation. At 2 micro g/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/bodyweight ratio, pulmonary arterial pressure (PAP) and protein concentration of bronchoalveolar lavage fluid. 3. Pretreatment with the NOS inhibitor l-NAME (5 mmol/L) significantly attenuated ALI. None of the parameters reflective of lung injury showed significant increase, except for PAP (P < 0.001). The addition of l-arginine (4 mmol/L) blocked the protective effective of l-NAME. Pretreatment with l-arginine exacerbated PMA-induced lung injury. 4. These data suggest that l-NAME significantly ameliorates ALI induced by PMA in rats, indicating that endogenous NO plays a key role in the development of lung oedema in PMA-induced lung injury.

  9. The Neurokinin-1 Receptor Modulates the Methamphetamine-Induced Striatal Apoptosis and Nitric Oxide Formation in Mice

    Science.gov (United States)

    Zhu, Judy; Xu, Wenjing; Wang, Jing; Ali, Syed F.; Angulo, Jesus A.

    2009-01-01

    In a previous study we showed that pharmacological blockade of the neurokinin-1 receptors attenuated the methamphetamine-induced toxicity of the striatal dopamine terminals. In the present study we examined the role of the neurokinin-1 receptors on the methamphetamine-induced apoptosis of some striatal neurons. To that end, we administered a single injection of METH (30 mg/kg, i.p.) to male mice. METH induced the apoptosis (TUNEL) of approximately 20% of striatal neurons. This percentage of METH-induced apoptosis was significantly attenuated by either a single injection of the neurokinin-1 receptor antagonist WIN-51,708 (5 mg/kg, i.p.) or the ablation of the striatal interneurons expressing the neurokinin-1 receptors (cholinergic and somatostatin) with the selective neurotoxin [Sar9,Met(O2)11] substance P-saporin. Next we assessed the levels of striatal 3-nitrotyrosine (3-NT) by HPLC and immunohistochemistry. METH increased the levels of striatal 3-NT and this increase was attenuated by pretreatment with WIN-51,708. Our data support the hypothesis that METH-induced striatal apoptosis occurs via a mechanism involving the neurokinin-1 receptors and the activation of nitric oxide synthesis. Our findings are relevant for the treatment of METH abuse and may be relevant to certain neurological disorders involving the dopaminergic circuitry of the basal ganglia. PMID:19682209

  10. Helium induces preconditioning in human endothelium in vivo.

    Science.gov (United States)

    Smit, Kirsten F; Oei, Gezina T M L; Brevoord, Daniel; Stroes, Erik S; Nieuwland, Rienk; Schlack, Wolfgang S; Hollmann, Markus W; Weber, Nina C; Preckel, Benedikt

    2013-01-01

    Helium protects myocardium by inducing preconditioning in animals. We investigated whether human endothelium is preconditioned by helium inhalation in vivo. Forearm ischemia-reperfusion (I/R) in healthy volunteers (each group n = 10) was performed by inflating a blood pressure cuff for 20 min. Endothelium-dependent and endothelium-independent responses were measured after cumulative dose-response infusion of acetylcholine and sodium nitroprusside, respectively, at baseline and after 15 min of reperfusion using strain-gauge, venous occlusion plethysmography. Helium preconditioning was applied by inhalation of helium (79% helium, 21% oxygen) either 15 min (helium early preconditioning [He-EPC]) or 24 h before I/R (helium late preconditioning). Additional measurements of He-EPC were done after blockade of endothelial nitric oxide synthase. Plasma levels of cytokines, adhesion molecules, and cell-derived microparticles were determined. Forearm I/R attenuated endothelium-dependent vasodilation (acetylcholine) with unaltered endothelium-independent response (sodium nitroprusside). Both He-EPC and helium late preconditioning attenuated I/R-induced endothelial dysfunction (max increase in forearm blood flow in response to acetylcholine after I/R was 180 ± 24% [mean ± SEM] without preconditioning, 573 ± 140% after He-EPC, and 290 ± 32% after helium late preconditioning). Protection of helium was comparable to ischemic preconditioning (max forearm blood flow 436 ± 38%) and was not abolished after endothelial nitric oxide synthase blockade. He-EPC did not affect plasma levels of cytokines, adhesion molecules, or microparticles. Helium is a nonanesthetic, nontoxic gas without hemodynamic side effects, which induces early and late preconditioning of human endothelium in vivo. Further studies have to investigate whether helium may be an instrument to induce endothelial preconditioning in patients with cardiovascular risk factors.

  11. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity.

    Science.gov (United States)

    Ibba, Salome' V; Ghonim, Mohamed A; Pyakurel, Kusma; Lammi, Matthew R; Mishra, Anil; Boulares, A Hamid

    2016-01-01

    Although expression of inducible NO synthase (iNOS) in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR) and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose) polymerase (PARP) activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs) of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM) in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma.

  12. Endothelial nitric oxide synthase uncoupling: a novel pathway in OSA induced vascular endothelial dysfunction.

    Science.gov (United States)

    Varadharaj, Saradhadevi; Porter, Kyle; Pleister, Adam; Wannemacher, Jacob; Sow, Angela; Jarjoura, David; Zweier, Jay L; Khayat, Rami N

    2015-02-01

    The mechanism of vascular endothelial dysfunction (VED) and cardiovascular disease in obstructive sleep apnea (OSA) is unknown. We performed a comprehensive evaluation of endothelial nitric oxide synthase (eNOS) function directly in the microcirculatory endothelial tissue of OSA patients who have very low cardiovascular risk status. Nineteen OSA patients underwent gluteal biopsies before, and after effective treatment of OSA. We measured superoxide (O2(•-)) and nitric oxide (NO) in the microcirculatory endothelium using confocal microscopy. We evaluated the effect of the NOS inhibitor l-Nitroarginine-Methyl-Ester (l-NAME) and the NOS cofactor tetrahydrobiopterin (BH4) on endothelial O2(•-) and NO in patient endothelial tissue before and after treatment. We found that eNOS is dysfunctional in OSA patients pre-treatment, and is a source of endothelial O2(•-) overproduction. eNOS dysfunction was reversible with the addition of BH4. These findings provide a new mechanism of endothelial dysfunction in OSA patients and a potentially targetable pathway for treatment of cardiovascular risk in OSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of 17β-oestradiol on cytokine-induced nitric oxide production in rat isolated aorta

    Science.gov (United States)

    Kauser, Katalin; Sonnenberg, Dagmar; Diel, Patrick; Rubanyi, Gabor M

    1998-01-01

    Studies were performed on isolated aortic rings without endothelium to investigate the effect of 17β-oestradiol on cytokine-induced nitric oxide production by the inducible nitric oxide synthase (iNOS).Treatment of the isolated aortic rings with interleukin-1β (IL-1β, 20 μ ml−1) led to the expression of iNOS mRNA and protein, as well as significant nitrite accumulation in the incubation media and suppression of phenylephrine (1 nM–10 μM)-evoked contraction.Cycloheximide (1 μM), a protein synthesis inhibitor, prevented iNOS protein expression, nitrite accumulation and the suppression of contractility by IL-1β on the isolated aortic rings. 17β-oestradiol (1 nM–10 μM) and the partial oestrogen receptor agonist 4-OH-tamoxifen (1 nM–10 μM) produced concentration-dependent inhibition of IL-1β-induced nitrite accumulation and restored vasoconstrictor responsiveness to phenylephrine, similar to the iNOS inhibitor aminoguanidine (100 μM).Semiquantitative PCR demonstrated decreased iNOS mRNA in the IL-1β-induced and 17β-oestradiol-treated rings. Western blot analysis of rat aorta homogenates revealed that 17β-oestradiol treatment resulted in a reduction in IL-1ß-induced iNOS protein level.Incubation with tumour necrosis factor α (TNFα, 1 ng ml−1) resulted in significant nitrite accumulation in the incubation media and suppression of the smooth muscle contractile response to phenylephrine, similar to IL-1β. The effects of TNFα were also inhibited by co-incubation of the rings with 17β-oestradiol and 4-OH-tamoxifen (1 μM).The anti-transforming growth factor-β1 (TGF-β1) antibody, which inhibited TGF-β1-induced suppression of nitrite production from IL-1β-treated vascular rings, did not affect the inhibitory action of 17β-oestradiol, suggesting that the effect of oestrogen on iNOS inhibition was not mediated by TGF-β1.These results show that the ovarian sex steroid, 17β-oestradiol is a modulator of cytokine-induced

  14. Inhibition of nitric oxide synthesis by systemic N(G)-monomethyl-L-arginine administration in humans

    DEFF Research Database (Denmark)

    Frandsen, U; Bangsbo, J; Langberg, Henning

    2000-01-01

    We examined whether the formation or the release of the vasodilators adenosine, prostacyclin (PGI(2)) and potassium (K(+)) increase in skeletal muscle interstitium in response to nitric oxide synthase (NOS) inhibition. Five subjects performed one-legged knee extensor exercise at 30 W without (con......-keto-prostaglandin F1alpha concentration in controls was 1.17+/-0.20 ng/ml at rest and increased (p0.05) in L-NAME. The interstitial K(+) concentration in controls increased (p...

  15. Pyrrole Oligoglycosides from the Starfish Acanthaster planci Suppress Lipopolysaccharide-Induced Nitric Oxide Production in RAW264.7 Macrophages.

    Science.gov (United States)

    Vien, Le Thi; Hanh, Tran Thi Hong; Huong, Phan Thi Thanh; Dang, Nguyen Hai; Thanh, Nguyen Van; Lyakhova, Ekaterina; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Kiem, Phan Van; Kicha, Alla; Minh, Chau Van

    2016-11-01

    Two new pyrrole oligoglycosides, plancipyrrosides A and B (1 and 2), were isolated from methanol extract of the Vietnamese starfish Acanthaster planci using various chromatographic procedures. Their structures were elucidated by spectroscopic methods including one and two dimensional (1D- and 2D)-NMR and Fourier transform ion cyclotron resonance (FT-ICR)-MS. The finding of 1 and 2 represents the third case of pyrrole oligoglycosides obtaining reported to date. Moreover, plancipyrroside B (2) exhibits a potent inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells with IC50 of 5.94±0.34 µM, whereas plancipyrroside A (1) shows this inhibitory activity with IC50 of 16.61±1.85 µM.

  16. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  17. Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13)

    DEFF Research Database (Denmark)

    Mazumdar, Tuhina; Gorgun, F Murat; Sha, Youbao

    2010-01-01

    activity. The specific substrates for the Rpn13/UCH37 complex have not been determined. Because of a previous discovery of an interaction between Rpn13 and inducible nitric oxide synthase (iNOS), we hypothesized that iNOS is one of the substrates for the Rpn13/UCH37 complex. In this study, we show that Rpn...

  18. Sevoflurane-induced Preconditioning Impact of Protocol and Aprotinin Administration on Infarct Size and Endothelial Nitric-Oxide Synthase Phosphorylation in the Rat Heart In Vivo

    NARCIS (Netherlands)

    Fräßdorf, Jan; Huhn, Ragnar; Weber, Nina C.; Ebel, Dirk; Wingert, Nadja; Preckel, Benedikt; Toma, Octavian; Schlack, Wolfgang; Hollmann, Markus W.

    2010-01-01

    Background Sevoflurane induces preconditioning (SevoPC) 1 he effect of aprotinin and the involvement of endothelial nitric-oxide synthase (NOS) on SevoPC are unknown We investigated (1) whether SevoPC is strengthened by multiple preconditioning cycles (2) whether SevoPC is blocked by aprotinin, and

  19. Distinctive expression patterns of hypoxia-inducible factor-1α and endothelial nitric oxide synthase following hypergravity exposure.

    Science.gov (United States)

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-06-07

    This study was designed to examine the expression of hypoxia-inducible factor-1α (HIF-1α) and the level and activity of endothelial nitric oxide synthase (eNOS) in the hearts and livers of mice exposed to hypergravity. Hypergravity-induced hypoxia and the subsequent post-exposure reoxygenation significantly increased cardiac HIF-1α levels. Furthermore, the levels and activity of cardiac eNOS also showed significant increase immediately following hypergravity exposure and during the reoxygenation period. In contrast, the expression of phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) showed significant elevation only during the reoxygenation period. These data raise the possibility that the increase in cardiac HIF-1α expression induced by reoxygenation involves a cascade of signaling events, including activation of the Akt and ERK pathways. In the liver, HIF-1α expression was significantly increased immediately after hypergravity exposure, indicating that hypergravity exposure to causes hepatocellular hypoxia. The hypergravity-exposed livers showed significantly higher eNOS immunoreactivity than did those of control mice. Consistent with these results, significant increases in eNOS activity and nitrate/nitrite levels were also observed. These findings suggest that hypergravity-induced hypoxia plays a significant role in the upregulation of hepatic eNOS.

  20. Thymol Ameliorates Cadmium-Induced Phytotoxicity in the Root of Rice (Oryza sativa) Seedling by Decreasing Endogenous Nitric Oxide Generation.

    Science.gov (United States)

    Wang, Ting-Ting; Shi, Zhi Qi; Hu, Liang-Bin; Xu, Xiao-Feng; Han, Fengxiang X; Zhou, Li-Gang; Chen, Jian

    2017-08-30

    Thymol has been developed as medicine and food preservative due to its immune-regulatory effect and antimicrobial activity, respectively. However, little is currently known about the role of thymol in the modulation of plant physiology. In the present study, we applied biochemical and histochemical approaches to investigate thymol-induced tolerance in rice (Oryza sativa) seedlings against Cd (cadmium) stress. Thymol at 20 μM recovered root growth completely upon CdCl2 exposure. Thymol pronouncedly decreased Cd-induced ROS accumulation, oxidative injury, cell death, and Cd2+ accumulation in roots. Pharmaceutical experiments suggested that endogenous NO mediated Cd-induced phytotoxicity. Thymol decreased Cd-induced NO accumulation by suppressing the activity of NOS (nitric oxide synthase) and NR (nitrate reductase) in root. The application of NO donor (SNP, sodium nitroprusside) resulted in the increase in endogenous NO level, which in turn compromised the alleviating effects of thymol on Cd toxicity. Such findings may helpful to illustrate the novel role of thymol in the modulation of plant physiology, which may be applicable to improve crop stress tolerance.

  1. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide.

    Science.gov (United States)

    Chandra, Swarnendu; Chakraborty, Nilanjan; Panda, Koustubh; Acharya, Krishnendu

    2017-06-01

    Blister blight disease, caused by an obligate biotrophic fungal pathogen, Exobasidium vexans Massee is posing a serious threat for tea cultivation in Asia. As the use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption, serious attempts are being made to control such pathogens by boosting the intrinsic natural defense responses against invading pathogens in tea plants. In this study, the nature and durability of resistance offered by chitosan and the possible mechanism of chitosan-induced defense induction in Camellia sinensis (L.) O. Kuntze plants against blister blight disease were investigated. Foliar application of 0.01% chitosan solution at 15 days interval not only reduced the blister blight incidence for two seasons, but also maintained the induced expressions of different defense related enzymes and total phenol content compared to the control. Defense responses induced by chitosan were found to be down regulated under nitric oxide (NO) deficient conditions in vivo, indicating that the observed chitosan-induced resistance is probably activated via NO signaling. Such role of NO in host defense response was further established by application of the NO donor, sodium nitroprusside (SNP), which produced similar defense responses accomplished through chitosan treatment. Taken together, our results suggest that increased production of NO in chitosan-treated tea plants may play a critical role in triggering the innate defense responses effective against plant pathogens, including that causing the blister blight disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Selective inhibition of the inducible isoform of nitric oxide synthase prevents pulmonary transvascular flux during acute endotoxemia.

    Science.gov (United States)

    Arkovitz, M S; Wispé, J R; Garcia, V F; Szabó, C

    1996-08-01

    The inducible isoform of nitric oxide synthase (iNOS) is expressed in various organs, including the lung, during systemic endotoxemia. Overproduction of nitric oxide (NO) by iNOS contributes significantly to the vascular failure and end-organ damage in endotoxemia. Using selective pharmacological inhibitors of iNOS, the purpose of this study was to define the role of iNOS in a rat model of endotoxin-induced pulmonary transvascular flux (TVF). Lung TVF was assessed by a method of Evans Blue permeability index (PI). Bacterial lipopolysaccharide (LPS) (15 mg/kg intraperitoneally [IP]) significantly increased pulmonary iNOS activity and serum levels of nitrite/nitrate (NO2/NO3). This was accompanied by a significant elevation of the PI 5 hours after injection. Selective iNOS inhibition with either S-methyl isothiourea (SMT; 5 mg/kg IP) or aminoguanidine (AG; 20 mg/kg IP), administered 2 hours after LPS injection, significantly prevented the increase in PI associated with LPS injection. Similarly, inhibition of the induction of iNOS with dexamethasone (10 mg/kg IP), given 3 hours before LPS, also inhibited the increase in PI. All three treatments significantly prevented the increase in both lung iNOS activity and serum NO2/NO3 associated with endotoxemia. In conclusion, the overproduction of NO generated by iNOS during systemic endotoxemia causes a vascular leak in the lung. Thus, it is speculated that selective inhibition of iNOS may be beneficial in preventing the development of acute respiratory failure in sepsis.

  3. Prenatal Brain Damage in Preeclamptic Animal Model Induced by Gestational Nitric Oxide Synthase Inhibition

    Science.gov (United States)

    Pellicer, Begoña; Herraiz, Sonia; Leal, Antonio; Simón, Carlos; Pellicer, Antonio

    2011-01-01

    Cerebral palsy is a major neonatal handicap with unknown aetiology. There is evidence that prenatal brain injury is the leading cause of CP. Severe placental pathology accounts for a high percentage of cases. Several factors predispose to prenatal brain damage but when and how they act is unclear. The aim of this paper was to determine if hypoxia during pregnancy leads to damage in fetal brain and to evaluate the localization of this injury. An animal model of chronic hypoxia produced by chronic administration of a nitric oxide synthase inhibitor (L-NAME) was used to evaluate apoptotic activity in fetal brains and to localize the most sensitive areas. L-NAME reproduces a preeclamptic-like condition with increased blood pressure, proteinuria, growth restriction and intrauterine mortality. Apoptotic activity was increased in L-NAME brains and the most sensitive areas were the subventricular and pallidum zone. These results may explain the clinical features of CP. Further studies are needed. PMID:21490794

  4. Chronic wheel running reduces maladaptive patterns of methamphetamine intake: regulation by attenuation of methamphetamine-induced neuronal nitric oxide synthase

    Science.gov (United States)

    Engelmann, Alexander J.; Aparicio, Mark B.; Kim, Airee; Sobieraj, Jeffery C.; Yuan, Clara J.; Grant, Yanabel

    2013-01-01

    We investigated whether prior exposure to chronic wheel running (WR) alters maladaptive patterns of excessive and escalating methamphetamine intake under extended access conditions, and intravenous methamphetamine self-administration-induced neurotoxicity. Adult rats were given access to WR or no wheel (sedentary) in their home cage for 6 weeks. A set of WR rats were injected with 5-bromo-2′-deoxyuridine (BrdU) to determine WR-induced changes in proliferation (2-h old) and survival (28-day old) of hippocampal progenitors. Another set of WR rats were withdrawn (WRw) or continued (WRc) to have access to running wheels in their home cages during self-administration days. Following self-administration [6 h/day], rats were tested on the progressive ratio (PR) schedule. Following PR, BrdU was injected to determine levels of proliferating progenitors (2-h old). WRc rats self-administered significantly less methamphetamine than sedentary rats during acquisition and escalation sessions, and demonstrated reduced motivation for methamphetamine seeking. Methamphetamine reduced daily running activity of WRc rats compared with that of pre-methamphetamine days. WRw rats self-administered significantly more methamphetamine than sedentary rats during acquisition, an effect that was not observed during escalation and PR sessions. WR-induced beneficial effects on methamphetamine self-administration were not attributable to neuroplasticity effects in the hippocampus and medial prefrontal cortex, but were attributable to WR-induced inhibition of methamphetamine-induced increases in the number of neuronal nitric oxide synthase expressing neurons and apoptosis in the nucleus accumbens shell. Our results demonstrate that WR prevents methamphetamine-induced damage to forebrain neurons to provide a beneficial effect on drug-taking behavior. Importantly, WR-induced neuroprotective effects are transient and continued WR activity is necessary to prevent compulsive methamphetamine intake

  5. Metformin Ameliorates Dysfunctional Traits of Glibenclamide- and Glucose-Induced Insulin Secretion by Suppression of Imposed Overactivity of the Islet Nitric Oxide Synthase-NO System.

    Science.gov (United States)

    Lundquist, Ingmar; Mohammed Al-Amily, Israa; Meidute Abaraviciene, Sandra; Salehi, Albert

    2016-01-01

    Metformin lowers diabetic blood glucose primarily by reducing hepatic gluconeogenesis and increasing peripheral glucose uptake. However, possible effects by metformin on beta-cell function are incompletely understood. We speculated that metformin might positively influence insulin secretion through impacting the beta-cell nitric oxide synthase (NOS)-NO system, a negative modulator of glucose-stimulated insulin release. In short-time incubations with isolated murine islets either glibenclamide or high glucose augmented insulin release associated with increased NO production from both neural and inducible NOS. Metformin addition suppressed the augmented NO generation coinciding with amplified insulin release. Islet culturing with glibenclamide or high glucose revealed pronounced fluorescence of inducible NOS in the beta-cells being abolished by metformin co-culturing. These findings were reflected in medium nitrite-nitrate levels. A glucose challenge following islet culturing with glibenclamide or high glucose revealed markedly impaired insulin response. Metformin co-culturing restored this response. Culturing murine islets and human islets from controls and type 2 diabetics with high glucose or high glucose + glibenclamide induced a pronounced decrease of cell viability being remarkably restored by metformin co-culturing. We show here, that imposed overactivity of the beta-cell NOS-NO system by glibenclamide or high glucose leads to insulin secretory dysfunction and reduced cell viability and also, importantly, that these effects are relieved by metformin inhibiting beta-cell NO overproduction from both neural and inducible NOS thus ameliorating a concealed negative influence by NO induced by sulfonylurea treatment and/or high glucose levels. This double-edged effect of glibenclamide on the beta-cellsuggests sulfonylurea monotherapy in type 2 diabetes being avoided.

  6. Metformin Ameliorates Dysfunctional Traits of Glibenclamide- and Glucose-Induced Insulin Secretion by Suppression of Imposed Overactivity of the Islet Nitric Oxide Synthase-NO System.

    Directory of Open Access Journals (Sweden)

    Ingmar Lundquist

    Full Text Available Metformin lowers diabetic blood glucose primarily by reducing hepatic gluconeogenesis and increasing peripheral glucose uptake. However, possible effects by metformin on beta-cell function are incompletely understood. We speculated that metformin might positively influence insulin secretion through impacting the beta-cell nitric oxide synthase (NOS-NO system, a negative modulator of glucose-stimulated insulin release. In short-time incubations with isolated murine islets either glibenclamide or high glucose augmented insulin release associated with increased NO production from both neural and inducible NOS. Metformin addition suppressed the augmented NO generation coinciding with amplified insulin release. Islet culturing with glibenclamide or high glucose revealed pronounced fluorescence of inducible NOS in the beta-cells being abolished by metformin co-culturing. These findings were reflected in medium nitrite-nitrate levels. A glucose challenge following islet culturing with glibenclamide or high glucose revealed markedly impaired insulin response. Metformin co-culturing restored this response. Culturing murine islets and human islets from controls and type 2 diabetics with high glucose or high glucose + glibenclamide induced a pronounced decrease of cell viability being remarkably restored by metformin co-culturing. We show here, that imposed overactivity of the beta-cell NOS-NO system by glibenclamide or high glucose leads to insulin secretory dysfunction and reduced cell viability and also, importantly, that these effects are relieved by metformin inhibiting beta-cell NO overproduction from both neural and inducible NOS thus ameliorating a concealed negative influence by NO induced by sulfonylurea treatment and/or high glucose levels. This double-edged effect of glibenclamide on the beta-cellsuggests sulfonylurea monotherapy in type 2 diabetes being avoided.

  7. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats.

    Science.gov (United States)

    Ahmed, Lamiaa A; Obaid, Al Arqam Z; Zaki, Hala F; Agha, Azza M

    2014-10-05

    Pulmonary hypertension is a progressive disease of various origins that is associated with right ventricular dysfunction. In the present study, the protective effect of diosgenin was investigated in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). Diosgenin (100 mg/kg) was given by oral administration once daily for 3 weeks. At the end of the experiment, mean arterial blood pressure, electrocardiography and echocardiography were recorded. Rats were then sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta contents. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Diosgenin treatment provided a significant improvement toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline in rats. Furthermore, diosgenin therapy prevented monocrotaline-induced changes in nitric oxide production, endothelial and inducible nitric oxide synthase protein expression as well as histological analysis. These findings support the beneficial effect of diosgenin in pulmonary hypertension induced by monocrotaline in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5

    DEFF Research Database (Denmark)

    Schankin, Christoph J; Kruse, Lars S; Reinisch, Veronika M

    2010-01-01

    continued DETA NONOate administration. RESULTS: This study shows the expression of PDE2A, PDE3B, and PDE5A mRNA and PDE3B and PDE5A protein in human cerebral endothelial cells. Long-term DETA NONOate administration induced an immediate mRNA up-regulation of PDE5A (1.9-fold, 0.5 hour), an early peak of PDE2A...... (1.4-fold, 1 and 2 hours) and later up-regulation of both PDE3B (1.6-fold, 4 hours) and PDE2A (1.7-fold, 8 hours and 1.2-fold after 24 hours). Such changes were, however, not translated into significant changes in protein expression indicating few, if any, functional effects. CONCLUSIONS: Long......AMP in response to NO administration may take place if the mRNA translates into active protein. Whether or not this plays a role in the headache mechanisms remains to be investigated....

  9. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  10. Alendronate induces gastric damage by reducing nitric oxide synthase expression and NO/cGMP/K(ATP) signaling pathway.

    Science.gov (United States)

    Silva, Renan O; Lucetti, Larisse T; Wong, Deysi V T; Aragão, Karoline S; Junior, Eudmar M A; Soares, Pedro M G; Barbosa, André Luiz R; Ribeiro, Ronaldo A; Souza, Marcellus H L P; Medeiros, Jand-Venes R

    2014-08-31

    Chronic use of alendronate has been linked to gastrointestinal tract problems. Our objective was to evaluate the role of the NO/cGMP/KATP signaling pathway and nitric oxide synthase expression in alendronate-induced gastric damage. Rats were either treated with the NO donor, sodium nitroprusside (SNP; 1, 3, and 10 mg/kg), or the NO synthase (NOS) substrate, L-arginine (L-Arg; 50, 100, and 200 mg/kg). Some rats were pretreated with either ODQ (a guanylate cyclase inhibitor; 10 mg/kg) or glibenclamide (KATP channels blocker; 10 mg/kg). In other experiments, rats were pretreated with L-NAME (non-selective NOS inhibitor; 10 mg/kg), 1400 W (selective inducible NOS [iNOS] inhibitor; 10 mg/kg), or L-NIO (a selective endothelial NOS [eNOS] inhibitor; 30 mg/kg). After 1 h, the rats were treated with alendronate (30 mg/kg) by gavage for 4 days. SNP and L-Arg prevented alendronate-induced gastric damage in a dose-dependent manner. Alendronate reduced nitrite/nitrate levels, an effect that was reversed with SNP or L-Arg treatment. Pretreatment with ODQ or glibenclamide reversed the protective effects of SNP and L-Arg. L-NAME, 1400 W, or L-NIO aggravated the severity of alendronate-induced lesions. In addition, alendronate reduced the expression of iNOS and eNOS in the gastric mucosa. Gastric ulcerogenic responses induced by alendronate were mediated by a decrease in NO derived from both eNOS and iNOS. In addition, our findings support the hypothesis that activation of the NO/cGMP/KATP pathway is of primary importance for protection against alendronate-induced gastric damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Nitric oxide pathway activity modulation alters the protective effects of (-)Epigallocatechin-3-gallate on reserpine-induced impairment in rats.

    Science.gov (United States)

    Chen, Cheng-Neng; Chang, Kuo-Chi; Lin, Rui-Feng; Wang, Mao-Hsien; Shih, Ruoh-Lan; Tseng, Hsiang-Chien; Soung, Hung-Sheng; Tsai, Cheng-Chia

    2016-05-15

    Reserpine (RES) has been reported to increase the brain's neural oxidative stress and cause cognitive dysfunction. Having powerful antioxidative properties, green tea catechins, especially (-)epigallocatechin-3-gallate (EGCG), are able to protect against many oxidative injuries. In this study, we examined the protecting properties of EGCG on RES-induced impairment of short-term memory in three-month-old male Wistar rats. RES (1mg/kg i.p.) induced memory impairment (p<0.001) as evaluated by the social recognition task. EGCG treatment (100mg/kg i.p. for 7days, starting 6days before RES injection) was able to improve the impaired memory caused by RES. RES treatment increased the nitric oxide (NO) level and lipid peroxidation (LPO) production, and decreased the antioxidation power in hippocampi. EGCG treatment was able to counteract the RES-induced NO level and LPO production, as well as enhanced the hippocampal antioxidation power in RES-treated rats. In order to examine the implication of NO pathway activity in RES treatment, either NO precursor (L-arginine; L-A) or NO synthase inhibitor (L-NAME; L-N) was co-pretreated with EGCG; NO precursor treatment eliminated the protective effect of EGCG, in contrast to that NO synthase inhibitor treatment significantly increased the EGCG effects on cognitive and biochemical protection in RES-treated rats. These results suggested that the NO pathway was implicated, at least in part, in the RES-induced impairment, as well as in the protective effect of EGCG in treating RES-induced impairment of memory. The above evidence provides a clinically relevant value for EGCG in preventing RES-induced cognitive dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Nitric oxide mediates effects of acute, not chronic, naltrexone on LPS-induced hepatic encephalopathy in cirrhotic rats.

    Science.gov (United States)

    Ghiassy, Bentolhoda; Rahimi, Nastaran; Javadi-Paydar, Mehrak; Gharedaghi, Mohammad Hadi; Norouzi-Javidan, Abbas; Dehpour, Ahmad R

    2017-01-01

    Recent studies suggest endogenous opioids and nitric oxide (NO) are involved in the pathophysiology of hepatic encephalopathy (HE). In this study, the interaction between the opioid receptor antagonist and NO was investigated on lipopolysaccharide (LPS)-induced HE in cirrhotic rats. Male rats were divided in the sham- and bile duct ligation (BDL)-operated groups. Animals were treated with saline; naltrexone (10 mg/kg, i.p.); or L-NAME (3 mg/kg, i.p.), alone or in combination with naltrexone. To induce HE, LPS (1 mg/kg, i.p.) was injected 1 h after the final drug treatment. HE scoring, hepatic histology, and plasma NO metabolites levels and mortality rate were recorded. Deteriorated level of consciousness and mortality after LPS administration significantly ameliorated following both acute and chronic treatment with naltrexone in cirrhotic rats. However, acute and chronic administration of L-NAME did not change HE scores in cirrhotic rats. The effects of acute but not chronic treatment of naltrexone on HE parameters were reversed by L-NAME. Plasma NOx concentrations elevated in BDL rats, which were decreased after acute and chronic treatment by naltrexone or L-NAME, significantly. We suggest both acute and chronic treatment with naltrexone improved LPS-induced HE. But, only acute treatment with naltrexone may affect through NO pathway.

  13. Roles of mitochondrial Src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury.

    Science.gov (United States)

    Zhang, Y; Xing, F; Zheng, H; Xi, J; Cui, X; Xu, Z

    2013-07-01

    While nitric oxide (NO) induces cardioprotection by targeting the mitochondrial permeability transition pore (mPTP), the precise mitochondrial signaling events that mediate the action of NO remain unclear. The purpose of this study was to test whether NO induces cardioprotection against ischemia/reperfusion by inhibiting oxidative stress through mitochondrial zinc and Src tyrosine kinase. The NO donor S-nitroso-N-acetyl penicillamine (SNAP) given before the onset of ischemia reduced cell death in rat cardiomyocytes subjected to simulated ischemia/reperfusion, and this was abolished by the zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and the Src tyrosine kinase inhibitor PP2. SNAP also prevented loss of mitochondrial membrane potential (ΔΨm) at reperfusion, an effect that was blocked by TPEN and PP2. SNAP increased mitochondrion-free zinc upon reperfusion and enhanced mitochondrial Src phosphorylation in a zinc-dependent manner. SNAP inhibited both mitochondrial complex I activity and mitochondrial reactive oxygen species (ROS) generation at reperfusion through zinc and Src tyrosine kinase. Finally, the anti-infarct effect of SNAP was abrogated by TPEN and PP2 applied at reperfusion in isolated rat hearts. In conclusion, NO induces cardioprotection at reperfusion by targeting mitochondria through attenuation of oxidative stress resulted from the inhibition of complex I at reperfusion. Activation of mitochondrial Src tyrosine kinase by zinc may account for the inhibition of complex I.

  14. The vitamin D receptor and inducible nitric oxide synthase associated pathways in acquired resistance to Cooperia oncophora infection in cattle

    Directory of Open Access Journals (Sweden)

    Li Robert W

    2011-03-01

    Full Text Available Abstract Cooperia oncophora is an economically important gastrointestinal nematode in ruminants. Acquired resistance to Cooperia oncophora infection in cattle develops rapidly as a result of prior infections. Naïve cattle, when given a primary infection of high-dose infective L3 larvae, develop a strong immunity to subsequent reinfection. Compared to primary infection, reinfection resulted in a marked reduction in worm establishment. In order to understand molecular mechanisms underlying the development of acquired resistance, we characterized the transcriptomic responses of the bovine small intestine to a primary infection and reinfection. A total of 23 pathways were significantly impacted during infection. The vitamin D receptor activation was strongly induced only during reinfection, suggesting that this pathway may play an important role in the development of acquired resistance via its potential roles in immune regulation and intestinal mucosal integrity maintenance. The expression of inducible nitric oxide synthase (NOS2 was strongly induced during reinfection but not during primary infection. As a result, several canonical pathways associated with NOS2 were impacted. The genes involved in eicosanoid synthesis, including prostaglandin synthase 2 (PTGS2 or COX2, remained largely unchanged during infection. The rapid development of acquired resistance may help explain the lack of relative pathogenicity by Cooperia oncophora infection in cattle. Our findings facilitate the understanding of molecular mechanisms underlying the development of acquired resistance, which could have an important implication in vaccine design.

  15. The vitamin D receptor and inducible nitric oxide synthase associated pathways in acquired resistance to Cooperia oncophora infection in cattle.

    Science.gov (United States)

    Li, Robert W; Li, Congjun; Gasbarre, Louis C

    2011-03-17

    Cooperia oncophora is an economically important gastrointestinal nematode in ruminants. Acquired resistance to Cooperia oncophora infection in cattle develops rapidly as a result of prior infections. Naïve cattle, when given a primary infection of high-dose infective L3 larvae, develop a strong immunity to subsequent reinfection. Compared to primary infection, reinfection resulted in a marked reduction in worm establishment. In order to understand molecular mechanisms underlying the development of acquired resistance, we characterized the transcriptomic responses of the bovine small intestine to a primary infection and reinfection. A total of 23 pathways were significantly impacted during infection. The vitamin D receptor activation was strongly induced only during reinfection, suggesting that this pathway may play an important role in the development of acquired resistance via its potential roles in immune regulation and intestinal mucosal integrity maintenance. The expression of inducible nitric oxide synthase (NOS2) was strongly induced during reinfection but not during primary infection. As a result, several canonical pathways associated with NOS2 were impacted. The genes involved in eicosanoid synthesis, including prostaglandin synthase 2 (PTGS2 or COX2), remained largely unchanged during infection. The rapid development of acquired resistance may help explain the lack of relative pathogenicity by Cooperia oncophora infection in cattle. Our findings facilitate the understanding of molecular mechanisms underlying the development of acquired resistance, which could have an important implication in vaccine design.

  16. Nitric Oxide Plays a Central Role in Water Stress-Induced Tanshinone Production in Salvia miltiorrhiza Hairy Roots

    Directory of Open Access Journals (Sweden)

    Xuhong Du

    2015-04-01

    Full Text Available Nitric oxide (NO, a well-known signaling molecule plays an important role in abiotic and biotic stress-induced production of plant secondary metabolites. In this study, roles of NO in water stress-induced tanshinone production in Salvia miltiorrhiza hairy roots were investigated. The results showed that accumulations of four tanshinone compounds in S. miltiorrhiza hairy roots were significantly stimulated by sodium nitroprusside (SNP, a NO donor at 100 μM. Effects of SNP were just partially arrested by the mevalonate (MVA pathway inhibitor (mevinolin, but were completely inhibited by the 2-C-methyl-d-erythritol-4-phosphate pathway (MEP inhibitor (fosmidomycin. The increase of tanshinone accumulation and the up-regulation of HMGR and DXR expression by PEG and ABA treatments were partially inhibited by an inhibitor of NO biosynthesis (Nω-nitro-L-arginine methyl ester (L-NAME and a NO scavenger (2-(4-Carboxyphenyl- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO. Simultaneously, NO generation in the hairy roots was triggered by PEG and ABA, and the effects were also arrested by c-PTIO and L-NAME. These results indicated that NO signaling probably plays a central role in water stress-induced tanshinone production in S. miltiorrhiza hairy roots. SNP mainly stimulated the MEP pathway to increase tanshinone accumulation.

  17. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion

    OpenAIRE

    Kolarow, Richard; Kuhlmann, Christoph R. W.; Munsch, Thomas; Zehendner, Christoph; Brigadski, Tanja; Luhmann, Heiko J.; Lessmann, Volkmar

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthas...

  18. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion

    OpenAIRE

    Richard eKolarow; Richard eKolarow; Christoph eKuhlmann; Thomas eMunsch; Christoph eZehendner; Tanja eBrigadski; Tanja eBrigadski; Heiko J Luhmann; Volkmar eLessmann; Volkmar eLessmann

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase...

  19. Deficiency of inducible and endothelial nitric oxide synthase results in diminished bone formation and delayed union and nonunion development.

    Science.gov (United States)

    Meesters, D M; Neubert, S; Wijnands, K A P; Heyer, F L; Zeiter, S; Ito, K; Brink, P R G; Poeze, M

    2016-02-01

    Between 5% and 10% of all fractures fail to heal adequately resulting in nonunion of the fracture fragments. This can significantly decrease a patient's quality of life and create associated psychosocial and socio-economic problems. Nitric oxide (NO) and nitric oxide synthases (NOS) have been found to be involved in fracture healing, but until now it is not known if disturbances in these mechanisms play a role in nonunion and delayed union development. In this study, we explored the role of endothelial and inducible NOS deficiency in a delayed union model in mice. A 0.45mm femur osteotomy with periosteal cauterization followed by plate-screw osteosynthesis was performed in the left leg of 20-24week old wild type, Nos2(-/-) and Nos3(-/-) mice. Contralateral unfractured legs were used as a control. Callus volume was measured using micro-computed tomography (μCT) after 28 and 42days of fracture healing. Immuno histochemical myeloperoxidase (MPO) staining was performed on paraffin embedded sections to assess neutrophil influx in callus tissue and surrounding proximal and distal marrow cavities of the femur. After 7 and 28days of fracture healing, femurs were collected for amino acid and RNA analysis to study arginine-NO metabolism. With μCT, delayed union was observed in wild type animals, whereas in both Nos2(-/-) and Nos3(-/-) mice nonunion development was evident. Both knock-out strains also showed a significantly increased influx of MPO when compared with wild type mice. Concentrations of amino acids and expression of enzymes related to the arginine-NO metabolism were aberrant in NOS deficient mice when compared to contralateral control femurs and wild type samples. In the present study we show for the first time that the absence of nitric oxide synthases results in a disturbed arginine-NO metabolism and inadequate fracture healing with the transition of delayed union into a nonunion in mice after a femur osteotomy. Based on these data we suggest that the

  20. Differential effects of hyperoxia on the inducible and constitutive isoforms of nitric oxide synthase in the lung.

    Science.gov (United States)

    Arkovitz, M S; Szabó, C; Garcia, V F; Wong, H R; Wispé, J R

    1997-05-01

    Hyperoxia is commonly used in the treatment of newborn respiratory distress. Although essential and life saving, oxygen therapy can result in the development of lung injury. Oxygen toxicity is associated with the production of reactive oxidant species. Nitric oxide (NO) is an oxidant formed by the catalysis of L-arginine when acted upon by the enzyme nitric oxide synthase (NOS). We studied the differential effects of prolonged normobaric hyperoxia (FIO2 = .95, for 3, 4, and 5 days) on the two major NOS enzymes, constitutive endothelial cell NOS (ecNOS) and inducible NOS (iNOS). Hyperoxia led to a significant lung injury, as measured by pulmonary compliance studies. Hyperoxia did not increase serum NO production, measured as the concentration of nitrite and nitrate. However, hyperoxia did result in a small but significant increase in NO production in the bronchoalveolar lavage fluid, as measured by the products of nitrite and nitrate concentration. This increase in NO was not associated with an induction of whole lung iNOS, as measured by the conversion of L-[3H]arginine to L-[3H]citrulline or by Northern blot analysis. Hyperoxia significantly decreased ecNOS activity as measured by the conversion of L-[3H]arginine to L-[3H]citrulline. In addition, administration of the NOS inhibitor NG-nitro-L-arginine methyl ester worsened the injury, as measured by lung compliance and survival. Further studies need to be performed to determine whether this decrease in ecNOS activity during hyperoxia plays a role in the pathogenesis of hyperoxia-related lung injury.

  1. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  2. Chronic intermittent hypoxia induces NMDA receptor-dependent plasticity and suppresses nitric oxide signaling in the mouse hypothalamic paraventricular nucleus.

    Science.gov (United States)

    Coleman, Christal G; Wang, Gang; Park, Laibaik; Anrather, Josef; Delagrammatikas, George J; Chan, June; Zhou, Joan; Iadecola, Costantino; Pickel, Virginia M

    2010-09-08

    Chronic intermittent hypoxia (CIH) is a concomitant of sleep apnea that produces a slowly developing chemosensory-dependent blood pressure elevation ascribed in part to NMDA receptor-dependent plasticity and reduced nitric oxide (NO) signaling in the carotid body. The hypothalamic paraventricular nucleus (PVN) is responsive to hypoxic stress and also contains neurons that express NMDA receptors and neuronal nitric oxide synthase (nNOS). We tested the hypothesis that extended (35 d) CIH results in a decrease in the surface/synaptic availability of the essential NMDA NR1 subunit in nNOS-containing neurons and NMDA-induced NO production in the PVN of mice. As compared with controls, the 35 d CIH-exposed mice showed a significant increase in blood pressure and an increased density of NR1 immunogold particles located in the cytoplasm of nNOS-containing dendrites. Neither of these between-group differences was seen after 14 d, even though there was already a reduction in the NR1 plasmalemmal density at this time point. Patch-clamp recording of PVN neurons in slices showed a significant reduction in NMDA currents after either 14 or 35 d exposure to CIH compared with sham controls. In contrast, NO production, as measured by the NO-sensitive fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein, was suppressed only in the 35 d CIH group. We conclude that CIH produces a reduction in the surface/synaptic targeting of NR1 in nNOS neurons and decreases NMDA receptor-mediated currents in the PVN before the emergence of hypertension, the development of which may be enabled by suppression of NO signaling in this brain region.

  3. Hypoxia inducible factor-1 improves the negative functional effects of natriuretic peptide and nitric oxide signaling in hypertrophic cardiac myocytes.

    Science.gov (United States)

    Tan, Tao; Scholz, Peter M; Weiss, Harvey R

    2010-07-03

    Both natriuretic peptides and nitric oxide may be protective in cardiac hypertrophy, although their functional effects are diminished in hypertrophy. Hypoxia inducible factor-1 (HIF-1) may also protect in cardiac hypertrophy. We hypothesized that upregulation of HIF-1 would protect the functional effects of cyclic GMP (cGMP) signaling in hypertrophied ventricular myocytes. A cardiac hypertrophy model was created in mice by transverse aorta constriction. HIF-1 was increased by deferoxamine (150 mg/kg for 2 days). HIF-1alpha protein levels were examined. Functional parameters were measured (edge detector) on freshly isolated myocytes at baseline and after BNP (brain natriuretic peptide, 10(-8)-10(-7)M) or CNP (C-type natriuretic peptide, 10(-8)-10(-7)M) or SNAP (S-nitroso-N-acetyl-penicillamine, a nitric oxide donor, 10(-6)-10(-5)M) followed by KT5823 (a cyclic GMP-dependent protein kinase (PKG) inhibitor, 10(-6)M). We also determined PKG expression levels and kinase activity. We found that under control conditions, BNP (-24%), CNP (-22%) and SNAP (-23%) reduced myocyte shortening, while KT5823 partially restored function. Deferoxamine treated control myocytes responded similarly. Baseline function was reduced in the myocytes from hypertrophied heart. BNP, CNP, SNAP and KT5823 also had no significant effects on function in these myocytes. Deferoxamine restored the negative functional effects of BNP (-22%), CNP (-18%) and SNAP (-19%) in hypertrophic cardiac myocytes and KT5823 partially reversed this effect. Additionally, deferoxamine maintained PKG expression levels and activity in hypertrophied heart. Our results indicated that the HIF-1 protected the functional effects of cGMP signaling in cardiac hypertrophy through preservation of PKG. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. Effect of magnesium supplementation on blood pressure and vascular reactivity in nitric oxide synthase inhibition-induced hypertension model.

    Science.gov (United States)

    Basralı, Filiz; Koçer, Günnur; Ülker Karadamar, Pınar; Nasırcılar Ülker, Seher; Satı, Leyla; Özen, Nur; Özyurt, Dilek; Şentürk, Ümit Kemal

    2015-01-01

    The aim of this study was to assess the effect of oral magnesium supplementation (Mg-supp) on blood pressure (BP) and possible mechanism in nitric oxide synthase (NOS) inhibition-induced hypertension model. Hypertension and/or Mg-supp were created by N-nitro-l-arginine methyl ester (25 mg/kg/day by drinking water) and magnesium-oxide (0.8% by diet) for 6 weeks. Systolic BP was measured weekly by tail-cuff method. The effects of hypertension and/or Mg-supp in thoracic aorta and third branch of mesenteric artery constriction and relaxation responses were evaluated. NOS-inhibition produced a gradually developing hypertension and the magnitude of the BP was significantly attenuated after five weeks of Mg-supp. The increased phenylephrine-induced contractile and decreased acetylcholine (ACh)-induced dilation responses were found in both artery segments of hypertensive groups. Mg-supp was restored ACh-relaxation response in both arterial segments and also Phe-constriction response in thoracic aorta but not in mesenteric arteries. The contributions of NO, prostaglandins and K(+) channels to the dilator response of ACh were similar in the aorta of all the groups. The contribution of the NO to the ACh-mediated relaxation response of mesenteric arteries was suppressed in hypertensive rats, whereas this was corrected by Mg-supp. The flow-mediated dilation response of mesenteric arteries in hypertensive rats failed and could not be corrected by Mg-supp. Whereas, vascular eNOS protein and magnesium levels were not changed and plasma nitrite levels were reduced in hypertensive rats. The results of this study showed that Mg-supp lowered the arterial BP in NOS-inhibition induced hypertension model by restoring the agonist-induced relaxation response of the arteries.

  5. Dissection of a Hypoxia-induced, Nitric Oxide–mediated Signaling Cascade

    Science.gov (United States)

    Dijkers, Pascale F.

    2009-01-01

    Befitting oxygen's key role in life's processes, hypoxia engages multiple signaling systems that evoke pervasive adaptations. Using surrogate genetics in a powerful biological model, we dissect a poorly understood hypoxia-sensing and signal transduction system. Hypoxia triggers NO-dependent accumulation of cyclic GMP and translocation of cytoplasmic GFP-Relish (an NFκB/Rel transcription factor) to the nucleus in Drosophila S2 cells. An enzyme capable of eliminating NO interrupted signaling specifically when it was targeted to the mitochondria, arguing for a mitochondrial NO signal. Long pretreatment with an inhibitor of nitric oxide synthase (NOS), L-NAME, blocked signaling. However, addition shortly before hypoxia was without effect, suggesting that signaling is supported by the prior action of NOS and is independent of NOS action during hypoxia. We implicated the glutathione adduct, GSNO, as a signaling mediator by showing that overexpression of the cytoplasmic enzyme catalyzing its destruction, GSNOR, blocks signaling, whereas knockdown of this activity caused reporter translocation in the absence of hypoxia. In downstream steps, cGMP accumulated, and calcium-dependent signaling was subsequently activated via cGMP-dependent channels. These findings reveal the use of unconventional steps in an NO pathway involved in sensing hypoxia and initiating signaling. PMID:19625446

  6. Dissection of a hypoxia-induced, nitric oxide-mediated signaling cascade.

    Science.gov (United States)

    Dijkers, Pascale F; O'Farrell, Patrick H

    2009-09-01

    Befitting oxygen's key role in life's processes, hypoxia engages multiple signaling systems that evoke pervasive adaptations. Using surrogate genetics in a powerful biological model, we dissect a poorly understood hypoxia-sensing and signal transduction system. Hypoxia triggers NO-dependent accumulation of cyclic GMP and translocation of cytoplasmic GFP-Relish (an NFkappaB/Rel transcription factor) to the nucleus in Drosophila S2 cells. An enzyme capable of eliminating NO interrupted signaling specifically when it was targeted to the mitochondria, arguing for a mitochondrial NO signal. Long pretreatment with an inhibitor of nitric oxide synthase (NOS), L-NAME, blocked signaling. However, addition shortly before hypoxia was without effect, suggesting that signaling is supported by the prior action of NOS and is independent of NOS action during hypoxia. We implicated the glutathione adduct, GSNO, as a signaling mediator by showing that overexpression of the cytoplasmic enzyme catalyzing its destruction, GSNOR, blocks signaling, whereas knockdown of this activity caused reporter translocation in the absence of hypoxia. In downstream steps, cGMP accumulated, and calcium-dependent signaling was subsequently activated via cGMP-dependent channels. These findings reveal the use of unconventional steps in an NO pathway involved in sensing hypoxia and initiating signaling.

  7. Antileishmanial Activity and Inducible Nitric Oxide Synthase Activation by RuNO Complex

    Directory of Open Access Journals (Sweden)

    Tatiane Marcusso Orsini

    2016-01-01

    Full Text Available Parasites of the genus Leishmania are capable of inhibiting effector functions of macrophages. These parasites have developed the adaptive ability to escape host defenses; for example, they inactivate the NF-κB complex and suppress iNOS expression in infected macrophages, which are responsible for the production of the major antileishmanial substance nitric oxide (NO, favoring then its replication and successful infection. Metal complexes with NO have been studied as potential compounds for the treatment of certain tropical diseases, such as ruthenium compounds, known to be exogenous NO donors. In the present work, the compound cis-[Ru(bpy2SO3(NO]PF6, or RuNO, showed leishmanicidal activity directly and indirectly on promastigote forms of Leishmania (Leishmania amazonensis. In addition, treatment with RuNO increased NO production by reversing the depletion of NO caused by Leishmania. We also found increased expression of Akt, iNOS, and NF-κB in infected and treated macrophages. These results demonstrated that RuNO was able to kill the parasite by NO release and modulate the transcriptional capacity of the cell.

  8. Prenatal Brain Damage in Preeclamptic Animal Model Induced by Gestational Nitric Oxide Synthase Inhibition

    Directory of Open Access Journals (Sweden)

    Begoña Pellicer

    2011-01-01

    Full Text Available Cerebral palsy is a major neonatal handicap with unknown aetiology. There is evidence that prenatal brain injury is the leading cause of CP. Severe placental pathology accounts for a high percentage of cases. Several factors predispose to prenatal brain damage but when and how they act is unclear. The aim of this paper was to determine if hypoxia during pregnancy leads to damage in fetal brain and to evaluate the localization of this injury. An animal model of chronic hypoxia produced by chronic administration of a nitric oxide synthase inhibitor (L-NAME was used to evaluate apoptotic activity in fetal brains and to localize the most sensitive areas. L-NAME reproduces a preeclamptic-like condition with increased blood pressure, proteinuria, growth restriction and intrauterine mortality. Apoptotic activity was increased in L-NAME brains and the most sensitive areas were the subventricular and pallidum zone. These results may explain the clinical features of CP. Further studies are needed.

  9. Single-walled carbon nanotubes induce cell death and transcription of TNF-α in macrophages without affecting nitric oxide production.

    Science.gov (United States)

    Kim, Kyong Hoon; Yeon, Seung-min; Kim, Hyun Gyung; Lee, Hwanbum; Kim, Sun Kyung; Han, Seung Hyun; Min, Kyung-Jin; Byun, Youngjoo; Lee, Eun Hee; Lee, Kenneth Sung; Yuk, Soon Hong; Ha, Un-Hwan; Jung, Yong Woo

    2014-02-01

    Single-walled carbon nanotubes (SWCNTs) are potent nanomaterials that have diverse shapes and features. The utilization of these molecules for drug delivery is being investigated; thus, it is important to determine whether they alter immune responses against pathogens. In this study, we show that macrophages treated with a mixture of lipopolysaccharide and SWCNTs produced normal levels of nitric oxide and inducible nitric oxide synthase mRNA. However, these treatments induced cell death, presumably via necrosis. In addition, treating cells with SWCNTs induced the expression of tumor necrosis factor-α mRNA, a potent pro-inflammatory cytokine. These results suggest that SWCNTs may influence immune responses, which could result in unexpected effects following their administration for the purpose of drug delivery.

  10. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.

    Science.gov (United States)

    Schlicht, Markus; Ludwig-Müller, Jutta; Burbach, Christian; Volkmann, Dieter; Baluska, Frantisek

    2013-10-01

    Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  12. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation.

    Science.gov (United States)

    Woźniak, Agnieszka; Formela, Magda; Bilman, Piotr; Grześkiewicz, Katarzyna; Bednarski, Waldemar; Marczak, Łukasz; Narożna, Dorota; Dancewicz, Katarzyna; Mai, Van Chung; Borowiak-Sobkowiak, Beata; Floryszak-Wieczorek, Jolanta; Gabryś, Beata; Morkunas, Iwona

    2017-02-05

    The aim of this study was to investigate the effect of exogenous nitric oxide (NO), i.e., S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP), on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O₂•- was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi). Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate.

  13. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation

    Directory of Open Access Journals (Sweden)

    Agnieszka Woźniak

    2017-02-01

    Full Text Available The aim of this study was to investigate the effect of exogenous nitric oxide (NO, i.e., S-nitrosoglutathione (GSNO and sodium nitroprusside (SNP, on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O2•− was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi. Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate.

  14. The role of endogenous nitric oxide and platelet-activating factor in hypoxia-induced intestinal injury in rats.

    Science.gov (United States)

    Caplan, M S; Hedlund, E; Hill, N; MacKendrick, W

    1994-02-01

    Nitric oxide is an endothelium-derived relaxing factor that promotes capillary integrity, inhibits leukocyte adherence and activation, and scavenges oxygen radicals. Because these effects are important in experimental intestinal injury, we studied the role of NO inhibition on hypoxia-induced bowel necrosis in the rat and investigated the interaction between platelet-activating factor (PAF) and NO in this model. Sprague-Dawley rats were treated with either hypoxia, NO synthase inhibition (NG-methyl-L-arginine [LNMA] or NG-nitro-L-arginine methyl ester [L-NAME]), hypoxia+LNMA, hypoxia+LNMA+NO donors, or hypoxia+LNMA+PAF receptor inhibition. Evaluations included blood pressure, superior mesenteric artery blood flow, arterial blood gases, histological intestinal injury, intestinal myeloperoxidase activity, and intestinal PAF activity. We found that hypoxia alone for 90 minutes (10% O2, partial O2 pressure = 45 mm Hg) or LNMA alone had no detrimental effects. However, hypoxia+LNMA together caused hypotension, metabolic acidosis, intestinal injury, increased intestinal myeloperoxidase activity, and elevated intestinal PAF concentrations that were prevented by exogenous L-arginine. Furthermore, the hypotension and intestinal injury was prevented by PAF receptor blockade. We conclude that endogenous NO protects the intestine from hypoxia-induced inflammation and injury, and the balance between local PAF and NO modulates the outcome of hypoxia-stressed intestine.

  15. Increased cortical nitric oxide release after phencyclidine administration.

    Science.gov (United States)

    Pålsson, Erik; Finnerty, Niall; Fejgin, Kim; Klamer, Daniel; Wass, Caroline; Svensson, Lennart; Lowry, John

    2009-12-01

    Phencyclidine exerts psychotomimetic effects in humans and is used as a pharmacological animal model for schizophrenia. We, and others, have demonstrated that phencyclidine induces cognitive deficits in rats that are associated with schizophrenia. These cognitive deficits can be normalized by inhibition of nitric oxide synthase. The development of selective microelectrochemical nitric oxide sensors may provide direct evidence for the involvement of nitric oxide in these effects. The aim of the present study was to use LIVE (long term in vivo electrochemistry) to investigate the effect of phencyclidine, alone or in combination with the nitric oxide synthase inhibitor L-NAME, on nitric oxide levels in the medial prefrontal cortex of freely moving rats. Phencyclidine (2 mg kg(-1)) produced an increase in cortical nitric oxide levels and this increase was ameliorated by L-NAME (10 mg kg(-1)). Tentatively, the results from the present study provide a biochemical rationale for the involvement of nitric oxide in the phencyclidine model of schizophrenia. (c) 2009 Wiley-Liss, Inc.

  16. Nitric oxide signaling in human ovarian cancer: A potential therapeutic target.

    Science.gov (United States)

    El-Sehemy, Ahmed; Postovit, Lynne-Marie; Fu, YangXin

    2016-04-01

    Ovarian cancer is the leading cause of death due to gynecologic malignancies worldwide. Current therapy regimens are ineffective to treat advanced ovarian cancers, presenting a need to develop novel therapeutic strategies. Nitric oxide (NO) is a multifunctional gaseous molecule that is generated by cancer, stromal and endothelial cells and plays a multifaceted role in cancer biology through multiple mechanisms. Accumulating evidence suggests that NO signaling is involved in multiple aspects of ovarian cancer, including growth, apoptosis, cancer-stromal cell interaction, angiogenesis and response to chemotherapy. This review will discuss the experimental and clinical evidence of the involvement of NO signaling in ovarian cancer and the therapeutic potential of targeting NO signaling in ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Breast feeding increases vasoconstriction induced by electrical field stimulation in rat mesenteric artery. Role of neuronal nitric oxide and ATP.

    Directory of Open Access Journals (Sweden)

    Javier Blanco-Rivero

    Full Text Available OBJECTIVES: The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF affects the vasomotor response induced by electrical field stimulation (EFS, participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. METHODS: Experiments were performed in female Sprague-Dawley rats (3 months old, divided into three groups: Control (in oestrous phase, mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase. Vasomotor response to EFS, noradrenaline (NA and nitric oxide (NO donor DEA-NO were studied. Neuronal NO synthase (nNOS and phosphorylated nNOS (P-nNOS protein expression were analysed and NO, superoxide anion (O(2(.-, NA and ATP releases were also determined. RESULTS: EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O(2(.- production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. CONCLUSION: Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats.

  18. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  19. Nitric oxide modulates apomorphine-induced recognition memory deficits in rats.

    Science.gov (United States)

    Gourgiotis, Ioannis; Kampouri, Nikoletta G; Koulouri, Vasiliki; Lempesis, Ioannis G; Prasinou, Maria D; Georgiadou, Georgia; Pitsikas, Nikolaos

    2012-10-01

    Nitric oxide (NO) is an important intracellular messenger in the brain. The implication of NO in schizophrenia is well documented although it is not yet clear whether net over or underproduction of NO is typical of this disease. In line with this, either NO donors or NO synthase (NOS) inhibitors were found to abolish psychotomimetic effects, including cognition deficits, produced by N-methyl-D-aspartate (NMDA) receptor hypofunction. In addition, there is poor experimental evidence concerning the efficacy of NO to modulate memory deficits produced by dopamine (DA) dysfunction. The present study was designed to investigate the ability of NO modulators (NO donors and NOS inhibitors to reverse recognition memory impairments produced by the DA D(1)/D(2) mixed receptor agonist apomorphine in rats. For these studies, the novel object recognition test (NORT) was used as the memory test. Apomorphine (0.05, 0.1, 0.5 and 1.0 mg/kg), dose-dependently, disrupted performance in this recognition memory procedure in rats. The NO donors molsidomine (2.0 and 4.0 mg/kg) and SNP (0.3 and 1.0 mg/kg), reversed the impairing effects of apomorphine (1.0 mg/kg) in the NORT. Administration of the NOS inhibitors L-NAME (1.0 and 3.0 mg/kg) or 7-NI (1.0 and 3.0 mg/kg) produced similar results. The present findings indicate a) that apomorphine dose-dependently impaired recognition memory and b) that a cognitive deficit produced by DA dysfunction is sensitive to NO. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Evidence that nitric oxide may mediate the ovarian steroid-induced luteinizing hormone surge: involvement of excitatory amino acids.

    Science.gov (United States)

    Bonavera, J J; Sahu, A; Kalra, P S; Kalra, S P

    1993-12-01

    The involvement of excitatory N-methyl-D-aspartate (NMDA) receptors in the hypothalamic control of pituitary LH secretion is well recognized. Recent evidence shows that nitric oxide (NO), a free radical gas, may act as neurotransmitter in the brain, and its efflux is stimulated by activation of NMDA receptors. Studies were undertaken to determine whether NO is involved in the hypothalamic release of LHRH and in the LH surge induced by progesterone (P) in estrogen-primed ovariectomized rats. Rats were ovariectomized and 2 weeks later received estradiol benzoate (30 micrograms sc) at 1000 h. Two days later, P was injected at 1000 h to potentiate the estradiol benzoate-induced LH surge in the afternoon. Serial blood samples were collected at hourly intervals from 1400-1800 h via an intraatrial cannula implanted the day before P injection. Additionally, at various times before onset of the LH surge at 1400 h, the rats were injected sc with one of three inhibitors of NO synthase, the enzyme that generates NO. Control, saline-injected rats showed unambiguous LH surges in the afternoon. However, either a single injection at 1000 h of NG-methyl-L-arginine (20 mg/kg) or three injections at 1000, 1200, and 1400 h of either Nw-nitro-L-arginine methyl ester (NAME, 40 mg/kg) or Nw-nitro-L-arginine (60 mg/kg) to inhibit NO efflux markedly suppressed the P-induced LH surge in the afternoon. To ascertain whether suppression of LH surge was due to blockade of hypothalamic LHRH release, a series of in vitro studies were performed in steroid-primed rats. First we examined the effects of sodium nitroprusside (NPS), a compound that spontaneously generates and releases NO. NPS increased basal and KCl-induced LHRH release in vitro from the medial basal hypothalamus-preoptic area and median eminence fragments. No direct effect of NO at the pituitary level was seen, since NPS did not alter basal or LHRH-induced LH in vitro release from hemipituitaries. In addition, we tested the effects of

  1. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress: Possible Role for Nitric Oxide Activation of 3',5'-cyclic Guanosine Monophosphate Signaling.

    Science.gov (United States)

    Bolnick, Jay M; Kilburn, Brian A; Bolnick, Alan D; Diamond, Michael P; Singh, Manvinder; Hertz, Michael; Dai, Jing; Armant, D Randall

    2015-06-01

    Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-N(G)-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders. © The Author(s) 2014.

  2. The bystander cell-killing effect mediated by nitric oxide in normal human fibroblasts varies with irradiation dose but not with radiation quality.

    Science.gov (United States)

    Yokota, Yuichiro; Funayama, Tomoo; Mutou-Yoshihara, Yasuko; Ikeda, Hiroko; Kobayashi, Yasuhiko

    2015-05-01

    To investigate the dependence of the bystander cell-killing effect on radiation dose and quality, and to elucidate related molecular mechanisms. Normal human fibroblast WI-38 cells were irradiated with 0.125 - 2 Gy of γ-rays or carbon ions and were co-cultured with non-irradiated cells. Survival rates of bystander cells were investigated using the colony formation assays, and nitrite concentrations in the medium were measured using the modified Saltzman method. Survival rates of bystander cells decreased with doses of γ-rays and carbon ions of ≤ 0.5 Gy. Treatment of the specific nitric oxide (NO) radical scavenger prevented reductions in survival rates of bystander cells. Moreover, nitrite concentrations increased with doses of less than 0.25 Gy (γ-rays) and 1 Gy (carbon ions). The dose responses of increased nitrite concentrations as well as survival reduction were similar between γ-rays and carbon ions. In addition, negative relationships were observed between survival rates and nitrite concentrations. The bystander cell-killing effect mediated by NO radicals in normal human fibroblasts depends on irradiation doses of up to 0.5 Gy, but not on radiation quality. NO radical production appears to be an important determinant of γ-ray- and carbon-ion-induced bystander effects.

  3. Part II. Initial molecular and cellular characterization of high nitric oxide-adapted human tongue squamous cell carcinoma cell lines.

    Science.gov (United States)

    Tarjan, Gabor; Haines, G Kenneth; Vesper, Benjamin J; Xue, Jiaping; Altman, Michael B; Yarmolyuk, Yaroslav R; Khurram, Huma; Elseth, Kim M; Roeske, John C; Aydogan, Bulent; Radosevich, James A

    2011-02-01

    It is not understood why some head and neck squamous cell carcinomas, despite having identical morphology, demonstrate different tumor aggressiveness, including radioresistance. High levels of the free radical nitric oxide (NO) and increased expression of the NO-producing enzyme nitric oxide synthase (NOS) have been implicated in tumor progression. We previously adapted three human tongue cancer cell lines to high NO (HNO) levels by gradually exposing them to increasing concentrations of an NO donor; the HNO cells grew faster than their corresponding untreated ("parent") cells, despite being morphologically identical. Herein we initially characterize the HNO cells and compare the biological properties of the HNO and parent cells. HNO/parent cell line pairs were analyzed for cell cycle distribution, DNA damage, X-ray and ultraviolet radiation response, and expression of key cellular enzymes, including NOS, p53, glutathione S-transferase-pi (GST-pi), apurinic/apyrimidinic endonuclease-1 (APE1), and checkpoint kinases (Chk1, Chk2). While some of these properties were cell line-specific, the HNO cells typically exhibited properties associated with a more aggressive behavior profile than the parent cells (greater S-phase percentage, radioresistance, and elevated expression of GST-pi/APE1/Chk1/Chk2). To correlate these findings with conditions in primary tumors, we examined the NOS, GST-pi, and APE1 expression in human tongue squamous cell carcinomas. A majority of the clinical samples exhibited elevated expression levels of these enzymes. Together, the results herein suggest cancer cells exposed to HNO levels can develop resistance to free radicals by upregulating protective mechanisms, such as GST-pi and APE1. These upregulated defense mechanisms may contribute to their aggressive expression profile.

  4. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to isopropanol oxidation products and pthtalate esters in indoor air

    DEFF Research Database (Denmark)

    Lagercrantz, Love Per; Famula, Basia; Sundell, Jan

    2005-01-01

    The use of Nitric Oxide (NO) concentration in exhaled and aspirated nasal air to assess human response to indoor air pollution was tested in a climate chamber exposure experiment. The concentration of NO was measured using a chemiluminescence NO analyser. Sixteen healthy female subjects were...

  5. Protective role of endothelial nitric oxide synthase

    NARCIS (Netherlands)

    Albrecht, Ester W J A; Stegeman, Coen A; Heeringa, Peter; Henning, Robert; van Goor, Harry

    Nitric oxide is a versatile molecule, with its actions ranging from haemodynamic regulation to anti-proliferative effects on vascular smooth muscle cells. Nitric oxide is produced by the nitric oxide synthases, endothelial NOS (eNOS), neural NOS (nNOS), and inducible NOS (iNOS). Constitutively

  6. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis.

    Science.gov (United States)

    Shi, Chenyu; Qi, Cheng; Ren, Hongyan; Huang, Aixia; Hei, Shumei; She, Xiaoping

    2015-04-01

    Brassinosteroids (BRs) are essential for plant growth and development; however, whether and how they promote stomatal closure is not fully clear. In this study, we report that 24-epibrassinolide (EBR), a bioactive BR, induces stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering a signal transduction pathway including ethylene synthesis, the activation of Gα protein, and hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) production. EBR initiated a marked rise in ethylene, H(2)O(2) and NO levels, necessary for stomatal closure in the wild type. These effects were abolished in mutant bri1-301, and EBR failed to close the stomata of gpa1 mutants. Next, we found that both ethylene and Gα mediate the inductive effects of EBR on H(2)O(2) and NO production. EBR-triggered H(2)O(2) and NO accumulation were canceled in the etr1 and gpa1 mutants, but were strengthened in the eto1-1 mutant and the cGα line (constitutively overexpressing the G protein α-subunit AtGPA1). Exogenously applied H(2)O(2) or sodium nitroprusside (SNP) rescued the defects of etr1-3 and gpa1 or etr1 and gpa1 mutants in EBR-induced stomatal closure, whereas the stomata of eto1-1/AtrbohF and cGα/AtrbohF or eto1-1/nia1-2 and cGα/nia1-2 constructs had an analogous response to H(2)O(2) or SNP as those of AtrbohF or Nia1-2 mutants. Moreover, we provided evidence that Gα plays an important role in the responses of guard cells to ethylene. Gα activator CTX largely restored the lesion of the etr1-3 mutant, but ethylene precursor ACC failed to rescue the defects of gpa1 mutants in EBR-induced stomatal closure. Lastly, we demonstrated that Gα-activated H(2)O(2) production is required for NO synthesis. EBR failed to induce NO synthesis in mutant AtrbohF, but it led to H(2)O(2) production in mutant Nia1-2. Exogenously applied SNP rescued the defect of AtrbohF in EBR-induced stomatal closure, but H(2)O(2) did not reverse the lesion of EBR-induced stomatal closure in Nia1-2. Together, our

  7. Long-term administration of ketamine induces erectile dysfunction by decreasing neuronal nitric oxide synthase on cavernous nerve and increasing corporal smooth muscle cell apoptosis in rats.

    Science.gov (United States)

    Shang, Hung-Sheng; Wu, Yi-No; Liao, Chun-Hou; Chiueh, Tzong-Shi; Lin, Yuh-Feng; Chiang, Han-Sun

    2017-09-26

    We investigated and evaluated the mechanisms of erectile dysfunction (ED) in a rat model of long-term ketamine administration. Adult male Sprague-Dawley rats (n = 32) were divided into four groups: namely the control group receiving intraperitoneal injection of saline, 1-month, 2-month and 3-month groups receiving daily intraperitoneal injection of ketamine (100 mg/kg/day) for 1, 2, and 3 month respectively. After treatment, animals underwent an erectile response protocol to assess intracavernosal pressure (ICP). Smooth muscle content was evaluated. Neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) expression were assessed using immunostaining assay. Ketamine-induced apoptosis was analyzed using TUNEL assay. Long-term ketamine administration caused significantly decreased erectile responses as measured by ICP. Smooth muscle content was significantly decreased in the ketamine-treated rats for 3 months. In the erectile tissue, ketamine administration significantly reduced nNOS expression and increased iNOS content compared with controls, whereas eNOS expression was not altered. Ketamine induced apoptosis in corpus cavernosum. The present study demonstrates that long-term ketamine administration led to erectile dysfunction in rat. The molecular mechanisms of ketamine-induced ED involved the increased apoptosis and up-regulated iNOS expression incorporating with loss of corporal smooth muscle content and reduced nNOS expression in cavernous nerve.

  8. Stress-induced activation of nitric oxide-producing neurons in the rat brain.

    Science.gov (United States)

    Krukoff, T L; Khalili, P

    1997-01-27

    Nitric oxide (NO) is a gaseous neurotransmitter that may mediate a decrease in sympathetic output to the periphery. This implication predicts that NO-producing neurons in the brain are activated in animals experiencing increased levels of sympathetic activity. To test this prediction, we subjected three groups of experimental rats to differing levels of environmental stimulation for 1 hour: minimal stimulation, moderate stimulation, and restraint stress. NO-producing neurons were histochemically visualized in sections of the brain, and activation of these neurons was assessed according to the neuronal expression of the immediate early gene c-fos. Constitutive activation of NO-producing neurons was found in the hypothalamus (paraventricular and supraoptic nuclei), dorsal raphe nuclei, and spinal nucleus of the trigeminal nerve of minimally stimulated rats. When animals were subjected to a novel environment (moderate stimulation), additional NO-producing neurons were activated in the medial septum, medial amygdala, hypothalamic nuclei (lateral, periventricular, and posterior), colliculi, nucleus raphe obscurus, medial vestibular nucleus, nucleus of the tractus solitarius, and several components of the ventrolateral medulla. Restraint stress caused the activation of NO-producing neurons in all of these areas, often in increasing numbers, and the activation of additional NO-producing neurons in the diagonal band of Broca, lateral and medial preoptic areas, basomedial and basolateral amygdalar nuclei, hypothalamic nuclei (dorsomedial, retrochiasmatic supraoptic, and circularis), nucleus raphe pontus, lateral parabrachial nucleus, and pontine nuclei. Expressed as a proportion of NO-producing neurons per section, the largest percentages (>20%) of double-stained neurons were found in the basolateral amygdala (46%), hypothalamic paraventricular nucleus (35%), corpora quadrigemina (estimated at 40%), dorsal raphe (45%), nuclei raphe pontus (33%) and obscurus (63%), lateral

  9. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase.

    Science.gov (United States)

    Stenger, S; Donhauser, N; Thüring, H; Röllinghoff, M; Bogdan, C

    1996-04-01

    Nitric oxide (NO) synthase (iNOS) is required for the resolution of acute cutaneous leishmaniasis in resistant C57BL/6 mice. As is the case in several other infections, the clinically cured host organism still harbors small amounts of live Leishmania major parasites. Here, we demonstrate lifelong expression of iNOS at the site of the original skin lesion and in the draining lymph node of long-term-infected C57BL/6 mice. iNOS activity in the lymph node was dependent on CD4+, but not on the CD8+ T cells. By double labeling techniques, iNOS and L. major were each found in macrophages (F4/80+, BM-8+, and/or MOMA-2+) and dendritic cells (NLDC-145+), but not in granulocytes or endothelial cells. In situ triple labeling of lymph node sections revealed that approximately 30-40% of the L. major foci were associated with iNOS-positive macrophages or dendritic cells. The majority of the L. major foci (60-70%), however, was located in areas that were negative for both iNOS and the macrophage and dendritic cell markers. In L. major-infected C57BL/6 mice, which had cured their cutaneous lesions, administration of L-N6-iminoethyl-lysine (L-NIL), a potent inhibitor of iNOS, led to a 10(4)-10(5)-fold increase of the parasite burden in the cutaneous and lymphoid tissue and caused clinical recrudescence of the disease. Persistent expression of iNOS and resumption of parasite replication after application of L-NIL was also observed in resistant C3H/HeN and CBA/J mice. We conclude that iNOS activity is crucial for the control of Leishmania persisting in immunocompetent hosts after resolution of the primary infection. Failure to maintain iNOS activity might be the mechanism underlying endogenous reactivation of latent infections with NO-sensitive microbes during phases of immunosuppression.

  10. Spontaneous expression of inducible nitric oxide synthase in the hypothalamus and other brain regions of aging rats.

    Science.gov (United States)

    Vernet, D; Bonavera, J J; Swerdloff, R S; Gonzalez-Cadavid, N F; Wang, C

    1998-07-01

    Our laboratory has demonstrated that aging in Brown-Norway rats is associated with decreased LH pulse amplitude and reduced GnRH and LH responsiveness to excitatory amino acids (EAA), presumably through the NMDA receptor (NMDAR). Nitric oxide (NO) is a neurotransmitter postulated to be involved in hypothalamic synaptic events required for normal GnRH regulation through the activation of neuronal nitric oxide synthase (nNOS). Paradoxically, excessive stimulation of nNOS by NMDAR or the expression of inducible nitric oxide synthase (iNOS) can lead to supraphysiological levels of NO acting as effector of apoptosis with resultant decreased regional neuronal function. The aims of this study were to determine: 1) whether aging in the preoptic area/medial basal hypothalamus is associated with altered NO synthesis; 2) the possible roles of the NMDAR/nNOS cascade and iNOS in this process; and 3) whether alterations in the levels of NOS isoforms are specific to this region of the brain. Brown Norway male rats (N = 5) at ages 1 (immature), 3 (adult), and 24 (old) months, were used for measuring NMDARs in hypothalamic membranes by the binding of a (3H)-NMDAR ligand. Another series of the same age groups of rats (N = 9) were used to determine by Western blot the contents of NMDAR, nNOS, and iNOS in the hypothalamus, and only iNOS in the frontal and parietal cortex, and cerebellum. NOS activity was measured in the hypothalamus by the arginine/citrulline assay. A significant decrease of NMDA analog binding was found in the hypothalamus from old rats as compared with adult (-66%) and immature animals (-57%), accompanied by a reduction in NMDAR content (-34% and -46%, respectively). NOS activity in the hypothalamus was 67% and 100% higher in old rats as compared with the other two groups, although no significant differences were observed in nNOS content. However, hypothalamic iNOS increased 3.8- and 7.6-fold in old rats, as compared with adult and immature, respectively. This

  11. Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II.

    Science.gov (United States)

    Kossmann, Sabine; Hu, Hanhan; Steven, Sebastian; Schönfelder, Tanja; Fraccarollo, Daniela; Mikhed, Yuliya; Brähler, Melanie; Knorr, Maike; Brandt, Moritz; Karbach, Susanne H; Becker, Christian; Oelze, Matthias; Bauersachs, Johann; Widder, Julian; Münzel, Thomas; Daiber, Andreas; Wenzel, Philip

    2014-10-03

    Endothelial nitric-oxide synthase (eNOS) uncoupling and increased inducible NOS (iNOS) activity amplify vascular oxidative stress. The role of inflammatory myelomonocytic cells as mediators of these processes and their impact on tetrahydrobiopterin availability and function have not yet been defined. Angiotensin II (ATII, 1 mg/kg/day for 7 days) increased Ly6C(high) and CD11b(+)/iNOS(high) leukocytes and up-regulated levels of eNOS glutathionylation in aortas of C57BL/6 mice. Vascular iNOS-dependent NO formation was increased, whereas eNOS-dependent NO formation was decreased in aortas of ATII-infused mice as assessed by electron paramagnetic resonance (EPR) spectroscopy. Diphtheria toxin-mediated ablation of lysozyme M-positive (LysM(+)) monocytes in ATII-infused LysM(iDTR) transgenic mice prevented eNOS glutathionylation and eNOS-derived N(ω)-nitro-L-arginine methyl ester-sensitive superoxide formation in the endothelial layer. ATII increased vascular guanosine triphosphate cyclohydrolase I expression and biopterin synthesis in parallel, which was reduced in monocyte-depleted LysM(iDTR) mice. Vascular tetrahydrobiopterin was increased by ATII infusion but was even higher in monocyte-depleted ATII-infused mice, which was paralleled by a strong up-regulation of dihydrofolate reductase expression. EPR spectroscopy revealed that both vascular iNOS- and eNOS-dependent NO formation were normalized in ATII-infused mice following monocyte depletion. Additionally, deletion as well as pharmacologic inhibition of iNOS prevented ATII-induced endothelial dysfunction. In summary, ATII induces an inflammatory cell-dependent increase of iNOS, guanosine triphosphate cyclohydrolase I, tetrahydrobiopterin, NO formation, and nitro-oxidative stress as well as eNOS uncoupling in the vessel wall, which can be prevented by ablation of LysM(+) monocytes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    E.Y. Kong

    2016-08-01

    Full Text Available The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio, as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP. The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf revealed through acridine orange (AO staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies.

  13. Overexpression myocardial inducible nitric oxide synthase exacerbates cardiac dysfunction and beta-adrenergic desensitization in experimental hypothyroidism.

    Science.gov (United States)

    Shao, Qun; Cheng, Heng-Jie; Callahan, Michael F; Kitzman, Dalane W; Li, Wei-Min; Cheng, Che Ping

    2016-02-01

    Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood. The alterations and functional effects of cardiac NOS in hypothyroidism are unknown. We tested the hypothesis that hypothyroidism increases cardiomyocyte inducible NOS (iNOS) expression, which plays an important role in hypothyroidism-induced depression of cardiomyocyte contractile properties, [Ca(2+)]i transient ([Ca(2+)]iT), and β-adrenergic hyporesponsiveness. We simultaneously evaluated LV functional performance and compared myocyte three NOS, β-adrenergic receptors (AR) and SERCA2a expressions and assessed cardiomyocyte contractile and [Ca(2+)]iT responses to β-AR stimulation with and without pretreatment of iNOS inhibitor (1400 W, 10(-5)mol/L) in 26 controls and 26 rats with hypothyroidism induced by methimazole (~30 mg/kg/day for 8 weeks in the drinking water). Compared with controls, in hypothyroidism, total serum T3 and T4 were significantly reduced followed by significantly decreased LV contractility (EES) with increased LV time constant of relaxation. These LV abnormalities were accompanied by concomitant significant decreases in myocyte contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca(2+)]iT. In hypothyroidism, isoproterenol (10(-8)M) produced significantly smaller increases in dL/dtmax, dR/dtmax and [Ca(2+)]iT. These changes were associated with decreased β1-AR and SERCA2a, but significantly increased iNOS. Moreover, only in hypothyroidism, pretreatment with iNOS inhibitor significantly improved basal and isoproterenol-stimulated myocyte contraction, relaxation and [Ca(2+)]iT. Hypothyroidism produces intrinsic defects of LV myocyte force-generating capacity and relaxation with β-AR desensitization. Up-regulation of cardiomyocyte iNOS may promote progressive cardiac dysfunction in hypothyroidism. Copyright © 2015 Elsevier

  14. Overexpression Myocardial Inducible Nitric Oxide Synthase Exacerbates Cardiac Dysfunction and Beta-Adrenergic Desensitization in Experimental Hypothyroidism☆,☆☆

    Science.gov (United States)

    Shao, Qun; Cheng, Heng-Jie; Callahan, Michael F.; Kitzman, Dalane W; Li, Wei-Min; Cheng, Che Ping

    2015-01-01

    Background Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood. The alterations and functional effects of cardiac NOS in hypothyroidism are unknown. We tested the hypothesis that hypothyroidism increases cadiomyocyte inducible NOS (iNOS) expression, which plays an important role in hypothyroidism-induced depression of cardiomyocyte contractile properties, [Ca2+]i transient ([Ca2+]iT), and β-adrenergic hyporesponsiveness. Methods and Results We simultaneously evaluated LV functional performance and compared myocyte three NOS, β-adrenergic receptors (AR) and SERCA2a expressions and assessed cardiomyocyte contractile and [Ca2+]iT responses to β-AR stimulation with and without pretreatment of iNOS inhibitor (1400W, 10−5 mol/L) in 26 controls and 26 rats with hypothyroidism induced by methimazole (~30 mg/kg/day for 8 weeks in the drinking water). Compared with controls, in hypothyroidism, total serum T3 and T4 were significantly reduced followed by significantly decreased LV contractility (EES) with increased LV time constant of relaxation. These LV abnormalities were accompanied by concomitant significant decreases in myocyte contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca2+]iT. In hypothyroidism, isoproterenol (10−8 M) produced significantly smaller increases in dL/dtmax, dR/dtmax and [Ca2+]iT. These changes were associated with decreased β1-AR and SERCA2a, but significantly increased iNOS. Moreover, only in hypothyroidism, pretreatment with iNOS inhibitor significantly improved basal and isoproterenol-stimulated myocyte contraction, relaxation and [Ca2+]iT. Conclusions Hypothyroidism produces intrinsic defects of LV myocyte force-generating capacity and relaxation with β-AR desensitization. Up-regulation of cadiomyocyte iNOS may promote progressive cardiac dysfunction in

  15. The comparative proteomics analysis revealed the modulation of inducible nitric oxide on the immune response of scallop Chlamys farreri.

    Science.gov (United States)

    Sun, Zhibin; Jiang, Qiufen; Wang, Lingling; Zhou, Zhi; Wang, Mengqiang; Yi, Qilin; Song, Linsheng

    2014-10-01

    Nitric oxide (NO) is an important gasotransmitter which plays a key role on the modulation of immune response in all vertebrates and invertebrates. In the present study, the modulation of inducible NO on immune response of scallop Chlamys farreri was investigated via proteomic analysis. Total proteins from hepatopancreas of scallops treated with lipopolysaccharide (LPS) and/or the inhibitor of vertebrate inducible NO synthase (S-methylisothiourea sulfate, SMT) for 12 h were analyzed via 2-D PAGE and ImageMaster 2D Platinum. There were 890, 1189 and 1046 protein spots detected in the groups treated by phosphate buffered saline (PBS), LPS and LPS+SMT, respectively, and 26 differentially expressed protein spots were identified among them. These proteins were annotated with binding or catalytic activity, and most of them were involved in metabolic or cellular processes. Some immune-related or antioxidant-related molecules such as single Ig IL-1-related receptor, guanine nucleotide-binding protein subunit beta-like protein and peroxiredoxin were identified, and the changes of their expression levels in LPS group were intensified significantly after adding SMT. The decreased expression level of tyrosinase and increased level of glutathione S-transferase 4 in LPS group were diametrically reversed by appending SMT. Moreover, interferon stimulated exonuclease gene 20-like protein and copper chaperone for superoxide dismutase were only induced by LPS+SMT stimulation but not by LPS stimulation. These data indicated that NO could modulate many immunity processes in scallop, such as NF-κB transactivation, cytoskeleton reorganization and other pivotal processes, and it was also involved in the energy metabolism, posttranslational modification, detoxification and redox balance during the immune response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Oxytocin induces penile erection when injected into the ventral subiculum: role of nitric oxide and glutamic acid.

    Science.gov (United States)

    Melis, Maria Rosaria; Succu, Salvatora; Cocco, Cristina; Caboni, Emanuela; Sanna, Fabrizio; Boi, Antonio; Ferri, Gian Luca; Argiolas, Antonio

    2010-06-01

    Oxytocin (100 ng) induces penile erection when injected unilaterally into the ventral subiculum of the hippocampus of male rats. The pro-erectile effect started mostly 30 min after treatment and occurred 15 min after an increase in both nitric oxide (NO) production, measured by the concentration of NO(2)(-) and NO(3)(-), the main metabolites of newly formed NO, and extra-cellular glutamic acid concentration in the dialysate obtained from the ventral subiculum by intracerebral microdialysis. These responses were abolished by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin (2 microg), an oxytocin receptor antagonist, S-methyl-L-thiocitrulline (SMTC), a selective inhibitor of neuronal NO-synthase (25 microg), and haemoglobin, a NO scavenger (25 microg), given into the ventral subiculum before oxytocin. Unlike d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, SMTC and haemoglobin, (+)MK-801 (5 microg), a noncompetitive antagonist of NMDA receptors abolished oxytocin-induced penile erection, but reduced only partially the increase in NO production and extra-cellular glutamic acid. As NMDA (0.25-1 microg) injected into the ventral subiculum induces penile erection episodes, which also occurred with an increase of NO production and extra-cellular glutamic acid, and NMDA responses were abolished by (+)MK-801 (5 microg), but not by SMTC (25 microg) or haemoglobin (25 microg), injected into the ventral subiculum, these results show that oxytocin injected into the ventral subiculum increases NO production by activating its own receptors. NO in turn increases glutamic acid neurotransmission, leading to penile erection, possibly through neural (glutamatergic) efferent projections from the ventral subiculum to extra-hippocampal brain areas (e.g., prefrontal cortex) modulating the activity of mesolimbic dopaminergic neurons. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Inhibitors of phosphodiesterase 5 (PDE 5) inhibit the nerve-induced release of nitric oxide from the rabbit corpus cavernosum

    Science.gov (United States)

    Hallén, K; Wiklund, N P; Gustafsson, L E

    2006-01-01

    Background and purpose: Nitrergic neurons are important for erectile responses in the corpus cavernosum and impaired signalling results in erectile dysfunction, today treated successfully by oral administration of the selective phosphodiesterase 5 (PDE 5) inhibitors sildenafil, tadalafil and vardenafil. Although the importance of nitrergic neurons in urogenital function has become evident, it has not been investigated if the PDE 5 inhibitors affect the nerve-induced release of nitric oxide (NO). In a previous study we found that the soluble guanylate cyclase (sGC)/cyclic guanosine 3',5'–monophosphate (cGMP) pathway might modulate nerve-induced release of NO in isolated cavernous tissue. Experimental approach: Electrical field stimulation (EFS 5 Hz, 40 V, 0.3 ms pulse duration, 25 pulses at intervals of 2 min) of rabbit isolated cavernous tissue elicited reproducible, nerve-mediated relaxations in the presence of scopolamine (10−5 M), guanethidine (10−5 M) and phenylephrine (3 × 10−6 M). In superfusion experiments, nerve stimulation (20 Hz, 40 V, 1 ms) of the cavernous tissue evoked release of NO/NO2 −, measured by chemiluminescence. Key results: Sildenafil, tadalafil and vardenafil decreased the muscular tone and prolonged the relaxations to nerve stimulation. The evoked release of NO decreased to 72±11%, 55±16% and 61±14% of control, respectively after addition of sildenafil, tadalafil or vardenafil (all 10−4 M, n=6–8, p<0.05). Conclusions and Implications: Selective PDE 5 inhibitors influence the nerve-induced release of NO, probably via cGMP-mediated negative feedback. This negative feedback might explain why priapism is not seen during monotherapy with the PDE inhibitors. PMID:17179943

  18. beta-very low density lipoprotein enhances inducible nitric oxide synthase expression in cytokine-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Takahashi, Masafumi; Takahashi, Sadao; Shimpo, Masahisa; Naito, Akitaka; Ogata, Yukiyo; Kobayashi, Eiji; Ikeda, Uichi; Shimada, Kazuyuki

    2002-06-01

    beta-very low-density lipoprotein (beta-VLDL), a collective term for VLDL and chylomicron remnants, has recently shown to potently promote the development of atherosclerosis. However, the effects of beta-VLDL on the accumulation of nitric oxide (NO) and the expression of inducible NO synthase (iNOS) in vascular smooth muscle cells (VSMC) have not been determined. In this study, we measured the accumulation of nitrite, stable metabolite of NO and examined the expression of iNOS protein and mRNA using Western blotting and RT-PCR, respectively, in VSMC. NF-kappaB activation in VSMC was examined by gel retardation assay. Incubation of cell cultures with interleukin-1beta (IL-1beta) for 24 h caused a significant increase in nitrite accumulation. Although beta-VLDL alone did not increase nitrite accumulation in unstimulated VSMC, beta-VLDL significantly enhanced nitrite accumulation in IL-1beta-stimulated VSMC in a time- and dose-dependent manner. beta-VLDL-induced nitrite accumulation in IL-1beta-stimulated VSMC was accompanied by an increase in iNOS protein and mRNA expression. In addition, IL-1beta induced NF-kappaB activation in VSMC, an effect that was increased by the addition of beta-VLDL. Use of specific tyrosine kinase inhibitor herbimycin A, genistein, or PP2 (Src family kinase inhibitor) indicated that tyrosine kinases are required for IL-1beta-stimulated and beta-VLDL-enhanced nitrite accumulation, while specific inhibition of ERK1/2 or p38-MAP kinase had no effects. Our results suggest that beta-VLDL enhances iNOS expression and nitrite accumulation in IL-1beta-stimulated VSMC through tyrosine kinase(s)-dependent mechanisms.

  19. Modification of kainate-induced behavioral and electrographic seizures following inhibition of nitric oxide synthase in mice.

    Science.gov (United States)

    Kirkby, R D; Forbes, R A; Subramaniam, S

    1996-06-01

    We assessed the effects of N(omega)-nitro-L-arginine-methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), on behavioral and electrographic seizures elicited in mice by convulsant doses of kainate. In Expt. 1, L-NAME dose-dependently potentiated the convulsant effects of kainate (44 mg/kg s.c.), transforming long-latency clonic convulsions into short-latency fits of wild-running, and increased the incidence of kainate-induced mortality. The proconvulsant effects of L-NAME (5 mg/kg i.p.) did not reflect shortened latency to kainate-induced epileptiform afterdischarge recorded via electrodes chronically implanted into the hippocampus, amygdala, frontal cortex or mesencephalic reticular formation (Expt. 2). We also observed a dramatic uncoupling of behavioral and electrographic seizures in mice treated with L-NAME 30 min prior to kainate: 4/6 mice treated with L-NAME failed to express afterdischarge from any of the sites assessed during fits of wild-running. The proconvulsant effects of L-NAME were dependent on the route of administration of kainate, as the inhibitor of NOS failed to alter behavioral (clonic) or electrographic seizures elicited by intrahippocampal kainate (1 nmol, Expt. 3) yet shortened latency to fits of wild-running following i.c.v. kainate (1 nmol, Expt. 4) and reduced the dose of systemic kainate required for either clonic convulsions or wild-running (Expt. 5). The observations that L-NAME potentiates kainate-induced wild-running but not necessarily clonus suggest the involvement of tectopontine mechanisms.

  20. Association between recurrent aphthous stomatitis and inheritance of a single-nucleotide polymorphism of the NOS2 gene encoding inducible nitric oxide synthase.

    Science.gov (United States)

    Karasneh, Jumana A; Darwazeh, Azmi M G; Hassan, Ahmad F; Thornhill, Martin

    2011-10-01

     Recurrent aphthous stomatitis is a common ulcerative disease of the oral mucosa. Recurrent oral aphthous ulceration is also a feature of the more serious and systemic Behçet's disease. Nitric oxide is a free radical synthesized by one of a family of nitric oxide synthase (NOS) enzymes and is an important regulator of inflammation and immunity. Association of NOS3 gene polymorphisms encoding endothelial nitric oxide synthase has been reported in Behçet's disease but not recurrent aphthous stomatitis. The aim of this study was to investigate any association between NOS2 gene polymorphisms that encode inducible nitric oxide synthase and recurrent aphthous stomatitis.  This is a case control association study. Eighty-three Jordanian recurrent aphthous stomatitis patients and 83 age, gender and ethnically matched controls were genotyped for three NOS2 single-nucleotide polymorphisms, rs10459953, rs1060822 and rs2297518. Chi-squared analysis was used to compare the allele frequencies and genotypes.  There was a significant association between recurrent aphthous stomatitis and inheritance of single-nucleotide polymorphism rs2297518 (P = 0.006). Although no direct association was demonstrated between rs10459953 or rs1060822 and recurrent aphthous stomatitis, a strong linkage disequilibrium was identified between rs1060822 and rs2297518.  Inheritence of a NOS2 single-nucleotide polymorphism rs2297518 is associated with increased risk of recurrent aphthous stomatitis in a Jordanian population. Confirmatory studies in other populations and investigation of other NOS2 gene polymorphisms will enhance our understanding of the functional basis of this association and help elucidate the role of inducible nitric oxide synthase in recurrent aphthous stomatitis. © 2011 John Wiley & Sons A/S.

  1. Allicin protects spinal cord neurons from glutamate-induced oxidative stress through regulating the heat shock protein 70/inducible nitric oxide synthase pathway.

    Science.gov (United States)

    Liu, Shu-Guang; Ren, Peng-Yu; Wang, Guo-Yu; Yao, Shu-Xin; He, Xi-Jing

    2015-01-01

    Allicin, the main biologically active compound derived from garlic, exerts a broad spectrum of pharmacological activities and is considered to have therapeutic potential in many neurological disorders. Using an in vitro spinal cord injury model induced by glutamate treatment, we sought to investigate the neuroprotective effects of allicin in primary cultured spinal cord neurons. We found that allicin treatment significantly attenuated glutamate-induced lactate dehydrogenase (LDH) release, loss of cell viability and apoptotic neuronal death. This protection was associated with reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) generation, reduced lipid peroxidation and preservation of antioxidant enzyme activities. The results of western blot analysis showed that allicin decreased the expression of inducible nitric oxide synthase (iNOS), but had no effects on the expression of neuronal NOS (nNOS) following glutamate exposure. Moreover, allicin treatment significantly increased the expression of heat shock protein 70 (HSP70) at both mRNA and protein levels. Knockdown of HSP70 by specific targeted small interfere RNA (siRNA) not only mitigated allicin-induced protective activity, but also partially nullified its effects on the regulation of iNOS. Collectively, these data demonstrate that allicin treatment may be an effective therapeutic strategy for spinal cord injury, and that the potential underlying mechanism involves HSP70/iNOS pathway-mediated inhibition of oxidative stress.

  2. Amelioration of diabetes-induced cavernosal fibrosis by antioxidant and anti-transforming growth factor-β1 therapies in inducible nitric oxide synthase-deficient mice.

    Science.gov (United States)

    Ferrini, Monica G; Moon, Joanne; Rivera, Steve; Rajfer, Jacob; Gonzalez-Cadavid, Nestor F

    2012-02-01

    •  To investigate whether sustained long-term separate treatments of diabetic inducible nitric oxide synthase knockout (iNOSKo) mice with allopurinol, an antioxidant inhibiting xanthine oxidoreductase, decorin, a transforming growth factor-β1 (TGFβ1) -binding antagonist, and molsidomine, a long-life nitric oxide donor, prevent the processes of diabetes-induced cavernosal fibrosis. •  Eight week old male iNOS knock out (iNOSKo) mice were made diabetic by injecting 150 mg/kg B.W Streptozotocin (1P) with were either left untreated or treated with the oral antioxidant allopurinol (40 mg/kg/day), or decoin (50 mg, 1P, twice), as an anti-TGFβ1 agent (n = 8/group). •  Glycemia and oxidative stress markers were determined in blood and urine. •  Paraffin-embedded tissue sections from the penile shaft were subjected to Masson trichrome staining for the smooth muscle (smc)/collagen ratio, and imunostaining for smc content, profibrotic factors, oxidative stress, cell replication and cell death markers followed by quantitative image analysis. •  Eight-week treatment with either allopurinol or decorin counteracted the decrease in smooth muscle cells and the increase in apoptosis and local oxidative stress within the corpora tissue. •  Decorin but not allopurinol increased the smooth muscle cell/collagen ratio, whereas allopurinol but not decorin inhibited systemic oxidative stress. •  Molsidomine was effective in reducing both local and systemic oxidative stress, but did not prevent corporal fibrosis. •  Both allopurinol and decorin appear as promising approaches either as a single or a combined pharmacological modality for protecting the diabetic corpora from undergoing apoptosis and fibrosis although their functional effects still need to be defined. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  3. Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    János Pálóczi

    2016-01-01

    Full Text Available Background and Aims. Human embryonic stem cell- (hESC- derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days and then on more differentiated cardiomyocytes (6 + 24 days, both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP (10−7, 10−6, and 10−5 M, BNP (10−9, 10−8, and 10−7 M, and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10−5 M. Results. SNAP (10−6, 10−5 M significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10−6 M also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms.

  4. Activation of nuclear factor kappaB and induction of inducible nitric oxide synthase by lipid-associated membrane proteins isolated from Mycoplasma penetrans.

    Science.gov (United States)

    Zeng, Yan-hua; Wu, Yi-mou; Zhang, Wen-bo; Yu, Min-jun; Zhu, Cui-ming; Tan, Li-zhi

    2004-07-01

    This study was designed to investigate the potential pathogenicity of Mycoplasma penetrans (M. penetrans) and its molecular mechanisms responsible for the induction of iNOS gene expression in mouse macrophages stimulated by lipid-associated membrane proteins (LAMPs) prepared from M. penetrans. Mouse macrophages were stimulated with M. penetrans LAMPs to assay the production of nitric oxide (NO). The expression of inducible nitric oxide synthase (iNOS) was detected by RT-PCR and Western blotting. The activity of nuclear factor kappaB (NF-kappaB) and the effects of pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-kappaB, on the production of nitric oxide and the expression of iNOS were also assessed in mouse macrophages treated with M. penetrans LAMPs by indirect immunofluorescence and Western blotting. M. penetrans LAMPs stimulated mouse macrophages to produce nitric oxide in a dose- and time-dependent manner. The mRNA and protein levels of iNOS were also upregulated in response to LAMP stimulation and inhibited by PDTC treatment. M. penetrans LAMPs were found to trigger NF-kappaB activation, a possible mechanism for the induction of iNOS expression. This study demonstrated that M. penetrans may be an important etiological factor of certain diseases due to the ability of M. penetrans LAMPs to stimulate the expression of iNOS, which is probably mediated through the activation of NF-kappaB.

  5. Single dose of inducible nitric oxide synthase inhibitor induces prolonged inflammatory cell accumulation and fibrosis around injured tendon and synovium

    Directory of Open Access Journals (Sweden)

    Homa Darmani

    2004-01-01

    Full Text Available THE aim of the current study was to investigate the effect of inhibition of nitric oxide (NO production after injury on inflammatory cell accumulation and fibrosis around digital flexor tendon and synovium. A standard crush injury was applied to the flexor tendons of the middle digit of the hindpaw and the overlying muscle and synovium of female Wistar rats. Thirty animals received an intraperitoneal injection of either isotonic saline or N(G-nitro-l-arginine methyl ester (L-NAME; 5 mg/kg immediately following the crush injury, and five animals were then sacrificed at various intervals and the paws processed for histology. Another group of five animals was sacrificed after 3 days for nitrite determinations. The results showed that nitrite production and hence NO synthase activity is doubled at the acute phase of tendon wound healing, and we can prevent this by administering a single dose of L-NAME immediately after injury. The incidence and severity of fibrocellular adhesions between tendon and synovium was much more marked in animals treated with L-NAME. Treatment with L-NAME elicited a chronic inflammatory response characterised by a persistent and extraordinarily severe accumulation of large numbers of inflammatory cells in the subcutaneous tissues, in muscle and in tendon. These findings indicate that in the case of injured tendon and synovium, NO could act to protect the healing tissue from an uncontrolled inflammatory response.

  6. Effect of myrrh and thyme on Trichinella spiralis enteral and parenteral phases with inducible nitric oxide expression in mice

    Science.gov (United States)

    Attia, Rasha AH; Mahmoud, Abeer E; Farrag, Haiam Mohammed Mahmoud; Makboul, Rania; Mohamed, Mona Embarek; Ibraheim, Zedan

    2015-01-01

    Trichinellosis is a serious disease with no satisfactory treatment. We aimed to assess the effect of myrrh (Commiphora molmol) and, for the first time, thyme (Thymus vulgaris L.) against enteral and encysted (parenteral) phases of Trichinella spiralis in mice compared with albendazole, and detect their effect on inducible nitric oxide synthase (iNOS) expression. Oral administration of 500 mg/kg of myrrh and thyme led to adult reduction (90.9%, 79.4%), while 1,000 mg/kg led to larvae reduction (79.6%, 71.3%), respectively. Administration of 50 mg/kg of albendazole resulted in adult and larvae reduction (94.2%, 90.9%). Positive immunostaining of inflammatory cells infiltrating intestinal mucosa and submucosa of all treated groups was detected. Myrrh-treated mice showed the highest iNOS expression followed by albendazole, then thyme. On the other hand, both myrrh and thyme-treated groups showed stronger iNOS expression of inflammatory cells infiltrating and surrounding encapsulated T. spiralis larvae than albendazole treated group. In conclusion, myrrh and thyme extracts are highly effective against both phases of T. spiralis and showed strong iNOS expressions, especially myrrh which could be a promising alternative drug. This experiment provides a basis for further exploration of this plant by isolation and retesting the active principles of both extracts against different stages of T. spiralis. PMID:26676322

  7. Effect of myrrh and thyme on Trichinella spiralis enteral and parenteral phases with inducible nitric oxide expression in mice.

    Science.gov (United States)

    Attia, Rasha A H; Mahmoud, Abeer E; Farrag, Haiam Mohammed Mahmoud; Makboul, Rania; Mohamed, Mona Embarek; Ibraheim, Zedan

    2015-12-01

    Trichinellosis is a serious disease with no satisfactory treatment. We aimed to assess the effect of myrrh (Commiphora molmol) and, for the first time, thyme (Thymus vulgaris L.) against enteral and encysted (parenteral) phases of Trichinella spiralis in mice compared with albendazole, and detect their effect on inducible nitric oxide synthase (iNOS) expression. Oral administration of 500 mg/kg of myrrh and thyme led to adult reduction (90.9%, 79.4%), while 1,000 mg/kg led to larvae reduction (79.6%, 71.3%), respectively. Administration of 50 mg/kg of albendazole resulted in adult and larvae reduction (94.2%, 90.9%). Positive immunostaining of inflammatory cells infiltrating intestinal mucosa and submucosa of all treated groups was detected. Myrrh-treated mice showed the highest iNOS expression followed by albendazole, then thyme. On the other hand, both myrrh and thyme-treated groups showed stronger iNOS expression of inflammatory cells infiltrating and surrounding encapsulated T. spiralis larvae than albendazole treated group. In conclusion, myrrh and thyme extracts are highly effective against both phases of T. spiralis and showed strong iNOS expressions, especially myrrh which could be a promising alternative drug. This experiment provides a basis for further exploration of this plant by isolation and retesting the active principles of both extracts against different stages of T. spiralis.

  8. Effect of myrrh and thyme on Trichinella spiralisenteral and parenteral phases with inducible nitric oxide expression in mice

    Directory of Open Access Journals (Sweden)

    Rasha AH Attia

    2015-12-01

    Full Text Available Trichinellosis is a serious disease with no satisfactory treatment. We aimed to assess the effect of myrrh (Commiphora molmol and, for the first time, thyme (Thymus vulgaris L. against enteral and encysted (parenteral phases of Trichinella spiralis in mice compared with albendazole, and detect their effect on inducible nitric oxide synthase (iNOS expression. Oral administration of 500 mg/kg of myrrh and thyme led to adult reduction (90.9%, 79.4%, while 1,000 mg/kg led to larvae reduction (79.6%, 71.3%, respectively. Administration of 50 mg/kg of albendazole resulted in adult and larvae reduction (94.2%, 90.9%. Positive immunostaining of inflammatory cells infiltrating intestinal mucosa and submucosa of all treated groups was detected. Myrrh-treated mice showed the highest iNOS expression followed by albendazole, then thyme. On the other hand, both myrrh and thyme-treated groups showed stronger iNOS expression of inflammatory cells infiltrating and surrounding encapsulated T. spiralis larvae than albendazole treated group. In conclusion, myrrh and thyme extracts are highly effective against both phases of T. spiralis and showed strong iNOS expressions, especially myrrh which could be a promising alternative drug. This experiment provides a basis for further exploration of this plant by isolation and retesting the active principles of both extracts against different stages of T. spiralis.

  9. In silico modeling of shear-stress-induced nitric oxide production in endothelial cells through systems biology.

    Science.gov (United States)

    Koo, Andrew; Nordsletten, David; Umeton, Renato; Yankama, Beracah; Ayyadurai, Shiva; García-Cardeña, Guillermo; Dewey, C Forbes

    2013-05-21

    Nitric oxide (NO) produced by vascular endothelial cells is a potent vasodilator and an antiinflammatory mediator. Regulating production of endothelial-derived NO is a complex undertaking, involving multiple signaling and genetic pathways that are activated by diverse humoral and biomechanical stimuli. To gain a thorough understanding of the rich diversity of responses observed experimentally, it is necessary to account for an ensemble of these pathways acting simultaneously. In this article, we have assembled four quantitative molecular pathways previously proposed for shear-stress-induced NO production. In these pathways, endothelial NO synthase is activated 1), via calcium release, 2), via phosphorylation reactions, and 3), via enhanced protein expression. To these activation pathways, we have added a fourth, a pathway describing actual NO production from endothelial NO synthase and its various protein partners. These pathways were combined and simulated using CytoSolve, a computational environment for combining independent pathway calculations. The integrated model is able to describe the experimentally observed change in NO production with time after the application of fluid shear stress. This model can also be used to predict the specific effects on the system after interventional pharmacological or genetic changes. Importantly, this model reflects the up-to-date understanding of the NO system, providing a platform upon which information can be aggregated in an additive way. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties.

    Science.gov (United States)

    Fang, Evandro Fei; Ng, Tzi Bun

    2015-04-01

    Nephelium lappaceum L., commonly known as "rambutan," is a typical tropical tree and is well known for its juicy and sweet fruit which has an exotic flavor. Chemical studies on rambutan have led to the identification of various components such as monoterpene lactones and volatile compounds. Here, a 22.5-kDa trypsin inhibitor (N . lappaceum trypsin inhibitor (NLTI)) was isolated from fresh rambutan seeds using liquid chromatographical techniques. NLTI reduced the proteolytic activities of both trypsin and α-chymotrypsin. Dithiothreitol reduced the trypsin inhibitory activity of NLTI at a concentration of 1 mM, indicating that an intact disulfide bond is essential to the activity. NLTI inhibited HIV-1 reverse transcriptase with an IC50 of 0.73 μM. In addition, NLTI manifested a time- and dose-dependent inhibitory effect on growth in many tumor cells. NLTI is one of the few trypsin inhibitors with nitric oxide-inducing activity and may find application in tumor therapy.

  11. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants.

    OpenAIRE

    Buck, M; Chojkier, M.

    1996-01-01

    Muscle wasting is a critical feature of patients afflicted by AIDS or cancer. In a murine model of muscle wasting, tumor necrosis factor alpha (TNF alpha) induces oxidative stress and nitric oxide synthase (NOS) in skeletal muscle, leading to decreased myosin creatinine phosphokinase (MCK) expression and binding activities. The impaired MCK-E box binding activities resulted from abnormal myogenin-Jun-D complexes, and were normalized by the addition of Jun-D, dithiothreitol or Ref-1, a nuclear...

  12. Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

    OpenAIRE

    Mohammadi, Mohammad Taghi; Shid Moosavi, Seyed Mostafa; Dehghani, Gholam Abbas

    2011-01-01

    Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB disruptions provoked by ischemia/reperfusion injuries in acute hypertensive rats. Methods: Rats were ...

  13. Effects of L-Carnitine on inducible nitric oxide synthase, insulin like ...

    African Journals Online (AJOL)

    Egyptian Journal of Biochemistry and Molecular Biology ... Metabolism of high dietary fructose induces insulin resistance and metabolic adaptation including changes in gene expression. The present ... Insulin-like Growth Factor-1(IGF-1), insulin receptor substrate-1 (IRS-1) in kidney tissues of rats fed on high fructose diet.

  14. Nitric Oxide Mediates Bleomycin-Induced Angiogenesis and Pulmonary Fibrosis via Regulation of VEGF

    OpenAIRE

    Iyer, Anand Krishnan V.; Ramesh, Vani; Castro, Carlos A.; Kaushik, Vivek; Kulkarni, Yogesh M.; Wright, Clayton A.; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-01-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogen...

  15. The effect of acrylamide and nitric oxide donors on human mesenchymal progenitor cells.

    Science.gov (United States)

    Szewczyk, Lukasz; Ulańska, Justyna; Dubiel, Marta; Osyczka, Anna Maria; Tylko, Grzegorz

    2012-09-01

    We have examined the effects of nitric oxide donors and acrylamide on mesenchymal progenitor cell (hMPC) viability, programmed cell death (PCD) and differentiation. Acrylamide was examined at 0.5mM and 1.5mM concentrations, NOC-18 at 10μM and SNP at 100μM. Cell viability was assayed with MTS, PCD was determined by phosphatidylserine, caspase-9 and -3/7 and mitochondrial membrane potential assays, and osteogenic cell differentiation was evaluated by alkaline phosphatase activity (ALP) and mRNA levels for collagen type I, bone sialoprotein, ostepontin and osteocalcin. Serum-free hMPC cultures treated with 1.5mM acrylamide and SNP for 72h demonstrated reduced viability. PCD analyses revealed that SNP stimulated cells to necrosis in reactive species-dependent manner. Acrylamide (1.5mM) led to apoptosis independent of reactive species. Acrylamide and SNP reduced ALP activity and collagen type I mRNA levels but mRNA levels for bone sialoprotein and osteopontin increased in SNP treated cells and remained unchanged in acrylamide. Acrylamide had no effect on guanylate cyclase and cGMP osteogenic signaling pathway. The study suggests that acrylamide might impair bone development and remodeling upon acute or prolonged intoxication with this compound of mesenchymal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. In Vitro Study of Nitric Oxide Metabolites Effects on Human Hydatid of Echinococcus granulosus

    Directory of Open Access Journals (Sweden)

    Razika Zeghir-Bouteldja

    2009-01-01

    Full Text Available Hydatidosis is characterized by the long-term coexistence of larva Echinococcus granulosus and its host without effective rejection. Previous studies demonstrated nitric oxide (NO production (in vivo and in vitro during hydatidosis. In this study, we investigated the direct in vitro effects of NO species: nitrite (NO2−, nitrate (NO3− and peroxynitrite (ONOO− on protoscolices (PSCs viability and hydatid cyst layers integrity for 24 hours and 48 hours. Our results showed protoscolicidal activity of NO2− and ONOO− 24 hours and 3 hours after treatment with 320 μM and 80 μM respectively. Degenerative effects were observed on germinal and laminated layers. The comparison of the in vitro effects of NO species on the PSCs viability indicated that ONOO− is more cytotoxic than NO2−. In contrast, NO3− has no effect. These results suggest possible involvement of NO2− and ONOO− in antihydatic action and point the efficacy of these metabolites as scolicidal agents.

  17. An ex vivo study of nitric oxide efflux from human erythrocytes in both genders.

    Science.gov (United States)

    Duarte, Catarina; Napoleão, Patrícia; Freitas, Teresa; Saldanha, Carlota

    2016-01-01

    Acetylcholinesterase (AChE) is located on outer surface of erythrocyte membrane. Gender-related differences in erythrocyte AChE enzyme activity had been verified in young adults. It is also known that binding of acetylcholine (ACh) with AChE on erythrocyte membrane initiates a signal transduction mechanism that stimulates nitric oxide (NO) efflux. This ex vivo study was done to compare the amount of NO efflux obtained from erythrocytes of healthy donors in males and females. We included 66 gender age-matched healthy donors (40-60 years old). We performed quantification of erythrocyte NO efflux from erythrocytes and of the membrane AChE enzyme activity. There are no significant differences in NO efflux from erythrocytes between men and women. Regarding AChE enzyme activity values, in this range of age, no differences between genders were obtained. However, the values of AChE enzyme activity in the third quartile of NO efflux values were significantly higher (p gender. For the same range of values of NO efflux from erythrocytes, in both gender, it was verified higher values of AChE enzyme activity in women.

  18. Quantitative detection of nitric oxide in exhaled human breath by extractive electrospray ionization mass spectrometry

    Science.gov (United States)

    Pan, Susu; Tian, Yong; Li, Ming; Zhao, Jiuyan; Zhu, Lanlan; Zhang, Wei; Gu, Haiwei; Wang, Haidong; Shi, Jianbo; Fang, Xiang; Li, Penghui; Chen, Huanwen

    2015-03-01

    Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (metabolism and clinical diagnosis.

  19. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  20. Effects of nitric oxide synthase inhibitor ω-Nitro-L-Arginine Methyl Ester, on silica-induced inflammatory reaction and apoptosis

    Directory of Open Access Journals (Sweden)

    Leigh James

    2006-11-01

    Full Text Available Abstract Background Although nitric oxide is overproduced by macrophages and neutrophils after exposure to silica, its role in silica-induced inflammatory reaction and apoptosis needs further clarification. In this study, rats were intratracheally instilled with either silica suspension or saline to examine inflammatory reactions and intraperitoneally injected with ω-nitro-L-arginine methyl ester (L-NAME, an inhibitor of nitric oxide synthases, or saline to examine the possible role of nitric oxide production in the reaction. Results Results showed that silica instillation induced a strong inflammatory reaction indicated by increased total cell number, number of neutrophils, protein concentration and lactate dehydrogenase (LDH activity in bronchoalveolar lavage fluid (BALF. There were no significant differences in these indices between silica-instilled groups with and without L-NAME injection (p > 0.05 except LDH level. The results also showed that apoptotic leucocytes were identified in BALF cells of silica-instilled groups whereas no significant difference was found between silica-instilled groups with and without L-NAME injection in the apoptotic reaction (p > 0.05. Silica instillation significantly increased the level of BALF nitrite/nitrate and L-NAME injection reduced this increase. Conclusion Intratracheal instillation of silica caused an obvious inflammatory reaction and leucocyte apoptosis, but these reactions were not influenced by intraperitoneal injection of L-NAME and reduced production of NO. This supports the possibility that silica-induced lung inflammation and BALF cell apoptosis are via NO-independent mechanisms.

  1. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis.

    Science.gov (United States)

    Martinez, Luis; Thames, Easter; Kim, Jinna; Chaudhuri, Gautam; Singh, Rajan; Pervin, Shehla

    2016-07-29

    Breast cancer is a complex heterogeneous disease where many distinct subtypes are found. Younger African American (AA) women often present themselves with aggressive form of breast cancer with unique biology which is very difficult to treat. Better understanding the biology of AA breast tumors could lead to development of effective treatment strategies. Our previous studies indicate that AA but not Caucasian (CA) triple negative (TN) breast cancer cells were sensitive to nitrosative stress-induced cell death. In this study, we elucidate possible mechanisms that contribute to nitric oxide (NO)-induced apoptosis in AA TN breast cancer cells. Breast cancer cells were treated with various concentrations of long-acting NO donor, DETA-NONOate and cell viability was determined by trypan blue exclusion assay. Apoptosis was determined by TUNEL and caspase 3 activity as well as changes in mitochondrial membrane potential. Caspase 3 and Bax cleavage, levels of Cu/Zn superoxide dismutase (SOD) and Mn SOD was assessed by immunoblot analysis. Inhibition of Bax cleavage by Calpain inhibitor, and levels of reactive oxygen species (ROS) as well as SOD activity was measured in NO-induced apoptosis. In vitro and in vivo effect of NO treatment on mammary cancer stem cells (MCSCs) was assessed. NO induced mitocondria-mediated apoptosis in all AA but not in CA TN breast cancer cells. We found significant TUNEL-positive cells, cleavage of Bax and caspase-3 activation as well as depolarization mitochondrial membrane potential only in AA TN breast cancer cells exposed to NO. Inhibition of Bax cleavage and quenching of ROS partially inhibited NO-induced apoptosis in AA TN cells. Increase in ROS coincided with reduction in SOD activity in AA TN breast cancer cells. Furthermore, NO treatment of AA TN breast cancer cells dramatically reduced aldehyde dehydrogenase1 (ALDH1) expressing MCSCs and xenograft formation but not in breast cancer cells from CA origin. Ethnic differences in breast

  2. Nitric oxide-releasing sulindac is a novel skin cancer chemopreventive agent for UVB-induced photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Sandeep C.; Singh, Tripti; Kapur, Puneet; Weng, Zhiping; Arumugam, Aadithya; Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd, Suite 2114, Bethesda, MD 20892 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States)

    2013-05-01

    Nitric oxide (NO)-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) which have been synthesized to reduce gastro-intestinal and cardiovascular toxicities of NSAIDs, possess anti-proliferative, pro-apoptotic and anti-cancer activities. Here, we show that NO-sulindac inhibited UVB-induced skin tumorigenesis in SKH-1 hairless mice. Topical application of NO-sulindac reduced tumor incidence, number (p < 0.05) and volume (p < 0.005) as compared to UVB (alone)-irradiated vehicle-treated mice. An increase in TUNEL-positive cells in skin lesions was accompanied by the enhanced Bax:Bcl-2 ratio. The expression of pro-apoptotic Bax was increased whereas anti-apoptotic Bcl-2 reduced. However, proliferation was identified as the major target of NO-sulindac in this study. A reduced expression of PCNA and cyclin D1 associated with the dampening of cell cycle progression was observed. The mechanism of this inhibition was related to the reduction in UVB-induced Notch signaling pathway. UVB-induced inflammatory responses were diminished by NO-sulindac as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases Erk1/2, p38 and JNK1/2. In this regard, NO-sulindac also inhibited NFκB by enhancing IκBα as evidenced by the reduced expression of iNOS and COX-2, the direct NFκB transcription target proteins. NO-sulindac significantly diminished the progression of benign lesions to invasive carcinomas by suppressing the tumor aggressiveness and retarding epithelial–mesenchymal transition. A marked decrease in the expression of mesenchymal markers such as Fibronectin, N-cadherin, SNAI, Slug and Twist and an increase in epithelial cell polarity marker E-cadherin were noted in NO-sulindac-treated tumors. Our data suggest that NO-sulindac is a potent inhibitor of UVB-induced skin carcinogenesis and acts by targeting proliferation-regulatory pathways. - Highlights: ► NO-sulindac is a potent chemopreventive agent for UVB-induced skin cancer. ► NO

  3. Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist.

    Science.gov (United States)

    Seo, Taegun; Cha, Seho; Woo, Kyung Mi; Park, Yun-Soo; Cho, Yun-Mi; Lee, Jeong-Soon; Kim, Tae-Il

    2011-02-01

    Nitric oxide (NO) has been known as an important regulator of osteoblasts and periodontal ligament cell activity. This study was performed to investigate the relationship between NO-mediated cell death of human periodontal ligament fibroblasts (PDLFs) and N-methyl-D-aspartic acid (NMDA) receptor antagonist (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK801). Human PDLFs were treated with various concentrations (0 to 4 mM) of sodium nitroprusside (SNP) with or without 200 µM MK801 in culture media for 16 hours and the cell medium was then removed and replaced by fresh medium containing MTS reagent for cell proliferation assay. Western blot analysis was performed to investigate the effects of SNP on the expression of Bax, cytochrome c, and caspase-3 proteins. The differences for each value among the sample groups were compared using analysis of variance with 95% confidence intervals. In the case of SNP treatment, as a NO donor, cell viability was significantly decreased in a concentration-dependent manner. In addition, a synergistic effect was shown when both SNP and NMDA receptor antagonist was added to the medium. SNP treated PDLFs exhibited a round shape in culture conditions and were dramatically reduced in cell number. SNP treatment also increased levels of apoptotic marker protein, such as Bax and cytochrome c, and reduced caspase-3 in PDLFs. Mitogen-activated protein kinase signaling was activated by treatment of SNP and NMDA receptor antagonist. These results suggest that excessive production of NO may induce apoptosis and that NMDA receptor may modulate NO-induced apoptosis in PDLFs.

  4. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    Science.gov (United States)

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    , reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. In trigeminal ganglia cells not subjected to culture, endothelial (e) and neuronal (n) but not inducible (i) NOS mRNA and protein were detected. Culture of rat neurones resulted in a rapid axonal outgrowth of NOS positive...... fibres. At 12, 24 and 48 hr of culture, NOS immunoreactivity was detected in medium-sized trigeminal ganglia cells. Western blotting and RT-PCR revealed an up-regulation of inducible iNOS expression during culture. However, after culture only low levels of eNOS protein was found while no eNOS and nNOS m......RNA and protein could be detected. The data suggest that iNOS expression may be a molecular mechanism mediating the adaptive response of trigeminal ganglia cells to the serum free stressful stimulus the culture environment provides. It may act as a cellular signalling molecule that is expressed after cell...

  6. The effect of nitric oxide synthase inhibition on histamine induced headache and arterial dilatation in migraineurs

    DEFF Research Database (Denmark)

    Lassen, L H; Christiansen, I; Iversen, Helle Klingenberg

    2003-01-01

    , temporal and radial arteries. In a double blind crossover design 12 patients were randomized to receive pretreatment with L-NMMA (6 mg/kg) or placebo i.v. over 15 min followed on both study days by histamine (0.5 microg/kg/min) i.v. for 20 min. Headache scores, mean maximal blood velocity (Vmean......We have previously proposed that histamine causes migraine via increased NO production. To test this hypothesis, we here examined if the NOS inhibitor, L-NG methylarginine hydrochloride (L-NMMA:546C88), could block or attenuate histamine induced migraine attacks and responses of the middle cerebral...... the use of a NOS inhibitor in the highest possible dose did not block the histamine-induced headache response or arterial dilatation. Either the concentration of L-NMMA reaching the smooth muscle cell was insufficient or, histamine dilates arteries and causes headache via NO independent mechanisms. Our...

  7. Role of Nitric Oxide in MPTP-Induced Dopaminergic Neuron Degeneration

    Science.gov (United States)

    2004-09-01

    response in the SNpc induced by MPTP. This effect is independent of its antimicrobial activity. Minocycline prevents three key microglial-derived...myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. PNAS (USA) (2001) 98: 11961-11966. 52. Przedborski S and...26 suggestive of those seen in sporadic PDt . been confirmed that a polymorphism (S18Y) of UCH-L1 reduces Identification of the normal function of

  8. Role of inducible nitric oxide synthase in endothelium-independent relaxation to raloxifene in rat aorta.

    Science.gov (United States)

    Wong, Chi Ming; Au, Chak Leung; Tsang, Suk Ying; Lau, Chi Wai; Yao, Xiaoqiang; Cai, Zongwei; Chung, Arthur Chi-Kong

    2017-04-01

    Raloxifene can induce both endothelium-dependent and -independent relaxation in different arteries. However, the underlying mechanisms by which raloxifene triggers endothelium-independent relaxation are still incompletely understood. The purpose of present study was to examine the roles of NOSs and Ca(2+) channels in the relaxant response to raloxifene in the rat isolated, endothelium-denuded aorta. Changes in isometric tension, cGMP, nitrite, inducible NOS protein expression and distribution in response to raloxifene in endothelium-denuded aortic rings were studied by organ baths, radioimmunoassay, Griess reaction, western blot and immunohistochemistry respectively. Raloxifene reduced the contraction to CaCl2 in a Ca(2+) -free, high K(+) -containing solution in intact aortic rings. Raloxifene also acutely relaxed the aorta primarily through an endothelium-independent mechanism involving NO, mostly from inducible NOS (iNOS) in vascular smooth muscle layers. This effect of raloxifene involved the generation of cGMP and nitrite. Also, it was genomic in nature, as it was inhibited by a classical oestrogen receptor antagonist and inhibitors of RNA and protein synthesis. Raloxifene-induced stimulation of iNOS gene expression was partly mediated through activation of the NF-κB pathway. Raloxifene was more potent than 17β-estradiol or tamoxifen at relaxing endothelium-denuded aortic rings by stimulation of iNOS. Raloxifene-mediated vasorelaxation in rat aorta is independent of a functional endothelium and is mediated by oestrogen receptors and NF-κB. This effect is mainly mediated through an enhanced production of NO, cGMP and nitrite, via the induction of iNOS and inhibition of calcium influx through Ca(2+) channels in rat aortic smooth muscle. © 2017 The British Pharmacological Society.

  9. Helicobacter pylori-induced inhibition of vascular endothelial cell functions: a role for VacA-dependent nitric oxide reduction.

    Science.gov (United States)

    Tobin, Nicholas P; Henehan, Gary T; Murphy, Ronan P; Atherton, John C; Guinan, Anthony F; Kerrigan, Steven W; Cox, Dermot; Cahill, Paul A; Cummins, Philip M

    2008-10-01

    Epidemiological and clinical studies provide compelling support for a causal relationship between Helicobacter pylori infection and endothelial dysfunction, leading to vascular diseases. However, clear biochemical evidence for this association is limited. In the present study, we have conducted a comprehensive investigation of endothelial injury in bovine aortic endothelial cells (BAECs) induced by H. pylori-conditioned medium (HPCM) prepared from H. pylori 60190 [vacuolating cytotoxin A (Vac(+))]. BAECs were treated with either unconditioned media, HPCM (0-25% vol/vol), or Escherichia coli-conditioned media for 24 h, and cell functions were monitored. Vac(+) HPCM significantly decreased BAEC proliferation, tube formation, and migration (by up to 44%, 65%, and 28%, respectively). Posttreatment, we also observed sporadic zonnula occludens-1 immunolocalization along the cell-cell border, and increased BAEC permeability to FD40 Dextran, indicating barrier reduction. These effects were blocked by 5-nitro-2-(3-phenylpropylamino)benzoic acid (VacA inhibitor) and were not observed with conditioned media prepared from either VacA-deleted H. pylori or E. coli. The cellular mechanism mediating these events was also considered. Vac(+) HPCM (but not Vac(-)) reduced nitric oxide (NO) by >50%, whereas S-nitroso-N-acetylpenicillamine, an NO donor, recovered all Vac(+) HPCM-dependent effects on cell functions. We further demonstrated that laminar shear stress, an endothelial NO synthase/NO stimulus in vivo, could also recover the Vac(+) HPCM-induced decreases in BAEC functions. This study shows, for the first time, a significant proatherogenic effect of H. pylori-secreted factors on a range of vascular endothelial dysfunction markers. Specifically, the VacA-dependent reduction in endothelial NO is indicated in these events. The atheroprotective impact of laminar shear stress in this context is also evident.

  10. Co-transplantation with Myeloid-Derived Suppressor Cells Protects Cell Transplants: A Crucial Role of Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Arakawa, Yusuke; Qin, Jie; Chou, Hong-Shuie; Bhatt, Sumantha; Wang, Lianfu; Stuehr, Dennis; Ghosh, Arnab; Fung, John J.; Lu, Lina; Qian, Shiguang

    2014-01-01

    Background Islet transplantation is an alternative to pancreas transplantation to cure type 1 diabetes, but both require chronic immunosuppression, which is often accompanied by deleterious side effects. The purpose of this study was to explore prolongation of islet allograft survival by co-transplantation with myeloid-derived suppressor cells (MDSCs) without requirement of immunosuppression, and determine the role of inducible nitric oxide synthase (iNOS) produced by MDSCs in immune regulation. Methods Bone marrow cells were isolated from wild type (WT) or iNOS−/− mice and cultured in the presence of GM-CSF and hepatic stellate cells (HSCs), resulting in the generation of MDSCs. WT or iNOS−/− MDSCs were co-transplanted with islet allografts under the renal capsule of diabetic recipient mice. Results Addition of HSCs into DC culture promoted generation of MDSCs (instead of DCs). MDSCs had elevated expression of iNOS upon exposure to IFN-γ and inhibited T cell responses in an MLR culture. Co-transplantation with WT MDSCs markedly prolonged survival of islet allografts, which was associated with reduced infiltration of CD8+ T cells due to inhibited proliferative response. These effects were significantly attenuated when MDSCs were deficient in iNOS. Furthermore, iNOS−/− MDSCs largely lost their ability to protect islet allografts. Conclusions Co-transplantation with HSC-induced MDSCs significantly extends islet allograft survival through iNOS-mediated T cell inhibition. The results demonstrate the potential use of in vitro generated MDSCs as a novel adjunctive immunotherapy for islet transplantation. PMID:24642686

  11. Testosterone-induced modulation of nitric oxide-cGMP signaling pathway and androgenesis in the rat Leydig cells.

    Science.gov (United States)

    Andric, Silvana A; Janjic, Marija M; Stojkov, Natasa J; Kostic, Tatjana S

    2010-09-01

    Testosterone, acting as a systemic and local factor, is one of the major regulatory molecules that initiate and maintain testicular function. In the present study, different experimental approaches were used to evaluate the role of testosterone in regulation of the nitric oxide (NO)-cGMP pathway in Leydig cells derived from normal and hypogonadotropic male rats treated with testosterone for 24 h and 2 wk. Real-time quantitative PCR and Western blot analysis revealed increased inducible NO synthase (NOS2) expression followed by increased NO secretion from Leydig cells ex vivo after continuous treatment with testosterone for 2 wk in vivo. The cGMP-specific phosphodiesterases Pde5, Pde6, and Pde9 were up-regulated, whereas PRKG1 protein was decreased after a 2-wk testosterone treatment. Induction of Nos2 and Pde5 in Leydig cells was blocked by androgen receptor antagonist. In experimental hypogonadotropic hypogonadism, expression of NOS2 was significantly reduced, and treatment with testosterone increased NOS2 expression above control levels. PDE5 protein level was unchanged in hypogonadal rats, whereas treatment of hypogonadal rats with testosterone significantly increased it. In contrast, hypogonadism and testosterone replacement reduced PRKG1 protein in Leydig cells. In vitro treatment with testosterone caused gradually increased Nos2 gene expression followed by increased nitrite and cGMP production by purified Leydig cells. In summary, testosterone up-regulated NO signaling via increased NOS2 expression and contributed to down-regulation of cGMP signaling in Leydig cells. Thus, testosterone-induced modulation of NO-cGMP signaling may serve as a potent autocrine regulator of testicular steroidogenesis.

  12. SWCNTs induced autophagic cell death in human bronchial epithelial cells.

    Science.gov (United States)

    Park, Eun-Jung; Zahari, Nur Elida M; Lee, Eun-Woo; Song, Jaewhan; Lee, Jae-Hyeok; Cho, Myung-Haing; Kim, Jae-Ho

    2014-04-01

    Carbon nanotubes are being actively introduced in electronics, computer science, aerospace, and other industries. Thus, the urgent need for toxicological studies on CNTs is mounting. In this study, we investigated the alterations in cellular response with morphological changes induced by single-walled carbon nanotubes (SWCNTs) in BEAS-2B cells, a human bronchial epithelial cell line. At 24h after exposure, SWCNTs rapidly decreased ATP production and cell viability as well a slight increase in the number of cells in the subG1 and G1 phases. In addition, SWCNTs increased the expression of superoxide dismutase (SOD)-1, but not SOD-2, and the number of cells generating ROS. The concentration of Cu and Zn ions also increased in a dose-dependent manner in cells exposed to SWCNTs. SWCNTs significantly enhanced the release of nitric oxide, interleukin (IL)-6, and IL-8 and up-regulated the expression of chemokine- and cytokine-related genes. Furthermore, the levels of autophagy-related genes, especially the DRAM1 gene, and the autophagosome formation-related proteins, were clearly up-regulated together with an increase of autophagosome-like vacuoles. Based on these results, we suggest that SWCNTs induce autophagic cell death through mitochondrial dysfunction and cytosolic damage in human bronchial epithelial cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Nitric oxide and hypoxia signaling.

    Science.gov (United States)

    Jeffrey Man, H S; Tsui, Albert K Y; Marsden, Philip A

    2014-01-01

    Nitric oxide (NO) production is catalyzed by three distinct enzymes, namely, neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). The production of NO by vascular endothelium relies mainly on eNOS. Curiously, iNOS and nNOS also are relevant for vascular NO production in certain settings. By relaxing vascular smooth muscle, the classical view is that NO participates in O2 homeostasis by increasing local blood flow and O2 delivery. It is now appreciated that NO has an even more fundamental role in cellular oxygen sensing at the cellular and physiological level. A key component of cellular oxygen sensing is the hypoxia-inducible factor (HIF) that activates a transcriptional program to promote cellular survival under conditions of inadequate oxygen supply. Important new insights demonstrate that HIF protein is stabilized by two parallel pathways: (1) a decrease in the O2-dependent prolyl hydroxylation of HIF and (2) NO-dependent S-nitrosylation of HIF pathway components including HIF-α. The need for these two complementary pathways to HIF activation arises because decreased oxygen delivery can occur not only by decreased ambient oxygen but also by decreased blood oxygen-carrying capacity, as with anemia. In turn, NO production is tightly linked to O2 homeostasis. O2 is a key substrate for the generation of NO and impacts the enzymatic activity and expression of the enzymes that catalyze the production of NO, the nitric oxide synthases. These relationships manifest in a variety of clinical settings ranging from the unique situation of humans living in hypoxic environments at high altitudes to the common scenario of anemia and the use of therapeutics that can bind or release NO. © 2014 Elsevier Inc. All rights reserved.

  14. Nitric oxide production upregulates Wnt/β-catenin signaling by inhibiting Dickkopf-1.

    Science.gov (United States)

    Du, Qiang; Zhang, Xinglu; Liu, Quan; Zhang, Xianghong; Bartels, Christian E; Geller, David A

    2013-11-01

    Nitric oxide signaling plays complex roles in carcinogenesis, in part, due to incomplete mechanistic understanding. In this study, we investigated our discovery of an inverse correlation in the expression of the inducible nitric oxide synthase (iNOS) and the Wnt/β-catenin regulator Dickkopf-1 (DKK1) in human cancer. In human tumors and animal models, induced nitric oxide synthesis increased Wnt/β-catenin signaling by negatively regulating DKK1 gene expression. Human iNOS (hiNOS) and DKK1 gene expression were inversely correlated in primary human colon and breast cancers, and in intestinal adenomas from Min (Apc(min/+)) mice. Nitric oxide production by various routes was sufficient to decrease constitutive DKK1 expression, increasing Wnt/β-catenin signaling in colon and breast cancer cells and primary human hepatocytes, thereby activating the transcription of Wnt target genes. This effect could be reversed by RNA interference-mediated silencing of iNOS or treatment with iNOS inhibitors, which restored DKK1 expression and its inhibitory effect on Wnt signaling. Taken together, our results identify a previously unrecognized mechanism through which the nitric oxide pathway promotes cancer by unleashing Wnt/β-catenin signaling. These findings further the evidence that nitric oxide promotes human cancer and deepens insights in the complex control Wnt/β-catenin signaling during carcinogenesis.

  15. [Effect of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in the pathogenesis of hypoxia-induced pulmonary hypertension of the neonatal rats].

    Science.gov (United States)

    Sang, Kui; Zhou, Ying; Li, Ming-xia

    2012-12-01

    To study the effect of hypoxia-inducible factor-1α (HIF-1α) in the pathogenesis of hypoxia-induced pulmonary hypertension (HPH) of the neonatal rats through the study on the expression level of HIF-1α and its regulation factors: endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in blood serum and lung tissue. To make an HPH model of neonatal rats, 120 newborn Wistar rats were divided at random into two groups: HPH group and the regular oxygen controlled group with the same birthday. The rats of the two groups were put in the condition of hypoxia for 3, 5, 7, 10, 14, 21 days and then 10 rats of HPH group and control group were picked up, their mean pulmonary arterial pressure (mPAP), serum HIF-1α, and iNOS, and ET-1 content were tested, and finally their lung tissue was taken after they were sacrificed and the expression level of the gene mRNA of HIF-1α, iNOS and ET-1. (1) The rats experienced hypoxia for 3, 5, 7, 10, 14 or 21 days had an increasing mPAP: [8.47 ± 1.45, 10.04 ± 1.69, 10.89 ± 2.97, 16.96 ± 1.97, 13.01 ± 1.93, 21.04 ± 2.13 (mm Hg)], which had a significant differences compared with control groups [5.11 ± 1.06, 8.12 ± 1.11, 8.77 ± 0.92, 12.23 ± 1.78, 8.89 ± 0.89, 11.09 ± 1.64 (mm Hg)] (P rats in hypoxia group had a higher serum HIF-1α [0.83 ± 0.07, 0.84 ± 0.17, 0.97 ± 0.13, 1.10 ± 0.30, 0.92 ± 0.19 (pg/nmol)] than the control group [0.26 ± 0.20, 0.37 ± 0.16, 0.44 ± 0.18, 0.41 ± 0.23, 0.66 ± 0.18 (pg/nmol)] as they experienced hypoxia for 3, 5, 7, 10, and 14 days (P 0.05), and the content of serum iNOS after hypoxia for 14 or 21 days (4.56 ± 0.96, 5.86 ± 1.76) µmol/L was lower than that of the control group (10.35 ± 1.99, 8.44 ± 2.76) µmol/L (P rats and causedn a imbalance of ET-1 and NO. HIF-1α, ET-1 and iNOS altogether contributed to the occurrence and development of HPH in neonatal rats.

  16. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning.

    Science.gov (United States)

    Sunil, Vasanthi R; Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS-/- mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS-/- mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS-/- mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS-/- mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS-/- mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Expression of inducible nitric oxide-synthase in the vestibular system of hydropic guinea pigs.

    Science.gov (United States)

    Hess, A; Bloch, W; Su, J; Stennert, E; Addicks, K; Michel, O

    1999-04-02

    Immunohistochemical investigations of the guinea pig vestibular system, using a specific antibody to the inducible isoform of NO-synthase (iNOS/NOS II), have been performed 3 weeks after surgical closure of the right endolymphatic duct (n = 7). Endolymphatic hydrops (ELH) of the right temporal bone became evident by excavation of the Reissner's membrane in all seven animals. Those animals revealed iNOS-expression in ganglion cells, in the wall of blood vessels and in nerve fibers of the right vestibular system, while the corresponding left temporal bones and temporal bones of non-operated controls (n = 6) as well as of sham-operated animals (n = 3) did not show any iNOS-positive structures. iNOS-generated NO could be involved in the pathophysiology of vestibular dysfunction in Meniere's disease.

  18. Gender-based reciprocal expression of transforming growth factor-β1 and the inducible nitric oxide synthase in a rat model of cyclophosphamide-induced cystitis

    Directory of Open Access Journals (Sweden)

    Loughran Patricia A

    2009-08-01

    Full Text Available Abstract Background The pluripotent cytokine transforming growth factor-β1 (TGF-β1 is the central regulator of inducible Nitric Oxide Synthase (iNOS that is responsible for nitric oxide (NO production in inflammatory settings. Previous studies have implicated a role for NO, presumably derived from iNOS, in cyclophosphamide (CYP-induced cystitis in the bladder. TGF-β1 is produced in latent form and requires dissociation from the latency-associated peptide (LAP to act as primary anti-inflammatory and pro-healing modulator following tissue injury in the upper urinary tract. Since the role of TGF-β1 in lower urinary tract inflammation is currently unknown, and since gender-based differences exist in the setting of interstitial cystitis (IC, the present study examined the relationship between TGF-β1 and iNOS/NO in the pathogenesis of CYP-induced cystitis in both male and female rats. Methods Sprague-Dawley rats, 4 months of age, of either gender were given 150 mg/kg CYP intraperitoneally. Urinary and bladder tissue TGF-β1 and NO reaction products (NO2-/NO3- were quantified as a function of time following CYP. Expression of active and latent TGF-β1 as well as iNOS in harvested bladder tissue was assessed by immunohistochemistry. Results Female rats had significantly higher levels of NO2-/NO3- in urine even at baseline as compared to male rats (p 2-/NO3- and TGF-β1. Male rats responded to CYP with significantly lower levels of NO2-/NO3- and significantly higher levels of TGF-β1 in urine (p 2-/NO3- after CYP were inversely correlated to latent and active TGF-β1 (Pearson coefficient of -0.72 and -0.69 in females and -0.89 and -0.76 in males, respectively; p Conclusion The results of this study suggest that there exists an inverse relationship between the expression of TGF-β1 and iNOS/NO2-/NO3- in CYP-inflamed bladder. The gender of the animal appears to magnify the differences in urine levels of TGF-β1 and NO2-/NO3- in this inflammatory

  19. Nitric oxide (NO) production in mammalian non-tumorigenic epithelial cells of the small intestine and macrophages induced by individual strains of lactobacilli and bifidobacteria

    DEFF Research Database (Denmark)

    Pipenbaher, Natasa; Møller, Peter Lange; Dolinsek, Jan

    2009-01-01

    Nitric oxide (NO) affects multiple gastrointestinal functions, including mucosal inflammation and antimicrobial activity. The aim of this study was to screen the ability of probiotic bacteria to stimulate NO production in porcine intestinal epithelial cells and macrophages in the presence...... and absence of interferon gamma (INF-¿). Production of NO in intestinal epithelium was stimulated by individual strains of lactobacilli without INF-¿ priming. While none of the tested bifidobacteria were capable of inducing NO production, most constitutively secreted NO. Most tested strains induced...

  20. Inhibition of nitric oxide synthesis during induced cholestasis ameliorates hepatocellular injury by facilitating S-nitrosothiol homeostasis.

    Science.gov (United States)

    López-Sánchez, Laura M; Corrales, Fernando J; Barcos, Montserrat; Espejo, Isabel; Muñoz-Castañeda, Juan R; Rodríguez-Ariza, Antonio

    2010-01-01

    Cholestatic liver injury following extra- or intrahepatic bile duct obstruction causes nonparenchymal cell proliferation and matrix deposition leading to end-stage liver disease and cirrhosis. In cholestatic conditions, nitric oxide (NO) is mainly produced by a hepatocyte-inducible NO synthase (iNOS) as a result of enhanced inflow of endotoxins to the liver and also by accumulation of bile salts in hepatocytes and subsequent hepatocellular injury. This study was aimed to investigate the role of NO and S-nitrosothiol (SNO) homeostasis in the development of hepatocellular injury during cholestasis induced by bile duct ligation (BDL) in rats. Male Wistar rats (200-250 g) were divided into four groups (n=10 each), including sham-operated (SO), bile duct-ligated (BDL), tauroursodeoxycholic acid (TUDCA, 50 mg/kg) and S-methylisothiourea (SMT, 25 mg/kg) treated. After 7 days, BDL rats showed elevated serum levels of gamma-glutamiltranspeptidase, aspartate aminotransferase, alanine aminotransferase, LDH, and bilirubin, bile duct proliferation and fibrosis, compared with the SO group. TUDCA treatment did not significantly alter these parameters, but the iNOS inhibitor SMT ameliorated hepatocellular injury, as shown by lower levels of circulating hepatic enzymes and bilirubin, and a decreased grade of bile duct proliferation and fibrosis. Both TUDCA and SMT treatments reversed Mrp2 canalicular pump expression to control levels. However, only SMT treatment significantly lowered the increased levels of plasma NO and S-nitrosation (S-nitrosylation) of liver proteins in BDL rats. Moreover, BDL resulted in a reduction of the S-nitrosoglutathione reductase (GSNOR/Adh5) enzymatic activity and a downregulation of the GSNOR/Adh5 mRNA expression that was reverted by SMT, but not TUDCA, treatment. A total of 25 liver proteins, including S-adenosyl methionine synthetase, betaine-homocysteine S-methyltransferase, Hsp90 and protein disulfide isomerase, were found to be S-nitrosated in BDL

  1. Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia.

    Science.gov (United States)

    Tsui, Albert K Y; Marsden, Philip A; Mazer, C David; Adamson, S Lee; Henkelman, R Mark; Ho, J J David; Wilson, David F; Heximer, Scott P; Connelly, Kim A; Bolz, Steffen-Sebastian; Lidington, Darcy; El-Beheiry, Mostafa H; Dattani, Neil D; Chen, Kevin M; Hare, Gregory M T

    2011-10-18

    Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.

  2. Deletion of Inducible Nitric-Oxide Synthase in Leptin-Deficient Mice Improves Brown Adipose Tissue Function

    Science.gov (United States)

    Becerril, Sara; Rodríguez, Amaia; Catalán, Victoria; Sáinz, Neira; Ramírez, Beatriz; Collantes, María; Peñuelas, Iván; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2010-01-01

    Background Leptin and nitric oxide (NO) on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS) gene in the regulation of energy balance in ob/ob mice. Methods and Findings Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<0.05), decreased amounts of total fat pads (p<0.05), lower food efficiency rates (p<0.05) and higher rectal temperature (p<0.05) than ob/ob mice. Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed an increase in the expression of PR domain containing 16 (Prdm16), a transcriptional regulator of brown adipogenesis. Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-activated receptor γ coactivator-1 α (Pgc-1α), sirtuin-1 (Sirt-1) and sirtuin-3 (Sirt-3). Accordingly, mitochondrial uncoupling proteins 1 and 3 (Ucp-1 and Ucp-3) were upregulated in brown adipose tissue (BAT) of DBKO mice as compared to ob/ob rodents. Conclusion Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement. PMID:20532036

  3. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots.

    Science.gov (United States)

    Li, Le; Wang, Yanqin; Shen, Wenbiao

    2012-06-01

    Despite hydrogen sulfide (H(2)S) and nitric oxide (NO) are important endogenous signals or bioregulators involved in many vital aspects of plant growth and responses against abiotic stresses, little information was known about their interaction. In the present study, we evaluated the effects of H(2)S and NO on alfalfa (Medicago sativa L.) plants exposed to cadmium (Cd) stress. Pretreatment with an H(2)S donor sodium hydrosulfide (NaHS) and well-known NO donor sodium nitroprusside (SNP) decreased the Cd toxicity. This conclusion was supported by the decreases of lipid peroxidation as well as the amelioration of seedling growth inhibition and Cd accumulation, in comparison with the Cd-stressed alone plants. Total activities and corresponding transcripts of antioxidant enzymes, including superoxide dismutase, peroxidase and ascorbate peroxidase were modulated differentially, thus leading to the alleviation of oxidative damage. Effects of H(2)S above were reversed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the specific scavenger of NO. By using laser confocal scanning microscope combined with Greiss reagent method, further results showed that NO production increased significantly after the NaHS pretreatment regardless of whether Cd was applied or not, all of which were obviously inhibited by cPTIO. These decreases of NO production were consistent with the exaggerated syndromes associated with Cd toxicity. Together, above results suggested that NO was involved in the NaHS-induced alleviation of Cd toxicity in alfalfa seedlings, and also indicated that there exists a cross-talk between H(2)S and NO responsible for the increased abiotic stress tolerance.

  4. Imaging of compartmentalised intracellular nitric oxide, induced during bacterial phagocytosis, using a metalloprotein-gold nanoparticle conjugate.

    Science.gov (United States)

    Leggett, Richard; Thomas, Paul; Marín, María J; Gavrilovic, Jelena; Russell, David A

    2017-10-23

    Nitric oxide (NO) plays an essential role within the immune system since it is involved in the break-down of infectious agents such as viruses and bacteria. The ability to measure the presence of NO in the intracellular environment would provide a greater understanding of the pathophysiological mechanism of this important molecule. Here we report the detection of NO from the intracellular phagolysosome using a fluorescently tagged metalloprotein-gold nanoparticle conjugate. The metalloprotein cytochrome c, fluorescently tagged with an Alexa Fluor dye, was self-assembled onto gold nanoparticles to produce a NO specific nanobiosensor. Upon binding of NO, the cytochrome c protein changes conformation which induces an increase of fluorescence intensity of the tagged protein proportional to the NO concentration. The nanobiosensor was sensitive to NO in a reversible and selective manner, and exhibited a linear response at NO concentrations between 1 and 300 μM. In RAW264.7γ NO(-) macrophage cells, the nanobiosensor was used to detect the presence of NO that had been endogenously generated upon stimulation of the cells with interferon-γ and lipopolysaccharide, or spontaneously released following treatment of the cells with a NO donor. Significantly, the nanobiosensor was shown to be taken up by the macrophages within phagolysosomes, i.e., the precise location where the NO, together with other species, destroys bacterial infection. The nanobiosensor measured, for the first time, increasing concentrations of NO produced during combined stimulation and phagocytosis of Escherichia coli bacteria from within localised intracellular phagolysosomes, a key part of the immune system.

  5. Penile Erection Induced by Scoparone from Artemisia capillaris through the Nitric Oxide-Cyclic Guanosine Monophosphate Signaling Pathway.

    Science.gov (United States)

    Choi, Bo Ram; Kim, Hye Kyung; Park, Jong Kwan

    2017-12-01

    The objective of this study was to evaluate the relaxant effect of scoparone from Artemisia capillaris on rabbit penile corpus cavernosum smooth muscle (PCCSM) and to elucidate the mechanism of action of scoparone for the treatment of erectile dysfunction (ED). PCCSM that had been precontracted with phenylephrine was treated with 3 Artemisia herbs (A. princeps, A. capillaris, and A. iwayomogi) and 3 fractions (n-hexane, ethyl acetate, and n-butanol) with different concentrations (0.1, 0.5, 1.0, and 2.0 mg/mL). Four components (esculetin, scopoletin, capillarisin, and scoparone) isolated from A. capillaris were also evaluated. The PCCSM was preincubated with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). Cyclic nucleotides in the perfusate were measured by a radioimmunoassay. The interactions of scoparone with udenafil and rolipram were also evaluated. A. capillaris extract relaxed PCCSM in a concentration-dependent manner. Scoparone had the highest relaxant effect on PCCSM among the 4 components (esculetin, scopoletin, capillarisin, and scoparone) isolated from the ethyl acetate fraction. The application of scoparone on PCCSM pretreated with L-NAME and ODQ led to significantly less relaxation. Scoparone also increased the cyclic guanosine monophosphate (cGMP) levels in the perfusate in a concentration-dependent manner. Furthermore, scoparone enhanced udenafil- and rolipram-induced relaxation of the PCCSM. Scoparone relaxed the PCCSM mainly by activating the nitric oxide-cGMP signaling pathway, and it may be a new promising treatment for ED patients who do not completely respond to udenafil.

  6. Inducible nitric oxide synthase inhibition by 1400W limits pain hypersensitivity in a neuropathic pain rat model.

    Science.gov (United States)

    Staunton, C A; Barrett-Jolley, R; Djouhri, L; Thippeswamy, T

    2018-02-13

    Peripheral neuropathic pain (PNP) resulting from injury or dysfunction to a peripheral nerve, is a major health problem affecting 7-8% of the population. It is inadequately controlled by current drugs, and is characterized by pain hypersensitivity which is believed to be due to sensitization of peripheral and CNS neurons by various inflammatory mediators. Here we examined, in a rat model of PNP: a) whether reducing levels of nitric oxide (NO), with 1400 W, a highly selective inhibitor of inducible NO synthase (iNOS), would prevent/attenuate pain hypersensitivity, and b) the effects of 1400 W on plasma levels of several cytokines that are secreted post iNOS upregulation during chronic pain states. The L5-spinal nerve axotomy (SNA) model of PNP was used, and 1400 W (20 mg kg -1 ) administered intraperitoneally at 8 hour intervals for three days starting at 18 hours post-SNA. Changes in plasma concentrations of 12 cytokines in SNA rats treated with 1400 W were examined using multiplex ELISA. SNA rats developed behavioural signs of mechanical and heat hypersensitivity. Compared with the vehicle/control, 1400 W significantly: (a) limited development of mechanical hypersensitivity at 66 hours post-SNA, as well as heat hypersensitivity at 42 hours and at several time-points tested thereafter, and (b) increased the plasma concentrations of IL-1α, IL-1β, and IL-10 in the SNA rats. The findings suggest that 1400 W may exert its analgesic effects by reducing iNOS and altering the balance between the pro-inflammatory (IL-1β and IL-1α) and anti-inflammatory (IL-10) cytokines and that therapies targeting NO or its enzymes may be effective for the treatment of PNP. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from C