WorldWideScience

Sample records for human imaging studies

  1. Recent advances in human viruses imaging studies.

    Science.gov (United States)

    Florian, Paula Ecaterina; Rouillé, Yves; Ruta, Simona; Nichita, Norica; Roseanu, Anca

    2016-06-01

    Microscopy techniques are often exploited by virologists to investigate molecular details of critical steps in viruses' life cycles such as host cell recognition and entry, genome replication, intracellular trafficking, and release of mature virions. Fluorescence microscopy is the most attractive tool employed to detect intracellular localizations of various stages of the viral infection and monitor the pathogen-host interactions associated with them. Super-resolution microscopy techniques have overcome the technical limitations of conventional microscopy and offered new exciting insights into the formation and trafficking of human viruses. In addition, the development of state-of-the art electron microscopy techniques has become particularly important in studying virus morphogenesis by revealing ground-braking ultrastructural details of this process. This review provides recent advances in human viruses imaging in both, in vitro cell culture systems and in vivo, in the animal models recently developed. The newly available imaging technologies bring a major contribution to our understanding of virus pathogenesis and will become an important tool in early diagnosis of viral infection and the development of novel therapeutics to combat the disease.

  2. Microwave Imaging of Human Forearms: Pilot Study and Image Enhancement

    Directory of Open Access Journals (Sweden)

    Colin Gilmore

    2013-01-01

    Full Text Available We present a pilot study using a microwave tomography system in which we image the forearms of 5 adult male and female volunteers between the ages of 30 and 48. Microwave scattering data were collected at 0.8 to 1.2 GHz with 24 transmitting and receiving antennas located in a matching fluid of deionized water and table salt. Inversion of the microwave data was performed with a balanced version of the multiplicative-regularized contrast source inversion algorithm formulated using the finite-element method (FEM-CSI. T1-weighted MRI images of each volunteer’s forearm were also collected in the same plane as the microwave scattering experiment. Initial “blind” imaging results from the utilized inversion algorithm show that the image quality is dependent on the thickness of the arm’s peripheral adipose tissue layer; thicker layers of adipose tissue lead to poorer overall image quality. Due to the exible nature of the FEM-CSI algorithm used, prior information can be readily incorporated into the microwave imaging inversion process. We show that by introducing prior information into the FEM-CSI algorithm the internal anatomical features of all the arms are resolved, significantly improving the images. The prior information was estimated manually from the blind inversions using an ad hoc procedure.

  3. The effect of human image in B2C website design: an eye-tracking study

    Science.gov (United States)

    Wang, Qiuzhen; Yang, Yi; Wang, Qi; Ma, Qingguo

    2014-09-01

    On B2C shopping websites, effective visual designs can bring about consumers' positive emotional experience. From this perspective, this article developed a research model to explore the impact of human image as a visual element on consumers' online shopping emotions and subsequent attitudes towards websites. This study conducted an eye-tracking experiment to collect both eye movement data and questionnaire data to test the research model. Questionnaire data analysis showed that product pictures combined with human image induced positive emotions among participants, thus promoting their attitudes towards online shopping websites. Specifically, product pictures with human image first produced higher levels of image appeal and perceived social presence, thus stimulating higher levels of enjoyment and subsequent positive attitudes towards the websites. Moreover, a moderating effect of product type was demonstrated on the relationship between the presence of human image and the level of image appeal. Specifically, human image significantly increased the level of image appeal when integrated in entertainment product pictures while this relationship was not significant in terms of utilitarian products. Eye-tracking data analysis further supported these results and provided plausible explanations. The presence of human image significantly increased the pupil size of participants regardless of product types. For entertainment products, participants paid more attention to product pictures integrated with human image whereas for utilitarian products more attention was paid to functional information of products than to product pictures no matter whether or not integrated with human image.

  4. Semiotic aspects of human nonverbal vocalizations: a functional imaging study.

    Science.gov (United States)

    Dietrich, Susanne; Hertrich, Ingo; Alter, Kai; Ischebeck, Anja; Ackermann, Hermann

    2007-12-03

    Humans produce a variety of distinct nonverbal vocalizations. Whereas affective bursts, for example, laughter, have an intrinsic communicative role bound to social behavior, vegetative sounds, for example, snoring, just signal autonomic-physiological states. However, the latter events, for example, belching, may also be used as intentional communicative actions (vocal gestures), characterized by an arbitrary culture-dependent sound-to-meaning (semiotic) relationship, comparable to verbal utterances. Using a decision task, hemodynamic responses to affective bursts, vegetative sounds, and vocal gestures were measured by means of functional magnetic resonance imaging. Affective bursts elicited activation of anterior left superior temporal gyrus. In contrast, arbitrary vocal gestures yielded hemodynamic reactions of the left temporo-parietal junction. Conceivably, a listener's interpretation of nonverbal utterances as intentional events depends upon a left-hemisphere temporo-parietal 'auditory-to-meaning interface' related to our mechanisms of speech processing.

  5. Processed images in human perception: A case study in ultrasound breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Moi Hoon [Department of Computer Science, Loughborough University, FH09, Ergonomics and Safety Research Institute, Holywell Park (United Kingdom)], E-mail: M.H.Yap@lboro.ac.uk; Edirisinghe, Eran [Department of Computer Science, Loughborough University, FJ.05, Garendon Wing, Holywell Park, Loughborough LE11 3TU (United Kingdom); Bez, Helmut [Department of Computer Science, Loughborough University, Room N.2.26, Haslegrave Building, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Two main research efforts in early detection of breast cancer include the development of software tools to assist radiologists in identifying abnormalities and the development of training tools to enhance their skills. Medical image analysis systems, widely known as Computer-Aided Diagnosis (CADx) systems, play an important role in this respect. Often it is important to determine whether there is a benefit in including computer-processed images in the development of such software tools. In this paper, we investigate the effects of computer-processed images in improving human performance in ultrasound breast cancer detection (a perceptual task) and classification (a cognitive task). A survey was conducted on a group of expert radiologists and a group of non-radiologists. In our experiments, random test images from a large database of ultrasound images were presented to subjects. In order to gather appropriate formal feedback, questionnaires were prepared to comment on random selections of original images only, and on image pairs consisting of original images displayed alongside computer-processed images. We critically compare and contrast the performance of the two groups according to perceptual and cognitive tasks. From a Receiver Operating Curve (ROC) analysis, we conclude that the provision of computer-processed images alongside the original ultrasound images, significantly improve the perceptual tasks of non-radiologists but only marginal improvements are shown in the perceptual and cognitive tasks of the group of expert radiologists.

  6. Comparative Study of Statistical Skin Detection Algorithms for Sub-Continental Human Images

    CERN Document Server

    Tabassum, Mirza Rehenuma; Kamal, Md Mostafa; Muctadir, Hossain Muhammad; Ibrahim, Muhammad; Shakir, Asif Khan; Imran, Asif; Islamm, Saiful; Rabbani, Md Golam; Khaled, Shah Mostafa; Islam, Md Saiful; Begum, Zerina; 10.3923/itj.2010.811.817

    2010-01-01

    Object detection has been a focus of research in human-computer interaction. Skin area detection has been a key to different recognitions like face recognition, human motion detection, pornographic and nude image prediction, etc. Most of the research done in the fields of skin detection has been trained and tested on human images of African, Mongolian and Anglo-Saxon ethnic origins. Although there are several intensity invariant approaches to skin detection, the skin color of Indian sub-continentals have not been focused separately. The approach of this research is to make a comparative study between three image segmentation approaches using Indian sub-continental human images, to optimize the detection criteria, and to find some efficient parameters to detect the skin area from these images. The experiments observed that HSV color model based approach to Indian sub-continental skin detection is more suitable with considerable success rate of 91.1% true positives and 88.1% true negatives.

  7. A Validation Study of Near-Infrared Fluorescence Imaging of Lymphatic Vessels in Humans

    DEFF Research Database (Denmark)

    Groenlund, Jacob Hinnerup; Telinius, Niklas; Skov, Soeren Nielsen

    2017-01-01

    BACKGROUND: Near-infrared fluorescence (NIRF) imaging is a new imaging technique that is used to visualize lymphatic vessels in humans. It has a high spatial and temporal resolution, allowing real-time visualization of lymphatic flow. METHODS AND RESULTS: The current study investigated the intra...

  8. Study on image feature extraction and classification for human colorectal cancer using optical coherence tomography

    Science.gov (United States)

    Huang, Shu-Wei; Yang, Shan-Yi; Huang, Wei-Cheng; Chiu, Han-Mo; Lu, Chih-Wei

    2011-06-01

    Most of the colorectal cancer has grown from the adenomatous polyp. Adenomatous lesions have a well-documented relationship to colorectal cancer in previous studies. Thus, to detect the morphological changes between polyp and tumor can allow early diagnosis of colorectal cancer and simultaneous removal of lesions. OCT (Optical coherence tomography) has been several advantages including high resolution and non-invasive cross-sectional image in vivo. In this study, we investigated the relationship between the B-scan OCT image features and histology of malignant human colorectal tissues, also en-face OCT image and the endoscopic image pattern. The in-vitro experiments were performed by a swept-source optical coherence tomography (SS-OCT) system; the swept source has a center wavelength at 1310 nm and 160nm in wavelength scanning range which produced 6 um axial resolution. In the study, the en-face images were reconstructed by integrating the axial values in 3D OCT images. The reconstructed en-face images show the same roundish or gyrus-like pattern with endoscopy images. The pattern of en-face images relate to the stages of colon cancer. Endoscopic OCT technique would provide three-dimensional imaging and rapidly reconstruct en-face images which can increase the speed of colon cancer diagnosis. Our results indicate a great potential for early detection of colorectal adenomas by using the OCT imaging.

  9. Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms

    Science.gov (United States)

    Preisser, Stefan; Held, Gerrit; Akarçay, Hidayet G.; Jaeger, Michael; Frenz, Martin

    2016-09-01

    Epi-optoacoustic (OA) imaging offers flexible clinical diagnostics of the human body when the irradiation optic is attached to or directly integrated into the acoustic probe. Epi-OA images, however, encounter clutter that deteriorates contrast and significantly limits imaging depth. This study elaborates clutter origin in clinical epi-optoacoustic imaging using a linear array probe for scanning the human forearm. We demonstrate that the clutter strength strongly varies with the imaging location but stays stable over time, indicating that clutter is caused by anatomical structures. OA transients which are generated by strong optical absorbers located at the irradiation spot were identified to be the main source of clutter. These transients obscure deep in-plane OA signals when detected by the transducer either directly or after being acoustically scattered in the imaging plane. In addition, OA transients generated in the skin below the probe result in acoustic reverberations, which cause problems in image interpretation and limit imaging depth. Understanding clutter origin allows a better interpretation of clinical OA imaging, helps to design clutter compensation techniques and raises the prospect of contrast optimization via the design of the irradiation geometry.

  10. Performance comparison of breast imaging modalities using a 4AFC human observer study

    Science.gov (United States)

    Elangovan, Premkumar; Rashidnasab, Alaleh; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Segars, William P.; Wells, Kevin

    2015-03-01

    This work compares the visibility of spheres and simulated masses in 2D-mammography and tomosynthesis systems using human observer studies. Performing comparison studies between breast imaging systems poses a number of practical challenges within a clinical environment. We therefore adopted a simulation approach which included synthetic breast blocks, a validated lesion simulation model and a set of validated image modelling tools as a viable alternative to clinical trials. A series of 4-alternative forced choice (4AFC) human observer experiments has been conducted for signal detection tasks using masses and spheres as targets. Five physicists participated in the study viewing images with a 5mm target at a range of contrast levels and 60 trials per experimental condition. The results showed that tomosynthesis has a lower threshold contrast than 2D-mammography for masses and spheres, and that detection studies using spheres may produce overly-optimistic threshold contrast values.

  11. Quantitative Morphological and Biochemical Studies on Human Downy Hairs using 3-D Quantitative Phase Imaging

    CERN Document Server

    Lee, SangYun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    This study presents the morphological and biochemical findings on human downy arm hairs using 3-D quantitative phase imaging techniques. 3-D refractive index tomograms and high-resolution 2-D synthetic aperture images of individual downy arm hairs were measured using a Mach-Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the biochemical and morphological parameters of downy hairs were non-invasively quantified including the mean refractive index, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.

  12. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.

    Science.gov (United States)

    Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng

    2012-05-01

    The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.

  13. Brain imaging and human nutrition: which measures to use in intervention studies?

    Science.gov (United States)

    Sizonenko, Stéphane V; Babiloni, Claudio; de Bruin, Eveline A; Isaacs, Elizabeth B; Jönsson, Lena S; Kennedy, David O; Latulippe, Marie E; Mohajeri, M Hasan; Moreines, Judith; Pietrini, Pietro; Walhovd, Kristine B; Winwood, Robert J; Sijben, John W

    2013-08-01

    The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.

  14. Event-related potential study on image-symmetry discrimination in the human brain.

    Science.gov (United States)

    Sambul, Alwin Melkie; Murayama, Nobuki; Igasaki, Tomohiko

    2013-01-01

    The human visual system seems to have a highly perceptual sensitivity to symmetry. However, where and when the discrimination of symmetrical properties begins in the context of visual information processing is largely unclear. This study investigates event-related potential (ERP) patterns in humans when perceiving symmetry-varied complex object images. ERP responses were derived from electroencephalography (EEG) data recorded from eight healthy subjects using 128-channel scalp electrodes. Visual stimulation was provided using gray-scaled photographs of a car with six different viewpoints, hence disrupting the vertical symmetry, where one of the stimuli was intentionally made symmetric by mirroring the image about its center vertical axis. The results show that discrimination of image symmetry is revealed by potential deflection in early ERP components recorded at occipito-temporal sites and can be significantly observed around 220 ms after stimulus onset.

  15. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging.

    Science.gov (United States)

    Kong, Rong; Bhargava, Rohit

    2011-06-07

    Porcine skin is often considered a substitute for human skin based on morphological and functional data, for example, for transdermal drug diffusion studies. A chemical, structural and temporal characterization of porcine skin in comparison to human skin is not available but will likely improve our understanding of this porcine skin model. Here, we employ Fourier transform infrared (FT-IR) spectroscopic imaging to holistically measure chemical species as well as spatial structure as a function of time to characterize porcine skin as a model for human skin. Porcine skin was found to resemble human skin spectroscopically and differences are elucidated. Cryo-prepared fresh porcine skin samples for spectroscopic imaging were found to be stable over time and small variations are observed. Hence, we extended characterization to the use of this model for dynamic processes. In particular, the capacity and stability of this model in transdermal diffusion is examined. The results indicate that porcine skin is likely to be an attractive tool for studying diffusion dynamics of materials in human skin.

  16. Brain imaging and human nutrition: which measures to use in intervention studies?

    Science.gov (United States)

    Sizonenko, Stéphane V; Babiloni, Claudio; Sijben, John W; Walhovd, Kristine B

    2013-09-01

    Throughout the life span, the brain is a metabolically highly active organ that uses a large proportion of total nutrient and energy intake. Furthermore, the development and repair of neural tissue depend on the proper intake of essential structural nutrients, minerals, and vitamins. Therefore, what we eat, or refrain from eating, may have an important impact on our cognitive ability and mental performance. Two of the key areas in which diet is thought to play an important role are in optimizing neurodevelopment in children and in preventing neurodegeneration and cognitive decline during aging. From early development to aging, brain imaging can detect structural, functional, and metabolic changes in humans and modifications due to altered nutrition or to additional nutritional supplementation. Inclusion of imaging measures in clinical studies can increase understanding with regard to the modification of brain structure, metabolism, and functional endpoints and may provide early sensitive measures of long-term effects. In this symposium, the utility of existing brain imaging technologies to assess the effects of nutritional intervention in humans is described. Examples of current research showing the utility of these markers are reviewed.

  17. Data Mining Based Skin Pixel Detection Applied On Human Images: A Study Paper

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2014-07-01

    Full Text Available Skin segmentation is the process of the identifying the skin pixels in a image in a particular color model and dividing the images into skin and non-skin pixels. It is the process of find the particular skin of the image or video in a color model. Finding the regions of the images in human images to say these pixel regions are part of the image or videos is typically a preprocessing step in skin detection in computer vision, face detection or multi-view face detection. Skin pixel detection model converts the images into appropriate format in a color space and then classification process is being used for labeling of the skin and non-skin pixels. A skin classifier identifies the boundary of the skin image in a skin color model based on the training dataset. Here in this paper, we present the survey of the skin pixel segmentation using the learning algorithms.

  18. Multi-View Algorithm for Face, Eyes and Eye State Detection in Human Image- Study Paper

    Directory of Open Access Journals (Sweden)

    Latesh Kumari

    2014-07-01

    Full Text Available For fatigue detection such as in the application of driver‟s fatigue monitoring system, the eye state analysis is one of the important and deciding steps to determine the fatigue of driver‟s eyes. In this study, algorithms for face detection, eye detection and eye state analysis have been studied and presented as well as an efficient algorithm for detection of face, eyes have been proposed. Firstly the efficient algorithm for face detection method has been presented which find the face area in the human images. Then, novel algorithms for detection of eye region and eye state are introduced. In this paper we propose a multi-view based eye state detection to determine the state of the eye. With the help of skin color model, the algorithm detects the face regions in an YCbCr color model. By applying the skin segmentation which normally separates the skin and non-skin pixels of the images, it detects the face regions of the image under various lighting and noise conditions. Then from these face regions, the eye regions are extracted within those extracted face regions. Our proposed algorithms are fast and robust as there is not pattern match.

  19. Detection of 100% oxygen induced changes in retina using magnetic resonance imaging: a human study

    Institute of Scientific and Technical Information of China (English)

    XU Qing-gang; CHEN Qing-hua; XIAN Jun-fang; WANG Zhen-chang

    2010-01-01

    Background Inner retinal oxygenation response (APO2) is a worldwide study focus. However, the relevant reports on its radiological measurments are limited. In this study, magnetic resonance imaging (MRI), employing T1 weighted image (T1WI), was used to detect changes in ΔPO2 following 100% oxygen inhalation in human subjects.Methods MRI was performed on a 1.5-T GE scanner system. After obtaining ophthalmologic data, eleven healthy individuals were given room air and 100% oxygen inhalation in order with different intervals. The MRI T1WI data were collected for 50 minutes. Data were analyzed with NIH IMAGE software.Results △PO2 was not panretinally uniform, and changes in oxygenation response were spatially inhomogeneous.During the initial phase (before 5 minutes) of 100% oxygen inhalation, preretinal vitreous water signals in the region of papilla optica increased rapidly. On the contrary, in other regions signals declined. In a later period (35 minutes), △PO2was panretinally fluctuated and increased slowly and attained homeostasis. After hyperoxia (45 minutes),delayed-enhancement of preretinal vitreous water signals in regions other than the papilla optica occurred, and then dropped down. There was no significant difference (P >0.05) at any consecutive time point during and after hyperoixa.Conclusions These results reveal that hyperoxia can induce region-specific signal changes in preretinal vitreous water.Regulatory activity of the retinal vessel network may be the mechanism during 100% oxygen inhalation. Moreover, MRI is a valuable tool for investigating △PO2 and exploring the mechanism of retinal oxygenation response physiologically or pathologically in vivo.

  20. Using human brain imaging studies as a guide toward animal models of schizophrenia.

    Science.gov (United States)

    Bolkan, S S; Carvalho Poyraz, F; Kellendonk, C

    2016-05-03

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points toward the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients.

  1. Using human brain imaging studies as a guide towards animal models of schizophrenia

    Science.gov (United States)

    BOLKAN, Scott S.; DE CARVALHO, Fernanda D.; KELLENDONK, Christoph

    2015-01-01

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points towards the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients. PMID:26037801

  2. Utility of a human-mouse xenograft model and in vivo near-infrared fluorescent imaging for studying wound healing.

    Science.gov (United States)

    Shanmugam, Victoria K; Tassi, Elena; Schmidt, Marcel O; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton

    2015-12-01

    To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2-mm punch biopsy. Wounds were harvested on sequential days to allow tissue-based markers of wound healing to be followed sequentially. On the day of wound harvest, mice were injected with XenoLight RediJect cyclooxygenase-2 (COX-2) probe and imaged according to package instructions. Immunohistochemistry confirms that this human-mouse xenograft model is effective for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P = 0·03) with return to baseline levels by day 10, paralleling the reepithelialisation of the wound. This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing.

  3. Who Recognized Fake Image Better: A Comparison Study between Human and Computer

    Science.gov (United States)

    Bahana, R.; Nurhudatiana, A.; Hidajat, M.; Budiono, T. A.

    2017-01-01

    Along with the rapid development of multimedia and information technology in the recent years, a large number of photos and videos can be easily created and distributed by each and every member of our society. Some of these images are genuine, while some others have gone through modifications. Although the creation and posting of edited photographs in media are basically not prohibited, it becomes a problem when they are used improperly. Until now, the common practice in Indonesia when assessing whether an image has been modified or is original is still heavily dependent on human expert assessment that could be subjective. This research offers an alternative solution that is objective by developing a systematic image analysis method for distinguishing between original and modified image. The method utilizes high-level feature, namely the metadata of the image file, to differentiate between original and modified image. A prototype system was implemented in Visual Basic as a desktop application. The application used MS Windows GDI+. This prototype application can be used as a reliable and faster means to assist in fake image detection. However, as metadata-based analysis only detects whether a photograph has possibly been edited and it does not show which part of the photograph has been manipulated, future work includes development of pixel-based analysis approach.

  4. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo-Variawa, S [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Hey-Cunningham, A J [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Lehnert, W [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kench, P L [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kassiou, M [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Banati, R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Meikle, S R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia)

    2007-11-21

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm{sup 3} FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm{sup 3}) and 3D reprojection (3DRP) (5.9-9.1 mm{sup 3}). A pilot {sup 18}F-2-fluoro-2-deoxy-d-glucose ([{sup 18}F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  5. Current studies and future perspectives of synchrotron radiation imaging trials in human patients

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Renata, E-mail: renata.longo@ts.infn.it [Department of Physics, University of Trieste, via Valerio 2 3410 Trieste (Italy); INFN- sezione di Trieste, via Valerio 2 3410 Trieste (Italy)

    2016-02-11

    The coherent and monochromatic x-ray beams available at the synchrotron radiation (SR) laboratories are ideal tools for the development and the initial application of new imaging techniques. In the present paper the history of the clinical studies in k-edge subtraction imaging with SR is summarized, including coronary angiography and bronchography. The results of the recent trial in phase-contrast mammography at Elettra (Trieste, Italy) are discussed, in order to assess the clinical impact of the new imaging modality and the potential interest in its translation to clinical practice. The direct measurement of linear attenuation coefficient obtained during the SR mammography trial is also discussed. The new program of phase-contrast breast CT under development at Elettra is presented. Recently, 3D breast imaging (tomosynthesis and cone beam breast CT) has been introduced in clinical practice with significant improvement in diagnostic accuracy. The aim of this research is to study the contribution of the phase-contrast to the image quality of breast CT. Increasing the image quality of the x-ray medical images at the level of the results obtained at the SR laboratories is highly desirable, hence the promising techniques for the translation of the phase-contrast imaging to the hospitals are briefly discussed.

  6. Historic images in nuclear medicine: 1976: the first issue of clinical nuclear medicine and the first human FDG study.

    Science.gov (United States)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-08-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone of this evolving and exciting discipline.

  7. Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria

    Science.gov (United States)

    Virag, N.; Jacquemet, V.; Henriquez, C. S.; Zozor, S.; Blanc, O.; Vesin, J.-M.; Pruvot, E.; Kappenberger, L.

    2002-09-01

    The maintenance of multiple wavelets appears to be a consistent feature of atrial fibrillation (AF). In this paper, we investigate possible mechanisms of initiation and perpetuation of multiple wavelets in a computer model of AF. We developed a simplified model of human atria that uses an ionic-based membrane model and whose geometry is derived from a segmented magnetic resonance imaging data set. The three-dimensional surface has a realistic size and includes obstacles corresponding to the location of major vessels and valves, but it does not take into account anisotropy. The main advantage of this approach is its ability to simulate long duration arrhythmias (up to 40 s). Clinically relevant initiation protocols, such as single-site burst pacing, were used. The dynamics of simulated AF were investigated in models with different action potential durations and restitution properties, controlled by the conductance of the slow inward current in a modified Luo-Rudy model. The simulation studies show that (1) single-site burst pacing protocol can be used to induce wave breaks even in tissue with uniform membrane properties, (2) the restitution-based wave breaks in an atrial model with realistic size and conduction velocities are transient, and (3) a significant reduction in action potential duration (even with apparently flat restitution) increases the duration of AF.

  8. Feasibility and methodology of optical coherence tomography imaging of human intracranial aneurysms: ex vivo pilot study

    Science.gov (United States)

    Vuong, Barry; Sun, Cuiru; Khiel, Tim-Rasmus; Gardecki, Joseph A.; Standish, Beau A.; da Costa, Leodante; de Morais, Josaphat; Tearney, Guillermo J.; Yang, Victor X. D.

    2012-02-01

    Rupture of intracranial aneurysm is a common cause of subarachnoid hemorrhage. An aneurysm may undergo microscopic morphological changes or remodeling of the vessel wall prior to rupture, which could potentially be imaged. In this study we present methods of tissue sample preparation of intracranial aneurysms and correlation between optical coherence tomography imaging and routine histology. OCT has a potential future in the assessment of microscopic features of aneurysms, which may correlate to the risk of rupture.

  9. Brain Imaging Studies on the Cognitive, Pharmacological and Neurobiological Effects of Cannabis in Humans: Evidence from Studies of Adult Users.

    Science.gov (United States)

    Weinstein, Aviv; Livny, Abigail; Weizman, Abraham

    2016-01-01

    Cannabis is the most widely used illicit drug worldwide. Regular cannabis use has been associated with a range of acute and chronic mental health problems, such as anxiety, depression, psychotic symptoms and neurocognitive impairments and their neural mechanisms need to be examined. This review summarizes and critically evaluates brain-imaging studies of cannabis in recreational and regular cannabis users between January 2000 and January 2016. The search has yielded eligible 103 structural and functional studies. Regular use of cannabis results in volumetric, gray matter and white matter structural changes in the brain, in particular in the hippocampus and the amygdala. Regular use of cannabis affects cognitive processes such as attention, memory, inhibitory control, decision-making, emotional processing, social cognition and their associated brain areas. There is evidence that regular cannabis use leads to altered neural function during attention and working memory and that recruitment of activity in additional brain regions can compensate for it. Similar to other drugs of abuse, cannabis cues activated areas in the reward pathway. Pharmacological studies showed a modest increase in human striatal dopamine transmission after administration of THC in healthy volunteers. Regular cannabis use resulted in reduced dopamine transporter occupancy and reduced dopamine synthesis but not in reduced striatal D2/D3 receptor occupancy compared with healthy control participants. Studies also showed different effects of Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on emotion, cognition and associated brain regions in healthy volunteers, whereby CBD protects against the psychoactive effects of THC. Brain imaging studies using selective high-affinity radioligands for the imaging of cannabinoid CB1 receptor availability in Positron Emission Tomography (PET) showed downregulation of CB1 in regular users of cannabis. In conclusion, regular use of the cannabinoids exerts

  10. Human diversity in images

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    A photo contest is being jointly organized by the CERN Equal Opportunities team and the CERN Photo Club. All you need to do is submit a photo or quotation. The contest is open to everyone.   Diversity at CERN You don’t need to be a photographer or to have sophisticated photographic equipment to capture CERN’s diversity of working styles, gender, age, ethnic, origin and physical ability. Its many facets are all around you! The emphasis of the initiative is on capturing this diversity in an image using creativity, intuition and cultural empathy. You can also contribute with a quotation (whether or not you specify who said it is optional) telling the organizers what strikes you about diversity at CERN. The photo entries and a collection of the quotations will be displayed in an exhibition to be held in May in the Main Building, as well as on the CERN Photo Club website. The best photos will be awarded prizes. So over to you: dig deep inside human nature, explore individual tal...

  11. Middle longitudinal fasciculus delineation within language pathways: A diffusion tensor imaging study in human

    Energy Technology Data Exchange (ETDEWEB)

    Menjot de Champfleur, Nicolas, E-mail: nicolasdechampfleur@orange.fr [Department of Neuroradiology, University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors,” Institut National de la Santé et de la Recherche Médicale Unité 1051, Institut of Neurosciences of Montpellier, Saint Eloi Hospital, Montpellier (France); Lima Maldonado, Igor [Department of Neuroradiology, University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors,” Institut National de la Santé et de la Recherche Médicale Unité 1051, Institut of Neurosciences of Montpellier, Saint Eloi Hospital, Montpellier (France); Divisão de Neurologia e Epidemiologia (CPPHO), Complexo Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador-Bahia (Brazil); Moritz-Gasser, Sylvie [Department of Neuroradiology, University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Department of Neurology, University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Machi, Paolo [Department of Neuroradiology, University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); and others

    2013-01-15

    Introduction: The existence in the human brain of the middle longitudinal fasciculus (MdLF), initially described in the macaque monkey, is supported by diffusion tensor imaging studies. In the present work, we aim (1) to confirm that this fascicle is found constantly in control subjects with the use of DTI techniques and (2) to delineate the MdLF from the other fiber bundles that constitute the language pathways. Materials and methods: Tractography was realized in four right-handed healthy volunteers for the arcuate fascicle, uncinate fascicle, inferior fronto-occipital fascicle, inferior longitudinal fascicle and the middle longitudinal fascicle. The fiber tracts were characterized for their size, mean fractional anisotropy (FA), for their length, number of streamlines, and lateralization indices were calculated. Results: The MdLF is found constantly and it is clearly delineated from the other fascicles that constitute the language pathways, especially the ventral pathway. It runs within the superior temporal gyrus white matter from the temporal pole, then it extends caudally in the upper part of the sagittal stratum and the posterior part of the corona radiata, to reach the inferior parietal lobule (angular gyrus). We found a leftward asymmetry for all fiber tracts when considering the mean FA. Discussion: Using DTI methods, we confirm that the MdLF connects the angular gyrus and the superior temporal gyrus. On the basis of these findings, the role of the MdLF is discussed. Conclusion: The middle longitudinal fasciculus, connects the angular gyrus and the superior temporal gyrus and its course can be systematically differenciated from those of other fascicles composing both ventral and dorsal routes (IFOF, IFL, AF and UF)

  12. Study of myocardial cell inhomogeneity of the human heart: Simulation and validation using polarized light imaging.

    Science.gov (United States)

    Desrosiers, Paul Audain; Michalowicz, Gabrielle; Jouk, Pierre-Simon; Usson, Yves; Zhu, Yuemin

    2016-05-01

    The arrangement or architecture of myocardial cells plays a fundamental role in the heart's function and its change was shown to be directly linked to heart diseases. Inhomogeneity level is an important index of myocardial cell arrangements in the human heart. The authors propose to investigate the inhomogeneity level of myocardial cells using polarized light imaging simulations and experiments. The idea is based on the fact that the myosin filaments in myocardial cells have the same properties as those of a uniaxial birefringent crystal. The method then consists in modeling the myosin filaments of myocardial cells as uniaxial birefringent crystal, simulating the behavior of the latter by means of the Mueller matrix, and measuring the final intensity of polarized light and consequently the inhomogeneity level of myocardial cells in each voxel through the use of crossed polarizers. The method was evaluated on both simulated and real tissues and under various myocardial cell configurations including parallel cells, crossed cells, and cells with random orientations. When myocardial cells run perfectly parallel to each other, all the polarized light was blocked by those parallel myocardial cells, and a high homogeneity level was observed. However, if myocardial cells were not parallel to each other, some leakage of the polarized light was observed, thus causing the decrease of the polarized light amplitude and homogeneity level. The greater the crossing angle between myocardial cells, the smaller the amplitude of the polarized light and the greater the inhomogeneity level. For two populations of myocardial cell crossing at an angle, the resulting azimuth angle of the voxel was the bisector of this angle. Moreover, the value of the inhomogeneity level began to decrease from a nonzero value when the voxel was not totally homogeneous, containing for example cell crossing. The proposed method enables the physical information of myocardial tissues to be estimated and the

  13. Preliminary studies of fluorescence image-guided photothermal therapy of human oesophageal adenocarcinoma in vivo using multifunctional gold nanorods

    Science.gov (United States)

    Nabavi, Elham; Singh, Mohan; Zhou, Yu; Gallina, Maria Elena; Zhao, Hailin; Ma, Daqing; Cass, Anthony; Hanna, George; Elson, Daniel S.

    2016-03-01

    We present a preliminary in vivo study of fluorescence imaging and photothermal therapy (PTT) of human oesophageal adenocarcinoma using multi-functionalised gold nanorods (GNRs). After establishing tumour xenograft in mouse functionalised GNRs were administrated intravenously (IV). Fluorescence imaging was performed to detect the tumour area. The intensity of the fluorescence signal varied significantly across the tumour site and surrounding tissues. PTT was then performed using a 808 nm continuous wave diode laser to irradiate the tumour for 3 minutes, inducing a temperature rise of ~44°C, which photothermally ablated the tumour.

  14. Human bites (image)

    Science.gov (United States)

    Human bites present a high risk of infection. Besides the bacteria which can cause infection, there is ... the wound extends below the skin. Anytime a human bite has broken the skin, seek medical attention.

  15. Preliminary study on the time-related changes of the infrared thermal images of the human body

    Science.gov (United States)

    Li, Ziru; Zhang, Xusheng; Lin, Gang; Chen, Zhigang

    2009-08-01

    It is of great importance to study the manifestations and the influencing factors of the time-related changes of infrared thermal images (ITI) of human body since the variable body surface temperature distribution seriously affected the application of ITI in medicine. In this paper, manifestations of time-related changes of the ITI of human body from three double-blind randomized trials and their correlation with meteorological factors (e.g. temperature, pressure, humidity, cold front passage and tropical cyclone landing) were studied. The trials were placebo or drug controlled studying the influences of Chinese medicine health food (including Shengsheng capsule with immunity adjustment function, Shengan capsule with sleep improvement function and Shengyi capsule with the function of helping to decrease serum lipid) on the ITI of human body. In the first thirty-six days of the trials images were scanned every six days and image data in the seven observation time spots (including the 0, 6, 12, 18, 24, 30, 36 day of the trial) were used for the time-related study. For every subject the scanned time was fixed in the day within two hours. The ITI features which could reflect the functions of the health foods were studied. The indexes of the features were relative magnitude (temperature difference between the viewing area and the reference area). Results showed that the variation tendencies of the trial group and control group were basically the same in placebo controlled trials and some of the long-term effects of Chinese medicine health food could be reflected significantly in certain time spots in the first thirty-six days. Time-related changes of the ITI of human body were closely related with meteorological factors but there were other influencing factors still need to be studied. As the ITI of human body could reflect the influences of Chinese medicine health foods and are closely related with meteorology, there are bright prospects for the application of ITI in

  16. Long-wave infrared functional brain imaging in human: a pilot study.

    Science.gov (United States)

    Joyal, Christian C; Henry, Mylene

    2013-01-01

    Although some authors suggest to use Long-Wave Infrared (LWIR) sensors to evaluate brain functioning, the link between emissions of LWIR and mental effort is not established. The goal of this pilot study was to determine whether frontal LWIR emissions vary during execution of neuropsychological tasks known to differentially activate the pre-frontal cortex (simple color presentations, induction of the Stroop effect, and a gambling task with real money). Surprisingly, LWIR emissions as measured with bilateral frontal sensors in 47 participants significantly differed between tasks, in the supposed direction (Colorpilot study suggests that investigations of convergent validity with other types of brain imaging techniques can be initiated with LWIR imaging. If confirmed, this technique would offer a simple and accessible method to evaluate frontal cortex activation.

  17. Unraveling the secrets of white matter – Bridging the gap between cellular, animal and human imaging studies

    OpenAIRE

    Walhovd, K.B.; H. Johansen-Berg; R.T. Káradóttir

    2014-01-01

    The CNS white matter makes up about half of the human brain, and with advances in human imaging it is increasingly becoming clear that changes in the white matter play a major role in shaping human behavior and learning. However, the mechanisms underlying these white matter changes remain poorly understood. Within this special issue of Neuroscience on white matter, recent advances in our knowledge of the function of white matter, from the molecular level to human imaging, are reviewed. Collab...

  18. Harnessing anesthesia and brain imaging for the study of human consciousness.

    Science.gov (United States)

    Långsjo, Jaakko W; Revonsuo, Antti; Scheinin, Harry

    2014-01-01

    Philosophers have been trying to solve the mind-body problem for hundreds of years. Consciousness is the core of this problem: How do subjective conscious sensations, perceptions, feelings, and thoughts arise out of objective physical brain activities? How is this subjective conscious world in causal interaction with the objective sensory and motor mechanisms of the brain and the body? Although we witness the seamless interaction of the mental and the physical worlds in our everyday lives, no scientific theory can yet fully describe or explain it. The hard problem of consciousness, the question why and how any brain activity should be accompanied by any subjective experiences at all, remains a mystery and a challenge for modern science. Anesthesia offers a unique and safe way to directly manipulate the state of consciousness and can, thus, be used as a tool in consciousness research. With neuroimaging, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) performed at different states of consciousness, it is possible to visualize the state-related changes and pinpoint the brain structures or neural mechanisms related to changes in consciousness. With these tools, neurosciences now show promise in disentangling the eternal enigma of human consciousness. In this article, we will review the recent advancements in the field.

  19. Standardization Study of Thermal Imaging using the Acupoints in Human Body

    Directory of Open Access Journals (Sweden)

    Young Chon, Choi

    2008-09-01

    Full Text Available Objective : The purpose of this study was to invigorate the use of infrared thermal imaging apparatus as a diagnostic tool in Oriental medicine by providing standard temperature on specific acupoints. Methods : Subjects for the study was recruited through an advertisement in the school homepage (www.sangji.ac.kr explaining the objectives and methods. 100 volunteers agreeing to terms were selected and measured the full body thermal image. Common acupoints used in the clinical surrounding were chosen and final 63 acupoints were selected for the measurement. Male/female and right / left readings were obtained for the analysis. Results : Following results were obtained from analyzing the body temperature of 50 male subjects and 50 female subjects 1. Subjects participating in the study ranged from 19 years of age to 44 years. Median male age at 26.86±6.02 and female age at 22.88±2.74, respectively. 2. For all acupoints, no significant differences were witnessed between the gender and right, left side of the body. 3. 10 acupoints from the facial region(18 bilateral, 8 acupoints from the chest /abdomen region(10bilateral, 6 acupoints from the back region(11 bilateral, 17 acupoints from the upper extremity(34bilateral, and 22 acupoints from the lower extremity(44 bilateral were chosen. 4. In the facial region, BL2 showed the highest temperature and GV26 showed the lowest. 5. In the chest/abdomen region, CV22 showed the highest temperature and CV6 showed the lowest. 6. In the back region, GV14 showed the highest temperature and BL23 showed the lowest. 7. In the upper extremity region, jianqian(extra point showed the highest temperature and baxie(extra point showed the lowest. 8. In the lower extremity region, KI1 and bafeng(extra point shoed the highest temperature and BL40 showed the lowest. Conclusions : Based on the standard body temperature measured on specific acupoints throughout the body, we hope these findings can trigger further studies on

  20. Photothermal image cytometry of human neutrophils

    Science.gov (United States)

    Lapotko, Dmitry

    2001-07-01

    Photothermal imaging, when being applied to the study of living cells, provides morpho-functional information about the cell populations. In technical terms, the method is complementary to optical microscopy. The photothermal method was used for cell imaging and quantitative studies. Preliminary results of the studies on living human neutrophils are presented. Differences between normal and pathological neutrophil populations from blood of healthy donors and patients with saracoidosis and pleuritis are demonstrated.

  1. Target sites for transcallosal fibers in human visual cortex - A combined diffusion and polarized light imaging study.

    Science.gov (United States)

    Caspers, Svenja; Axer, Markus; Caspers, Julian; Jockwitz, Christiane; Jütten, Kerstin; Reckfort, Julia; Grässel, David; Amunts, Katrin; Zilles, Karl

    2015-11-01

    Transcallosal fibers of the visual system have preferential target sites within the occipital cortex of monkeys. These target sites coincide with vertical meridian representations of the visual field at borders of retinotopically defined visual areas. The existence of preferential target sites of transcallosal fibers in the human brain at the borders of early visual areas was claimed, but controversially discussed. Hence, we studied the distribution of transcallosal fibers in human visual cortex, searching for an organizational principle across early and higher visual areas. In-vivo high angular resolution diffusion imaging data of 28 subjects were used for probabilistic fiber tracking using a constrained spherical deconvolution approach. The fiber architecture within the target sites was analyzed at microscopic resolution using 3D polarized light imaging in a post-mortem human hemisphere. Fibers through a seed in the splenium of the corpus callosum reached the occipital cortex via the forceps major and the tapetum. We found target sites of these transcallosal fibers at borders of cytoarchitectonically defined occipital areas not only between early visual areas V1 and V2, V3d and V3A, and V3v and V4, but also between higher extrastriate areas, namely V4 (ventral) and posterior fusiform area FG1 as well as posterior fusiform area FG2 and lateral occipital cortex. In early visual areas, the target sites coincided with the vertical meridian representations of retinotopic maps. The spatial arrangement of the fibers in the 'border tuft' region at the V1/V2 border was found to be more complex than previously observed in myeloarchitectonic studies. In higher visual areas, our results provided additional evidence for a hemi-field representation in human area V4. The fiber topography in posterior fusiform gyrus indicated that additional retinotopic areas might exist, located between the recently identified retinotopic representations phPITv/phPITd and PHC-1/PHC-2 in lateral

  2. Data Mining Based Skin Pixel Detection Applied On Human Images: A Study Paper

    National Research Council Canada - National Science Library

    Gagandeep Kaur; Seema Pahwa

    2014-01-01

    .... A skin classifier identifies the boundary of the skin image in a skin color model based on the training dataset. Here in this paper, we present the survey of the skin pixel segmentation using the learning algorithms.

  3. Impact of patient weight on tumor visibility based on human-shaped phantom simulation study in PET imaging system

    Science.gov (United States)

    Musarudin, M.; Saripan, M. I.; Mashohor, S.; Saad, W. H. M.; Nordin, A. J.; Hashim, S.

    2015-10-01

    Energy window technique has been implemented in all positron emission tomography (PET) imaging protocol, with the aim to remove the unwanted low energy photons. Current practices in our institution however are performed by using default energy threshold level regardless of the weight of the patient. Phantom size, which represents the size of the patient's body, is the factor that determined the level of scatter fraction during PET imaging. Thus, the motivation of this study is to determine the optimum energy threshold level for different sizes of human-shaped phantom, to represent underweight, normal, overweight and obese patients. In this study, the scanner was modeled by using Monte Carlo code, version MCNP5. Five different sizes of elliptical-cylinder shaped of human-sized phantoms with diameter ranged from 15 to 30 cm were modeled. The tumor was modeled by a cylindrical line source filled with 1.02 MeV positron emitters at the center of the phantom. Various energy window widths, in the ranged of 10-50% were implemented to the data. In conclusion, the phantom mass volume did influence the scatter fraction within the volume. Bigger phantom caused more scattering events and thus led to coincidence counts lost. We evaluated the impact of phantom sizes on the sensitivity and visibility of the simulated models. Implementation of wider energy window improved the sensitivity of the system and retained the coincidence photons lost. Visibility of the tumor improved as an appropriate energy window implemented for the different sizes of phantom.

  4. Perfusion harmonic imaging of the human brain

    Science.gov (United States)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  5. Age-related changes of the corticospinal tract in the human brain A diffusion tensor imaging study

    Institute of Scientific and Technical Information of China (English)

    Sung Ho Jang; Sang-Hyun Cho; Mi Young Lee; Yong Hyun Kwon; Min Cheul Chang

    2011-01-01

    The corticospinal tract (CST) is one of the most important neural tracts for motor function in the human brain. Little is known about age-related changes of the CST. In this study, we tried to evaluate age-related changes of the CST using diffusion tensor imaging in 60 healthy subjects. The diffusion tensor imaging result revealed that the tract number and fractional anisotropy value were decreased, and the apparent diffusion coefficient (ADC) value was increased with aging. The distribution showed a semilog pattern for tract number, fractional anisotropy and ADC of the CST, and the pattern of each graph was near-linear. When compared with the diffusion tensor imaging parameters of subjects in the 20 s age group, tract number and fractional anisotropy values were significantly decreased in the 50 s–70 s age groups. Likewise, the ADC value was significantly higher in the 50 s–70 s age groups. The CST in the brain of normal subjects degenerated continuously from the 20 s to the 70 s, with a near-linear pattern, and degeneration of the CST began to manifest significantly in the subjects in their 50 s, compared with the subjects in their 20 s.

  6. MO-F-CAMPUS-I-01: EIT Imaging to Monitor Human Salivary Gland Functionality: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, K; Karvat, A; Liu, J; Krishnan, K [BC Cancer Agency, Surrey, BC (United Kingdom)

    2015-06-15

    Purpose: Clinically, there exists a need to develop a non-invasive technique for monitoring salivary activity. In this study, we investigate the feasibility of a using the electrical conductivity information from Electrical Impedance Tomography (EIT) to monitor salivary flow activity. Methods: To acquire EIT data, eight Ag/AgCl ECG electrodes were placed around the mandible of the subject. An EIT scan was obtained by injecting current at 50 KHz, 0.4 mA through each pair of electrodes and recording voltage across other electrode pairs. The functional conductivity image was obtained through reconstruction of the voltage data, using Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) in Matlab. In using EIDORS, forward solution was obtained using a user-defined finite element model shape and inverse solution was obtained using one-step Gaussian solver. EIT scans of volunteer research team members were acquired for three different physiological states: pre-stimulation, stimulation and post-stimulation. For pre-stimulation phase, data were collected in intervals of 5 minutes for 15 minutes. The salivary glands were then stimulated in the subject using lemon and the data were collected immediately. Post-stimulation data were collected at 4 different timings after stimulation. Results: Variations were observed in the electrical conductivity patterns near parotid regions between the pre- and post-stimulation stages. The three images acquired during the 15 minute pre-stimulation phase showed no major changes in the conductivity. Immediately after stimulation, electrical conductivity increased near parotid regions and 15 minutes later slowly returned to pre-stimulation level. Conclusion: In the present study involving human subjects, the change in electrical conductivity pattern shown in the EIT images, acquired at different times with and without stimulation of salivary glands, appeared to be consistent with the change in salivary

  7. Multiphoton fluorescence lifetime imaging of human hair.

    Science.gov (United States)

    Ehlers, Alexander; Riemann, Iris; Stark, Martin; König, Karsten

    2007-02-01

    In vivo and in vitro multiphoton imaging was used to perform high resolution optical sectioning of human hair by nonlinear excitation of endogenous as well as exogenous fluorophores. Multiphoton fluorescence lifetime imaging (FLIM) based on time-resolved single photon counting and near-infrared femtosecond laser pulse excitation was employed to analyze the various fluorescent hair components. Time-resolved multiphoton imaging of intratissue pigments has the potential (i) to identify endogenous keratin and melanin, (ii) to obtain information on intrahair dye accumulation, (iii) to study bleaching effects, and (iv) to monitor the intratissue diffusion of pharmaceutical and cosmetical components along hair shafts.

  8. Quantitative magnetic resonance imaging and studies of degenerative diseases of the developing human brain

    Energy Technology Data Exchange (ETDEWEB)

    Caviness, V.S. Jr. (Massachusetts General Hospital, Boston, MA (United States)); Phil, D.; Filipek, P.A.; Kennedy, D.N.

    1992-05-01

    The Rett syndrome is a progressive disorder which is associated with regression of psychomotor development and precipitous deceleration of brain growth during the first year of life. General histopathological surveys in postmortem specimens have identified degeneration of subpopulations of neurons of the nigrostriatal system but no other evidence of degenerative process. Magnetic resonance imaging-based morphometry may usefully guide application of rigorous but demanding quantitative histologic search for evidence of neuronal degeneration. The volumes of the principal set of cortical and nuclear structures of principal interest in the disorder may be measured by currently avaiable MRI-based methods. Opimized levels of precision now allow detection of volumetric changes over time in the same brain of approximately 10% at the 95% confidence level. (author).

  9. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects

    Science.gov (United States)

    Pryor, K. O.; Root, J. C.; Mehta, M.; Stern, E.; Pan, H.; Veselis, R. A.; Silbersweig, D. A.

    2015-01-01

    Background Subclinical doses of propofol produce anterograde amnesia, characterized by an early failure of memory consolidation. It is unknown how propofol affects the amygdala-dependent emotional memory system, which modulates consolidation in the hippocampus in response to emotional arousal and neurohumoral stress. We present an event-related functional magnetic resonance imaging study of the effects of propofol on the emotional memory system in human subjects. Methods Thirty-five healthy subjects were randomized to receive propofol, at an estimated brain concentration of 0.90 μg ml−1, or placebo. During drug infusion, emotionally arousing and neutral images were presented in a continuous recognition task, while blood-oxygen-level-dependent activation responses were acquired. After a drug-free interval of 2 h, subsequent memory for successfully encoded items was assessed. Imaging analysis was performed using statistical parametric mapping and behavioural analysis using signal detection models. Results Propofol had no effect on the stereotypical amygdalar response to emotional arousal, but caused marked suppression of the hippocampal response. Propofol caused memory performance to become uncoupled from amygdalar activation, but it remained correlated with activation in the posterior hippocampus, which decreased in proportion to amnesia. Conclusions Propofol is relatively ineffective at suppressing amygdalar activation at sedative doses, but abolishes emotional modulation and causes amnesia via mechanisms that commonly involve hyporesponsiveness of the hippocampus. These findings raise the possibility that amygdala-dependent fear systems may remain intact even when a patient has diminished memory of events. This may be of clinical importance in the perioperative development of fear-based psychopathologies, such as post-traumatic stress disorder. Clinical trial registration NCT00504894. PMID:26174294

  10. Cellular uptake and imaging studies of glycosylated silica nanoprobe (GSN in human colon adenocarcinoma (HT 29 cell line

    Directory of Open Access Journals (Sweden)

    Mehravi B

    2013-08-01

    Full Text Available Bita Mehravi,1 Mohsen Ahmadi,1 Massoud Amanlou,2 Ahmad Mostaar,1 Mehdi Shafiee Ardestani,3 Negar Ghalandarlaki41Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 2Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 4Department of Biological Science, School of Science, Science and Research branch, Islamic Azad University, Tehran, IranPurpose: In recent years, molecular imaging by magnetic resonance imaging (MRI has gained prominence in the detection of tumor cells. The scope of this study is on molecular imaging and on the cellular uptake study of a glycosylated silica nanoprobe (GSN.Methods: In this study, intracellular uptake (HT 29 cell line of GSN was analyzed quantitatively and qualitatively with inductively coupled plasma atomic emission spectroscopy, flow cytometry, and fluorescent microscopy. In vitro and in vivo relaxometry of this nanoparticle was determined using a 3 Tesla MRI; biodistribution of GSN and Magnevist® were measured in different tissues.Results: Results suggest that the cellular uptake of GSN was about 70%. The r1 relaxivity of this nanoparticle in the cells was measured to be 12.9 ± 1.6 mM-1 s-1 and on a per lanthanide gadolinium (Gd3+ basis. Results also indicate an average cellular uptake of 0.7 ± 0.009 pg Gd3+ per cell. It should be noted that 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay demonstrated that the cells were effectively labeled without cytotoxicity, and that using MRI for quantitative estimation of delivery and uptake of targeted contrast agents and early detection of human colon cancer cells using targeted contrast agents, is feasible.Conclusion: These results showed that GSN provided a

  11. Structural connectivity of the human anterior temporal lobe: A diffusion magnetic resonance imaging study.

    Science.gov (United States)

    Papinutto, Nico; Galantucci, Sebastiano; Mandelli, Maria Luisa; Gesierich, Benno; Jovicich, Jorge; Caverzasi, Eduardo; Henry, Roland G; Seeley, William W; Miller, Bruce L; Shapiro, Kevin A; Gorno-Tempini, Maria Luisa

    2016-06-01

    The anterior temporal lobes (ATL) have been implicated in a range of cognitive functions including auditory and visual perception, language, semantic knowledge, and social-emotional processing. However, the anatomical relationships between the ATLs and the broader cortical networks that subserve these functions have not been fully elucidated. Using diffusion tensor imaging (DTI) and probabilistic tractography, we tested the hypothesis that functional segregation of information in the ATLs is reflected by distinct patterns of structural connectivity to regions outside the ATLs. We performed a parcellation of the ATLs bilaterally based on the degree of connectivity of each voxel with eight ipsilateral target regions known to be involved in various cognitive networks. Six discrete segments within each ATL showed preferential connectivity to one of the ipsilateral target regions, via four major fiber tracts (uncinate, inferior longitudinal, middle longitudinal, and arcuate fasciculi). Two noteworthy interhemispheric differences were observed: connections between the ATL and orbito-frontal areas were stronger in the right hemisphere, while the consistency of the connection between the ATL and the inferior frontal gyrus through the arcuate fasciculus was greater in the left hemisphere. Our findings support the hypothesis that distinct regions within the ATLs have anatomical connections to different cognitive networks. Hum Brain Mapp 37:2210-2222, 2016. © 2016 Wiley Periodicals, Inc.

  12. Image reconstruction techniques for high resolution human brain PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Comtat, C.; Bataille, F.; Sureau, F. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    High resolution PET imaging is now a well established technique not only for small animal, but also for human brain studies. The ECAT HRRT brain PET scanner(Siemens Molecular Imaging) is characterized by an effective isotropic spatial resolution of 2.5 mm, about a factor of 2 better than for state-of-the-art whole-body clinical PET scanners. Although the absolute sensitivity of the HRRT (6.5 %) for point source in the center of the field-of-view is increased relative to whole-body scanner (typically 4.5 %) thanks to a larger co-polar aperture, the sensitivity in terms of volumetric resolution (75 (m{sup 3} at best for whole-body scanners and 16 (m{sup 3} for t he HRRT) is much lower. This constraint has an impact on the performance of image reconstruction techniques, in particular for dynamic studies. Standard reconstruction methods used with clinical whole-body PET scanners are not optimal for this application. Specific methods had to be developed, based on fully 3D iterative techniques. Different refinements can be added in the reconstruction process to improve image quality: more accurate modeling of the acquisition system, more accurate modeling of the statistical properties of the acquired data, anatomical side information to guide the reconstruction . We will present the performances these added developments for neuronal imaging in humans. (author)

  13. Study of complex hemodynamic fluctuations in the human brain by simultaneous near-infrared spectro-imaging and functional magnetic resonance imaging

    Science.gov (United States)

    Toronov, Vladislav Y.; Franceschini, Maria-Angela; Fantini, Sergio; Webb, Andrew G.; Gratton, Enrico

    2004-05-01

    In this paper we discuss temporal and spatial patterns of brain hemodynamics under rest and motor stimulation conditions obtained by functional magnetic resonance imaging and simultaneous fast multi-channel near-infrared spectro-imaging in the human motor cortex. Our data indicate that the main difference between the brain hemodynamics under the repetitive stimulation and the rest conditions is not in the appearance of hemoglobin concentration changes during the stimulations (since fluctuations occur at rest as well), but in their more regular, i.e. phase-synchronous with the stimulation behavior.

  14. First-in-Human Ultrasound Molecular Imaging With a VEGFR2-Specific Ultrasound Molecular Contrast Agent (BR55) in Prostate Cancer: A Safety and Feasibility Pilot Study.

    Science.gov (United States)

    Smeenge, Martijn; Tranquart, François; Mannaerts, Christophe K; de Reijke, Theo M; van de Vijver, Marc J; Laguna, M Pilar; Pochon, Sibylle; de la Rosette, Jean J M C H; Wijkstra, Hessel

    2017-07-01

    BR55, a vascular endothelial growth factor receptor 2 (VEGFR2)-specific ultrasound molecular contrast agent (MCA), has shown promising results in multiple preclinical models regarding cancer imaging. In this first-in-human, phase 0, exploratory study, we investigated the feasibility and safety of the MCA for the detection of prostate cancer (PCa) in men using clinical standard technology. Imaging with the MCA was performed in 24 patients with biopsy-proven PCa scheduled for radical prostatectomy using a clinical ultrasound scanner at low acoustic power. Safety monitoring was done by physical examination, blood pressure and heart rate measurements, electrocardiogram, and blood sampling. As first-in-human study, MCA dosing and imaging protocol were necessarily fine-tuned along the enrollment to improve visualization. Imaging data were correlated with radical prostatectomy histopathology to analyze the detection rate of ultrasound molecular imaging with the MCA. Imaging with MCA doses of 0.03 and 0.05 mL/kg was adequate to obtain contrast enhancement images up to 30 minutes after administration. No serious adverse events or clinically meaningful changes in safety monitoring data were identified during or after administration. BR55 dosing and imaging were fine-tuned in the first 12 patients leading to 12 subsequent patients with an improved MCA dosing and imaging protocol. Twenty-three patients underwent radical prostatectomy. A total of 52 lesions were determined to be malignant by histopathology with 26 (50%) of them seen during BR55 imaging. In the 11 patients that were scanned with the improved protocol and underwent radical prostatectomy, a total of 28 malignant lesions were determined: 19 (68%) were seen during BR55 ultrasound molecular imaging, whereas 9 (32%) were not identified. Ultrasound molecular imaging with BR55 is feasible with clinical standard technology and demonstrated a good safety profile. Detectable levels of the MCA can be reached in patients

  15. Human gene therapy and imaging: cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Joseph C. [Stanford University School of Medicine, Department of Medicine, Stanford, CA (United States); Yla-Herttuala, Seppo [University of Kuopio, A.I.Virtanen Institute, Kuopio (Finland)

    2005-12-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  16. Body Image and Anti-Fat Attitudes: An Experimental Study Using a Haptic Virtual Reality Environment to Replicate Human Touch.

    Science.gov (United States)

    Tremblay, Line; Roy-Vaillancourt, Mélina; Chebbi, Brahim; Bouchard, Stéphane; Daoust, Michael; Dénommée, Jessica; Thorpe, Moriah

    2016-02-01

    It is well documented that anti-fat attitudes influence the interactions individuals have with overweight people. However, testing attitudes through self-report measures is challenging. In the present study, we explore the use of a haptic virtual reality environment to physically interact with overweight virtual human (VH). We verify the hypothesis that duration and strength of virtual touch vary according to the characteristics of VH in ways similar to those encountered from interaction with real people in anti-fat attitude studies. A group of 61 participants were randomly assigned to one of the experimental conditions involving giving a virtual hug to a female or a male VH of either normal or overweight. We found significant associations between body image satisfaction and anti-fat attitudes and sex differences on these measures. We also found a significant interaction effect of the sex of the participants, sex of the VH, and the body size of the VH. Female participants hugged longer the overweight female VH than overweight male VH. Male participants hugged longer the normal-weight VH than the overweight VH. We conclude that virtual touch is a promising method of measuring attitudes, emotion and social interactions.

  17. Hypoxia imaging endoscopy equipped with laser light source from preclinical live animal study to first-in-human subject research.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Kaneko

    Full Text Available A goal in next-generation endoscopy is to develop functional imaging techniques to open up new opportunities for cancer diagnosis. Although spatial and temporal information on hypoxia is crucial for understanding cancer physiology and expected to be useful for cancer diagnosis, existing techniques using fluorescent indicators have limitations due to low spatial resolution and invasive administration. To overcome these problems, we developed an imaging technology based on hemoglobin oxygen saturation in both the tumor and surrounding mucosa using a laser endoscope system, and conducted the first human subject research for patients with aero-digestive tract cancer. The oxygen saturation map overlapped the images of cancerous lesions and indicated highly heterogeneous features of oxygen supply in the tumor. The hypoxic region of the tumor surface was found in both early cancer and cancer precursors. This technology illustrates a novel aspect of cancer biology as a potential biomarker and can be widely utilized in cancer diagnosis.

  18. Magnetic resonance imaging tracking of ferumoxytol-labeled human neural stem cells: studies leading to clinical use.

    Science.gov (United States)

    Gutova, Margarita; Frank, Joseph A; D'Apuzzo, Massimo; Khankaldyyan, Vazgen; Gilchrist, Megan M; Annala, Alexander J; Metz, Marianne Z; Abramyants, Yelena; Herrmann, Kelsey A; Ghoda, Lucy Y; Najbauer, Joseph; Brown, Christine E; Blanchard, M Suzette; Lesniak, Maciej S; Kim, Seung U; Barish, Michael E; Aboody, Karen S; Moats, Rex A

    2013-10-01

    Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking.

  19. A New Medical Image Enhancement Based on Human Visual Characteristics

    Institute of Scientific and Technical Information of China (English)

    DONG Ai-bin; HE Jun

    2013-01-01

    Study of image enhancement shows that the quality of image heavily relies on human visual system. In this paper, we apply this fact effectively to design a new image enhancement method for medical images that improves the detail regions. First, the eye region of interest (ROI) is segmented; then the Un-sharp Masking (USM) is used to enhance the detail regions. Experiments show that the proposed method can effectively improve the accuracy of medical image enhancement and has a significant effect.

  20. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol.

    Science.gov (United States)

    Mhuircheartaigh, Róisín Ní; Rosenorn-Lanng, Debbie; Wise, Richard; Jbabdi, Saad; Rogers, Richard; Tracey, Irene

    2010-07-07

    While ubiquitous, pharmacological manipulation of consciousness remains poorly defined and incompletely understood (Prys-Roberts, 1987). This retards anesthetic drug development, confounds interpretation of animal studies conducted under anesthesia, and limits the sensitivity of clinical monitors of cerebral function to intact perception. Animal and human studies propose a functional "switch" at the level of the thalamus, with inhibition of thalamo-cortical transmission characterizing loss of consciousness (Alkire et al., 2000; Mashour, 2006). We investigated the effects of propofol, widely used for anesthesia and sedation, on spontaneous and evoked cerebral activity using functional magnetic resonance imaging (fMRI). A series of auditory and noxious stimuli was presented to eight healthy volunteers at three behavioral states: awake, "sedated" and "unresponsive." Performance in a verbal task and the absence of a response to verbal stimulation, rather than propofol concentrations, were used to define these states clinically. Analysis of stimulus-related blood oxygenation level-dependent signal changes identified reductions in cortical and subcortical responses to auditory and noxious stimuli in sedated and unresponsive states. A specific reduction in activity within the putamen was noted and further investigated with functional connectivity analysis. Progressive failure to perceive or respond to auditory or noxious stimuli was associated with a reduction in the functional connectivity between the putamen and other brain regions, while thalamo-cortical connectivity was relatively preserved. This result has not been previously described and suggests that disruption of subcortical thalamo-regulatory systems may occur before, or even precipitate, failure of thalamo-cortical transmission with the induction of unconsciousness.

  1. Cerebral Anatomy of the Spider Monkey Ateles Geoffroyi Studied Using Magnetic Resonance Imaging. First Report: a Comparative Study with the Human Brain Homo Sapiens

    Directory of Open Access Journals (Sweden)

    Fernando Chico-Ponce de León

    2009-04-01

    Full Text Available The objective of the present qualitative studywas to analyze the morphological aspects of theinner cerebral anatomy of two species of primates,using magnetic resonance images (MRI:spider monkey (A. geoffroyi and human (H.sapiens, on the basis of a comparative study ofthe cerebral structures of the two species, focusingupon the brain of the spider monkey and,primarily, its limbic system. In spite of beingan endemic Western hemisphere species, a factwhich is by its own right interesting for researchdue to this animal’s social organization and motorfunctions, the spider monkey (A. geoffroyihas hardly been studied in regard to its neuroanatomy.MRI was carried out, in one spidermonkey, employing a General Electric Signa1.5 T scanner. This investigation was carried inaccordance to international regulations for theprotection of animals in captivity, taking intoaccount all protective means utilized in experimentalhandling, and not leaving behind any residualeffects, either physiological or behavioral.From a qualitative point of view, the brains ofthe spider monkey and the human were found to have similar structures. In reference to shape,the most similar structures were found in thelimbic system; proportionally, however, cervical curvature, amygdala, hippocampus, anteriorcommissure and the colliculi, were larger in thespider monkey than in the human.

  2. (64)Cu-PSMA-617 PET/CT Imaging of Prostate Adenocarcinoma: First In-Human Studies.

    Science.gov (United States)

    Grubmüller, Bernhard; Baum, Richard P; Capasso, Enza; Singh, Aviral; Ahmadi, Yasaman; Knoll, Peter; Floth, Andreas; Righi, Sergio; Zandieh, Shahin; Meleddu, Carlo; Shariat, Shahrokh F; Klingler, Hans Christoph; Mirzaei, Siroos

    2016-10-07

    The prostate-specific membrane antigen (PSMA) is a cell surface protein, which is overexpressed in nearly all cases of prostate cancer (PCa). PET imaging with (68)Ga-PSMA-HBED-CC has recently found widespread application in the diagnosis of recurrent PCa. In this study, the diagnostic potential of (64)Cu-labeled PSMA ligand (PSMA-617) PET in patients with PCa has been investigated. The study was conducted simultaneously at two nuclear medicine centers, Austria (Vienna, Center 1) and Germany (Bad Berka, Center 2). The patients (n = 29) included in this study were referred for PET (Center 1, 21 patients) or PET/CT (Center 2, 8 patients) imaging with either a high suspicion of recurrent disease or for possible surgical or PSMA radioligand therapy planning. PET images of the whole body were performed at 1 hour p.i. and additional images of the pelvis at 2 hours p.i. In 23 of 29 patients, at least one focus of pathological tracer uptake suspicious for primary disease in the prostate lobe or recurrent disease was detected. Among healthy organs, the salivary glands, kidneys, and liver showed the highest radiotracer uptake. Lesions suspicious for PCa were detected with excellent contrast as early as 1 hour p.i. with high detection rates even at low prostate-specific antigen (PSA) levels. The preliminary results of this study demonstrate the high potential of (64)Cu-PSMA ligand PET/CT imaging in patients with recurrent disease and in the primary staging of selected patients with progressive local disease. The acquired PET images showed an excellent resolution of the detected lesions with very high lesion-to- background contrast. Furthermore, the long half-life of (64)Cu allows distribution of the tracer to clinical PET centers that lack radiochemistry facilities for the preparation of (68)Ga-PSMA ligand (satellite concept).

  3. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  4. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hao; Li, Shujun; Yao, Liping; Liang, Jie; Nie, Yongzhan; Wu, Kaichun [Fourth Military Medical University, State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Xi' an (China); Cao, Xin; Lin, Yenan; Liu, Muhan; Liang, Jimin; Chen, Xueli [Xidian University, School of Life Science and Technology, Xi' an (China); Kang, Fei; Wang, Jing [Fourth Military Medical University, Department of Nuclear Medicine, Xijing Hospital, Xi' an (China); Wang, Min [Xi' an Children' s Hospital, Department of Gastroenterology, Xi' an (China)

    2015-06-01

    Cerenkov luminescence imaging (CLI) provides potential to use clinical radiotracers for optical imaging. The goal of this study was to present a newly developed endoscopic CLI (ECLI) system and illustrate its feasibility and potential in distinguishing and quantifying cancerous lesions of the GI tract. The ECLI system was established by integrating an electron-multiplying charge-coupled device camera with a flexible fibre endoscope. Phantom experiments and animal studies were conducted to test and illustrate the system in detecting and quantifying the presence of radionuclide in vitro and in vivo. A pilot clinical study was performed to evaluate our system in clinical settings. Phantom and mice experiments demonstrated its ability to acquire both the luminescent and photographic images with high accuracy. Linear quantitative relationships were also obtained when comparing the ECLI radiance with the radiotracer activity (r{sup 2} = 0.9779) and traditional CLI values (r{sup 2} = 0.9025). Imaging of patients revealed the potential of ECLI in the identification and quantification of cancerous tissue from normal, which showed good consistence with the clinical PET examination. The new ECLI system shows good consistence with the clinical PET examination and has great potential for clinical translation and in aiding detection of the GI tract disease. (orig.)

  5. Automated scoring of lymphocyte micronuclei by the MetaSystems Metafer image cytometry system and its application in studies of human mutagen sensitivity and biodosimetry of genotoxin exposure.

    Science.gov (United States)

    Rossnerova, Andrea; Spatova, Milada; Schunck, Christian; Sram, Radim J

    2011-01-01

    Automated image analysis scoring of micronuclei (MN) in cells can facilitate the objective and rapid measurement of genetic damage in mammalian and human cells. This approach was repeatedly developed and tested over the past two decades but none of the systems were sufficiently robust for routine analysis of MN until recently. New methodological, hardware and software developments have now allowed more advanced systems to become available. This mini-review presents the current stage of development and validation of the Metasystems Metafer MNScore system for automated image analysis scoring of MN in cytokinesis-blocked binucleated lymphocytes, which is the best-established method for studying MN formation in humans. The results and experience of users of this system from 2004 until today are reviewed in this paper. Significant achievements in the application of this method in research related to mutagen sensitivity phenotype in cancer risk, radiation biodosimetry and biomonitoring studies of air pollution (enriched by new data) are described. Advantages as well as limitations of automated image analysis in comparison with traditional visual analysis are discussed. The current increased use of the Metasystems Metafer MNScore system in various studies and the growing number of publications based on automated image analysis scoring of MN is promising for the ongoing and future application of this approach.

  6. Humanity in God's Image: An Interdisciplinary Exploration

    DEFF Research Database (Denmark)

    Welz, Claudia

    How can we, in our times, understand the biblical concept that human beings have been created in the image of an invisible God? This is a perennial but increasingly pressing question that lies at the heart of theological anthropology. Humanity in God's Image: An Interdisciplinary Exploration....... Claudia Welz offers an interdisciplinary exploration of theological and ethical 'visions' of the invisible. By analysing poetry and art, Welz exemplifies human self-understanding in the interface between the visual and the linguistic. The content of the imago Dei cannot be defined apart from the image...

  7. Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study.

    Science.gov (United States)

    Noureddine, Yacine; Bitz, Andreas K; Ladd, Mark E; Thürling, Markus; Ladd, Susanne C; Schaefers, Gregor; Kraff, Oliver

    2015-12-01

    Over the last decade, the number of clinical MRI studies at 7 T has increased dramatically. Since only limited information about the safety of implants/tattoos is available at 7 T, many centers either conservatively exclude all subjects with implants/tattoos or have started to perform dedicated tests for selected implants. This work presents our experience in imaging volunteers with implants/tattoos at 7 T over the last seven and a half years. 1796 questionnaires were analyzed retrospectively to identify subjects with implants/tattoos imaged at 7 T. For a total of 230 subjects, the type of local transmit/receive RF coil used for examination, imaging sequences, acquisition time, and the type of implants/tattoos and their location with respect to the field of view were documented. These subjects had undergone examination after careful consideration by an internal safety panel consisting of three experts in MR safety and physics. None of the subjects reported sensations of heat or force before, during, or after the examination. None expressed any discomfort related to implants/tattoos. Artifacts were reported in 52% of subjects with dental implants; all artifacts were restricted to the mouth area and did not affect image quality in the brain parenchyma. Our initial experience at 7 T indicates that a strict rejection of subjects with tattoos and/or implants is not justified. Imaging can be conditionally performed in carefully selected subjects after collection of substantial safety information and evaluation of the detailed exposure scenario (RF coil/type and position of implant). Among the assessed subjects with tattoos, no side effects from the exposure to 7 T MRI were reported.

  8. The human dorsal stream adapts to real actions and 3D shape processing: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Króliczak, G; McAdam, T D; Quinlan, D J; Culham, J C

    2008-11-01

    We tested whether the control of real actions in an ever-changing environment would show any dependence on prior actions elicited by instructional cues a few seconds before. To this end, adaptation of the functional magnetic resonance imaging signal was measured while human participants sequentially grasped three-dimensional objects in an event-related design, using grasps oriented along the same or a different axis of either the same or a different object shape. We found that the bilateral anterior intraparietal sulcus, an area previously linked to the control of visually guided grasping, along with other areas of the intraparietal sulcus, the left supramarginal gyrus, and the right mid superior parietal lobe showed clear adaptation following both repeated grasps and repeated objects. In contrast, the left ventral premotor cortex and the bilateral dorsal premotor cortex, the two premotor areas often linked to response selection, action planning, and execution, showed only grasp-selective adaptation. These results suggest that, even in real action guidance, parietofrontal areas demonstrate differential involvement in visuomotor processing dependent on whether the action or the object has been previously experienced.

  9. Real time imaging of human progenitor neurogenesis.

    Directory of Open Access Journals (Sweden)

    Thomas M Keenan

    Full Text Available Human neural progenitors are increasingly being employed in drug screens and emerging cell therapies targeted towards neurological disorders where neurogenesis is thought to play a key role including developmental disorders, Alzheimer's disease, and depression. Key to the success of these applications is understanding the mechanisms by which neurons arise. Our understanding of development can provide some guidance but since little is known about the specifics of human neural development and the requirement that cultures be expanded in vitro prior to use, it is unclear whether neural progenitors obey the same developmental mechanisms that exist in vivo. In previous studies we have shown that progenitors derived from fetal cortex can be cultured for many weeks in vitro as undifferentiated neurospheres and then induced to undergo neurogenesis by removing mitogens and exposing them to supportive substrates. Here we use live time lapse imaging and immunocytochemical analysis to show that neural progenitors use developmental mechanisms to generate neurons. Cells with morphologies and marker profiles consistent with radial glia and recently described outer radial glia divide asymmetrically and symmetrically to generate multipolar intermediate progenitors, a portion of which express ASCL1. These multipolar intermediate progenitors subsequently divide symmetrically to produce CTIP2(+ neurons. This 3-cell neurogenic scheme echoes observations in rodents in vivo and in human fetal slice cultures in vitro, providing evidence that hNPCs represent a renewable and robust in vitro assay system to explore mechanisms of human neurogenesis without the continual need for fresh primary human fetal tissue. Knowledge provided by this and future explorations of human neural progenitor neurogenesis will help maximize the safety and efficacy of new stem cell therapies by providing an understanding of how to generate physiologically-relevant cell types that maintain their

  10. A Simple Method for Establishing Adherent Ex Vivo Explant Cultures from Human Eye Pathologies for Use in Subsequent Calcium Imaging and Inflammatory Studies

    Directory of Open Access Journals (Sweden)

    Sofija Andjelic

    2014-01-01

    Full Text Available A novel, simple, and reproducible method for cultivating pathological tissues obtained from human eyes during surgery was developed using viscoelastic material as a tissue adherent to facilitate cell attachment and expansion and calcium imaging of cultured cells challenged by mechanical and acetylcholine (ACh stimulation as well as inflammatory studies. Anterior lens capsule-lens epithelial cells (aLC-LECs from cataract surgery and proliferative diabetic retinopathy (PDR fibrovascular epiretinal membranes (fvERMs from human eyes were used in the study. We hereby show calcium signaling in aLC-LECs by mechanical and acetylcholine (ACh stimulation and indicate presence of ACh receptors in these cells. Furthermore, an ex vivo study model was established for measuring the inflammatory response in fvERMs and aLC-LECs upon TNFα treatment.

  11. Image enhancement using thermal-visible fusion for human detection

    Science.gov (United States)

    Zaihidee, Ezrinda Mohd; Hawari Ghazali, Kamarul; Zuki Saleh, Mohd

    2017-09-01

    An increased interest in detecting human beings in video surveillance system has emerged in recent years. Multisensory image fusion deserves more research attention due to the capability to improve the visual interpretability of an image. This study proposed fusion techniques for human detection based on multiscale transform using grayscale visual light and infrared images. The samples for this study were taken from online dataset. Both images captured by the two sensors were decomposed into high and low frequency coefficients using Stationary Wavelet Transform (SWT). Hence, the appropriate fusion rule was used to merge the coefficients and finally, the final fused image was obtained by using inverse SWT. From the qualitative and quantitative results, the proposed method is more superior than the two other methods in terms of enhancement of the target region and preservation of details information of the image.

  12. A Paradigm Shift: Detecting Human Rights Violations Through Web Images

    OpenAIRE

    Kalliatakis, Grigorios; Ehsan, Shoaib; McDonald-Maier, Klaus D.

    2017-01-01

    The growing presence of devices carrying digital cameras, such as mobile phones and tablets, combined with ever improving internet networks have enabled ordinary citizens, victims of human rights abuse, and participants in armed conflicts, protests, and disaster situations to capture and share via social media networks images and videos of specific events. This paper discusses the potential of images in human rights context including the opportunities and challenges they present. This study d...

  13. Pilot study on real-time motion detection in UAS video data by human observer and image exploitation algorithm

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Voit, Michael; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2017-05-01

    Real-time motion video analysis is a challenging and exhausting task for the human observer, particularly in safety and security critical domains. Hence, customized video analysis systems providing functions for the analysis of subtasks like motion detection or target tracking are welcome. While such automated algorithms relieve the human operators from performing basic subtasks, they impose additional interaction duties on them. Prior work shows that, e.g., for interaction with target tracking algorithms, a gaze-enhanced user interface is beneficial. In this contribution, we present an investigation on interaction with an independent motion detection (IDM) algorithm. Besides identifying an appropriate interaction technique for the user interface - again, we compare gaze-based and traditional mouse-based interaction - we focus on the benefit an IDM algorithm might provide for an UAS video analyst. In a pilot study, we exposed ten subjects to the task of moving target detection in UAS video data twice, once performing with automatic support, once performing without it. We compare the two conditions considering performance in terms of effectiveness (correct target selections). Additionally, we report perceived workload (measured using the NASA-TLX questionnaire) and user satisfaction (measured using the ISO 9241-411 questionnaire). The results show that a combination of gaze input and automated IDM algorithm provides valuable support for the human observer, increasing the number of correct target selections up to 62% and reducing workload at the same time.

  14. 99mTc-PR81 as a Potential Agent for Imaging Human Breast Cancer; Radiolabeling, Quality Control & Radioimmunoscintigraphic Studies in Mouse Models

    Directory of Open Access Journals (Sweden)

    "M. Salouti

    2005-08-01

    Full Text Available Introduction & Background: Breast cancer is the sec-ond leading cause of cancer death in women. More than 180,000 women are diagnosed with breast can-cer each year in the United States. Radioimmunoscin-tigraphy is a technique which uses radiolabeled anti-bodies to visualize tumors, taking advantage of anti-gens preferentially expressed by malignant tissues. The PR81 is a new murine anti-MUC1 monoclonal antibody that was found to react with the membrane extracts of several human breast cancerous tissues. In this study we have developed a method for direct la-beling of this MAb with 99mTc which is very simple, rapid and efficient. The quality control of the new agent and imaging studies in BALB/c mice bearing breast tumor xenografts were performed. Materials & Methods: The Ab reduction was per-formed with 2-mercaptoethanol (2-ME at a molar ratio of 2000:1 (2-ME:MAb and reduced Ab was la-beled with 99mTc via methylene diphosphonate (MDP as a transchelator. The labeling efficiency was determined by ITLC. The amount of radiocolloids was measured by cellulose nitrate electrophoresis. Stability of labeled product was checked in fresh hu-man serum by gel filtration chromatography (FPLC over 24 hrs. The integrity of labeled MAb was checked by means of SDS-PAGE. Cell-binding assay was used to test binding ability of 99mTc-PR81 to MCF 7 cells. Biodistribution was studied in normal BALB/c mice at 4 and 24 hr post-injection. The tumor imag-ing was performed in female BALB/c mice with breast tumor xenografts at 24 hr after the new com-plex injection. Results: The labeling efficiency was 94.2%±2.3 and radiocolloids were 2.5%±1.7. In vitro stability was 70%±5.7 in fresh human serum over 24 hrs. There was no significant Ab fragmentation due to labeling procedure. Both labeled and unlabeled PR81 were able to compete for binding to MCF 7 cells. Biodis-tribution studies in normal BALB/c mice showed that there was no important accumulation in any organ. The

  15. Imaging's insights into human violence.

    Science.gov (United States)

    Church, Elizabeth J

    2014-01-01

    Following every well-publicized act of incomprehensible violence, the news media rush to interview neighbors, family members, and experts in an attempt to discover what could have led an individual to commit such a barbarous act. Certain stock answers are reiterated: video games, bullying, violent films, mental illness, the availability of guns, and a society that is increasingly both anonymous and callous. Might imaging be one of the more valuable keys to unlocking the mysteries of violent, aggressive people? This article explores these questions and their complex answers in the context of violent individuals.

  16. Experimental study of heavy-ion computed tomography using a scintillation screen and an electron-multiplying charged coupled device camera for human head imaging

    Science.gov (United States)

    Muraishi, Hiroshi; Hara, Hidetake; Abe, Shinji; Yokose, Mamoru; Watanabe, Takara; Takeda, Tohoru; Koba, Yusuke; Fukuda, Shigekazu

    2016-03-01

    We have developed a heavy-ion computed tomography (IonCT) system using a scintillation screen and an electron-multiplying charged coupled device (EMCCD) camera that can measure a large object such as a human head. In this study, objective with the development of the system was to investigate the possibility of applying this system to heavy-ion treatment planning from the point of view of spatial resolution in a reconstructed image. Experiments were carried out on a rotation phantom using 12C accelerated up to 430 MeV/u by the Heavy-Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). We demonstrated that the reconstructed image of an object with a water equivalent thickness (WET) of approximately 18 cm was successfully achieved with the spatial resolution of 1 mm, which would make this IonCT system worth applying to the heavy-ion treatment planning for head and neck cancers.

  17. Average Gait Differential Image Based Human Recognition

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI, AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition.

  18. Cross-validation of serial optical coherence scanning and diffusion tensor imaging: a study on neural fiber maps in human medulla oblongata.

    Science.gov (United States)

    Wang, Hui; Zhu, Junfeng; Reuter, Martin; Vinke, Louis N; Yendiki, Anastasia; Boas, David A; Fischl, Bruce; Akkin, Taner

    2014-10-15

    We established a strategy to perform cross-validation of serial optical coherence scanner imaging (SOCS) and diffusion tensor imaging (DTI) on a postmortem human medulla. Following DTI, the sample was serially scanned by SOCS, which integrates a vibratome slicer and a multi-contrast optical coherence tomography rig for large-scale three-dimensional imaging at microscopic resolution. The DTI dataset was registered to the SOCS space. An average correlation coefficient of 0.9 was found between the co-registered fiber maps constructed by fractional anisotropy and retardance contrasts. Pixelwise comparison of fiber orientations demonstrated good agreement between the DTI and SOCS measures. Details of the comparison were studied in regions exhibiting a variety of fiber organizations. DTI estimated the preferential orientation of small fiber tracts; however, it didn't capture their complex patterns as SOCS did. In terms of resolution and imaging depth, SOCS and DTI complement each other, and open new avenues for cross-modality investigations of the brain.

  19. IMAGING WHITE MATTER IN HUMAN BRAINSTEM

    Directory of Open Access Journals (Sweden)

    Anastasia A Ford

    2013-07-01

    Full Text Available The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted MRI may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging (HARDI of an intact excised human brainstem performed at 11.1T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST, superior (SCP and middle cerebellar peduncle (MCP, and medial lemniscus (ML pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.

  20. Human gene therapy and imaging in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Andreas H.; Winkler, Alexandra [Max Planck-Institute for Neurological Research, Center of Molecular Medicine (CMMC) and Department of Neurology, Cologne (Germany); MPI for Neurological Research, Laboratory for Gene Therapy and Molecular Imaging, Cologne (Germany); Castro, Maria G.; Lowenstein, Pedro [University of California Los Angeles (United States). Department of Medicine

    2005-12-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and ''phenotyping'' of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy's experimental knowledge into clinical applications and the way in which this process is being

  1. PET imaging of human cardiac opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Villemagne, Patricia S.R.; Dannals, Robert F. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Ravert, Hayden T. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Frost, James J. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2002-10-01

    The presence of opioid peptides and receptors and their role in the regulation of cardiovascular function has been previously demonstrated in the mammalian heart. The aim of this study was to image {mu} and {delta} opioid receptors in the human heart using positron emission tomography (PET). Five subjects (three females, two males, 65{+-}8 years old) underwent PET scanning of the chest with [{sup 11}C]carfentanil ([{sup 11}C]CFN) and [{sup 11}C]-N-methyl-naltrindole ([{sup 11}C]MeNTI) and the images were analyzed for evidence of opioid receptor binding in the heart. Either [{sup 11}C]CFN or [{sup 11}C]MeNTI (20 mCi) was injected i.v. with subsequent dynamic acquisitions over 90 min. For the blocking studies, either 0.2 mg/kg or 1 mg/kg of naloxone was injected i.v. 5 min prior to the injection of [{sup 11}C]CFN and [{sup 11}C]MeNTI, respectively. Regions of interest were placed over the left ventricle, left ventricular chamber, lung and skeletal muscle. Graphical analysis demonstrated average baseline myocardial binding potentials (BP) of 4.37{+-}0.91 with [{sup 11}C]CFN and 3.86{+-}0.60 with [{sup 11}C]MeNTI. Administration of 0.2 mg/kg naloxone prior to [{sup 11}C]CFN produced a 25% reduction in BP in one subject in comparison with baseline values, and a 19% decrease in myocardial distribution volume (DV). Administration of 1 mg/kg of naloxone before [{sup 11}C]MeNTI in another subject produced a 14% decrease in BP and a 21% decrease in the myocardial DV. These results demonstrate the ability to image these receptors in vivo by PET. PET imaging of cardiac opioid receptors may help to better understand their role in cardiovascular pathophysiology and the effect of abuse of opioids and drugs on heart function. (orig.)

  2. Humanities, Digital Humanities, Media studies, Internet studies

    DEFF Research Database (Denmark)

    Brügger, Niels

    the interplay between four areas which until now to a certain extent have been separated: Traditional Hu- manities, Digital Humanities, Media studies, and Internet studies. The vision is followed by an outline of how it can be unfolded in concrete activities, in the form of research projects, research...

  3. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    Science.gov (United States)

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  4. Humanities, Digital Humanities, Media studies, Internet studies

    DEFF Research Database (Denmark)

    Brügger, Niels

    the interplay between four areas which until now to a certain extent have been separated: Traditional Hu- manities, Digital Humanities, Media studies, and Internet studies. The vision is followed by an outline of how it can be unfolded in concrete activities, in the form of research projects, research......Todays expanding digital landscape constitutes an important research object as well as the research environment for the Humanities at the beginning of the 21st century. Taking this state of affairs as a starting point this inaugural lecture presents a vision for how the digital affects...

  5. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  6. Hierarchical imaging of the human knee

    Science.gov (United States)

    Schulz, Georg; Götz, Christian; Deyhle, Hans; Müller-Gerbl, Magdalena; Zanette, Irene; Zdora, Marie-Christine; Khimchenko, Anna; Thalmann, Peter; Rack, Alexander; Müller, Bert

    2016-10-01

    Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.

  7. Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Cahill, Catherine M; Stroman, Patrick W

    2011-04-01

    Functional magnetic resonance imaging (fMRI) has greatly advanced our current understanding of pain, although most studies to date have focused on imaging of cortical structures. In the present study, we have used fMRI at 3 T to investigate the neural activity evoked by thermal sensation and pain (42 °C and 46 °C) throughout the entire lower neuroaxis from the first synapse in the spinal cord rostral to the thalamus in healthy subjects. The results demonstrate that noxious thermal stimulation (46 °C) produces consistent activity within various structures known to be involved in the pain matrix including the dorsal spinal cord, reticular formation, periaqueductal gray and rostral ventral medulla. However, additional areas of activity were evident that are not considered to be part of the pain matrix, including the olivary nucleus. Thermal stimulation (42 °C) reported as either not painful or mildly painful produced quantitative, but not qualitative, differences in neuronal activity depending on the order of experiments. Activity was greater in the spinal cord and brain stem in earlier experiments, compared with repeated experiments after the more noxious (46 °C) stimulus had been applied. This study provides significant insight into how the lower neuroaxis integrates and responds to pain in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Diagnose human colonic tissues by terahertz near-field imaging

    Science.gov (United States)

    Chen, Hua; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhao, Tian

    2015-03-01

    Based on a terahertz (THz) pipe-based near-field imaging system, we demonstrate the capability of THz imaging to diagnose freshly surgically excised human colonic tissues. Through THz near-field scanning the absorbance of the colonic tissues, the acquired images can clearly distinguish cancerous tissues from healthy tissues fast and automatically without pathological hematoxylin and eosin stain diagnosis. A statistical study on 58 specimens (20 healthy tissues and 38 tissues with tumor) from 31 patients (mean age: 59 years; range: 46 to 79 years) shows that the corresponding diagnostic sensitivity and specificity on colonic tissues are both 100%. Due to its capability to perform quantitative analysis, our study indicates the potential of the THz pipe-based near-field imaging for future automation on human tumor pathological examinations.

  9. Research on automatic human chromosome image analysis

    Science.gov (United States)

    Ming, Delie; Tian, Jinwen; Liu, Jian

    2007-11-01

    Human chromosome karyotyping is one of the essential tasks in cytogenetics, especially in genetic syndrome diagnoses. In this thesis, an automatic procedure is introduced for human chromosome image analysis. According to different status of touching and overlapping chromosomes, several segmentation methods are proposed to achieve the best results. Medial axis is extracted by the middle point algorithm. Chromosome band is enhanced by the algorithm based on multiscale B-spline wavelets, extracted by average gray profile, gradient profile and shape profile, and calculated by the WDD (Weighted Density Distribution) descriptors. The multilayer classifier is used in classification. Experiment results demonstrate that the algorithms perform well.

  10. The effect of musical training on the neural correlates of math processing: a functional magnetic resonance imaging study in humans.

    Science.gov (United States)

    Schmithorst, Vincent J; Holland, Scott K

    2004-01-16

    The neural correlates of the previously hypothesized link between formal musical training and mathematics performance are investigated using functional magnetic resonance imaging (fMRI). FMRI was performed on fifteen normal adults, seven with musical training since early childhood, and eight without, while they mentally added and subtracted fractions. Musical training was associated with increased activation in the left fusiform gyrus and prefrontal cortex, and decreased activation in visual association areas and the left inferior parietal lobule during the mathematical task. We hypothesize that the correlation between musical training and math proficiency may be associated with improved working memory performance and an increased abstract representation of numerical quantities.

  11. An exploratory study on the driving method of speech synthesis based on the human eye reading imaging data

    Science.gov (United States)

    Gao, Pei-pei; Liu, Feng

    2016-10-01

    With the development of information technology and artificial intelligence, speech synthesis plays a significant role in the fields of Human-Computer Interaction Techniques. However, the main problem of current speech synthesis techniques is lacking of naturalness and expressiveness so that it is not yet close to the standard of natural language. Another problem is that the human-computer interaction based on the speech synthesis is too monotonous to realize mechanism of user subjective drive. This thesis introduces the historical development of speech synthesis and summarizes the general process of this technique. It is pointed out that prosody generation module is an important part in the process of speech synthesis. On the basis of further research, using eye activity rules when reading to control and drive prosody generation was introduced as a new human-computer interaction method to enrich the synthetic form. In this article, the present situation of speech synthesis technology is reviewed in detail. Based on the premise of eye gaze data extraction, using eye movement signal in real-time driving, a speech synthesis method which can express the real speech rhythm of the speaker is proposed. That is, when reader is watching corpora with its eyes in silent reading, capture the reading information such as the eye gaze duration per prosodic unit, and establish a hierarchical prosodic pattern of duration model to determine the duration parameters of synthesized speech. At last, after the analysis, the feasibility of the above method is verified.

  12. Demographic Estimation from Face Images: Human vs. Machine Performance.

    Science.gov (United States)

    Han, Hu; Otto, Charles; Liu, Xiaoming; Jain, Anil K

    2015-06-01

    Demographic estimation entails automatic estimation of age, gender and race of a person from his face image, which has many potential applications ranging from forensics to social media. Automatic demographic estimation, particularly age estimation, remains a challenging problem because persons belonging to the same demographic group can be vastly different in their facial appearances due to intrinsic and extrinsic factors. In this paper, we present a generic framework for automatic demographic (age, gender and race) estimation. Given a face image, we first extract demographic informative features via a boosting algorithm, and then employ a hierarchical approach consisting of between-group classification, and within-group regression. Quality assessment is also developed to identify low-quality face images that are difficult to obtain reliable demographic estimates. Experimental results on a diverse set of face image databases, FG-NET (1K images), FERET (3K images), MORPH II (75K images), PCSO (100K images), and a subset of LFW (4K images), show that the proposed approach has superior performance compared to the state of the art. Finally, we use crowdsourcing to study the human perception ability of estimating demographics from face images. A side-by-side comparison of the demographic estimates from crowdsourced data and the proposed algorithm provides a number of insights into this challenging problem.

  13. Studies of human vision recognition: some improvements

    Science.gov (United States)

    Wu, Bo-Wen; Fang, Yi-Chin; Chang, Lin-Song

    2010-01-01

    This paper proposes a new method to improve human recognition by artificial intelligence, specifically of images without the interference of high frequencies. The human eye is the most delicate optical system. Notwithstanding the dramatic progression of its structure and functions through a long evolution, the capability of visual recognition is not yet close to perfection. This paper is a study, based on the limitations of recognition by the human eye, of image recognition through the application of artificial intelligence. Those aspects which have been explored focus on human eye modeling, including aberration analysis, creative models of the human eye, human vision recognition characteristics and various mathematical models for verification. By using images consisting of four black and white bands and modulation transfer function (MTF) curve evaluation recognition capability on all the studied models, the optimum model most compatible with the physiology of the human eye is found.

  14. Early Stage Disease Diagnosis System Using Human Nail Image Processing

    Directory of Open Access Journals (Sweden)

    Trupti S. Indi

    2016-07-01

    Full Text Available Human’s hand nail is analyzed to identify many diseases at early stage of diagnosis. Study of person hand nail color helps in identification of particular disease in healthcare domain. The proposed system guides in such scenario to take decision in disease diagnosis. The input to the proposed system is person nail image. The system will process an image of nail and extract features of nail which is used for disease diagnosis. Human nail consist of various features, out of which proposed system uses nail color changes for disease diagnosis. Here, first training set data is prepared using Weka tool from nail images of patients of specific diseases. A feature extracted from input nail image is compared with the training data set to get result. In this experiment we found that using color feature of nail image average 65% results are correctly matched with training set data during three tests conducted.

  15. Enhancing FTIR imaging capabilities with two-dimensional correlation spectroscopy (2DCOS): A study of concentration gradients of collagen and proteoglycans in human patellar cartilage

    Science.gov (United States)

    Jiang, Eric Y.; Rieppo, Jarno

    2006-11-01

    This paper explores a new application of two-dimensional correlation spectroscopy (2DCOS) in FTIR spectroscopic imaging analysis of biological samples. A particular example demonstrated in this paper is the characterization of concentration gradients of collagen and proteoglycans in human patellar cartilage. A focal plane array detector-based FTIR imaging system has been proven to be an efficient tool to detect early collagen and proteoglycans degradation in developing osteoarthrosis through evaluating compositional changes of osteoarthritic cartilage along the depth. However, the closely overlapped bands of collagen and proteoglycans make normal spectral and spatial analysis difficult. With 2DCOS analysis of the imaging data, it is possible to enhance the spectral resolution and reveal distinctive compositional changes that are normally hidden with conventional approaches. The combined technique, FTIR imaging enhanced with 2DCOS, provides new possibilities to solve challenging problems in the analysis of complex biological systems.

  16. [Leonardo da Vinci the first human body imaging specialist. A brief communication on the thorax oseum images].

    Science.gov (United States)

    Cicero, Raúl; Criales, José Luis; Cardoso, Manuel

    2009-01-01

    The impressive development of computed tomography (CT) techniques such as the three dimensional helical CT produces a spatial image of the thoracic skull. At the beginning of the 16th century Leonardo da Vinci drew with great precision the thorax oseum. These drawings show an outstanding similarity with the images obtained by three dimensional helical CT. The cumbersome task of the Renaissance genius is a prime example of the careful study of human anatomy. Modern imaging techniques require perfect anatomic knowledge of the human body in order to generate exact interpretations of images. Leonardo's example is alive for anybody devoted to modern imaging studies.

  17. Automated image registration for FDOPA PET studies

    Science.gov (United States)

    Lin, Kang-Ping; Huang, Sung-Cheng; Yu, Dan-Chu; Melega, William; Barrio, Jorge R.; Phelps, Michael E.

    1996-12-01

    In this study, various image registration methods are investigated for their suitability for registration of L-6-[18F]-fluoro-DOPA (FDOPA) PET images. Five different optimization criteria including sum of absolute difference (SAD), mean square difference (MSD), cross-correlation coefficient (CC), standard deviation of pixel ratio (SDPR), and stochastic sign change (SSC) were implemented and Powell's algorithm was used to optimize the criteria. The optimization criteria were calculated either unidirectionally (i.e. only evaluating the criteria for comparing the resliced image 1 with the original image 2) or bidirectionally (i.e. averaging the criteria for comparing the resliced image 1 with the original image 2 and those for the sliced image 2 with the original image 1). Monkey FDOPA images taken at various known orientations were used to evaluate the accuracy of different methods. A set of human FDOPA dynamic images was used to investigate the ability of the methods for correcting subject movement. It was found that a large improvement in performance resulted when bidirectional rather than unidirectional criteria were used. Overall, the SAD, MSD and SDPR methods were found to be comparable in performance and were suitable for registering FDOPA images. The MSD method gave more adequate results for frame-to-frame image registration for correcting subject movement during a dynamic FDOPA study. The utility of the registration method is further demonstrated by registering FDOPA images in monkeys before and after amphetamine injection to reveal more clearly the changes in spatial distribution of FDOPA due to the drug intervention.

  18. Images of war: using satellite images for human rights monitoring in Turkish Kurdistan.

    Science.gov (United States)

    de Vos, Hugo; Jongerden, Joost; van Etten, Jacob

    2008-09-01

    In areas of war and armed conflict it is difficult to get trustworthy and coherent information. Civil society and human rights groups often face problems of dealing with fragmented witness reports, disinformation of war propaganda, and difficult direct access to these areas. Turkish Kurdistan was used as a case study of armed conflict to evaluate the potential use of satellite images for verification of witness reports collected by human rights groups. The Turkish army was reported to be burning forests, fields and villages as a strategy in the conflict against guerrilla uprising. This paper concludes that satellite images are useful to validate witness reports of forest fires. Even though the use of this technology for human rights groups will depend on some feasibility factors such as prices, access and expertise, the images proved to be key for analysis of spatial aspects of conflict and valuable for reconstructing a more trustworthy picture.

  19. Human movement analysis with image processing in real time

    Science.gov (United States)

    Fauvet, Eric; Paindavoine, Michel; Cannard, F.

    1991-04-01

    In the field of the human sciences, a lot of applications needs to know the kinematic characteristics of the human movements Psycology is associating the characteristics with the control mechanism, sport and biomechariics are associating them with the performance of the sportman or of the patient. So the trainers or the doctors can correct the gesture of the subject to obtain a better performance if he knows the motion properties. Roherton's studies show the children motion evolution2 . Several investigations methods are able to measure the human movement But now most of the studies are based on image processing. Often the systems are working at the T.V. standard (50 frame per secund ). they permit only to study very slow gesture. A human operator analyses the digitizing sequence of the film manually giving a very expensive, especially long and unprecise operation. On these different grounds many human movement analysis systems were implemented. They consist of: - markers which are fixed to the anatomical interesting points on the subject in motion, - Image compression which is the art to coding picture data. Generally the compression Is limited to the centroid coordinates calculation tor each marker. These systems differ from one other in image acquisition and markers detection.

  20. A functional magnetic resonance imaging study of human brain in pain-related areas induced by electrical stimulation with different intensities

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2010-01-01

    Full Text Available Background: Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. Aim: This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Materials and Methods: Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. Results: The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII, insula, anterior cingulate cortex (ACC, thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Conclusion: Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.

  1. Human body region enhancement method based on Kinect infrared imaging

    Science.gov (United States)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  2. Lipid droplets formation in human endothelial cells in response to polyunsaturated fatty acids and 1-methyl-nicotinamide (MNA); confocal Raman imaging and fluorescence microscopy studies.

    Science.gov (United States)

    Majzner, Katarzyna; Chlopicki, Stefan; Baranska, Malgorzata

    2016-04-01

    In this work the formation of lipid droplets (LDs) in human endothelial cells culture in response to the uptake of polyunsaturated fatty acids (PUFAs) was studied. Additionally, an effect of 1-methylnicotinamide (MNA) on the process of LDs formation was investigated. LDs have been previously described structurally and to some degree biochemically, however neither the precise function of LDs nor the factors responsible for LD induction have been clarified. Lipid droplets, sometimes referred in the literature as lipid bodies are organelles known to regulate neutrophil, eosinophil, or tumor cell functions but their presence and function in the endothelium is largely unexplored. 3D linear Raman spectroscopy was used to study LDs formation in vitro in a single endothelial cell. The method provides information about distribution and size of LDs as well as their composition. The incubation of endothelial cells with various PUFAs resulted in formation of LDs. As a complementary method for LDs identification a fluorescence microscopy was applied. Fluorescence measurements confirmed the Raman results suggesting endothelial cells uptake of PUFAs and subsequent LDs formation in the cytoplasm of the endothelium. Furthermore, MNA seem to potentiate intracellular uptake of PUFAs to the endothelium that may bear physiological and pharmacological significance. Confocal Raman imaging of HAoEC cell with LDs.

  3. Photoacoustic imaging of inflammatory arthritis in human joints

    Science.gov (United States)

    Jo, Janggun; Xu, Guan; Marquardt, April; Francis, Sheeja; Yuan, Jie; Girish, Dhanuj; Girish, Gandikota; Wang, Xueding

    2016-02-01

    The ducal imaging with photoacoustic imaging (PAI) that is an emerging technology and clinical ultrasound imaging that is an established modality is developed for the imaging of early inflammatory arthritis. PAI is sensitive to blood volume, not limited by flow like ultrasound, holding great promise for the earliest detection of increase in blood volume and angiogenesis - a key early finding inflammation PAI has the capability of assessing inflammation in superficial human soft tissues, offering potential benefits in diagnosis, treatment and monitoring of inflammatory arthritis. PAI combined with ultrasonography (US), is a real time dual-modality system developed and tested to identify active synovitis in metacarpophalangeal (MCP) joints of 10 arthritis patients and 10 normal volunteers. Photoacoustic images of the joints were acquired at 580-nm laser wavelength, which provided the desired balance between the optical contrast of hemoglobin over bone cortex and the imaging depth. Confirmed by US Doppler imaging, the results from ten patients and ten normal volunteers demonstrated satisfactory sensitivity of PAI in assessing enhanced blood flow due to active synovitis. This preliminary study suggests that photoacoustic imaging, by identifying early increase in blood volume, related to increased vascularity, a hallmark of joint inflammation, could be a valuable supplement to musculoskeletal US.

  4. A Study of Digital Image Enlargement and Enhancement

    Directory of Open Access Journals (Sweden)

    Hsueh-Yi Lin

    2014-01-01

    Full Text Available Most image enlargement techniques suffer the problem of zigzagged edges and jagged images following enlargement. Humans are sensitive to the edges of objects; if the edges in the image are sharp, the visual is considered to be high quality. To solve this problem, this paper presents a new and effective method for image enlargement and enhancement based on adaptive inverse hyperbolic tangent (AIHT algorithm. Conventional image enlargement and enhancement methods enlarge the image using interpolation, and subsequently enhance the image without considering image features. However, this study presents the method based on Adaptive Inverse Hyperbolic Tangent algorithm to enhance images according to image features before enlarging the image. Experimental results indicate that the proposed algorithm is capable of adaptively enhancing the image and extruding object details, thereby improving enlargements by smoothing the edge of the objects in the image.

  5. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  6. Monitoring human melanocytic cell responses to piperine using multispectral imaging

    Science.gov (United States)

    Samatham, Ravikant; Phillips, Kevin G.; Sonka, Julia; Yelma, Aznegashe; Reddy, Neha; Vanka, Meenakshi; Thuillier, Philippe; Soumyanath, Amala; Jacques, Steven

    2011-03-01

    Vitiligo is a depigmentary disease characterized by melanocyte loss attributed most commonly to autoimmune mechanisms. Currently vitiligo has a high incidence (1% worldwide) but a poor set of treatment options. Piperine, a compound found in black pepper, is a potential treatment for the depigmentary skin disease vitiligo, due to its ability to stimulate mouse epidermal melanocyte proliferation in vitro and in vivo. The present study investigates the use of multispectral imaging and an image processing technique based on local contrast to quantify the stimulatory effects of piperine on human melanocyte proliferation in reconstructed epidermis. We demonstrate the ability of the imaging method to quantify increased pigmentation in response to piperine treatment. The quantization of melanocyte stimulation by the proposed imaging technique illustrates the potential use of this technology to quickly assess therapeutic responses of vitiligo tissue culture models to treatment non-invasively.

  7. Study of 99m Tc-TRODAT-1 Imaging on Human Brain with Children Autism by Single Photon Emission Computed Tomography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: Evaluate the application values of 99mTc-2 β [ N, N'-bis( 2-mercaptoethy1 ) ethylenediamino ] methyl, 3 β -(4-chlorophenyl) tropane ( TRODAT-1 ) dopamine transporter (DAT) SPECT imaging in children autism, and offer the academic foundation to etiology, mechanism and clinical therapy of autism. Methods:Ten autistic children and ten healthy controls were examined with 99mTc-TRODAT-1 DAT SPECT imaging.Striatal specific uptake of 99mTc-TRODAT-1 was calculated with region of interest analysis according to the ratios between striatum and cerebellum [ (STR-BKG)/BKG]. Results:There was no difference in semiquantitative dopamine transporter between bilateral striatum in autistic children ( P = 0. 562) and in normal controls ( P = 0. 573 ); dopamine transporter in brain of patients with autism increased more significantly than that in normal controls ( P = 0. 017 ). Conclusion: Dopaminergic nervous system is dysfunction in human brain with children autism, and DAT 99mTc-TRODAT-1 SPECT imaging on human brain will help the imaging diagnosis of children autism.

  8. Human Body Image Edge Detection Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    李勇; 付小莉

    2003-01-01

    Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.

  9. [Quantitative Analysis of Wall Shear Stress for Human Carotid Bifurcation at Cardiac Phases by the Use of Phase Contrast Cine Magnetic Resonance Imaging: Computational Fluid Dynamics Study].

    Science.gov (United States)

    Saho, Tatsunori; Onishi, Hideo

    2015-12-01

    Detailed strategy for regional hemodynamics is significant for knowledge of plaque development on vascular diseases such as atherosclerosis. The aim of this study was to derive relation between atherosclerosis and hemodynamics at human carotid bifurcation by the use of computational fluid dynamics (CFD), and to provide more accurate hemodynamic information. Blood velocity datasets at common carotid artery were obtained by phase-contrast cine magnetic resonance imaging (PC cine MRI). Carotid bifurcation model was computed for systolic, mid-diastolic, and end-diastolic phase. Comparison of wall shear stress (WSS) was performed for each cardiac phase. PC cine MRI provided velocity measurement for common carotid artery with various cardiac phases. The blood velocity had acute variation from 0.21 m/s to 1.07 m/s at systolic phase. The variation of WSS during cardiac phase was presented at carotid bifurcation model. High shear stress area was observed at dividing wall for all cardiac phases. The systole-diastole WSS ratio was 10.15 at internal carotid side of bifurcation. And low shear stress (cine MRI was allowed to determine an accurate analysis condition. This led to the representation of hemodynamics in vivo.

  10. Automated regional behavioral analysis for human brain images

    National Research Council Canada - National Science Library

    Lancaster, Jack L; Laird, Angela R; Eickhoff, Simon B; Martinez, Michael J; Fox, P Mickle; Fox, Peter T

    2012-01-01

    Behavioral categories of functional imaging experiments along with standardized brain coordinates of associated activations were used to develop a method to automate regional behavioral analysis of human brain images...

  11. PET imaging of the brain serotonin transporters (SERT) with N,N-dimethyl-2-(2-amino-4-[{sup 18}F]fluorophenylthio)benzylamine (4-[{sup 18}F]-ADAM) in humans: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wen-Sheng [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); Changhua Christian Hospital, Department of Nuclear Medicine, Changhua (China); Huang, San-Yuan; Ho, Pei-Shen; Yeh, Chin-Bin [Tri-Service General Hospital, Department of Psychiatry, Taipei (China); Ma, Kuo-Hsing [National Defense Medical Center, Department of Biology and Anatomy, Taipei (China); Huang, Ya-Yao; Shiue, Chyng-Yann [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); PET Center, National Taiwan University Hospital, Department of Nuclear Medicine, Taipei (China); Liu, Ren-Syuan [Taipei Veterans General Hospital, Department of Nuclear Medicine, Taipei (China); Cheng, Cheng-Yi [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China)

    2013-01-15

    The aim of this study was to assess the feasibility of using 4-[{sup 18}F]-ADAM as a brain SERT imaging agent in humans. Enrolled in the study were 19 healthy Taiwanese subjects (11 men, 8 women; age 33 {+-} 9 years). The PET data were semiquantitatively analyzed and expressed as specific uptake ratios (SUR) and distribution volume ratios (DVR) using the software package PMOD. The SUR and DVR of 4-[{sup 18}F]-ADAM in the raphe nucleus (RN), midbrain (MB), thalamus (TH), striatum (STR) and prefrontal cortex (PFC) were determined using the cerebellum (CB) as the reference region. 4-[{sup 18}F]-ADAM bound to known SERT-rich regions in human brain. The order of the regional brain uptake was MB (RN) > TH > STR > PFC > CB. The DVR (n = 4, t* = 60 min) in the RN, TH, STR and PFC were 3.00 {+-} 0.50, 2.25 {+-} 0.45, 2.05 {+-} 0.31 and 1.40 {+-} 0.13, respectively. The optimal time for imaging brain SERT with 4-[{sup 18}F]-ADAM was 120-140 min after injection. At the optimal imaging time, the SURs (n = 15) in the MB, TH, STR, and PFC were 2.25 {+-} 0.20, 2.28 {+-} 0.20, 2.12 {+-} 0.18 and 1.47 {+-} 0.14, respectively. There were no significant differences in SERT availability between men and women (p < 0.05). The results of this study showed that 4-[{sup 18}F]-ADAM was safe for human studies and its distribution in human brain appeared to correlate well with the known distribution of SERT in the human brain. In addition, it had high specific binding and a reasonable optimal time for imaging brain SERT in humans. Thus, 4-[{sup 18}F]-ADAM may be feasible for assessing the status of brain SERT in humans. (orig.)

  12. Adult Human Neurogenesis: from Microscopy to Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Amanda eSierra

    2011-04-01

    Full Text Available Neural stem cells reside in well-defined areas of the adult human brain and are capable of gene-rating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases.

  13. A human brainstem glioma xenograft model enabled for bioluminescence imaging

    OpenAIRE

    Hashizume, Rintaro; Ozawa, Tomoko; Dinca, Eduard B.; Banerjee, Anuradha; Prados, Michael D.; James, Charles D.; Gupta, Nalin

    2009-01-01

    Despite the use of radiation and chemotherapy, the prognosis for children with diffuse brainstem gliomas is extremely poor. There is a need for relevant brainstem tumor models that can be used to test new therapeutic agents and delivery systems in pre-clinical studies. We report the development of a brainstem-tumor model in rats and the application of bioluminescence imaging (BLI) for monitoring tumor growth and response to therapy as part of this model. Luciferase-modified human glioblastoma...

  14. Imaging study on acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X H; Zhang, X Y [Synchrotron Radiation Research Center, Physics Department, and Surface Physics Laboratory (State Key Laboratory) of Fudan University, Shanghai 200433 (China); Liu, C L [Physics Department of Yancheng Teachers College, Yancheng 224002 (China); Dang, R S [Second Military Medical University, Shanghai 200433 (China); Ando, M [DDS center, Research Institute for Science and Technology, Tokyo University of Science, Yamasaki 2541, Noda, Chiba 278-8510 (Japan); Sugiyama, H [Photon Factory, Institute of Material Structure Science, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Chen, H S [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Ding, G H, E-mail: xy-zhang@fudan.edu.c [Shanghai Research Center of Acupuncture and Meridian, Shanghai 201203 (China)

    2009-09-01

    The topographic structures of acupuncture points were investigated by using the synchrotron radiation based Dark Field Image (DFI) method. Four following acupuncture points were studied: Sanyinjiao, Neiguan, Zusanli and Tianshu. We have found that at acupuncture point regions there exists the accumulation of micro-vessels. The images taken in the surrounding tissue out of the acupuncture points do not show such kind of structure. It is the first time to reveal directly the specific structure of acupuncture points by X-ray imaging.

  15. Imaging study on acupuncture points

    Science.gov (United States)

    Yan, X. H.; Zhang, X. Y.; Liu, C. L.; Dang, R. S.; Ando, M.; Sugiyama, H.; Chen, H. S.; Ding, G. H.

    2009-09-01

    The topographic structures of acupuncture points were investigated by using the synchrotron radiation based Dark Field Image (DFI) method. Four following acupuncture points were studied: Sanyinjiao, Neiguan, Zusanli and Tianshu. We have found that at acupuncture point regions there exists the accumulation of micro-vessels. The images taken in the surrounding tissue out of the acupuncture points do not show such kind of structure. It is the first time to reveal directly the specific structure of acupuncture points by X-ray imaging.

  16. The Protective Effect of Human Umbilical Cord Blood CD34+ Cells and Estradiol against Focal Cerebral Ischemia in Female Ovariectomized Rat: Cerebral MR Imaging and Immunohistochemical Study.

    Directory of Open Access Journals (Sweden)

    Ching-Chung Liang

    Full Text Available Human umbilical cord blood derived CD34+ stem cells are reported to mediate therapeutic effects in stroke animal models. Estrogen was known to protect against ischemic injury. The present study wished to investigate whether the protective effect of CD34+ cells against ischemic injury can be reinforced with complemental estradiol treatment in female ovariectomized rat and its possible mechanism. Experiment 1 was to determine the best optimal timing of CD34+ cell treatment for the neuroprotective effect after 60-min middle cerebral artery occlusion (MCAO. Experiment 2 was to evaluate the adjuvant effect of 17β-estradiol on CD34+ cell neuroprotection after MCAO. Experiment 1 showed intravenous infusion with CD34+ cells before MCAO (pre-treatment caused less infarction size than those infused after MCAO (post-treatment on 7T magnetic resonance T2-weighted images. Experiment 2 revealed infarction size was most significantly reduced after CD34+ + estradiol pre-treatment. When compared with no treatment group, CD34+ + estradiol pre-treatment showed significantly less ADC reduction at 2 h and 2 d, less CBF reduction at 2 h and less hyperperfusion at 2 d. The immunoreactivity of c-Fos, c-Jun and GFAP was attenuated, and BDNF showed significant recovery from 2 h to 2 d after MCAO, especially after CD34+ + estradiol pre-treatment. The present study suggests pre-treatment with CD34+ cells with complemental estradiol can be most protective against ischemic injury, which may act through stabilization of cerebral hemodynamics and normalization of the expressions of immediate early genes and BDNF.

  17. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  18. Image Magnification Based on the Human Visual Processing

    OpenAIRE

    Je, Sung-Kwan; Kim, Kwang-Baek; Cho, Jae-Hyun; Song, Doo-Heon

    2007-01-01

    In image processing, the interpolated magnification method brings about the problem of image loss such as the blocking and blurring phenomenon when the image is enlarged. In this paper, we proposed the magnification method considering the properties of human visual processing to solve such problems. As a result, our method is faster than any other algorithm that is capable of removing the blocking and blurring phenomenon when the image is enlarged. The cubic convolution interpolation in image...

  19. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    Science.gov (United States)

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.; Hall, Timothy J.

    2013-03-01

    The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth.

  20. Biodistribution and SPECT Imaging Study of 99mTc Labeling NGR Peptide in Nude Mice Bearing Human HepG2 Hepatoma

    Directory of Open Access Journals (Sweden)

    Wenhui Ma

    2014-01-01

    Full Text Available A peptide containing Asn-Gly-Arg(NGR sequence was synthesized and directly labeled with Tc. Its radiochemical characteristics, biodistribution, and SPECT imaging were evaluated in nude mice bearing human HepG2 hepatoma. Nude mice bearing HepG2 were randomly divided into 5 groups with 5 mice in each group and injected with ~7.4 MBq Tc-NGR. The SPECT images were acquired in 1, 4, 8, and 12 h postinjection via caudal vein. The metabolism of tracers was determined in major organs at different time points, which demonstrated rapid, significant tumor uptake and slow tumor washout. The control group mice were blocked by coinjecting unlabelled NGR (20 mg/kg. Tumor uptake was (2.52±0.83% ID/g at 1 h, with the highest uptake of (3.26±0.63% ID/g at 8 h. In comparison, the uptake of the blocked control group was (1.65±0.61% ID/g at 1 h after injection. The SPECT static images and the tumor/muscle (T/NT value were obtained. The highest T/NT value was 7.58±1.92 at 8 h. The xenografted tumor became visible at 1 h and the clearest image of the tumor was observed at 8 h. In conclusion, Tc-NGR can be efficiently prepared and it exhibited good properties for the potential SPECT imaging agent of tumor.

  1. Live cell imaging of in vitro human trophoblast syncytialization.

    Science.gov (United States)

    Wang, Rui; Dang, Yan-Li; Zheng, Ru; Li, Yue; Li, Weiwei; Lu, Xiaoyin; Wang, Li-Juan; Zhu, Cheng; Lin, Hai-Yan; Wang, Hongmei

    2014-06-01

    Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development. © 2014 by the Society for the Study of Reproduction, Inc.

  2. Image Pixel Fusion for Human Face Recognition

    CERN Document Server

    Bhowmik, Mrinal Kanti; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas

    2010-01-01

    In this paper we present a technique for fusion of optical and thermal face images based on image pixel fusion approach. Out of several factors, which affect face recognition performance in case of visual images, illumination changes are a significant factor that needs to be addressed. Thermal images are better in handling illumination conditions but not very consistent in capturing texture details of the faces. Other factors like sunglasses, beard, moustache etc also play active role in adding complicacies to the recognition process. Fusion of thermal and visual images is a solution to overcome the drawbacks present in the individual thermal and visual face images. Here fused images are projected into an eigenspace and the projected images are classified using a radial basis function (RBF) neural network and also by a multi-layer perceptron (MLP). In the experiments Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark for thermal and visual face images have been used. Compar...

  3. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin

    NARCIS (Netherlands)

    Fereidouni, F.; Bader, A.N.; Colonna, A.; Gerritsen, H.C.

    2014-01-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited auto-fluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral feat

  4. Viability of imaging structures inside human dentin using dental transillumination

    Science.gov (United States)

    Grandisoli, C. L.; Alves-de-Souza, F. D.; Costa, M. M.; Castro, L.; Ana, P. A.; Zezell, D. M.; Lins, E. C.

    2014-02-01

    Dental Transillumination (DT) is a technique for imaging internal structures of teeth by detecting infrared radiation transmitted throughout the specimens. It was successfully used to detect caries even considering dental enamel and dentin scatter infrared radiation strongly. Literature reports enamel's scattering coefficient is 10 to 30 times lower than dentin; this explain why DT is useful for imaging pathologies in dental enamel, but does not disable its using for imaging dental structures or pathologies inside the dentin. There was no conclusive data in the literature about the limitations of using DT to access biomedical information of dentin. The goal in this study was to present an application of DT to imaging internal structures of dentin. Slices of tooth were confectioned varying the thickness of groups from 0.5 mm up to 2,5 mm. For imaging a FPA InGaAs camera Xeva 1.7- 320 (900-1700 nm; Xenics, Inc., Belgium) and a 3W lamp-based broadband light source (Ocean Optics, Inc., USA) was used; bandpass optical filters at 1000+/-10 nm, 1100+/-10 nm, 1200+/-10 nm and 1300+/-50 nm spectral region were also applied to spectral selection. Images were captured for different camera exposure times and finally a computational processing was applied. The best results revealed the viability to imaging dent in tissue with thickness up to 2,5 mm without a filter (900-1700nm spectral range). After these results a pilot experiment of using DT to detect the pulp chamber of an incisive human tooth was made. New data showed the viability to imaging the pulp chamber of specimen.

  5. Studies on image compression and image reconstruction

    Science.gov (United States)

    Sayood, Khalid; Nori, Sekhar; Araj, A.

    1994-01-01

    During this six month period our works concentrated on three, somewhat different areas. We looked at and developed a number of error concealment schemes for use in a variety of video coding environments. This work is described in an accompanying (draft) Masters thesis. In the thesis we describe application of this techniques to the MPEG video coding scheme. We felt that the unique frame ordering approach used in the MPEG scheme would be a challenge to any error concealment/error recovery technique. We continued with our work in the vector quantization area. We have also developed a new type of vector quantizer, which we call a scan predictive vector quantization. The scan predictive VQ was tested on data processed at Goddard to approximate Landsat 7 HRMSI resolution and compared favorably with existing VQ techniques. A paper describing this work is included. The third area is concerned more with reconstruction than compression. While there is a variety of efficient lossless image compression schemes, they all have a common property that they use past data to encode future data. This is done either via taking differences, context modeling, or by building dictionaries. When encoding large images, this common property becomes a common flaw. When the user wishes to decode just a portion of the image, the requirement that the past history be available forces the decoding of a significantly larger portion of the image than desired by the user. Even with intelligent partitioning of the image dataset, the number of pixels decoded may be four times the number of pixels requested. We have developed an adaptive scanning strategy which can be used with any lossless compression scheme and which lowers the additional number of pixels to be decoded to about 7 percent of the number of pixels requested! A paper describing these results is included.

  6. Recognizing age-separated face images: humans and machines.

    Science.gov (United States)

    Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel

    2014-01-01

    Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components--facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario.

  7. Recognizing age-separated face images: humans and machines.

    Directory of Open Access Journals (Sweden)

    Daksha Yadav

    Full Text Available Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components--facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1 the age group of newborns and toddlers is easiest to estimate, (2 gender and ethnicity do not affect the judgment of age group estimation, (3 face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4 the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario.

  8. Matched filtering determines human visual search in natural images

    NARCIS (Netherlands)

    Toet, A.

    2011-01-01

    The structural image similarity index (SSIM), introduced by Wang and Bovik (IEEE Signal Processing Letters 9-3, pp. 81-84, 2002) measures the similarity between images in terms of luminance, contrast en structure. It has successfully been deployed to model human visual perception of image

  9. Human-Centered Object-Based Image Retrieval

    NARCIS (Netherlands)

    Broek, E.L. van den; Rikxoort, E.M. van; Schouten, T.E.

    2005-01-01

    A new object-based image retrieval (OBIR) scheme is introduced. The images are analyzed using the recently developed, human-based 11 colors quantization scheme and the color correlogram. Their output served as input for the image segmentation algorithm: agglomerative merging, which is extended to co

  10. Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method

    DEFF Research Database (Denmark)

    Sari, Hasan; Erlandsson, Kjell; Law, Ian

    2017-01-01

    Kinetic analysis of (18)F-fluorodeoxyglucose positron emission tomography data requires an accurate knowledge the arterial input function. The gold standard method to measure the arterial input function requires collection of arterial blood samples and is an invasive method. Measuring an image...... segmentation of the carotid arteries from MR images. The simulation study results showed that at least 92% of the true intensity could be recovered after the partial volume correction. Results from 19 subjects showed that the mean cerebral metabolic rate of glucose calculated using arterial samples and partial...... volume corrected image derived input function were 26.9 and 25.4 mg/min/100 g, respectively, for the grey matter and 7.2 and 6.7 mg/min/100 g for the white matter. No significant difference in the estimated cerebral metabolic rate of glucose values was observed between arterial samples and corrected...

  11. Laparoscopic optical coherence tomographic imaging of human ovarian cancer

    Science.gov (United States)

    Hariri, Lida P.; Bonnema, Garret T.; Schmidt, Kathy; Korde, Vrushali; Winkler, Amy M.; Hatch, Kenneth; Brewer, Molly; Barton, Jennifer K.

    2009-02-01

    Ovarian cancer is the fourth leading cause of cancer-related death among women. If diagnosed at early stages, 5-year survival rate is 94%, but drops to 68% for regional disease and 29% for distant metastasis; only 19% of cases are diagnosed at early, localized stages. Optical coherence tomography is a recently emerging non-destructive imaging technology, achieving high axial resolutions (10-20 µm) at imaging depths up to 2 mm. Previously, we studied OCT in normal and diseased human ovary ex vivo. Changes in collagen were suggested with several images that correlated with changes in collagen seen in malignancy. Areas of necrosis and blood vessels were also visualized using OCT, indicative of an underlying tissue abnormality. We recently developed a custom side-firing laparoscopic OCT (LOCT) probe fabricated for in vivo imaging. The LOCT probe, consisting of a 38 mm diameter handpiece terminated in a 280 mm long, 4.6 mm diameter tip for insertion into the laparoscopic trocar, is capable of obtaining up to 9.5 mm image lengths at 10 µm axial resolution. In this pilot study, we utilize the LOCT probe to image one or both ovaries of 17 patients undergoing laparotomy or transabdominal endoscopy and oophorectomy to determine if OCT is capable of differentiating normal and neoplastic ovary. We have laparoscopically imaged the ovaries of seventeen patients with no known complications. Initial data evaluation reveals qualitative distinguishability between the features of undiseased post-menopausal ovary and the cystic, non-homogenous appearance of neoplastic ovary such as serous cystadenoma and endometroid adenocarcinoma.

  12. Automated regional behavioral analysis for human brain images.

    Science.gov (United States)

    Lancaster, Jack L; Laird, Angela R; Eickhoff, Simon B; Martinez, Michael J; Fox, P Mickle; Fox, Peter T

    2012-01-01

    Behavioral categories of functional imaging experiments along with standardized brain coordinates of associated activations were used to develop a method to automate regional behavioral analysis of human brain images. Behavioral and coordinate data were taken from the BrainMap database (http://www.brainmap.org/), which documents over 20 years of published functional brain imaging studies. A brain region of interest (ROI) for behavioral analysis can be defined in functional images, anatomical images or brain atlases, if images are spatially normalized to MNI or Talairach standards. Results of behavioral analysis are presented for each of BrainMap's 51 behavioral sub-domains spanning five behavioral domains (Action, Cognition, Emotion, Interoception, and Perception). For each behavioral sub-domain the fraction of coordinates falling within the ROI was computed and compared with the fraction expected if coordinates for the behavior were not clustered, i.e., uniformly distributed. When the difference between these fractions is large behavioral association is indicated. A z-score ≥ 3.0 was used to designate statistically significant behavioral association. The left-right symmetry of ~100K activation foci was evaluated by hemisphere, lobe, and by behavioral sub-domain. Results highlighted the classic left-side dominance for language while asymmetry for most sub-domains (~75%) was not statistically significant. Use scenarios were presented for anatomical ROIs from the Harvard-Oxford cortical (HOC) brain atlas, functional ROIs from statistical parametric maps in a TMS-PET study, a task-based fMRI study, and ROIs from the ten "major representative" functional networks in a previously published resting state fMRI study. Statistically significant behavioral findings for these use scenarios were consistent with published behaviors for associated anatomical and functional regions.

  13. Non-invasive Imaging of Human Embryonic Stem Cells

    OpenAIRE

    Hong, Hao; Yang, Yunan; Zhang, Yin; Cai, Weibo

    2010-01-01

    Human embryonic stem cells (hESCs) hold tremendous therapeutic potential in a variety of diseases. Over the last decade, non-invasive imaging techniques have proven to be of great value in tracking transplanted hESCs. This review article will briefly summarize the various techniques used for non-invasive imaging of hESCs, which include magnetic resonance imaging (MRI), bioluminescence imaging (BLI), fluorescence, single-photon emission computed tomography (SPECT), positron emission tomography...

  14. 夏冬季节人体红外热像图像特征的初步研究%Preliminary Study on Image features of the Infrared Thermal Images of Human Body in Summer and Winter

    Institute of Scientific and Technical Information of China (English)

    黄博; 李子孺; 陈锂; 张婷; 周翠; 张旭升

    2011-01-01

    Objective : Research into the seasonal changes of infrared thermal images ( ITI ) of human body can be the solid foundation for clinical application of ITI in traditional Chinese medicine. Methods : Healthy university students had their images taken in summer and winter. The image features in two seasons were compared and the relation between the image features and Chinese medical constitution were discussed. Results : ITI displayed the thermal differences between seasons of the human body surface, and suggested specific image feature was related to certain the Chinese medical constitution. In winter, thermal difference of different body parts were greater than that in summer, such as upper part vs. lower part of the body, thigh vs. cruis, two sides of breasts. Conclusion: ITI can reflect thermal changes of human body over the season, therefore it is helpful to research on Chinese medical constitution.%目的:深入研究人体红外热像随季节的变化规律,使红外热像在中医药临床的应用有更为坚实的基础.方法:受试者为健康在校研究生,于夏季与冬季采集红外热像图像,分析季节差异,并与中医体质分数进行相关性研究.结果:红外热像能有效地显示出夏冬两季人体体表温度分布的差异,并与中医体质具有一定相关性.在冬季时,除了体表温度比夏季低,人体的各局部之间的相对温度值也有明显差异,在躯干部位的上下温度差值增加,大小腿温度差从正值变为负值,女性胸部两侧的温度值高于男性.结论:红外热像能客观反映人体的季节性变化,并在中医体质客观化研究方面有重要应用前景.

  15. Documenting human transformation and establishing the reference condition of large river systems using Corona images: a case study from the Ganga River basin, India

    Science.gov (United States)

    Sinha, Rajiv; Pipil, Shobhit; Carbonneau, Patrice; Galiatsatos, Nikolaos

    2016-04-01

    The Ganga basin in northern India is one of the most populous river basin in the world with nearly half a billion inhabitants. In the post-independence era, population expansion and human interventions have left the ecosystem of the Ganga in a severely damaged state with dwindling water levels, pollution due to human activity and natural sediment transport severely perturbed by dams and barrages. Fortunately, there is a growing recognition by the policy managers in India that the restoration of the Ganga to a healthier status, closer to its original unperturbed state, would set a strong foundation to future, greener, economic growth in Northern India. However, given the past six decades of fast development, efforts to restore the Ganga to its original condition are faced with a fundamental question: What was the original state of the Ganga? Answering this question will require some knowledge of the former course of the Ganga and of the farming and urban density of the surrounding plains before the impacts of human disturbance could be felt. We have made use of the Corona spy satellite program that collected a large number of earth observation photos in the 1960s. These photos, now declassified, offer us a unique view of the Ganga at the very early stages of intense development and thus before the worst ecological damages occurred. However, actual usage of these images poses significant technical challenges. In the design of the Corona cameras, very high resolution comes at the cost of complex distortions. Furthermore, we have no information on the exact position and orientation of the satellite at the time of image acquisition so an accurate reprojection of the image into conventional map coordinates is not straightforward. We have developed a georectification process based on polynomial transformation to achieve a positional accuracy of ±20m for the area of our interest. Further, We have developed an object-based classification method that uses both texture and

  16. Central nervous system involvement in human immunodeficiency virus disease. A prospective study including neurological examination, computerized tomography, and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Pedersen, C; Thomsen, C; Arlien-Søborg, P;

    1991-01-01

    Sixty-seven patients with different stages of human immunodeficiency virus (HIV) infection (47 CDC group IV, 20 CDC groups II or III) were followed prospectively for a median of 18 months with neurological examination, magnetic resonance imaging (MRI), and computerized tomography (CT) to evaluate...... the incidence of the AIDS dementia complex (CDC definition) and other neurological complications. Ten patients developed CNS opportunistic infection or malignancy. Among the remaining 57 patients, 12 of 37 (32%) belonging to CDC group IV, and 1 of 20 (5%) belonging to CDC groups II/III developed the AIDS...... dementia complex (p = 0.03). MRI white matter lesions occurred in 32% of CDC group IV patients and 5% of CDC groups II/III patients (p = 0.03). The corresponding figures for brain atrophy at CT were 71% and 30% (p less than 0.01) and for neurologic signs 49% and 20% (p = 0.06). The development of the AIDS...

  17. Quantification of [11C]PIB PET for imaging myelin in the human brain: a test–retest reproducibility study in high-resolution research tomography

    Science.gov (United States)

    Veronese, Mattia; Bodini, Benedetta; García-Lorenzo, Daniel; Battaglini, Marco; Bongarzone, Salvatore; Comtat, Claude; Bottlaender, Michel; Stankoff, Bruno; Turkheimer, Federico E

    2015-01-01

    An accurate in vivo measure of myelin content is essential to deepen our insight into the mechanisms underlying demyelinating and dysmyelinating neurological disorders, and to evaluate the effects of emerging remyelinating treatments. Recently [11C]PIB, a positron emission tomography (PET) tracer originally conceived as a beta-amyloid marker, has been shown to be sensitive to myelin changes in preclinical models and humans. In this work, we propose a reference-region methodology for the voxelwise quantification of brain white-matter (WM) binding for [11C]PIB. This methodology consists of a supervised procedure for the automatic extraction of a reference region and the application of the Logan graphical method to generate distribution volume ratio (DVR) maps. This approach was assessed on a test–retest group of 10 healthy volunteers using a high-resolution PET tomograph. The [11C]PIB PET tracer binding was shown to be up to 23% higher in WM compared with gray matter, depending on the image reconstruction. The DVR estimates were characterized by high reliability (outliers 0.95). [11C]PIB parametric maps were also found to be significantly correlated (R2>0.50) to mRNA expressions of the most represented proteins in the myelin sheath. On the contrary, no correlation was found between [11C]PIB imaging and nonmyelin-associated proteins. PMID:26058700

  18. Quantification of [(11)C]PIB PET for imaging myelin in the human brain: a test-retest reproducibility study in high-resolution research tomography.

    Science.gov (United States)

    Veronese, Mattia; Bodini, Benedetta; García-Lorenzo, Daniel; Battaglini, Marco; Bongarzone, Salvatore; Comtat, Claude; Bottlaender, Michel; Stankoff, Bruno; Turkheimer, Federico E

    2015-11-01

    An accurate in vivo measure of myelin content is essential to deepen our insight into the mechanisms underlying demyelinating and dysmyelinating neurological disorders, and to evaluate the effects of emerging remyelinating treatments. Recently [(11)C]PIB, a positron emission tomography (PET) tracer originally conceived as a beta-amyloid marker, has been shown to be sensitive to myelin changes in preclinical models and humans. In this work, we propose a reference-region methodology for the voxelwise quantification of brain white-matter (WM) binding for [(11)C]PIB. This methodology consists of a supervised procedure for the automatic extraction of a reference region and the application of the Logan graphical method to generate distribution volume ratio (DVR) maps. This approach was assessed on a test-retest group of 10 healthy volunteers using a high-resolution PET tomograph. The [(11)C]PIB PET tracer binding was shown to be up to 23% higher in WM compared with gray matter, depending on the image reconstruction. The DVR estimates were characterized by high reliability (outliers 0.95). [(11)C]PIB parametric maps were also found to be significantly correlated (R(2)>0.50) to mRNA expressions of the most represented proteins in the myelin sheath. On the contrary, no correlation was found between [(11)C]PIB imaging and nonmyelin-associated proteins.

  19. New enhancement of infrared image based on human visual system

    Institute of Scientific and Technical Information of China (English)

    Tianhe Yu; Qiuming Li; Jingmin Dai

    2009-01-01

    Infrared images are firstly analyzed using the multifractal theory so that the singularity of each pixel can be extracted from the images. The multifractal spectrum is then estimated, which can reflect overall characteristic of an infrared image. Thus the edge and texture of an infrared image can be accurately extracted based on the singularity of each pixel and the multifractal spectrum. Finally the edge pixels are classified and enhanced in accordance with the sensitivity of human visual system to the edge profile of an infrared image. The experimental results obtained by this approach are compared with those obtained by other methods. It is found that the proposed approach can be used to highlight the edge area of an infrared image to make an infrared image more suitable for observation by human eyes.

  20. Transillumination spatially modulated illumination microscopy for human chromosome imaging

    Science.gov (United States)

    Pitris, Costas; Heracleous, Peter; Patsalis, Philippos

    2005-03-01

    Human chromosome analysis is an essential task in cytogenetics, especially in prenatal screening, genetic syndrome diagnosis, cancer pathology research and mutagen dosimetry. Chromosomal analysis begins with the creation of a karyotype, which is a layout of chromosome images organized by decreasing size in pairs. Both manual and automatic classification of chromosomes are limited by the resolution of the microscope and imaging system used. One way to improve the results of classification and even detect subtleties now remaining undetected, is to enhance the resolution of the images. It is possible to achieve lateral resolution beyond the classical limit, by using spatially modulated illumination (SMI) in a wide-field, non-confocal microscope. In this case, the sample is illuminated with spatially modulated light, which makes normally inaccessible high-resolution information visible in the observed image by shifting higher frequencies within the OTF limits of the microscope. Although, SMI microscopes have been reported in the past, this manuscript reports the development of a transillumination microscope for opaque, non-fluorescent samples. The illumination path consisted of a light source illuminating a ruled grating which was subsequently imaged on the sample. The grating was mounted on a rotating and translating stage so that the magnification and rotation of the pattern could be adjusted. The imaging lens was a 1.25 NA oil immersion objective. Test samples showed resolution improvement, as judged from a comparison of the experimentally obtained FWHM. Further studies using smaller fringe distance or laser interference pattern illumination will be evaluated to further optimize the SMI results.

  1. Study on image acquisition system for human palm vein%人体手掌静脉图像采集系统研究

    Institute of Scientific and Technical Information of China (English)

    王璐; 张文涛

    2013-01-01

    The paper studies the palm vein image acquisition device. Analyzing the principle of the acquisition device, it was designed a dual circle near infrared light source structure which has uniform light intensity distribution. And it is proposed a vein image quality assessment method based on Gray Level Co-occurrence Matrix and fuzzy logic. The relationship between the contrast, entropy, correlation and vein texture information is also investigated. The established fuzzy inference system can make optimal evaluation for image quality, thus validates the performance of the acquisition system. The acquisition device is small in size and low in cost. The vein images gotten by the device meet the requirement of subsequent processing of vein recognition system.%以手掌静脉图像采集装置为研究对象,详细分析了采集装置的设计原理,设计了一种光强分布均匀的双环形近红外光源结构,并提出了一种基于灰度共生矩阵及模糊逻辑的手掌静脉图像质量评价方法.通过研究对比度、熵、相关性的值与静脉纹理结构信息的关系,建立模糊推理系统对图像质量做出了最佳判别,从而验证了采集系统的性能.设计的采集装置结构小、成本低,采集到的静脉图像比较清晰,满足静脉识别系统后续处理的需要.

  2. Microwave non-contact imaging of subcutaneous human body tissues

    Science.gov (United States)

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  3. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  4. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies.

    Science.gov (United States)

    Huang, Chuan; Ackerman, Jerome L; Petibon, Yoann; Normandin, Marc D; Brady, Thomas J; El Fakhri, Georges; Ouyang, Jinsong

    2014-05-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey's head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Automatic segmentation of trophectoderm in microscopic images of human blastocysts.

    Science.gov (United States)

    Singh, Amarjot; Au, Jason; Saeedi, Parvaneh; Havelock, Jon

    2015-01-01

    Accurate assessment of embryos viability is an extremely important task in the optimization of in vitro fertilization treatment outcome. One of the common ways of assessing the quality of a human embryo is grading it on its fifth day of development based on morphological quality of its three main components (Trophectoderm, Inner Cell Mass, and the level of expansion or the thickness of its Zona Pellucida). In this study, we propose a fully automatic method for segmentation and measurement of TE region of blastocysts (day-5 human embryos). Here, we eliminate the inhomogeneities of the blastocysts surface using the Retinex theory and further apply a level-set algorithm to segment the TE regions. We have tested our method on a dataset of 85 images and have been able to achieve a segmentation accuracy of 84.6% for grade A, 89.0% for grade B, and 91.7% for grade C embryos.

  6. Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts.

    Science.gov (United States)

    Karunatilaka, Krishanthi S; Cameron, Elizabeth A; Martens, Eric C; Koropatkin, Nicole M; Biteen, Julie S

    2014-11-11

    Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. In this study, we used nanometer-scale superresolution imaging to reveal dynamic interactions between the proteins involved in starch processing by the prominent human gut symbiont

  7. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Science.gov (United States)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  8. Human gesture recognition using three-dimensional integral imaging.

    Science.gov (United States)

    Javier Traver, V; Latorre-Carmona, Pedro; Salvador-Balaguer, Eva; Pla, Filiberto; Javidi, Bahram

    2014-10-01

    Three-dimensional (3D) integral imaging allows one to reconstruct a 3D scene, including range information, and provides sectional refocused imaging of 3D objects at different ranges. This paper explores the potential use of 3D passive sensing integral imaging for human gesture recognition tasks from sequences of reconstructed 3D video scenes. As a preliminary testbed, the 3D integral imaging sensing is implemented using an array of cameras with the appropriate algorithms for 3D scene reconstruction. Recognition experiments are performed by acquiring 3D video scenes of multiple hand gestures performed by ten people. We analyze the capability and performance of gesture recognition using 3D integral imaging representations at given distances and compare its performance with the use of standard two-dimensional (2D) single-camera videos. To the best of our knowledge, this is the first report on using 3D integral imaging for human gesture recognition.

  9. Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters

    Science.gov (United States)

    Lopez, Ana D.; Kayali, Ayse G.; Hayek, Alberto; King, Charles C.

    2014-01-01

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells. PMID:24895054

  10. Isolation, culture, and imaging of human fetal pancreatic cell clusters.

    Science.gov (United States)

    Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto; King, Charles C

    2014-05-18

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17). A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro(11-22), far fewer exist for ICCs(10,23,24). Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue(6). Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.

  11. Trichinella spiralis in human muscle (image)

    Science.gov (United States)

    This is the parasite Trichinella spiralis in human muscle tissue. The parasite is transmitted by eating undercooked ... produce large numbers of larvae that migrate into muscle tissue. The cysts may cause muscle pain and ...

  12. Detection of hypercholesterolemia using hyperspectral imaging of human skin

    Science.gov (United States)

    Milanic, Matija; Bjorgan, Asgeir; Larsson, Marcus; Strömberg, Tomas; Randeberg, Lise L.

    2015-07-01

    Hypercholesterolemia is characterized by high blood levels of cholesterol and is associated with increased risk of atherosclerosis and cardiovascular disease. Xanthelasma is a subcutaneous lesion appearing in the skin around the eyes. Xanthelasma is related to hypercholesterolemia. Identifying micro-xanthelasma can thereforeprovide a mean for early detection of hypercholesterolemia and prevent onset and progress of disease. The goal of this study was to investigate spectral and spatial characteristics of hypercholesterolemia in facial skin. Optical techniques like hyperspectral imaging (HSI) might be a suitable tool for such characterization as it simultaneously provides high resolution spatial and spectral information. In this study a 3D Monte Carlo model of lipid inclusions in human skin was developed to create hyperspectral images in the spectral range 400-1090 nm. Four lesions with diameters 0.12-1.0 mm were simulated for three different skin types. The simulations were analyzed using three algorithms: the Tissue Indices (TI), the two layer Diffusion Approximation (DA), and the Minimum Noise Fraction transform (MNF). The simulated lesions were detected by all methods, but the best performance was obtained by the MNF algorithm. The results were verified using data from 11 volunteers with known cholesterol levels. The face of the volunteers was imaged by a LCTF system (400- 720 nm), and the images were analyzed using the previously mentioned algorithms. The identified features were then compared to the known cholesterol levels of the subjects. Significant correlation was obtained for the MNF algorithm only. This study demonstrates that HSI can be a promising, rapid modality for detection of hypercholesterolemia.

  13. Studying fermionic ghost imaging with independent photons

    Science.gov (United States)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2016-12-01

    Ghost imaging with thermal fermions is calculated based on two-particle interference in Feynman's path integral theory. It is found that ghost imaging with thermal fermions can be simulated by ghost imaging with thermal bosons and classical particles. Photons in pseudothermal light are employed to experimentally study fermionic ghost imaging. Ghost imaging with thermal bosons and fermions is discussed based on the point-to-point (spot) correlation between the object and image planes. The employed method offers an efficient guidance for future ghost imaging with real thermal fermions, which may also be generalized to study other second-order interference phenomena with fermions.

  14. Human eye visual hyperacuity: Controlled diffraction for image resolution improvement

    Science.gov (United States)

    Lagunas, A.; Domínguez, O.; Martinez-Conde, S.; Macknik, S. L.; Del-Río, C.

    2017-09-01

    The Human Visual System appears to be using a low number of sensors for image capturing, and furthermore, regarding the physical dimensions of cones—photoreceptors responsible for the sharp central vision—we may realize that these sensors are of a relatively small size and area. Nonetheless, the human eye is capable of resolving fine details thanks to visual hyperacuity and presents an impressive sensitivity and dynamic range when set against conventional digital cameras of similar characteristics. This article is based on the hypothesis that the human eye may be benefiting from diffraction to improve both image resolution and acquisition process. The developed method involves the introduction of a controlled diffraction pattern at an initial stage that enables the use of a limited number of sensors for capturing the image and makes possible a subsequent post-processing to improve the final image resolution.

  15. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    Science.gov (United States)

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  16. Posture-Dependent Human 3He Lung Imaging in an Open Access MRI System: Initial Results

    CERN Document Server

    Tsai, L L; Li, C -H; Rosen, M S; Patz, S; Walsworth, R L

    2007-01-01

    The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized 3He MRI of the human lung, and most other common radiological imaging modalities including PET and CT, restrict subjects to lying horizontally, minimizing most gravitational effects. In this paper, we briefly review the motivation for posture-dependent studies of human lung function, and present initial imaging results of human lungs in the supine and vertical body orientations using inhaled hyperpolarized 3He gas and an open-access MRI instrument. The open geometry of this MRI system features a "walk-in" capability that permits subjects to be imaged in vertical and horizontal positions, and potentially allows for complete rotation of the orientation of the imaging su...

  17. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    Directory of Open Access Journals (Sweden)

    Wenjuan Gong

    2016-11-01

    Full Text Available Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing. Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used.

  18. The ascending reticular activating system from pontine reticular formation to the hypothalamus in the human brain: a diffusion tensor imaging study.

    Science.gov (United States)

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2015-03-17

    The ascending reticular activating system (ARAS) is responsible for regulation of consciousness. Precise evaluation of the ARAS is important for diagnosis and management of patients with impaired consciousness. In the current study, we attempted to reconstruct the portion of the ARAS from the pontine reticular formation (RF) to the hypothalamus in normal subjects, using diffusion tensor imaging (DTI). A total of 31 healthy subjects were recruited for this study. DTI scanning was performed using 1.5-T, and the ARAS from the pontine RF to the hypothalamus was reconstructed. Values of fractional anisotropy, mean diffusivity, and tract volume of the ARAS from the pontine RF to the hypothalamus were measured. In all subjects, the ARAS from the pontine RF to the hypothalamus originated from the RF at the level of the mid-pons, where the trigeminal nerve could be seen, ascended through the periaqueductal gray matter of the midbrain anterolaterally to the anterior commissure level, and then terminated into the hypothalamus. No significant differences in DTI parameters were observed between the left and right hemispheres and between males and females (phypothalamus in normal subjects using DTI. We believe that the reconstruction methodology and the results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Investigating Human Evolution Using Digital Imaging & Craniometry

    Science.gov (United States)

    Robertson, John C.

    2007-01-01

    Human evolution is an important and intriguing area of biology. The significance of evolution as a component of biology curricula, at all levels, can not be overstated; the need to make the most of opportunities to effectively educate students in evolution as a central and unifying realm of biology is paramount. Developing engaging laboratory or…

  20. Investigating Human Evolution Using Digital Imaging & Craniometry

    Science.gov (United States)

    Robertson, John C.

    2007-01-01

    Human evolution is an important and intriguing area of biology. The significance of evolution as a component of biology curricula, at all levels, can not be overstated; the need to make the most of opportunities to effectively educate students in evolution as a central and unifying realm of biology is paramount. Developing engaging laboratory or…

  1. Carbon nanotube electron field emitters for X-ray imaging of human breast cancer

    OpenAIRE

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-01-01

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to 2D mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary digital breast tomosynthesis (s-DBT), utilizing an array of carbon nanotube (CNT) field emission X-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents...

  2. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    OpenAIRE

    Sunil L. Bangare; Madhura Patil

    2015-01-01

    This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed wor...

  3. Comparison of two new angiogenesis PET tracers 68Ga-NODAGA-E[c(RGDyK)]2 and 64Cu-NODAGA-E[c(RGDyK)]2; in vivo imaging studies in human xenograft tumors

    DEFF Research Database (Denmark)

    Oxbøl, Jytte; Brandt-Larsen, Malene; Schjøth-Eskesen, Christina

    2014-01-01

    . CONCLUSION: (68)Ga-NODAGA-E[c(RGDyK)](2) and (64)Cu-NODAGA-E[c(RGDyK)](2) can be easily synthesized and are both promising candidates for PET imaging of integrin αVβ3 positive tumor cells. (68)Ga-NODAGA-E[c(RGDyK)](2) showed slightly more stable tumor retention. With the advantage of in-house commercially......INTRODUCTION: The aim of this study was to synthesize and perform a side-by-side comparison of two new tumor-angiogenesis PET tracers (68)Ga-NODAGA-E[c(RGDyK)](2) and (64)Cu-NODAGA-E[c(RGDyK)](2) in vivo using human xenograft tumors in mice. Human radiation burden was estimated to evaluate...... potential for future use as clinical PET tracers for imaging of neo-angiogenesis. METHODS: A (68)Ge/(68)Ga generator was used for the synthesis of (68)Ga-NODAGA-E[c(RGDyK)](2). (68)Ga and (64)Cu labeled NODAGA-E[c(RGDyK)](2) tracers were administrated in nude mice bearing either human glioblastoma (U87MG...

  4. Fetal magnetic resonance imaging and human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Hengstschlaeger, Markus [Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)]. E-mail: markus.hengstschlaeger@meduniwien.ac.at

    2006-02-15

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data.

  5. Multilevel depth and image fusion for human activity detection.

    Science.gov (United States)

    Ni, Bingbing; Pei, Yong; Moulin, Pierre; Yan, Shuicheng

    2013-10-01

    Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.

  6. Electrical conductivity imaging of lower extremities using MREIT: postmortem swine and in vivo human experiments.

    Science.gov (United States)

    Woo, Eung Je; Kim, Hyung Joong; Minhas, Atul S; Kim, Young Tae; Jeong, Woo Chul; Kwon, O

    2008-01-01

    Cross-sectional conductivity images of lower extremities were reconstructed using Magnetic Resonance Electrical Impedance Tomography (MREIT) techniques. Carbon-hydrogel electrodes were adopted for postmortem swine and in vivo human imaging experiments. Due to their large surface areas and good contacts on the skin, we could inject as much as 10 mA into the lower extremities of human subjects without producing a painful sensation. Using a 3T MREIT system, we first performed a series of postmortem swine experiments and produced high-resolution conductivity images of swine legs. Validating the experimental protocol for the lower extremities, we revised it for the following human experiments. After the review of the Institutional Review Board (IRB), we conducted our first MREIT experiments of human subjects using the same 3T MREIT system. Collecting magnetic flux density data inside lower extremities subject to multiple injection currents, we reconstructed cross-sectional conductivity images using the harmonic B(z) algorithm. The conductivity images very well distinguished different parts of muscles inside the lower extremities. The outermost fatty layer was clearly shown in each conductivity image. We could observe severe noise in the outer layer of the bones primarily due to the MR signal void phenomenon there. Reconstructed conductivity images indicated that the internal regions of the bones have relatively high conductivity values. Future study is desired in terms of the conductivity image reconstruction algorithm to improve the image quality. Further human imaging experiments are planned and being conducted to produce high-resolution conductivity images from different parts of the human body.

  7. Hypnosis and imaging of the living human brain.

    Science.gov (United States)

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  8. A new method to study changes in microvascular blood volume in muscle and adipose tissue: Real time imaging in humans and rat

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Rattigan, Stephen; Hiscock, Natalie J

    2011-01-01

    We employed and evaluated a new application of contrast enhanced ultrasound for real time imaging of changes in microvascular blood volume (MVB) in tissues in females, males and rat. Continuous real time imaging was performed using contrast enhanced ultrasound to quantify infused gas filled micro...

  9. [Human physiology: images and practices of the reflex].

    Science.gov (United States)

    Wübben, Yvonne

    2010-01-01

    The essay examines the function of visualizations and practices in the formation of the reflex concept from Thomas Willis to Marshall Hall. It focuses on the specific form of reflex knowledge that images and practices can contain. In addition, the essay argues that it is through visual representations and experimental practices that technical knowledge is transferred to the field of human reflex physiology. When using technical metaphors in human physiology authors often seem to feel obliged to draw distinctions between humans, machines and animals. On closer scrutiny, these distinctions sometimes fail to establish firm borders between the human and the technical.

  10. Imaging and tracking HIV viruses in human cervical mucus

    Science.gov (United States)

    Boukari, Fatima; Makrogiannis, Sokratis; Nossal, Ralph; Boukari, Hacène

    2016-09-01

    We describe a systematic approach to image, track, and quantify the movements of HIV viruses embedded in human cervical mucus. The underlying motivation for this study is that, in HIV-infected adults, women account for more than half of all new cases and most of these women acquire the infection through heterosexual contact. The endocervix is believed to be a susceptible site for HIV entry. Cervical mucus, which coats the endocervix, should play a protective role against the viruses. Thus, we developed a methodology to apply time-resolved confocal microscopy to examine the motion of HIV viruses that were added to samples of untreated cervical mucus. From the images, we identified the viruses, tracked them over time, and calculated changes of the statistical mean-squared displacement (MSD) of each virus. Approximately half of tracked viruses appear constrained while the others show mobility with MSDs that are proportional to τα+ν2τ2, over time range τ, depicting a combination of anomalous diffusion (0<α<0.4) and flow-like behavior. The MSD data also reveal plateaus attributable to possible stalling of the viruses. Although a more extensive study is warranted, these results support the assumption of mucus being a barrier against the motion of these viruses.

  11. DNA integrity of human leukocytes after magnetic resonance imaging.

    Science.gov (United States)

    Szerencsi, Ágnes; Kubinyi, Györgyi; Váliczkó, Éva; Juhász, Péter; Rudas, Gábor; Mester, Ádám; Jánossy, Gábor; Bakos, József; Thuróczy, György

    2013-10-01

    This study focuses on the effects of high-field (3T) magnetic resonance imaging (MRI) scans on the DNA integrity of human leukocytes in vitro in order to validate the study where genotoxic effects were obtained and published by Lee et al. The scanning protocol and exposure situation were the same as those used under routine clinical brain MRI scan. Peripheral blood samples from healthy non-smoking male donors were exposed to electromagnetic fields (EMF) produced by 3T magnetic resonance imaging equipment for 0, 22, 45, 67, and 89 min during the scanning procedure. Samples of positive control were exposed to ionizing radiation (4 Gy of (60)Co-γ). Single breaks of DNA in leukocytes were detected by single-cell gel electrophoresis (Comet assay). Chromosome breakage, chromosome loss and micronuclei formations were detected by a micronucleus test (MN). Three independent experiments were performed. The data of comet tail DNA%, olive tail moment and micronucleus frequency showed no DNA damages due to MRI exposure. The results of the Comet assay and the micronucleus test indicate that the applied exposure of MRI does not appear to produce breaks in the DNA and has no significant effect on DNA integrity.

  12. Factors Associated With Body Image Perception Among Brazilian Students From Low Human Development Index Areas.

    Science.gov (United States)

    de Araujo, Thábyta Silva; Barbosa Filho, Valter Cordeiro; Gubert, Fabiane do Amaral; de Almeida, Paulo César; Martins, Mariana Cavalcante; Carvalho, Queliane Gomes da Silva; Costa, Ana Cristina Pereira de Jesus; Vieira, Neiva Francenely Cunha

    2017-01-01

    This study aimed to evaluate sociodemographic, behavioral, and individual factors associated with body image perception in a sample of adolescents from schools in low Human Development Index areas in Brazil. This cross-sectional study included 609 boys and 573 girls (aged 11-17 years). Body image perception (nine-silhouettes scale) and sociodemographic, behavioral, and individual variables were included. Multinomial logistic regression analysis was used. Most boys (76.9%) and girls (77.5%) were dissatisfied with their body image. Body mass index status and healthy body image evaluation were significantly associated with body image dissatisfaction in both boys and girls ( p body image dissatisfaction only in boys ( p = .035). Education and health care focused on body image can pay special attention to young people from vulnerable areas with unhealthy nutritional status and focus on strategies that enable improving the perception of a healthy body and a healthy diet.

  13. Fluorescent ligand for human progesterone receptor imaging in live cells.

    Science.gov (United States)

    Weinstain, Roy; Kanter, Joan; Friedman, Beth; Ellies, Lesley G; Baker, Michael E; Tsien, Roger Y

    2013-05-15

    We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core.

  14. Silhouette extraction from human gait images sequence using cosegmentation

    Science.gov (United States)

    Chen, Jinyan; Zhang, Yi

    2012-11-01

    Gait based human identification is very useful for automatic person recognize through visual surveillance and has attracted more and more researchers. A key step in gait based human identification is to extract human silhouette from images sequence. Current silhouette extraction methods are mainly based on simple color subtraction. These methods have a very poor performance when the color of some body parts is similar to the background. In this paper a cosegmentation based human silhouette extraction method is proposed. Cosegmentation is typically defined as the task of jointly segmenting "something similar" in a given set of images. We can divide the human gait images sequence into several step cycles and every step cycle consist of 10-15 frames. The frames in human gait images sequence have following similarity: every frame is similar to the next or previous frame; every frame is similar to the corresponding frame in the next or previous step cycle; every pixel can find similar pixel in other frames. The progress of cosegmentation based human silhouette extraction can be described as follows: Initially only points which have high contrast to background are used as foreground kernel points, the points in the background are used as background kernel points, then points similar to foreground points will be added to foreground points set and the points similar to background points will be added to background points set. The definition of the similarity consider the context of the point. Experimental result shows that our method has a better performance comparing to traditional human silhouette extraction methods. Keywords: Human gait

  15. Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation.

    Science.gov (United States)

    Zhang, Lei; Zeng, Zhi; Ji, Qiang

    2011-09-01

    Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.

  16. Imaging Cytometry of Human Leukocytes with Third Harmonic Generation Microscopy

    Science.gov (United States)

    Wu, Cheng-Ham; Wang, Tzung-Dau; Hsieh, Chia-Hung; Huang, Shih-Hung; Lin, Jong-Wei; Hsu, Szu-Chun; Wu, Hau-Tieng; Wu, Yao-Ming; Liu, Tzu-Ming

    2016-11-01

    Based on third-harmonic-generation (THG) microscopy and a k-means clustering algorithm, we developed a label-free imaging cytometry method to differentiate and determine the types of human leukocytes. According to the size and average intensity of cells in THG images, in a two-dimensional scatter plot, the neutrophils, monocytes, and lymphocytes in peripheral blood samples from healthy volunteers were clustered into three differentiable groups. Using these features in THG images, we could count the number of each of the three leukocyte types both in vitro and in vivo. The THG imaging-based counting results agreed well with conventional blood count results. In the future, we believe that the combination of this THG microscopy-based imaging cytometry approach with advanced texture analysis of sub-cellular features can differentiate and count more types of blood cells with smaller quantities of blood.

  17. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    Science.gov (United States)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  18. Human Activity Detection from RGBD Images

    CERN Document Server

    Sung, Jaeyong; Selman, Bart; Saxena, Ashutosh

    2011-01-01

    Being able to detect and recognize human activities is important for making personal assistant robots useful in performing assistive tasks. The challenge is to develop a system that is low-cost, reliable in unstructured home settings, and also straightforward to use. In this paper, we use a RGBD sensor (Microsoft Kinect) as the input sensor, and present learning algorithms to infer the activities. Our algorithm is based on a hierarchical maximum entropy Markov model (MEMM). It considers a person's activity as composed of a set of sub-activities, and infers the two-layered graph structure using a dynamic programming approach. We test our algorithm on detecting and recognizing twelve different activities performed by four people in different environments, such as a kitchen, a living room, an office, etc., and achieve an average performance of 84.3% when the person was seen before in the training set (and 64.2% when the person was not seen before).

  19. Visible Korean human images on MIOS system

    Science.gov (United States)

    Har, Donghwan; Son, Young-Ho; Lee, Sung-Won; Lee, Jung Beom

    2004-05-01

    Basically, photography has the attributes of reason, which encompasses the scientific knowledge of optics, physics and chemistry, and delicate sensibility of individuals. Ultimately, the photograph pursues "effective communication." Communication is "mental and psychosocial exchange mediated by material symbols, such as language, gesture and picture," and it has four compositions: "sender, receiver, message and channel." Recently, a change in the communication method is on the rise in the field of art and culture, including photography. Until now, communication was mainly achieved by the form of messages unilaterally transferred from senders to receivers. But, nowadays, an interactive method, in which the boundary of sender and receiver is obscure, is on the increase. Such new communication method may be said to have arrived from the desire of art and culture societies, pursuing something new and creative in the background of utilization of a variety of information media. The multi-view screen we developed is also a communication tool capable of effective interaction using photos or motion pictures. The viewer can see different images at different locations. It utilizes the basic lenticular characteristics, which have been used in printing. Each motion picture is displayed on the screen without crosstalk. The multi-view screen is different in many aspects from other display media, and is expected to be utilized in many fields, including advertisement, display and education.

  20. Image Attributes: A Study of Scientific Diagrams.

    Science.gov (United States)

    Brunskill, Jeff; Jorgensen, Corinne

    2002-01-01

    Discusses advancements in imaging technology and increased user access to digital images, as well as efforts to develop adequate indexing and retrieval methods for image databases. Describes preliminary results of a study of undergraduates that explored the attributes naive subjects use to describe scientific diagrams. (Author/LRW)

  1. First-in-Human PET/CT Imaging of Metastatic Neuroendocrine Neoplasms with Cyclotron-Produced (44)Sc-DOTATOC: A Proof-of-Concept Study.

    Science.gov (United States)

    Singh, Aviral; van der Meulen, Nicholas P; Müller, Cristina; Klette, Ingo; Kulkarni, Harshad R; Türler, Andreas; Schibli, Roger; Baum, Richard P

    2017-05-01

    (44)Sc is a promising positron emission tomography (PET) radionuclide (T1/2 = 4.04 hours, Eβ+average = 632 keV) and can be made available, using a cyclotron production route, in substantial quantities as a highly pure product. Herein, the authors report on a first-in-human PET/CT study using (44)Sc-DOTATOC prepared with cyclotron-produced (44)Sc. The production of (44)Sc was carried out through the (44)Ca(p,n)(44)Sc nuclear reaction at Paul Scherrer Institut, Switzerland. After separation, (44)Sc was shipped to Zentralklinik Bad Berka, Germany, where radiolabeling was performed, yielding radiochemically pure (44)Sc-DOTATOC. Two patients, currently followed up after peptide receptor radionuclide therapy of metastatic neuroendocrine neoplasms, participated in this proof-of-concept study. Blood sampling was performed before and after application of (44)Sc-DOTATOC. PET/CT acquisitions, performed at different time points after injection of (44)Sc-DOTATOC, allowed detection of even very small lesions on delayed scans. No clinical adverse effects were observed and the laboratory hematological, renal, and hepatic profiles remained unchanged. In this study, cyclotron-produced (44)Sc was used in the clinic for the first time. It is attractive for theranostic application with (177)Lu, (90)Y, or (47)Sc as therapeutic counterparts. (44)Sc-based radiopharmaceuticals will be of particular value for PET facilities without radiopharmacy, to which they can be shipped from a centralized production site.

  2. Forthergillian Lecture. Imaging human brain function.

    Science.gov (United States)

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  3. A human visual based binarization technique for histological images

    Science.gov (United States)

    Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos

    2017-05-01

    In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.

  4. Seeing Human Weight from a Single RGB-D Image

    Institute of Scientific and Technical Information of China (English)

    冯佳时; 颜水成

    2014-01-01

    Human weight estimation is useful in a variety of potential applications, e.g., targeted advertisement, enter-tainment scenarios and forensic science. However, estimating weight only from color cues is particularly challenging since these cues are quite sensitive to lighting and imaging conditions. In this article, we propose a novel weight estimator based on a single RGB-D image, which utilizes the visual color cues and depth information. Our main contributions are three-fold. First, we construct the W8-RGBD dataset including RGB-D images of different people with ground truth weight. Second, the novel sideview shape feature and the feature fusion model are proposed to facilitate weight estimation. Additionally, we consider gender as another important factor for human weight estimation. Third, we conduct comprehensive experiments using various regression models and feature fusion models on the new weight dataset, and encouraging results are obtained based on the proposed features and models.

  5. Learning a similarity-based distance measure for image database organization from human partitionings of an image set

    OpenAIRE

    Squire, David

    1998-01-01

    In this paper we employ human judgments of image similarity to improve the organization of an image database. We first derive a statistic, $\\kappa_B$ which measures the agreement between two partitionings of an image set. $\\kappa_B$ is used to assess agreement both amongst and between human and machine partitionings. This provides a rigorous means of choosing between competing image database organization systems, and of assessing the performance of such systems with respect to human judgments...

  6. Recent studies of transform image enhancement

    Science.gov (United States)

    Aghagolzadeh, Sabzali; Ersoy, Okan K.

    1992-06-01

    Blockwise transform image enhancement techniques are discussed. It is shown that the best transforms for transform image coding, namely, the scrambled real discrete Fourier transform, the discrete cosine transform, and the discrete cosine-III transform, are also the best for image enhancement. Three techniques of enhancement discussed in detail are alpha- rooting, modified unsharp masking, and filtering motivated by the human visual system response (HVS). With proper modifications, it is observed that unsharp masking and HVS- motivated filtering without nonlinearities are basically equivalent. Block effects are completely removed by using an overlap-save technique in addition to the best transform.

  7. Proliferating cell nuclear antigen (PCNA) allows the automatic identification of follicles in microscopic images of human ovarian tissue

    CERN Document Server

    Kelsey, Thomas W; Castillo, Luis; Wallace, W Hamish B; Gonzálvez, Francisco Cóppola; 10.2147/PLMI.S11116

    2010-01-01

    Human ovarian reserve is defined by the population of nongrowing follicles (NGFs) in the ovary. Direct estimation of ovarian reserve involves the identification of NGFs in prepared ovarian tissue. Previous studies involving human tissue have used hematoxylin and eosin (HE) stain, with NGF populations estimated by human examination either of tissue under a microscope, or of images taken of this tissue. In this study we replaced HE with proliferating cell nuclear antigen (PCNA), and automated the identification and enumeration of NGFs that appear in the resulting microscopic images. We compared the automated estimates to those obtained by human experts, with the "gold standard" taken to be the average of the conservative and liberal estimates by three human experts. The automated estimates were within 10% of the "gold standard", for images at both 100x and 200x magnifications. Automated analysis took longer than human analysis for several hundred images, not allowing for breaks from analysis needed by humans. O...

  8. MR diffusion imaging of human intracranial tumours

    DEFF Research Database (Denmark)

    Krabbe, K; Gideon, P; Wagn, P;

    1997-01-01

    We used MRI for in vivo measurement of brain water self-diffusion in patients with intracranial tumours. The study included 28 patients (12 with high-grade and 3 with low-grade gliomas, 7 with metastases, 5 with meningiomas and 1 with a cerebral abscess). Apparent diffusion coefficients (ADC) wer...

  9. [Molecular imaging of histamine receptors in the human brain].

    Science.gov (United States)

    Tashiro, Manabu; Yanai, Kazuhiko

    2007-03-01

    Brain histamine is involved in a wide range of physiological functions such as regulation of sleep-wake cycle, arousal, appetite control, cognition, learning and memory mainly through the 4 receptor subtypes: H1, H2, H3 and H4. Neurons producing histamine, histaminergic neurons, are exclusively located in the tuberomammillary nucleus of the posterior hypothalamus and are transmitting histamine to almost all regions of the brain. Roles of brain histamine have been studied using animals including knock-out mice and human subjects. For clinical studies, molecular imaging technique such as positron emission tomography (PET), with ligands such as [11C]doxepin and [11C]pyrilamine, has been a useful tool. A series of clinical studies on histamine H1 antagonists, or antihistamines, have demonstrated that antihistamines can be classified into sedative, mildly-sedative and non-sedative drugs according to their blood-brain barrier (BBB) permeability, showing apparent clinical usefulness regarding QOL, work efficiency and traffic safety of allergic patients. PET has also been used for elucidation of aging effects and pathophysiological roles of histaminergic nervous system in various neuropsychiatric disorders such as Alzheimer's disease, schizophrenia and depression, where H1 receptor binding potentials were lower than age-matched healthy controls. It has been also demonstrated that brain histamine functions as an endogenous anti-epileptic. In addition, H3 receptors are located in the presynaptic sites of not only histaminergic nerves but also in other nervous systems such as serotonergic, cholinergic and dopaminergic systems, and to be regulating secretion of various neurotransmitters. Nowadays, H3 receptors have been thought to be a new target of drug treatment of various neuropsychiatric disorders. There are still many research topics to be investigated regarding molecular imaging of histamine and histamine receptors. The authors hope that this line of research contributes

  10. First-in-human clinical trials of imaging devices: an example from optical imaging.

    Science.gov (United States)

    Gibbs-Strauss, Summer L; Rosenberg, Mireille; Clough, Barbara L; Troyan, Susan L; Frangioni, John V

    2009-01-01

    Clinical translation of scientific discoveries is often the long-term goal of academic medical research. However, this goal is not always realized due to the complicated path between bench research and clinical use. In this review, we outline the fundamental steps required for first-in-human testing of a new imaging device, and use the FLARE() (Fluorescence-Assisted Resection and Exploration) near-infrared fluorescence optical imaging platform as an example.

  11. PET IMAGING STUDIES IN DRUG ABUSE RESEARCH.

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Ding, Y.S.; Logan, J.; Wang, G.J.

    2001-01-29

    . This will be followed by highlights of PET studies of the acute effects of the psychostimulant drugs cocaine and methylphenidate (ritalin) and studies of the chronic effects of cocaine and of tobacco smoke on the human brain. This chapter concludes with the description of a study which uses brain imaging coupled with a specific pharmacological challenge to address the age-old question of why some people who experiment with drugs become addicted while others do not.

  12. Diffusion Tensor Imaging-Based Research on Human White Matter Anatomy

    Directory of Open Access Journals (Sweden)

    Ming-guo Qiu

    2012-01-01

    Full Text Available The aim of this study is to investigate the white matter by the diffusion tensor imaging and the Chinese visible human dataset and to provide the 3D anatomical data of the corticospinal tract for the neurosurgical planning by studying the probabilistic maps and the reproducibility of the corticospinal tract. Diffusion tensor images and high-resolution T1-weighted images of 15 healthy volunteers were acquired; the DTI data were processed using DtiStudio and FSL software. The FA and color FA maps were compared with the sectional images of the Chinese visible human dataset. The probability maps of the corticospinal tract were generated as a quantitative measure of reproducibility for each voxel of the stereotaxic space. The fibers displayed by the diffusion tensor imaging were well consistent with the sectional images of the Chinese visible human dataset and the existing anatomical knowledge. The three-dimensional architecture of the white matter fibers could be clearly visualized on the diffusion tensor tractography. The diffusion tensor tractography can establish the 3D probability maps of the corticospinal tract, in which the degree of intersubject reproducibility of the corticospinal tract is consistent with the previous architectonic report. DTI is a reliable method of studying the fiber connectivity in human brain, but it is difficult to identify the tiny fibers. The probability maps are useful for evaluating and identifying the corticospinal tract in the DTI, providing anatomical information for the preoperative planning and improving the accuracy of surgical risk assessments preoperatively.

  13. Radionuclide imaging of the liver in human fascioliasis

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J.V.; Bermudez, R.H.

    1984-08-01

    The clinical, laboratory, and scintigraphic findings in four cases of human fascioliasis are described. Acute onset of fever, abdominal pain, and weight loss in a person who has ingested watercress constitutes the clinical syndrome often seen. Eosinophilia and alteration in liver function tests, particularly alkaline phosphatase are frequent. Tc-99m sulfur colloid images showed hepatomegaly in four patients, focal defects in two, splenomegaly in three, and increased splenic uptake in two. Gallium citrate (Ga 67) images show increased uptake in the focal lesions in two of two. Sonographic imaging showed focal lucent abnormality in one of three. Liver biopsy findings were nonspecific. The differential diagnosis from other invasive parasitic diseases is discussed. A possible role of hepatic imaging in the evaluation of fascioliasis is suggested.

  14. Three-dimensional surface imaging system for assessing human obesity

    Science.gov (United States)

    Xu, Bugao; Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.

    2009-10-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  15. A 3D surface imaging system for assessing human obesity

    Science.gov (United States)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  16. Imaging of Keratoconic and normal human cornea with a Brillouin imaging system (Conference Presentation)

    Science.gov (United States)

    Besner, Sebastien; Shao, Peng; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun (Andy)

    2016-03-01

    Keratoconus is a degenerative disorder of the eye characterized by human cornea thinning and morphological change to a more conical shape. Current diagnosis of this disease relies on topographic imaging of the cornea. Early and differential diagnosis is difficult. In keratoconus, mechanical properties are found to be compromised. A clinically available invasive technique capable of measuring the mechanical properties of the cornea is of significant importance for understanding the mechanism of keratoconus development and improve detection and intervention in keratoconus. The capability of Brillouin imaging to detect local longitudinal modulus in human cornea has been demonstrated previously. We report our non-contact, non-invasive, clinically viable Brillouin imaging system engineered to evaluate mechanical properties human cornea in vivo. The system takes advantage of a highly dispersive 2-stage virtually imaged phased array (VIPA) to detect weak Brillouin scattering signal from biological samples. With a 1.5-mW light beam from a 780-nm single-wavelength laser source, the system is able to detect Brillouin frequency shift of a single point in human cornea less than 0.3 second, at a 5μm/30μm lateral/axial resolution. Sensitivity of the system was quantified to be ~ 10 MHz. A-scans at different sample locations on a human cornea with a motorized human interface. We imaged both normal and keratoconic human corneas with this system. Whereas no significantly difference were observed outside keratocnic cones compared with normal cornea, a highly statistically significantly decrease was found in the cone regions.

  17. Non-invasive imaging of human embryonic stem cells.

    Science.gov (United States)

    Hong, Hao; Yang, Yunan; Zhang, Yin; Cai, Weibo

    2010-09-01

    Human embryonic stem cells (hESCs) hold tremendous therapeutic potential in a variety of diseases. Over the last decade, non-invasive imaging techniques have proven to be of great value in tracking transplanted hESCs. This review article will briefly summarize the various techniques used for non-invasive imaging of hESCs, which include magnetic resonance imaging (MRI), bioluminescence imaging (BLI), fluorescence, single-photon emission computed tomography (SPECT), positron emission tomography (PET), and multimodality approaches. Although the focus of this review article is primarily on hESCs, the labeling/tracking strategies described here can be readily applied to other (stem) cell types as well. Non-invasive imaging can provide convenient means to monitor hESC survival, proliferation, function, as well as overgrowth (such as teratoma formation), which could not be readily investigated previously. The requirement for hESC tracking techniques depends on the clinical scenario and each imaging technique will have its own niche in preclinical/clinical research. Continued evolvement of non-invasive imaging techniques will undoubtedly contribute to significant advances in understanding stem cell biology and mechanisms of action.

  18. Experimental Study of Fractal Image Compression Algorithm

    Directory of Open Access Journals (Sweden)

    Chetan R. Dudhagara

    2012-08-01

    Full Text Available Image compression applications have been increasing in recent years. Fractal compression is a lossy compression method for digital images, based on fractals. The method is best suited for textures and natural images, relying on the fact that parts of an image often resemble other parts of the same image. In this paper, a study on fractal-based image compression and fixed-size partitioning will be made, analyzed for performance and compared with a standard frequency domain based image compression standard, JPEG. Sample images will be used to perform compression and decompression. Performance metrics such as compression ratio, compression time and decompression time will be measured in JPEG cases. Also the phenomenon of resolution/scale independence will be studied and described with examples. Fractal algorithms convert these parts into mathematical data called "fractal codes" which are used to recreate the encoded image. Fractal encoding is a mathematical process used to encode bitmaps containing a real-world image as a set of mathematical data that describes the fractal properties of the image. Fractal encoding relies on the fact that all natural, and most artificial, objects contain redundant information in the form of similar, repeating patterns called fractals.

  19. Nonlinear chemical imaging microscopy: near-field third harmonic generation imaging of human red blood cells.

    Science.gov (United States)

    Schaller, R D; Johnson, J C; Saykally, R J

    2000-11-01

    Third harmonic generation (THG) imaging using a near-field scanning optical microscope (NSOM) is demonstrated for the first time. A femtosecond, tunable near-infrared laser was used to generate both nonresonant and resonantly enhanced third harmonic radiation in human red blood cells. We show that resonantly enhanced THG is a chemically specific bulk probe in NSOM imaging by tuning the excitation source onto and off of resonance with the Soret transition of oxyhemoglobin. Additionally, we provide evidence that tightly focused, nonresonant, far-field THG imaging experiments do not produce contrast that is truly surface specific.

  20. Quantitative imaging of protein targets in the human brain with PET

    Science.gov (United States)

    Gunn, Roger N.; Slifstein, Mark; Searle, Graham E.; Price, Julie C.

    2015-11-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  1. Analysis of human aorta using fluorescence lifetime imaging microscopy (FLIM)

    Science.gov (United States)

    Vieira-Damiani, Gislaine; Adur, J.; Ferro, D. P.; Adam, R. L.; Pelegati, V.; Thomáz, A.; Cesar, C. L.; Metze, K.

    2012-03-01

    The use of photonics has improved our understanding of biologic phenomena. For the study of the normal and pathologic architecture of the aorta the use of Two-Photon Excited Fluorescence (TPEF) and Second Harmonic Generation showed interesting details of morphologic changes of the elastin-collagen architecture during aging or development of hypertension in previous studies. In this investigation we tried to apply fluorescence lifetime imaging (FLIM) for the morphologic analysis of human aortas. The aim of our study was to use FLIM in non-stained formalin-fixed and paraffin-embedded samples of the aorta ascendants in hypertensive and normotensive patients of various ages, examining two different topographical regions. The FLIM-spectra of collagen and elastic fibers were clearly distinguishable, thus permitting an exact analysis of unstained material on the microscopic level. Moreover the FLIM spectrum of elastic fibers revealed variations between individual cases, which indicate modifications on a molecular level and might be related to FLIM age or diseases states and reflect modifications on a molecular level.

  2. A Brief Review on the Use of Functional Near-Infrared Spectroscopy (fNIRS) for Language Imaging Studies in Human Newborns and Adults

    Science.gov (United States)

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-01-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…

  3. A Brief Review on the Use of Functional Near-Infrared Spectroscopy (fNIRS) for Language Imaging Studies in Human Newborns and Adults

    Science.gov (United States)

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-01-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…

  4. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  5. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast

    Science.gov (United States)

    Chen, L.; Boone, J. M.; Abbey, C. K.; Hargreaves, J.; Bateni, C.; Lindfors, K. K.; Yang, K.; Nosratieh, A.; Hernandez, A.; Gazi, P.

    2015-04-01

    The objective of this study was to compare the lesion detection performance of human observers between thin-section computed tomography images of the breast, with thick-section (>40 mm) simulated projection images of the breast. Three radiologists and six physicists each executed a two alterative force choice (2AFC) study involving simulated spherical lesions placed mathematically into breast images produced on a prototype dedicated breast CT scanner. The breast image data sets from 88 patients were used to create 352 pairs of image data. Spherical lesions with diameters of 1, 2, 3, 5, and 11 mm were simulated and adaptively positioned into 3D breast CT image data sets; the native thin section (0.33 mm) images were averaged to produce images with different slice thicknesses; average section thicknesses of 0.33, 0.71, 1.5 and 2.9 mm were representative of breast CT; the average 43 mm slice thickness served to simulate simulated projection images of the breast. The percent correct of the human observer’s responses were evaluated in the 2AFC experiments. Radiologists lesion detection performance was significantly (p physicist observer, however trends in performance were similar. Human observers demonstrate significantly better mass-lesion detection performance on thin-section CT images of the breast, compared to thick-section simulated projection images of the breast.

  6. Experience With Intravascular Ultrasound Imaging Of Human Atherosclerotic Arteries

    Science.gov (United States)

    Mallery, John A.; Gessert, James M.; Maciel, Mario; Tobis, John M.; Griffith, James M.; Berns, Michael W.; Henry, Walter L.

    1989-08-01

    Normal human arteries have a well-defined structure on intravascular images. The intima appears very thin and is most likely represented by a bright reflection arising from the internal elastic lamina. The smooth muscle tunica media is echo-lucent on the ultrasound image and appears as a dark band separating the intima from the adventitia. The adventitia is a brightly reflective layer of variable thickness. The thickness of the intima, and therefore of the atherosclerotic plaque can be accurately measured from the ultrasound images and correlates well with histology. Calcification within the wall of arteries is seen as bright echo reflection with shadowing of the peripheral wall. Fibrotic regions are highly reflective but do not shadow. Necrotic liquid regions within advanced atherosclerotic plaques are seen on ultrasound images as large lucent zones surrounded by echogenic tissue. Imaging can be performed before and after interventional procedures, such as laser angioplasty, balloon angioplasty and atherectomy. Intravascular ultrasound appears to provide an imaging modality for identifying the histologic characteristics of diseased arteries and for quantifying plaque thickness. It might be possible to perform such quantification to evaluate the results of interventional procedures.

  7. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis.

    Science.gov (United States)

    Tamura, Yasuhisa; Kataoka, Yosky

    2017-01-01

    Neural stem cells are present in 2 neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), and continue to generate new neurons throughout life. Adult hippocampal neurogenesis is linked to a variety of psychiatric disorders such as depression and anxiety, and to the therapeutic effects of antidepressants, as well as learning and memory. In vivo imaging for hippocampal neurogenic activity may be used to diagnose psychiatric disorders and evaluate the therapeutic efficacy of antidepressants. However, these imaging techniques remain to be established until now. Recently, we established a quantitative positron emission tomography (PET) imaging technique for neurogenic activity in the adult brain with 3'-deoxy-3'-[(18)F]fluoro-L-thymidine ([(18)F]FLT) and probenecid, a drug transporter inhibitor in blood-brain barrier. Moreover, we showed that this PET imaging technique can monitor alterations in neurogenic activity in the hippocampus of adult rats with depression and following treatment with an antidepressant. This PET imaging method may assist in diagnosing depression and in monitoring the therapeutic efficacy of antidepressants. In this commentary, we discuss the possibility of in vivo PET imaging for neurogenic activity in adult non-human primates and humans.

  8. How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease?

    Science.gov (United States)

    Bannon, Darryl; Landau, Anne M; Doudet, Doris J

    2015-08-01

    The combination of novel imaging techniques with the use of small animal models of disease is often used in attempt to understand disease mechanisms, design potential clinical biomarkers and therapeutic interventions, and develop novel methods with translatability to human clinical conditions. However, it is clear that most animal models are deficient when compared to the complexity of human diseases: they cannot sufficiently replicate all the features of multisystem disorders. Furthermore, some practical differences may affect the use or interpretation of animal imaging to model human conditions such as the use of anesthesia, various species differences, and limitations of methodological tools. Nevertheless, imaging animal models allows us to dissect, in interpretable bits, the effects of one system upon another, the consequences of variable neuronal losses or overactive systems, the results of experimental treatments, and we can develop and validate new methods. In this review, we focus on imaging modalities that are easily used in both human subjects and animal models such as positron emission and magnetic resonance imaging and discuss aging and Parkinson's disease as prototypical examples of preclinical imaging studies.

  9. Image cytometer method for automated assessment of human spermatozoa concentration

    DEFF Research Database (Denmark)

    Egeberg, D L; Kjaerulff, S; Hansen, C

    2013-01-01

    to investigator bias. Here we show that image cytometry can be used to accurately measure the sperm concentration of human semen samples with great ease and reproducibility. The impact of several factors (pipetting, mixing, round cell content, sperm concentration), which can influence the read-out as well......In the basic clinical work-up of infertile couples, a semen analysis is mandatory and the sperm concentration is one of the most essential variables to be determined. Sperm concentration is usually assessed by manual counting using a haemocytometer and is hence labour intensive and may be subjected...... and easy measurement of human sperm concentration....

  10. A functional magnetic resonance imaging study of listening comprehension of languages in human at 3 tesla-comprehension level and activation of the language areas.

    Science.gov (United States)

    Nakai, T; Matsuo, K; Kato, C; Matsuzawa, M; Okada, T; Glover, G H; Moriya, T; Inui, T

    1999-03-19

    Passive listening comprehension of native and non-native language was investigated using high resolution functional magnetic resonance imaging (fMRI) at a static magnetic field strength of 3 tesla. Wernicke's area was activated by comprehensive and non-comprehensive languages indicating that this area is associated with common phonological processing of language. The task with comprehensive but non-native language activated Broca's area and angular gyrus most frequently. The activations in these areas may be related to demand in semantic and syntactic processing in listening comprehension. Supplementary motor area and pre-motor area were activated by comprehensive languages but not by non-comprehensive language. These motor controlling areas may be involved in semantic processing. Listening to comprehensive but non-native language seems to demand more networked co-processing.

  11. Ultrasound elasticity imaging of human posterior tibial tendon

    Science.gov (United States)

    Gao, Liang

    ) would improve the estimation. Next, UEI was performed on five human cadaver feet mounted in a materials testing system (MTS) while the PTT was attached to a force actuator. A portable ultrasound scanner collected 2D data during loading cycles. Young's modulus was calculated from the strain, loading force and cross sectional area of the PTT. Average Young's modulus for the five tendons was (0.45+/-0.16GPa) using UEI. This was consistent with simultaneous measurements made by the MTS across the whole tendon (0.52+/-0.18GPa). We also calculated the scaling factor (0.12+/-0.01) between the load on the PTT and the inversion force at the forefoot, a measurable quantity in vivo. This study suggests that UEI could be a reliable in vivo technique for estimating the mechanical properties of the human PTT. Finally, we built a custom ankle inversion platform for in vivo imaging of human subjects (eight healthy volunteers and nine advanced PTTD patients). We found non-linear elastic properties of the PTTD, which could be quantified by the slope between the elastic modulus (E) and the inversion force (F). This slope (DeltaE/DeltaF), or Non-linear Elasticity Parameter (NEP), was significantly different for the two groups: 0.16+/-0.20 MPa/N for healthy tendons and 0.45+/-0.43 MPa/N for PTTD tendons. A receiver operating characteristic (ROC) curve revealed an area under the curve (AUC) of 0.83+/-0.07, which indicated that the classifier system is valid. In summary, the acoustic modeling, cadaveric studies, and in vivo experiments together demonstrated that UEI accurately quantifies tendon mechanical properties. As a valuable clinical tool, UEI also has the potential to help guide treatment decisions for advanced PTTD and other tendinopathies.

  12. The Effect of Multispectral Image Fusion Enhancement on Human Efficiency

    Science.gov (United States)

    2017-03-20

    Additionally, we test this on a simple stimulus and task experimental struc- ture to understand the basic impacts of fusion on the visual system. Ideal observer...information heatmap help us tackle the problem space of image fusion in relation to human testing ? As we have seen even within our own basic experiment ...strengthen visual perception. We employ ideal observer analysis over a series of experimental conditions to (1) establish a framework for testing

  13. Women and human rights: undoing images, (re constructing identities

    Directory of Open Access Journals (Sweden)

    Nilda Stecanela

    2009-07-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Located in the context of studies on gender and violence, this paper interprets cases of violence against women, namely those in which the victim seeks for support services. It is part of a research being carried out in the southern region of Brazil, and debates the need to "deconstruct old images" in order to give place to "new identities" as a form of helping women to move from a victim's position towards playing the leading role of their own lives, in charge of their own choices and writing their own stories. This paper relates the urgency to revise socializing processes that will inculcate on everyday practices - of both men and women - another way of perceiving, conceiving and living their conditions as men and women in contemporaneity. It starts from the principle that it is not enough to assure rights and punish the aggressors. What has become evident in our first contacts with the research field points at the fight against gender violence being closely related to the representations that women have about domestic violence, since most of them only acknowledge physical violence, ignoring the other forms of violence. Generically, they consider gender differences as something natural and believe they occupy an inferior position in relation to men. Gender violence is a social construction that strengthens male domination and oppresses women. The challenge, thus, is to transform violence against women from a private into a public problem; that is, into an issue of human rights and gender equality. Key-words: Gender identities; Human rights; Violence against women.

  14. Ultra-rapid categorization of fourier-spectrum equalized natural images: macaques and humans perform similarly.

    Directory of Open Access Journals (Sweden)

    Pascal Girard

    Full Text Available BACKGROUND: Comparative studies of cognitive processes find similarities between humans and apes but also monkeys. Even high-level processes, like the ability to categorize classes of object from any natural scene under ultra-rapid time constraints, seem to be present in rhesus macaque monkeys (despite a smaller brain and the lack of language and a cultural background. An interesting and still open question concerns the degree to which the same images are treated with the same efficacy by humans and monkeys when a low level cue, the spatial frequency content, is controlled. METHODOLOGY/PRINCIPAL FINDINGS: We used a set of natural images equalized in Fourier spectrum and asked whether it is still possible to categorize them as containing an animal and at what speed. One rhesus macaque monkey performed a forced-choice saccadic task with a good accuracy (67.5% and 76% for new and familiar images respectively although performance was lower than with non-equalized images. Importantly, the minimum reaction time was still very fast (100 ms. We compared the performances of human subjects with the same setup and the same set of (new images. Overall mean performance of humans was also lower than with original images (64% correct but the minimum reaction time was still short (140 ms. CONCLUSION: Performances on individual images (% correct but not reaction times for both humans and the monkey were significantly correlated suggesting that both species use similar features to perform the task. A similar advantage for full-face images was seen for both species. The results also suggest that local low spatial frequency information could be important, a finding that fits the theory that fast categorization relies on a rapid feedforward magnocellular signal.

  15. Feedforward Object-Vision Models Only Tolerate Small Image Variations Compared to Human

    Directory of Open Access Journals (Sweden)

    Masoud eGhodrati

    2014-07-01

    Full Text Available Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modelling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well when images with more complex variations of the same object are applied to them. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e. briefly presented masked stimuli with complex image variations, human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modelling. We show that this approach is not of significant help in solving the computational crux of object recognition (that is invariant object recognition when the identity-preserving image variations become more complex.

  16. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Sunil L. Bangare

    2015-04-01

    Full Text Available This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed work is divided in to following Modules: Module 1: Image Pre-Processing Module 2: Feature Extraction, Segmentation using K-Means Algorithm and Fuzzy C-Means Algorithm Module 3: Tumor Area calculation & Stage detection Module 4: Classification and position calculation of tumor using Neural Network

  17. Neuromyelitis optica: a diffusional kurtosis imaging study.

    Science.gov (United States)

    Doring, T M; Lopes, F C R; Kubo, T T A; Tukamoto, G; Kimura, M C; Strecker, R M; Domingues, R C; Gasparetto, E L

    2014-12-01

    Conventional MR imaging typically yields normal images of the brain or indicates lesions in areas of high aquaporin expression in patients with neuromyelitis optica. Diffusional kurtosis imaging was applied in patients with neuromyelitis optica to determine whether this technique could detect alterations in diffusion and diffusional kurtosis parameters in normal-appearing white matter and to explore the relationship between diffusional kurtosis imaging and DTI parameters. Thirteen patients with neuromyelitis optica and 13 healthy controls underwent MR imaging of the brain with conventional and diffusional kurtosis imaging sequences. Tract-based spatial statistics and region-of-interest-based analyses were conducted to identify differences between patients with neuromyelitis optica and controls through conventional DTI and diffusional kurtosis imaging parameters. The parameters were correlated to determine the potential relationship between them. Compared with healthy controls, several diffusional kurtosis imaging and DTI parameters were altered in various fiber tracts of patients with neuromyelitis optica (P optica. We found a negative correlation between diffusional kurtosis imaging (radial kurtosis, axial kurtosis, mean kurtosis) and the corresponding DTI parameters (radial diffusivity, axial diffusivity, mean diffusivity). Positive correlations were found for radial kurtosis and mean kurtosis with fractional anisotropy. This study demonstrated differences in conventional diffusion and diffusional kurtosis parameters, especially radial kurtosis, in the normal-appearing white matter of patients with neuromyelitis optica compared with healthy controls. Larger studies of patients with neuromyelitis optica should be performed to assess the potential clinical impact of these findings. © 2014 by American Journal of Neuroradiology.

  18. Aesthetics of the Human Image in Life and Iconography of the Ancient Philosophers in Art

    Directory of Open Access Journals (Sweden)

    Dorofeev, Daniil

    2015-04-01

    Full Text Available The acoustic and visual understanding of man is a hotly debated issue in contemporary culture. I found it important therefore to look at certain historical, cultural, aesthetical, philosophical and anthropological peculiarities of human image in Antiquity as reflected in the arts. The following aspects deserve special attention: the visualization of sense and values; the interaction of “ethos” (character and “soma” (body; the influence of the plastic images on the narrative ones; a normative typology of man; the significance of visual and acoustic perception. In this context, I studied ancient physiognomic; Aristotelian understanding of the acoustic and plastic arts; genesis, evolution and significance of the sculptural portrait image of man and the image of philosopher in Antiquity. I also pay attention to some methodological aspects of the study. As a result, there emerges an integral image of philosopher, which allows looking at the Greek culture from a fresh angle.

  19. Experimental validations of in vivo human musculoskeletal tissue conductivity images using MR-based electrical impedance tomography.

    Science.gov (United States)

    Jeong, Woo Chul; Meng, Zi Jun; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2014-07-01

    Magnetic resonance (MR)-based electrical impedance tomography (MREIT) is a widely used imaging technique that provides high-resolution conductivity images at DC or below the 1 kHz frequency range. Using an MR scanner, this technique injects imaging currents into the human body and measures induced internal magnetic flux density data. By applying the recent progress of MREIT techniques, such as chemical shift artifact correction, multi-echo pulse sequence, and improved reconstruction algorithm, we can successfully reconstruct conductivity images of the human body. Meanwhile, numerous studies reported that the electrical conductivity of human tissues could be inferred from in vitro or ex vivo measurements of different species. However, in vivo tissues may differ from in vitro and/or ex vivo state due to the complicated tissue responses in living organs. In this study, we performed in vivo MREIT imaging of a human lower extremity and compared the resulting conductivity images with ex vivo biological tissue phantom images. The human conductivity images showed unique contrast between two different types of bones, muscles, subcutaneous adipose tissues, and conductive body fluids. Except for muscles and adipose tissues, the human conductivity images showed a similar pattern when compared with phantom results due to the anisotropic characteristic of muscle and the high conductive fluids in the adipose tissue.

  20. Display of nuclear medicine imaging studies

    CERN Document Server

    Singh, B; Samuel, A M

    2002-01-01

    Nuclear medicine imaging studies involve evaluation of a large amount of image data. Digital signal processing techniques have introduced processing algorithms that increase the information content of the display. Nuclear medicine imaging studies require interactive selection of suitable form of display and pre-display processing. Static imaging study requires pre-display processing to detect focal defects. Point operations (histogram modification) along with zoom and capability to display more than one image in one screen is essential. This album mode of display is also applicable to dynamic, MUGA and SPECT data. Isometric display or 3-D graph of the image data is helpful in some cases e.g. point spread function, flood field data. Cine display is used on a sequence of images e.g. dynamic, MUGA and SPECT imaging studies -to assess the spatial movement of tracer with time. Following methods are used at the investigator's discretion for inspection of the 3-D object. 1) Display of orthogonal projections, 2) Disp...

  1. Penn State's Visual Image User Study

    Science.gov (United States)

    Pisciotta, Henry A.; Dooris, Michael J.; Frost, James; Halm, Michael

    2005-01-01

    The Visual Image User Study (VIUS), an extensive needs assessment project at Penn State University, describes academic users of pictures and their perceptions. These findings outline the potential market for digital images and list the likely determinates of whether or not a system will be used. They also explain some key user requirements for…

  2. Numerical Surrogates for Human Observers in Myocardial Motion Evaluation From SPECT Images.

    Science.gov (United States)

    Marin, Thibault; Kalayeh, Mahdi M; Parages, Felipe M; Brankov, Jovan G

    2014-01-01

    In medical imaging, the gold standard for image-quality assessment is a task-based approach in which one evaluates human observer performance for a given diagnostic task (e.g., detection of a myocardial perfusion or motion defect). To facilitate practical task-based image-quality assessment, model observers are needed as approximate surrogates for human observers. In cardiac-gated SPECT imaging, diagnosis relies on evaluation of the myocardial motion as well as perfusion. Model observers for the perfusion-defect detection task have been studied previously, but little effort has been devoted toward development of a model observer for cardiac-motion defect detection. In this work, we describe two model observers for predicting human observer performance in detection of cardiac-motion defects. Both proposed methods rely on motion features extracted using previously reported deformable mesh model for myocardium motion estimation. The first method is based on a Hotelling linear discriminant that is similar in concept to that used commonly for perfusion-defect detection. In the second method, based on relevance vector machines (RVM) for regression, we compute average human observer performance by first directly predicting individual human observer scores, and then using multi reader receiver operating characteristic analysis. Our results suggest that the proposed RVM model observer can predict human observer performance accurately, while the new Hotelling motion-defect detector is somewhat less effective.

  3. Acoustic radiation force impulse imaging of human prostates: initial in vivo demonstration.

    Science.gov (United States)

    Zhai, Liang; Polascik, Thomas J; Foo, Wen-Chi; Rosenzweig, Stephen; Palmeri, Mark L; Madden, John; Nightingale, Kathryn R

    2012-01-01

    Reliably detecting prostate cancer (PCa) has been a challenge for current imaging modalities. Acoustic radiation force impulse (ARFI) imaging is an elasticity imaging method that uses remotely generated, focused acoustic beams to probe tissue stiffness. A previous study on excised human prostates demonstrated ARFI images portray various prostatic structures and has the potential to guide prostate needle biopsy with improved sampling accuracy. The goal of this study is to demonstrate the feasibility of ARFI imaging to portray internal structures and PCa in the human prostate in vivo. Custom ARFI imaging sequences were designed and implemented using a modified Siemens Antares™ scanner with a three-dimensional (3-D) wobbler, end-firing, trans-cavity transducer, EV9F4. Nineteen patients were consented and imaged immediately preceding surgical prostatectomy. Pathologies and anatomic structures were identified in histologic slides by a pathologist blinded to ARFI data and were then registered with structures found in ARFI images. The results demonstrated that when PCa is visible, it generally appears as bilaterally asymmetric stiff structures; benign prostatic hyperplasia (BPH) appears heterogeneous with a nodular texture; the verumontanum and ejaculatory ducts appears softer compared with surrounding tissue, which form a unique 'V' shape; and the boundary of the transitional zone (TZ) forms a stiff rim separating the TZ from the peripheral zone (PZ). These characteristic appearances of prostatic structures are consistent with those found in our previous study of prostate ARFI imaging on excised human prostates. Compared with the matched B-mode images, ARFI images, in general, portray prostate structures with higher contrast. With the end-firing transducer used for this study, ARFI depth penetration was limited to 22 mm. Image contrast and resolution were decreased as compared with the previous ex vivo study due to the small transducer aperture. Even with these

  4. Combined photoacoustic and ultrasound imaging of human breast in vivo in the mammographic geometry

    Science.gov (United States)

    Xie, Zhixing; Lee, Won-Mean; Hooi, Fong Ming; Fowlkes, J. Brian; Pinsky, Renee W.; Mueller, Dean; Wang, Xueding; Carson, Paul L.

    2013-03-01

    This photoacoustic volume imaging (PAVI) system is designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3D ultrasound (AUS). The good penetration of near-infrared (NIR) light and high receiving sensitivity of a broad bandwidth, 572 element, 2D PVDF array at a low center-frequency of 1MHz were utilized with 20 channel simultaneous acquisition. The feasibility of this system in imaging optically absorbing objects in deep breast tissues was assessed first through experiments on ex vivo whole breasts. The blood filled pseudo lesions were imaged at depths up to 49 mm in the specimens. In vivo imaging of human breasts has been conducted. 3D PAVI image stacks of human breasts were coregistered and compared with 3D ultrasound image stacks of the same breasts. Using the designed system, PAVI shows satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides with mild compression in the mammographic geometry. With its unique soft tissue contrast and excellent sensitivity to the tissue hemodynamic properties of fractional blood volume and blood oxygenation, PAVI, as a complement to 3D ultrasound and digital tomosynthesis mammography, might well contribute to detection, diagnosis and prognosis for breast cancer.

  5. Hyperpolarized Xe MR imaging of alveolar gas uptake in humans.

    Directory of Open Access Journals (Sweden)

    Zackary I Cleveland

    Full Text Available BACKGROUND: One of the central physiological functions of the lungs is to transfer inhaled gases from the alveoli to pulmonary capillary blood. However, current measures of alveolar gas uptake provide only global information and thus lack the sensitivity and specificity needed to account for regional variations in gas exchange. METHODS AND PRINCIPAL FINDINGS: Here we exploit the solubility, high magnetic resonance (MR signal intensity, and large chemical shift of hyperpolarized (HP (129Xe to probe the regional uptake of alveolar gases by directly imaging HP (129Xe dissolved in the gas exchange tissues and pulmonary capillary blood of human subjects. The resulting single breath-hold, three-dimensional MR images are optimized using millisecond repetition times and high flip angle radio-frequency pulses, because the dissolved HP (129Xe magnetization is rapidly replenished by diffusive exchange with alveolar (129Xe. The dissolved HP (129Xe MR images display significant, directional heterogeneity, with increased signal intensity observed from the gravity-dependent portions of the lungs. CONCLUSIONS: The features observed in dissolved-phase (129Xe MR images are consistent with gravity-dependent lung deformation, which produces increased ventilation, reduced alveolar size (i.e., higher surface-to-volume ratios, higher tissue densities, and increased perfusion in the dependent portions of the lungs. Thus, these results suggest that dissolved HP (129Xe imaging reports on pulmonary function at a fundamental level.

  6. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging

    Science.gov (United States)

    Feinberg, David A.; Setsompop, Kawin

    2013-04-01

    The recent advancement of simultaneous multi-slice imaging using multiband excitation has dramatically reduced the scan time of the brain. The evolution of this parallel imaging technique began over a decade ago and through recent sequence improvements has reduced the acquisition time of multi-slice EPI by over ten fold. This technique has recently become extremely useful for (i) functional MRI studies improving the statistical definition of neuronal networks, and (ii) diffusion based fiber tractography to visualize structural connections in the human brain. Several applications and evaluations are underway which show promise for this family of fast imaging sequences.

  7. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin.

    Science.gov (United States)

    Fereidouni, Farzad; Bader, Arjen N; Colonna, Anne; Gerritsen, Hans C

    2014-08-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited autofluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral features. Various structures in the skin could be distinguished, including Stratum Corneum, epidermal cells and dermis. The spectral phasor analysis allowed investigation of their fluorescence composition and identification of signals from NADH, keratin, FAD, melanin, collagen and elastin. Interestingly, two populations of epidermal cells could be distinguished with different melanin content.

  8. [DNA image-fluorimetry of individual human chromosomes].

    Science.gov (United States)

    Agafonova, N A; Sakuta, G A; Rozanov, Iu M; Shteĭn, G I; Kudriavtsev, B N

    2013-01-01

    Mucrofluorimetric method for the determination of DNA content in individual human chromosomes has been developed. The method is based on a preliminary identification of chromosomes with Hoechst 33258, followed by staining of the chromosomes with Feulgen reaction using Schiffs reagent type ethidium bromide-SO2, then measuring the fluorescence intensity of the chromosomes using an image analyzer. The method allows to determine the DNA content of individual chromosomes with accuracy up to 4.5 fg. DNA content of individual human chromosomes, their p-and q-arms as well as homologous chromosomes were measured using the developed method. It has been shown that the DNA content in the chromosomes of normal human karyotype is unstable. Fluctuations in the DNA content in some chromosomes can vary 35-40 fg.

  9. In our own image? Emotional and neural processing differences when observing human-human vs human-robot interactions.

    Science.gov (United States)

    Wang, Yin; Quadflieg, Susanne

    2015-11-01

    Notwithstanding the significant role that human-robot interactions (HRI) will play in the near future, limited research has explored the neural correlates of feeling eerie in response to social robots. To address this empirical lacuna, the current investigation examined brain activity using functional magnetic resonance imaging while a group of participants (n = 26) viewed a series of human-human interactions (HHI) and HRI. Although brain sites constituting the mentalizing network were found to respond to both types of interactions, systematic neural variation across sites signaled diverging social-cognitive strategies during HHI and HRI processing. Specifically, HHI elicited increased activity in the left temporal-parietal junction indicative of situation-specific mental state attributions, whereas HRI recruited the precuneus and the ventromedial prefrontal cortex (VMPFC) suggestive of script-based social reasoning. Activity in the VMPFC also tracked feelings of eeriness towards HRI in a parametric manner, revealing a potential neural correlate for a phenomenon known as the uncanny valley. By demonstrating how understanding social interactions depends on the kind of agents involved, this study highlights pivotal sub-routes of impression formation and identifies prominent challenges in the use of humanoid robots. © The Author (2015). Published by Oxford University Press.

  10. Blood-Brain Barrier Imaging in Human Neuropathologies

    Science.gov (United States)

    Veksler, Ronel; Shelef, Ilan; Friedman, Alon

    2014-01-01

    The blood–brain barrier (BBB) is essential for normal function of the brain, and its role in many brain pathologies has been the focus of numerous studies during the last decades. Dysfunction of the BBB is not only being shown in numerous brain diseases, but animal studies have indicated that it plays a direct key role in the genesis of neurovascular dysfunction and associated neurodegeneration. As such evidence accumulates, the need for robust and clinically applicable methods for minimally invasive assessment of BBB integrity is becoming urgent. This review provides an introduction to BBB imaging methods in the clinical scenario. First, imaging modalities are reviewed, with a focus on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We then proceed to review image analysis methods, including quantitative and semi-quantitative methods. The advantages and limitations of each approach are discussed, and future directions and questions are highlighted. PMID:25453223

  11. Comparative Study of Image Denoising Algorithms in Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Aarti

    2014-05-01

    Full Text Available This paper proposes a basic scheme for understanding the fundamentals of digital image processing and the image denising algorithm. There are three basic operation categorized on during image processing i.e. image rectification and restoration, enhancement and information extraction. Image denoising is the basic problem in digital image processing. The main task is to make the image free from Noise. Salt & pepper (Impulse noise and the additive white Gaussian noise and blurredness are the types of noise that occur during transmission and capturing. For denoising the image there are some algorithms which denoise the image.

  12. Comparative Study of Image Denoising Algorithms in Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Aarti Kumari

    2015-11-01

    Full Text Available This paper proposes a basic scheme for understanding the fundamentals of digital image processing and the image denising algorithm. There are three basic operation categorized on during image processing i.e. image rectification and restoration, enhancement and information extraction. Image denoising is the basic problem in digital image processing. The main task is to make the image free from Noise. Salt & pepper (Impulse noise and the additive white Gaussian noise and blurredness are the types of noise that occur during transmission and capturing. For denoising the image there are some algorithms which denoise the image.

  13. First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)

    Science.gov (United States)

    Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz

    2017-03-01

    Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.

  14. Oxygen challenge magnetic resonance imaging in healthy human volunteers.

    Science.gov (United States)

    Dani, Krishna A; Moreton, Fiona C; Santosh, Celestine; Lopez, Rosario; Brennan, David; Schwarzbauer, Christian; Goutcher, Colin; O'Hare, Kevin; Macrae, I Mhairi; Muir, Keith W

    2017-01-01

    Oxygen challenge imaging involves transient hyperoxia applied during deoxyhaemoglobin sensitive (T2*-weighted) magnetic resonance imaging and has the potential to detect changes in brain oxygen extraction. In order to develop optimal practical protocols for oxygen challenge imaging, we investigated the influence of oxygen concentration, cerebral blood flow change, pattern of oxygen administration and field strength on T2*-weighted signal. Eight healthy volunteers underwent multi-parametric magnetic resonance imaging including oxygen challenge imaging and arterial spin labelling using two oxygen concentrations (target FiO2 of 100 and 60%) administered consecutively (two-stage challenge) at both 1.5T and 3T. There was a greater signal increase in grey matter compared to white matter during oxygen challenge (p challenge imaging. Reductions in cerebral blood flow did not obscure the T2*-weighted signal increases. In conclusion, the optimal protocol for further study should utilise target FiO2 = 100% during a single oxygen challenge. Imaging at both 1.5T and 3T is clinically feasible.

  15. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  16. Robust diffusion imaging framework for clinical studies

    CERN Document Server

    Maximov, Ivan I; Neuner, Irene; Shah, N Jon

    2015-01-01

    Clinical diffusion imaging requires short acquisition times and good image quality to permit its use in various medical applications. In turn, these demands require the development of a robust and efficient post-processing framework in order to guarantee useful and reliable results. However, multiple artefacts abound in in vivo measurements; from either subject such as cardiac pulsation, bulk head motion, respiratory motion and involuntary tics and tremor, or imaging hardware related problems, such as table vibrations, etc. These artefacts can severely degrade the resulting images and render diffusion analysis difficult or impossible. In order to overcome these problems, we developed a robust and efficient framework enabling the use of initially corrupted images from a clinical study. At the heart of this framework is an improved least trimmed squares diffusion tensor estimation algorithm that works well with severely degraded datasets with low signal-to-noise ratio. This approach has been compared with other...

  17. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    Science.gov (United States)

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease. © 2013 Published by Elsevier Inc.

  18. Images of Struggle: Teaching Human Rights with Graphic Novels

    Science.gov (United States)

    Carano, Kenneth T.; Clabough, Jeremiah

    2016-01-01

    The authors explore how graphic novels can be used in the middle and high school social studies classroom to teach human rights. The article begins with a rationale on the benefits of using graphic novels. It next focuses on four graphic novels related to human rights issues: "Maus I: A Survivor's Tale: My Father Bleeds" (Speigelman…

  19. Nanoscale three-dimensional imaging of the human myocyte.

    Science.gov (United States)

    Sulkin, Matthew S; Yang, Fei; Holzem, Katherine M; Van Leer, Brandon; Bugge, Cliff; Laughner, Jacob I; Green, Karen; Efimov, Igor R

    2014-10-01

    The ventricular human myocyte is spatially organized for optimal ATP and Ca(2+) delivery to sarcomeric myosin and ionic pumps during every excitation-contraction cycle. Comprehension of three-dimensional geometry of the tightly packed ultrastructure has been derived from discontinuous two-dimensional images, but has never been precisely reconstructed or analyzed in human myocardium. Using a focused ion beam scanning electron microscope, we created nanoscale resolution serial images to quantify the three-dimensional ultrastructure of a human left ventricular myocyte. Transverse tubules (t-tubule), lipid droplets, A-bands, and mitochondria occupy 1.8, 1.9, 10.8, and 27.9% of the myocyte volume, respectively. The complex t-tubule system has a small tortuosity (1.04±0.01), and is composed of long transverse segments with diameters of 317±24nm and short branches. Our data indicates that lipid droplets located well beneath the sarcolemma are proximal to t-tubules, where 59% (13 of 22) of lipid droplet centroids are within 0.50μm of a t-tubule. This spatial association could have an important implication in the development and treatment of heart failure because it connects two independently known pathophysiological alterations, a substrate switch from fatty acids to glucose and t-tubular derangement.

  20. MALDI-MS-imaging of whole human lens capsule.

    Science.gov (United States)

    Ronci, Maurizio; Sharma, Shiwani; Chataway, Tim; Burdon, Kathryn P; Martin, Sarah; Craig, Jamie E; Voelcker, Nicolas H

    2011-08-05

    The ocular lens capsule is a smooth, transparent basement membrane that encapsulates the lens and is composed of a rigid network of interacting structural proteins and glycosaminoglycans. During cataract surgery, the anterior lens capsule is routinely removed in the form of a circular disk. We considered that the excised capsule could be easily prepared for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) analysis. MALDI-MSI is a powerful tool to elucidate the spatial distribution of small molecules, peptides, and proteins within tissues. Here, we apply this molecular imaging technique to analyze the freshly excised human lens capsule en face. We demonstrate that novel information about the distribution of proteins by MALDI-MSI can be obtained from this highly compact connective tissue, having no evident histo-morphological characteristics. Trypsin digestion carried out on-tissue is shown to improve MALDI-MSI analysis of human lens capsules and affords high repeatability. Most importantly, MALDI-MSI analysis reveals a concentric distribution pattern of proteins such as apolipoprotein E (ApoE) and collagen IV alpha-1 on the anterior surface of surgically removed lens capsule, which may indicate direct or indirect effects of environmental and mechanical stresses on the human ocular lens.

  1. Occluded Human Tracking and Identification Using Image Annotation

    Directory of Open Access Journals (Sweden)

    Devinder Kumar

    2012-11-01

    Full Text Available The important task of human tracking can be difficult to implement in real world environment as the videos can involve complex scenes, severe occlusion and even moving background. Tracking individual objects in a cluttered scene is an important aspect of surveillance. In addition, the systems should also avoid misclassification which can lead to inaccurate tracking. This paper makes use of an efficient image annotation for human tracking. According to the literature survey, this is the first paper which proposes the application of the image annotation algorithm towards human tracking. The method divides the video scene into multiple layers assigning each layer to the individual object of interest. Since each layer has been assigned to a specific object in the video sequence: (i we can track and analyse the movement of each object individually (ii The method is able to reframe from misclassification as each object has been assigned a respective layer. The error incurred by the system with movement from one frame to another is presented with detailed simulations and is compared with the conventional Horn–Schunck alone.

  2. Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy.

    Science.gov (United States)

    Jiang, Xingshan; Zhong, Jiazhao; Liu, Yuchun; Yu, Haibo; Zhuo, Shuangmu; Chen, Jianxin

    2011-01-01

    Multiphoton microscopic imaging of collagen plays an important role in noninvasive diagnoses of human tissue. In this study, two-photon fluorescence and second-harmonic generation (SHG) imaging of collagen in human skin dermis and submucosa of colon and stomach tissues were investigated based on multiphoton microscopy (MPM). Our results show that multiphoton microscopic image of collagen bundles exhibits apparently different pattern in human tissues. The collagen bundles can simultaneously reveal its SHG and two-photon excited fluorescence images in the submucosa of colon and stomach, whereas it solely emit SHG signal in skin dermis. The intensity spectral information from tissues further demonstrated the above results. This indicates that collagen bundles have completely different space arrangement in these tissues. Our experimental results bring more detailed information of collagen for the application of MPM in human noninvasive imaging. Copyright © 2011 Wiley Periodicals, Inc.

  3. Real-time functional near-infrared imager and imaging of human brain activity

    Science.gov (United States)

    Luo, Qingming; Zeng, Shaoqun; Gong, Hui; Chen, Weiguo; Zhang, Zhi; Chance, Britton

    1999-02-01

    A real time functional near infrared imager (fNIRI) was introduced. The imager was controlled by a computer and the signals from the detectors were converted and processed in real time. A user-friendly software was programmed with Visual C++ language. Relative changes of oxy - Hb, Hb, and total blood concentration in 16 channels and the corresponding images can be displayed in real time on the computer. The imager was used as a real time monitor in psychological tests to record the response of the frontal cortex of human subjects. In mental work and pattern recognition tests, we recorded oxygen consumption and blood flow changes of volunteers' frontal cortex. The psychological results showed that the lower part of the left frontal gyres had intensive relation to pattern recognition and has definite boundaries. However, the mental work involved more zones of the frontal gyres and may be a complex conceptual model. The results also suggested that the human brain has an precise and complicated adjustability. The oxygen supplement in the stimulated area increased as the neuron stimulation.

  4. ADVANCED MAGNETIC RESONANCE IMAGING OF CEREBRAL CAVERNOUS MALFORMATIONS: I. HIGH FIELD IMAGING OF EXCISED HUMAN LESIONS

    Science.gov (United States)

    Shenkar, Robert; Venkatasubramanian, Palamadai N.; Zhao, Jin-cheng; Batjer, H. Hunt; Wyrwicz, Alice M.; Awad, Issam A.

    2008-01-01

    Objectives We hypothesized that structural details would be revealed in cerebral cavernous malformations (CCMs) through the use of high field magnetic resonance (MR) and confocal microscopy, which have not been described previously. The structural details of CCMs excised from human patients were sought by examination with high field MR imaging, and correlated with confocal microscopy of the same specimens. Novel features of CCM structure are outlined, including methodological limitations, venues for future research and possible clinical implications. Methods CCM lesions excised from four patients were fixed in 2% paraformaldehyde and subjected to high resolution MR imaging at 9.4 or 14.1 Tesla by spin-echo and gradient recalled echo methods. Histological validation of angioarchitecture was conducted on thick sections of CCM lesions using fluorescent probes to endothelium under confocal microscopy. Results Images of excised human CCM lesions were acquired with proton density-weighted, T1-weighted, T2-weighted spin echo and T2*-weighted gradient-recalled echo MR. These images revealed large “bland” regions with thin walled caverns, and “honeycombed” regions with notable capillary proliferation and smaller caverns surrounding larger caverns. Proliferating capillaries and caverns of various sizes were also associated with the wall of apparent larger blood vessels in the lesions. Similar features were confirmed within thick sections of CCMs by confocal microscopy. MR relaxation times in different regions of interest suggested the presence of different states of blood breakdown products in areas with apparent angiogenic proliferative activity. Conclusions The high field MR imaging techniques demonstrate novel features of CCM angioarchitecture, visible at near histological resolution, including regions with apparently different biologic activity. These preliminary observations will motivate future research, correlating lesion biologic and clinical activity with

  5. Automated preparation of the dopamine D{sub 2/3} receptor agonist ligand [{sup 11}C]-(+)-PHNO for human PET imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Plisson, Christophe, E-mail: Christophe.2.plisson@gsk.com [GlaxoSmithKline, Clinical Imaging Centre, Hammersmith Hospital, London W12 0NN (United Kingdom); Huiban, Mickael; Pampols-Maso, Sabina; Singleton, Goerkem; Hill, Samuel P.; Passchier, Jan [GlaxoSmithKline, Clinical Imaging Centre, Hammersmith Hospital, London W12 0NN (United Kingdom)

    2012-02-15

    Carbon-11 labelled (+)-4-Propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol ([{sup 11}C]-(+)-PHNO) is used as a high-affinity state, dopamine D{sub 2/3} receptor ligand in clinical PET studies. To facilitate its use, robust, rapid, efficient and GMP compliant methods are required for the manufacturing and QC testing processes. Additionally, to allow for full quantification of the resulting signal in the CNS, a reliable method is required to establish the parent plasma concentration over the course of the scan. This paper provides high-quality methods to support clinical application of [{sup 11}C]-(+)-PHNO. - Highlights: Black-Right-Pointing-Pointer Fully automated synthesis of [{sup 11}C]-(+)-PHNO. Black-Right-Pointing-Pointer Rapid multi-step synthesis and QC analysis. Black-Right-Pointing-Pointer Reproducible synthesis process typically yielding more than 3 GBq of [{sup 11}C]-(+)-PHNO. Black-Right-Pointing-Pointer Very low failure rate.

  6. Particle Image Velocimetry Measurements Inside the Human Nasal Passage

    Science.gov (United States)

    Kelly, James; Hopkins, Lisa; Sreenivas, K. R.; Wexler, Anthony; Prasad, Ajay

    1998-11-01

    In some applications (such as biological flows) the flow passage exhibits a highly complex geometry. A method is described by which such a flow passage is rendered as a three-dimensional model. A computer model of an adult human nasal cavity was generated from digitized computed tomography (CT) scan images, using the I-DEAS modeling package, and was converted to a stereolithographic file for rapid prototyping. Rapid prototyping yielded a water soluble negative of the airway. Silicone elastomer was poured over the negative, which was washed out after the silicone hardened. This technique can be used to obtain an accurate, transparent, silicone, replicate model of any arbitrary geometry. If the working fluid is refractive-index matched to the silicone, it is possible to obtain PIV measurements in any cross-section. We demonstrate the technique by creating a double-scale model of the human nasal passage, and obtaining PIV measurements.

  7. Human body motion capture from multi-image video sequences

    Science.gov (United States)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points

  8. MEG studies of human vision: Retinotopic organization of V1

    Energy Technology Data Exchange (ETDEWEB)

    Aine, C.; George, J.; Ranken, D.; Best, E.; Tiee, W.; Vigil, V.; Flynn, E.; Wood, C. [Los Alamos National Lab., NM (United States); Supek, S. [Zagreb Univ. (Croatia). Dept. of Physics

    1993-12-31

    A primary goal of noninvasive studies of human vision is to identify and characterize multiple visual areas in the human brain analogous to those identified in studies of nonhuman primates. By combining functional MEG measurements with images of individual anatomy derived from MRI, the authors hope to determine the location and arrangement of multiple visual areas in human cortex and to probe their functional significance. The authors have identified several different visual areas thus far which appear to be topographically organized. This paper focuses on the retinotopic characterization of the primary visual area (V1) in humans.

  9. Study of image motion compensation in spectral imaging system

    Science.gov (United States)

    Li, Zhijun; Chen, Xing Long

    2016-10-01

    In the spectral imaging system, random jitter and posture change of the aircraft generated random image motion, and flight of aircraft caused forward image motion. Both of image motion can cause image blur in a longer exposure time, which need for image motion compensation. Due to limited field of view of the optical system, limited size and weight, a stable FSM (Fast Steering Mirror) was used for random image motion compensation and a compensation FSM was used for forward image motion compensation. In the random image motion compensation, inertial sensors were used for measuring the random jitter and the posture change of the aircraft. As the advantages and disadvantages for the gyroscope and inclinometer, we used data fusion of the two sensors to complementary advantages with closed-loop mode filter data based on the frequency domain. In this way, we got high linearity, little drift, high bandwidth and little electrical noise inertial measurement sensors. On the other hand, the motion of the compensation mirror was broken down to the amount of displacement within the time required for each interrupt movement. Under strict timing control, macro forward image motion compensation was realized in the exposure time. The above image motion compensation methods were applied to actual spectral imaging systems, aerial experiment results show that image motion compensation obtained good results and met the remaining image motion compensation image error was not more than 1/3 pixel.

  10. A study on secondary images in panoramic radiograph

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dai Hee; Kim, Han Pyong [Department of Dental Science, Yonsei University, Seoul (Korea, Republic of)

    1984-11-15

    This study was performed to observe the secondary images and to analyse the relationships between the primary and secondary images in panoramic radiograph. Using the Morita's Panex-EC panoramic x-ray machine and the human dry skull, the author analysed 17 radiographs which were selected from 65 radiographs of the dry skull that attached the radiopaque materials, and the attached regions of the radiopaque materials were the normal anatomical structures which were important and selected as a region for the evaluation of the secondary images effectively. The results were as follows; 1. The cervical vertebrae showed three images. The midline image was the most distorted and less clear, and bilateral images were slightly superimposed over the posterior border of the mandibular ramus. 2. In mandible, the secondary image of the posterior border of the ramus was superimposed on the opposite ramus region, and this image was elongated from the anterior border of the ramus to the lateral side of the posterior border of the ramus. The secondary image of the condyle was observed on the upper area of the coronoid process, the sigmoid notch and the condyle in opposite side. 3. In maxilla, the posterior region of the hard palate showed the secondary image on the lower part of the nasal cavity and the medial wall of the maxillary sinus. 4. The primary images of the occipital condyle and the mastoid process appeared on the same region, and only the secondary image of the occipital condyle was observed symmetrically on the opposite side with similar shape to the primary one. 5. In the cranial base, the anatomical structures of the midsagittal portions like a inferior border of the frontal sinus, sella turcica, inferior border of the sphenoid sinus and inferior border of the posterior part of the occipital bone showed the similar shape between the primary and secondary images symmetrically. 6. The petrous portion of the temporal bone showed the secondary image of the lateral side

  11. Automatic and hierarchical segmentation of the human skeleton in CT images

    Science.gov (United States)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic

  12. Automatic and hierarchical segmentation of the human skeleton in CT images.

    Science.gov (United States)

    Fu, Yabo; Liu, Shi; Li, Hui Harold; Yang, Deshan

    2017-02-14

    Accurate segmentation of each bone in human skeleton is useful in many medical disciplines. Results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulties due to high image contrast between bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to many limitations in the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all major individual bones of human skeleton above the upper legs in the CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. Degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. Segmentation results are evaluated using Dice coefficient and point-to-surface error (PSE) against manual segmentation results as ground truth. The results suggest that the reported method can automatically segment and label human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  13. 脑功能磁共振成像在人类嗅觉研究中的应用%Application of functional magnetic resonance imaging in human olfaction studies

    Institute of Scientific and Technical Information of China (English)

    李博; 吴瑞琪; 李安安; 徐富强

    2011-01-01

    在人类的5种主要感觉中,嗅觉是最广泛、古老、直接和内在的感觉.这些特性使人们对人类嗅觉的研究异常艰难,以致于直到今天人们对嗅觉的功能仍不清楚,而对大脑的功能机制所知更少.与其他基于物理原理的方法一样,磁共振成像技术的广泛应用极大地推动了整个生命科学的发展.脑功能磁共振成像的优势(高分辨率、高对比度、无损性和无放射性等)为人们研究嗅觉高级中枢以及与嗅觉相关行为的脑机制等提供了强有力的技术手段.文章在简单介绍嗅觉知识的基础上,着重讨论了近十年来,脑功能磁共振成像技术在人类嗅觉研究中所取得的成果.%Among the five major senses, olfaction is the most common, ancient, direct and intrinsic. The special characteristics of the olfaction system have made its study so difficult that up to now we are still unclear about the olfactory functions in human beings and the mechanisms in the brain. As in the cases of other technologies based on physical principles, magnetic resonance imaging (MRI) and related methods have greatly advanced our understanding of the entire field of life science. Functional MRI, a non-invasive and non-radioactive imaging method with high spatial resolution and contrast, provides us with a powerful tool to investigate the brain mechanisms for a variety of olfactory functions and behavior. In this review, we will first give a brief introduction to the olfactory system, then focus on the major findings in human olfaction revealed by the application of functional MRI in the past decade.

  14. Functional magnetic resonance imaging studies of language.

    Science.gov (United States)

    Small, Steven L; Burton, Martha W

    2002-11-01

    Functional neuroimaging of language builds on almost 150 years of study in neurology, psychology, linguistics, anatomy, and physiology. In recent years, there has been an explosion of research using functional imaging technology, especially positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), to understand the relationship between brain mechanisms and language processing. These methods combine high-resolution anatomic images with measures of language-specific brain activity to reveal neural correlates of language processing. This article reviews some of what has been learned about the neuroanatomy of language from these imaging techniques. We first discuss the normal case, organizing the presentation according to the levels of language, encompassing words (lexicon), sound structure (phonemes), and sentences (syntax and semantics). Next, we delve into some unusual language processing circumstances, including second languages and sign languages. Finally, we discuss abnormal language processing, including developmental and acquired dyslexia and aphasia.

  15. Fractal analysis of AFM images of the surface of Bowman's membrane of the human cornea.

    Science.gov (United States)

    Ţălu, Ştefan; Stach, Sebastian; Sueiras, Vivian; Ziebarth, Noël Marysa

    2015-04-01

    The objective of this study is to further investigate the ultrastructural details of the surface of Bowman's membrane of the human cornea, using atomic force microscopy (AFM) images. One representative image acquired of Bowman's membrane of a human cornea was investigated. The three-dimensional (3-D) surface of the sample was imaged using AFM in contact mode, while the sample was completely submerged in optisol solution. Height and deflection images were acquired at multiple scan lengths using the MFP-3D AFM system software (Asylum Research, Santa Barbara, CA), based in IGOR Pro (WaveMetrics, Lake Oswego, OR). A novel approach, based on computational algorithms for fractal analysis of surfaces applied for AFM data, was utilized to analyze the surface structure. The surfaces revealed a fractal structure at the nanometer scale. The fractal dimension, D, provided quantitative values that characterize the scale properties of surface geometry. Detailed characterization of the surface topography was obtained using statistical parameters, in accordance with ISO 25178-2: 2012. Results obtained by fractal analysis confirm the relationship between the value of the fractal dimension and the statistical surface roughness parameters. The surface structure of Bowman's membrane of the human cornea is complex. The analyzed AFM images confirm a fractal nature of the surface, which is not taken into account by classical surface statistical parameters. Surface fractal dimension could be useful in ophthalmology to quantify corneal architectural changes associated with different disease states to further our understanding of disease evolution.

  16. RF Device for Acquiring Images of the Human Body

    Science.gov (United States)

    Gaier, Todd C.; McGrath, William R.

    2010-01-01

    A safe, non-invasive method for forming images through clothing of large groups of people, in order to search for concealed weapons either made of metal or not, has been developed. A millimeter wavelength scanner designed in a unique, ring-shaped configuration can obtain a full 360 image of the body with a resolution of less than a millimeter in only a few seconds. Millimeter waves readily penetrate normal clothing, but are highly reflected by the human body and concealed objects. Millimeter wave signals are nonionizing and are harmless to human tissues when used at low power levels. The imager (see figure) consists of a thin base that supports a small-diameter vertical post about 7 ft (=2.13 m) tall. Attached to the post is a square-shaped ring 2 in. (=5 cm) wide and 3 ft (=91 cm) on a side. The ring is oriented horizontally, and is supported halfway along one side by a connection to a linear bearing on the vertical post. A planar RF circuit board is mounted to the inside of each side of the ring. Each circuit board contains an array of 30 receivers, one transmitter, and digitization electronics. Each array element has a printed-circuit patch antenna coupled to a pair of mixers by a 90 coupler. The mixers receive a reference local oscillator signal to a subharmonic of the transmitter frequency. A single local oscillator line feeds all 30 receivers on the board. The resulting MHz IF signals are amplified and carried to the edge of the board where they are demodulated and digitized. The transmitted signal is derived from the local oscillator at a frequency offset determined by a crystal oscillator. One antenna centrally located on each side of the square ring provides the source illumination power. The total transmitted power is less than 100 mW, resulting in an exposure level that is completely safe to humans. The output signals from all four circuit boards are fed via serial connection to a data processing computer. The computer processes the approximately 1-MB

  17. On the Use of Machine Vision Techniques to Detect Human Settlements in Satellite Images

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, C; Sengupta, S K; Poland, D; Futterman, J A H

    2003-01-10

    The automated production of maps of human settlement from recent satellite images is essential to studies of urbanization, population movement, and the like. The spectral and spatial resolution of such imagery is often high enough to successfully apply computer vision techniques. However, vast amounts of data have to be processed quickly. In this paper, we propose an approach that processes the data in several different stages. At each stage, using features appropriate to that stage, we identify the portion of the data likely to contain information relevant to the identification of human settlements. This data is used as input to the next stage of processing. Since the size of the data has reduced, we can now use more complex features in this next stage. These features can be more representative of human settlements, and also more time consuming to extract from the image data. Such a hierarchical approach enables us to process large amounts of data in a reasonable time, while maintaining the accuracy of human settlement identification. We illustrate our multi-stage approach using IKONOS 4-band and panchromatic images, and compare it with the straight-forward processing of the entire image.

  18. Quantifying hypoxia in human cancers using static PET imaging

    Science.gov (United States)

    Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G.; Milosevic, Michael; Hedley, David W.; Jaffray, David A.

    2016-11-01

    Compared to FDG, the signal of 18F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties—well-perfused without substantial necrosis or partitioning—for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in ‘inter-corporal’ transport properties—blood volume and clearance rate—as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3, a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.

  19. Quantifying hypoxia in human cancers using static PET imaging.

    Science.gov (United States)

    Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G; Milosevic, Michael; Hedley, David W; Jaffray, David A

    2016-11-21

    Compared to FDG, the signal of (18)F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties-well-perfused without substantial necrosis or partitioning-for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in 'inter-corporal' transport properties-blood volume and clearance rate-as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3, a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.

  20. Ultrahigh-resolution OCT imaging of the human cornea

    Science.gov (United States)

    Werkmeister, René M.; Sapeta, Sabina; Schmidl, Doreen; Garhöfer, Gerhard; Schmidinger, Gerald; Aranha dos Santos, Valentin; Aschinger, Gerold C.; Baumgartner, Isabella; Pircher, Niklas; Schwarzhans, Florian; Pantalon, Anca; Dua, Harminder; Schmetterer, Leopold

    2017-01-01

    We present imaging of corneal pathologies using optical coherence tomography (OCT) with high resolution. To this end, an ultrahigh-resolution spectral domain OCT (UHR-OCT) system based on a broad bandwidth Ti:sapphire laser is employed. With a central wavelength of 800 nm, the imaging device allows to acquire OCT data at the central, paracentral and peripheral cornea as well as the limbal region with 1.2 µm x 20 µm (axial x lateral) resolution at a rate of 140 000 A-scans/s. Structures of the anterior segment of the eye, not accessible with commercial OCT systems, are visualized. These include corneal nerves, limbal palisades of Vogt as well as several corneal pathologies. Cases such as keratoconus and Fuchs’s endothelial dystrophy as well as infectious changes caused by diseases like Acanthamoeba keratitis and scarring after herpetic keratitis are presented. We also demonstrate the applicability of our system to visualize epithelial erosion and intracorneal foreign body after corneal trauma as well as chemical burns. Finally, results after Descemet’s membrane endothelial keratoplasty (DMEK) are imaged. These clinical cases show the potential of UHR-OCT to help in clinical decision-making and follow-up. Our results and experience indicate that UHR-OCT of the cornea is a promising technique for the use in clinical practice, but can also help to gain novel insight in the physiology and pathophysiology of the human cornea. PMID:28271013

  1. Human in vivo phosphate metabolite imaging with 31P NMR.

    Science.gov (United States)

    Bottomley, P A; Charles, H C; Roemer, P B; Flamig, D; Engeseth, H; Edelstein, W A; Mueller, O M

    1988-07-01

    Phosphorus (31P) spectroscopic images showing the distribution of high-energy phosphate metabolites in the human brain have been obtained at 1.5 T in scan times of 8.5 to 34 min at 27 and 64 cm3 spatial resolution using pulsed phase-encoding gradient magnetic fields and three-dimensional Fourier transform (3DFT) techniques. Data were acquired as free induction decays with a quadrature volume NMR detection coil of a truncated geometry designed to optimize the signal-to-noise ratio on the coil axis on the assumption that the sample noise represents the dominant noise source, and self-shielded magnetic field gradient coils to minimize eddy-current effects. The images permit comparison of metabolic data acquired simultaneously from different locations in the brain, as well as metabolite quantification by inclusion of a vial containing a standard of known 31P concentration in the image array. Values for the NMR visible adenosine triphosphate in three individuals were about 3 mM of tissue. The ratio of NMR detectable phosphocreatine to ATP in brain was 1.15 +/- 0.17 SD in these experiments. Potential sources of random and systematic error in these and other 31P measurements are identified.

  2. Detection of rheumatoid arthritis in humans by fluorescence imaging

    Science.gov (United States)

    Ebert, Bernd; Dziekan, Thomas; Weissbach, Carmen; Mahler, Marianne; Schirner, Michael; Berliner, Birgitt; Bauer, Daniel; Voigt, Jan; Berliner, Michael; Bahner, Malte L.; Macdonald, Rainer

    2010-02-01

    The blood pool agent indo-cyanine green (ICG) has been investigated in a prospective clinical study for detection of rheumatoid arthritis using fluorescence imaging. Temporal behavior as well as spatial distribution of fluorescence intensity are suited to differentiate healthy and inflamed finger joints after i.v. injection of an ICG bolus.

  3. Continuous representation of human portraits and natural scenery in human ventral temporal cortex:evidence from functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    肖壮伟; 林冲宇; 罗小景; 黄芳梅; 庄伟端; 李俊雄; 翁旭初; 吴仁华

    2004-01-01

    Background Functional magnetic resonance imaging (fMRI) has become a powerful tool for tracking human brain activity in vivo. This technique is mainly based on blood oxygenation level dependence (BOLD) contrast. In the present study, we employed this newly developed technique to characterize the neural representations of human portraits and natural sceneries in the human brain.Methods Nine subjects were scanned with a 1.5 T magnetic resonance imaging (MRI) scanner using gradient-recalled echo and echo-planar imaging (GRE-EPI) pulse sequence while they were visually presented with 3 types of white-black photographs: natural scenery, human portraits, and scrambled nonsense pictures. Multiple linear regression was used to identify brain regions responding preferentially to each type of stimulus and common regions for both human portraits and natural scenery. The relative contributions of each type of stimulus to activation in these regions were examined using linear combinations of a general linear test.Results Multiple linear regression analysis revealed two distinct but adjacent regions in both sides of the ventral temporal cortex. The medial region preferentially responded to natural scenery, whereas the lateral one preferentially responded to the human portraits. The general linear test further revealed a distribution gradient such that a change from portraits to scenes shifted areas of activation from lateral to medial.Conclusions The boundary between portrait-associated and scenery-associated areas is not as clear as previously demonstrated. The representations of portraits and scenes in ventral temporal cortex appear to be continuous and overlap.

  4. In vivo multiphoton microscopy associated to 3D image processing for human skin characterization

    Science.gov (United States)

    Baldeweck, T.; Tancrède, E.; Dokladal, P.; Koudoro, S.; Morard, V.; Meyer, F.; Decencière, E.; Pena, A.-M.

    2012-03-01

    Multiphoton microscopy has emerged in the past decade as a promising non-invasive skin imaging technique. The aim of this study was to assess whether multiphoton microscopy coupled to specific 3D image processing tools could provide new insights into the organization of different skin components and their age-related changes. For that purpose, we performed a clinical trial on 15 young and 15 aged human female volunteers on the ventral and dorsal side of the forearm using the DermaInspectR medical imaging device. We visualized the skin by taking advantage of intrinsic multiphoton signals from cells, elastic and collagen fibers. We also developed 3D image processing algorithms adapted to in vivo multiphoton images of human skin in order to extract quantitative parameters in each layer of the skin (epidermis and superficial dermis). The results show that in vivo multiphoton microscopy is able to evidence several skin alterations due to skin aging: morphological changes in the epidermis and modifications in the quantity and organization of the collagen and elastic fibers network. In conclusion, the association of multiphoton microscopy with specific image processing allows the three-dimensional organization of skin components to be visualized and quantified thus providing a powerful tool for cosmetic and dermatological investigations.

  5. Detection of Melanoma Metastases in Resected Human Lymph Nodes by Noninvasive Multispectral Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Gerrit Cornelis Langhout

    2014-01-01

    Full Text Available Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR© multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes.

  6. Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging.

    Science.gov (United States)

    Langhout, Gerrit Cornelis; Grootendorst, Diederik Johannes; Nieweg, Omgo Edo; Wouters, Michel Wilhelmus Jacobus Maria; van der Hage, Jos Alexander; Jose, Jithin; van Boven, Hester; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theodoor Jacques Marie

    2014-01-01

    Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR(©) multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes.

  7. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    Science.gov (United States)

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  8. Techniques for imaging human metaphase chromosomes in liquid conditions by atomic force microscopy

    Science.gov (United States)

    Ushiki, Tatsuo; Shigeno, Masatsugu; Hoshi, Osamu

    2008-09-01

    The purpose of this study was to obtain three-dimensional images of wet chromosomes by atomic force microscopy (AFM) in liquid conditions. Human metaphase chromosomes—obtained either by chromosome spreads or by an isolation technique—were observed in a dynamic mode by AFM in a buffer solution. Under suitable operating conditions with a soft triangular cantilever (with the spring constant of 0.08-0.4 N m-1), clear images of fixed chromosomes in the chromosome spread were obtained by AFM. For imaging isolated chromosomes with the height of more than 400 nm, a cantilever with a high aspect ratio probing tip was required. The combination of a Q-control system and the sampling intelligent scan (SIS) system in dynamic force mode AFM was useful for obtaining high-quality images of the isolated chromosomes, in which globular or cord-like structures about 50 nm thick were clearly observed on the surface of each chromatid.

  9. Recognizing Age-Separated Face Images: Humans and Machines

    OpenAIRE

    Daksha Yadav; Richa Singh; Mayank Vatsa; Afzel Noore

    2014-01-01

    Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components - facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individua...

  10. Evolutionary theory, human uniqueness and the image of God

    Directory of Open Access Journals (Sweden)

    Gijsbert van den Brink

    2012-09-01

    Full Text Available In this article, I examined what might be called the evolutionary argument against human uniqueness and human dignity. After having rehearsed briefly the roots of the classical Judeo- Christian view on human uniqueness and human dignity in the first chapters of Genesis, I went on to explore and delineate the nature of the evolutionary argument against this view. Next, I examined whether Christian theology might widen the concept of imago Dei so as to include other beings as well as humans, thus giving up the idea of human uniqueness. I concluded, however, that this move is deeply problematic. Therefore, I turned to a discussion of some recent attempts to define both human uniqueness and the image of God in theological rather than empirical terms. One of these, which is based on the concept of incarnation, is found wanting, but another one is construed in such a way that it enables us to reconcile the idea of human uniqueness as encapsulated in the doctrine of the imago Dei with contemporary evolutionary theory. Thus, this article can be seen as an exercise in bringing classical Christian theology to terms with evolution, further highlighting this theology’s ongoing vitality.Evolusieteorie, menslike uniekheid and die beeld van God. In hierdie artikel ondersoek ek die sogenaamde evolusionêre argument teen menslike uniekheid en menswaardigheid. Na ‘n kort oorsig oor die oorsprong van die klassieke Joods-Christelike siening van menslike uniekheid en menswaardigheid soos uit die eerste vyf hoofstukke van Genesis blyk, ondersoek en beeld ek die aard van die evolusionêre argument hierteenoor uit. Vervolgens word die vraag ondersoek of die Christelike teologie die konsep van imago Dei sodanig kan verbreed dat dit ook ander wesens behalwe mense kan insluit, waardeur die idee van menslike uniekheid dus prysgegee word. Ek kom egter tot die slotsom dat hierdie skuif hoogs problematies is. Daarom wend ek my tot ’n bespreking van onlangse pogings om

  11. Label-free imaging of human breast tissues using coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Yang, Yaliang; Gao, Liang; Wang, Zhiyong; Thrall, Michael J.; Luo, Pengfei; Wong, Kelvin K.; Wong, Stephen T.

    2011-03-01

    Breast cancer is a common disease in women. Current imaging and diagnostic methods for breast cancer confront several limitations, like time-consuming, invasive and with a high cost. Alternative strategies are in high demand to alleviate patients' trauma and lower medical expenses. Coherent anti-Stokes Raman scattering (CARS) imaging technique offers many advantages, including label-free, sub-wavelength spatial resolution and video-rate imaging speed. Therefore, it has been demonstrated as a powerful tool for various biomedical applications. In this study, we present a label-free fast imaging method to identify breast cancer and its subtypes using CARS microscopy. Human breast tissues, including normal, benign and invasive carcinomas, were imaged ex vivo using a custom-built CARS microscope. Compared with results from corresponding hematoxylin and eosin (H&E) stains, the CARS technique has demonstrated its capability in identifying morphological features in a similar way as in H&E stain. These features can be used to distinguish breast cancer from normal and benign tissues, and further separate cancer subtypes from each other. Our pilot study suggests that CARS microscopy could be used as a routine examination tool to characterize breast cancer ex vivo. Moreover, its label-free and fast imaging properties render this technique as a promising approach for in vivo and real-time imaging and diagnosis of breast cancer.

  12. Expressive line drawings of human faces from range images

    Institute of Scientific and Technical Information of China (English)

    HUANG YueZhu; MARTIN Ralph R.; ROSIN Paul L.; MENG XiangXu; YANG ChengLei

    2009-01-01

    We propose a novel technique to extract features from a range image and use them to produce a 3D pen-and-ink style portrait similar to a traditional artistic drawing. Unlike most previous template-based, component-based or example-based face sketching methods, which work from a frontal photograph as input, our system uses a range Image as input. Our method runs in real-time for models of moderate complexity, allowing the pose and drawing style to be modified interactively. Portrait drawing in our system makes use of occluding contours and suggestive contours as the most important shape cues. However, current 3D feature line detection methods require a smooth mesh and cannot be reliably applied directly to noisy range images. We thus present an improved silhouette line detection algorithm. Feature edges related to the significant parts of a face are extracted from the range image, connected, and smoothed, allowing us to construct chains of line paths which can then be rendered as desired. We also incorporate various portrait-drawing principles to provide several simple yet effective non-photorealistic portrait renderers such as a pen-and-ink shader, a hatch shader and a sketch shader. These are able to generate various life-like impressions in different styles from a user-chosen viewpoint. To obtain satisfactory results, we refine rendered output by smoothing changes in line thickness and opacity. We are careful to provide appropriate visual cues to enhance the viewer's comprehension of the human face. Our experimental results demonstrate the robustness and effectiveness of our approach, and further suggest that our approach can be extended to other 3D geometric objects.

  13. A Study of Steganographic Image Security

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this dissertation, sereral key problems in the field of steganographic image security are mainly studied and discussed: (1) A novel kind of image cryptosystem is studied. The encrypted information of secret image is embedded into an ordinary image, which can be transmitted publicly, and it will not cause attention of illegal eavesdropper. The following results are achieved: (a) The image hiding algorithm and its improved algorithm based on wavelet transform and vector quantization are proposed, and both algorithms embed the secret image after taking full advantage of wavelet transform(WT) to compress it. (b) Introducing the CDMA concept in communication theory, a novel kind of image cryptosystem—image hiding cryptosystem of image division multiple access is proposed. We encrypt key information of several secret images and then hide them into an image, which is an ordinary image. After receivers get the image, each receiver can restore corresponding secret image independently. Compared with other image encryption algorithms, our new image hiding cryptosystem can compress secret image data efficiently. Moreover, the security and practicability of our system is better. (2) Digital watermarking is the most important branch of information hiding, which has been the hotspot of international academia. Digital watermarking has been proposed as a solution to the problem of copyright protection of multimedia documents in networked environments. In this field, the following results are achieved: (a) A new frequency information hiding and watermarking algorithm based on WT and Discrete Cosine Transform(DCT) is presented. After compressed by WT, the information of secret image is embedded into DCT domain. The algorithm has good imperceptibility and security and is robust against JPEG compressing and cropping. The algorithm can be used to embed watermark into images, and the watermark may be one 256-color picture or more and more than one secret image can be hidden into a

  14. Conversion factors between human and automatic readouts of CDMAM phantom images of CR mammography systems.

    Science.gov (United States)

    Figl, Michael; Homolka, Peter; Osanna-Elliott, Angelika; Semturs, Friedrich; Kaar, Marcus; Hummel, Johann

    2016-09-21

    In mammography screening, profound assessment of technical image quality is imperative. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests using an alternate fixed choice contrast-detail phantom-like CDMAM. For the evaluation of technical image quality, human or automated readouts can be used. For automatic evaluation, a software (cdcom) is provided by EUREF. If the automated readout indicates unacceptable image quality, additional human readout may be performed overriding the automated readout. As the latter systematically results in higher image quality ratings, conversion factors between both methods are regularly applied. Since most image quality issues with mammography systems arise within CR systems, an assessment restricted to CR systems with data from the Austrian Reference Center in the mammography screening program has been conducted. Forty-five CR systems were evaluated. Human readouts were performed with a randomisation software to avoid bias due to learning effects. Additional automatic evaluation allowed for the computation of conversion factors between human and automatic readouts. These factors were substantially lower compared to those suggested by EUREF, namely 1.21 compared to 1.62 (EUREF UK method) and 1.42 (EUREF EU method) for 0.1 mm, and 1.40 compared to 1.83 (EUREF UK) and 1.73 (EUREF EU) for 0.25 mm structure size, respectively. Using either of these factors to adjust patient dose in order to comply with image quality requirements results in differences in the dose increase of up to 90%. This necessitates a consensus on their proper application and limits the validity of the assessment methods. Clear criteria for CR systems based on appropriate studies should be promoted.

  15. Conversion factors between human and automatic readouts of CDMAM phantom images of CR mammography systems

    Science.gov (United States)

    Figl, Michael; Homolka, Peter; Osanna-Elliott, Angelika; Semturs, Friedrich; Kaar, Marcus; Hummel, Johann

    2016-09-01

    In mammography screening, profound assessment of technical image quality is imperative. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests using an alternate fixed choice contrast-detail phantom-like CDMAM. For the evaluation of technical image quality, human or automated readouts can be used. For automatic evaluation, a software (cdcom) is provided by EUREF. If the automated readout indicates unacceptable image quality, additional human readout may be performed overriding the automated readout. As the latter systematically results in higher image quality ratings, conversion factors between both methods are regularly applied. Since most image quality issues with mammography systems arise within CR systems, an assessment restricted to CR systems with data from the Austrian Reference Center in the mammography screening program has been conducted. Forty-five CR systems were evaluated. Human readouts were performed with a randomisation software to avoid bias due to learning effects. Additional automatic evaluation allowed for the computation of conversion factors between human and automatic readouts. These factors were substantially lower compared to those suggested by EUREF, namely 1.21 compared to 1.62 (EUREF UK method) and 1.42 (EUREF EU method) for 0.1 mm, and 1.40 compared to 1.83 (EUREF UK) and 1.73 (EUREF EU) for 0.25 mm structure size, respectively. Using either of these factors to adjust patient dose in order to comply with image quality requirements results in differences in the dose increase of up to 90%. This necessitates a consensus on their proper application and limits the validity of the assessment methods. Clear criteria for CR systems based on appropriate studies should be promoted.

  16. Imaging Proteolysis by Living Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2000-01-01

    Full Text Available Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549 through the use of quenchedfluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin 13-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1 a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2 the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.

  17. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo

    CERN Document Server

    Moerman, Kevin M; Evans, Sam L; Simms, Ciaran K

    2016-01-01

    The mechanical properties of human soft tissue are crucial for impact biomechanics, rehabilitation engineering and surgical simulation. Validation of these constitutive models using human data remains challenging and often requires the use of non-invasive imaging and inverse finite element (FE) analysis. Post processing data from imaging methods such as tagged magnetic resonance imaging (MRI) can be challenging. Digital Image Correlation (DIC) however is a relatively straightforward imaging method and thus the goal of this study was to assess the use of DIC in combination with FE modelling to determine the bulk material properties of human soft tissue. Indentation experiments were performed on a silicone gel soft tissue phantom. A two camera DIC setup was then used to record the 3D surface deformation. The experiment was then simulated using a FE model.

  18. Ultrasound Molecular Imaging in a Human CD276 Expression-Modulated Murine Ovarian Cancer Model

    Science.gov (United States)

    Lutz, Amelie M.; Bachawal, Sunitha V.; Drescher, Charles W.; Pysz, Marybeth A.; Willmann, Jürgen K.; Gambhir, Sanjiv Sam

    2014-01-01

    Purpose To develop a mouse ovarian cancer model that allows modulating the expression levels of human vascular targets in mouse xenograft tumors and to test whether expression of CD276 during tumor angiogenesis can be visualized by molecularly targeted ultrasound in vivo. Materials and Methods CD276-expressing MS-1 mouse endothelial cells were engineered and used for co-injection with 2008 human ovarian cancer cells for subcutaneous xenograft tumor induction in 15 nude mice. Fourteen control mice were injected with 2008 cells only. After confirming their binding specificity in flow chamber cell attachment studies, anti CD276 antibody-functionalized contrast microbubbles were used for in vivo CD276-targeted contrast-enhanced ultrasound imaging. Results CD276-targeted ultrasound imaging signal was significantly higher (P=0.006) in mixed MS1/2008 tumors compared to control tumors. Compared to control microbubbles the ultrasound signal using CD276-targeted microbubbles was significantly higher (P=0.002) and blocking with purified anti-CD276 antibody significantly decreased (P=0.0096) the signal in mixed MS-1/2008 tumors. Immunofluorescence analysis of the tumor tissue confirmed higher quantitative immunofluorescence signal in mixed MS-1/2008 tumors than in control 2008 only tumors, but showed not significantly different (P=0.54) microvessel density. Conclusion Our novel small animal model allows for modulating the expression of human tumor-associated vascular endothelial imaging targets in a mouse host and these expression differences can be visualized non-invasively by ultrasound molecular imaging. The animal model can be applied to other human vascular targets and may facilitate the preclinical development of new imaging probes such as microbubbles targeted at human vascular markers not expressed in mice. PMID:24389327

  19. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs.

    Science.gov (United States)

    de Winde, Charlotte M; Zuidscherwoude, Malou; Vasaturo, Angela; van der Schaaf, Alie; Figdor, Carl G; van Spriel, Annemiek B

    2015-08-01

    Multispectral imaging is a novel microscopy technique that combines imaging with spectroscopy to obtain both quantitative expression data and tissue distribution of different cellular markers. Tetraspanins CD37 and CD53 are four-transmembrane proteins involved in cellular and humoral immune responses. However, comprehensive immunohistochemical analyses of CD37 and CD53 in human lymphoid organs have not been performed so far. We investigated CD37 and CD53 protein expression on primary human immune cell subsets in blood and in primary and secondary lymphoid organs. Both tetraspanins were prominently expressed on antigen-presenting cells, with highest expression of CD37 on B lymphocytes. Analysis of subcellular distribution showed presence of both tetraspanins on the plasma membrane and on endosomes. In addition, CD53 was also present on lysosomes. Quantitative analysis of expression and localization of CD37 and CD53 on lymphocytes within lymphoid tissues by multispectral imaging revealed high expression of both tetraspanins on CD20(+) cells in B cell follicles in human spleen and appendix. CD3(+) T cells within splenic T cell zones expressed lower levels of CD37 and CD53 compared to T cells in the red pulp of human spleen. B cells in human bone marrow highly expressed CD37, whereas the expression of CD53 was low. In conclusion, we demonstrate differential expression of CD37 and CD53 on primary human immune cells, their subcellular localization and their quantitative distribution in human lymphoid organs. This study provides a solid basis for better insight into the function of tetraspanins in the human immune response.

  20. High-field magnetic resonance imaging of the human temporal lobe

    Directory of Open Access Journals (Sweden)

    Luis M. Colon-Perez

    2015-01-01

    Conclusions: Fresh ex vivo MR imaging, along with tractography, revealed complex intra-temporal structural variation corresponding to neuronal cell body layers, dendritic fields, and axonal projection systems evident histologically. This is the first study to describe in detail the human temporal lobe structural organization using high-field MR imaging and tractography. By preserving the 3-dimensional structures of the hippocampus and surrounding structures, specific changes in anatomy may inform us about the changes that occur in TLE in relation to the disease process and structural underpinnings in epilepsy-related memory dysfunction.

  1. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    Science.gov (United States)

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  2. Development of human serum albumin conjugated with near-infrared dye for photoacoustic tumor imaging

    Science.gov (United States)

    Kanazaki, Kengo; Sano, Kohei; Makino, Akira; Takahashi, Atsushi; Deguchi, Jun; Ohashi, Manami; Temma, Takashi; Ono, Masahiro; Saji, Hideo

    2014-09-01

    Photoacoustic (PA) imaging has emerged as a noninvasive diagnostic method which detects ultrasonic waves thermoelastically induced by optical absorbers irradiated with laser. For tumor diagnosis, PA contrast agent has been proposed to enhance the PA effect for detecting tumors sensitively. Here, we prepared a human serum albumin (HSA) conjugated with indocyanine green (ICG) as a PA contrast agent allowing enhanced permeability and retention effect for sensitive tumor imaging. The feasibility of PA imaging with HSA-ICG to detect allografted tumors was evaluated in tumor-bearing mice. In vivo fluorescence imaging and radiolabeled biodistribution study showed that the biodistribution dramatically changed as the number of ICG bound to HSA increased, and the maximum accumulation of ICG was achieved when around three ICG molecules were loaded on an HSA. In vivo PA imaging demonstrated a tumor-selective and dose-dependent increase of PA signal intensity in mice injected with HSA-ICG (R2=0.88, 387% increase for HSA-ICG, 104 nmol ICG). In conclusion, HSA-ICG clearly visualized the allografted tumors with high tumor-to-background ratios having high quantitative and spatial resolution for the sensitive PA imaging of tumors. HSA-ICG could be useful as a favorable contrast agent for PA tumor imaging for the management of cancer.

  3. Imaging of Convection Enhanced Delivery of Toxins in Humans

    Directory of Open Access Journals (Sweden)

    Allan H. Friedman

    2011-03-01

    Full Text Available Drug delivery of immunotoxins to brain tumors circumventing the blood brain barrier is a significant challenge. Convection-enhanced delivery (CED circumvents the blood brain barrier through direct intracerebral application using a hydrostatic pressure gradient to percolate therapeutic compounds throughout the interstitial spaces of infiltrated brain and tumors. The efficacy of CED is determined through the distribution of the therapeutic agent to the targeted region. The vast majority of patients fail to receive a significant amount of coverage of the area at risk for tumor recurrence. Understanding this challenge, it is surprising that so little work has been done to monitor the delivery of therapeutic agents using this novel approach. Here we present a review of imaging in convection enhanced delivery monitoring of toxins in humans, and discuss future challenges in the field.

  4. A model of working memory: bridging the gap between electrophysiology and human brain imaging.

    Science.gov (United States)

    Tagamets, M A; Horwitz, B

    2000-01-01

    Human neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging have made possible the study of large-scale distributed networks in the behaving human brain. Although many imaging studies support and extend knowledge gained from other experimental modalities such as animal single-cell recordings, there have also been a substantial number of experiments that appear to contradict the animal studies. Part of the reason for this is that neuroimaging is an indirect measure of neuronal firing activity, and thus interpretation is difficult. Computational modeling can help to bridge the gap by providing a substrate for making explicit the assumptions and constraints provided from other sources such as anatomy, physiology and behavior. We describe a large-scale model of working memory that we have used to examine a number of issues relating to the interpretation of imaging data. The gating mechanism that regulates engagement and retention of short-term memory is revised to better reflect hypothesized underlying neuromodulatory mechanisms. It is shown that in addition to imparting better performance for the memory circuit, this mechanism also provides a better match to imaging data from working memory studies.

  5. Digital image watermarking on a special object: the human face

    Science.gov (United States)

    Oh, HwangSeok; Chang, Duk-Ho; Lee, Choong-Hoon; Lee, Heung-Kyu

    2000-05-01

    In this paper, we present a method for protection of digital contents by using the watermark embedding in special object, especially, human faces. To insert the watermark signals that are composed of noise like binary signals, we first localize the face regions within images by using the color and edge information. The skin color area is filtered out and then edge detector is applied for skin area to find out face features. These features are used for decision whether the skin area is face region or not. The face region is divide non-overlapping sub-blocks and a watermark bit is inserted into the each sub- block by considering the block activity. We insert a watermark bit in DCT domain of each sub-block. The level of modification of the DCT coefficients is determined considering the block variance. The non-zero coefficients of the DCT are selected and modified according to the robustness levels. Then, inverse DCT is performed. The extraction of the watermark is performed by comparing the original image in DCT domain. The robustness of the watermarking is similar to the other methods in DCT, but it has good visual qualities and less intended external piracy in terms of psychology.

  6. Advanced human machine interaction for an image interpretation workstation

    Science.gov (United States)

    Maier, S.; Martin, M.; van de Camp, F.; Peinsipp-Byma, E.; Beyerer, J.

    2016-05-01

    In recent years, many new interaction technologies have been developed that enhance the usability of computer systems and allow for novel types of interaction. The areas of application for these technologies have mostly been in gaming and entertainment. However, in professional environments, there are especially demanding tasks that would greatly benefit from improved human machine interfaces as well as an overall improved user experience. We, therefore, envisioned and built an image-interpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a complex software product such as a geo-information system to provide geographic context, an image annotation tool, software to generate standardized reports and a tool to aid in the identification of objects. Using self-developed systems for hand tracking, pointing gestures and head pose estimation in addition to touchscreens, face identification, and speech recognition systems we created a novel approach to this complex task. For example, head pose information is used to save the position of the mouse cursor on the currently focused screen and to restore it as soon as the same screen is focused again while hand gestures allow for intuitive manipulation of 3d objects in mid-air. While the primary focus is on the task of image interpretation, all of the technologies involved provide generic ways of efficiently interacting with a multi-screen setup and could be utilized in other fields as well. In preliminary experiments, we received promising feedback from users in the military and started to tailor the functionality to their needs

  7. Thermal imaging to detect physiological indicators of stress in humans

    Science.gov (United States)

    Cross, Carl B.; Skipper, Julie A.; Petkie, Douglas T.

    2013-05-01

    Real-time, stand-off sensing of human subjects to detect emotional state would be valuable in many defense, security and medical scenarios. We are developing a multimodal sensor platform that incorporates high-resolution electro-optical and mid-wave infrared (MWIR) cameras and a millimeter-wave radar system to identify individuals who are psychologically stressed. Recent experiments have aimed to: 1) assess responses to physical versus psychological stressors; 2) examine the impact of topical skin products on thermal signatures; and 3) evaluate the fidelity of vital signs extracted from thermal imagery and radar signatures. Registered image and sensor data were collected as subjects (n=32) performed mental and physical tasks. In each image, the face was segmented into 29 non-overlapping segments based on fiducial points automatically output by our facial feature tracker. Image features were defined that facilitated discrimination between psychological and physical stress states. To test the ability to intentionally mask thermal responses indicative of anxiety or fear, subjects applied one of four topical skin products to one half of their face before performing tasks. Finally, we evaluated the performance of two non-contact techniques to detect respiration and heart rate: chest displacement extracted from the radar signal and temperature fluctuations at the nose tip and regions near superficial arteries to detect respiration and heart rates, respectively, extracted from the MWIR imagery. Our results are very satisfactory: classification of physical versus psychological stressors is repeatedly greater than 90%, thermal masking was almost always ineffective, and accurate heart and respiration rates are detectable in both thermal and radar signatures.

  8. Spatial mapping by imaging mass spectrometry offers advancements for rapid definition of human skin proteomic signatures.

    Science.gov (United States)

    Taverna, Domenico; Nanney, Lillian B; Pollins, Alonda C; Sindona, Giovanni; Caprioli, Richard

    2011-08-01

    Investigations into the human skin proteome by classical analytical procedures have not addressed spatial molecular distributions in whole-skin biopsies. The aim of this study was to develop methods for the detection of protein signatures and their spatial disposition in human skin using advanced molecular imaging technology based on mass spectrometry technologies. This technology allows for the generation of protein images at specific molecular weight values without the use of antibody while maintaining tissue architecture. Two experimental approaches were employed: MALDI-MS profiling, where mass spectra were taken from discrete locations based on histology, and MALDI-IMS imaging, where complete molecular images were obtained at various MW values. In addition, proteins were identified by in situ tryptic digestion, sequence analysis of the fragment peptides and protein database searching. We have detected patterns of protein differences that exist between epidermis and dermis as well as subtle regional differences between the papillary and reticular dermis. Furthermore, we were able to detect proteins that are constitutive features of human skin as well as those associated with unique markers of individual variability.

  9. Molecular Probes for Imaging the Sigma-2 Receptor: In Vitro and In Vivo Imaging Studies.

    Science.gov (United States)

    Zeng, Chenbo; McDonald, Elizabeth S; Mach, Robert H

    2017-02-08

    The sigma-2 (σ2) receptor has been validated as a biomarker of the proliferative status of solid tumors. Therefore, radiotracers having a high affinity and high selectivity for σ2 receptors have the potential to assess the proliferative status of human tumors using noninvasive imaging techniques such as Positron Emission Tomography (PET). Since the σ2 receptor has not been cloned, the current knowledge of this receptor has relied on receptor binding studies with the radiolabeled probes and investigation of the effects of the σ2 receptor ligands on tumor cells. The development of the σ2 selective fluorescent probes has proven to be useful for studying subcellular localization and biological functions of the σ2 receptor, for revealing pharmacological properties of the σ2 receptor ligands, and for imaging cell proliferation. Preliminary clinical imaging studies with [(18)F]ISO-1, a σ2 receptor probe, have shown promising results in cancer patients. However, the full utility of imaging the σ2 receptor status of solid tumors in the diagnosis and prediction of cancer therapeutic response will rely on elucidation of the functional role of this protein in normal and tumor cell biology.

  10. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    OpenAIRE

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable mor...

  11. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    OpenAIRE

    Andras eJakab; Ernst eSchwartz; Gregor eKasprian; Gerlinde Maria Gruber; Daniela ePrayer; Veronika eSchöpf; Georg eLangs

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging data of 32 fetuses with no detectable morphologi...

  12. Humanities data in R exploring networks, geospatial data, images, and text

    CERN Document Server

    Arnold, Taylor

    2015-01-01

    This pioneering book teaches readers to use R within four core analytical areas applicable to the Humanities: networks, text, geospatial data, and images. This book is also designed to be a bridge: between quantitative and qualitative methods, individual and collaborative work, and the humanities and social scientists. Exploring Humanities Data Types with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis (continuous and categorical data, multivariate analysis, and advanced graphics with emphasis on aesthetics and facility). Everything is hands-on: networks are explained using U.S. Supreme Court opinions, and low-level NLP methods are applied to short stories by Sir Arthur Conan Doyle. The book’s data, code, appendix with 100 basic programming exercises and solutions, and dedicated website are valuable resources for readers. The methodology will have wide application in classrooms and self-study for the humanities, but also for use...

  13. Communicator Style: A Study of Human Resource Managers.

    Science.gov (United States)

    Evans, Jennifer Payne

    Researchers who have focused on issues of interpersonal communication in organizations have concluded that it is an essential component of organizational life. This paper presents findings of a study that examined the communicator image of human-resource managers. A survey instrument called the Norton Communicator Style Measure (CSM) was sent to…

  14. 18F-FDG and 18F-FLT-PET imaging for monitoring everolimus effect on tumor-growth in neuroendocrine tumors: studies in human tumor xenografts in mice.

    Directory of Open Access Journals (Sweden)

    Camilla Bardram Johnbeck

    Full Text Available The mTOR inhibitor everolimus has shown promising results in some but not all neuroendocrine tumors. Therefore, early assessment of treatment response would be beneficial. In this study, we investigated the in vivo and in vitro treatment effect of everolimus in neuroendocrine tumors and evaluated the performance of 18F-FDG and the proliferation tracer 18F-FLT for treatment response assessment by PET imaging.The effect of everolimus on the human carcinoid cell line H727 was examined in vitro with the MTT assay and in vivo on H727 xenograft tumors. The mice were scanned at baseline with 18F-FDG or 18F-FLT and then treated with either placebo or everolimus (5 mg/kg daily for 10 days. PET/CT scans were repeated at day 1,3 and 10.Everolimus showed significant inhibition of H727 cell proliferation in vitro at concentrations above 1 nM. In vivo tumor volumes measured relative to baseline were significantly lower in the everolimus group compared to the control group at day 3 (126±6% vs. 152±6%; p = 0.016, day 7 (164±7% vs. 226±13%; p<0.001 and at day 10 (194±10% vs. 281±18%; p<0.001. Uptake of 18F-FDG and 18F-FLT showed little differences between control and treatment groups, but individual mean uptake of 18F-FDG at day 3 correlated with tumor growth day 10 (r2 = 0.45; P = 0.034, 18F-FLT mean uptake at day 1 correlated with tumor growth day 7 (r2 = 0.63; P = 0.019 and at day 3 18F-FLT correlated with tumor growth day 7 (r2 = 0.87; P<0.001 and day 10 (r2 = 0.58; P = 0.027.Everolimus was effective in vitro and in vivo in human xenografts lung carcinoid NETs and especially early 18F-FLT uptake predicted subsequent tumor growth. We suggest that 18F-FLT PET can be used for tailoring therapy for neuroendocrine tumor patients through early identification of responders and non-responders.

  15. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    Science.gov (United States)

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)).

  16. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    Science.gov (United States)

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  17. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  18. Retinotopy and attention to the face and house images in the human visual cortex.

    Science.gov (United States)

    Wang, Bin; Yan, Tianyi; Ohno, Seiichiro; Kanazawa, Susumu; Wu, Jinglong

    2016-06-01

    Attentional modulation of the neural activities in human visual areas has been well demonstrated. However, the retinotopic activities that are driven by face and house images and attention to face and house images remain unknown. In the present study, we used images of faces and houses to estimate the retinotopic activities that were driven by both the images and attention to the images, driven by attention to the images, and driven by the images. Generally, our results show that both face and house images produced similar retinotopic activities in visual areas, which were only observed in the attention + stimulus and the attention conditions, but not in the stimulus condition. The fusiform face area (FFA) responded to faces that were presented on the horizontal meridian, whereas parahippocampal place area (PPA) rarely responded to house at any visual field. We further analyzed the amplitudes of the neural responses to the target wedge. In V1, V2, V3, V3A, lateral occipital area 1 (LO-1), and hV4, the neural responses to the attended target wedge were significantly greater than those to the unattended target wedge. However, in LO-2, ventral occipital areas 1 and 2 (VO-1 and VO-2) and FFA and PPA, the differences were not significant. We proposed that these areas likely have large fields of attentional modulation for face and house images and exhibit responses to both the target wedge and the background stimuli. In addition, we proposed that the absence of retinotopic activity in the stimulus condition might imply no perceived difference between the target wedge and the background stimuli.

  19. The Transferrin Receptor: A Potential Molecular Imaging Marker for Human Cancer

    Directory of Open Access Journals (Sweden)

    Dagmar Högemann-Savellano

    2003-11-01

    Full Text Available Noninvasive imaging of differences between the molecular properties of cancer and normal tissue has the potential to enhance the detection of tumors. Because overexpression of endogenous transferrin receptor (TfR has been qualitatively described for various cancers and is presumably due to malignant transformation of cells, TfR may represent a suitable target for application of molecular imaging technologies to increase detection of smaller tumors. In the work reported here, investigation into the biology of this receptor using electron microscopy has demonstrated that iron oxide particles targeted to TfR are internalized and accumulate in lysosomal vesicles within cells. Biochemical analysis of the interaction of imaging probes with cells overexpressing the TfR demonstrated that the extent of accumulation, and therefore probe efficacy, is dependent on the nature of the chemical cross-link between transferrin and the iron oxide particle. These data were utilized to design and synthesize an improved imaging probe. Experiments demonstrate that the novel magnetic resonance imaging (MRI probe is sensitive enough to detect small differences in endogenous TfR expression in human cancer cell lines. Quantitative measurement of TfR overexpression in a panel of 27 human breast cancer patients demonstrated that 74% of patient cancer tissues overexpressed the TfR and that the sensitivity of the new imaging agent was suitable to detect TfR overexpression in greater than 40% of these cases. Based on a biochemical and cell biological approach, these studies have resulted in the synthesis and development of an improved MRI probe with the best in vitro and in vivo imaging properties reported to date.

  20. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer.

    Science.gov (United States)

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-06-20

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to two-dimensional (2D) mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary DBT (s-DBT), utilizing an array of carbon nanotube (CNT) field emission x-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for x-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 s was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent.

  1. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer

    Science.gov (United States)

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-06-01

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to two-dimensional (2D) mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary DBT (s-DBT), utilizing an array of carbon nanotube (CNT) field emission x-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for x-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 s was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent.

  2. Accelerated diffusion spectrum imaging via compressed sensing for the human connectome project

    Science.gov (United States)

    Lee, Namgyun; Wilkins, Bryce; Singh, Manbir

    2012-02-01

    Diffusion Spectrum Imaging (DSI) has been developed as a model-free approach to solving the so called multiple-fibers-per- voxel problem in diffusion MRI. However, inferring heterogeneous microstructures of an imaging voxel rapidly remains a challenge in DSI because of extensive sampling requirements in a Cartesian grid of q-space. In this study, we propose compressed sensing based diffusion spectrum imaging (CS-DSI) to significantly reduce the number of diffusion measurements required for accurate estimation of fiber orientations. This method reconstructs each diffusion propagator of an MR data set from 100 variable density undersampled diffusion measurements minimizing the l1-norm of the finite-differences (i.e.,anisotropic total variation) of the diffusion propagator. The proposed method is validated against a ground truth from synthetic data mimicking the FiberCup phantom, demonstrating the robustness of CS-DSI on accurately estimating underlying fiber orientations from noisy diffusion data. We demonstrate the effectiveness of our CS-DSI method on a human brain dataset acquired from a clinical scanner without specialized pulse sequences. Estimated ODFs from CS-DSI method are qualitatively compared to those from the full dataset (DSI203). Lastly, we demonstrate that streamline tractography based on our CS-DSI method has a comparable quality to conventional DSI203. This illustrates the feasibility of CS-DSI for reconstructing whole brain white-matter fiber tractography from clinical data acquired at imaging centers, including hospitals, for human brain connectivity studies.

  3. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image

    Directory of Open Access Journals (Sweden)

    Chengyu Guo

    2016-02-01

    Full Text Available Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach.

  4. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image

    Science.gov (United States)

    Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping

    2016-01-01

    Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289

  5. Functional magnetic resonance imaging and diffusion tensor tractography of the corticopontocerebellar tract in the human brain

    Institute of Scientific and Technical Information of China (English)

    Ji Heon Hong; Sung Ho Jang

    2011-01-01

    The anatomical organization of the corticopontocerebellar tract (CPCT) in the human brain remains poorly understood.The present study investigated probabilistic tractography of the CPCT in the human brain using diffusion tensor tractography with functional magnetic resonance imaging.CPCT data was obtained from 14 healthy subjects.CPCT images were obtained from functional magnetic resonance imaging and diffusion tensor tractography,revealing that the CPCT originated from the primary sensorimotor cortex and descended to the pontine nucleus through the corona radiata,the posterior limb of the internal capsule,and the cerebral peduncle.After crossing the pons through the transverse pontine fibers,the CPCT entered the cerebellum via the middle cerebral peduncle.However,some variation was detected in the midbrain (middle cerebral peduncle and/or medial lemniscus) and pons (ventral and/or dorsal transverse pontine fibers).The CPCT was analyzed in 3 dimensions from the cerebral cortex to the cerebellum.These results could be informative for future studies of motor control in the human brain.

  6. Quantifying Human Visible Color Variation from High Definition Digital Images of Orb Web Spiders

    Science.gov (United States)

    Ajuria Ibarra, Helena; Rao, Dinesh

    2016-01-01

    Digital processing and analysis of high resolution images of 30 individuals of the orb web spider Verrucosa arenata were performed to extract and quantify human visible colors present on the dorsal abdomen of this species. Color extraction was performed with minimal user intervention using an unsupervised algorithm to determine groups of colors on each individual spider, which was then analyzed in order to quantify and classify the colors obtained, both spatially and using energy and entropy measures of the digital images. Analysis shows that the colors cover a small region of the visible spectrum, are not spatially homogeneously distributed over the patterns and from an entropic point of view, colors that cover a smaller region on the whole pattern carry more information than colors covering a larger region. This study demonstrates the use of processing tools to create automatic systems to extract valuable information from digital images that are precise, efficient and helpful for the understanding of the underlying biology. PMID:27902724

  7. Comparing the performance of different ultrasonic images enhancement for speckle noise reduction in ultrasound images using techniques: a preference study

    Science.gov (United States)

    Rana, Md. Shohel; Sarker, Kaushik; Bhuiyan, Touhid; Hassan, Md. Maruf

    2017-06-01

    Diagnostic ultrasound (US) is an important tool in today's sophisticated medical diagnostics. Nearly every medical discipline benefits itself from this relatively inexpensive method that provides a view of the inner organs of the human body without exposing the patient to any harmful radiations. Medical diagnostic images are usually corrupted by noise during their acquisition and most of the noise is speckle noise. To solve this problem, instead of using adaptive filters which are widely used, No-Local Means based filters have been used to de-noise the images. Ultrasound images of four organs such as Abdomen, Ortho, Liver, Kidney, Brest and Prostrate of a Human body have been used and applied comparative analysis study to find out the output. These images were taken from Siemens SONOLINE G60 S System and the output was compared by matrices like SNR, RMSE, PSNR IMGQ and SSIM. The significance and compared results were shown in a tabular format.

  8. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Philipp Boehm-Sturm

    Full Text Available BACKGROUND: Magnetic resonance imaging (MRI is a promising tool for monitoring stem cell-based therapy. Conventionally, cells loaded with ironoxide nanoparticles appear hypointense on MR images. However, the contrast generated by ironoxide labeled cells is neither specific due to ambiguous background nor quantitative. A strategy to overcome these drawbacks is (19F MRI of cells labeled with perfluorocarbons. We show here for the first time that human neural stem cells (NSCs, a promising candidate for clinical translation of stem cell-based therapy of the brain, can be labeled with (19F as well as detected and quantified in vitro and after brain implantation. METHODOLOGY/PRINCIPAL FINDINGS: Human NSCs were labeled with perfluoropolyether (PFPE. Labeling efficacy was assessed with (19F MR spectroscopy, influence of the label on cell phenotypes studied by immunocytochemistry. For in vitro MRI, NSCs were suspended in gelatin at varying densities. For in vivo experiments, labeled NSCs were implanted into the striatum of mice. A decrease of cell viability was observed directly after incubation with PFPE, which re-normalized after 7 days in culture of the replated cells. No label-related changes in the numbers of Ki67, nestin, GFAP, or βIII-tubulin+ cells were detected, both in vitro and on histological sections. We found that 1,000 NSCs were needed to accumulate in one image voxel to generate significant signal-to-noise ratio in vitro. A detection limit of ∼10,000 cells was found in vivo. The location and density of human cells (hunu+ on histological sections correlated well with observations in the (19F MR images. CONCLUSION/SIGNIFICANCE: Our results show that NSCs can be efficiently labeled with (19F with little effects on viability or proliferation and differentiation capacity. We show for the first time that (19F MRI can be utilized for tracking human NSCs in brain implantation studies, which ultimately aim for restoring loss of function after

  9. Reconstruction of three-dimensional atlas of human hippocampus based on the MRI image: a preliminary study%应用MRI对人脑海马三维重建可视化图谱的研究

    Institute of Scientific and Technical Information of China (English)

    葛海涛; 那猛; 车万里; 王猛; 陈晓光; 林志国

    2011-01-01

    目的 应用3.0T Mill特殊扫描构建人类海马三维可视化图谱.方法 利用哈尔滨工业大学BioX中心开发的软件对3.0T MRI特殊扫描图像的海马边界进行识别、分割等图像转换处理,并进行重建.结果 显示双侧海马呈口朝向内上侧"C"形,海马头部较大、尾部缩窄,整体如"逗号"形态.应用透明处理方法进行的三维重建清晰的显示了双侧海马及头、体、尾部三部,甚至肉眼可见的体积及形态差异.结论 利用3.0T磁共振特殊扫描可以成功构建人类海马三维可视化图谱.%Objective To establish a 3D atlas of human hippocampus with the 3.0T MRI images.Methods The hippocampus were segmented from the MRI images and reconstructed with the software developed by Haerbin Institute of Technology.Results 3D model of the hippocampus illustrated that they were structure like"C" shape whose anterior extremity is enlarged and whose posterior extremity narrows like a comma.The spatial relationship of the head、 body、 tail can be showed clearly, even if the naked-eye distinctions of volume and morphorlogy.Conclusion It is feasible to establish 3D model of the hippocampus of human brain with the MRI images.

  10. Experimental study of photo counting imaging based on APD

    Science.gov (United States)

    Qu, Huiming; Li, Yuan-yuan; Cao, Dan; Zheng, Qi; Ji, Zhong-Jie; Chen, Qian

    2012-10-01

    Photo counting imaging is a promising imaging method for very low-level-light condition and super high-speed imaging. An experimental setup with Geiger mode silicon avalanche photodiode single-photon counter was established in this study. This experimental setup achieved photon counting imaging through serial two-dimensional scanning mode of single APD. It extracts the extremely weak signal from the noise by scanning image, and then reconstructs the photon distribution image. The feasibility of the experiment platform was verified with many experiments. The resolution bar was scanned and imaged in different lighting condition. A Lena image was also scanned and imaged among several illumination conditions. The resolution ability and imaging quality are evaluated in different illumination surroundings. The imaging limited condition was concluded based on existing APD sensor. The experimental result indicates that the imaging based Geiger mode APD is an excellent candidate for very low level light imaging.

  11. Marketing image categorization using hybrid human-machine combinations

    Science.gov (United States)

    Gnanasambandam, Nathan; Madhu, Himanshu

    2012-03-01

    Marketing instruments with nested, short-form, symbol loaded content need to be studied differently. Image classification in the Web2.0 world can dynamically use a configurable amount of internal and external data as well as varying levels of crowd-sourcing. Our work is one such examination of how to construct a hybrid technique involving learning and crowd-sourcing. Through a parameter called turkmix and a multitude of crowd-sourcing techniques available we show that we can control the trend of metrics such as precision and recall on the hybrid categorizer.

  12. Functional Magnetic Resonance Imaging for Imaging Neural Activity in the Human Brain: The Annual Progress

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area.

  13. Through-wall imaging and characterization of human activity using ultrawideband (UWB) random noise radar

    Science.gov (United States)

    Lai, Chieh-Ping; Narayanan, Ram M.

    2005-05-01

    Recent terrorist activities and law-enforcement situations involving hostage situations underscore the need for effective through-wall imaging. Current building interior imaging systems are based on short-pulse waveforms, which require specially designed antennas to subdue unwanted ringing. In addition, periodically transmitted pulses of energy are easily recognizable by the intelligent adversary who may employ appropriate countermeasures to confound detection. A coherent polarimetric random noise radar architecture is being developed based on UWB technology and software defined radio, which has great promise in its ability to covertly image obscured targets. The main advantages of the random noise radar lie in two aspects: first, random noise waveform has an ideal "thumbtack" ambiguity function, i.e., its down range and cross range resolution can be separately controlled, thus providing unambiguous high resolution imaging at any distance; second, random noise waveform is inherently low probability of intercept (LPI) and low probability of detection (LPD), i.e., it is immune from detection, jamming, and interference. Thus, it is an ideal candidate sensor for covert imaging of obscured regions in hostile environments. The coherency in the system can be exploited to field a fully-polarimetric system that can take advantage of polarization features in target recognition. Moving personnel can also be detected using Doppler processing. Simulation studies are used to analyze backscattered signals from the walls, and humans and other targets behind the walls. Real-time data processing shows human activity behind the wall and human target tracking. The high resolution provides excellent multipath and clutter rejection.

  14. Automated epidermis segmentation in histopathological images of human skin stained with hematoxylin and eosin

    Science.gov (United States)

    Kłeczek, Paweł; Dyduch, Grzegorz; Jaworek-Korjakowska, Joanna; Tadeusiewicz, Ryszard

    2017-03-01

    Background: Epidermis area is an important observation area for the diagnosis of inflammatory skin diseases and skin cancers. Therefore, in order to develop a computer-aided diagnosis system, segmentation of the epidermis area is usually an essential, initial step. This study presents an automated and robust method for epidermis segmentation in whole slide histopathological images of human skin, stained with hematoxylin and eosin. Methods: The proposed method performs epidermis segmentation based on the information about shape and distribution of transparent regions in a slide image and information about distribution and concentration of hematoxylin and eosin stains. It utilizes domain-specific knowledge of morphometric and biochemical properties of skin tissue elements to segment the relevant histopathological structures in human skin. Results: Experimental results on 88 skin histopathological images from three different sources show that the proposed method segments the epidermis with a mean sensitivity of 87 %, a mean specificity of 95% and a mean precision of 57%. It is robust to inter- and intra-image variations in both staining and illumination, and makes no assumptions about the type of skin disorder. The proposed method provides a superior performance compared to the existing techniques.

  15. Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound.

    Science.gov (United States)

    Alonso, Angelika; Della Martina, Alberto; Stroick, Mark; Fatar, Marc; Griebe, Martin; Pochon, Sibylle; Schneider, Michel; Hennerici, Michael; Allémann, Eric; Meairs, Stephen

    2007-05-01

    Molecular imaging of therapeutic interventions with targeted agents that simultaneously carry drugs or genes for local delivery is appealing. We investigated the ability of a novel microbubble carrier (immunobubble) for abciximab, a glycoprotein IIb/IIIa receptor inhibitor, for ultrasonographic molecular imaging of human clots. Human thrombi were incubated with immunobubbles conjugated with abciximab. Control clots were incubated in either saline or with immunobubbles conjugated with nonspecific antibody. We evaluated immunobubble suspensions with variable concentrations of encapsulated gas and measured mean acoustic intensity of the incubated clots. In vivo molecular imaging of human thrombi with abciximab immunobubbles was evaluated in a rat model of carotid artery occlusion. Mean acoustic intensity was significantly higher for abciximab immunobubbles as compared with control immunobubbles under all conditions tested with maximum difference in intensity at a gas volume of 0.2 microL (P=0.0013 for mechanical index 0.05, P=0.0001 for mechanical index 0.7). Binding of abciximab immunobubbles to clots in vitro led to enhanced echogenicity dependent on bubble concentration. In vivo ultrasonic detectability of carotid thrombi was significantly higher for clots targeted with abciximab immunobubbles (P<0.05). Quantification of in vivo contrast enhancement displayed a highly significant increment for abciximab immunobubble-targeted clots compared with nonspecific immunobubble-targeted clots (P<0.0001) and to native clots (P<0.0001). This study demonstrates the feasibility of using a therapeutic agent for selective targeting in vascular imaging. Abciximab immunobubbles improve visualization of human clots both in vitro and in an in vivo model of acute arterial thrombotic occlusion.

  16. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    Science.gov (United States)

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.

  17. Automated whole animal bio-imaging assay for human cancer dissemination

    NARCIS (Netherlands)

    Ghotra, V.P.; He, S.; Bont, de H.J.G.M.; Ent, van der W.; Spaink, H.P.; Water, van de B.; Snaar, B.E.; Danen, E.H.J.

    2012-01-01

    A quantitative bio-imaging platform is developed for analysis of human cancer dissemination in a short-term vertebrate xenotransplantation assay. Six days after implantation of cancer cells in zebrafish embryos, automated imaging in 96 well plates coupled to image analysis algorithms quantifies spre

  18. Infrared Imaging System for Studying Brain Function

    Science.gov (United States)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  19. Analysis of variance in spectroscopic imaging data from human tissues.

    Science.gov (United States)

    Kwak, Jin Tae; Reddy, Rohith; Sinha, Saurabh; Bhargava, Rohit

    2012-01-17

    The analysis of cell types and disease using Fourier transform infrared (FT-IR) spectroscopic imaging is promising. The approach lacks an appreciation of the limits of performance for the technology, however, which limits both researcher efforts in improving the approach and acceptance by practitioners. One factor limiting performance is the variance in data arising from biological diversity, measurement noise or from other sources. Here we identify the sources of variation by first employing a high throughout sampling platform of tissue microarrays (TMAs) to record a sufficiently large and diverse set data. Next, a comprehensive set of analysis of variance (ANOVA) models is employed to analyze the data. Estimating the portions of explained variation, we quantify the primary sources of variation, find the most discriminating spectral metrics, and recognize the aspects of the technology to improve. The study provides a framework for the development of protocols for clinical translation and provides guidelines to design statistically valid studies in the spectroscopic analysis of tissue.

  20. High-speed adaptive optics line scan confocal retinal imaging for human eye

    Science.gov (United States)

    Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss. PMID:28257458

  1. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  2. Functional plasticity before the cradle: a review of neural functional imaging in the human fetus.

    Science.gov (United States)

    Anderson, Amy L; Thomason, Moriah E

    2013-11-01

    The organization of the brain is highly plastic in fetal life. Establishment of healthy neural functional systems during the fetal period is essential to normal growth and development. Across the last several decades, remarkable progress has been made in understanding the development of human fetal functional brain systems. This is largely due to advances in imaging methodologies. Fetal neuroimaging began in the 1950-1970's with fetal electroencephalography (EEG) applied during labor. Later, in the 1980's, magnetoencephalography (MEG) emerged as an effective approach for investigating fetal brain function. Most recently, functional magnetic resonance imaging (fMRI) has arisen as an additional powerful approach for examining fetal brain function. This review will discuss major developmental findings from fetal imaging studies such as the maturation of prenatal sensory system functions, functional hemispheric asymmetry, and sensory-driven neurodevelopment. We describe how with improved imaging and analysis techniques, functional imaging of the fetus has the potential to assess the earliest point of neural maturation and provide insight into the patterning and sequence of normal and abnormal brain development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. ImageJ analysis of dentin tubule distribution in human teeth.

    Science.gov (United States)

    Williams, Casia; Wu, Yiching; Bowers, Doria F

    2015-08-01

    Mapping the distribution of dentin tubules is vital to understanding the structure-function relationship of dentin, an important indicator of tooth stability. This study compared the distances between and density of tubules in the external dentin located in the crown region of an adult human incisor and molar to determine if analysis could be conducted using light-level microscopy. Teeth were processed for routine histology, cut in cross-section, images captured using Advanced SPOT Program, and microstructure was analyzed using ImageJ (NIH). Intratubular (peritubular) dentin with or without odontoblast processes were observed and although incisor and molar images appeared visually similar, plot profile graphs differed. Distance-intervals between tubules in the incisor (5.45-7.67 μm) had an overall range of 2.22 μm and in the molar (7.43-8.42 μm) an overall range of 0.99 μm. While molar tubule distribution displayed a tighter overall range, there was a smaller distance between most incisor tubules. The average densities observed in incisors were 15,500 tubules/mm(2), compared with 20,100 tubules/mm(2) in molars. ImageJ analysis of prepared histology microscopic slides provides researchers with a rapid, inexpensive assessment tool when compared with advanced/ultrastructural methodologies. By combining routine histological processing and light microscopic observations followed by ImageJ analysis, tooth structure can be converted into numerical data and easily mastered by laboratory personnel.

  4. X-ray tube-based diffraction enhanced imaging prototype images of full-thickness breast specimens: reader study evaluation

    Science.gov (United States)

    Faulconer, L. S.; Parham, C.; Connor, D. J.; Koomen, M.; Kuzmiak, C.; Pavic, D.; Livasy, C. A.; Kim, E.; Zeng, D.; Cole, E. B.; Zhong, Z.; Pisano, E. D.

    2009-02-01

    Conventional mammographic image contrast is derived from x-ray absorption, resulting in breast structure visualization due to density gradients that attenuate radiation without distinction between transmitted and scattered or refracted x-rays. This leads to image blurring and contrast reduction, hindering the early detection of small or otherwise occult cancers. Diffraction enhanced imaging (DEI) allows for dramatically increased contrast with decreased radiation dose compared to conventional mammographic imaging due to monochromatic x-rays, its unique refraction-based contrast mechanism and excellent scatter rejection. However, a lingering drawback to the clinical translation of DEI has been the requirement for synchrotron radiation. Our laboratory developed a DEI prototype (DEI-PR) utilizing a readily available Tungsten xray tube source and traditional DEI crystal optics, providing soft tissue images at 60keV. To demonstrate the clinical utility of our DEI-PR, we acquired images of full-thickness human breast tissue specimens on synchrotron-based DEI, DEI-PR and digital mammography systems. A reader study was designed to allow unbiased assessment of system performance when analyzing three systems with dissimilar imaging parameters and requiring analysis of images unfamiliar to radiologists. A panel of expert radiologists evaluated lesion feature visibility and histopathology correlation after receiving training on the interpretation of refraction contrast mammographic images. Preliminary data analysis suggests that our DEI system performed roughly equivalently with the traditional DEI system, demonstrating a significant step toward clinical translation of this modality for breast cancer applications.

  5. Imaging the structure of the human anxious brain: a review of findings from neuroscientific personality psychology.

    Science.gov (United States)

    Montag, Christian; Reuter, Martin; Jurkiewicz, Magdalena; Markett, Sebastian; Panksepp, Jaak

    2013-01-01

    The emotion of anxiety represents one of the most studied topics in the neurosciences, in part due to its relevance for understanding the evolutionary development of the human brain and its role in the pathogenesis of psychopathological conditions. Structural magnetic resonance imaging (sMRI) has enabled mapping of the anxious human brain and has contributed substantially to the understanding of anxiety. Alongside the fields of clinical psychology/psychiatry, personality psychology aims to support the research endeavor of mapping the anxious brain and has found that individual differences in anxiety-related personality dimensions such as Neuroticism or Harm Avoidance (measured by self-report) are correlated with gray and white matter volumes in different areas of the human brain. This review reveals that structures including parts of the frontal cortex (e.g., the orbitofrontal cortex) and the temporal lobe (e.g., the hippocampus) are often associated with trait anxiety, and it points out the inconsistencies that exist in the personality-sMRI literature on human anxiety. Consequently, we suggest new research strategies to overcome the inconsistencies. This review outlines how results from animal research can guide scientists in developing testable hypotheses in search of the anxious brain. Moreover, genetic imaging is presented as an interesting approach to mapping the anxious brain.

  6. A New Method for Human Microcirculation Image Enhancement

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuan; ZHAO Zhi-min; LIU Lei; LI Peng

    2008-01-01

    Microcirculation images often have uneven illumination and low contrast in the acquisition process, which affect the image reorganization and following process. This paper presents a new method for microcirculatory image illumination correction and con-trast enhancement based on the Contourlet transform. Initially, the image illumination model is extracted by Contourlet transform and then uneven illumination is corrected. Next, in order to restrain noise and enhance image contrast, the probability function asso-ciated with noise coefficient and edge coefficient is established and applied to all Contour-let coefficients. Then, a nonlinear enhancement function is applied to modified Contourlet coefficient to adaptively enhance image contrast. Finally, the enhanced image is obtained by inverse Contourlet transform. We compare this approach with other contrast enhance-ment methods, result showing that our method has a better effect than other enhancement methods, which might be helpful for clinical diagnostics of microcirculation.

  7. Imaging studies in patients with spinal pain

    Science.gov (United States)

    Ferrari, Robert

    2016-01-01

    Abstract Objective To evaluate an a priori threshold for advanced imaging in patients with spinal pain. Design Patients with spinal pain in any region for 6 to 52 weeks were assessed to determine if radiologic studies beyond x-ray scans were indicated, including magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide bone scans. An a priori threshold was set before MRI, CT, or bone scans would be considered. Those who did not have MRI, CT, or bone scans ordered were followed for at least 1 year to determine if any of them went on to be diagnosed with a more serious spinal disorder (eg, infection, fracture, spondylitis, tumour, neurologic compression). Setting Four large primary care clinics in Edmonton, Alta. Participants A total of 1003 consecutively presenting patients with symptoms suspected to be related to the spine (for a duration of generally 6 to 52 weeks) who had not already undergone advanced imaging and did not have a diagnosis of nonbenign back pain. Main outcome measures Number of cases of nonbenign spinal disorder in participants who underwent advanced imaging and participants who did not undergo advanced imaging (ie, did not have any red flags). Results There were 399 women (39.8%) and 604 men (60.2%). The mean (SD) age of the group was 47.2 (14.6) years. The mean (SD) duration of symptoms was 15.1 (8.6) weeks. Of the 1003 participants, 110 met an a priori threshold for undergoing at least 1 of MRI, CT, or bone scan. In these 110 participants, there were newly diagnosed cases of radiculopathy (n = 12), including a case of cauda equina syndrome; spondyloarthropathy (n = 6); occult fracture (n = 2); solitary metastasis (n = 1); epidural lipomatosis (n = 1); osteomyelitis (n = 1), and retroperitoneal hematoma (n = 1), each of which was considered likely to be the cause of the patient’s spinal symptoms. The remaining 893 participants were followed for at least 1 year and none showed evidence of a nonbenign cause of his or her

  8. PET imaging of α{sub 7} nicotinic acetylcholine receptors: a comparative study of [{sup 18}F]ASEM and [{sup 18}F]DBT-10 in nonhuman primates, and further evaluation of [{sup 18}F]ASEM in humans

    Energy Technology Data Exchange (ETDEWEB)

    Hillmer, Ansel T.; Li, Songye; Zheng, Ming-Qiang; Lin, Shu-fei; Nabulsi, Nabeel; Holden, Daniel; Pracitto, Richard; Labaree, David; Ropchan, Jim; Esterlis, Irina; Cosgrove, Kelly P.; Carson, Richard E.; Huang, Yiyun [Yale University, PET Center, New Haven, CT (United States); Scheunemann, Matthias; Teodoro, Rodrigo; Deuther-Conrad, Winnie; Brust, Peter [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig (Germany)

    2017-06-15

    The α{sub 7} nicotinic acetylcholine receptor (nAChR) is implicated in many neuropsychiatric disorders, making it an important target for positron emission tomography (PET) imaging. The first aim of this work was to compare two α{sub 7} nAChRs PET radioligands, [{sup 18}F]ASEM 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-([{sup 18}F]fluorodibenzo[b,d]thiophene 5,5-dioxide) and [{sup 18}F]DBT-10 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-([{sup 18}F]fluorodibenzo[b,d]thiophene 5,5-dioxide), in nonhuman primates. The second aim was to assess further the quantification and test-retest variability of [{sup 18}F]ASEM in humans. PET scans with high specific activity [{sup 18}F]ASEM or [{sup 18}F]DBT-10 were acquired in three rhesus monkeys (one male, two female), and the kinetic properties of these radiotracers were compared. Additional [{sup 18}F]ASEM PET scans with blocking doses of nicotine, varenicline, and cold ASEM were acquired separately in two animals. Next, six human subjects (five male, one female) were imaged with [{sup 18}F]ASEM PET for 180 min, and arterial sampling was used to measure the parent input function. Different modeling approaches were compared to identify the optimal analysis method and scan duration for quantification of [{sup 18}F]ASEM distribution volume (V{sub T}). In addition, retest scans were acquired in four subjects (three male, one female), and the test-retest variability of V{sub T} was assessed. In the rhesus monkey brain [{sup 18}F]ASEM and [{sup 18}F]DBT-10 exhibited highly similar kinetic profiles. Dose-dependent blockade of [{sup 18}F]ASEM binding was observed, while administration of either nicotine or varenicline did not change [{sup 18}F]ASEM V{sub T}. [{sup 18}F]ASEM was selected for further validation because it has been used in humans. Accurate quantification of [{sup 18}F]ASEM V{sub T} in humans was achieved using multilinear analysis with at least 90 min of data acquisition, resulting in V{sub T} values ranging from 19.6 ± 2

  9. Now you see it, now you don't: on emotion, context, and the algorithmic prediction of human imageability judgments.

    Science.gov (United States)

    Westbury, Chris F; Shaoul, Cyrus; Hollis, Geoff; Smithson, Lisa; Briesemeister, Benny B; Hofmann, Markus J; Jacobs, Arthur M

    2013-01-01

    Many studies have shown that behavioral measures are affected by manipulating the imageability of words. Though imageability is usually measured by human judgment, little is known about what factors underlie those judgments. We demonstrate that imageability judgments can be largely or entirely accounted for by two computable measures that have previously been associated with imageability, the size and density of a word's context and the emotional associations of the word. We outline an algorithmic method for predicting imageability judgments using co-occurrence distances in a large corpus. Our computed judgments account for 58% of the variance in a set of nearly two thousand imageability judgments, for words that span the entire range of imageability. The two factors account for 43% of the variance in lexical decision reaction times (LDRTs) that is attributable to imageability in a large database of 3697 LDRTs spanning the range of imageability. We document variances in the distribution of our measures across the range of imageability that suggest that they will account for more variance at the extremes, from which most imageability-manipulating stimulus sets are drawn. The two predictors account for 100% of the variance that is attributable to imageability in newly-collected LDRTs using a previously-published stimulus set of 100 items. We argue that our model of imageability is neurobiologically plausible by showing it is consistent with brain imaging data. The evidence we present suggests that behavioral effects in the lexical decision task that are usually attributed to the abstract/concrete distinction between words can be wholly explained by objective characteristics of the word that are not directly related to the semantic distinction. We provide computed imageability estimates for over 29,000 words.

  10. An approach to integrate the human vision psychology and perception knowledge into image enhancement

    Science.gov (United States)

    Wang, Hui; Huang, Xifeng; Ping, Jiang

    2009-07-01

    Image enhancement is very important image preprocessing technology especially when the image is captured in the poor imaging condition or dealing with the high bits image. The benefactor of image enhancement either may be a human observer or a computer vision process performing some kind of higher-level image analysis, such as target detection or scene understanding. One of the main objects of the image enhancement is getting a high dynamic range image and a high contrast degree image for human perception or interpretation. So, it is very necessary to integrate either empirical or statistical human vision psychology and perception knowledge into image enhancement. The human vision psychology and perception claims that humans' perception and response to the intensity fluctuation δu of visual signals are weighted by the background stimulus u, instead of being plainly uniform. There are three main laws: Weber's law, Weber- Fechner's law and Stevens's Law that describe this phenomenon in the psychology and psychophysics. This paper will integrate these three laws of the human vision psychology and perception into a very popular image enhancement algorithm named Adaptive Plateau Equalization (APE). The experiments were done on the high bits star image captured in night scene and the infrared-red image both the static image and the video stream. For the jitter problem in the video stream, this algorithm reduces this problem using the difference between the current frame's plateau value and the previous frame's plateau value to correct the current frame's plateau value. Considering the random noise impacts, the pixel value mapping process is not only depending on the current pixel but the pixels in the window surround the current pixel. The window size is usually 3×3. The process results of this improved algorithms is evaluated by the entropy analysis and visual perception analysis. The experiments' result showed the improved APE algorithms improved the quality of the

  11. In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment.

    Science.gov (United States)

    Kim, Hyung Joong; Kim, Young Tae; Minhas, Atul S; Jeong, Woo Chul; Woo, Eung Je; Seo, Jin Keun; Kwon, O Jung

    2009-11-01

    We present the first in vivo cross-sectional conductivity image of the human leg with 1.7 mm pixel size using the magnetic resonance electrical impedance tomography (MREIT) technique. After a review of its experimental protocol by an Institutional Review Board (IRB), we performed MREIT imaging experiments of four human subjects using a 3 T MRI scanner. Adopting thin and flexible carbon-hydrogel electrodes with a large surface area and good contact, we could inject as much as 9 mA current in a form of 15 ms pulse into the leg without producing a painful sensation and motion artifact. Sequentially injecting two imaging currents in two different directions, we collected induced magnetic flux density data inside the leg. Scaled conductivity images reconstructed by using the single-step harmonic B(z) algorithm well distinguished different parts of the subcutaneous adipose tissue, muscle, crural fascia, intermuscular septum and bone inside the leg. We could observe spurious noise spikes in the outer layer of the bone primarily due to the MR signal void phenomenon there. Around the fat, the chemical shift of about two pixels occurred obscuring the boundary of the fat region. Future work should include a fat correction method incorporated in the MREIT pulse sequence and improvements in radio-frequency coils and image reconstruction algorithms. Further human imaging experiments are planned and being conducted to produce conductivity images from different parts of the human body.

  12. Tumor characterization and treatment monitoring of postsurgical human breast specimens using harmonic motion imaging (HMI).

    Science.gov (United States)

    Han, Yang; Wang, Shutao; Hibshoosh, Hanina; Taback, Bret; Konofagou, Elisa

    2016-05-09

    High-intensity focused ultrasound (HIFU) is a noninvasive technique used in the treatment of early-stage breast cancer and benign tumors. To facilitate its translation to the clinic, there is a need for a simple, cost-effective device that can reliably monitor HIFU treatment. We have developed harmonic motion imaging (HMI), which can be used seamlessly in conjunction with HIFU for tumor ablation monitoring, namely harmonic motion imaging for focused ultrasound (HMIFU). The overall objective of this study was to develop an all ultrasound-based system for real-time imaging and ablation monitoring in the human breast in vivo. HMI was performed in 36 specimens (19 normal, 15 invasive ductal carcinomas, and 2 fibroadenomas) immediately after surgical removal. The specimens were securely embedded in a tissue-mimicking agar gel matrix and submerged in degassed phosphate-buffered saline to mimic in vivo environment. The HMI setup consisted of a HIFU transducer confocally aligned with an imaging transducer to induce an oscillatory radiation force and estimate the resulting displacement. 3D HMI displacement maps were reconstructed to represent the relative tissue stiffness in 3D. The average peak-to-peak displacement was found to be significantly different (p = 0.003) between normal breast tissue and invasive ductal carcinoma. There were also significant differences before and after HMIFU ablation in both the normal (53.84 % decrease) and invasive ductal carcinoma (44.69 % decrease) specimens. HMI can be used to map and differentiate relative stiffness in postsurgical normal and pathological breast tissues. HMIFU can also successfully monitor thermal ablations in normal and pathological human breast specimens. This HMI technique may lead to a new clinical tool for breast tumor imaging and HIFU treatment monitoring.

  13. Quasi-conformal remapping for compensation of human visual field defects - Advances in image remapping for human field defects

    Science.gov (United States)

    Juday, Richard D.; Loshin, David S.

    1989-01-01

    Image coordinate transformations are investigated for possible use in a low vision aid for human patients. These patients typically have field defects with localized retinal dysfunction predominately central (age related maculopathy) or peripheral (retinitis pigmentosa). Previously simple eccentricity-only remappings which do not maintain conformality were shown. Initial attempts on developing images which hold quasi-conformality after remapping are presented. Although the quasi-conformal images may have less local distortion, there are discontinuities in the image which may counterindicate this type of transformation for the low vision application.

  14. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  15. High resolution mosaic image of capillaries in human retina by adaptive optics

    Institute of Scientific and Technical Information of China (English)

    Ning Ling; Yudong Zhang; Xuejun Rao; Cheng Wang; Yiyun Hu; Wenhan Jiang

    2005-01-01

    Adaptive optics (AO) has been proved as a powerful means for high resolution imaging of human retina.Because of the pixel number of charge-coupled device (CCD) camera, the field of view is limited to 1°.In order to have image of capillaries around vivo human fovea, we use mosaic method to obtain high resolution image in area of 6°× 6°. Detailed structures of capillaries around fovea with resolution of 2.3μm are clearly shown. Comparison shows that this method has a much higher resolution than current clinic retina imaging methods.

  16. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Moncayo, S.; Trichard, F.; Busser, B.; Sabatier-Vincent, M.; Pelascini, F.; Pinel, N.; Templier, I.; Charles, J.; Sancey, L.; Motto-Ros, V.

    2017-07-01

    Chemical elements play central roles for physiological homeostasis in human cells, and their dysregulation might lead to a certain number of pathologies. Novel imaging techniques that improve the work of pathologists for tissue analysis and diagnostics are continuously sought. We report the use of Laser-Induced Breakdown Spectroscopy (LIBS) to perform multi-elemental images of human paraffin-embedded skin samples on the entire biopsy scale in a complementary and compatible way with microscope histopathological examination. A specific instrumental configuration is proposed in order to detect most of the elements of medical interest (i.e. P, Al, Mg, Na, Zn, Si, Fe, and Cu). As an example of medical application, we selected and analysed skin biopsies, including healthy skin tissue, cutaneous metastasis of melanoma, Merkel-cell carcinoma and squamous cell carcinoma. Clear distinctions in the distribution of chemical elements are observed from the different samples investigated. This study demonstrates the high complementarity of LIBS elemental imaging with conventional histopathology, opening new opportunities for any medical application involving metals.

  17. Study of Image Processing, Enhancement and Restoration

    Directory of Open Access Journals (Sweden)

    Bhausaheb Shivajirao Shinde

    2011-11-01

    Full Text Available Digital image processing is a means by which the valuable information in observed raw image data can be revealed. A web-based image processing pipeline was created under the ambitious educational program Venus Transit 2004 (VT-2004. The active participants in the VT-2004 can apply the basic processing methods to the images obtained by their amateur telescopes and/or they can process an image observed at any observatory involved in the project. The processed result image is displayed immediately on the display. Above that all participants can follow the distance Sun-Venus centers computation performed at the professional observatory in the real time. There is a possibility to submit an image from their own observation into the database. It will be used for the distance Earth-Sun computation.

  18. Human-Centered Content-Based Image Retrieval

    NARCIS (Netherlands)

    van den Broek, Egon

    2005-01-01

    Retrieval of images that lack a (suitable) annotations cannot be achieved through (traditional) Information Retrieval (IR) techniques. Access through such collections can be achieved through the application of computer vision techniques on the IR problem, which is baptized Content-Based Image

  19. Human-Centered Content-Based Image Retrieval

    NARCIS (Netherlands)

    Broek, van den Egon L.

    2005-01-01

    Retrieval of images that lack a (suitable) annotations cannot be achieved through (traditional) Information Retrieval (IR) techniques. Access through such collections can be achieved through the application of computer vision techniques on the IR problem, which is baptized Content-Based Image Retrie

  20. Regional calcium distribution and ultrasound images of the vessel wall in human carotid arteries

    Science.gov (United States)

    Szikszai, Z.; Kertész, Zs.; Uzonyi, I.; Szíki, G. Á.; Magyar, M. T.; Molnár, S.; Ida, Y.; Csiba, L.

    2005-04-01

    Arterial calcification can take place at two sites in the vessel wall: the intima and the media. Intimal calcification occurs exclusively within atherosclerotic plaques, while medial calcification may develop independently. Extensive calcified plaques in the carotid arteries can be easily detected by B-mode ultrasonic imaging. The calcium content might correlate with the ultrasound reflectance of the vessel wall, and could be a surrogate marker for arteriosclerosis. In this study, segments of human carotid arteries collected at autopsy were examined by ultrasonography in vitro and calcium distributional maps of sections from the same segments were determined by particle induced X-ray emission. Our aim was to make a first step towards investigating the relationship between the calcium distributional maps and the respective ultrasound images.

  1. Evaluation of a new DTPA-derivative chelator: comparative biodistribution and imaging studies of [sup 111]In-labeled B3 monoclonal antibody in athymic mice bearing human epidermoid carcinoma xenografts. [Diethylenetriaminpentaacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Camera, L.; Kinuya, S.; Garmestani, K.; Pai, L.H.; Brechbiel, M.W.; Gansow, O.A.; Paik, C.H.; Pastan, I.; Carrasquillo, J.A. (National Cancer Inst., Bethesda, MD (United States))

    1993-11-01

    Biodistribution and imaging characteristics of monoclonal antibody (MAb) B3 conjugated to either the 2-(p-isothiocvanatobenzyl)-cyclohexyl-DTPA (CHX-B) or 2-(p-isothiocyanatobenzyl)-6-methyl-DTPA (1B4M) and labeled with [sup 111]In, were evalulated in nude mice bearing A431 human epidermoid carcinoma xenografts. MAb B3, is a murine IgG1k reacting with a carbohydrate antigen abundantly expressed by most carcinomas. Both [sup 111]In-(CHX-B)-B3 and [sup 111]In-(1B4M)-B3 showed good tumor targeting with peak values observed at 72 h with 27.6 [+-] 7.6 and 25.4 [+-] 1.7% ID/g, respectively (P > 0.05). High tumor-to-organ ratios were also observed and, confirmed by the imaging results. In particular, tumor-to liver ratios increased from 5.0 [+-] 0.9 at 24 h to 9.2 [+-] 2.0 at 168 h for [sup 111]In-(CHX-B)-B3 and from 4.5 [+-] 0.6 to 8.9 [+-] 3.5 for [sup 111]In-(1B4M)-B3. This was mainly the result of low liver accumulation of both [sup 111]In-(CHX-B)-B3 and [sup 111]In-(1B4M)-B3, with only 2.48 [+-] 0.46 and 2.5 [+-] 0.9% ID/g at 168h, respectively (P > 0.05). Our findings indicate that either CHX-B or 1B4M can be successfully used for [sup 111]In-labeling of MAbs and that [sup 111]In-B3 may represent a promising radioimmunoimaging agent. (Author).

  2. A study for watermark methods appropriate to medical images.

    Science.gov (United States)

    Cho, Y; Ahn, B; Kim, J S; Kim, I Y; Kim, S I

    2001-06-01

    The network system, including the picture archiving and communication system (PACS), is essential in hospital and medical imaging fields these days. Many medical images are accessed and processed on the web, as well as in PACS. Therefore, any possible accidents caused by the illegal modification of medical images must be prevented. Digital image watermark techniques have been proposed as a method to protect against illegal copying or modification of copyrighted material. Invisible signatures made by a digital image watermarking technique can be a solution to these problems. However, medical images have some different characteristics from normal digital images in that one must not corrupt the information contained in the original medical images. In this study, we suggest modified watermark methods appropriate for medical image processing and communication system that prevent clinically important data contained in original images from being corrupted.

  3. Fourier transform infrared imaging of focal lesions in Human osteoarthritic cartilage

    Directory of Open Access Journals (Sweden)

    David-Vaudey E.

    2005-11-01

    Full Text Available Fourier Transform Infrared Imaging (FTIRI is a new method for quantitatively assessing the spatial-chemical composition of complex materials. This technique has been applied to examine the feasibility of measuring changes in the composition and distribution of collagen and proteoglycan macromolecules in human osteoarthritic cartilage. Human cartilage was acquired post-operatively from total joint replacement patients. Samples were taken at the site of a focal lesion, adjacent to the lesion, and from relatively healthy cartilage away from the lesion. Sections were prepared for FTIRI and histochemical grading. FTIRI spectral images were acquired for the superficial, intermediate, and deep layers for each sample. Euclidean distance mapping and quantitative partial least squares analysis (PLS were performed using reference spectra for type-II collagen and chondroitin 6-sulphate (CS6. FTIRI results were correlated to the histology-based Mankin scoring system. PLS analysis found relatively low relative concentrations of collagen (38 ± 10% and proteoglycan (22 ± 9% in osteoarthritic cartilage. Focal lesions were generally found to contain less CS6 compared to cartilage tissue adjacent to the lesion. Loss of proteoglycan content was well correlated to histological Mankin scores (r=0.69, p<0.0008. The evaluation of biological tissues with FTIRI can provide unique quantitative information on how disease can affect biochemical distribution and composition. This study has demonstrated that FTIRI is useful in quantitatively assessing pathology-related changes in the composition and distribution of primary macromolecular components of human osteoarthritic cartilage.

  4. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor.

    Directory of Open Access Journals (Sweden)

    Andrew Ward

    Full Text Available The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively assess tissue engineered human adipose tissue structure and function in vitro. Three-dimensional (3D vascularized human adipose tissues were engineered in vitro, before being introduced to a perfusion environment and tracked over time by automated quantification of endogenous markers of metabolism using two-photon excited fluorescence (TPEF. Depth-resolved image stacks were analyzed for redox ratio metabolic profiling and compared to prior analyses performed on 3D engineered adipose tissue in static culture. Traditional assessments with H&E staining were used to qualitatively measure extracellular matrix generation and cell density with respect to location within the tissue. The distribution of cells within the tissue and average cellular redox ratios were different between static and perfusion cultures, while the trends of decreased redox ratio and increased cellular proliferation with time in both static and perfusion cultures were similar. These results establish a basis for noninvasive optical tracking of tissue structure and function in vitro, which can be applied to future studies to assess tissue development or drug toxicity screening and disease progression.

  5. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor.

    Science.gov (United States)

    Ward, Andrew; Quinn, Kyle P; Bellas, Evangelia; Georgakoudi, Irene; Kaplan, David L

    2013-01-01

    The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively assess tissue engineered human adipose tissue structure and function in vitro. Three-dimensional (3D) vascularized human adipose tissues were engineered in vitro, before being introduced to a perfusion environment and tracked over time by automated quantification of endogenous markers of metabolism using two-photon excited fluorescence (TPEF). Depth-resolved image stacks were analyzed for redox ratio metabolic profiling and compared to prior analyses performed on 3D engineered adipose tissue in static culture. Traditional assessments with H&E staining were used to qualitatively measure extracellular matrix generation and cell density with respect to location within the tissue. The distribution of cells within the tissue and average cellular redox ratios were different between static and perfusion cultures, while the trends of decreased redox ratio and increased cellular proliferation with time in both static and perfusion cultures were similar. These results establish a basis for noninvasive optical tracking of tissue structure and function in vitro, which can be applied to future studies to assess tissue development or drug toxicity screening and disease progression.

  6. Optical redox imaging indices discriminate human breast cancer from normal tissues

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2016-11-01

    Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues (pcancerous tissues (pcancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients.

  7. Image-based modeling of objects and human faces

    Science.gov (United States)

    Zhang, Zhengyou

    2000-12-01

    In this paper, provided is an overview of our project on 3D object and face modeling from images taken by a free-moving camera. We strive to advance the state of the art in 3D computer vision, and develop flexible and robust techniques for ordinary users to gain 3D experience from a ste of casually collected 2D images. Applications include product advertisement on the Web, virtual conference, and interactive games. We briefly cover the following topics: camera calibration, stereo rectification, image matching, 3D photo editing, object modeling, and face modeling. Demos on the last three topics will be shown during the conference.

  8. Image Retrieval: Theoretical Analysis and Empirical User Studies on Accessing Information in Images.

    Science.gov (United States)

    Ornager, Susanne

    1997-01-01

    Discusses indexing and retrieval for effective searches of digitized images. Reports on an empirical study about criteria for analysis and indexing digitized images, and the different types of user queries done in newspaper image archives in Denmark. Concludes that it is necessary that the indexing represent both a factual and an expressional…

  9. First Human Experience with Directly Image-able Iodinated Embolization Microbeads.

    Science.gov (United States)

    Levy, Elliot B; Krishnasamy, Venkatesh P; Lewis, Andrew L; Willis, Sean; Macfarlane, Chelsea; Anderson, Victoria; van der Bom, Imramsjah Mj; Radaelli, Alessandro; Dreher, Matthew R; Sharma, Karun V; Negussie, Ayele; Mikhail, Andrew S; Geschwind, Jean-Francois H; Wood, Bradford J

    2016-08-01

    To describe first clinical experience with a directly image-able, inherently radio-opaque microspherical embolic agent for transarterial embolization of liver tumors. LC Bead LUMI™ is a new product based upon sulfonate-modified polyvinyl alcohol hydrogel microbeads with covalently bound iodine (~260 mg I/ml). 70-150 μ LC Bead LUMI™ iodinated microbeads were injected selectively via a 2.8 Fr microcatheter to near complete flow stasis into hepatic arteries in three patients with hepatocellular carcinoma, carcinoid, or neuroendocrine tumor. A custom imaging platform tuned for LC LUMI™ microbead conspicuity using a cone beam CT (CBCT)/angiographic C-arm system (Allura Clarity FD20, Philips) was used along with CBCT embolization treatment planning software (EmboGuide, Philips). LC Bead LUMI™ image-able microbeads were easily delivered and monitored during the procedure using fluoroscopy, single-shot radiography (SSD), digital subtraction angiography (DSA), dual-phase enhanced and unenhanced CBCT, and unenhanced conventional CT obtained 48 h after the procedure. Intra-procedural imaging demonstrated tumor at risk for potential under-treatment, defined as paucity of image-able microbeads within a portion of the tumor which was confirmed at 48 h CT imaging. Fusion of pre- and post-embolization CBCT identified vessels without beads that corresponded to enhancing tumor tissue in the same location on follow-up imaging (48 h post). LC Bead LUMI™ image-able microbeads provide real-time feedback and geographic localization of treatment in real time during treatment. The distribution and density of image-able beads within a tumor need further evaluation as an additional endpoint for embolization.

  10. Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L J; Zhu, Y M; Liu, W Y; Pu, Z B; Magnin, I E [HIT-INSA Sino French Research Centre for Biomedical Imaging, Harbin Institute of Technology, Harbin (China); Croisille, P; Robini, M [CREATIS-LRMN, CNRS UMR 5220, Inserm U630, INSA of Lyon, University of Lyon 1, Villeurbanne (France)], E-mail: baolij@gmail.com

    2009-03-21

    Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.

  11. Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies.

    Science.gov (United States)

    Gonzalez, Jean; Roman, Manuela; Hall, Michael; Godavarty, Anuradha

    2012-01-01

    Hand-held near-infrared (NIR) optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2) hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s) allows for reflectance imaging (as in ultrasound) and transillumination or compressed imaging (as in X-ray mammography). Phantom studies were performed to demonstrate two-dimensional (2D) target detection via reflectance and transillumination imaging at various target depths (1-5 cm deep) and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  12. Low-Cost Satellite Infrared Imager Study

    Science.gov (United States)

    2007-11-02

    2,297.00 10 MATLAB , Simulink , Symbolic Math Toolbox (2 ea @ £894) £1,788.00 11 MATLAB Image Processing Toolbox (2 ea at £192) £384.00 12 MATLAB ...Figure 1: MWIR and TIR satellite imagery. On the left is a BIRD image of forest fires on the Portuguese/ Spanish border3 and the image on right is...space-borne MWIR and TIR imagers, instrument engineers are continually evaluating advances in the miniaturization of detector technology. One

  13. Comparison between human and model observer performance in low-contrast detection tasks in CT images: application to images reconstructed with filtered back projection and iterative algorithms

    Science.gov (United States)

    Calzado, A; Geleijns, J; Joemai, R M S; Veldkamp, W J H

    2014-01-01

    Objective: To compare low-contrast detectability (LCDet) performance between a model [non–pre-whitening matched filter with an eye filter (NPWE)] and human observers in CT images reconstructed with filtered back projection (FBP) and iterative [adaptive iterative dose reduction three-dimensional (AIDR 3D; Toshiba Medical Systems, Zoetermeer, Netherlands)] algorithms. Methods: Images of the Catphan® phantom (Phantom Laboratories, New York, NY) were acquired with Aquilion ONE™ 320-detector row CT (Toshiba Medical Systems, Tokyo, Japan) at five tube current levels (20–500 mA range) and reconstructed with FBP and AIDR 3D. Samples containing either low-contrast objects (diameters, 2–15 mm) or background were extracted and analysed by the NPWE model and four human observers in a two-alternative forced choice detection task study. Proportion correct (PC) values were obtained for each analysed object and used to compare human and model observer performances. An efficiency factor (η) was calculated to normalize NPWE to human results. Results: Human and NPWE model PC values (normalized by the efficiency, η = 0.44) were highly correlated for the whole dose range. The Pearson's product-moment correlation coefficients (95% confidence interval) between human and NPWE were 0.984 (0.972–0.991) for AIDR 3D and 0.984 (0.971–0.991) for FBP, respectively. Bland–Altman plots based on PC results showed excellent agreement between human and NPWE [mean absolute difference 0.5 ± 0.4%; range of differences (−4.7%, 5.6%)]. Conclusion: The NPWE model observer can predict human performance in LCDet tasks in phantom CT images reconstructed with FBP and AIDR 3D algorithms at different dose levels. Advances in knowledge: Quantitative assessment of LCDet in CT can accurately be performed using software based on a model observer. PMID:24837275

  14. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  15. 5-HT radioligands for human brain imaging with PET and SPECT

    DEFF Research Database (Denmark)

    Paterson, Louise M; Kornum, Birgitte R; Nutt, David J

    2013-01-01

    for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists...... to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.......The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used...

  16. Imaging gene expression in human mesenchymal stem cells: from small to large animals

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Paulmurugan, Ramasamy; Rodriguez-Porcel, Martin

    2009-01-01

    To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning....

  17. Chest imaging of H7N9 subtype of human avian influenza

    Directory of Open Access Journals (Sweden)

    Xi-ming Wang

    2015-03-01

    Conclusions: The characteristic imaging demonstrations of H7N9 subtype of human avian influenza are segmental or lobar exudative lesions at lungs at the initial stage, which rapidly progress into bilateral distribution at lungs at the progressive stage.

  18. MRI and PET images fusion based on human retina model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The diagnostic potential of brain positron emission tomography (PET) imaging is limited by low spatial resolution.For solving this problem we propose a technique for the fusion of PET and MRI images. This fusion is a trade-off between the spectral information extracted from PET images and the spatial information extracted from high spatial resolution MRI. The proposed method can control this trade-off. To achieve this goal, it is necessary to build a multiscale fusion model, based on the retinal cell photoreceptors model. This paper introduces general prospects of this model, and its application in multispectral medical image fusion. Results showed that the proposed method preserves more spectral features with less spatial distortion.transform methods, the best spectral and spatial quality is only achieved simultaneously with the proposed feature-based data fusion method. This method does not require resampling images, which is an advantage over the other methods, and can perform in any aspect ratio between the pixels of MRI and PET images.

  19. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    Science.gov (United States)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  20. Analysis on Image Processing of Human Hip Joints during Lifting Using MAT Lab and ANSYS

    Directory of Open Access Journals (Sweden)

    N. Sundaram

    2013-08-01

    Full Text Available Human Joint paints exhibit abnormal motion and vise versa during movements. Most of the patients were suffering from joint paints. This joint paints like Hip joints, Knee joints, Foot joints, Shoulder joints Elbow joints, and Wrist joints. Patients suffering from joint disorders visit a therapist. The therapist must correlate all these information sources regarding joint Problems. Most probable one third of all jobs in industry involve Manual Material Handling (MMH. This Manual Material Handling of human poses risk to many and cause back pain, joint pains and other problems like Knee joints, wrist joints, Shoulder joints, etc. A finite element model is used to study about the stress of human joints. Image processing techniques using soft computing like MAT Lab and ANSYS are used. A Biomedical model has been used for optimizing the lifting posture for minimum efforts. This model is also used to predict the lifting material in every individual human being. This study can be extended for loading of muscles.

  1. The study of surgical image quality evaluation system by subjective quality factor method

    Science.gov (United States)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  2. The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation.

    Science.gov (United States)

    Fadaee, Shannon B; Migliaccio, Americo A

    2016-04-01

    The primary function of the angular vestibulo-ocular reflex (VOR) is to stabilise images on the retina during head movements. Retinal image movement is the likely feedback signal that drives VOR modification/adaptation for different viewing contexts. However, it is not clear whether a retinal image position or velocity error is used primarily as the feedback signal. Recent studies examining this signal are limited because they used near viewing to modify the VOR. However, it is not known whether near viewing drives VOR adaptation or is a pre-programmed contextual cue that modifies the VOR. Our study is based on analysis of the VOR evoked by horizontal head impulses during an established adaptation task. Fourteen human subjects underwent incremental unilateral VOR adaptation training and were tested using the scleral search coil technique over three separate sessions. The update rate of the laser target position (source of the retinal image error signal) used to drive VOR adaptation was different for each session [50 (once every 20 ms), 20 and 15/35 Hz]. Our results show unilateral VOR adaptation occurred at 50 and 20 Hz for both the active (23.0 ± 9.6 and 11.9 ± 9.1% increase on adapting side, respectively) and passive VOR (13.5 ± 14.9, 10.4 ± 12.2%). At 15 Hz, unilateral adaptation no longer occurred in the subject group for both the active and passive VOR, whereas individually, 4/9 subjects tested at 15 Hz had significant adaptation. Our findings suggest that 1-2 retinal image position error signals every 100 ms (i.e. target position update rate 15-20 Hz) are sufficient to drive VOR adaptation.

  3. Imaging of Ultraweak Spontaneous Photon Emission from Human Body Displaying Diurnal Rhythm

    OpenAIRE

    Masaki Kobayashi; Daisuke Kikuchi; Hitoshi Okamura

    2009-01-01

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. T...

  4. Study on Angiogenesis Factor of Human Osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Angiogenesis factor of human osteosarcoma was partially purified and its biological features were studied. The active peptide with 8000 to 10 000 u molecular weight in the conditioned medium obtained from the cultivation of human osteosarcoma cells were partially purified by ultrafiltration, chromatography and dialysis. The angiogenic effects of the fractions were assessed by proliferation assay of human umbilical vein and pig aorta thoracic endothelial cells. The results showed that the chromatography fractions of 4 to 6 could significantly promote the proliferation of the endothelial cells. It was suggested that the human osteosarcoma cells could synthesize and secrete angiogenesis factor with a molecular weight of 8000 to 10 000 u.

  5. Are Social Studies Teachers Teaching Secular Humanism?

    Science.gov (United States)

    Farmer, Rod

    1980-01-01

    Discusses the controversy over teaching what religious fundamentalists and social conservatives consider secular humanism. Suggests that modern social studies does not support secular humanism even though they share epistemological and ethical assumptions (the use of the scientific method, intelligent reasoning). Provides suggestions for teachers…

  6. Automatic analysis of the micronucleus test in primary human lymphocytes using image analysis.

    Science.gov (United States)

    Frieauff, W; Martus, H J; Suter, W; Elhajouji, A

    2013-01-01

    The in vitro micronucleus test (MNT) is a well-established test for early screening of new chemical entities in industrial toxicology. For assessing the clastogenic or aneugenic potential of a test compound, micronucleus induction in cells has been shown repeatedly to be a sensitive and a specific parameter. Various automated systems to replace the tedious and time-consuming visual slide analysis procedure as well as flow cytometric approaches have been discussed. The ROBIAS (Robotic Image Analysis System) for both automatic cytotoxicity assessment and micronucleus detection in human lymphocytes was developed at Novartis where the assay has been used to validate positive results obtained in the MNT in TK6 cells, which serves as the primary screening system for genotoxicity profiling in early drug development. In addition, the in vitro MNT has become an accepted alternative to support clinical studies and will be used for regulatory purposes as well. The comparison of visual with automatic analysis results showed a high degree of concordance for 25 independent experiments conducted for the profiling of 12 compounds. For concentration series of cyclophosphamide and carbendazim, a very good correlation between automatic and visual analysis by two examiners could be established, both for the relative division index used as cytotoxicity parameter, as well as for micronuclei scoring in mono- and binucleated cells. Generally, false-positive micronucleus decisions could be controlled by fast and simple relocation of the automatically detected patterns. The possibility to analyse 24 slides within 65h by automatic analysis over the weekend and the high reproducibility of the results make automatic image processing a powerful tool for the micronucleus analysis in primary human lymphocytes. The automated slide analysis for the MNT in human lymphocytes complements the portfolio of image analysis applications on ROBIAS which is supporting various assays at Novartis.

  7. A numerical study of gas transport in human lung models

    Science.gov (United States)

    Lin, Ching-Long; Hoffman, Eric A.

    2005-04-01

    Stable Xenon (Xe) gas has been used as an imaging agent for decades in its radioactive form, is chemically inert, and has been used as a ventilation tracer in its non radioactive form during computerized tomography (CT) imaging. Magnetic resonance imaging (MRI) using hyperpolarized Helium (He) gas and Xe has also emerged as a powerful tool to study regional lung structure and function. However, the present state of knowledge regarding intra-bronchial Xe and He transport properties is incomplete. As the use of these gases rapidly advances, it has become critically important to understand the nature of their transport properties and to, in the process, better understand the role of gas density in general in determining regional distribution of respiratory gases. In this paper, we applied the custom developed characteristic-Galerkin finite element method, which solves the three-dimensional (3D) incompressible variable-density Navier-Stokes equations, to study the transport of Xe and He in the CT-based human lung geometries, especially emulating the washin and washout processes. The realistic lung geometries are segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-064368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. The simulation results show that the gas transport process depends on the gas density and the body posture. The implications of these results on the difference between washin and washout time constants are discussed.

  8. Processing and fusion for human body terahertz dual-band passive image

    Science.gov (United States)

    Tian, Li; Shen, Yanchun; Jin, Weiqi; Zhao, Guozhong; Cai, Yi

    2016-11-01

    Compared with microwave, THz has higher resolution, and compared with infrared, THz has better penetrability. Human body radiate THz also, its photon energy is low, it is harmless to human body. So THz has great potential applications in the body searching system. Dual-band images may contain different information for the same scene, so THz dual-band imaging have been a significant research subject of THz technology. Base on the dual-band THz passive imaging system which is composed of a 94GHz and a 250GHz cell detector, this paper researched the preprocessing and fusion algorithm for THz dual-band images. Firstly, THz images have such problems: large noise, low SNR, low contrast, low details. Secondly, the stability problem of the optical mechanical scanning system makes the images less repetitive, obvious stripes and low definition. Aiming at these situations, this paper used the BM3D de-noising algorithm to filter noise and correct the scanning problem. Furthermore, translation, rotation and scaling exist between the two images, after registered by the intensity-base registration algorithm, and enhanced by the adaptive histogram equalization algorithm, the images are fused by image fusion algorithm based on wavelet. This effectively reduced the image noise, scan distortion and matching error, improved the details, enhanced the contrast. It is helpful to improve the detection efficiency of hidden objects too. Method in this paper has a substantial effect for improving the dual-band THz passive imaging system's performance and promoting technology practical.

  9. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    Directory of Open Access Journals (Sweden)

    Hsing-Cheng Yu

    2015-10-01

    Full Text Available When viewing three-dimensional (3D images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D images in order to adjust the 3D-image brightness values. In addition, the photographic principle is used in this study to measure metering values by capturing 2D and 3D images on television screens. By analyzing these images with statistical product and service solutions (SPSS software, the image brightness values can be estimated using the statistical regression model, which can also indicate the impact of various environmental factors or hardware on the image brightness. In analysis of the experimental results, comparison of the image brightness between 2D and 3D images indicates 60.8% degradation in the 3D image brightness amplitude. The experimental values, from 52.4% to 69.2%, are within the 95% confidence interval

  10. Human skin image analysis using coherent focused beam scattering

    Science.gov (United States)

    Zimnyakov, Dmitry A.; Tuchin, Valery V.; Utz, Sergei R.; Mishin, Alexey A.

    1995-02-01

    The analysis of statistical and correlation properties of speckle patterns formed during different skin tissue scanning by the sharply focused probing laser beam has been carried out. The influences of the biotissues' structural features on the speckle patterns formation under Gaussian beam illumination have been investigated. The relationships between the structural characteristics of the sample under study, Rayleigh range of the probing beam and normalized statistical moments of the speckle intensity (contrast and asymmetry coefficient) are discussed for the different scatterer models. A phenomenological model of speckle pattern formation for the large-scale scatterers allows us to explain the dependence of speckle contrast and the coefficient of asymmetry on the generalized structure parameters and illumination conditions for the samples under study. The experimental investigations of the human skin structure features have been carried out using two types of the tissue samples by means of coherent scanning microscopy (CSM). Firstly, D-SQUAME discs (CuDerm Corporation, Texas, USA) have been used for the evaluation of skin dryness level. Secondly, the samples under study were the thin layers of normal and psoriatic epidermis (skin strippings). The dependencies of contrast and coefficient of asymmetry on the beam defocusing parameter and 2D correlation functions of speckle pattern intensity have been analyzed for different zones on the biotissue's surface. Particularly, promising results in skin dryness studies (using D-SQUAME discs) have been obtained. Our results and conventional 5-pattern kit scale are in good agreement. So, the presented method is accurate and objective and may be useful in novel cosmetic research and development.

  11. Real-time kymographic imaging for visualizing human vocal-fold vibratory function

    NARCIS (Netherlands)

    Qiu, Qingjun; Schutte, Harm K.

    2007-01-01

    A stand-alone kymographic system for visualizing human vocal-fold vibration in real time is presented. By using a dual charge-coupled-device construction, the system not only provides kymographic images but also simultaneously presents structural images for navigating the endoscope to a desired posi

  12. Swept source OCT imaging of human anterior segment at 200 kHz

    Science.gov (United States)

    Karnowski, Karol; Gora, Michalina; Kaluzny, Bartlomiej; Huber, Robert; Szkulmowski, Maciej; Kowalczyk, Andrzej; Wojtkowski, Maciej

    2009-02-01

    We present applicability of the high speed swept-source optical coherence tomography for in vivo imaging of the anterior segment of the human eye. Three dimensional imaging of the cornea with reduced motion artifacts is possible by using swept source with Fourier domain mode locking operating at 200kHz with 1300nm central wavelength. High imaging speeds allow for assessment of anterior and posterior corneal topography and generation of thickness and elevation maps.

  13. Label-free biomolecular characterization of human breast cancer tissue with stimulated Raman scattering (SRS) spectral imaging (Conference Presentation)

    Science.gov (United States)

    Lu, Fa-Ke F.; Calligaris, David; Suo, Yuanzhen; Santagata, Sandro; Golby, Alexandra J.; Xie, X. Sunney; Mallory, Melissa A.; Golshan, Mehra; Dillon, Deborah A.; Agar, Nathalie Y. R.

    2017-02-01

    Stimulated Raman scattering (SRS) microscopy has been used for rapid label-free imaging of various biomolecules and drugs in living cells and tissues (Science, doi:10.1126/science.aaa8870). Our recent work has demonstrated that lipid and protein mapping of cancer tissue renders pathology-like images, providing essential histopathological information with subcellular resolution of the entire specimen (Cancer Research, doi: 10.1158/0008-5472.CAN-16-027). We have also established the first SRS imaging Atlas of human brain tumors (Harvard Dataverse, doi: (doi:10.7910/DVN/EZW4EK). SRS imaging of tissue could provide invaluable information for cancer diagnosis and surgical guidance in two aspects: rapid surgical pathology and quantitative biomolecular characterization. In this work, we present the use of SRS microscopy for characterization of a few essential biomolecules in breast cancer. Human breast cancer tissue specimens at the tumor core, tumor margin and normal area (5 cm away from the tumor) from surgical cases will be imaged with SRS at multiple Raman shifts, including the peaks for lipid, protein, blood (absorption), collagen, microcalcification (calcium phosphates and calcium oxalate) and carotenoids. Most of these Raman shifts have relatively strong Raman cross sections, which ensures high-quality and fast imaging. This proof-of-principle study is sought to demonstrate the feasibility and potential of SRS imaging for ambient diagnosis and surgical guidance of breast cancer.

  14. Medical Image Steganography: Study of Medical Image Quality Degradation when Embedding Data in the Frequency Domain

    Directory of Open Access Journals (Sweden)

    M.I.Khalil

    2017-02-01

    Full Text Available Steganography is the discipline of invisible communication by hiding the exchanged secret information (message in another digital information media (image, video or audio. The existence of the message is kept indiscernible in sense that no one, other than the intended recipient, suspects the existence of the message. The majority of steganography techniques are implemented either in spatial domain or in frequency domain of the digital images while the embedded information can be in the form of plain or cipher message. Medical image steganography is classified as a distinctive case of image steganography in such a way that both the image and the embedded information have special requirements such as achieving utmost clarity reading of the medical images and the embedded messages. There is a contention between the amount of hidden information and the caused detectable distortion of image. The current paper studies the degradation of the medical image when undergoes the steganography process in the frequency domain.

  15. Imaging biomarker roadmap for cancer studies

    Science.gov (United States)

    O’Connor, James P. B.; Aboagye, Eric O.; Adams, Judith E.; Aerts, Hugo J. W. L.; Barrington, Sally F.; Beer, Ambros J.; Boellaard, Ronald; Bohndiek, Sarah E.; Brady, Michael; Brown, Gina; Buckley, David L.; Chenevert, Thomas L.; Clarke, Laurence P.; Collette, Sandra; Cook, Gary J.; deSouza, Nandita M.; Dickson, John C.; Dive, Caroline; Evelhoch, Jeffrey L.; Faivre-Finn, Corinne; Gallagher, Ferdia A.; Gilbert, Fiona J.; Gillies, Robert J.; Goh, Vicky; Griffiths, John R.; Groves, Ashley M.; Halligan, Steve; Harris, Adrian L.; Hawkes, David J.; Hoekstra, Otto S.; Huang, Erich P.; Hutton, Brian F.; Jackson, Edward F.; Jayson, Gordon C.; Jones, Andrew; Koh, Dow-Mu; Lacombe, Denis; Lambin, Philippe; Lassau, Nathalie; Leach, Martin O.; Lee, Ting-Yim; Leen, Edward L.; Lewis, Jason S.; Liu, Yan; Lythgoe, Mark F.; Manoharan, Prakash; Maxwell, Ross J.; Miles, Kenneth A.; Morgan, Bruno; Morris, Steve; Ng, Tony; Padhani, Anwar R.; Parker, Geoff J. M.; Partridge, Mike; Pathak, Arvind P.; Peet, Andrew C.; Punwani, Shonit; Reynolds, Andrew R.; Robinson, Simon P.; Shankar, Lalitha K.; Sharma, Ricky A.; Soloviev, Dmitry; Stroobants, Sigrid; Sullivan, Daniel C.; Taylor, Stuart A.; Tofts, Paul S.; Tozer, Gillian M.; van Herk, Marcel; Walker-Samuel, Simon; Wason, James; Williams, Kaye J.; Workman, Paul; Yankeelov, Thomas E.; Brindle, Kevin M.; McShane, Lisa M.; Jackson, Alan; Waterton, John C.

    2017-01-01

    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing ‘translational gaps’ through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored ‘roadmap’. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use. PMID:27725679

  16. Human biomonitoring pilot study DEMOCOPHES in Germany

    DEFF Research Database (Denmark)

    Schwedler, Gerda; Seiwert, Margarete; Fiddicke, Ulrike

    2017-01-01

    on a European Scale) and DEMOCOPHES (Demonstration of a study to Coordinate and Perform Human Biomonitoring on a European Scale) were formed, comprising 35 partners from 27 European countries. In COPHES a research scheme and guidelines were developed to exemplarily measure in a pilot study mercury in hair......Human biomonitoring (HBM) is an effective tool to assess human exposure to environmental pollutants, but comparable HBM data in Europe are lacking. In order to expedite harmonization of HBM studies on a European scale, the twin projects COPHES (Consortium to Perform Human Biomonitoring......, cadmium, cotinine and several phthalate metabolites in urine of 6–11 year old children and their mothers in an urban and a rural region. Seventeen European countries simultaneously conducted this cross-sectional DEMOCOPHES feasibility study. The German study population was taken in the city of Bochum...

  17. Translation of Methdology used in Human Myocardial Imaging to a Sheep Model of Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Elizabeth A Bailey

    2013-10-01

    Full Text Available Introduction: Pre-clinical investigation of stem cells for repairing damaged myocardium predominantly used rodents, however large animals have cardiac circulation closely resembling the human heart. The aim of this study was to evaluate whether SPECT/CT myocardial perfusion imaging (MPI could be used for assessing sheep myocardium following an acute myocardial infarction (MI and response to intervention. Method: 18 sheep enrolled in a pilot study to evaluate [99mTc]-sestamibi MPI at baseline, post-MI and after therapy. Modifications to the standard MPI protocols were developed. All data was reconstructed with OSEM using CT-derived attenuation and scatter correction. Standard analyses were performed and inter-observer agreement were measured using Kappa (. Power determined the sample sizes needed to show statistically significant changes due to intervention. Results: Ten sheep completed the full protocol. Data processed were performed using pre-existing hardware and software used in human MPI scanning. No improvement in perfusion was seen in the control group, however improvements of 15% - 35% were seen after intra-myocardial stem cell administration. Inter-observer agreement was excellent (К=0.89. Using a target power of 0.9, 28 sheep were required to detect a 10-12% change in perfusion. Conclusions: Study demonstrates the suitability of large animal models for imaging with standard MPI protocols and it’s feasibility with a manageable number of animals. These protocols could be translated into humans to study the efficacy of stem cell therapy in heart regeneration and repair.

  18. Translation of Methdology used in Human Myocardial Imaging to a Sheep Model of Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Elizabeth Bailey

    2013-10-01

    Full Text Available Background: Pre-clinical investigation of stem cells for repairing damaged myocardium predominantly used rodents, however large animals have cardiac circulation closely resembling the human heart. The aim of this study was to evaluate whether SPECT/CT myocardial perfusion imaging (MPI could be used for assessing sheep myocardium following an acute myocardial infarction (MI and response to intervention. Method: 18 sheep enrolled in a pilot study to evaluate [99mTc]-sestamibi MPI at baseline, post-MI and after therapy. Modifications to the standard MPI protocols were developed. All data was reconstructed with OSEM using CT-derived attenuation and scatter correction. Standard analyses were performed and inter-observer agreement were measured using Kappa (. Power determined the sample sizes needed to show statistically significant changes due to intervention. Results: Ten sheep completed the full protocol. Data processed were performed using pre-existing hardware and software used in human MPI scanning. No improvement in perfusion was seen in the control group, however improvements of 15% - 35% were seen after intra-myocardial stem cell administration. Inter-observer agreement was excellent (К=0.89. Using a target power of 0.9, 28 sheep were required to detect a 10-12% change in perfusion. Conclusions: Study demonstrates the suitability of large animal models for imaging with standard MPI protocols and it’s feasibility with a manageable number of animals. These protocols could be translated into humans to study the efficacy of stem cell therapy in heart regeneration and repair.

  19. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Fabian

    2014-03-20

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  20. A study of correlation technique on pyramid processed images

    Indian Academy of Sciences (India)

    M Sankar Kishore; K Veerabhadra Rao

    2000-02-01

    The pyramid algorithm is potentially a powerful tool for advanced television image processing and for pattern recognition. An attempt is made to design and develop both hardware and software for a system which performs decomposition and reconstruction of digitized images by implementing the Burt pyramid algorithm. In this work, an attempt is also made to study correlation performance on reconstructed images. That is, the reference image is taken from the original image and correlation is performed on expanded images of the same size. Similarly, correlation performance study is carried out on different pyramid- processed levels. In this paper results are presented in terms of RMS error between original and expanded images. Only still images are considered, and the hardware is designed around an i486 processor and software is developed in PL/M 86.

  1. Community Engagement in Observational Human Exposure Studies

    Science.gov (United States)

    Although observational human exposure studies do not deliberately expose participants to chemicals or environmental conditions, merely involving people as research participants and conducting research inside homes raises ethical issues. Community engagement offers a promising st...

  2. High-resolution imaging diagnosis of human fetal membrane by three-dimensional optical coherence tomography

    Science.gov (United States)

    Ren, Hugang; Avila, Cecilia; Kaplan, Cynthia; Pan, Yingtian

    2011-11-01

    Microscopic chorionic pseudocyst (MCP) arising in the chorion leave of the human fetal membrane (FM) is a clinical precursor for preeclampsia which may progress to fatal medical conditions (e.g., abortion) if left untreated. To examine the utility of three-dimensional (3D) optical coherence tomography (OCT) for noninvasive delineation of the morphology of human fetal membranes and early clinical detection of MCP, 60 human FM specimens were acquired from 10 different subjects undergoing term cesarean delivery for an ex vivo feasibility study. Our results showed that OCT was able to identify the four-layer architectures of human FMs consisting of high-scattering decidua vera (DV, average thickness dDV ~ 92+/-38 μm), low-scattering chorion and trophoblast (CT, dCT ~ 150+/-67 μm), high-scattering subepithelial amnion (A, dA ~ 95+/-36 μm), and low-scattering epithelium (E, dE ~ 29+/-8 μm). Importantly, 3D OCT was able to instantaneously detect MCPs (low scattering due to edema, fluid buildup, vasodilatation) and track (staging) their thicknesses dMCP ranging from 24 to 615 μm. It was also shown that high-frequency ultrasound was able to compliment OCT for detecting more advanced thicker MCPs (e.g., dMCP>615 μm) because of its increased imaging depth.

  3. Study on Virtual Human Skeleton System

    Institute of Scientific and Technical Information of China (English)

    郭巧; 李亦

    2004-01-01

    A solution of virtual human skeleton system is proposed. Some issues on integration of anatomical geometry, biodynamics and computer animation are studied. The detailed skeleton system model that incorporates the biodynamic and geometric characteristics of a human skeleton system allows some performance studies in greater detail than that performed before. It may provide an effective and convenient way to analyze and evaluate the movement performance of a human body when the personalized anatomical data are used in the models. An example shows that the proposed solution is effective for the stated problems.

  4. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Polar Fusion Technique Analysis for Evaluating the Performances of Image Fusion of Thermal and Visual Images for Human Face Recognition

    CERN Document Server

    Bhowmik, Mrinal Kanti; Basu, Dipak Kumar; Nasipuri, Mita

    2011-01-01

    This paper presents a comparative study of two different methods, which are based on fusion and polar transformation of visual and thermal images. Here, investigation is done to handle the challenges of face recognition, which include pose variations, changes in facial expression, partial occlusions, variations in illumination, rotation through different angles, change in scale etc. To overcome these obstacles we have implemented and thoroughly examined two different fusion techniques through rigorous experimentation. In the first method log-polar transformation is applied to the fused images obtained after fusion of visual and thermal images whereas in second method fusion is applied on log-polar transformed individual visual and thermal images. After this step, which is thus obtained in one form or another, Principal Component Analysis (PCA) is applied to reduce dimension of the fused images. Log-polar transformed images are capable of handling complicacies introduced by scaling and rotation. The main objec...

  6. The human sexual response cycle : Brain imaging evidence linking sex to other pleasures

    NARCIS (Netherlands)

    Georgiadis, J. R.; Kringelbach, M. L.

    2012-01-01

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable t

  7. Rhetorical and Demonstrative Modes of Visual Argument: Looking at Images of Human Evolution.

    Science.gov (United States)

    Shelley, Cameron

    1996-01-01

    Examines interaction between demonstrative and rhetorical modes of visual argumentation by drawing upon two examples: the first includes illustrations from paleoanthropological debates on the origins of modern humans; the second references the widely disseminated "march of progress" image of human evolution. Concludes that rhetorical visual…

  8. Study on the application of embedded zero-tree wavelet algorithm in still images compression

    Science.gov (United States)

    Zhang, Jing; Lu, Yanhe; Li, Taifu; Lei, Gang

    2005-12-01

    An image has directional selection capability with high frequency through wavelet transformation. It is coincident with the visual characteristics of human eyes. The most important visual characteristic in human eyes is the visual covering effect. The embedded Zero-tree Wavelet (EZW) coding method completes the same level coding for a whole image. In an image, important regions (regions of interest) and background regions (indifference regions) are coded through the same levels. On the basis of studying the human visual characteristics, that is, the visual covering effect, this paper employs an image-compressing method with regions of interest, i.e., an algorithm of Embedded Zero-tree Wavelet with Regions of Interest (EZWROI Algorism) to encode the regions of interest and regions of non-interest separately. In this way, the lost important information in the image is much less. It makes full use of channel resource and memory space, and improves the image quality in the regions of interest. Experimental study showed that a resumed image using an EZW_ROI algorithm is better in visual effects than that of EZW on condition of high compression ratio.

  9. Evaluation of Infrared Images by Using a Human Thermal Model

    Science.gov (United States)

    2001-10-25

    thermal environmental history have been recorded. In this case, the thermal environmental history could be estimated from the behavior of a subject... environmental history and physiological condition history. An advantage of the evaluation of IR images using the thermal model is to provide

  10. Terahertz pulsed imaging study of dental caries

    Science.gov (United States)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, Kıvanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  11. OBJECTIVE QUALITY ASSESSMENT OF IMAGE ENHANCEMENT METHODS IN DIGITAL MAMMOGRAPHY-A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Sheba K.U

    2016-08-01

    Full Text Available Mammography is the primary and most reliable technique for detection of breast cancer. Mammograms are examined for the presence of malignant masses and indirect signs of malignancy such as micro calcifications, architectural distortion and bilateral asymmetry. However, Mammograms are X-ray images taken with low radiation dosage which results in low contrast, noisy images. Also, malignancies in dense breast are difficult to detect due to opaque uniform background in mammograms. Hence, techniques for improving visual screening of mammograms are essential. Image enhancement techniques are used to improve the visual quality of the images. This paper presents the comparative study of different preprocessing techniques used for enhancement of mammograms in mini-MIAS data base. Performance of the image enhancement techniques is evaluated using objective image quality assessment techniques. They include simple statistical error metrics like PSNR and human visual system (HVS feature based metrics such as SSIM, NCC, UIQI, and Discrete Entropy

  12. VISUAL PERCEPTION BASED AUTOMATIC RECOGNITION OF CELL MOSAICS IN HUMAN CORNEAL ENDOTHELIUMMICROSCOPY IMAGES

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2011-05-01

    Full Text Available The human corneal endothelium can be observed with two types of microscopes: classical optical microscope for ex-vivo imaging, and specular optical microscope for in-vivo imaging. The quality of the cornea is correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods introduce regional informations in order to performthe cell contours completion, thus implementing the duality contour-region. Their good performance can be explained by their connections with several basic principles of human visual perception (Gestalt Theory and Marr's computational theory.

  13. Development of a new diagnosis method for caries in human teeth based on thermal images under pulse heating

    Science.gov (United States)

    Sakagami, Takahide; Kubo, Shiro; Naganuma, Takeshi; Inoue, Tomoyasu; Matsuyama, Kazumasa; Kaneko, Kenji

    2001-03-01

    A new diagnosis method based on the pulse heating thermographic NDT was proposed for the incipient caries of human teeth. Experimental study was made on the applicability of the proposed method to the quantitative evaluation of location and shape of the incipient caries as well as the quantitative diagnosis of the degree of incipient caries. The incipient caries were artificially introduced to the extracted human teeth in various severities. Impulse heat flux by the xenon flash lamp was applied to the surface of the tooth and sequential thermal images were taken by the high-speed infrared thermography. It was found that the caries were clearly identified as the localized high temperature region in the sequential thermal images. Coefficients of the temperature descent were obtained from sequential thermal images. It was found that the degree of the demineralization, i.e. the degree of incipient caries was evaluated from temperature descent coefficients.

  14. MR imaging of human brain during apnea. Evaluation by T{sub 2}-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kamba, Masayuki; Suto, Yuji; Ohta, Yoshio; Inoue, Yuichi; Higami, Shigeru [Tottori Univ., Yonago (Japan). Faculty of Medicine

    1997-09-01

    We performed T{sub 2}-weighted MRI studies of normal subjects and patients with obstructive sleep apnea (OSA) to determine the potential of T{sub 2}-weighted MRI for use as a noninvasive method for evaluation of cerebral hemodynamics. We studied 8 normal subjects and 6 patients with OSA. For normal subjects, one-shot turbo gradient spin echo images (repetition time, 3 s; echo time, 42 ms) were obtained during breath-holding. For patients with OSA, 3 to 6 series of 128 sequential images were obtained during sleep. For the normal subjects, signal intensities for cortex and white matter increased by 0.78 to 4.63% (mean, 2.40%) and -0.35 to 3.60% (mean, 0.77%), respectively. Linear regression analysis yielded slopes of 0.036 to 0.226%/s (mean, 0.092%/s) for cortex and slopes of -0.049 to 0.258%/s (mean, 0.024%/s) for white matter. For the patients with OSA, signal intensities for cortex and white matter increased by 1.36 to 5.95% (mean, 3.00%) and -0.92 to 1.68% (mean, 0.72%), respectively. Linear regression analysis yielded slopes of 0.056 to 0.691%/s (mean, 0.252%/s) for cortex and slopes of -0.077 to 0.222%/s (mean, 0.017%/s) for white matter. A significant difference was found between slopes for cerebral cortex in patients with OSA and those in normal subjects (p=0.001). The increase in signal intensity during apnea suggests that increase in cerebral blood flow in response to hypercapnia overwhelms the effects of decreased arterial blood oxygenation and increased cerebral blood volume. Changes in signal intensity thus appear to reflect hemodynamic responses to changes in respiratory condition. These findings suggest that T{sub 2}-weighted MRI has the potential for use as a noninvasive method for evaluation of global change in cerebral hemodynamics. (author)

  15. Remarks on 3D human body posture reconstruction from multiple camera images

    Science.gov (United States)

    Nagasawa, Yusuke; Ohta, Takako; Mutsuji, Yukiko; Takahashi, Kazuhiko; Hashimoto, Masafumi

    2007-12-01

    This paper proposes a human body posture estimation method based on back projection of human silhouette images extracted from multi-camera images. To achieve real-time 3D human body posture estimation, a server-client system is introduced into the multi-camera system, improvements of the background subtraction and back projection are investigated. To evaluate the feasibility of the proposed method, 3D estimation experiments of human body posture are carried out. The experimental system with six CCD cameras is composed and the experimental results confirm both the feasibility and effectiveness of the proposed system in the 3D human body posture estimation in real-time. By using the 3D reconstruction of human body posture, the simple walk-through application of virtual reality system is demonstrated.

  16. Exploring tiny images: the roles of appearance and contextual information for machine and human object recognition.

    Science.gov (United States)

    Parikh, Devi; Zitnick, C Lawrence; Chen, Tsuhan

    2012-10-01

    Typically, object recognition is performed based solely on the appearance of the object. However, relevant information also exists in the scene surrounding the object. In this paper, we explore the roles that appearance and contextual information play in object recognition. Through machine experiments and human studies, we show that the importance of contextual information varies with the quality of the appearance information, such as an image's resolution. Our machine experiments explicitly model context between object categories through the use of relative location and relative scale, in addition to co-occurrence. With the use of our context model, our algorithm achieves state-of-the-art performance on the MSRC and Corel data sets. We perform recognition tests for machines and human subjects on low and high resolution images, which vary significantly in the amount of appearance information present, using just the object appearance information, the combination of appearance and context, as well as just context without object appearance information (blind recognition). We also explore the impact of the different sources of context (co-occurrence, relative-location, and relative-scale). We find that the importance of different types of contextual information varies significantly across data sets such as MSRC and PASCAL.

  17. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes.

    Science.gov (United States)

    Estandarte, Ana Katrina; Botchway, Stanley; Lynch, Christophe; Yusuf, Mohammed; Robinson, Ian

    2016-08-16

    Chromatin undergoes dramatic condensation and decondensation as cells transition between the different phases of the cell cycle. The organization of chromatin in chromosomes is still one of the key challenges in structural biology. Fluorescence lifetime imaging (FLIM), a technique which utilizes a fluorophore's fluorescence lifetime to probe changes in its environment, was used to investigate variations in chromatin compaction in fixed human chromosomes. Fixed human metaphase and interphase chromosomes were labeled with the DNA minor groove binder, DAPI, followed by measurement and imaging of the fluorescence lifetime using multiphoton excitation. DAPI lifetime variations in metaphase chromosome spreads allowed mapping of the differentially compacted regions of chromatin along the length of the chromosomes. The heteromorphic regions of chromosomes 1, 9, 15, 16, and Y, which consist of highly condensed constitutive heterochromatin, showed statistically significant shorter DAPI lifetime values than the rest of the chromosomes. Differences in the DAPI lifetimes for the heteromorphic regions suggest differences in the structures of these regions. DAPI lifetime variations across interphase nuclei showed variation in chromatin compaction in interphase and the formation of chromosome territories. The successful probing of differences in chromatin compaction suggests that FLIM has enormous potential for application in structural and diagnostic studies.

  18. Chromatic aberration correction of the human eye for retinal imaging in the near infrared.

    Science.gov (United States)

    Fernández, Enrique J; Unterhuber, Angelika; Povazay, Boris; Hermann, Boris; Artal, Pablo; Drexler, Woflgang

    2006-06-26

    An achromatizing lens has been designed for the human eye in the near infrared range, from 700 to 900 nm, for retinal imaging purposes. Analysis of the performance of the lens, including tolerance to misalignments, has been mathematically accomplished by using an existing eye model. The calculations have shown a virtually perfect correction of the ocular longitudinal chromatic aberration, while still keeping a high optical quality. Ocular aberrations in five subjects have been measured with and without the achromatizing lens by using a Hartmann-Shack wavefront sensor and a broad bandwidth femtosecond Ti:sapphire laser in the spectral range of interest with a set of interference filters, studying the benefits and limits in the use of the achromatizing lens. Ocular longitudinal chromatic aberration has been experimentally demonstrated to be fully corrected by the proposed lens, with no induction of any other parasitic aberration. The practical implementation of the achromatizing lens for Ophthalmoscopy, specifically for optical coherence tomography where the use of polychromatic light sources in the near infrared portion of the spectrum is mandatory, has been considered. The potential benefits of using this lens in combination with adaptive optics to achieve a full aberration correction of the human eye for retinal imaging have also been discussed.

  19. Repeated Structural Imaging Reveals Nonlinear Progression of Experience-Dependent Volume Changes in Human Motor Cortex.

    Science.gov (United States)

    Wenger, Elisabeth; Kühn, Simone; Verrel, Julius; Mårtensson, Johan; Bodammer, Nils Christian; Lindenberger, Ulman; Lövdén, Martin

    2017-05-01

    Evidence for experience-dependent structural brain change in adult humans is accumulating. However, its time course is not well understood, as intervention studies typically consist of only 2 imaging sessions (before vs. after training). We acquired up to 18 structural magnetic resonance images over a 7-week period while 15 right-handed participants practiced left-hand writing and drawing. After 4 weeks, we observed increases in gray matter of both left and right primary motor cortices relative to a control group; 3 weeks later, these differences were no longer reliable. Time-series analyses revealed that gray matter in the primary motor cortices expanded during the first 4 weeks and then partially renormalized, in particular in the right hemisphere, despite continued practice and increasing task proficiency. Similar patterns of expansion followed by partial renormalization are also found in synaptogenesis, cortical map plasticity, and maturation, and may qualify as a general principle of structural plasticity. Research on human brain plasticity needs to encompass more than 2 measurement occasions to capture expansion and potential renormalization processes over time. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    Science.gov (United States)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  1. Human cervical spinal cord funiculi: investigation with magnetic resonance diffusion tensor imaging.

    Science.gov (United States)

    Onu, Mihaela; Gervai, Patricia; Cohen-Adad, Julien; Lawrence, Jane; Kornelsen, Jennifer; Tomanek, Boguslaw; Sboto-Frankenstein, Uta Nicola

    2010-04-01

    To use spinal cord diffusion tensor imaging (DTI) for investigating human cervical funiculi, acquire axial diffusion magnetic resonance imaging (MRI) data with an in-plane resolution sufficient to delineate subquadrants within the spinal cord, obtain corresponding DTI metrics, and assess potential regional differences. Healthy volunteers were studied with a 3 T Siemens Trio MRI scanner. DTI data were acquired using a single-shot spin echo EPI sequence. The spatial resolution allowed for the delineation of regions of interest (ROIs) in the ventral, dorsal, and lateral spinal cord funiculi. ROI-based and tractography-based analyses were performed. Significant fractional anisotropy (FA) differences were found between ROIs in the dorsal and ventral funiculi (P = 0.0001), dorsal and lateral funiculi (P = 0.015), and lateral and ventral funiculi (P = 0.0002). Transverse diffusivity was significantly different between ROIs in the ventral and dorsal funiculi (P = 0.003) and the ventral and lateral funiculi (P = 0.004). Tractography-based quantifications revealed DTI parameter regional differences that were generally consistent with the ROI-based analysis. Original contributions are: 1) the use of a tractography-based method to quantify DTI metrics in the human cervical spinal cord, and 2) reported DTI values in various funiculi at 3 T. (c) 2010 Wiley-Liss, Inc.

  2. Biodistribution dosimetric study of radiopharmaceutical {sup 99mT}c Ixolaris in mice for melanoma diagnosis by molecular image and translational model for human beings; Estudo dosimetrico da biodistribuicao do radiofarmaco Ixolaris-{sup 99m}Tc em camundongos para diagnostico de melanoma atraves de imagem molecular e modelo translacional para humanos

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Sarah Canuto Silva

    2015-07-01

    The labeling of Ixolaris with {sup 99m}Tc was developed by Barboza et.al. (2013) aiming its use primarily in glioblastoma and after in melanoma diagnosis, a less common but very aggressive cancer and with high mortality rate. Preliminary tests on animals have proven its effectiveness of labeling but a dosimetric study to human clinical trials should be performed. This study aimed to: (1) determine the biokinetic model for the radiotracer {sup 99m}Tc-Ixolaris in mice by imaging dosimetry method; and (2) estimate the absorbed and effective dose resulting from the use of a new radiopharmaceutical for melanoma and metastases diagnosis in human beings, since a dosimetric study of new radiopharmaceuticals in animals is necessary to test them subsequently in humans and apply for registration in ANVISA. According to SPECT images, was found a latency period of 15 to 21 days for the development of lung metastasis in mice. Three C57BL6 mice, one control animal, and two animals with induced cell line B16-F10 murine melanoma were tested. The {sup 99m}Tc-Ixolaris radiopharmaceutical was administered intravenously in a caudal vein, and SPECT images were acquired 0.5 h, 1.5 h, 2.5 h, 3.5 h and 24 h post-administration for analysis and biodistribution quantification. The biokinetic model was determined and thus, obtained cumulative activity in order to estimate the absorbed dose in each organ. The mass and metabolic differences between mice and humans were considered and used to extrapolate the data acquired at different scales. Based on dose factors provided by the software MIRDOSE and Olinda (S factor), absorbed doses in irradiated target organs were calculated for the source organs, and finally the effective dose was estimated. The results indicate that for diagnostic exams conducted in human melanoma patients by administering approximately 25.7 MBq the estimated effective dose was 4.3 mSv. Comparing with effective doses obtained in other diagnostic techniques with {sup 99m

  3. Simulating receptive fields of human visual cortex for 3D image quality prediction.

    Science.gov (United States)

    Shao, Feng; Chen, Wanting; Lin, Wenchong; Jiang, Qiuping; Jiang, Gangyi

    2016-07-20

    Quality assessment of 3D images presents many challenges when attempting to gain better understanding of the human visual system. In this paper, we propose a new 3D image quality prediction approach by simulating receptive fields (RFs) of human visual cortex. To be more specific, we extract the RFs from a complete visual pathway, and calculate their similarity indices between the reference and distorted 3D images. The final quality score is obtained by determining their connections via support vector regression. Experimental results on three 3D image quality assessment databases demonstrate that in comparison with the most relevant existing methods, the devised algorithm achieves high consistency alignment with subjective assessment, especially for asymmetrically distorted stereoscopic images.

  4. Osteometric study of human femur

    Directory of Open Access Journals (Sweden)

    Khaleel N.

    2014-02-01

    Full Text Available Skeleton is playing important role in various like Medicine, Forensic sciences, Anthropology etc. Estimation of sex, age, race, stature by skeleton and the presence of disease is discovered by Krogman and Iscan (1986. Sex is determined after death by skeletal remains of that individual by some forensic anthropologists with the help of pelvis, skull and long bones. The study was undertaken in 50 femurs for measuring epicondylar breadth, Neck shaft angle, transverse and vertical diameter of head. The results were the average meanepicondylar breadth was 75.6 ± 6.06mm, mean right epicondylar breadth was 73.96 ± 4.99mm and left it was 76.35 ± 7.0mm. The average mean neck shaft angle was 125.3 ± 6.50mm, mean right neck shaft angle was 124.44 ± 5.7mm and left it was 126.3 ± 7.33mm. The average mean transverse diameter of head was 37.86 ± 3.06mm, mean right transverse diameter of head was 37.74 ± 3.05mm and left it was 38.00 ± 3.13mm. The average mean vertical diameter of head was 42.24 ± 3.53mm, mean right vertical diameter of head was 41.63 ± 3.09mm and left it was 42.96 ± 3.92mm, Neck shaft angle ranges from a minimum of 106° to maximum 135° with a mean value of 125.3°. The knowledge of osteometric values is helpful to anthropological and forensic practice. [Int J Res Med Sci 2014; 2(1.000: 104-107

  5. Digital image measurement of specimen deformation based on CCD cameras and Image J software: an application to human pelvic biomechanics

    Science.gov (United States)

    Jia, Yongwei; Cheng, Liming; Yu, Guangrong; Lou, Yongjian; Yu, Yan; Chen, Bo; Ding, Zuquan

    2008-03-01

    A method of digital image measurement of specimen deformation based on CCD cameras and Image J software was developed. This method was used to measure the biomechanics behavior of human pelvis. Six cadaveric specimens from the third lumbar vertebra to the proximal 1/3 part of femur were tested. The specimens without any structural abnormalities were dissected of all soft tissue, sparing the hip joint capsules and the ligaments of the pelvic ring and floor. Markers with black dot on white background were affixed to the key regions of the pelvis. Axial loading from the proximal lumbar was applied by MTS in the gradient of 0N to 500N, which simulated the double feet standing stance. The anterior and lateral images of the specimen were obtained through two CCD cameras. Based on Image J software, digital image processing software, which can be freely downloaded from the National Institutes of Health, digital 8-bit images were processed. The procedure includes the recognition of digital marker, image invert, sub-pixel reconstruction, image segmentation, center of mass algorithm based on weighted average of pixel gray values. Vertical displacements of S1 (the first sacral vertebrae) in front view and micro-angular rotation of sacroiliac joint in lateral view were calculated according to the marker movement. The results of digital image measurement showed as following: marker image correlation before and after deformation was excellent. The average correlation coefficient was about 0.983. According to the 768 × 576 pixels image (pixel size 0.68mm × 0.68mm), the precision of the displacement detected in our experiment was about 0.018 pixels and the comparatively error could achieve 1.11\\perthou. The average vertical displacement of S1 of the pelvis was 0.8356+/-0.2830mm under vertical load of 500 Newtons and the average micro-angular rotation of sacroiliac joint in lateral view was 0.584+/-0.221°. The load-displacement curves obtained from our optical measure system

  6. Are quantum dots ready for in vivo imaging in human subjects?

    Directory of Open Access Journals (Sweden)

    Cai Weibo

    2007-01-01

    Full Text Available AbstractNanotechnology has the potential to profoundly transform the nature of cancer diagnosis and cancer patient management in the future. Over the past decade, quantum dots (QDs have become one of the fastest growing areas of research in nanotechnology. QDs are fluorescent semiconductor nanoparticles suitable for multiplexed in vitro and in vivo imaging. Numerous studies on QDs have resulted in major advancements in QD surface modification, coating, biocompatibility, sensitivity, multiplexing, targeting specificity, as well as important findings regarding toxicity and applicability. For in vitro applications, QDs can be used in place of traditional organic fluorescent dyes in virtually any system, outperforming organic dyes in the majority of cases. In vivo targeted tumor imaging with biocompatible QDs has recently become possible in mouse models. With new advances in QD technology such as bioluminescence resonance energy transfer, synthesis of smaller size non-Cd based QDs, improved surface coating and conjugation, and multifunctional probes for multimodality imaging, it is likely that human applications of QDs will soon be possible in a clinical setting.

  7. Tree STEM Reconstruction Using Vertical Fisheye Images: a Preliminary Study

    Science.gov (United States)

    Berveglieri, A.; Tommaselli, A. M. G.

    2016-06-01

    A preliminary study was conducted to assess a tree stem reconstruction technique with panoramic images taken with fisheye lenses. The concept is similar to the Structure from Motion (SfM) technique, but the acquisition and data preparation rely on fisheye cameras to generate a vertical image sequence with height variations of the camera station. Each vertical image is rectified to four vertical planes, producing horizontal lateral views. The stems in the lateral view are rectified to the same scale in the image sequence to facilitate image matching. Using bundle adjustment, the stems are reconstructed, enabling later measurement and extraction of several attributes. The 3D reconstruction was performed with the proposed technique and compared with SfM. The preliminary results showed that the stems were correctly reconstructed by using the lateral virtual images generated from the vertical fisheye images and with the advantage of using fewer images and taken from one single station.

  8. TREE STEM RECONSTRUCTION USING VERTICAL FISHEYE IMAGES: A PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    A. Berveglieri

    2016-06-01

    Full Text Available A preliminary study was conducted to assess a tree stem reconstruction technique with panoramic images taken with fisheye lenses. The concept is similar to the Structure from Motion (SfM technique, but the acquisition and data preparation rely on fisheye cameras to generate a vertical image sequence with height variations of the camera station. Each vertical image is rectified to four vertical planes, producing horizontal lateral views. The stems in the lateral view are rectified to the same scale in the image sequence to facilitate image matching. Using bundle adjustment, the stems are reconstructed, enabling later measurement and extraction of several attributes. The 3D reconstruction was performed with the proposed technique and compared with SfM. The preliminary results showed that the stems were correctly reconstructed by using the lateral virtual images generated from the vertical fisheye images and with the advantage of using fewer images and taken from one single station.

  9. Electroencephalograph (EEG) study on self-contemplating image formation

    Science.gov (United States)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2016-05-01

    Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.

  10. Adding attenuation corrected images in myocardial perfusion imaging reduces the need for a rest study.

    Science.gov (United States)

    Trägårdh, Elin; Valind, Sven; Edenbrandt, Lars

    2013-04-01

    The American Society of Nuclear Cardiology and the Society of Nuclear Medicine conclude that incorporation of attenuation corrected (AC) images in myocardial perfusion scintigraphy (MPS) will improve diagnostic accuracy. The aim was to investigate the value of adding AC stress-only images for the decision whether a rest study is necessary or not. 1,261 patients admitted to (99m)Tc MPS were studied. The stress studies were interpreted by two physicians who judged each study as "no rest study necessary" or "rest study necessary", by evaluating NC stress-only and NC + AC stress-only images. When there was disagreement between the two physicians, a third physician evaluated the studies. Thus, agreement between 2 out of 3 physicians was evaluated. The physicians assessed 214 more NC + AC images than NC images as "no rest study necessary" (17% of the study population). The number of no-rest-study-required was significantly higher for NC + AC studies compared to NC studies (859 vs 645 cases (p rest study necessary" (22 NC + AC cases; 8 NC cases), (no statistically significant difference). In 11 of these, the final report stated "suspected/possible ischemia or infarction in a small area". Adding AC stress-only images to NC stress-only images reduce the number of unnecessary rest studies substantially.

  11. A simulation study on image reconstruction in magnetic particle imaging with field-free-line encoding

    CERN Document Server

    Murase, Kenya

    2016-01-01

    The purpose of this study was to present image reconstruction methods for magnetic particle imaging (MPI) with a field-free-line (FFL) encoding scheme and to propose the use of the maximum likelihood-expectation maximization (ML-EM) algorithm for improving the image quality of MPI. The feasibility of these methods was investigated by computer simulations, in which the projection data were generated by summing up the Fourier harmonics obtained from the MPI signals based on the Langevin function. Images were reconstructed from the generated projection data using the filtered backprojection (FBP) method and the ML-EM algorithm. The effects of the gradient of selection magnetic field (SMF), the strength of drive magnetic field (DMF), the diameter of magnetic nanoparticles (MNPs), and the number of projection data on the image quality of the reconstructed images were investigated. The spatial resolution of the reconstructed images became better with increasing gradient of SMF and with increasing diameter of MNPs u...

  12. Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants

    Science.gov (United States)

    Dai, Lu; Gu, Ning; Chen, Bao-An; Marriott, Gerard

    2016-01-01

    Human platelets were identified in tumors by Trousseau in 1865, although their roles in tumor microenvironments have only recently attracted the attention of cancer researchers. In this study we exploit and enhance platelet interactions in tumor microenvironments by introducing tumor-targeting and imaging functions. The first step in repurposing human platelets as vehicles for tumor-targeting was to inhibit platelet-aggregation by cytoplasmic-loading of kabiramide (KabC), a potent inhibitor of actin polymerization and membrane protrusion. KabC-Platelets can accumulate high levels of other membrane-permeable cytoxins and probes, including epidoxorubicin, carboxyfluorescein di-ester and chlorin-e6. Finally, mild reaction conditions were developed to couple tumor-targeting proteins and antibodies to KabC-platelets. Fluorescence microscopy studies showed KabC-platelets, surface-coupled with transferrin and Cy5, bind specifically to RPMI8226 and K562 cells, both of which over-express the transferrin receptor. Repurposed platelets circulate for upto 9-days a feature that increases their chance of interacting with target cells. KabC-platelets, surface-coupled with transferrin and Cy7, or chlorin-e6, and injected in immuno-compromised mice were shown to accumulate specifically in sub-cutaneous and intra-cranial myeloma xenotransplants. The high-contrast, in vivo fluorescence images recorded from repurposed platelets within early-stage myeloma is a consequence in part of their large size (φ∼2μm), which allows them to transport 100 to 1000-times more targeting-protein and probe molecules respectively. Human platelets can be configured with a plurality of therapeutic and targeting antibodies to help stage tumor environments for an immunotherapy, or with combinations of therapeutic antibodies and therapeutic agents to target and treat cardiovascular and neurologic diseases. PMID:27049725

  13. Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants.

    Science.gov (United States)

    Dai, Lu; Gu, Ning; Chen, Bao-An; Marriott, Gerard

    2016-04-19

    Human platelets were identified in tumors by Trousseau in 1865, although their roles in tumor microenvironments have only recently attracted the attention of cancer researchers. In this study we exploit and enhance platelet interactions in tumor microenvironments by introducing tumor-targeting and imaging functions. The first step in repurposing human platelets as vehicles for tumor-targeting was to inhibit platelet-aggregation by cytoplasmic-loading of kabiramide (KabC), a potent inhibitor of actin polymerization and membrane protrusion. KabC-Platelets can accumulate high levels of other membrane-permeable cytoxins and probes, including epidoxorubicin, carboxyfluorescein di-ester and chlorin-e6. Finally, mild reaction conditions were developed to couple tumor-targeting proteins and antibodies to KabC-platelets. Fluorescence microscopy studies showed KabC-platelets, surface-coupled with transferrin and Cy5, bind specifically to RPMI8226 and K562 cells, both of which over-express the transferrin receptor. Repurposed platelets circulate for upto 9-days a feature that increases their chance of interacting with target cells. KabC-platelets, surface-coupled with transferrin and Cy7, or chlorin-e6, and injected in immuno-compromised mice were shown to accumulate specifically in sub-cutaneous and intra-cranial myeloma xenotransplants. The high-contrast, in vivo fluorescence images recorded from repurposed platelets within early-stage myeloma is a consequence in part of their large size (φ~2µm), which allows them to transport 100 to 1000-times more targeting-protein and probe molecules respectively. Human platelets can be configured with a plurality of therapeutic and targeting antibodies to help stage tumor environments for an immunotherapy, or with combinations of therapeutic antibodies and therapeutic agents to target and treat cardiovascular and neurologic diseases.

  14. Human Factors' Influence on the Process of Tourism Destination Image Building: A Case Study of Yi County%区域旅游形象塑造中的人文要素分析——以黟县为例

    Institute of Scientific and Technical Information of China (English)

    姚治国; 赵黎明

    2011-01-01

    The tourism destination image and perception is one of the hot points in research fields of tourism. The tourism image content is the most attractive point for destinations, and perceived tourism image is a key factor to convert travel motives to decision-making of tourism behavior. There are two systems in the process of regional tourism image building: one is endogenous variable system, and the other is exogenous variables system. Good humanistic factor is very important in the system of exogenous variables, which plays a key role in the process of destination image building including cognitive image, emotional image and overall image, and which has an important impact mechanism. 1 ) The source of information affects destination image perception. Tourists always response to the effective destination information, and tourism information range is wider, destination tourism image is more easy to be known. 2) The tourism destination management affects destination image recognition, the legal normative and regular management of tourism destination can make a good tourism image for all kinds of tourists, and a bad tourism management can bring a negative tourism image. 3 ) The cultural barriers affects destination image communication. Tourists have different cultural backgrounds compared with the local people, therefore, the image communication depended on how much cultural barriers existed in the process of travel. The mechanism of cultural barriers to tourism image building is to influence the spread of regional tourism image, if there is great cultural differences between tourists and hosts, the tourism cultural accessibility is small, culture spread and communication opportunity is less, the quality of experience will be not high; 4) The tourism services affect destination image memory. The comfortable tourism services improve the perception quality of tourism image and increase the revisit rate, instead, uncomfortable tourism services reduce the perception quality

  15. Magnetic resonance imaging of the bone marrow following treatment with recombinant human erythropoietin in patients with end-stage renal disease

    DEFF Research Database (Denmark)

    Jensen, K E; Stenver, D; Jensen, M

    1990-01-01

    We used magnetic resonance imaging (MRI) to study vertebral bone marrow in hemodialysis patients during treatment with recombinant human erythropoietin (rHuEPO). We found changes in T1 relaxation times and image contrast within 14 days after starting treatment, before any response was seen in the...

  16. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  17. Towards single particle imaging of human chromosomes at SACLA

    Science.gov (United States)

    Robinson, Ian; Schwenke, Joerg; Yusuf, Mohammed; Estandarte, Ana; Zhang, Fucai; Chen, Bo; Clark, Jesse; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Ratnasari, Gina; Kaneyoshi, Kohei; Takata, Hideaki; Fukui, Kiichi

    2015-12-01

    Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI’s big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the ‘diffract before destruction’ theme, destruction being assured from the high x-ray doses used. This article reports our collaboration’s first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images.

  18. Segmentation of moving images by the human visual system.

    Science.gov (United States)

    Chantelau, K

    1997-08-01

    New segments appearing in an image sequence or spontaneously accelerated segments are band limited by the visual system due to a nonperfect tracking of these segments by eye movements. In spite of this band limitation and acceleration of segments, a coarse segmentation (initial segmentation phase) can be performed by the visual system. This is interesting for the development of purely automatic segmentation algorithms for multimedia applications. In this paper the segmentation of the visual system is modelled and used in an automatic coarse initial segmentation. A suitable model for motion processing based on a spectral representation is presented and applied to the segmentation of synthetic and real image sequences with band limited and accelerated moving foreground and background segments.

  19. TSPO imaging in stroke: from animal models to human subjects

    OpenAIRE

    Boutin, Hervé; Pinborg, Lars H.

    2015-01-01

    Stroke is a major health problem in developed countries and neuroinflammation has emerged over the last 2 decades as major contributor to the pathophysiological processes of brain damage following stroke. PET imaging of the translocator 18 kDa protein (TSPO) provides a unique non-invasive point of access to neuroinflammatory processes and more specifically microglial and astrocytic reaction after stroke in both animal models and patients. Here, we are reviewing both the experimental and ...

  20. Bayer Filter Snapshot Hyperspectral Fundus Camera for Human Retinal Imaging.

    Science.gov (United States)

    Kaluzny, Joel; Li, Hao; Liu, Wenzhong; Nesper, Peter; Park, Justin; Zhang, Hao F; Fawzi, Amani A

    2017-04-01

    To demonstrate the versatility and performance of a compact Bayer filter snapshot hyperspectral fundus camera for in-vivo clinical applications including retinal oximetry and macular pigment optical density measurements. 12 healthy volunteers were recruited under an Institutional Review Board (IRB) approved protocol. Fundus images were taken with a custom hyperspectral camera with a spectral range of 460-630 nm. We determined retinal vascular oxygen saturation (sO2) for the healthy population using the captured spectra by least squares curve fitting. Additionally, macular pigment optical density was localized and visualized using multispectral reflectometry from selected wavelengths. We successfully determined the mean sO2 of arteries and veins of each subject (ages 21-80) with excellent intrasubject repeatability (1.4% standard deviation). The mean arterial sO2 for all subjects was 90.9% ± 2.5%, whereas the mean venous sO2 for all subjects was 64.5% ± 3.5%. The mean artery-vein (A-V) difference in sO2 varied between 20.5% and 31.9%. In addition, we were able to reveal and quantify macular pigment optical density. We demonstrated a single imaging tool capable of oxygen saturation and macular pigment density measurements in vivo. The unique combination of broad spectral range, high spectral-spatial resolution, rapid and robust imaging capability, and compact design make this system a valuable tool for multifunction spectral imaging that can be easily performed in a clinic setting.

  1. Low-level contrast statistics of natural images can modulate the frequency of event-related potentials (ERP in humans

    Directory of Open Access Journals (Sweden)

    Masoud Ghodrati

    2016-12-01

    Full Text Available Humans are fast and accurate in categorizing complex natural images. It is, however, unclear what features of visual information are exploited by brain to perceive the images with such speed and accuracy. It has been shown that low-level contrast statistics of natural scenes can explain the variance of amplitude of event-related potentials (ERP in response to rapidly presented images. In this study, we investigated the effect of these statistics on frequency content of ERPs. We recorded ERPs from human subjects, while they viewed natural images each presented for 70 ms. Our results showed that Weibull contrast statistics, as a biologically plausible model, explained the variance of ERPs the best, compared to other image statistics that we assessed. Our time-frequency analysis revealed a significant correlation between these statistics and ERPs’ power within theta frequency band (~3-7 Hz. This is interesting, as theta band is believed to be involved in context updating and semantic encoding. This correlation became significant at ~110 ms after stimulus onset, and peaked at 138 ms. Our results show that not only the amplitude but also the frequency of neural responses can be modulated with low-level contrast statistics of natural images and highlights their potential role in scene perception.

  2. Cartilage and soft tissue imaging using X-rays: propagation-based phase-contrast computed tomography of the human knee in comparison with clinical imaging techniques and histology.

    Science.gov (United States)

    Horng, Annie; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Geith, Tobias; Adam-Neumair, Silvia; Auweter, Sigrid D; Bravin, Alberto; Reiser, Maximilian F; Coan, Paola

    2014-09-01

    This study evaluates high-resolution tomographic x-ray phase-contrast imaging in whole human knee joints for the depiction of soft tissue with emphasis on hyaline cartilage. The method is compared with conventional computed tomography (CT), synchrotron radiation absorption-based CT, and magnetic resonance imaging (MRI). After approval of the institutional review board, 2 cadaveric human knees were examined at an synchrotron institution using a monochromatic x-ray beam of 60 keV, a detector with a 90-mm field of view, and a pixel size of 46 × 46 μm. Images of phase-contrast imaging CT were reconstructed with the filtered back projection algorithm and the equally sloped tomography method. Image quality and tissue contrast were evaluated and compared in all modalities and with histology. Phase-contrast imaging provides visualization of altered cartilage regions invisible in absorption CT with simultaneous high detail of the underlying bony abnormalities. The delineation of surface changes is similar to 3-T MRI using cartilage-dedicated sequences. Phase-contrast imaging CT presents soft tissue contrast surpassing that of conventional CT with a clear discrimination of ligamentous, muscular, neural, and vascular structures. In addition, phase-contrast imaging images show cartilage and meniscal calcifications that are not perceptible on conventional CT or on MRI. Phase-contrast imaging CT may facilitate a more complete evaluation of the human knee joint by providing concurrent comprehensive information about cartilage, the underlying subchondral bone, and their changes in osteoarthritic conditions.

  3. [Studies on digital watermark embedding intensity against image processing and image deterioration].

    Science.gov (United States)

    Nishio, Masato; Ando, Yutaka; Tsukamoto, Nobuhiro; Kawashima, Hironao

    2004-04-01

    In order to apply digital watermarking to medical imaging, it is required to find a trade-off between strength of watermark embedding and deterioration of image quality. In this study, watermarks were embedded in 4 types of modality images to determine the correlation among the watermarking strength, robustness against image processing, and image deterioration due to embedding. The results demonstrated that watermarks which were embedded by the least significant bit insertion method became unable to be detected and recognized on image processing even if the watermarks were embedded with such strength that could cause image deterioration. On the other hand, watermarks embedded by the Discrete Cosine Transform were clearly detected and recognized even after image processing regardless of the embedding strength. The maximum level of embedding strength that will not affect diagnosis differed depending on the type of modality. It is expected that embedding the patient information together with the facility information as watermarks will help maintain the patient information, prevent mix-ups of the images, and identify the test performing facilities. The concurrent use of watermarking less resistant to image processing makes it possible to detect whether any image processing has been performed or not.

  4. The action sites of propofol in the normal human brain revealed by functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Hui; Wang, Wei; Zhao, Zhijing; Ge, Yali; Zhang, Jinsong; Yu, Daihua; Chai, Wei; Wu, Shengxi; Xu, Lixian

    2010-12-01

    Propofol has been used for many years but its functional target in the intact brain remains unclear. In the present study, we used functional magnetic resonance imaging to demonstrate blood oxygen level dependence signal changes in the normal human brain during propofol anesthesia and explored the possible action targets of propofol. Ten healthy subjects were enrolled in two experimental sessions. In session 1, the Observer's Assessment of Alertness/Sedation Scale was performed to evaluate asleep to awake/alert status. In session 2, images with blood oxygen level dependence contrast were obtained with echo-planar imaging on a 1.5-T Philips Gyroscan Magnetic Resonance System and analyzed. In both sessions, subjects were intravenously administered with saline (for 3 min) and then propofol (for 1.5 min) and saline again (for 10.5 min) with a constant speed infusion pump. Observer's Assessment of Alertness/Sedation Scale scoring showed that the subjects experienced conscious–sedative–unconscious–analepsia, which correlated well with the signal decreases in the anesthesia states. Propofol induced significant signal decreases in hypothalamus (18.2%±3.6%), frontal lobe (68.5%±11.2%), and temporal lobe (34.7%±6.1%). Additionally, the signals at these three sites were fulminant and changed synchronously. While in the thalamus, the signal decrease was observed in 5 of 10 of the subjects and the magnitude of decrease was 3.9%±1.6%. These results suggest that there is most significant inhibition in hypothalamus, frontal lobe, and temporal in propofol anesthesia and moderate inhibition in thalamus. These brain regions might be the targets of propofol anesthesia in human brain.

  5. Atlas-based high-density diffuse optical tomography for imaging the whole human cortex

    Science.gov (United States)

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid

    2015-03-01

    Diffuse optical tomography (DOT) for brain imaging has the potential to be an alternative human brain mapping technique when MRI imaging is not applicable. It recovers tissue chromophore concentrations of brain tissue through measures of light transmission to monitor for example the resting-state brain dynamics. This imaging technique relies on simulation of the light propagation which can be generated based on a subject-specific model. There has been some study on using rigid atlas models as alternatives for model based DOT when subject-specific anatomical data is not available; but there is still a lack of detailed analysis between geometrical accuracy and internal light propagation in tissue for atlas-based DOT. This work is focused on High-Density DOT (HD-DOT) of the whole cortex based on atlas models from 11 different rigid registration algorithms across 24 subjects, and the results are evaluated in 19 areas of the human head. The correlation between geometrical surface error and internal light propagation errors is strong in most area but varies in different regions from R2 = 0.74 in the region around top of the head to R2 = 0.98 in the region around the temples. In the 11 registration methods, basic-4-landmark registration with 4.2mm average surface error and 50% average internal light propagation errors is shown to be the least accurate registration method whereas full-head landmark with non-iterative point to point with 1.7mm average surface error and 32% average internal light propagation error is shown to be the most accurate registration method for atlas-based DOT.

  6. Development of {sup 68}Ga-labelled DTPA galactosyl human serum albumin for liver function imaging

    Energy Technology Data Exchange (ETDEWEB)

    Haubner, Roland [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Nuklearmedizin, Innsbruck (Austria); Vera, David R.; Farshchi-Heydari, Salman [University of California, Department of Radiology, School of Medicine, and the UCSD Molecular Imaging Program, San Diego, CA (United States); Helbok, Anna; Rangger, Christine; Putzer, Daniel; Virgolini, Irene J. [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria)

    2013-08-15

    The hepatic asialoglycoprotein receptor is responsible for degradation of desialylated glycoproteins through receptor-mediated endocytosis. It has been shown that imaging of the receptor density using [{sup 99m}Tc]diethylenetriamine pentaacetic acid (DTPA) galactosyl human serum albumin ([{sup 99m}Tc]GSA) allows non-invasive determination of functional hepatocellular mass. Here we present the synthesis and evaluation of [{sup 68}Ga]GSA for the potential use with positron emission tomography (PET). Labelling of GSA with {sup 68}Ga was carried out using a fractionated elution protocol. For quality control thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and size exclusion chromatography (SEC) techniques were evaluated. Stability of [{sup 68}Ga]GSA was studied in phosphate-buffered saline (PBS) and human serum. For in vivo evaluation [{sup 68}Ga]GSA distribution in Lewis rats was compared with [{sup 99m}Tc]GSA by using a dual isotope protocol. PET and planar imaging studies were performed using the same scaled molar dose of [{sup 68}Ga]GSA and [{sup 99m}Tc]GSA. Time-activity curves (TAC) for heart and liver were generated and corresponding parameters calculated (t50, t90). [{sup 68}Ga]GSA can be produced with high radiochemical purity. The best TLC methods for determining potential free {sup 68}Ga include 0.1 M sodium citrate as eluent. None of the TLC methods tested were able to determine potential colloids. This can be achieved by SEC. HPLC confirmed high radiochemical purity (>98 %). Stability after 120 min incubation at 37 C was high in PBS (>95 % intact tracer) and low in human serum ({proportional_to}27 % intact tracer). Biodistribution studies simultaneously injecting both tracers showed comparable liver uptake, whereas activity concentration in blood was higher for [{sup 68}Ga]GSA compared to [{sup 99m}Tc]GSA. The [{sup 99m}Tc]GSA TACs exhibited a small degree of hepatic metabolism compared to the [{sup 68}Ga]GSA curves. The mean

  7. Remarks on human body posture estimation from silhouette image based on heuristic rules and Kalman filter

    Science.gov (United States)

    Takahashi, Kazuhiko; Naemura, Masahide

    2005-12-01

    This paper proposes a human body posture estimation method based on analysis of human silhouette and Kalman filter. The proposed method is based on both the heuristically extraction method of estimating the significant points of human body and the contour analysis of the human silhouette. The 2D coordinates of the human body's significant points, such as top of the head, and tips of feet, are located by applying the heuristically extraction method to the human silhouette, those of tips of hands are obtained by using the result of the contour analysis, and the joints of elbows and knees are estimated by introducing some heuristic rules to the contour image of the human silhouette. The estimated results are optimized and tracked by using Kalman filter. The proposed estimation method is implemented on a personal computer and runs in real-time. Experimental results show both the feasibility and the effectiveness of the proposed method for estimating human body postures.

  8. HUMAN HAND STUDY FOR ROBOTIC EXOSKELETON DELVELOPMENT

    Directory of Open Access Journals (Sweden)

    BIROUAS Flaviu Ionut

    2016-11-01

    Full Text Available This paper will be presenting research with application in the rehabilitation of hand motor functions by the aid of robotics. The focus will be on the dimensional parameters of the biological human hand from which the robotic system will be developed. The term used for such measurements is known as anthropometrics. The anthropometric parameters studied and presented in this paper are mainly related to the angular limitations of the finger joints of the human hand.

  9. Enthesopathies and enthesitis. Part 2: Imaging studies

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2015-06-01

    Full Text Available The pathologies of tendon and ligament attachments are called enthesopathies. Enthesitis is one of enthesopathies and it is considered a characteristic sign of rheumatic diseases from the spondyloarthritis group, including peripheral spondyloarthritis. Therefore, enthesitis has been included in a number of clinical classifi cations for diagnosing these diseases. Clinical diagnosis of enthesitis is based on rather non-specific clinical signs and results of laboratory tests. It is believed that imaging examinations might improve diagnosis, particularly because numerous papers prove that differentiating enthesitis from other enthesopathic processes is possible. On the other hand, a number of authors report the lack of specifi c signs in imaging as well as typical histological and immunological features that would enable confi rmation of clinical diagnosis of enthesitis. The first part of the publication presented theories on the etiopathogenesis of enthesitis (infl ammatory, mechanical, autoimmune and associated with the synovio-entheseal complex as well as on the formation of enthesophytes (infl ammatory, molecular and mechanical. This paper – the second part of the article, is a review of the state-of-the-art on the ability of imaging examinations to diagnose enthesitis. It turns out that none of the enthesitis criteria used in imaging examinations is specific for infl ammation. As enthesitis may be the only symptom of early spondyloarthritis (particularly in patients with absent HLA-B27 antigen, the lack of its unambiguous picture in ultrasound and magnetic resonance imaging prompts the search for other signs characteristic of spondyloarthritis and more specific features in imaging in order to make a diagnosis as early as possible.

  10. Integrated endoscopic OCT system and in-vivo images of human internal organs

    Science.gov (United States)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Kuranov, Roman V.; Gladkova, Natalia D.; Shakhova, Natalia M.; Snopova, Ludmila; Shakhov, Andrei; Kuznetzova, Irina N.; Denisenko, Arkady; Pochinko, Vitaly; Chumakov, Yuri; Almasov, Valentin

    1998-04-01

    First results of endoscopic applications of optical coherence tomography (OCT) for in vivo studies of human mucosa in respiratory, gastrointestinal, urinary and genital tracts are presented. A novel endoscopic OCT (EOCT) system has been created that is based on the integration of a sampling arm of an all-optical-fiber interferometer into standard endoscopic devices using their biopsy channel to transmit low-coherence radiation to investigated tissue. We have studied mucous membranes of esophagus, larynx, stomach, urinary bladder, uterine cervix and endometrium as typical localization for carcinomatous processes. Images of tumor tissues versus healthy tissues have been recorded and analyzed. Violations of well-defined stratified healthy mucosa structure in cancered tissue is distinctly seen by EOCT, thus making this technique promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  11. Endoscopic OCT for in-vivo imaging of precancer and cancer states of human mucosa

    Science.gov (United States)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Kuranov, Roman V.; Gladkova, Natalia D.; Shakhova, Natalia M.; Kuznetzova, Irina N.; Snopova, Ludmila; Denisenko, Arkady; Almasov, Valentin

    1998-01-01

    First results of endoscopic applications of optical coherence tomography for in vivo studies of human mucosa in gastrointestinal and genital tracts are presented. A novel endoscopic OCT system has ben created that is based on the integration of a sampling arm of an all-optical-fiber interferometer into standard endoscopic devices using their biopsy channel to transmit low-coherence radiation to investigated tissue. We have studied mucous membranes of esophagus, stomach and uterine cervix as typical localization for carcinomatous processes. Images of tumor tissues versus healthy tissues have been recorded and analyzed. Violations of well-defined stratified healthy mucosa structure in cancerous tissue is distinctly seen by EOCT, thus making this technique promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  12. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa

    Science.gov (United States)

    Sergeev, Alexander M.; Gelikonov, V. M.; Gelikonov, G. V.; Feldchtein, Felix I.; Kuranov, R. V.; Gladkova, N. D.; Shakhova, N. M.; Snopova, L. B.; Shakhov, A. V.; Kuznetzova, I. A.; Denisenko, A. N.; Pochinko, V. V.; Chumakov, Yu P.; Streltzova, O. S.

    1997-12-01

    First results of endoscopic applications of optical coherence tomography for in vivo studies of human mucosa in respiratory, gastrointestinal, urinary and genital tracts are presented. A novel endoscopic OCT (EOCT) system has been created that is based on the integration of a sampling arm of an all-optical-fiber interferometer into standard endoscopic devices using their biopsy channel to transmit low-coherence radiation to investigated tissue. We have studied mucous membranes of esophagus, larynx, stomach, urinary bladder, uterine cervix and body as typical localization for carcinomatous processes. Images of tumor tissues versus healthy tissues have been recorded and analyzed. Violations of well-defined stratified healthy mucosa structure in cancered tissue are distinctly seen by EOCT, thus making this technique promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  13. Simulation study on radiative imaging of combustion flame in furnace

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. This paper presents a new method for calculating the radiative imaging of three-dimensional (3D) combustion flame based on Monte Carlo method and optical lens imaging. Numerical simulation case was used in this study. Radiative images were calculated and images obtained can not only present the energy distribution on the charge-coupled device (CCD) camera target plane but also reflect the energy distribution condition in the simulation furnace. Finally the relationships between volume elements and energy shares were also discussed.

  14. Re-thinking the store image study approach

    DEFF Research Database (Denmark)

    Hansen, Kåre

    2001-01-01

    Store image has traditionally been of interest in the Western markets. Studies of store image have also assessed the image of one or a few competing stores. This paper develops an approach to capture store images of an entire retail sector, an issue of importance when enter-ing the new emerging...... markets for example in Eastern Europe and Southeast Asia. The rele-vance of the approach was tested on the food retail sector in two Chinese cities. Two clusters with differ-ent images were identified and profiled. Implications for future research and managerial implications are developed....

  15. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Science.gov (United States)

    Cuaya, Laura V; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  16. The future of imaging in veterinary oncology: learning from human medicine.

    Science.gov (United States)

    Mattoon, John S; Bryan, Jeffrey N

    2013-09-01

    Imaging technology is critical for adequate diagnosis and staging in human and veterinary oncology. Sensitive detection of lesions is necessary to determine appropriate local or systemic therapy and to monitor therapeutic results. New technology in digital radiography, ultrasound, and computed tomography (CT) scanning are now widely available in veterinary medicine. Advanced imaging with high-detail CT scans, magnetic resonance imaging (MRI), and positron-emission tomography (PET) are now available in academic centers and some private specialty practices. This review describes the current and future applications of these new imaging systems and modalities in veterinary oncology and how advanced imaging contributes to diagnosis, staging, and monitoring of cancers. The potential of molecular imaging for accurate, minimally invasive diagnosis and monitoring is discussed.

  17. Fractal coding of wavelet image based on human vision contrast-masking effect

    Science.gov (United States)

    Wei, Hai; Shen, Lansun

    2000-06-01

    In this paper, a fractal-based compression approach of wavelet image is presented. The scheme tries to make full use of the sensitivity features of the human visual system. With the wavelet-based multi-resolution representation of image, detail vectors of each high frequency sub-image are constructed in accordance with its spatial orientation in order to grasp the edge information to which human observer is sensitive. Then a multi-level selection algorithm based on human vision's contrast masking effect is proposed to make the decision whether a detail vector is coded or not. Those vectors below the contrast threshold are discarded without introducing visual artifacts because of the ignorance of human vision. As for the redundancy of the retained vectors, different fractal- based methods are employed to decrease the correlation in single sub-image and between the different resolution sub- images with the same orientation. Experimental results suggest the efficiency of the proposed scheme. With the standard test image, our approach outperforms the EZW algorithm and the JPEG method.

  18. Time-gated optical imaging through turbid media using stimulated Raman scattering: Studies on image contrast

    Indian Academy of Sciences (India)

    K Divakar Rao; H S Patel; B Jain; P K Gupta

    2005-02-01

    In this paper, we report the development of experimental set-up for timegated optical imaging through turbid media using stimulated Raman scattering. Our studies on the contrast of time-gated images show that for a given optical thickness, the image contrast is better for sample with lower scattering coefficient and higher physical thickness, and that the contrast improves with decreasing value of anisotropy parameters of the scatterers. These results are consistent with time-resolved Monte Carlo simulations.

  19. The Computer Image Generation Applications Study.

    Science.gov (United States)

    1980-07-01

    Air Force Human Resources Laboratory/Flying Training Division (AFHRL/FT), Advanced Simulator for Pilot Training ( ASPT ), Williams AFB, AZ 85224. Air...Company, Advanced Simulator for Pilot Training ( ASPT ), Air Force Human Resources Laboratory/ Flying Training Division (AFHRL/FT)o Williams AFB, AZ...Redifon Simulation Incorporated, Arlington, TX 76011. Systems Engineering Laboratories (SEL), Advanced Simulator for Pilot Training ( ASPT ), Air Force

  20. Olympus Imaging Fraud Scandal: A Case Study

    Science.gov (United States)

    Elam, Dennis; Madrigal, Marion; Jackson, Maura

    2014-01-01

    This case examines the two decade long tobashi scheme by Olympus Imaging Executives to hide $1.7 billion in losses. In the 1980s, a soaring yen and falling dollar caused bottom line income problems for many Japanese companies. Some companies sought to offset the declining revenue with zaiteku, a form of speculative investment. While early…

  1. Brain Imaging Studies of Developmental Stuttering.

    Science.gov (United States)

    Ingham, Roger J.

    2001-01-01

    A review of research on brain imaging of developmental stuttering concludes that findings increasingly point to a failure of normal temporal lobe activation during speech that may either contribute to (or is the result of) a breakdown in the sequencing of processing among premotor regions implicated in phonologic planning. (Contains references.)…

  2. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    Full Text Available Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI modalities, the parameters of which were tailored to enhance the signals of specific tissues: i structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii magnetic resonance angiography (MRA data to image the vasculature, and iii diffusion tensor imaging (DTI to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  3. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Science.gov (United States)

    Iacono, Maria Ida; Neufeld, Esra; Akinnagbe, Esther; Bower, Kelsey; Wolf, Johanna; Vogiatzis Oikonomidis, Ioannis; Sharma, Deepika; Lloyd, Bryn; Wilm, Bertram J; Wyss, Michael; Pruessmann, Klaas P; Jakab, Andras; Makris, Nikos; Cohen, Ethan D; Kuster, Niels; Kainz, Wolfgang; Angelone, Leonardo M

    2015-01-01

    Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI) modalities, the parameters of which were tailored to enhance the signals of specific tissues: i) structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii) magnetic resonance angiography (MRA) data to image the vasculature, and iii) diffusion tensor imaging (DTI) to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  4. Human detection for underground autonomous mine vehicles using thermal imaging

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-07-01

    Full Text Available precludes its use in a GPS deprived underground environment. RFID tags are popular for collision avoidance systems owing to their very low false alarm rates. Each miner has an RFID tag embedded in their cap-lamp. A transmitter mounted on the vehicle... by the objects being imaged, in this case people. The long wavelength (7-14 ?m) of thermal IR allows it to penetrate dust and smoke [6]. The IR spectrum can be divided into four main regions. The main regions are near- infrared, short-wavelength, mid...

  5. Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging.

    Science.gov (United States)

    Jahng, Geon-Ho; Song, Enmin; Zhu, Xiao-Ping; Matson, Gerald B; Weiner, Michael W; Schuff, Norbert

    2005-03-01

    The Committee of Human Research of the University of California San Francisco approved this study, and all volunteers provided written informed consent. The goal of this study was to prospectively determine the global and regional reliability and reproducibility of noninvasive brain perfusion measurements obtained with different pulsed arterial spin-labeling (ASL) magnetic resonance (MR) imaging methods and to determine the extent to which within-subject variability and random noise limit reliability and reproducibility. Thirteen healthy volunteers were examined twice within 2 hours. The pulsed ASL methods compared in this study differ mainly with regard to magnetization transfer and eddy current effects. There were two main results: (a) Pulsed ASL MR imaging consistently had high measurement reliability (intraclass correlation coefficients greater than 0.75) and reproducibility (coefficients of variation less than 8.5%), and (b) random noise rather than within-subject variability limited reliability and reproducibility. It was concluded that low signal-to-noise ratios substantially limit the reliability and reproducibility of perfusion measurements.

  6. Genetic and biomarker studies of human longevity

    NARCIS (Netherlands)

    Deelen, Joris

    2014-01-01

    The aim of this thesis was to identify novel lifespan regulating loci that influence human longevity and population mortality. To this end, we performed two genome-wide association studies, one of long-lived individuals from the family-based Leiden Longevity Study (LLS) and an extended one of long-l

  7. EVA Health and Human Performance Benchmarking Study

    Science.gov (United States)

    Abercromby, A. F.; Norcross, J.; Jarvis, S. L.

    2016-01-01

    Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  8. A dataset of stereoscopic images and ground-truth disparity mimicking human fixations in peripersonal space

    Science.gov (United States)

    Canessa, Andrea; Gibaldi, Agostino; Chessa, Manuela; Fato, Marco; Solari, Fabio; Sabatini, Silvio P.

    2017-03-01

    Binocular stereopsis is the ability of a visual system, belonging to a live being or a machine, to interpret the different visual information deriving from two eyes/cameras for depth perception. From this perspective, the ground-truth information about three-dimensional visual space, which is hardly available, is an ideal tool both for evaluating human performance and for benchmarking machine vision algorithms. In the present work, we implemented a rendering methodology in which the camera pose mimics realistic eye pose for a fixating observer, thus including convergent eye geometry and cyclotorsion. The virtual environment we developed relies on highly accurate 3D virtual models, and its full controllability allows us to obtain the stereoscopic pairs together with the ground-truth depth and camera pose information. We thus created a stereoscopic dataset: GENUA PESTO—GENoa hUman Active fixation database: PEripersonal space STereoscopic images and grOund truth disparity. The dataset aims to provide a unified framework useful for a number of problems relevant to human and computer vision, from scene exploration and eye movement studies to 3D scene reconstruction.

  9. A dataset of stereoscopic images and ground-truth disparity mimicking human fixations in peripersonal space.

    Science.gov (United States)

    Canessa, Andrea; Gibaldi, Agostino; Chessa, Manuela; Fato, Marco; Solari, Fabio; Sabatini, Silvio P

    2017-03-28

    Binocular stereopsis is the ability of a visual system, belonging to a live being or a machine, to interpret the different visual information deriving from two eyes/cameras for depth perception. From this perspective, the ground-truth information about three-dimensional visual space, which is hardly available, is an ideal tool both for evaluating human performance and for benchmarking machine vision algorithms. In the present work, we implemented a rendering methodology in which the camera pose mimics realistic eye pose for a fixating observer, thus including convergent eye geometry and cyclotorsion. The virtual environment we developed relies on highly accurate 3D virtual models, and its full controllability allows us to obtain the stereoscopic pairs together with the ground-truth depth and camera pose information. We thus created a stereoscopic dataset: GENUA PESTO-GENoa hUman Active fixation database: PEripersonal space STereoscopic images and grOund truth disparity. The dataset aims to provide a unified framework useful for a number of problems relevant to human and computer vision, from scene exploration and eye movement studies to 3D scene reconstruction.

  10. High Spatial Resolution Imaging Mass Spectrometry of Human Optic Nerve Lipids and Proteins

    Science.gov (United States)

    Anderson, David M. G.; Spraggins, Jeffrey M.; Rose, Kristie L.; Schey, Kevin L.

    2015-06-01

    The human optic nerve carries signals from the retina to the visual cortex of the brain. Each optic nerve is comprised of approximately one million nerve fibers that are organized into bundles of 800-1200 fibers surrounded by connective tissue and supportive glial cells. Damage to the optic nerve contributes to a number of blinding diseases including: glaucoma, neuromyelitis optica, optic neuritis, and neurofibromatosis; however, the molecular mechanisms of optic nerve damage and death are incompletely understood. Herein we present high spatial resolution MALDI imaging mass spectrometry (IMS) analysis of lipids and proteins to define the molecular anatomy of the human optic nerve. The localization of a number of lipids was observed in discrete anatomical regions corresponding to myelinated and unmyelinated nerve regions as well as to supporting connective tissue, glial cells, and blood vessels. A protein fragment from vimentin, a known intermediate filament marker for astrocytes, was observed surrounding nerved fiber bundles in the lamina cribrosa region. S100B was also found in supporting glial cell regions in the prelaminar region, and the hemoglobin alpha subunit was observed in blood vessel areas. The molecular anatomy of the optic nerve defined by MALDI IMS provides a firm foundation to study biochemical changes in blinding human diseases.

  11. A method of depth image based human action recognition

    Science.gov (United States)

    Li, Pei; Cheng, Wanli

    2017-05-01

    In this paper, we propose an action recognition algorithm framework based on human skeleton joint information. In order to extract the feature of human motion, we use the information of body posture, speed and acceleration of movement to construct spatial motion feature that can describe and reflect the joint. On the other hand, we use the classical temporal pyramid matching algorithm to construct temporal feature and describe the motion sequence variation from different time scales. Then, we use bag of words to represent these actions, which is to present every action in the histogram by clustering these extracted feature. Finally, we employ Hidden Markov Model to train and test the extracted motion features. In the experimental part, the correctness and effectiveness of the proposed model are comprehensively verified on two well-known datasets.

  12. Acoustic micro-Doppler radar for human gait imaging.

    Science.gov (United States)

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars.

  13. ARTIFICIAL NEURAL NETWORK IN FACE DETECTION HUMAN ON DIGITAL IMAGE

    Directory of Open Access Journals (Sweden)

    Abdusamad Al-Marghilani

    2013-01-01

    Full Text Available Method itself is proposed to be formed by series of filters. Each filter is an independent method of detection and allows you to cut off quickly the regions that do not contain the face’s areas. For this purpose some of the different characteristics of the object are used in addition each subsequent part processes only promising areas of image which were obtained from the previous parts of the method. It has been tested by means of CMU/MIT test set. Analogy of speed and quality detection. There are two modifications to the classic use of neural networks in face detection. First the neural network only tests candidate regions for the face, thus dropping the search space. Secondly the window size is used in network scanning the input image is adaptive and depends on the size of the region of the candidate are implemented in Using Mat lab. The analysis of detection quality of a new method in comparison with the algorithm. The experimental results show that the proposed method the detection method, based on rectangular primitives, in quality. The proposed method, tested on a standard Test set, has surpassed all known methods in speed and quality of detection. Our approach without pre-treatment is not required because the normalization is enabled directly in the weights of the input network.

  14. A Bayesian framework for human body pose tracking from depth image sequences.

    Science.gov (United States)

    Zhu, Youding; Fujimura, Kikuo

    2010-01-01

    This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach.

  15. Multi-channel microstrip transceiver arrays using harmonics for high field MR imaging in humans.

    Science.gov (United States)

    Wu, Bing; Wang, Chunsheng; Lu, Jonathan; Pang, Yong; Nelson, Sarah J; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-02-01

    Radio-frequency (RF) transceiver array design using primary and higher order harmonics for in vivo parallel magnetic resonance imaging imaging (MRI) and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging.

  16. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  17. The cerebral imaging using vessel-around method in the perfusion CT of the human brain

    Science.gov (United States)

    Ahn, Choong-Il; Choi, Seung-Wook; Park, Seung-Chul; Shin, Yeong-Gil; Kim, Jae-Hyoung; Chong, Gi-Bong

    2005-04-01

    Perfusion CT has been successfully used as a functional imaging technique for diagnosis of patients with hyperacute stroke. However, the commonly used methods based on curve-fitting are time consuming. Numerous researchers have investigated to what extent Perfusion CT can be used for the quantitative assessment of cerebral ischemia and to rapidly obtain comprehensive information regarding the extent of ischemic damage in acute stroke patients. The aim of this study is to propose an alternative approach to rapidly obtain the brain perfusion mapping and to show the proposed cerebral flow imaging of the vessel and tissue in human brain be reliable and useful. Our main design concern was algorithmic speed, robustness and automation in order to allow its potential use in the emergency situation of acute stroke. To obtain a more effective mapping, we analyzed the signal characteristics of Perfusion CT and defined the vessel-around model which includes the vessel and tissue. We proposed a nonparametric vessel-around approach which automatically discriminates the vessel and tissue around vessel from non-interested brain matter stratifying the level of maximum enhancement of pixel-based TAC. The stratification of pixel-based TAC was executed using the mean and standard deviation of the signal intensity of each pixel and mapped to the cerebral flow imaging. The defined vessel-around model was used to show the cerebral flow imaging and to specify the area of markedly reduced perfusion with loss of function of still viable neurons. Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. The vessel-around approach reduces the computation time significantly when compared with the perfusion imaging using the GVF. The proposed cerebral imaging shows reliable results which are validated by physicians and

  18. Magnetic resonance imaging of perfusion-diffusion mismatch in rodent and non-human primate stroke models.

    Science.gov (United States)

    Duong, Timothy Q

    2013-06-01

    Stroke is a leading cause of death and long-term disability. Non-invasive magnetic resonance imaging (MRI) has been widely used for the early detection of ischemic stroke and the longitudinal monitoring of novel treatment strategies. Recent advances in MRI techniques have enabled improved sensitivity and specificity to detecting ischemic brain injury and monitoring functional recovery. This review describes recent progresses in the development and application of multimodal MRI and image analysis techniques to study experimental stroke in rats and non-human primates.

  19. Image Processing Algorithms – A Comprehensive Study

    Directory of Open Access Journals (Sweden)

    Mahesh Prasanna K

    2014-06-01

    Full Text Available Digital image processing is an ever expanding and dynamic area with applications reaching out into our everyday life such as medicine, space exploration, surveillance, authentication, automated industry inspection and many more areas. These applications involve different processes like image enhancement and object detection [1]. Implementing such applications on a general purpose computer can be easier, but not very time efficient due to additional constraints on memory and other peripheral devices. Application specific hardware implementation offers much greater speed than a software implementation. With advances in the VLSI (Very Large Scale Integrated technology hardware implementation has become an attractive alternative. Implementing complex computation tasks on hardware and by exploiting parallelism and pipelining in algorithms yield significant reduction in execution times [2].

  20. A study on the effect of CT imaging acquisition parameters on lung nodule image interpretation

    Science.gov (United States)

    Yu, Shirley J.; Wantroba, Joseph S.; Raicu, Daniela S.; Furst, Jacob D.; Channin, David S.; Armato, Samuel G., III

    2009-02-01

    Most Computer-Aided Diagnosis (CAD) research studies are performed using a single type of Computer Tomography (CT) scanner and therefore, do not take into account the effect of differences in the imaging acquisition scanner parameters. In this paper, we present a study on the effect of the CT parameters on the low-level image features automatically extracted from CT images for lung nodule interpretation. The study is an extension of our previous study where we showed that image features can be used to predict semantic characteristics of lung nodules such as margin, lobulation, spiculation, and texture. Using the Lung Image Data Consortium (LIDC) dataset, we propose to integrate the imaging acquisition parameters with the low-level image features to generate classification models for the nodules' semantic characteristics. Our preliminary results identify seven CT parameters (convolution kernel, reconstruction diameter, exposure, nodule location along the z-axis, distance source to patient, slice thickness, and kVp) as influential in producing classification rules for the LIDC semantic characteristics. Further post-processing analysis, which included running box plots and binning of values, identified four CT parameters: distance source to patient, kVp, nodule location, and rescale intercept. The identification of these parameters will create the premises to normalize the image features across different scanners and, in the long run, generate automatic rules for lung nodules interpretation independently of the CT scanner types.

  1. Development of a high angular resolution diffusion imaging human brain template.

    Science.gov (United States)

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy.

  2. The storm and stress of adolescence: insights from human imaging and mouse genetics.

    Science.gov (United States)

    Casey, B J; Jones, Rebecca M; Levita, Liat; Libby, Victoria; Pattwell, Siobhan S; Ruberry, Erika J; Soliman, Fatima; Somerville, Leah H

    2010-04-01

    The characterization of adolescence as a time of "storm and stress" remains an open debate. Intense and frequent negative affect during this period has been hypothesized to explain the increased rates of affective disorders, suicide, and accidental death during this time of life. Yet some teens emerge from adolescence with minimal turmoil. We provide a neurobiological model of adolescence that proposes an imbalance in the development of subcortical limbic (e.g., amygdala) relative to prefrontal cortical regions as a potential mechanism for heightened emotionality during this period. Empirical support for this model is provided from recent behavioral and human imaging studies on the development of emotion regulation. We then provide examples of environmental factors that may exacerbate imbalances in amygdala-ventrofrontal function increasing risk for anxiety related behaviors. Finally we present data from human and mouse studies to illustrate how genetic factors may enhance or diminish this risk. Together, these studies provide a converging methods approach for understanding the highly variable stress and turmoil experienced in adolescence.

  3. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    Science.gov (United States)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  4. Accuracy of Image Analysis in Quantitative Study of Cement Paste

    Directory of Open Access Journals (Sweden)

    Feng Shu-Xia

    2016-01-01

    Full Text Available Quantitative study on cement paste especially blended cement paste has been a hot and difficult issue over the years, and the technique of backscattered electron image analysis showed unique advantages in this field. This paper compared the test results of cement hydration degree, Ca(OH2 content and pore size distribution in pure pastes by image analysis and other methods. Then the accuracy of qualitative study by image analysis was analyzed. The results showed that image analysis technique had displayed higher accuracy in quantifying cement hydration degree and Ca(OH2 content than non-evaporable water test and thermal analysis respectively.

  5. High-resolution MR imaging of the human brainstem in vivo at 7 Tesla

    Directory of Open Access Journals (Sweden)

    Andreas eDeistung

    2013-10-01

    Full Text Available The human brainstem, which comprises a multitude of axonal nerve fibers and nuclei, plays an important functional role in the human brain. Depicting its anatomy non-invasively with high spatial resolution may thus in turn help to better relate normal and pathological anatomical variations to medical conditions as well as neurological and peripheral functions. We explored the potential of high-resolution magnetic resonance imaging (MRI at 7T for depicting the intricate anatomy of the human brainstem in vivo by acquiring and generating images with multiple contrasts: T2-weighted images, quantitative maps of longitudinal relaxation rate (R1-maps and effective transverse relaxation rate (R2*-maps, magnetic susceptibility maps, and direction-encoded track-density images. Images and quantitative maps were compared with histological stains and anatomical atlases to identify nerve nuclei and nerve fibers. Among the investigated contrasts, susceptibility maps displayed the largest number of brainstem structures. Contrary to R1 maps and T2-weighted images, which showed rather homogeneous contrast, R2* maps, magnetic susceptibility maps and track-density images clearly displayed a multitude of smaller and larger fiber bundles. Several brainstem nuclei were identifiable in sections covering the pons and medulla oblongata, including the spinal trigeminal and the reticulotegmental nucleus on magnetic susceptibility maps as well as the inferior olive on R1, R2*, and susceptibility maps. The substantia nigra and red nuclei were visible in all contrasts. In conclusion, high-resolution, multi-contrast MR imaging at 7 Tesla is a versatile tool to non-invasively assess the individual anatomy and tissue composition of the human brainstem.

  6. Image Processing to Collect the Radius of Human Pupil.

    Directory of Open Access Journals (Sweden)

    Carlos Frederico Fronza

    2014-03-01

    Full Text Available The human activity is played by the nervous system, the neuropathy destroy the neuron and with that the capacity of data transmission by the nervous system is jeopardize[1]. Theanalysis of the autonomic nervous system (ANS can give some crucial answers regarding to the level of diabetic neuropathy allowing the earlier diagnosis[2]. Thehuman pupil light response.The follow project proposes the development a multiplatform methodology, using FPGAtoolfor acquiring, processing, analysis andclassification the data capture aimed theearly diagnosisofautonomic neuropathyin individuals withdiabetes mellitus.

  7. Development of a New Diagnosis Method for Incipient Caries in Human Teeth Based on Thermal Images under Pulse Heating

    Science.gov (United States)

    Sakagami, Takahide; Kubo, Shiro; Naganuma, Takeshi; Inoue, Tomoyasu; Matsuyama, Kazumasa; Nakashima, Shoji; Kaneko, Kenji

    A new noninvasive diagnosis method based on the pulse heating thermographic NDT was proposed for incipient caries of human teeth. Experiments were conducted to study the applicability of the proposed method to the quantitative evaluation of location and shape of the incipient caries as well as the quantitative diagnosis of the degree of incipient caries. The incipient caries were artificially introduced to the extracted human teeth with various severities. Impulse heat flux by the xenon flash lamp was applied to the surface of the tooth and sequential thermal images were taken by the high-speed infrared thermography. It was found that the caries were clearly identified as the localized high temperature region in the sequential thermal images. A coefficient of the temperature descent was obtained from sequential thermal images. It was found that the degree of the demineralization, i. e. the degree of incipient caries was evaluated from the temperature descent coefficient. Further the proposed technique was applied to the detection of natural incipient caries in an extracted human molar tooth. It was found that natural incipient caries was also clearly identified in the thermal images.

  8. A realistic phantom for validating MRI-based synthetic CT images of the human skull.

    Science.gov (United States)

    Soliman, Abraam S; Burns, Levi; Owrangi, Amir; Lee, Young; Song, William Y; Stanisz, Greg; Chugh, Brige P

    2017-06-23

    To introduce a new realistic human skull phantom for the validation of synthetic CT images of cortical bone from ultra-short echo-time (UTE) sequences. A human skull of an adult female was utilized as a realistic representation of skull cortical bone. The skull was stabilized in a special acrylic container and was filled with contrast agents that have T1 and T2 relaxation times similar to human brain. The phantom was MR scanned at 3T with UTE and T2 -weighted sequences, followed by CT. A clustering approach was developed to extract the cortical bone signal from MR images. T2∗ maps of the skull were calculated. Synthetic CT images of the bone were compared to cortical bone signal extracted from CT images and confounding factors, such as registration errors, were analyzed. Dice similarity coefficient (DSC) of UTE-detected cortical bone was 0.84 and gradually decreased with decreasing number of spokes. DSC did not significantly depend on echo-time. Registration errors were found to be significant confounding factors, with 25% decrease in DSC for consistent 2 mm error at each axis. This work introduced a new realistic human skull phantom, specifically for the evaluation and analysis of synthetic CT images of cortical bone. © 2017 American Association of Physicists in Medicine.

  9. Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2).

    Science.gov (United States)

    Shou, H; Eloyan, A; Lee, S; Zipunnikov, V; Crainiceanu, A N; Nebel, N B; Caffo, B; Lindquist, M A; Crainiceanu, C M

    2013-12-01

    This article proposes the image intraclass correlation (I2C2) coefficient as a global measure of reliability for imaging studies. The I2C2 generalizes the classic intraclass correlation (ICC) coefficient to the case when the data of interest are images, thereby providing a measure that is both intuitive and convenient. Drawing a connection with classical measurement error models for replication experiments, the I2C2 can be computed quickly, even in high-dimensional imaging studies. A nonparametric bootstrap procedure is introduced to quantify the variability of the I2C2 estimator. Furthermore, a Monte Carlo permutation is utilized to test reproducibility versus a zero I2C2, representing complete lack of reproducibility. Methodologies are applied to three replication studies arising from different brain imaging modalities and settings: regional analysis of volumes in normalized space imaging for characterizing brain morphology, seed-voxel brain activation maps based on resting-state functional magnetic resonance imaging (fMRI), and fractional anisotropy in an area surrounding the corpus callosum via diffusion tensor imaging. Notably, resting-state fMRI brain activation maps are found to have low reliability, ranging from .2 to .4. Software and data are available to provide easy access to the proposed methods.

  10. Application of local binary pattern and human visual Fibonacci texture features for classification different medical images

    Science.gov (United States)

    Sanghavi, Foram; Agaian, Sos

    2017-05-01

    The goal of this paper is to (a) test the nuclei based Computer Aided Cancer Detection system using Human Visual based system on the histopathology images and (b) Compare the results of the proposed system with the Local Binary Pattern and modified Fibonacci -p pattern systems. The system performance is evaluated using different parameters such as accuracy, specificity, sensitivity, positive predictive value, and negative predictive value on 251 prostate histopathology images. The accuracy of 96.69% was observed for cancer detection using the proposed human visual based system compared to 87.42% and 94.70% observed for Local Binary patterns and the modified Fibonacci p patterns.

  11. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    Science.gov (United States)

    Kobayashi, Masaki; Kikuchi, Daisuke; Okamura, Hitoshi

    2009-07-16

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  12. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    Directory of Open Access Journals (Sweden)

    Masaki Kobayashi

    Full Text Available The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  13. Tracking of iron-labeled human neural stem cells by magnetic resonance imaging in cell replacement therapy for Parkinson's disease.

    Science.gov (United States)

    Ramos-Gómez, Milagros; Martínez-Serrano, Alberto

    2016-01-01

    Human neural stem cells (hNSCs) derived from the ventral mesencephalon are powerful research tools and candidates for cell therapies in Parkinson's disease. However, their clinical translation has not been fully realized due, in part, to the limited ability to track stem cell regional localization and survival over long periods of time after in vivo transplantation. Magnetic resonance imaging provides an excellent non-invasive method to study the fate of transplanted cells in vivo. For magnetic resonance imaging cell tracking, cells need to be labeled with a contrast agent, such as magnetic nanoparticles, at a concentration high enough to be easily detected by magnetic resonance imaging. Grafting of human neural stem cells labeled with magnetic nanoparticles allows cell tracking by magnetic resonance imaging without impairment of cell survival, proliferation, self-renewal, and multipotency. However, the results reviewed here suggest that in long term grafting, activated microglia and macrophages could contribute to magnetic resonance imaging signal by engulfing dead labeled cells or iron nanoparticles dispersed freely in the brain parenchyma over time.

  14. Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry.

    Science.gov (United States)

    Nam, Kweon-Ho; Yeom, Eunseop; Ha, Hojin; Lee, Sang-Joon

    2012-01-01

    This study aims to investigate the blood flow around the perivalvular area in a human superficial vein using high-frequency ultrasound (HFUS) speckle image velocimetry. HFUS B-mode images were captured from the superficial veins of human lower extremity with a 35-MHz transducer. To measure the instantaneous velocity fields of blood flow, a cross-correlation particle