WorldWideScience

Sample records for human il-13 gene

  1. Clarithromycin attenuates IL-13–induced periostin production in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Kosaku Komiya

    2017-02-01

    Full Text Available Abstract Background Periostin is a biomarker indicating the presence of type 2 inflammation and submucosal fibrosis; serum periostin levels have been associated with asthma severity. Macrolides have immunomodulatory effects and are considered a potential therapy for patients with severe asthma. Therefore, we investigated whether macrolides can also modulate pulmonary periostin production. Methods Using quantitative PCR and ELISA, we measured periostin production in human lung fibroblasts stimulated by interleukin-13 (IL-13 in the presence of two 14-member–ring macrolides—clarithromycin or erythromycin—or a 16-member–ring macrolide, josamycin. Phosphorylation of signal transducers and activators of transcription 6 (STAT6, downstream of IL-13 signaling, was evaluated by Western blotting. Changes in global gene expression profile induced by IL-13 and/or clarithromycin were assessed by DNA microarray analysis. Results Clarithromycin and erythromycin, but not josamycin, inhibited IL-13–stimulated periostin production. The inhibitory effects of clarithromycin were stronger than those of erythromycin. Clarithromycin significantly attenuated STAT6 phosphorylation induced by IL-13. Global gene expression analyses demonstrated that IL-13 increased mRNA expression of 454 genes more than 4-fold, while decreasing its expression in 390 of these genes (85.9%, mainly “extracellular,” “plasma membrane,” or “defense response” genes. On the other hand, clarithromycin suppressed 9.8% of the genes in the absence of IL-13. Clarithromycin primarily attenuated the gene expression of extracellular matrix protein, including periostin, especially after IL-13. Conclusions Clarithromycin suppressed IL-13–induced periostin production in human lung fibroblasts, in part by inhibiting STAT6 phosphorylation. This suggests a novel mechanism of the immunomodulatory effect of clarithromycin in asthmatic airway inflammation and fibrosis.

  2. IFN-γ, IL-4 and IL-13 modulate responsiveness of human airway smooth muscle cells to IL-13

    Directory of Open Access Journals (Sweden)

    Michoud Marie-Claire

    2008-12-01

    Full Text Available Abstract Background IL-13 is a critical mediator of allergic asthma and associated airway hyperresponsiveness. IL-13 acts through a receptor complex comprised of IL-13Rα1 and IL-4Rα subunits with subsequent activation of signal transducer and activator of transcription 6 (STAT6. The IL-13Rα2 receptor may act as a decoy receptor. In human airway smooth muscle (HASM cells, IL-13 enhances cellular proliferation, calcium responses to agonists and induces eotaxin production. We investigated the effects of pre-treatment with IL-4, IL-13 and IFN-γ on the responses of HASM cells to IL-13. Methods Cultured HASM were examined for expression of IL-13 receptor subunits using polymerase chain reaction, immunofluorescence microscopy and flow cytometry. Effects of cytokine pre-treatment on IL-13-induced cell responses were assessed by looking at STAT6 phosphorylation using Western blot, eotaxin secretion and calcium responses to histamine. Results IL-13Rα1, IL-4Rα and IL-13Rα2 subunits were expressed on HASM cells. IL-13 induced phosphorylation of STAT6 which reached a maximum by 30 minutes. Pre-treatment with IL-4, IL-13 and, to a lesser degree, IFN-γ reduced peak STAT6 phosphorylation in response to IL-13. IL-13, but not IFN-γ, pre-treatment abrogated IL-13-induced eotaxin secretion. Pre-treatment with IL-4 or IL-13 abrogated IL-13-induced augmentation of the calcium transient evoked by histamine. Cytokine pre-treatment did not affect expression of IL-13Rα1 and IL-4Rα but increased expression of IL-13Rα2. An anti-IL-13Rα2 neutralizing antibody did not prevent the cytokine pre-treatment effects on STAT6 phosphorylation. Cytokine pre-treatment increased SOCS-1, but not SOCS-3, mRNA expression which was not associated with significant increases in protein expression. Conclusion Pre-treatment with IL-4 and IL-13, but not IFN-γ, induced desensitization of the HASM cells to IL-13 as measured by eotaxin secretion and calcium transients to histamine

  3. Maternal Genetic Variants of IL4/IL13 Pathway Genes on IgE With "Western or Eastern Environments/Lifestyles".

    Science.gov (United States)

    Zhang, Guicheng; Khoo, Siew-Kim; Mäkelä, Mika J; Candelaria, Pierre; Hayden, Catherine M; von Hertzen, Leena; Laatikainen, Tiina; Vartiainen, Erkki; Goldblatt, Jack; Haahtela, Tari; LeSouëf, Peter N

    2014-07-01

    We investigated maternal genetic effects of four IL-4/IL-13 pathway genes as well as their interactions with the "Western or Eastern lifestyles/environments" on IgE in Karelian children. This study included 609 children and their mothers. Total IgE levels in children and mothers were measured and 10 single nucleotide polymorphisms (SNPs) in IL-4, IL-4Ra, IL-13, and STAT6 were genotyped in mothers and their children. The maternal G allele of IL-13 130 (rs20541) was significantly (P=0.001) associated with decreased IgE in children in the Karelian population (Pooling Finnish and Russian children), as well as in Finnish (P=0.030) and Russian children (P=0.018). The IgE levels were significantly (P=0.001) higher in Russian children whose mothers were homozygous for the G allele of the IL-4Ra 50 (rs1805010) SNP than that in Russian children of mothers who were AG heterozygotes or AA homozygotes. After accounting for children's genotypes, we observed interactive effects on children's IgE for maternal IL-13 130 genotypes (P=0.014) and maternal IL-4Ra 50 genotypes (P=0.0003) with "Western or Eastern" lifestyles/environments. With the adjustment for multiple comparisons using a false discovery rate (FDR) of 0.05, the interactive effect of the maternal IL-4Ra50 SNP was significant. Maternal genetic variants in IL-4/IL-13 pathway genes, such as IL-13 130 and IL-4Ra50, influenced IgE levels in school children that were independent of the children's genetic effects. These effects differ in "Western or Eastern" environments.

  4. IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification

    Directory of Open Access Journals (Sweden)

    Yu L

    2018-01-01

    Full Text Available Lei Yu,1 Na Li,1 Jisheng Zhang,2 Yan Jiang1 1Department of Otorhinolaryngology, 2Key Laboratory of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China Introduction: Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC, remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods: The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects.Results: We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion: These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases. Keywords: IL-13, H3K4me3 modification, nasal epithelial cell, differentiation 

  5. Structural Characterisation Reveals Mechanism of IL-13-Neutralising Monoclonal Antibody Tralokinumab as Inhibition of Binding to IL-13Rα1 and IL-13Rα2.

    Science.gov (United States)

    Popovic, B; Breed, J; Rees, D G; Gardener, M J; Vinall, L M K; Kemp, B; Spooner, J; Keen, J; Minter, R; Uddin, F; Colice, G; Wilkinson, T; Vaughan, T; May, R D

    2017-01-20

    Interleukin (IL)-13 is a pleiotropic T helper type 2 cytokine frequently associated with asthma and atopic dermatitis. IL-13-mediated signalling is initiated by binding to IL-13Rα1, which then recruits IL-4Rα to form a heterodimeric receptor complex. IL-13 also binds to IL-13Rα2, considered as either a decoy or a key mediator of fibrosis. IL-13-neutralising antibodies act by preventing IL-13 binding to IL-13Rα1, IL-4Rα and/or IL-13Rα2. Tralokinumab (CAT-354) is an IL-13-neutralising human IgG4 monoclonal antibody that has shown clinical benefit in patients with asthma. To decipher how tralokinumab inhibits the effects of IL-13, we determined the structure of tralokinumab Fab in complex with human IL-13 to 2 Å resolution. The structure analysis reveals that tralokinumab prevents IL-13 from binding to both IL-13Rα1 and IL-13Rα2. This is supported by biochemical ligand-receptor interaction assay data. The tralokinumab epitope is mainly composed of residues in helices D and A of IL-13. It is mostly light chain complementarity-determining regions that are driving paratope interactions; the variable light complementarity-determining region 2 plays a key role by providing residue contacts for a network of hydrogen bonds and a salt bridge in the core of binding. The key residues within the paratope contributing to binding were identified as Asp50, Asp51, Ser30 and Lys31. This study demonstrates that tralokinumab prevents the IL-13 pharmacodynamic effect by binding to IL-13 helices A and D, thus preventing IL-13 from interacting with IL-13Rα1 and IL-13Rα2. Copyright © 2016 AstraZeneca. Published by Elsevier Ltd.. All rights reserved.

  6. Note of the methodological flaws in the paper entitled "Polymorphisms in IL-4/IL-13 pathway genes and glioma risk: an updated meta-analysis".

    Science.gov (United States)

    Wang, Ting-Ting; Li, Jin-Mei; Zhou, Dong

    2016-01-01

    With great interest, we read the paper "Polymorphisms in IL-4/IL-13 pathway genes and glioma risk: an updated meta-analysis" (by Chen PQ et al.) [1], which has reached important conclusions about the relationship between polymorphisms in interleukin (IL)-4/IL-13 pathway genes and glioma risk. Through quantitative analysis, the meta-analysis found no association between IL-4/IL-13 pathway genetic polymorphisms and glioma risk (Chen et al. in Tumor Biol 36:121-127, 2015). The meta-analysis is the most comprehensive study of polymorphisms in the IL-4/IL-13 pathway and glioma risk. Nevertheless, some deficiencies still exist in this meta-analysis that we would like to raise.

  7. DMPD: Differential responses of human monocytes and macrophages to IL-4 and IL-13. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534111 Differential responses of human monocytes and macrophages to IL-4 and IL-1...):575-8. (.png) (.svg) (.html) (.csml) Show Differential responses of human monocytes and macrophages to IL-...4 and IL-13. PubmedID 10534111 Title Differential responses of human monocytes an

  8. IL-13 and its genetic variants: effect on current asthma treatments.

    Science.gov (United States)

    Townley, Robert G; Sapkota, Muna; Sapkota, Kiran

    2011-12-01

    Airway hyperresponsiveness is an essential part of the definition of asthma associated temporally with exposure to allergens, certain respiratory viruses, pollutants such as ozone, and certain organic chemicals. Interleukin-13 (IL-13) is implicated as a central regulator in immunoglobulin E (IgE) synthesis, mucus hypersecretion, airway hyperresponsiveness, and fibrosis. The importance of IL-13 in allergic disorders in humans is supported by consistent associations between tissue IL-13 levels and genetic variants in the IL-13 gene and asthma and related traits. Single-nucleotide polymorphisms in IL-13 are associated with allergic phenotypes in several ethnically diverse populations. Glucocorticoids are anti-inflammatory medications often used as maintenance therapy in acute and chronic asthma; however, some patients with severe asthma are steroid resistant. IL-13 remains elevated in glucocorticoid insensitive asthma but not in glucocorticoid sensitive asthma. Thus targeting IL-13 and its associated receptors may be a therapeutic approach to the treatment of asthma and/or allergy. This review focuses on the role of IL-13 on airway hyperresponsiveness and corticosteroids resistant asthma both preclinically and clinically. © Discovery Medicine

  9. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts

    Science.gov (United States)

    Semov, Alexandre; Semova, Nathalia; Lacelle, Chantale; Marcotte, Richard; Petroulakis, Emmanuel; Proestou, Gregory; Wang, Eugenia

    2002-01-01

    Spaceflight, just like aging, causes profound changes in musculoskeletal parameters, which result in decreased bone density and muscular weakness. As these conditions decrease our ability to conduct long-term manned space missions, and increase bone frailty in the elderly, the identification of genes responsible for the apparition of these physiological changes will be of great benefit. Thus, we developed and implemented a new microarray approach to investigate the changes in normal WI38 human fibroblast gene expression that arise as a consequence of space flight. Using our microarray, we identified changes in the level of expression of 10 genes, belonging to either the tumor necrosis factor- (TNF) or interleukin- (IL) related gene families in fibroblasts when WI38 cells exposed to microgravity during the STS-93 Space Shuttle mission were compared with ground controls. The genes included two ligands from the TNF superfamily, TWEAK and TNFSF15; two TNF receptor-associated proteins, NSMAF and PTPN13; three TNF-inducible genes, ABC50, PTX3, and SCYA13; TNF-alpha converting enzyme, IL-1 receptor antagonist, and IL-15 receptor alpha chain. Most of these are involved in either the regulation of bone density, and as such the development of spaceflight osteopenia, or in the development of proinflammatory status.

  10. Recombinant human growth-regulated oncogene-alpha induces T lymphocyte chemotaxis. A process regulated via IL-8 receptors by IFN-gamma, TNF-alpha, IL-4, IL-10, and IL-13

    DEFF Research Database (Denmark)

    Jinquan, T; Frydenberg, Jane; Mukaida, N

    1995-01-01

    receptors on the cells. This process can be augmented by IFN-gamma and TNF-alpha, and inhibited by IL-4, IL-10, and IL-13. In addition, we also document that on T lymphocytes there exist IL-8 receptors that can be up-regulated by IFN-gamma, TNF-alpha, and IL-2. Our results demonstrate that rhGRO-alpha gene...

  11. IL-33 stimulates expression of the GPR84 (EX33) fatty acid receptor gene and of cytokine and chemokine genes in human adipocytes.

    Science.gov (United States)

    Zaibi, Mohamed S; Kępczyńska, Małgorzata A; Harikumar, Parvathy; Alomar, Suliman Y; Trayhurn, Paul

    2018-05-15

    Expression of GPCR fatty acid sensor/receptor genes in adipocytes is modulated by inflammatory mediators, particularly IL-1β. In this study we examined whether the IL-1 gene superfamily member, IL-33, also regulates expression of the fatty acid receptor genes in adipocytes. Human fat cells, differentiated from preadipocytes, were incubated with IL-33 at three different dose levels for 3 or 24 h and mRNA measured by qPCR. Treatment with IL-33 induced a dose-dependent increase in GPR84 mRNA at 3 h, the level with the highest dose being 13.7-fold greater than in controls. Stimulation of GPR84 expression was transitory; the mRNA level was not elevated at 24 h. In contrast to GPR84, IL-33 had no effect on GPR120 expression. IL-33 markedly stimulated expression of the IL1B, CCL2, IL6, CXCL2 and CSF3 genes, but there was no effect on ADIPOQ expression. The largest effect was on CSF3, the mRNA level of which increased 183-fold over controls at 3 h with the highest dose of IL-33; there was a parallel increase in the secretion of G-CSF protein into the medium. It is concluded that in human adipocytes IL-33, which is synthesised in adipose tissue, has a strong stimulatory effect on the expression of cytokine and chemokine genes, particularly CSF3, and on the expression of GPR84, a pro-inflammatory fatty acid receptor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A preliminary study on the association of single nucleotide polymorphisms of interleukin 4 (IL4, IL13, IL4 receptor alpha (IL4Rα & Toll-like receptor 4 (TLR4 genes with asthma in Indian adults

    Directory of Open Access Journals (Sweden)

    Parisa Davoodi

    2015-01-01

    Full Text Available Background & objectives: Interleukin 4 (IL4 and IL13 genes are believed to be responsible for inflammation of the airways in asthmatics. These share a common receptor component called IL4Rα which is another potentially important candidate gene linked to asthma phenotypes. Another gene Toll-like receptor 4 (TLR4 might affect the incidence or progression of asthma through the expression of proinflammatory genes. Several single nucleotide polymorphisms (SNPs in IL4, IL13, IL4Rα and TLR4 have been reported to be linked to asthma or related phenotypes in several ethnic populations using linkage studies and association studies. However, the results have not been consistent. We investigated five SNPs (C-589T and C-33T of IL4, G+2044A of IL13, A+1902G of IL4Rα, and A+896G of TLR4 in patients with adult onset asthma to evaluate their role in manifestation and severity of asthma. Methods: Adult (>18 yr of age patients with asthma (n=100 and healthy controls (n=50 were included in the study. Genotyping was performed using sequenom MassARRAY technology. Results: The mutant alleles of the C-589T and C-33T SNPs in the promoter region of IL4 were present in 4 per cent patients with asthma but absent from the control group suggesting that the variations in IL4 may contribute to asthma occurrence. The SNPs of other genes were seen in both controls and patients. Interpretation & conclusions: The results suggest the possible association between the genetic distribution of C-589T and C-33T SNPs of IL4 with asthma in Indian adults.

  13. A late IL-33 response after exposure to Schistosoma haematobium antigen is associated with an up-regulation of IL-13 in human eosinophils

    DEFF Research Database (Denmark)

    Wilson, S.; Jones, F. M.; Fofana, H. K. M.

    2013-01-01

    IL-33, a proposed alarmin, stimulates innate immune cells and Th2 cells to produce IL-13 and is rapidly upregulated upon antigen exposure in murine helminth infection. The human IL-33 response to helminth antigen was analysed in Malians infected with Schistosoma haematobium by disrupting parasite...... integrity via chemotherapy. Plasma IL-33 was measured pretreatment, and 24 h and 9 weeks post-treatment. At 24 h post-treatment, IL-33 levels were low. Nine week post-treatment IL-33 levels were elevated and were associated with an increase in intracellular IL-13 in eosinophils. Up......-regulation of intracellular IL-13 in eosinophils was also associated with eosinophil expression of ST2L, the IL-33 receptor. IL-33 may play an important downstream role in the human response to schistosome adult worm antigen exposure....

  14. IL26 gene inactivation in Equidae.

    Science.gov (United States)

    Shakhsi-Niaei, M; Drögemüller, M; Jagannathan, V; Gerber, V; Leeb, T

    2013-12-01

    Interleukin-26 (IL26) is a member of the IL10 cytokine family. The IL26 gene is located between two other well-known cytokines genes of this family encoding interferon-gamma (IFNG) and IL22 in an evolutionary conserved gene cluster. In contrast to humans and most other mammals, mice lack a functional Il26 gene. We analyzed the genome sequences of other vertebrates for the presence or absence of functional IL26 orthologs and found that the IL26 gene has also become inactivated in several equid species. We detected a one-base pair frameshift deletion in exon 2 of the IL26 gene in the domestic horse (Equus caballus), Przewalski horse (Equus przewalskii) and donkey (Equus asinus). The remnant IL26 gene in the horse is still transcribed and gives rise to at least five alternative transcripts. None of these transcripts share a conserved open reading frame with the human IL26 gene. A comparative analysis across diverse vertebrates revealed that the IL26 gene has also independently been inactivated in a few other mammals, including the African elephant and the European hedgehog. The IL26 gene thus appears to be highly variable, and the conserved open reading frame has been lost several times during mammalian evolution. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  15. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma.

    Science.gov (United States)

    Agrawal, Swati; Townley, Robert G

    2014-02-01

    Asthma markedly diminishes quality of life due to limited activity, absences from work or school and hospitalizations. Patients with severe asthma which are not controlled despite taking effective therapy are most in need of new treatment approaches. IL-13 was demonstrated as 'central mediator of allergic asthma'. IL-13 has been implicated in the pathogenesis of asthma, idiopathic pulmonary fibrosis and COPD. IL-13 levels in the sputum and bronchial biopsy samples remain elevated in severe asthma despite the use of inhaled and systemic corticosteroids. Thus, IL-13 is a mediator involved in corticosteroid resistance. Periostin enhances profibrotic TGF-β signaling in subepithelial fibrosis associated with asthma. IL-13 induces bronchial epithelial cells to secrete periostin. Periostin may be a biomarker for Th2 induced airway inflammation. Lebrikizumab is a monoclonal antibody against IL-13. Lebrikizumab improved lung function in asthmatics who were symptomatic despite treatment with long acting beta agonist and inhaled corticosteroids and provided benefit in the treatment of severe uncontrolled asthma. Lebrikizumab block IL-13 signaling through the IL-13Rα1/IL-4Rα receptor. There was a larger reduction in FENO in the high periostin subgroup than in the low periostin subgroup (34.4 vs 4.3%). Serum CCL17, CCL13 and total IgE levels decreased in the lebrikizumab group.

  16. Transcriptional regulation of human IL-5 gene expression by ionizing radiation in jurkat T cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu-Hesselmann, J.; Messer, G.; Kind, P.; Peter, R.U. [Munich Univ., Ludwig-Maximilians (Germany). Dept. of Dermatology; Lu-Hesselmann, J.; Van Beuningen, D.; Peter, R.U. [Federal Armed Forces Medical Academy, Munich (Germany). Institute of Radiobiology

    1997-03-01

    In this study, is performed the functional characterization of the human IL-5 gene promoter in response to ionizing radiation and demonstrated the negative regulatory effects of NF-ATp DNA-binding at position from -117 to -97 bp within the human IL-5 gene promoter. (N.C.)

  17. Association of a four-locus gene model including IL13, IL4, FCER1B, and ADRB2 with the Asthma Predictive Index and atopy in Chinese Han children.

    Science.gov (United States)

    Bai, S; Hua, L; Wang, X; Liu, Q; Bao, Y

    2018-05-11

    Asthma is a complex and heterogeneous disease. We found that gene-gene interactions among IL13 rs20541, IL4 rs2243250, ADRB2 rs1042713, and FCER1B rs569108 in asthmatic children of Chinese Han nationality. This four-locus set constituted an optimal statistical interaction model. Objective: This study examined associations of the four-gene model consisting of IL13, IL4, FCER1B, and ADRB2 with the Asthma Predictive Index (API) and atopy in Chinese Han children. Four single-nucleotide polymorphisms (SNPs) in the four genes were genotyped in 385 preschool children with wheezing symptoms using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Student's t test and x2 tests were used for this analysis. : Significant correlations were found between the four-locus gene model and the stringent and loose API (both Pfour-locus gene model with atopy (Pfour-locus gene model consisting of L13 rs20541, IL4 rs2243250, ADRB2 rs1042713 and FCER1B rs569108 was associated with the API and atopy. These findings provide an evidence of the gene model for determining a high risk of developing asthma and atopy in Chinese Han children.

  18. Measurement of IL-13-induced iNOS-derived gas phase nitric oxide in human bronchial epithelial cells.

    Science.gov (United States)

    Suresh, Vinod; Mih, Justin D; George, Steven C

    2007-07-01

    Exhaled nitric oxide (NO) is altered in numerous diseases including asthma, and is thought broadly to be a noninvasive marker of inflammation. However, the precise source of exhaled NO has yet to be identified, and the interpretation is further hampered by significant inter-subject variation. Using fully differentiated normal human bronchial epithelial (NHBE) cells, we sought to determine (1) the rate of NO release (flux, pl.s(-1.)cm(-2)) into the gas; (2) the effect of IL-13, a prominent mediator of allergic inflammation, on NO release; and (3) inter-subject/donor variability in NO release. NHBE cells from three different donors were cultured at an air-liquid interface and stimulated with different concentrations of IL-13 (0, 1, and 10 ng/ml) for 48 h. Gas phase NO concentrations in the headspace over the cells were measured using a chemiluminescence analyzer. The basal NO flux from the three donors (0.05 +/- 0.03) is similar in magnitude to that estimated from exhaled NO concentrations, and was significantly increased by IL-13 in a donor-specific fashion. The increase in NO release was strongly correlated with inducible nitric oxide synthase (iNOS) gene and protein expression. There was a trend toward enhanced production of nitrate relative to nitrite as an end product of NO metabolism in IL-13-stimulated cells. NO release from airway epithelial cells can be directly measured. The rate of release in response to IL-13 is strongly dependent on the individual donor, but is primarily due to the expression of iNOS.

  19. IL-1 family members IL-18 and IL-33 upregulate the inflammatory potential of differentiated human Th1 and Th2 cultures

    DEFF Research Database (Denmark)

    Blom, Lars; Poulsen, Lars K.

    2012-01-01

    The IL-1 family members IL-1ß, IL-18, and IL-33 are potent cytokines in relationship to amplifying the CD4(+) T cell cytokine production. To evaluate their impact on in vitro-differentiated human Th1 and Th2 cultures, such cultures were established from naive T cells, purified from healthy blood...... donors, and reactivated in the presence of IL-1ß, IL-18, or IL-33. Interestingly, we observe modifying responses in Th1 and Th2 cultures induced by IL-18 or IL-33 but not by IL-1ß, both contributing to amplify production of IL-5, IL-13, and IFN-¿. IL-18 or IL-33 stimulation of Th1 cultures resulted...... in increased IFN-¿ and IL-13 production concurrent with reduced IL-10 gene transcription and secretion even though Th1 cultures, in contrast to IL-18Ra, had low ST2L expression. Furthermore, adding IL-18 to Th1 cultures promoted Tbet mRNA expression and production. Th2 cultures stimulated with IL-18 or IL-33...

  20. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko; Kondo, Ayami; Mogi, Makio; Nakamura, Hiroshi

    2014-01-01

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7 + hSMSC)-derived osteoblast-like (α7 + hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7 + hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7 + hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7 + hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via ADAM-28

  1. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Nakamura, Hiroshi [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan)

    2014-04-15

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7{sup +}hSMSC)-derived osteoblast-like (α7{sup +}hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7{sup +}hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7{sup +}hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7{sup +}hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via

  2. Histone modification enhances the effectiveness of IL-13 receptor targeted immunotoxin in murine models of human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Puri Raj K

    2011-04-01

    Full Text Available Abstract Background Interleukin-13 Receptor α2 (IL-13Rα2 is a tumor-associated antigen and target for cancer therapy. Since IL-13Rα2 is heterogeneously overexpressed in a variety of human cancers, it would be highly desirable to uniformly upregulate IL-13Rα2 expression in tumors for optimal targeting. Methods We examined epigenetic regulation of IL-13Rα2 in a murine model of human pancreatic cancer by Bisulfite-PCR, sequencing for DNA methylation and chromatin immunoprecipitation for histone modification. Reverse transcription-PCR was performed for examining changes in IL-13Rα2 mRNA expression after treatment with histone deacetylase (HDAC and c-jun inhibitors. In vitro cytotoxicity assays and in vivo testing in animal tumor models were performed to determine whether HDAC inhibitors could enhance anti-tumor effects of IL-13-PE in pancreatic cancer. Mice harboring subcutaneous tumors were treated with HDAC inhibitors systemically and IL-13-PE intratumorally. Results We found that CpG sites in IL-13Rα2 promoter region were not methylated in all pancreatic cancer cell lines studied including IL-13Rα2-positive and IL-13Rα2-negative cell lines and normal cells. On the other hand, histones at IL-13Rα2 promoter region were highly-acetylated in IL-13Rα2-positive but much less in receptor-negative pancreatic cancer cell lines. When cells were treated with HDAC inhibitors, not only histone acetylation but also IL-13Rα2 expression was dramatically enhanced in receptor-negative pancreatic cancer cells. In contrast, HDAC inhibition did not increase IL-13Rα2 in normal cell lines. In addition, c-jun in IL-13Rα2-positive cells was expressed at higher level than in negative cells. Two types of c-jun inhibitors prevented increase of IL-13Rα2 by HDAC inhibitors. HDAC inhibitors dramatically sensitized cancer cells to immunotoxin in the cytotoxicity assay in vitro and increased IL-13Rα2 in the tumors subcutaneously implanted in the immunodeficient

  3. Measurement of IL-13–Induced iNOS-Derived Gas Phase Nitric Oxide in Human Bronchial Epithelial Cells

    Science.gov (United States)

    Suresh, Vinod; Mih, Justin D.; George, Steven C.

    2007-01-01

    Exhaled nitric oxide (NO) is altered in numerous diseases including asthma, and is thought broadly to be a noninvasive marker of inflammation. However, the precise source of exhaled NO has yet to be identified, and the interpretation is further hampered by significant inter-subject variation. Using fully differentiated normal human bronchial epithelial (NHBE) cells, we sought to determine (1) the rate of NO release (flux, pl·s−1.cm−2) into the gas; (2) the effect of IL-13, a prominent mediator of allergic inflammation, on NO release; and (3) inter-subject/donor variability in NO release. NHBE cells from three different donors were cultured at an air–liquid interface and stimulated with different concentrations of IL-13 (0, 1, and 10 ng/ml) for 48 h. Gas phase NO concentrations in the headspace over the cells were measured using a chemiluminescence analyzer. The basal NO flux from the three donors (0.05 ± 0.03) is similar in magnitude to that estimated from exhaled NO concentrations, and was significantly increased by IL-13 in a donor-specific fashion. The increase in NO release was strongly correlated with inducible nitric oxide synthase (iNOS) gene and protein expression. There was a trend toward enhanced production of nitrate relative to nitrite as an end product of NO metabolism in IL-13–stimulated cells. NO release from airway epithelial cells can be directly measured. The rate of release in response to IL-13 is strongly dependent on the individual donor, but is primarily due to the expression of iNOS. PMID:17347445

  4. Polymorphism of the IL13 gene may be associated with Uterine leiomyomas in Slovenian women

    Directory of Open Access Journals (Sweden)

    Krsteski J

    2016-12-01

    Full Text Available Uterine leiomyomas (ULM are a common cause of solid pelvic tumors in women. Their etiopathogenesis remains unclear. Interleukins (ILs and their receptors can influence tumor biology of ULM. The aim of this study was to evaluate single nucleotide polymorphisms (SNPs exhibited in the genes IL4 (rs2070874, IL4R (rs1801275, IL12RB1 (rs11575934, IL12B (rs6887695, IL13 (rs20541 and IL23R (rs7517847 as risk factors for ULM in Slovenian women and to identify associations between corresponding clinical parameters and the analyzed SNPs. In addition, solitary and multiple ULM were compared to identify clinical and/or genetic parameters influencing their occurrence. We conducted a case-control study that included 181 women with leiomyomas and 133 control subjects. Genotyping of selected SNPs was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP and high resolution melting (HRM techniques. The TT genotype of rs20541 (IL13 was significantly associated with decreased risk of ULM compared to both the CC and CT genotypes [p = 0.018; odds ratio (OR = 0.184; 95% confidence interval (95% CI = 0.048-0.7121. Using genetic and clinical data to develop a predictive model with logistic regression, we found that adenomyosis, higher age at diagnosis, family history of ULM occurrence, earlier menarche, lower number of pregnancies and lower age at first sexual intercourse, the G allele and genotypes AG and GG of rs1801275 (IL4R were associated with an increased risk of multiple ULM occurrence. We also found an association between rs20541 (IL13 and 17ß-estradiol serum levels in patients with multiple ULM (p 0.003. Our study showed, for the first time, that rs20541 (IL13 may contribute to susceptibility of ULM development and that rs1801275 (IL4R can predispose patients to develop multiple ULM.

  5. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Directory of Open Access Journals (Sweden)

    Paola Di Meglio

    2011-02-01

    Full Text Available IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A and common (G allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  6. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Science.gov (United States)

    Di Meglio, Paola; Di Cesare, Antonella; Laggner, Ute; Chu, Chung-Ching; Napolitano, Luca; Villanova, Federica; Tosi, Isabella; Capon, Francesca; Trembath, Richard C; Peris, Ketty; Nestle, Frank O

    2011-02-22

    IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A) and common (G) allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  7. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  8. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells.

    Science.gov (United States)

    Brown, Christine E; Starr, Renate; Aguilar, Brenda; Shami, Andrew F; Martinez, Catalina; D'Apuzzo, Massimo; Barish, Michael E; Forman, Stephen J; Jensen, Michael C

    2012-04-15

    To evaluate IL13Rα2 as an immunotherapeutic target for eliminating glioma stem-like cancer initiating cells (GSC) of high-grade gliomas, with particular focus on the potential of genetically engineered IL13Rα2-specific primary human CD8(+) CTLs (IL13-zetakine(+) CTL) to target this therapeutically resistant glioma subpopulation. A panel of low-passage GSC tumor sphere (TS) and serum-differentiated glioma lines were expanded from patient glioblastoma specimens. These glioblastoma lines were evaluated for expression of IL13Rα2 and for susceptibility to IL13-zetakine(+) CTL-mediated killing in vitro and in vivo. We observed that although glioma IL13Rα2 expression varies between patients, for IL13Rα2(pos) cases this antigen was detected on both GSCs and more differentiated tumor cell populations. IL13-zetakine(+) CTL were capable of efficient recognition and killing of both IL13Rα2(pos) GSCs and IL13Rα2(pos) differentiated cells in vitro, as well as eliminating glioma-initiating activity in an orthotopic mouse tumor model. Furthermore, intracranial administration of IL13-zetakine(+) CTL displayed robust antitumor activity against established IL13Rα2(pos) GSC TS-initiated orthotopic tumors in mice. Within IL13Rα2 expressing high-grade gliomas, this receptor is expressed by GSCs and differentiated tumor populations, rendering both targetable by IL13-zetakine(+) CTLs. Thus, our results support the potential usefullness of IL13Rα2-directed immunotherapeutic approaches for eradicating therapeutically resistant GSC populations. ©2012 AACR.

  9. Targeting the IL-33/IL-13 Axis for Respiratory Viral Infections.

    Science.gov (United States)

    Donovan, Chantal; Bourke, Jane E; Vlahos, Ross

    2016-04-01

    Lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are highly prevalent worldwide. One of the major factors that limits the efficacy of current medication in these patients are viral infections, leading to exacerbations of symptoms and decreased quality of life. Current pharmacological strategies targeting virus-induced lung disease are problematic due to antiviral resistance and the requirement for strain-specific vaccination. Thus, new therapeutic strategies are urgently required. In this Opinion article, we provide state-of-the-art evidence from humans and preclinical animal models implicating the interleukin (IL)-33/IL-13 axis in virus-induced lung disease. Thus, targeting the IL-33/IL-13 axis may be a feasible way to overcome the limitations of current therapy used to treat virus-induced exacerbations of lung disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. MicroRNA-143 Downregulates Interleukin-13 Receptor Alpha1 in Human Mast Cells

    Directory of Open Access Journals (Sweden)

    Jianqiu Cheng

    2013-08-01

    Full Text Available MicroRNA-143 (miR-143 was found to be downregulated in allergic rhinitis, and bioinformatics analysis predicted that IL-13Rα1 was a target gene of miR-143. To understand the molecular mechanisms of miR-143 involved in the pathogenesis of allergic inflammation, recombinant miR-143 plasmid vectors were constructed, and human mast cell-1(HMC-1 cells which play a central role in the allergic response were used for study. The plasmids were transfected into HMC-1 cells using a lentiviral vector. Expression of IL-13Rα1 mRNA was then detected by reverse transcriptase polymerase chain reaction (RT-PCR and Western Blotting. The miR-143 lentiviral vector was successfully stably transfected in HMC-1 cells for target gene expression. Compared to the control, the target gene IL-13Rα1 was less expressed in HMC-1 transfected with miR-143 as determined by RT-PCR and Western Blotting (p < 0.05; this difference in expression was statistically significant and the inhibition efficiency was 71%. It indicates that miR-143 directly targets IL-13Rα1 and suppresses IL-13Rα1 expression in HMC-1 cells. Therefore, miR-143 may be associated with allergic reaction in human mast cells.

  11. IL-13 and the IL-13 receptor as therapeutic targets for asthma and allergic disease.

    Science.gov (United States)

    Mitchell, Jesse; Dimov, Vesselin; Townley, Robert G

    2010-05-01

    It is widely accepted that T-helper 2 cell (Th2) cytokines play an important role in the maintenance of asthma and allergy. Emerging evidence has highlighted the role of IL-13 in the pathogenesis of these diseases. In particular, IL-13 is involved in the regulation of IgE synthesis, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration, and has been associated with the regulation of certain chemokine receptors, notably CCR5. Thus, targeting IL-13 and its associated receptors may be a therapeutic approach to the treatment of asthma and/or allergy. Pharmaceutical and biotechnology companies are researching various strategies, based on this approach, aimed at binding IL-13, increasing the level of the IL-13 decoy receptor, IL-13Ralpha2, or blocking the effect of the chemokine receptor CCR5. This review focuses on the therapeutic potential of anti-IL-13 agents and their role in the treatment of asthma and allergy.

  12. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    Science.gov (United States)

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  13. HO-1 inhibits IL-13-induced goblet cell hyperplasia associated with CLCA1 suppression in normal human bronchial epithelial cells.

    Science.gov (United States)

    Mishina, Kei; Shinkai, Masaharu; Shimokawaji, Tadasuke; Nagashima, Akimichi; Hashimoto, Yusuke; Inoue, Yoriko; Inayama, Yoshiaki; Rubin, Bruce K; Ishigatsubo, Yoshiaki; Kaneko, Takeshi

    2015-12-01

    Mucus hypersecretion and goblet cell hyperplasia are common features that characterize asthma. IL-13 increases mucin (MUC) 5AC, the major component of airway mucus, in airway epithelial cells. According to the literature, IL-13 receptor activation leads to STAT6 activation and consequent induction of chloride channel accessory 1 (CLCA1) gene expression, associated with the induction of MUC5AC. Heme oxygenase-1 (HO-1) is an enzyme that catalyzes oxidation of heme to biliverdin, and has anti-inflammatory and anti-oxidant properties. We examined the effects of HO-1 on mucin production and goblet cell hyperplasia induced by IL-13. Moreover, we assessed the cell signaling intermediates that appear to be responsible for mucin production. Normal human bronchial epithelial (NHBE) cells were grown at air liquid interface (ALI) in the presence or absence of IL-13 and hemin, a HO-1 inducer, for 14 days. Protein concentration was analyzed using ELISA, and mRNA expression was examined by real-time PCR. Histochemical analysis was performed using HE staining, andWestern blotting was performed to evaluate signaling transduction pathway. Hemin (4 μM) significantly increased HO-1 protein expression (p b 0.01) and HO-1 mRNA expression (p b 0.001). IL-13 significantly increased goblet cells, MUC5AC protein secretion (p b 0.01) and MUC5AC mRNA (p b 0.001), and these were decreased by hemin by way of HO-1. Tin protoporphyrin (SnPP)-IX, a HO-1 inhibitor, blocked the effect of hemin restoring MUC5AC protein secretion (p b 0.05) and goblet cell hyperplasia. Hemin decreased the expression of CLCA1 mRNA (p b 0.05) and it was reversed by SnPP-IX, but could not suppress IL-13-induced phosphorylation of STAT6 or SAM pointed domain-containing ETS transcription factor (SPDEF) and Forkhead box A2 (FOXA2) mRNA expression. In summary, HO-1 overexpression suppressed IL-13-induced goblet cell hyperplasia and MUC5AC production, and involvement of CLCA1 in the mechanism was suggested.

  14. IL-13 R130Q single nucleotide polymorphism in asthmatic Egyptian ...

    African Journals Online (AJOL)

    Background: Asthma and its associated phenotypes are under a substantial degree of genetic control. The common variant IL-13 gene polymorphism R130Q is reported to be associated with the risk of development of asthma in some populations. Objective: We sought to study the association of IL-13 genetic variant R130Q ...

  15. [Cloning of VH and VL Gene of Human anti-IL1RAP McAb and Construction of Recombinant Chimeric Receptor].

    Science.gov (United States)

    Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin

    2015-10-01

    To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.

  16. IL-13 induces a bronchial epithelial phenotype that is profibrotic

    Directory of Open Access Journals (Sweden)

    Dinh Bao T

    2008-03-01

    Full Text Available Abstract Background Inflammatory cytokines (e.g. IL-13 and mechanical perturbations (e.g. scrape injury to the epithelium release profibrotic factors such as TGF-β2, which may, in turn, stimulate subepithelial fibrosis in asthma. We hypothesized that prolonged IL-13 exposure creates a plastic epithelial phenotype that is profibrotic through continuous secretion of soluble mediators at levels that stimulate subepithelial fibrosis. Methods Normal human bronchial epithelial cells (NHBE were treated with IL-13 (0, 0.1, 1, or 10 ng/ml for 14 days (day 7 to day 21 following seeding at an air-liquid interface during differentiation, and then withdrawn for 1 or 7 days. Pre-treated and untreated NHBE were co-cultured for 3 days with normal human lung fibroblasts (NHLF embedded in rat-tail collagen gels during days 22–25 or days 28–31. Results IL-13 induced increasing levels of MUC5AC protein, and TGF-β2, while decreasing β-Tubulin IV at day 22 and 28 in the NHBE. TGF-β2, soluble collagen in the media, salt soluble collagen in the matrix, and second harmonic generation (SHG signal from fibrillar collagen in the matrix were elevated in the IL-13 pre-treated NHBE co-cultures at day 25, but not at day 31. A TGF-β2 neutralizing antibody reversed the increase in collagen content and SHG signal. Conclusion Prolonged IL-13 exposure followed by withdrawal creates an epithelial phenotype, which continuously secretes TGF-β2 at levels that increase collagen secretion and alters the bulk optical properties of an underlying fibroblast-embedded collagen matrix. Extended withdrawal of IL-13 from the epithelium followed by co-culture does not stimulate fibrosis, indicating plasticity of the cultured airway epithelium and an ability to return to a baseline. Hence, IL-13 may contribute to subepithelial fibrosis in asthma by stimulating biologically significant TGF-β2 secretion from the airway epithelium.

  17. Genetic variation at the Th2 immune gene IL13 is associated with IgE-mediated paediatric food allergy.

    Science.gov (United States)

    Ashley, S E; Tan, H-T T; Peters, R; Allen, K J; Vuillermin, P; Dharmage, S C; Tang, M L K; Koplin, J; Lowe, A; Ponsonby, A-L; Molloy, J; Matheson, M C; Saffery, R; Ellis, J A; Martino, D

    2017-08-01

    Food allergies pose a considerable world-wide public health burden with incidence as high as one in ten in 12-month-old infants. Few food allergy genetic risk variants have yet been identified. The Th2 immune gene IL13 is a highly plausible genetic candidate as it is central to the initiation of IgE class switching in B cells. Here, we sought to investigate whether genetic polymorphisms at IL13 are associated with the development of challenge-proven IgE-mediated food allergy. We genotyped nine IL13 "tag" single nucleotide polymorphisms (tag SNPs) in 367 challenge-proven food allergic cases, 199 food-sensitized tolerant cases and 156 non-food allergic controls from the HealthNuts study. 12-month-old infants were phenotyped using open oral food challenges. SNPs were tested using Cochran-Mantel-Haenszel test adjusted for ancestry strata. A replication study was conducted in an independent, co-located sample of four paediatric cohorts consisting of 203 food allergic cases and 330 non-food allergic controls. Replication sample phenotypes were defined by clinical history of reactivity, 95% PPV or challenge, and IL13 genotyping was performed. IL13 rs1295686 was associated with challenge-proven food allergy in the discovery sample (P=.003; OR=1.75; CI=1.20-2.53). This association was also detected in the replication sample (P=.03, OR=1.37, CI=1.03-1.82) and further supported by a meta-analysis (P=.0006, OR=1.50). However, we cannot rule out an association with food sensitization. Carriage of the rs1295686 variant A allele was also associated with elevated total plasma IgE. We show for the first time, in two independent cohorts, that IL13 polymorphism rs1295686 (in complete linkage disequilibrium with functional variant rs20541) is associated with challenge-proven food allergy. © 2017 John Wiley & Sons Ltd.

  18. Preferential Generation of 15-HETE-PE Induced by IL-13 Regulates Goblet Cell Differentiation in Human Airway Epithelial Cells.

    Science.gov (United States)

    Zhao, Jinming; Minami, Yoshinori; Etling, Emily; Coleman, John M; Lauder, Sarah N; Tyrrell, Victoria; Aldrovandi, Maceler; O'Donnell, Valerie; Claesson, Hans-Erik; Kagan, Valerian; Wenzel, Sally

    2017-12-01

    Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 μM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.

  19. Influence of the IL-1Ra gene polymorphism on in vivo synthesis of IL-1Ra and IL-1beta after live yellow fever vaccination.

    Science.gov (United States)

    Hacker, U T; Erhardt, S; Tschöp, K; Jelinek, T; Endres, S

    2001-09-01

    The inflammatory response in infectious and autoimmune diseases is regulated by the balance between pro- and anti-inflammatory cytokines. The IL-1 complex contains polymorphic genes coding for IL-1alpha, IL-1beta and IL-1Ra. The IL-1Ra (variable number of tanden repeat) VNTR polymorphism has been shown to influence the capacity to produce IL-1beta and IL-1Ra after in vitro stimulation. Allele 2 of this polymorphism is associated with a number of inflammatory diseases. To determine the impact of the IL-1Ra polymorphism on in vivo human cytokine synthesis, we used a yellow fever vaccination model for the induction of cytokine synthesis in healthy volunteers. Two different yellow fever vaccines were used. After administration of the RKI vaccine (34 volunteers), plasma TNF-alpha concentration increased from 13.4 +/- 0.9 pg/ml to 23.3 +/- 1.1 pg/ml (P < 0.001), and plasma IL-1Ra concentration increased from 308 +/- 25 pg/ml to 1019 +/- 111 pg/ml (P < 0.001), on day 2. Using Stamaril vaccine, no increase in the plasma concentrations of either TNF-alpha or IL-1Ra could be detected (n = 17). Only the RKI vaccine induced TNF-alpha synthesis after in vitro stimulation of MNC. Carriers of allele 2 of the IL-1Ra polymorphism had increased baseline concentrations of IL-1Ra (350 +/- 32 pg/ml) compared with non-carriers (222 +/- 18 pg/ml, P < 0.001), and decreased concentrations of IL-1beta (0.9 +/- 0.2 pg/ml for carriers versus 2.8 +/- 0.7 pg/ml for non-carriers, P = 0.017). After yellow fever vaccination (RKI vaccine), no significant differences in the increase of IL-1Ra plasma levels were detected between carriers and non-carriers of allele 2 of the IL-1Ra gene polymorphism. This is the first study to examine the influence of this genetic polymorphism on in vivo-induced human IL-1beta and IL-1Ra synthesis. Baseline concentrations of IL-1Ra and IL-1beta were significantly influenced by the IL-1Ra polymorphism. No influence of the IL-1Ra polymorphism on the in vivo

  20. Modulation of pulmonary fibrosis by IL-13Rα2.

    Science.gov (United States)

    Lumsden, Robert V; Worrell, Julie C; Boylan, Denise; Walsh, Sinead M; Cramton, Jennifer; Counihan, Ian; O'Beirne, Sarah; Medina, Maria Fe; Gauldie, Jack; Fabre, Aurelie; Donnelly, Seamas C; Kane, Rosemary; Keane, Michael P

    2015-04-01

    Pulmonary fibrosis is a progressive and fatal disease that involves the remodeling of the distal airspace and the lung parenchyma, which results in compromised gas exchange. The median survival time once diagnosed is less than three years. Interleukin (IL)-13 has been shown to play a role in a number of inflammatory and fibrotic diseases. IL-13 modulates its effector functions via a complex receptor system that includes the IL-4 receptor (R) α, IL-13Rα1, and the IL-13Rα2. IL-13Rα1 binds IL-13 with low affinity, yet, when it forms a complex with IL-4α, it binds with much higher affinity, inducing the effector functions of IL-13. IL-13Rα2 binds IL-13 with high affinity but has a short cytoplasmic tail and has been shown to act as a nonsignaling decoy receptor. Transfection of fibroblasts and epithelial cells with IL-13Rα2 inhibited the IL-13 induction of soluble collagen, TGF-β, and CCL17. Adenoviral overexpression of IL-13Rα2 in the lung reduced bleomycin-induced fibrosis. Our work shows that overexpression of IL-13Rα2 inhibits the IL-13 induction of fibrotic markers in vitro and inhibits bleomycin-induced pulmonary fibrosis. In summary our study highlights the antifibrotic nature of IL-13Ra2. Copyright © 2015 the American Physiological Society.

  1. The distribution of IL-13 receptor alpha1 expression on B cells, T cells and monocytes and its regulation by IL-13 and IL-4.

    Science.gov (United States)

    Graber, P; Gretener, D; Herren, S; Aubry, J P; Elson, G; Poudrier, J; Lecoanet-Henchoz, S; Alouani, S; Losberger, C; Bonnefoy, J Y; Kosco-Vilbois, M H; Gauchat, J F

    1998-12-01

    To study the expression of IL-13 receptor alpha1 (IL-13Ralpha1), specific monoclonal antibodies (mAb) were generated. Surface expression of the IL-13Ralpha1 on B cells, monocytes and T cells was assessed by flow cytometry using these specific mAb. Among tonsillar B cells, the expression was the highest on the IgD+ CD38- B cell subpopulation which is believed to represent naive B cells. Expression was also detectable on a large fraction of the IgD-CD38- B cells but not on CD38+ B cells. Activation under conditions which promote B cell Ig class switching up-regulated the expression of the receptor. However, the same stimuli had an opposite effect for IL-13Ralpha1 expression levels on monocytes. While IL-13Ralpha1 mRNA was clearly detectable in T cell preparations, no surface expression was detected. However, permeabilization of the T cells showed a clear intracellular expression of the receptor. A soluble form of the receptor was immunoprecipitated from the supernatant of activated peripheral T cells, suggesting that T cell IL-13Ralpha1 might have functions unrelated to the capacity to form a type II IL-4/IL-13R with IL-4Ralpha.

  2. Linking surfactant protein SP-D and IL-13

    DEFF Research Database (Denmark)

    Qaseem, Asif S; Sonar, Sanchaita; Mahajan, Lakshna

    2012-01-01

    of allergen-IgE interaction, histamine release by sensitised mast cells, downregulation of specific IgE production, suppression of pulmonary and peripheral eosinophilia, inhibition of mechanisms that cause airway remodelling, and induction of apoptosis in sensitised eosinophils. SP-D can also shift helper T......Surfactant protein D (SP-D) is an innate immune molecule that plays a protective role against lung infection, allergy, asthma and inflammation. In vivo experiments with murine models have shown that SP-D can protect against allergic challenge via a range of mechanisms including inhibition...... cell polarisation following in vivo allergenic challenge, from pathogenic Th2 to a protective Th1 cytokine response. Interestingly, SP-D gene deficient (-/-) mice show an IL-13 over-expressing phenotype. IL-13 has been shown to be involved in the development of asthma. Transgenic mice over...

  3. IL-33 Enhanced the Proliferation and Constitutive Production of IL-13 and IL-5 by Fibrocytes

    Directory of Open Access Journals (Sweden)

    Hisako Hayashi

    2014-01-01

    Full Text Available Interleukin-33 appears to play important roles in the induction of allergic airway inflammation. However, whether IL-33 is involved in airway remodeling remains unclear. Because fibrocytes contribute to tissue remodeling in the setting of chronic inflammation, we examined the effects of IL-33 on fibrocyte functions. Fibrocytes were generated in vitro from peripheral blood mononuclear cells by culturing in the presence of platelet derived growth factors and the cells were stimulated with IL-33. IL-33 enhanced cell proliferation, α-SMA expression, and pro-MMP-9 activity by the fibrocytes without increasing endogenous transforming growth factor-β1 production. Fibrocytes constitutively expressed IL-13 and IL-5, and their production was augmented by stimulation with IL-33. Dexamethasone inhibited the functions of fibrocytes, but IL-33 made fibrocytes slightly refractory to the inhibitory effect of dexamethasone in terms of IL-13 production. Montelukast suppressed IL-13 production by nonstimulated fibrocytes but not those stimulated by IL-33. These findings suggest that IL-33 is involved in the airway remodeling process through its modulation of fibrocyte function independent of antigen stimulation. IL-33 might partially reduce the therapeutic effects of glucocorticoid and cysteinyl leukotriene receptor antagonist on fibrocyte-mediated Th2 responses.

  4. Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score.

    Directory of Open Access Journals (Sweden)

    Hannah C Jeffery

    Full Text Available Innate lymphoid cells (ILC have been implicated in the initiation of inflammation and fibrosis in mice. However, ILC have not been characterized in inflamed human liver tissue.Human intrahepatic lymphocytes were isolated by mechanical digestion and phenotyped by flow cytometry. Conditioned medium from cultures of primary human biliary epithelial cells, stellate cells, fibroblasts and inflamed human liver tissue was used to model the effects of the inflammatory liver environment of ILC phenotype and function.All three ILC subsets were present in the human liver, with the ILC1 (CRTH2negCD117neg subset constituting around 70% of intrahepatic ILCs. Both NCRpos (NKp44+ and NCRneg ILC3 (CRTH2negCD117pos subsets were also detected. ILC2 (CRTH2pos frequency correlated with disease severity measured by model of end stage liver disease (MELD scoring leading us to study this subset in more detail. ILC2 displayed a tissue resident CD69+ CD161++ phenotype and expressed chemokine receptor CCR6 allowing them to respond to CCL20 secreted by cholangiocytes and stellate cells. ILC2 expressed integrins VLA-5 and VLA-6 and the IL-2 and IL-7 cytokine receptors CD25 and CD127 although IL-2 and IL-7 were barely detectable in inflamed liver tissue. Although biliary epithelial cells secrete IL-33, intrahepatic ILC2 had low expression of the ST2 receptor. Intrahepatic ILC2 secreted the immunoregulatory and repair cytokines IL-13 and amphiregulin.Intrahepatic ILC2 express receptors allowing them to be recruited to bile ducts in inflamed portal tracts. Their frequencies increased with worsening liver function. Their secretion of IL-13 and amphiregulin suggests they may be recruited to promote resolution and repair and thereby they may contribute to ongoing fibrogenesis in liver disease.

  5. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms

    DEFF Research Database (Denmark)

    Otkjaer, Kristian; Kragballe, Knud; Johansen, Claus

    2007-01-01

    IL-20 is a novel member of the IL-10 cytokine family with pleiotropic effects. Current knowledge of what triggers and regulates IL-20 gene expression is sparse. The aim of this study was to investigate the regulation of IL-20 expression in cultured normal human keratinocytes. The expression of IL...

  6. TNFSF14 (LIGHT Exhibits Inflammatory Activities in Lung Fibroblasts Complementary to IL-13 and TGF-β

    Directory of Open Access Journals (Sweden)

    Ricardo da Silva Antunes

    2018-03-01

    Full Text Available The cytokine TNFSF14 [homologous to Lymphotoxin, exhibits Inducible expression and competes with HSV Glycoprotein D for binding to HVEM, a receptor expressed on T lymphocytes (LIGHT] has been shown in mouse models to be important for development of lung tissue remodeling that is characteristic of asthma, idiopathic pulmonary fibrosis (IPF, and systemic sclerosis (SSc. However, its cellular targets are not fully delineated. In the present report, we show that LTβR and HVEM, the receptors for LIGHT, are constitutively expressed in primary human lung fibroblasts (HLFs. We asked whether LIGHT could promote inflammatory and remodeling-relevant activity in HLFs and how this was similar to, or distinct from, IL-13 or TGF-β, two cytokines strongly implicated in the pathogenesis of asthma, IPF, and SSc. Accumulation of myofibroblasts expressing alpha smooth muscle actin is a feature of lung inflammatory diseases. LIGHT promoted cell cycle progression and proliferation of HLFs, but not alpha smooth muscle actin expression. In contrast, TGF-β upregulated alpha smooth muscle actin but did not drive their proliferation. LIGHT also increased the gene or protein expression of a number of proinflammatory mediators, including ICAM-1 and VCAM-1, IL-6 and GM-CSF, the chemokines CCL5 and 20, and CXCL5, 11, and 12, and lung remodeling-associated proteinases MMP-9 and ADAM8. These were dependent on LTβR but not HVEM. LIGHT displayed overlapping and synergistic activities with IL-13 for a number of the activities, but LIGHT additionally enhanced the gene expression of several molecules, including the innate cytokines IL-33 and TSLP, which were not upregulated by IL-13. Our results highlight the varied and pleiotropic effects of LIGHT in HLFs. LIGHT might then be a therapeutic target for modulation of inflammation and remodeling associated with asthma and other similar diseases of the lung that involve fibroblasts.

  7. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  8. Allium sativum L. regulates in vitro IL-17 gene expression in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Moutia, Mouna; Seghrouchni, Fouad; Abouelazz, Omar; Elouaddari, Anass; Al Jahid, Abdellah; Elhou, Abdelhalim; Nadifi, Sellama; Jamal Eddine, Jamal; Habti, Norddine; Badou, Abdallah

    2016-09-29

    Allium sativum L. (A.S.) "garlic", one of the most interesting medicinal plants, has been suggested to contain compounds that could be beneficial in numerous pathological situations including cancer. In this work, we aimed to assess the immunomodulatory effect of A.S. preparation on human peripheral blood mononuclear cells from healthy individuals. Nontoxic doses of A.S. were identified using MTT assay. Effects on CD4+ or CD8+ T lymphocyte proliferation were studied using flow cytometry. The effect of A.S. on cytokine gene expression was studied using qRT-PCR. Finally, qualitative analysis of A.S. was performed by HPLC approach. Data were analyzed statistically by one-way ANOVA test. The nontoxic doses of A.S. preparation did not affect neither spontaneous nor TCR-mediated CD4+ or CD8+ T lymphocyte proliferation. Interestingly, A.S. exhibited a statistically significant regulation of IL-17 gene expression, a cytokine involved in several inflammatory and autoimmune diseases. In contrast, the expression of IL-4, an anti-inflammatory cytokine, was unaffected. Qualitative analysis of A.S. ethanol preparation indicated the presence of three polyphenol bioactive compounds, which are catechin, vanillic acid and ferulic acid. The specific inhibition of the pro-inflammatory cytokine, IL-17 without affecting cell proliferation in human PBMCs by the Allium sativum L. preparation suggests a potential valuable effect of the compounds present in this plant for the treatment of inflammatory diseases and cancer, where IL-17 is highly expressed. The individual contribution of these three compounds to this global effect will be assessed.

  9. Development and Validation of an ELISA at Acidic pH for the Quantitative Determination of IL-13 in Human Plasma and Serum

    Directory of Open Access Journals (Sweden)

    Julie Doucet

    2013-01-01

    Full Text Available A novel sandwich ELISA for the quantitative and sensitive determination of IL-13 in human serum and plasma was established. The assay employs an incubation step at acidic pH, which was shown to decrease nonspecific binding and interference from IL-13 binding proteins. The assay was validated and was shown to be accurate and precise over the entire quantification range (0.59 to 68.4 pg/mL in human EDTA plasma. The validated assay was successfully applied to samples from healthy volunteers and patients with atopic seasonal rhinitis. The assay is suitable for use in clinical trials to monitor efficacy or pharmacodynamic effects of drug candidates.

  10. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chen; Jie, Leng; Yongqi, Wang [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weiming, Xiao [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Juqun, Xi [Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Yanbing, Ding [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Li, Qian [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Xingyuan, Pan [Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Mingchun, Ji [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weijuan, Gong, E-mail: wjgong@yzu.edu.cn [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 (China)

    2015-07-31

    Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8{sup +} T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy. - Highlights: • Generation of a nanoparticle for delivery of dsNKG2D-IL-15 gene. • Characterization of the gene nanoparticle. • Antitumor activity mediated by the gene nanoparticle.

  11. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity

    International Nuclear Information System (INIS)

    Yan, Chen; Jie, Leng; Yongqi, Wang; Weiming, Xiao; Juqun, Xi; Yanbing, Ding; Li, Qian; Xingyuan, Pan; Mingchun, Ji; Weijuan, Gong

    2015-01-01

    Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8 + T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy. - Highlights: • Generation of a nanoparticle for delivery of dsNKG2D-IL-15 gene. • Characterization of the gene nanoparticle. • Antitumor activity mediated by the gene nanoparticle

  12. Chitinase 3-like 1 Regulates Cellular and Tissue Responses via IL-13 Receptor α2

    Directory of Open Access Journals (Sweden)

    Chuan Hua He

    2013-08-01

    Full Text Available Members of the 18 glycosyl hydrolase (GH 18 gene family have been conserved over species and time and are dysregulated in inflammatory, infectious, remodeling, and neoplastic disorders. This is particularly striking for the prototypic chitinase-like protein chitinase 3-like 1 (Chi3l1, which plays a critical role in antipathogen responses where it augments bacterial killing while stimulating disease tolerance by controlling cell death, inflammation, and remodeling. However, receptors that mediate the effects of GH 18 moieties have not been defined. Here, we demonstrate that Chi3l1 binds to interleukin-13 receptor α2 (IL-13Rα2 and that Chi3l1, IL-13Rα2, and IL-13 are in a multimeric complex. We also demonstrate that Chi3l1 activates macrophage mitogen-activated protein kinase, protein kinase B/AKT, and Wnt/β-catenin signaling and regulates oxidant injury, apoptosis, pyroptosis, inflammasome activation, antibacterial responses, melanoma metastasis, and TGF-β1 production via IL-13Rα2-dependent mechanisms. Thus, IL-13Rα2 is a GH 18 receptor that plays a critical role in Chi3l1 effector responses.

  13. IL-1 receptor antagonism and muscle gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Berchtold, L. A.; Larsen, C. M.; Vaag, A.

    2009-01-01

    ). To investigate the effects of IL-1Ra in insulin-sensitive tissue, gene expression levels in skeletal muscle from type 2 diabetic patients treated with IL-1Ra were analysed. Methods. Gene expression profiles in vastus lateralis muscle biopsies from five obese patients (BMI>27) were determined before and after 13......RT-PCR, were significantly altered when comparing the number of transcripts before and after treatment for each individual. Conclusion. Treatment with IL-1Ra did not significantly affect gene expression levels in skeletal muscle in this limited and selected sample of obese patients with type 2 diabetes. Larger...

  14. Effect of 13q deletion on IL-6 production in patients with multiple myeloma: a hypothesis may hold true.

    Science.gov (United States)

    Neemat, Kassem; Rania, Khalifa; Tarek, Mohamed; Hamdy, Abdel Azim

    2014-01-01

    Numerous studies have shown a correlation between 13q deletion and poor prognosis in multiple myeloma (MM), but the mechanisms are not fully understood. Earlier studies suggest that this lesion involves large segments or the entire long arm involving the retinoblastoma (Rb) gene. In myeloma, Rb gene is believed to down regulate interleukin-6 (IL-6) which plays a central role in the pathogenesis of MM. Therefore, it has been hypothesized that loss of the Rb gene might be associated with very high expression of IL-6 and subsequent bad prognosis. Hence this study evaluates IL-6 production in MM patients with and without 13q deletions and assesses their response to conventional and new therapeutic regimens. Forty MM patients and 20 matched controls were included in this study. Interphase fluorescence in situ hybridization (FISH) analysis was performed using LSI 13q14-specific probe. Serum levels of IL-6 were determined by ELISA. All patients received conventional chemotherapy. Refractory patients received other therapeutic regimens of Thalidomide or Bortezomib. Significant increase (p < 0.001) of IL-6 production was recorded in patients with a 13q deletion compared to patients with normal chromosome 13q status. These patients were also refractory to conventional chemotherapy but showed striking response to Thalidomide or Bortezomib. This study suggests that 13q deletions are associated with increased production of IL-6 in MM and this could be a possible cause of the associated bad prognosis. In addition, the results also show the potential to improve responses in patients with refractory MM with the introduction of novel therapies.

  15. IL-4 and IL-13 Compromise the Sinonasal Epithelial Barrier and Perturb Intercellular Junction Protein Expression

    Science.gov (United States)

    Wise, Sarah K.; Laury, Adrienne M.; Katz, Elizabeth H.; Den Beste, Kyle A.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    Introduction Altered expression of epithelial intercellular junction proteins has been observed in sinonasal biopsies from nasal polyps and epithelial layers cultured from nasal polyp patients. These alterations comprise a “leaky” epithelial barrier phenotype. We hypothesize that Th2 cytokines IL-4 and IL-13 modulate epithelial junction proteins thereby contributing to the leaky epithelial barrier. Methods Differentiated primary sinonasal epithelial layers cultured at the air-liquid interface were exposed to IL-4, IL-13, and controls for 24 hours at 37°C. Epithelial resistance measurements were taken every 4 hours during cytokine exposure. Western blot and immunofluorescence staining/confocal microscopy were used to assess changes in a panel of tight and adherens junction proteins. Western blot densitometry was quantified with image analysis. Results IL-4 and IL-13 exposure resulted in a mean decrease in transepithelial resistance at 24 hours to 51.6% (n=6) and 68.6% (n=8) of baseline, respectively. Tight junction protein JAM-A expression decreased 42.2% with IL-4 exposure (n=9) and 37.5% with IL-13 exposure (n=9). Adherens junction protein E-cadherin expression decreased 35.3% with IL-4 exposure (n=9) and 32.9% with IL-13 exposure (n=9). Tight junction protein claudin-2 showed more variability but had a trend toward higher expression with Th2 cytokine exposure. There were no appreciable changes in claudin-1, occludin, or ZO-1 with IL-4 or IL-13 exposure. Conclusion Sinonasal epithelial exposure to Th2 cytokines IL-4 and IL-13 results in alterations in intercellular junction proteins, reflecting increased epithelial permeability. Such changes may explain some of the phenotypic manifestations of Th2-mediated sinonasal disease, such as edema, nasal discharge, and environmental reactivity. PMID:24510479

  16. Ozone Enhances Diesel Exhaust Particles (DEP-Induced Interleukin-8 (IL-8 Gene Expression in Human Airway Epithelial Cells through Activation of Nuclear Factors- κB (NF-κB and IL-6 (NF-IL6

    Directory of Open Access Journals (Sweden)

    James Kelley

    2005-12-01

    Full Text Available Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals. Furthermore, epidemiological evidence has indicated that exposure to particulate matter (PM2.5-10, including diesel exhaust particles (DEP has been correlated with increased acute and chronic respiratory morbidity and exacerbation of asthma. Previously, exposure to ozone or particulate matter and their effect on the lung have been addressed as separate environmental problems. Ozone and particulate matter may be chemically coupled in the ambient air. In the present study we determined whether ozone exposure enhances DEP effect on interleukin-8 (IL-8 gene expression in human airway epithelial cells. We report that ozone exposure (0.5 ppm x 1 hr significantly increased DEP-induced IL-8 gene expression in A549 cells (117 ± 19 pg/ml, n = 6, p < 0.05 as compared to cultures treated with DEP (100 μg/ml x 4 hr alone (31 ± 3 pg/ml, n = 6, or cultures exposed to purified air (24 ± 6 pg/ml, n = 6. The increased DEP-induced IL-8 gene expression following ozone exposure was attributed to ozone-induced increase in the activity of the transcription factors NF-κB and NF-IL6. The results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung.

  17. The SNP at −592 of human IL-10 gene is associated with serum IL-10 levels and increased risk for human papillomavirus cervical lesion development

    Directory of Open Access Journals (Sweden)

    Torres-Poveda Kirvis

    2012-11-01

    Full Text Available Abstract Background Women with Human Papilloma Virus (HPV persistence are characterized by high levels of IL-10 at cervix. We have determined whether polymorphisms of IL-10 gene promoter might be associated with increased risk of squamous intraepithelial cervical lesions (SICL and whether exist significative differences of IL-10 mRNA expression at cervix and systemic and serum IL-10 protein between SICL cases and non-Cervical Lesions (NCL. Methods Peripheral blood samples from SICL (n = 204 and NCL (n = 166 were used to detect IL-10 promoter polymorphisms at loci -592A/C (rs1800872, -819C/T (rs1800871, -1082A/G (rs1800896, -1352A/G (rs1800893, by allelic discrimination and to evaluate serum IL-10 protein. Cervical epithelial scrapings from NCL and biopsies from SICLs were used for HPV-typing and to evaluate IL-10 mRNA expression level. The systemic and local IL-10 mRNA expression levels were measured by real time-PCR. Genotypic and allelic frequencies of the selected polymorphisms were analyzed by logistic regression, adjusting by age and HPV-genotype, to determine the association with SICL. Results No significant differences were found between genotype frequencies at loci −819, -1082, and −1352. Individuals carrying at least one copy of risk allele A of polymorphism −592 had a two-fold increased risk of developing SICL [adjusted odds ratio (OR, 2.02 (95% CI, 1.26-3.25, p = 0.003], compared to NCL. The IL-10 mRNA expression and serum IL-10 protein, were significantly higher in SICL cases (p  Conclusions The −592 polymorphism is associated with increased risk of SICL and can serve as a marker of genetic susceptibility to SICL among Mexican women. According to IL-10 levels found in SICL, IL-10 can be relevant factor for viral persistence and progression disease.

  18. Titanium dioxide particle – induced goblet cell hyperplasia : association with mast cells and IL-13

    Directory of Open Access Journals (Sweden)

    Kim Soo-Ho

    2005-04-01

    Full Text Available Abstract Background Inhalation of particles aggravates respiratory symptoms including mucus hypersecretion in patients with chronic airway disease and induces goblet cell hyperplasia (GCH in experimental animal models. However, the underlying mechanisms remain poorly understood. Methods To understand this, the numbers of goblet cells, Muc5ac (+ expressing epithelial cells and IL-13 expressing mast cells were measured in the trachea of sham or TiO2 particles – treated rats using periodic acid-Schiff, toluidine blue and immunohistochemical staining. RT-PCR for Muc-1, 2 and 5ac gene transcripts was done using RNA extracted from the trachea. Differential cell count and IL-13 levels were measured in bronchoalveolar lavage (BAL fluid. In pretreatment groups, cyclophosphamide (CPA or dexamethasone (DEX was given before instillation of TiO2. TiO2 treatment markedly increased Muc5ac mRNA expression, and Muc5ac (+ or PAS (+ epithelial cells 48 h following treatment. Results The concentration of IL-13 in BAL fluids was higher in TiO2 treated – rats when compared to those in sham rats (p 2 treated – rats (p 0.05. In contrast, pretreatment with dexamethasone (DEX diminished the percentage of PAS (+ cells and the levels of IL-13 (p 2 treatment increased the IL-13 (+ mast cells (p 0.05. In addition there were significant correlations of IL-13 (+ rate of mast cells in the trachea with IL-13 concentration in BAL fluid (p 2 treated rats (p Conclusion In conclusion, TiO2 instillation induces GCH and Muc5ac expression, and this process may be associated with increased production of IL-13 by mast cells.

  19. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara (Japan); Ishizuka, Tamotsu [Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Tobo, Masayuki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Tsurumaki, Hiroaki [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Aoki, Haruka; Mogi, Chihiro [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo (Japan); Yatomi, Masakiyo; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Hisada, Takeshi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi (Japan); Yamada, Masanobu [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan)

    2015-08-28

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bone marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.

  20. IL13 gene polymorphisms modify the effect of exposure to tobacco smoke on persistent wheeze and asthma in childhood, a longitudinal study

    Directory of Open Access Journals (Sweden)

    Kurukulaaratchy Ramesh

    2008-01-01

    Full Text Available Abstract Background Tobacco smoke and genetic susceptibility are risk factors for asthma and wheezing. The aim of this study was to investigate whether there is a combined effect of interleukin-13 gene (IL13 polymorphisms and tobacco smoke on persistent childhood wheezing and asthma. Methods In the Isle of Wight birth cohort (UK, 1989–1999, five IL13 single nucleotide polymorphisms (SNPs: rs1800925 (-1112C/T, rs2066960, rs1295686, rs20541 (R130Q and rs1295685 were genotyped. Parents were asked whether their children had wheezed in the last 12 months at ages 1, 2, 4 and 10 years. Children who reported wheeze in the first 4 years of life and also had wheezing at age 10 were classified as early-onset persistent wheeze phenotype; non-wheezers never wheezed up to age 10. Persistent asthma was defined as having a diagnosis of asthma both during the first four years of life and at age 10. Logistic regression methods were used to analyze data on 791 children with complete information. Potential confounders were gender, birth weight, duration of breast feeding, and household cat or dog present during pregnancy. Results Maternal smoking during pregnancy was associated with early-onset persistent wheeze (OR 2.93, p IL13 were not (OR 1.15, p = 0.60 for the common haplotype pair. However, the effect of maternal smoking during pregnancy was stronger in children with the common IL13 haplotype pair compared to those without it (OR 5.58 and OR 1.29, respectively; p for interaction = 0.014. Single SNP analysis revealed a similar statistical significance for rs20541 (p for interaction = 0.02. Comparable results were observed for persistent childhood asthma (p for interaction = 0.03. Conclusion This is the first report that shows a combined effect of in utero exposure to smoking and IL13 on asthma phenotypes in childhood. The results emphasize that genetic studies need to take environmental exposures into account, since they may explain contradictory findings.

  1. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Directory of Open Access Journals (Sweden)

    Sandifer Tracy

    2007-07-01

    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  2. IL-17 inhibits chondrogenic differentiation of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    Full Text Available OBJECTIVE: Mesenchymal stem cells (MSCs can differentiate into cells of mesenchymal lineages, such as osteoblasts and chondrocytes. Here we investigated the effects of IL-17, a key cytokine in chronic inflammation, on chondrogenic differentiation of human MSCs. METHODS: Human bone marrow MSCs were pellet cultured in chondrogenic induction medium containing TGF-β3. Chondrogenic differentiation was detected by cartilage matrix accumulation and chondrogenic marker gene expression. RESULTS: Over-expression of cartilage matrix and chondrogenic marker genes was noted in chondrogenic cultures, but was inhibited by IL-17 in a dose-dependent manner. Expression and phosphorylation of SOX9, the master transcription factor for chondrogenesis, were induced within 2 days and phosphorylated SOX9 was stably maintained until day 21. IL-17 did not alter total SOX9 expression, but significantly suppressed SOX9 phosphorylation in a dose-dependent manner. At day 7, IL-17 also suppressed the activity of cAMP-dependent protein kinase A (PKA, which is known to phosphorylate SOX9. H89, a selective PKA inhibitor, also suppressed SOX9 phosphorylation, expression of chondrogenic markers and cartilage matrix, and also decreased chondrogenesis. CONCLUSIONS: IL-17 inhibited chondrogenesis of human MSCs through the suppression of PKA activity and SOX9 phosphorylation. These results suggest that chondrogenic differentiation of MSCs can be inhibited by a mechanism triggered by IL-17 under chronic inflammation.

  3. Birth order modifies the effect of IL13 gene polymorphisms on serum IgE at age 10 and skin prick test at ages 4, 10 and 18: a prospective birth cohort study

    Science.gov (United States)

    2010-01-01

    Background Susceptibility to atopy originates from effects of the environment on genes. Birth order has been identified as a risk factor for atopy and evidence for some candidate genes has been accumulated; however no study has yet assessed a birth order-gene interaction. Objective To investigate the interaction of IL13 polymorphisms with birth order on allergic sensitization at ages 4, 10 and 18 years. Methods Mother-infant dyads were recruited antenatally and followed prospectively to age 18 years. Questionnaire data (at birth, age 4, 10, 18); skin prick test (SPT) at ages 4, 10, 18; total serum IgE and specific inhalant screen at age 10; and genotyping for IL13 were collected. Three SNPs were selected from IL13: rs20541 (exon 4, nonsynonymous SNP), rs1800925 (promoter region) and rs2066960 (intron 1). Analysis included multivariable log-linear regression analyses using repeated measurements to estimate prevalence ratios (PRs). Results Of the 1456 participants, birth order information was available for 83.2% (1212/1456); SPT was performed on 67.4% at age 4, 71.2% at age 10 and 58.0% at age 18. The prevalence of atopy (sensitization to one or more food or aeroallergens) increased from 19.7% at age 4, to 26.7% at 10 and 41.1% at age 18. Repeated measurement analysis indicated interaction between rs20541 and birth order on SPT. The stratified analyses demonstrated that the effect of IL13 on SPT was restricted only to first-born children (p = 0.007; adjusted PR = 1.35; 95%CI = 1.09, 1.69). Similar findings were noted for firstborns regarding elevated total serum IgE at age 10 (p = 0.007; PR = 1.73; 1.16, 2.57) and specific inhalant screen (p = 0.034; PR = 1.48; 1.03, 2.13). Conclusions This is the first study to show an interaction between birth order and IL13 polymorphisms on allergic sensitization. Future functional genetic research need to determine whether or not birth order is related to altered expression and methylation of the IL13 gene. PMID:20403202

  4. Birth order modifies the effect of IL13 gene polymorphisms on serum IgE at age 10 and skin prick test at ages 4, 10 and 18: a prospective birth cohort study

    Directory of Open Access Journals (Sweden)

    Ogbuanu Ikechukwu U

    2010-04-01

    Full Text Available Abstract Background Susceptibility to atopy originates from effects of the environment on genes. Birth order has been identified as a risk factor for atopy and evidence for some candidate genes has been accumulated; however no study has yet assessed a birth order-gene interaction. Objective To investigate the interaction of IL13 polymorphisms with birth order on allergic sensitization at ages 4, 10 and 18 years. Methods Mother-infant dyads were recruited antenatally and followed prospectively to age 18 years. Questionnaire data (at birth, age 4, 10, 18; skin prick test (SPT at ages 4, 10, 18; total serum IgE and specific inhalant screen at age 10; and genotyping for IL13 were collected. Three SNPs were selected from IL13: rs20541 (exon 4, nonsynonymous SNP, rs1800925 (promoter region and rs2066960 (intron 1. Analysis included multivariable log-linear regression analyses using repeated measurements to estimate prevalence ratios (PRs. Results Of the 1456 participants, birth order information was available for 83.2% (1212/1456; SPT was performed on 67.4% at age 4, 71.2% at age 10 and 58.0% at age 18. The prevalence of atopy (sensitization to one or more food or aeroallergens increased from 19.7% at age 4, to 26.7% at 10 and 41.1% at age 18. Repeated measurement analysis indicated interaction between rs20541 and birth order on SPT. The stratified analyses demonstrated that the effect of IL13 on SPT was restricted only to first-born children (p = 0.007; adjusted PR = 1.35; 95%CI = 1.09, 1.69. Similar findings were noted for firstborns regarding elevated total serum IgE at age 10 (p = 0.007; PR = 1.73; 1.16, 2.57 and specific inhalant screen (p = 0.034; PR = 1.48; 1.03, 2.13. Conclusions This is the first study to show an interaction between birth order and IL13 polymorphisms on allergic sensitization. Future functional genetic research need to determine whether or not birth order is related to altered expression and methylation of the IL13 gene.

  5. Immunochip analysis identifies association of the RAD50/IL13 region with human longevity.

    Science.gov (United States)

    Flachsbart, Friederike; Ellinghaus, David; Gentschew, Liljana; Heinsen, Femke-Anouska; Caliebe, Amke; Christiansen, Lene; Nygaard, Marianne; Christensen, Kaare; Blanché, Hélène; Deleuze, Jean-François; Derbois, Céline; Galan, Pilar; Büning, Carsten; Brand, Stephan; Peters, Anette; Strauch, Konstantin; Müller-Nurasyid, Martina; Hoffmann, Per; Nöthen, Markus M; Lieb, Wolfgang; Franke, Andre; Schreiber, Stefan; Nebel, Almut

    2016-06-01

    Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long-lived individuals (LLI) and 8919 younger controls. First, we performed a large-scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune-associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip-wide significant signal (PI mmunochip  = 7.01 × 10(-9) ) for the SNP rs2075650 in the TOMM40/APOE region, which has been previously described in the context of human longevity. To identify novel susceptibility loci, we selected 15 markers with PI mmunochip  association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant in a meta-analysis of the combined French and Danish data after adjusting for multiple testing. In a meta-analysis of all three samples, rs2706372 reached a P-value of PI mmunochip+Repl  = 5.42 × 10(-7) (OR = 1.20; 95% CI = 1.12-1.28). SNP rs2706372 is located in the extended RAD50/IL13 region. RAD50 seems a plausible longevity candidate due to its involvement in DNA repair and inflammation. Further studies are needed to identify the functional variant(s) that predispose(s) to a long and healthy life. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. A distinct dendritic cell population arises in the thymus of IL-13Rα1-sufficient but not IL-13Rα1-deficient mice.

    Science.gov (United States)

    Barik, Subhasis; Miller, Mindy; Cattin-Roy, Alexis; Ukah, Tobechukwu; Zaghouani, Habib

    2018-06-18

    IL-13 receptor alpha 1 (IL-13Rα1) associates with IL-4Rα to form a functional IL-4Rα/IL-13Rα1 heteroreceptor (HR) through which both IL-4 and IL-13 signal. Recently, HR expression was associated with the development of M2 type macrophages which function as antigen presenting cells (APCs). Herein, we show that a subset of thymic resident dendritic cells (DCs) expressing high CD11b (CD11b hi ) and intermediate CD11c (CD11c int ) arise in HR-sufficient but not HR-deficient mice. These DCs, which originate from the bone marrow are able to take up Ag from the peritoneum, traffic through the spleen and the lymph nodes and carry it to the thymus. In addition, since the DCs are able to present Ag to T cells, express high levels of the costimulatory molecule CD24, and comprise a CD8α + subset, it is likely that the cells contribute to T cell development and perhaps negative selection of self-reactive lymphocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A standardized extract of Butea monosperma (Lam.) flowers suppresses the IL-1β-induced expression of IL-6 and matrix-metalloproteases by activating autophagy in human osteoarthritis chondrocytes.

    Science.gov (United States)

    Ansari, Mohammad Y; Khan, Nazir M; Haqqi, Tariq M

    2017-12-01

    Osteoarthritis (OA) is a leading cause of joint dysfunction, disability and poor quality of life in the affected population. The underlying mechanism of joint dysfunction involves increased oxidative stress, inflammation, high levels of cartilage extracellular matrix degrading proteases and decline in autophagy-a mechanism of cellular defense. There is no disease modifying therapies currently available for OA. Different parts of the Butea monosperma (Lam.) plant have widely been used in the traditional Indian Ayurvedic medicine system for the treatment of various human diseases including inflammatory conditions. Here we studied the chondroprotective effect of hydromethanolic extract of Butea monosperma (Lam.) flowers (BME) standardized to the concentration of Butein on human OA chondrocytes stimulated with IL-1β. The hydromethanolic extract of Butea monosperma (Lam.) (BME) was prepared with 70% methanol-water mixer using Soxhlet. Chondrocytes viability after BME treatment was measured by MTT assay. Gene expression levels were determined by quantitative polymerase chain reaction (qPCR) using TaqMan assays and immunoblotting with specific antibodies. Autophagy activation was determined by measuring the levels of microtubule associated protein 1 light chain 3-II (LC3-II) by immunoblotting and visualization of autophagosomes by transmission electron and confocal microscopy. BME was non-toxic to the OA chondrocytes at the doses employed and suppressed the IL-1β induced expression of inerleukin-6 (IL-6) and matrix metalloprotease-3 (MMP-3), MMP-9 and MMP-13. BME enhanced autophagy in chondrocytes as determined by measuring the levels of LC3-II by immunoblotting and increased number of autophagosomes in BME treated chondrocytes by transmission electron microscopy and confocal microscopy. BME upregulated the expression of several autophagy related genes and increased the autophagy flux in human OA chondrocytes under pathological conditions. Further analysis revealed that

  8. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  9. Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal

    Directory of Open Access Journals (Sweden)

    Pfeifer Aleksandra

    2009-06-01

    Full Text Available Abstract Background The molecular mechanisms of cell cycle exit are poorly understood. Studies on lymphocytes at cell cycle exit after growth factor deprivation have predominantly focused on the initiation of apoptosis. We aimed to study gene expression profile of primary and immortalised IL-2-dependent human T cells forced to exit the cell cycle by growth factor withdrawal, before apoptosis could be evidenced. Results By the Affymetrix microarrays HG-U133 2.0 Plus, 53 genes were distinguished as differentially expressed before and soon after IL-2 deprivation. Among those, PIM1, BCL2, IL-8, HBEGF, DUSP6, OSM, CISH, SOCS2, SOCS3, LIF and IL13 were down-regulated and RPS24, SQSTM1, TMEM1, LRRC8D, ECOP, YY1AP1, C1orf63, ASAH1, SLC25A46 and MIA3 were up-regulated. Genes linked to transcription, cell cycle, cell growth, proliferation and differentiation, cell adhesion, and immune functions were found to be overrepresented within the set of the differentially expressed genes. Conclusion Cell cycle exit of the growth factor-deprived T lymphocytes is characterised by a signature of differentially expressed genes. A coordinate repression of a set of genes known to be induced during T cell activation is observed. However, growth arrest following exit from the cell cycle is actively controlled by several up-regulated genes that enforce the non-dividing state. The identification of genes involved in cell cycle exit and quiescence provides new hints for further studies on the molecular mechanisms regulating the non-dividing state of a cell, the mechanisms closely related to cancer development and to many biological processes.

  10. An IL-13 promoter polymorphism associated with liver fibrosis in patients with Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Xin Long

    Full Text Available The aim of this study was to determine whether two polymorphisms in the gene encoding IL13 previously associated with Schistosoma hematobium (S. hematobium and S. mansoni infection are associated with S. japonicum infection. Single nucleotide polymorphisms (SNPs rs1800925 (IL13/-1112C>T and rs20541 (IL13R130Q were genotyped in 947 unrelated individuals (307 chronically infected, 339 late-stage with liver fibrosis, 301 uninfected controls from a schistosomiasis-endemic area of Hubei province in China. Regression models were used to evaluate allelic and haplotypic associations with chronic and late-stage schistosomiasis adjusted for non-genetic covariates. Expression of IL-13 was measured in S. japonicun-infected liver fibrosis tissue and normal liver tissue from uninfected controls by immunohistochemistry (IHC. The role of rs1800925 in IL-13 transcription was further determined by Luciferase report assay using the recombinant PGL4.17-rs180092 plasmid. We found SNP rs1800925T was associated with late-stage schistosomiasis caused by S. japonicum but not chronic schistosomiasis (OR = 1.39, 95%CI = 1.02-1.91, p = 0.03 and uninfected controls (OR = 1.49, 95%CI = 1.03-2.13, p = 0.03. Moreover, the haplotype rs1800925T-rs20541C increased the risk of disease progression to late-stage schistosomiasis (OR = 1.46, p = 0.035, whereas haplotype rs1800925C-rs20541A showed a protective role against development of late-stage schistosomiasis (F = 0.188, OR = 0.61, p = 0.002. Furthermore, S. japonicum-induced fibrotic liver tissue had higher IL13 expression than normal liver tissue. Plasmid PGL4.17-rs1800925T showed a stronger relative luciferase activity than Plasmid PGL4.17-rs1800925C in 293FT, QSG-7701 and HL-7702 cell lines. In conclusion, the functional IL13 polymorphism, rs1800925T, previously associated with risk of schistosomiasis, also contributes to risk of late-stage schistosomiasis caused by S. japonicum.

  11. [Effects of canine IL-2 and IL-7 genes on enhancing immunogenicity of canine parvovirus VP2 gene vaccine in mice].

    Science.gov (United States)

    Chen, Huihui; Zhong, Fei; Li, Xiujin; Wang, Lu; Sun, Yan; Neng, Changai; Zhang, Kao; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To investigate the effects of canine interleukin-2 (cIL-2) and cIL-7 genes on enhancing the immunogenicity of canine parvovirus (CPV) VP2 DNA vaccine. The bicistronic vectors of cIL-2 and cIL-7 genes were constructed using the eukaryotic expression vector containing internal ribosome entry site (IRES). The cIL-2/ cIL-7 dicistronic vector plus previously constructed vectors, including CPV VP2 DNA vaccine vector, cIL-2 vector and cIL-7 vector, were used to co-immunize mice with different combinations, consisting of VP2 alone, VP2 + cIL-2, VP2 + cIL-7 and VP2 + cIL-2/cIL-7. The VP2-specific antibody levels in immunized mice were measured by ELISA at different time post-immunization. The proliferation indices and interferon-gamma expression were measured by lymphocyte proliferation assay and ELISA, respectively. The cIL-2/cIL-7 bicistronic vector was correct and could mediate cIL-2 and cIL-7 gene expression in eukaryotic cells. Immunization results revealed that the antibody titers and the neutralizing antibody levels of the mice co-immunized with VP2 + cIL-7/cIL-2 vectors were significantly higher than that with either VP2 + cIL-2 vectors or VP2 + cIL-7 vectors (P vaccine.

  12. Establishment of IL-7 Expression Reporter Human Cell Lines, and Their Feasibility for High-Throughput Screening of IL-7-Upregulating Chemicals.

    Directory of Open Access Journals (Sweden)

    Yeon Sook Cho

    Full Text Available Interleukin-7 (IL-7 is a cytokine essential for T cell homeostasis, and is clinically important. However, the regulatory mechanism of IL-7 gene expression is not well known, and a systematic approach to screen chemicals that regulate IL-7 expression has not yet been developed. In this study, we attempted to develop human reporter cell lines using CRISPR/Cas9-mediated genome editing technology. For this purpose, we designed donor DNA that contains an enhanced green fluorescent protein (eGFP gene, drug selection cassette, and modified homologous arms which are considered to enhance the translation of the eGFP reporter transcript, and also a highly efficient single-guide RNA with a minimal off-target effect to target the IL-7 start codon region. By applying this system, we established IL-7 eGFP reporter cell lines that could report IL-7 gene transcription based on the eGFP protein signal. Furthermore, we utilized the cells to run a pilot screen campaign for IL-7-upregulating chemicals in a high-throughput format, and identified a chemical that can up-regulate IL-7 gene transcription. Collectively, these results suggest that our IL-7 reporter system can be utilized in large-scale chemical library screening to reveal novel IL-7 regulatory pathways and to identify potential drugs for development of new treatments in immunodeficiency disease.

  13. Conditional IL-2 gene deletion: consequences for T cell proliferation

    Directory of Open Access Journals (Sweden)

    Kendall A Smith

    2012-05-01

    Full Text Available To explore the role of interleukin-2 (IL-2 in T cell proliferation, and to circumvent the IL-2 deficiency autoimmune syndrome of conventional il2 gene deletion, mice were created to allow conditional il2 gene deletion when treated with the estrogen analogue, tamoxifen (TAM as adults. Splenocytes from four different mouse strains, C57Bl/6 wild type (WT, conventional IL-2 (-/-, TAM-treated Cre recombinase negative (Cre-/IL2fl/fl, and Cre+/IL-2fl/fl (Cre+, were activated with anti-CD3 and anti-CD28, and monitored for CD4+ and CD8+ T cell lymphocyte blastogenesis, aerobic glycolysis, BrdU incorporation into newly synthesized DNA, and CFSE dye dilution to monitor cell division. IL-2 production was monitored by quantitative ELISA and multiple additional cytokines were monitored by protein-bead arrays. Splenocytes from conventional IL-2 (-/- and TAM-treated Cre+ mice resulted in undetectable IL-2 production, so that both strains were IL-2 deficient. As monitored by flow cytometry, activated CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice all underwent blastogenesis, whereas far fewer cells from conventional IL-2 (-/- mice did so. By comparison, only cells from IL-2 sufficient WT and Cre- switched to aerobic glycolysis as evidenced by a drop in media pH. Blastogenesis was mirrored by BrdU incorporation and CFSE dye dilution by CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice, which were all equivalent, while proliferation of cells from conventional IL-2 (-/- mice was compromised. Splenocytes from IL-2 deficient conventional IL-2 (-/- mice produced low or undetectable other γc-chain cytokines (IL-4, IL-7, IL-9, IL-13, IL-15, and IL-21, whereas production of these γc-chain cytokines from IL-2-deficient conditional IL-2 (-/- Cre+ mice were comparable with WT and Cre- mice. These results indicate that CD4+ and CD8+ T cell blastogenesis cannot be attributable to IL-2 alone, but a switch to aerobic glycolysis is attributable to IL-2, and proliferation

  14. IL13 genetic polymorphisms, smoking, and eczema in women: a case-control study in Japan

    OpenAIRE

    Arakawa Masashi; Tanaka Keiko; Miyake Yoshihiro

    2011-01-01

    Abstract Background Several genetic association studies have examined the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and eczema, and have provided contradictory results. We investigated the relationship between the IL13 SNPs rs1800925 and rs20541 and the risk of eczema in Japanese young adult women. Methods Included were 188 cases who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC) for eczema. Control subjects were 1,...

  15. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients.

    Science.gov (United States)

    Sugita, Kazunari; Steer, Catherine A; Martinez-Gonzalez, Itziar; Altunbulakli, Can; Morita, Hideaki; Castro-Giner, Francesc; Kubo, Terufumi; Wawrzyniak, Paulina; Rückert, Beate; Sudo, Katsuko; Nakae, Susumu; Matsumoto, Kenji; O'Mahony, Liam; Akdis, Mübeccel; Takei, Fumio; Akdis, Cezmi A

    2018-01-01

    Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2) -/- , Rag2 -/- Il2rg -/- , and Rora sg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2 -/- mice lacking T and B cells triggered TJ disruption, whereas Rag2 -/- Il2rg -/- and Rora sg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  16. IL6 gene promoter polymorphisms and type 2 diabetes

    DEFF Research Database (Denmark)

    Huth, Cornelia; Heid, Iris M; Vollmert, Caren

    2006-01-01

    Several lines of evidence indicate a causal role of the cytokine interleukin (IL)-6 in the development of type 2 diabetes in humans. Two common polymorphisms in the promoter of the IL-6 encoding gene IL6, -174G>C (rs1800795) and -573G>C (rs1800796), have been investigated for association with type...... 2 diabetes in numerous studies but with results that have been largely equivocal. To clarify the relationship between the two IL6 variants and type 2 diabetes, we analyzed individual data on >20,000 participants from 21 published and unpublished studies. Collected data represent eight different...... countries, making this the largest association analysis for type 2 diabetes reported to date. The GC and CC genotypes of IL6 -174G>C were associated with a decreased risk of type 2 diabetes (odds ratio 0.91, P = 0.037), corresponding to a risk modification of nearly 9%. No evidence for association was found...

  17. Activation of human T cells by a tumor vaccine infected with recombinant Newcastle disease virus producing IL-2

    NARCIS (Netherlands)

    Janke, M.; Peeters, B.; Zhao, H.; Leeuw, O.; Moormann, R.J.M.; Arnold, A.; Ziouta, Y.; Fournier, P.; Schirrmacher, V.

    2008-01-01

    A new recombinant (rec) Newcastle disease virus (NDV) with incorporated human interleukin 2 (IL-2) as foreign therapeutic gene [rec(IL-2)] will be described. The foreign gene in rec(IL-2) did not affect the main features of NDV replication nor its tumor selectivity. Biologically active IL-2 was

  18. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    Science.gov (United States)

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  19. Effect of long-term inhalation of glucocorticoids on the level of leptin, IL-13 and IL-2 in bronchial asthmatic children

    International Nuclear Information System (INIS)

    Pan Jiongwei

    2011-01-01

    Objective: To determine the effect of long-term inhalation of glucocorticoids on the level of leptin, IL-13, and IL-2 in bronchial asthmatic patient. Methods: Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum IL-13 and IL-2 level in 60 healthy persons (normal control group) and 70 bronchial asthma patients untreated and 3, 6, 12 months post-treatment, meanwhile leptin was determined by radio immunoassay. Results: The serum levels of leptin, Il-13, and IL-2 in were significantly increased in patient with bronchial asthma compared with that in the normal control group. The serum levels of leptin, IL-13, and IL-2 in children with asthma were decreased gradually after inhaling glucocorticoids for 3 months (P<0.05). The treatment of inhaled glucocorticoids for 6 and 12 months can attenuate the elevation of leptin, IL-13, and IL-2 compared with that before the treatment. Conclusion: Long-term inhaled glucocorticoid is an important means for asthma, and the effects are related to the decrease of level of leptin, IL-13, and IL-2. (authors)

  20. Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Kupper, T.S.; Chua, A.O.; Flood, P.; McGuire, J.; Gubler, U.

    1987-01-01

    Interleukin 1 (IL-1) is a family of polypeptides initially found to be produced by activated monocytes and macrophages that mediate a wide variety of cellular responses to injury and infection. Epidermal epithelial cells (keratinocytes) produce ''epidermal cell-derived thymocyte activating factor'' or ETAF, which has been recently shown to be identical to IL-1. Human epidermis is normally exposed to significant amounts of solar ultraviolet radiation. Certain ultraviolet wavelengths (UVB, 290-320 nm) are thought to be responsible for most of the immediate and long-term pathological consequences of excessive exposure to sunlight. In this study, we asked whether exposure to UVB irradiation induced IL-1 gene expression in cultured human keratinocytes. Cultured human keratinocytes contain detectable amounts of IL-1 alpha and beta mRNA and protein in the absence of apparent stimulation; these levels could be significantly enhanced 6 h after exposure to 10 ng/ml of 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Exposure to UVB irradiation with an emission spectrum comparable to that of sunlight (as opposed to that of an unfiltered artificial UV light source) significantly increased the steady state levels IL-1 alpha and beta mRNA in identical populations of human keratinocytes. This was reflected in the production of increased IL-1 activity by these cultures in vitro. In the same cell population, exposures to UVB irradiation did not alter the level of actin mRNA; therefore, the effect of UV irradiation on IL-1 represents a specific enhancement of IL-1 gene expression. Local increases of IL-1 may mediate the inflammation and vasodilation characteristic of acute UVB-injured skin, and systemic release of this epidermal IL-1 may account for fever, leukocytosis, and the acute phase response seen after excessive sun exposure

  1. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24): Novel gene therapeutic for metastatic melanoma

    International Nuclear Information System (INIS)

    Fisher, Paul B.; Sarkar, Devanand; Lebedeva, Irina V.; Emdad, Luni; Gupta, Pankaj; Sauane, Moira; Su Zaozhong; Grant, Steven; Dent, Paul; Curiel, David T.; Senzer, Neil; Nemunaitis, John

    2007-01-01

    A potentially less toxic approach for cancer therapy comprises induction of tumor cells to lose growth potential irreversibly and terminally differentiate. Combining this scheme termed 'differentiation therapy of cancer' with subtraction hybridization to human melanoma cells resulted in the cloning of melanoma differentiation associated (mda) genes displaying elevated expression as a consequence of induction of terminal differentiation. One originally novel gene, mda-7, was found to display elevated expression in normal melanocytes and nevi with progressive loss of expression as a consequence of melanoma development and progression to metastasis. Based on structure, biochemical properties and chromosomal location, mda-7 has now been reclassified as interleukin (IL)-24, a member of the expanding IL-10 family of cytokines. In vitro cell culture and in vivo animal studies indicate that mda-7/IL-24 selectively induces programmed cell death (apoptosis) in multiple human cancers (including melanomas), without harming normal cells, and promotes profound anti-tumor activity in nude mice containing human tumor xenografts. Based on these remarkable properties, a Phase I clinical trial was conducted to test the safety of administration of mda-7/IL-24 by a replication incompetent adenovirus (Ad.mda-7; INGN 241) in patients with advanced solid cancers including melanoma. mda-7/IL-24 was found to be safe and to promote significant clinical activity, particularly in the context of patients with metastatic melanoma. These results provide an impetus for further clinical studies and document a central paradigm of cancer therapy, namely translation of basic science from the 'bench to the bedside.'

  2. Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells but Results in Antigen Loss Variants.

    Science.gov (United States)

    Krenciute, Giedre; Prinzing, Brooke L; Yi, Zhongzhen; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Balyasnikova, Irina V; Gottschalk, Stephen

    2017-07-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in adults and is virtually incurable with conventional therapies. Immunotherapy with T cells expressing GBM-specific chimeric antigen receptors (CAR) is an attractive approach to improve outcomes. Although CAR T cells targeting GBM antigens, such as IL13 receptor subunit α2 (IL13Rα2), HER2, and EGFR variant III (EGFRvIII), have had antitumor activity in preclinical models, early-phase clinical testing has demonstrated limited antiglioma activity. Transgenic expression of IL15 is an appealing strategy to enhance CAR T-cell effector function. We tested this approach in our IL13Rα2-positive glioma model in which limited IL13Rα2-CAR T-cell persistence results in recurrence of antigen-positive gliomas. T cells were genetically modified with retroviral vectors encoding IL13Rα2-CARs or IL15 (IL13Rα2-CAR.IL15 T cells). IL13Rα2-CAR.IL15 T cells recognized glioma cells in an antigen-dependent fashion, had greater proliferative capacity, and produced more cytokines after repeated stimulations in comparison with IL13Rα2-CAR T cells. No autonomous IL13Rα2-CAR.IL15 T-cell proliferation was observed; however, IL15 expression increased IL13Rα2-CAR T-cell viability in the absence of exogenous cytokines or antigen. In vivo , IL13Rα2-CAR.IL15 T cells persisted longer and had greater antiglioma activity than IL13Rα2-CAR T cells, resulting in a survival advantage. Gliomas recurring after 40 days after T-cell injection had downregulated IL13Rα2 expression, indicating that antigen loss variants occur in the setting of improved T-cell persistence. Thus, CAR T cells for GBM should not only be genetically modified to improve their proliferation and persistence, but also to target multiple antigens. Summary: Glioblastoma responds imperfectly to immunotherapy. Transgenic expression of IL15 in T cells expressing CARs improved their proliferative capacity, persistence, and cytokine production. The emergence of antigen

  3. Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents.

    Science.gov (United States)

    Chakraborty, Supriyo; Uddin, Arif; Mazumder, Tarikul Huda; Choudhury, Monisha Nath; Malakar, Arup Kumar; Paul, Prosenjit; Halder, Binata; Deka, Himangshu; Mazumder, Gulshana Akthar; Barbhuiya, Riazul Ahmed; Barbhuiya, Masuk Ahmed; Devi, Warepam Jesmi

    2017-12-02

    The study of codon usage coupled with phylogenetic analysis is an important tool to understand the genetic and evolutionary relationship of a gene. The 13 protein coding genes of human mitochondria are involved in electron transport chain for the generation of energy currency (ATP). However, no work has yet been reported on the codon usage of the mitochondrial protein coding genes across six continents. To understand the patterns of codon usage in mitochondrial genes across six different continents, we used bioinformatic analyses to analyze the protein coding genes. The codon usage bias was low as revealed from high ENC value. Correlation between codon usage and GC3 suggested that all the codons ending with G/C were positively correlated with GC3 but vice versa for A/T ending codons with the exception of ND4L and ND5 genes. Neutrality plot revealed that for the genes ATP6, COI, COIII, CYB, ND4 and ND4L, natural selection might have played a major role while mutation pressure might have played a dominant role in the codon usage bias of ATP8, COII, ND1, ND2, ND3, ND5 and ND6 genes. Phylogenetic analysis indicated that evolutionary relationships in each of 13 protein coding genes of human mitochondria were different across six continents and further suggested that geographical distance was an important factor for the origin and evolution of 13 protein coding genes of human mitochondria. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  4. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis.

    Science.gov (United States)

    Barik, Subhasis; Ellis, Jason S; Cascio, Jason A; Miller, Mindy M; Ukah, Tobechukwu K; Cattin-Roy, Alexis N; Zaghouani, Habib

    2017-10-01

    IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R -/- ) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R +/+ ) and develop early onset and more severe disease. Moreover, Th17 cells from 13R -/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R +/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Dongmin [Section of Vascular Biology, National Heart and Lung Institute, Imperial College London, London (United Kingdom); Perros, Frédéric [Faculté de Médecine, Université Paris-Sud, Paris, Clamart (France); Caramori, Gaetano [Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate, University of Ferrara, Ferrara (Italy); Meng, Chao [Section of Vascular Biology, National Heart and Lung Institute, Imperial College London, London (United Kingdom); Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Dormuller, Peter [Faculté de Médecine, Université Paris-Sud, Paris, Clamart (France); Chou, Pai-Chien [Airways Disease, National Heart and Lung Institute (United Kingdom); Church, Colin [Scottish Pulmonary Vascular Unit, University of Glasgow (United Kingdom); Papi, Alberto; Casolari, Paolo [Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate, University of Ferrara, Ferrara (Italy); Welsh, David; Peacock, Andrew [Scottish Pulmonary Vascular Unit, University of Glasgow (United Kingdom); Humbert, Marc [Faculté de Médecine, Université Paris-Sud, Paris, Clamart (France); Adcock, Ian M. [Airways Disease, National Heart and Lung Institute (United Kingdom); Wort, Stephen J., E-mail: s.wort@imperial.ac.uk [Section of Vascular Biology, National Heart and Lung Institute, Imperial College London, London (United Kingdom)

    2014-08-15

    Highlights: • Nuclear IL-33 expression is reduced in vascular endothelial cells from PAH patients. • Knockdown of IL-33 leads to increased IL-6 and sST2 mRNA expression. • IL-33 binds homeobox motifs in target gene promoters and recruits repressor proteins. - Abstract: Idiopathic pulmonary arterial hypertension (IPAH) is an incurable condition leading to right ventricular failure and death and inflammation is postulated to be associated with vascular remodelling. Interleukin (IL)-33, a member of the “alarmin” family can either act on the membrane ST2 receptor or as a nuclear repressor, to regulate inflammation. We show, using immunohistochemistry, that IL-33 expression is nuclear in the vessels of healthy subjects whereas nuclear IL-33 is markedly diminished in the vessels of IPAH patients. This correlates with reduced IL-33 mRNA expression in their lung. In contrast, serum levels of IL-33 are unchanged in IPAH. However, the expression of the soluble form of ST2, sST2, is enhanced in the serum of IPAH patients. Knock-down of IL-33 in human endothelial cells (ECs) using siRNA is associated with selective modulation of inflammatory genes involved in vascular remodelling including IL-6. Additionally, IL-33 knock-down significantly increased sST2 release from ECs. Chromatin immunoprecipitation demonstrated that IL-33 bound multiple putative homeodomain protein binding motifs in the proximal and distal promoters of ST2 genes. IL-33 formed a complex with the histone methyltransferase SUV39H1, a transcriptional repressor. In conclusion, IL-33 regulates the expression of IL-6 and sST2, an endogenous IL-33 inhibitor, in primary human ECs and may play an important role in the pathogenesis of PAH through recruitment of transcriptional repressor proteins.

  6. Role of the IL-6 Gene in the Etiopathogenesis of Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Svetla Nikolova

    2015-01-01

    Full Text Available Scoliotic human nuclei pulposi can respond to exogenous proinflammatory stimuli by secreting increased amounts of interleukin-6 (IL-6. The G/C polymorphism of the promoter region of IL-6 gene influences levels and functional activity of the IL-6 protein. We conducted a case-control study of eighty patients with idiopathic scoliosis (IS and one hundred sixty healthy unrelated gender-matched controls trying to investigate the association between IS and the IL-6 promoter polymorphism at -174 position (rs1800795 G/C in Bulgarian population. Molecular detection of the IL-6 genotypes was performed by amplification followed by restriction technology. The statistical analysis was performed by Pearson’s chi-squared test. Our case-control study revealed a statistically significant association between the IL-6 (-174 G/C functional polymorphism and susceptibility to IS. In addition, a significant association between the IL-6 (-174 G/C polymorphism and curve severity was detected. IL-6 gene could be considered as susceptibility and modifying factor of idiopathic scoliosis. The identification of molecular markers with diagnostic and prognostic value could be useful for early detection of children at risk for the development of scoliosis and for prognosis of the risk for a rapid deformity progression. That would facilitate the therapy decisions and early stage treatment of the patient with the least invasive procedures.

  7. Inhibition by TNF-alpha and IL-4 of cationic lipid mediated gene transfer in cystic fibrosis tracheal gland cells.

    Science.gov (United States)

    Bastonero, Sonia; Gargouri, Myriem; Ortiou, Sandrine; Guéant, Jean-Louis; Merten, Marc D

    2005-11-01

    In vivo, tracheal gland serous cells highly express the cystic fibrosis transmembrane conductance regulator (cftr) gene. This gene is mutated in the lethal monogenic disease cystic fibrosis (CF). Clinical trials in which the human CFTR cDNA was delivered to the respiratory epithelia of CF patients have resulted in weak and transient gene expression. As CF is characterized by mucus inspissation, airway infection, and severe inflammation, we tested the hypothesis that inflammation and especially two cytokines involved in the Th1/Th2 inflammatory response, interleukin 4 (IL-4) and TNFalpha, could inhibit gene transfer efficiency using a model of human CF tracheal gland cells (CF-KM4) and Lipofectamine reagent as a transfection reagent. The specific secretory defects of CF-KM4 cells were corrected by Lipofectamine-mediated human CFTR gene transfer. However, this was altered when cells were pre-treated with IL-4 and TNFalpha. Inhibition of luciferase reporter gene expression by IL-4 and TNFalpha pre-treated CF-KM4 cells was measured by activity and real-time RT-PCR. Both cytokines induced similar and synergistic inhibition of transgene expression and activity. This cytokine-mediated inhibition could be prevented by anti-inflammatory agents such as glucocorticoids but not by non-steroidal (NSAI) agents. This data suggests that an inflammatory context generated by IL-4 and TNFalpha can inhibit human CFTR gene transfer in CF tracheal gland cells and that glucocorticoids may have a protecting action. Copyright (c) 2005 John Wiley & Sons, Ltd.

  8. IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis.

    Science.gov (United States)

    Conti, Heather R; Bruno, Vincent M; Childs, Erin E; Daugherty, Sean; Hunter, Joseph P; Mengesha, Bemnet G; Saevig, Danielle L; Hendricks, Matthew R; Coleman, Bianca M; Brane, Lucas; Solis, Norma; Cruz, J Agustin; Verma, Akash H; Garg, Abhishek V; Hise, Amy G; Richardson, Jonathan P; Naglik, Julian R; Filler, Scott G; Kolls, Jay K; Sinha, Satrajit; Gaffen, Sarah L

    2016-11-09

    Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras, we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17ra ΔK13 ). Following oral Candida infection, Il17ra ΔK13 mice exhibited fungal loads and weight loss indistinguishable from Il17ra -/- mice. Susceptibility in Il17ra ΔK13 mice correlated with expression of the antimicrobial peptide β-defensin 3 (BD3, Defb3). Consistently, Defb3 -/- mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. UVB induces IL-12 transcription in human keratinocytes in vivo and in vitro

    International Nuclear Information System (INIS)

    Enk, C.D.; Blauvet, A.; Katz, S.I.; Mahanty, S.

    1996-01-01

    Human epidermal cells produce a wide range of cytokines, including those characteristic of Th2-like responses such as interleukin (IL)-4 and IL-10. As well, keratinocytes have recently been shown to produce Th1-like cytokines such as IL-12. Exposure to UVB has profound effects on the skin and systemic immune system, which is in part mediated by secretion of tumor necrosis factor (TNF)-α by epidermal cells. Because IL-12 induces production of TNF-α by certain cells of the immune system, we sought to determine whether UVB is an inducer of IL-12 gene expression in epidermal cells. Human epidermal cells were exposed to UVB radiation in vivo, isolated by suction blister technique and trypsinization and transcription of the IL-12 p35 and p40 chains was examined by RT-PCR. (Author)

  10. IL-21 Receptor Expression in Human Tendinopathy

    Directory of Open Access Journals (Sweden)

    Abigail L. Campbell

    2014-01-01

    Full Text Available The pathogenetic mechanisms underlying tendinopathy remain unclear, with much debate as to whether inflammation or degradation has the prominent role. Increasing evidence points toward an early inflammatory infiltrate and associated inflammatory cytokine production in human and animal models of tendon disease. The IL-21/IL-21R axis is a proinflammatory cytokine complex that has been associated with chronic inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. This project aimed to investigate the role and expression of the cytokine/receptor pair IL-21/IL-21R in human tendinopathy. We found significantly elevated expression of IL-21 receptor message and protein in human tendon samples but found no convincing evidence of the presence of IL-21 at message or protein level. The level of expression of IL-21R message/protein in human tenocytes was significantly upregulated by proinflammatory cytokines (TNFα/IL-1β in vitro. These findings demonstrate that IL-21R is present in early human tendinopathy mainly expressed by tenocytes and macrophages. Despite a lack of IL-21 expression, these data again suggest that early tendinopathy has an inflammatory/cytokine phenotype, which may provide novel translational targets in the treatment of tendinopathy.

  11. Nebulized Anti-IL-13 Monoclonal Antibody Fab' Fragment Reduces Allergen-Induced Asthma

    OpenAIRE

    Hacha, Jonathan; Tomlinson, K; Maertens, Ludovic; Paulissen, Geneviève; Rocks, Natacha; Foidart, Jean-Michel; Noël, Agnès; Palframan, R; Guéders, Maud; Cataldo, Didier

    2012-01-01

    Rationale: Interleukin-13 (IL-13) is a prototypic Th2 cytokine and a central mediator of the complex cascade of events leading to asthmatic phenotype. Indeed, IL-13 plays key roles in IgE synthesis, bronchial hyperresponsiveness, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration. Objectives: We assessed the potential efficacy of inhaled anti-IL-13 monoclonal antibody Fab' fragment on allergen-induced airway inflammation, hyperresponsiveness and remodeling in an experime...

  12. Stunned Silence: Gene Expression Programs in Human Cells Infected with Monkeypox or Vaccinia Virus

    Science.gov (United States)

    Rubins, Kathleen H.; Hensley, Lisa E.; Relman, David A.; Brown, Patrick O.

    2011-01-01

    Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection. PMID:21267444

  13. Analysis of the relationship between single nucleotide polymorphism of the CD209, IL-10, IL-28 and CCR5 D32 genes with the human predisposition to developing tick-borne encephalitis

    Directory of Open Access Journals (Sweden)

    Piotr Czupryna

    2017-01-01

    Full Text Available Introduction: It is known that in the pathogenesis of tick-borne encephalitis (TBE various molecules play a significant role. The most prominent factors include IL-10, IL-28B, CD-209 and CCR5. It is reasonable to search for genetic predispositions to the development of various clinical forms of TBE related to the genetic variation of IL-10, IL-28B, CD-209 and CCR5. In this study we aimed to search for the relationship between single nucleotide polymorphism in the promoter region of the CD209, IL-10, IL-28 and 32 base pair deletion in CCR5 coding region (Δ 32 with the human predisposition to development of various clinical presentations of TBE. We tried to assess the relation between the presence of particular alleles and genotypes with laboratory and clinical parameters. Material/Methods 59 patients with TBE and 57 people, bitten by a tick who never developed TBE (Polish cohort, were included in the study. To assess the distribution of single nucleotide polymorphisms, TaqMan SNP genotyping assays were used for IL10: rs1800872 and rs1800896, for CD 209 rs4804803 and rs2287886, rs12979860 for IL 28B SNPs according to the manufacturer’s protocol using real-time PCR technology on the StepOne thermal cycler. Results Comparison between TBE patients and CG showed that in SNP rs2287886 CD 209 AG heterozygotes were more frequent in the TBE group, while homozygotes GG were more frequent in the CG group. Conclusions SNP rs2287886 CD 209 AG heterozygotes predispose humans to develop TBE. Single nucleotide polymorphism in the promoter region of the CD209, IL-10, IL-28 and CCR5 D32 genes does not correlate with the severity of TBE.

  14. Immunochip analysis identifies association of the RAD50/IL13 region with human longevity

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Ellinghaus, David; Gentschew, Liljana

    2016-01-01

    Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long-lived individuals (LLI) and 8919 younger controls....... First, we performed a large-scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune-associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip...... (1257 LLI, mean age 102.4 years; 1811 controls, mean age 49.1 years) and Denmark (493 LLI, mean age 96.2 years; 740 controls, mean age 63.1 years). The association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant...

  15. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps.

    Science.gov (United States)

    Shaw, Joanne L; Fakhri, Samer; Citardi, Martin J; Porter, Paul C; Corry, David B; Kheradmand, Farrah; Liu, Yong-Jun; Luong, Amber

    2013-08-15

    Chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP) and CRS with nasal polyps (CRSwNP) are associated with Th1 and Th2 cytokine polarization, respectively; however, the pathophysiology of CRS remains unclear. The importance of innate lymphoid cells in Th2-mediated inflammatory disease has not been clearly defined. The objective of this study was to investigate the role of the epithelial cell-derived cytokine IL-33 and IL-33-responsive innate lymphoid cells in the pathophysiology of CRS. Relative gene expression was evaluated using quantitative real-time polymerase chain reaction. Innate lymphoid cells in inflamed ethmoid sinus mucosa from patients with CRSsNP and CRSwNP were characterized using flow cytometry. Cytokine production from lymphoid cells isolated from inflamed mucosa of patients with CRS was examined using ELISA and intracellular cytokine staining. Elevated expression of ST2, the ligand-binding chain of the IL-33 receptor, was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP and healthy control subjects. An increased percentage of innate lymphoid cells was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP. ST2(+) innate lymphoid cells are a consistent source of IL-13 in response to IL-33 stimulation. Significant induction of IL-33 was observed in epithelial cells derived from patients with CRSwNP compared with patients with CRSsNP in response to stimulation with Aspergillus fumigatus extract. These data suggest a role for sinonasal epithelial cell-derived IL-33 and an IL-33-responsive innate lymphoid cell population in the pathophysiology of CRSwNP demonstrating the functional importance of innate lymphoid cells in Th2-mediated inflammatory disease.

  16. Evidence to support IL-13 as a risk locus for psoriatic arthritis but not psoriasis vulgaris.

    LENUS (Irish Health Repository)

    Bowes, John

    2011-06-01

    There is great interest in the identification of genetic factors that differentiate psoriatic arthritis (PsA) from psoriasis vulgaris (PsV), as such discoveries could lead to the identification of distinct underlying aetiological pathways. Recent studies identified single nucleotide polymorphisms (SNPs) in the interleukin 13 (IL-13) gene region as risk factors for PsV. Further investigations in one of these studies found the effect to be primarily restricted to PsA, thus suggesting the discovery of a specific genetic risk factor for PsA. Given this intriguing evidence, association to this gene was investigated in large collections of PsA and PsV patients and healthy controls.

  17. Analysis of IL12B gene variants in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Glas

    Full Text Available BACKGROUND: IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD. However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed IL12B gene variants regarding association with Crohn's disease (CD and ulcerative colitis (UC. Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695. Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01-1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99-1.31], p = 0.066 and UC (OR 1.18 [0.97-1.43], p = 0.092. CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10(-5; OR = 2.84, 95% CI 1.66-4.84, while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14-0.92. In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694 in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05 but there was no epistasis between IL23R and IL12B variants. CONCLUSIONS/SIGNIFICANCE: The IL12B SNP rs6887695

  18. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    2011-01-01

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  19. Association between genes encoding components of the IL-4/IL-4 receptor pathway and dermatitis in children.

    Science.gov (United States)

    Hussein, Yousri M; Shalaby, Sally M; Nassar, Amani; Alzahrani, Saad S; Alharbi, Ayman S; Nouh, Maha

    2014-07-25

    To determine whether IL-4, IL-4Rα and STAT6 polymorphisms are associated with susceptibility to dermatitis in Egyptian children. We genotyped three groups of children, consisting of 106 atopic dermatitis (AD) children, 95 non-AD children, and 100 of healthy controls, for IL-4 (-590 C/T), (-33 C/T), IL-4Rα (I50V), (Q576R) and STAT6 (2964 G/A), (2892 C/T) gene polymorphisms using PCR-RFLP assay. Total serum IgE and serum IL-4 levels were detected by ELISA. There was a non-significant association of IL-4 -590 C/T, -33 C/T polymorphisms in the children with non-AD or those with AD when compared with the controls. We identified a significant association between IL-4Rα I50V, Q576R polymorphisms and dermatitis susceptibility in AD (p=0.002, dermatitis was found. Patients who were carriers of IL4 -590C, IL-4Rα I50V G, STAT6 2964 A and STAT6 2892 T had an increased risk of AD [OR and 95% CI: 3.2 (2.5-4.2), p=0.005]. Furthermore, there was no relation between each polymorphism and serum IL-4 level (p>0.05 for each) while homozygosity for the risk alleles of IL-4, IL-4Rα and STAT6 SNPs were significantly associated with increased total IgE levels in all subjects. In Egyptian children, the IL-4Rα and the STAT6 polymorphism may play a role in susceptibility to AD. In addition, gene-gene interaction between the IL-4, the IL-4Rα and the STAT6 significantly increases an individual's susceptibility to AD. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. IL-1RN gene polymorphism is associated with peri-implantitis

    NARCIS (Netherlands)

    Laine, Marja L.; Leonhardt, Asa; Roos-Jansaker, Ann-Marie; Salvador Pena, A.; van Winkelhoff, Arie Jan; Winkel, Edwin G.; Renvert, Stefan

    Objectives: Interleukin (IL)-1 alpha, IL-1 beta and their natural specific inhibitor IL-1 receptor antagonist (IL-1ra) play a key role in the regulation of the inflammatory response in periodontal tissues. Polymorphisms in the IL-1 gene cluster have been associated with severe adult periodontitis.

  1. IL-17A acts via p38 MAPK to increase stability of TNF-alpha-induced IL-8 mRNA in human ASM.

    Science.gov (United States)

    Henness, Sheridan; van Thoor, Eveline; Ge, Qi; Armour, Carol L; Hughes, J Margaret; Ammit, Alaina J

    2006-06-01

    Human airway smooth muscle (ASM) plays an immunomodulatory role in asthma. Recently, IL-17A has become of increasing interest in asthma, being found at elevated levels in asthmatic airways and emerging as playing an important role in airway neutrophilia. IL-17A predominantly exerts its neutrophil orchestrating role indirectly via the induction of cytokines by resident airway structural cells. Here, we perform an in vitro study to show that although IL-17A did not induce secretion of the CXC chemokine IL-8 from ASM cells, IL-17A significantly potentiates TNF-alpha-induced IL-8 protein secretion and gene expression in a concentration- and time-dependent manner (P ASM cells, acting via a p38 MAPK-dependent posttranscriptional pathway to augment TNF-alpha-induced secretion of the potent neutrophil chemoattractant IL-8 from ASM cells.

  2. Analysis of IL-6, IL-10 and NF-κB Gene Polymorphisms in Aggressive and Chronic Periodontitis.

    Science.gov (United States)

    Toker, Hülya; Görgün, Emine Pirim; Korkmaz, Ertan Mahir

    2017-06-01

    Pro-inflammatory cytokines, interleukin-6 (IL-6), demonstrated to be suppressed by interleukin-10 (IL-10) are known to be regulated by the transcription factor nuclear factor-κB(NF-κB). The aim of this study was to ascertain the association between genetic polymorphism of these genes (IL-6(-174), IL-10(-597) and NF-κB1-94ins/del)) and chronic/aggressive periodontitis. Forty-five patients with chronic periodontitis (CP), 58 patients with aggressive periodontitis (AP) and 38 periodontally healthy subjects were included in this study. Genomic DNA was isolated from whole blood samples. The NF-κB, IL-6, and IL-10 polymorphisms were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Among subjects for the ins/ins genotypes of NF-κB1 gene, the AA genotypes of IL-10 presented a higher frequency in chronic periodontitis group than in healthy controls (p=0.023). A statistically significant difference in genotyping frequencies between AP group and healthy controls was observed for the IL-6 gene. The AA genotype of IL-10 was overrepresented in CP and AP groups compared to healthy controls (OR=9.93, 95% CI: 2.11-46.7, OR=5.7, 95% CI: 1.22-26.89, respectively). Within the limits of this study, it can be concluded that the IL-10 (-597) AA genotype is associated with susceptibility to chronic/aggressive periodontitis and IL-6 (-174) GG genotypes and G allele seems to be associated with aggressive periodontitis. Clinical relevance: The results of the current study indicate that IL-6 and IL-10 genotypes seem to be associated with aggressive periodontitis. Also, the AA genotypes of IL-10 presented a higher frequency in chronic periodontitis subjects with carrying NF-κB1 ins/ins genotypes. Copyright© by the National Institute of Public Health, Prague 2017

  3. 5' Region of the human interleukin 4 gene: structure and potential regulatory elements

    Energy Technology Data Exchange (ETDEWEB)

    Eder, A; Krafft-Czepa, H; Krammer, P H

    1988-01-25

    The lymphokine Interleukin 4 (IL-4) is secreted by antigen or mitogen activated T lymphocytes. IL-4 stimulates activation and differentiation of B lymphocytes and growth of T lymphocytes and mast cells. The authors isolated the human IL-4 gene from a lambda EMBL3 genomic library. As a probe they used a synthetic oligonucleotide spanning position 40 to 79 of the published IL-4 cDNA sequence. The 5' promoter region contains several sequence elements which may have a cis-acting regulatory function for IL-4 gene expression. These elements include a TATA-box, three CCAAT-elements (two are on the non-coding strand) and an octamer motif. A comparison of the 5' flanking region of the human murine IL-4 gene (4) shows that the region between position -306 and +44 is highly conserved (83% homology).

  4. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    OpenAIRE

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics ...

  5. The IL23R A/Gln381 allele promotes IL-23 unresponsiveness in human memory T-helper 17 cells and impairs Th17 responses in psoriasis patients.

    Science.gov (United States)

    Di Meglio, Paola; Villanova, Federica; Napolitano, Luca; Tosi, Isabella; Terranova Barberio, Manuela; Mak, Rose K; Nutland, Sarah; Smith, Catherine H; Barker, Jonathan N W N; Todd, John A; Nestle, Frank O

    2013-10-01

    We and others have shown that the minor, nonconserved allele Gln381 of the Arg381Gln single-nucleotide polymorphism (rs11209026G>A) of the IL-23 receptor gene (IL23R) protects against psoriasis. Moreover, we have recently shown impaired IL-23-induced IL-17A production and STAT-3 phosphorylation in Th17 cells generated in vitro from healthy individuals heterozygous for the protective A allele (GA). However, the biological effect of this variant has not been determined in homozygous carriers of the protective A allele (AA), nor in psoriatic patients. Here we expand our functional investigation of the IL23R Arg381Gln gene variant to include AA homozygous individuals. By using isolated memory CD4+ T cells, we found attenuated IL-23-induced Th17 response in heterozygous individuals. Moreover, we found that AA homozygous individuals were strikingly unresponsive to IL-23, with minimal or no IL-17A and IL-17F production and failure of human memory Th17 cell survival/expansion. Finally, IL-23-induced Th17 response was also attenuated in age- and sex-matched GA versus GG psoriatic patients undergoing systemic treatment. Taken together, our data provide evidence for an allele-dosage effect for IL-23R Gln381 and indicate that common gene alleles associated with complex diseases might have biological effects of considerable magnitude in homozygous carriers.

  6. Streptococcus gordonii lipoproteins induce IL-8 in human periodontal ligament cells.

    Science.gov (United States)

    Kim, A Reum; Ahn, Ki Bum; Kim, Hyun Young; Seo, Ho Seong; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2017-11-01

    Streptococcus gordonii, a Gram-positive oral bacterium, is a life-threatening pathogen that causes infective endocarditis. It is frequently isolated from the periapical lesions of patients with apical periodontitis and has thus been implicated in inflammatory responses. However, little is known about the virulence factors of S. gordonii responsible for the induction of inflammatory responses in the periapical areas. Here, we investigated the role of S. gordonii cell wall-associated virulence factors on interleukin (IL)-8 induction in human periodontal ligament (PDL) cells using ethanol-inactivated wild-type S. gordonii, a lipoteichoic acid (LTA)-deficient mutant (ΔltaS), and a lipoprotein-deficient mutant (Δlgt). Wild-type S. gordonii induced IL-8 expression at both the protein and mRNA levels in human PDL cells in a dose- and time-dependent manner. A transient transfection and reporter gene assay demonstrated that wild-type S. gordonii activated Toll-like receptor 2 (TLR2). Additionally, IL-8 production induced by wild-type S. gordonii was substantially inhibited by anti-TLR2-neutralizing antibodies. Both wild-type S. gordonii and the ΔltaS mutant induced IL-8 production; however, this response was not observed when cells were stimulated with the Δlgt mutant. Interestingly, lipoproteins purified from S. gordonii induced IL-8 production, whereas purified LTA did not. In addition, purified lipoproteins stimulated TLR2 more potently than LTA. Furthermore, S. gordonii-induced IL-8 expression was specifically inhibited by blocking p38 kinase, while lipoprotein-induced IL-8 expression was inhibited by blocking p38 kinase, ERK, or JNK. Of particular note, exogenous addition of purified S. gordonii lipoproteins enhanced Δlgt-induced IL-8 production in human PDL cells to an extent similar to that induced by the wild-type strain. Collectively, these results suggest that lipoproteins are an important component of S. gordonii for the induction of IL-8 production in human

  7. IL-4 deficiency is associated with mechanical hypersensitivity in mice.

    Directory of Open Access Journals (Sweden)

    Nurcan Üçeyler

    Full Text Available Interleukin-4 (IL-4 is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko mice to characterize their pain behavior before and after chronic constriction injury (CCI of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS of IL-4 ko mice in comparison with wildtype (wt mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001, while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF, IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014. Remarkably, CCI induced TNF (p<0.01, IL-1β (p<0.05, IL-10 (p<0.05, and IL-13 (p<0.001 gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.

  8. Analysis of IL12B Gene Variants in Inflammatory Bowel Disease

    Science.gov (United States)

    Wagner, Johanna; Olszak, Torsten; Fries, Christoph; Tillack, Cornelia; Friedrich, Matthias; Beigel, Florian; Stallhofer, Johannes; Steib, Christian; Wetzke, Martin; Göke, Burkhard; Ochsenkühn, Thomas; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2012-01-01

    Background IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD). However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. Methodology/Principal Findings We analyzed IL12B gene variants regarding association with Crohn's disease (CD) and ulcerative colitis (UC). Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695). Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01–1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99–1.31], p = 0.066) and UC (OR 1.18 [0.97–1.43], p = 0.092). CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10−5; OR = 2.84, 95% CI 1.66–4.84), while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14–0.92). In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694) in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05) but there was no epistasis between IL23R and IL12B variants. Conclusions/Significance The IL12B SNP rs6887695 modulates

  9. Influence of IL1B, IL6 and IL10 gene variants and plasma fatty acid interaction on metabolic syndrome risk in a cross-sectional population-based study.

    Science.gov (United States)

    Maintinguer Norde, Marina; Oki, Erica; Ferreira Carioca, Antonio Augusto; Teixeira Damasceno, Nágila Raquel; Fisberg, Regina Mara; Lobo Marchioni, Dirce Maria; Rogero, Marcelo Macedo

    2018-04-01

    Metabolic syndrome (MetS) is a cluster of interrelated risk factors for type 2 diabetes mellitus, and cardiovascular disease, with underlying inflammatory pathophysiology. Genetic variations and diet are well-known risk factor for MetS, but the interaction between these two factors is less explored. The aim of the study was to evaluate the influence of interaction between SNP of inflammatory genes (encoding interleukin (IL)-6, IL-1β and IL-10) and plasma fatty acids on the odds of MetS, in a population-based cross-sectional study. Among participants of the Health Survey - São Paulo, 301 adults (19-59 y) from whom a blood sample was collected were included. Individuals with and without MetS were compared according to their plasma inflammatory biomarkers, fatty acid profile, and genotype frequency of the IL1B (rs16944, rs1143623, rs1143627, rs1143634 and rs1143643), IL6 (rs1800795, rs1800796 and rs1800797) and IL10 (rs1554286, rs1800871, rs1800872, rs1800890 and rs3024490) genes SNP. The influence of gene-fatty acids interaction on MetS risk was investigated. IL6 gene SNP rs1800795 G allele was associated with higher odds for MetS (OR = 1.88; p = 0.017). Gene-fatty acid interaction was found between the IL1B gene SNP rs116944 and stearic acid (p inter = 0.043), and between rs1143634 and EPA (p inter = 0.017). For the IL10 gene SNP rs1800896, an interaction was found for arachidonic acid (p inter = 0.007) and estimated D5D activity (p inter = 0.019). The IL6 gene SNP rs1800795 G allele is associated with increased odds for MetS. Plasma fatty acid profile interacts with the IL1B and IL10 gene variants to modulate the odds for MetS. This and other interactions of risk factors can account for the unexplained heritability of MetS, and their elucidation can lead to new strategies for genome-customized prevention of MetS. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    Science.gov (United States)

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.

  11. Plasmodium falciparum-infected erythrocytes and IL-12/IL-18 induce diverse transcriptomes in human NK cells: IFN-α/β pathway versus TREM signaling.

    Directory of Open Access Journals (Sweden)

    Elisandra Grangeiro de Carvalho

    Full Text Available The protective immunity of natural killer (NK cells against malarial infections is thought to be due to early production of type II interferon (IFN and possibly direct NK cell cytotoxicity. To better understand this mechanism, a microarray analysis was conducted on NK cells from healthy donors PBMCs that were co-cultured with P. falciparum 3D7-infected erythrocytes. A very similar pattern of gene expression was observed among all donors for each treatment in three replicas. Parasites particularly modulated genes involved in IFN-α/β signaling as well as molecules involved in the activation of interferon regulatory factors, pathways known to play a role in the antimicrobial immune response. This pattern of transcription was entirely different from that shown by NK cells treated with IL-12 and IL-18, in which IFN-γ- and TREM-1-related genes were over-expressed. These results suggest that P. falciparum parasites and the cytokines IL-12 and IL-18 have diverse imprints on the transcriptome of human primary NK cells. IFN-α-related genes are the prominent molecules induced by parasites on NK cells and arise as candidate biomarkers that merit to be further investigated as potential new tools in malaria control.

  12. Dual AAV/IL-10 Plus STAT3 Anti-Inflammatory Gene Delivery Lowers Atherosclerosis in LDLR KO Mice, but without Increased Benefit

    Directory of Open Access Journals (Sweden)

    Maohua Cao

    2012-01-01

    Full Text Available Both IL-10 and STAT3 are in the same signal transduction pathway, with IL-10-bound IL10 receptor (R acting through STAT3 for anti-inflammatory effect. To investigate possible therapeutic synergism, we delivered both full-length wild-type human (h STAT3 and hIL-10 genes by separate adenoassociated virus type 8 (AAV8 tail vein injection into LDLR KO on HCD. Compared to control Neo gene-treated animals, individual hSTAT3 and hIL-10 delivery resulted in significant reduction in atherogenesis, as determined by larger aortic lumen size, thinner aortic wall thickness, and lower blood velocity (all statistically significant. However, dual hSTAT3/hIL-10 delivery offered no improvement in therapeutic effect. Plasma cholesterol levels in dual hSTAT3/hIL-10-treated animals were statistically higher compared to hIL-10 alone. While no advantage was seen in this case, we consider that the dual gene approach has intrinsic merit, but properly chosen partnered genes must be used.

  13. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    International Nuclear Information System (INIS)

    Tal, Tamara L.; Simmons, Steven O.; Silbajoris, Robert; Dailey, Lisa; Cho, Seung-Hyun; Ramabhadran, Ram; Linak, William; Reed, William; Bromberg, Philip A.; Samet, James M.

    2010-01-01

    Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.

  14. Association of of IL-1 receptor antagonist (IL-1RN) and interleukin-1β genes (IL-1β) polymorphisms with recurrent pregnancy loss in Iranian Azeri women.

    Science.gov (United States)

    Ali Rahmani, Seyyed; Paknejad, Zeynab; Mohammadkhanlou, Masoumeh; Daneshparvar, Marina

    2017-12-27

    Objective One of the most important problems in human reproduction is recurrent pregnancy loss (RPL). RPL is defined as three or more consecutive abortions in the first trimester of pregnancy. The association between the polymorphisms in the immunological factors and RPL was investigated. The aim of our study was to determine the association of interleukin receptor antagonist (IL-IRN) and interleukin-1β (IL-1β) polymorphisms with RPL in Iranian Azeri women. Materials and methods The study participants consisted of 100 women with RPL of Iranian Azeri origin. The control group comprised 100 age- and ethnically-matched healthy women of the same reproductive age. Genomic DNA was extracted from the whole blood and genotype determinations were performed using polymerase chain reaction (PCR) amplification followed by restriction fragment length polymorphism (RFLP) analysis. Results Our results showed no significant relationship between IL-1RN polymorphism and RPL. The homozygous state in -857 C/T variant was seen to be higher in RPL patients than in control subjects. Also frequency of wild type genotype was lower in RPL patients than in controls. However, this associations was not significant. Conclusion This study suggested that -511 C/T (rs16944) and -31 C/T (rs1143627) polymorphisms in IL-1β gene may not be involved in RPL in Iranian Azeri women. Also the promoter polymorphism of the IL-1RN gene may not play a role in the susceptibility to RPL.

  15. AHR prevents human IL-1R1hi ILC3 differentiation to natural killer cells

    Science.gov (United States)

    Hughes, Tiffany; Briercheck, Edward L.; Freud, Aharon G.; Trotta, Rossana; McClory, Susan; Scoville, Steven D.; Keller, Karen; Deng, Youcai; Cole, Jordan; Harrison, Nicholas; Mao, Charlene; Zhang, Jianying; Benson, Don M.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    SUMMARY Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called “stage 3” developmental intermediate minimally characterized by a CD34-CD117+CD94- immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that includes interleukin-1 receptor (IL-1R1) positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ IFN-gamma-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, AHR is a transcription factor that prevents human IL-1R1hi ILC3s from differentiating into NK cells. PMID:24953655

  16. Relationship between XspI Site Polymorphisms of LDL-R Gene and Serum IL-2 and IL-10 in Patients with Hypercholesterolemia.

    Science.gov (United States)

    Zhang, Mingming; Lu, Yamin; Liu, Xin; Zhang, Xiaobin; Zhang, Cuigai; Gao, Wei; Tie, Yanqing

    2016-11-01

    Relationship has been identified in sporadic reports between polymorphisms and hypercholesterolemia. However, the relationship between inflammatory cytokines and polymorphism of low-density lipoprotein receptor (LDL-R) gene in hypercholesterolemia is unclear. This study aimed to explore the relationship and significance between polymorphisms of LDL-R gene and serum Interleukin-2 (IL-2), IL-10 in patients with hypercholesterolemia. PCR-RFLP and direct DNA sequencing assay were employed to determine polymorphism of LDL-R gene in 900 patients with hypercholesterolemia and 400 healthy cases. ELISA was applied to assay serum concentration of IL-2 and IL-10. Blood lipid indexes were tested in all cases. Compared with the healthy controls, level of IL-2 increased significantly, while IL-10 decreased significantly (P hypercholesterolemia. © 2016 Wiley Periodicals, Inc.

  17. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    Science.gov (United States)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  18. Chitosan nanoparticle-based delivery of fused NKG2D–IL-21 gene suppresses colon cancer growth in mice

    Directory of Open Access Journals (Sweden)

    Tan L

    2017-04-01

    Full Text Available Lunmei Tan,1 Sen Han,2 Shizhen Ding,2 Weiming Xiao,3,4 Yanbing Ding,3 Li Qian,2,4 Chenming Wang,1,5 Weijuan Gong1–5 1Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 2Department of Immunology, School of Medicine, 3Department of Gastroenterology, The Second Clinical Medical College, 4Department of Integrated Chinese and Western Medicine, School of Medicine, 5Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China Abstract: Nanoparticles can be loaded with exogenous DNA for the potential expression of cytokines with immune-stimulatory function. NKG2D identifies major histocompatibility complex class I chain-related protein in human and retinoic acid early induced transcript-1 in mouse, which acts as tumor-associated antigens. Biologic agents based on interleukin 21 (IL-21 have displayed antitumor activities through lymphocyte activation. The NKG2D–IL-21 fusion protein theoretically identifies tumor cells through NKG2D moiety and activates T cells through IL-21 moiety. In this study, double-gene fragments that encode the extracellular domains of NKG2D and IL-21 genes were connected and then inserted into the pcDNA3.1(– plasmid. PcDNA3.1–dsNKG2D–IL-21 plasmid nanoparticles based on chitosan were generated. Tumor cells pretransfected with dsNKG2D–IL-21 gene nanoparticles can activate natural killer (NK and CD8+ T cells in vitro. Serum IL-21 levels were enhanced in mice intramuscularly injected with the gene nanoparticles. DsNKG2D–IL-21 gene nanoparticles accumulated in tumor tissues after being intravenously injected for ~4–24 h. Treatment of dsNKG2D–IL-21 gene nanoparticles also retarded tumor growth and elongated the life span of tumor-bearing mice by activating NK and T cells in vivo. Thus, the dsNKG2D–IL-21 gene nanoparticles exerted efficient antitumor activities and would be potentially used for tumor therapy. Keywords: NKG2

  19. IL-13 may be involved in the development of CAD via different mechanisms under different conditions in a Chinese Han population.

    Science.gov (United States)

    Zha, Ling-Feng; Nie, Shao-Fang; Chen, Qian-Wen; Liao, Yu-Hua; Zhang, Hong-Song; Dong, Jiang-Tao; Xie, Tian; Wang, Fan; Tang, Ting-Ting; Xia, Ni; Xu, Cheng-Qi; Zhou, Ying-Chao; Zeng, Zhi-Peng; Jiao, Jiao; Wang, Peng-Yun; Wang, Qing K; Tu, Xin; Cheng, Xiang

    2018-04-18

    Interleukin-13 (IL-13) has important functions in atherosclerosis, but its role in coronary artery disease (CAD) is unclear. Here, we studied the genetic role of IL-13 in CAD in a Chinese Han population using tag SNPs covering the whole IL13 gene (i.e., rs1881457, rs2069744 and rs20541) and a two-stage cohort containing 1863 CAD cases and 1841 controls. Traditional risk factors for CAD, such as age, BMI, and other factors, were used as covariates in logistic regression analysis. In the total population, we found that two haplotypes of IL13 (ATG and ATA, ordered rs1881457 C -rs2069744 T -rs20541 A ) significantly contributed to the risk of CAD with adjusted p values less than 0.05 (p adj  = 0.019 and p adj  = 0.042, respectively). In subgroup population analyses, the variant rs1881457 C was found to significantly contribute to a nearly two fold increase in the risk of CAD in men (p adj  = 0.023, OR = 1.91, 95% CI: 1.09-3.33). The variant rs1881457 C also significantly contributed to a nearly twofold risk of late-onset CAD (p adj  = 0.024, OR = 1.93, 95% CI: 1.09-3.42). In conclusion, IL13 might be involved in CAD via different mechanisms under different conditions in the Chinese Han population.

  20. Salubrinal Suppresses IL-17-Induced Upregulation of MMP-13 and Extracellular Matrix Degradation Through the NF-kB Pathway in Human Nucleus Pulposus Cells.

    Science.gov (United States)

    Yao, Zhixiao; Nie, Lin; Zhao, Yunpeng; Zhang, Yuanqiang; Liu, Yi; Li, Jingkun; Cheng, Lei

    2016-12-01

    Matrix metalloproteinase 13 (MMP-13) plays an important role in the process of pro-inflammatory cytokine-induced intervertebral disc degeneration (IDD). This study examined the effect of IL-17 on the regulation of MMP-13 and the extracellular matrix (ECM) in the intervertebral disc (IVD). We then examined whether salubrinal, a known inhibitor of eIF2α dephosphorylation, inhibited the IL-17-induced changes mentioned above. Furthermore, we demonstrated a potential therapeutic role for salubrinal in alleviating the chronic inflammatory-dependent degenerative state commonly observed in IDD. After inflammatory distress with IL-17, RT-PCR and western blot were employed to investigate the expression of MMP-13, collagen type II (COL2A1), collagen type I (COL1A1), and aggrecan (ACAN) in nucleus pulpous (NP) tissue. Activation of the NF-kB pathway was measured by western blot and immunocytochemistry following IL-17 treatment. We also examine the level of eIF2α phosphorylation after IL-17 treatment with or without salubrinal. Then, we investigated interactions of the NF-kB pathway to eIF2α phosphorylation. Moreover, we employed salubrinal and a specific inhibitor of NF-kB (BAY11-7082) to evaluate their effects on IL-17-driven regulation of MMP-13 and the ECM, as well as on the activation of NF-kB. The results showed that IL-17 increased the production of MMP-13 and decreased expression of COL2A1 and ACAN via the NF-kB pathway. Either IL-17 or salubrinal increased the level of eIF2α phosphorylation, but the effects of BAY11-7082 on the level of p-eIF2α were not detectable. BAY11-7082 and salubrinal significantly suppressed IL-17-driven intervertebral disc degeneration. Furthermore, salubrinal produced stronger effects than BAY11-7082. These results imply the potential involvement of IL-17 in IDD through activation of NF-kB signaling, which successively upregulated the expression of MMP-13 and led to the degradation of the ECM. Furthermore, salubrinal can inhibit this

  1. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury.

    Science.gov (United States)

    Rehman, Rakhshinda; Bhat, Younus Ahmad; Panda, Lipsa; Mabalirajan, Ulaganathan

    2013-03-01

    Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Polymorphic variations in IL-1β, IL-6 and IL-10 genes, their circulating serum levels and breast cancer risk in Indian women.

    Science.gov (United States)

    Pooja, Singh; Chaudhary, Preeti; Nayak, Lakshma V; Rajender, Singh; Saini, Karan Singh; Deol, Debashish; Kumar, Sandeep; Bid, Hemant Kumar; Konwar, Rituraj

    2012-10-01

    Cytokines are known as important regulators of the entire gamut of cancer from initiation, invasion and metastasis. This fact and plethora of gene polymorphism data prompted us to investigate cytokine gene polymorphisms in breast cancer (BC) patients. Selected polymorphisms in the IL-1β [-511 T>C (rs16944) and +3954 C>T (rs1143634)]; IL-6 [-174 G>C (rs1800795)]; IL-10 [-1082 A>G (rs1800896), -819 T>C (rs1800871) and -592 A>C (rs1800872)] genes were genotyped in 200 BC patients and 200 healthy volunteers in a case-control study using PCR-RFLP and direct DNA sequencing techniques. Peripheral cytokine levels were measured using ELISA. Allele and genotype data were analyzed for significance of differences between cases and controls using Chi-Square [χ(2)] test. Two sided P-values of less than 0.05 were considered to be statistically significant. Peripheral level of all three cytokines did not show any significant difference between cases and controls. Allele and genotype frequency of IL-1β [-511 T>C (rs16944)] did not show any difference between cases and controls. On the other hand mutant allele and genotype at IL-1β [+3954 C>T (rs1143634)] associated with increased risk of BC. This was also true for pre-menopausal cases and for mutant genotype in post-menopausal cases. Mutant allele and genotypes at IL-6 [-174 G>C (rs1800795)] appeared to be protective in nature such that controls had a higher frequency of both mutant alleles and genotypes. None of the three SNPs in IL-10 gene associated with risk of BC, except significant association of mutant allele and genotypes of -1082 A>G (rs1800896) polymorphism with postmenopausal BC. Mutant allele and genotype at IL-1β [+3954 C>T (rs1143634)] site associated with increased BC risk, while mutant allele and genotypes at IL-6 [-174 G>C (rs1800795)] polymorphism appeared to be protective. Also, there was significant association of mutant allele and genotypes of IL-10 [-1082 A>G (rs1800896)] with postmenopausal BC. None of

  3. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Tatsuro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Okamoto, Ryuichi, E-mail: rokamoto.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Tsuchiya, Kiichiro; Nakamura, Tetsuya [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan)

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  4. Single administration of recombinant IL-6 restores the gene expression of lipogenic enzymes in liver of fasting IL-6-deficient mice

    DEFF Research Database (Denmark)

    Gavito, A L; Cabello, R; Suarez, J

    2016-01-01

    BACKGROUND AND PURPOSE: Lipogenesis is intimately controlled by hormones and cytokines as well as nutritional conditions. IL-6 participates in the regulation of fatty acid metabolism in the liver. We investigated the role of IL-6 in mediating fasting/re-feeding changes in the expression of hepatic...... lipogenic enzymes. EXPERIMENTAL APPROACH: Gene and protein expression of lipogenic enzymes were examined in livers of wild-type (WT) and IL-6-deficient (IL-6(-/-) ) mice during fasting and re-feeding conditions. Effects of exogenous IL-6 administration on gene expression of these enzymes were evaluated...

  5. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis.

    Science.gov (United States)

    Sa, Susan M; Valdez, Patricia A; Wu, Jianfeng; Jung, Kenneth; Zhong, Fiona; Hall, Linda; Kasman, Ian; Winer, Jane; Modrusan, Zora; Danilenko, Dimitry M; Ouyang, Wenjun

    2007-02-15

    IL-19, IL-20, IL-22, IL-24, and IL-26 are members of the IL-10 family of cytokines that have been shown to be up-regulated in psoriatic skin. Contrary to IL-10, these cytokines signal using receptor complex R1 subunits that are preferentially expressed on cells of epithelial origin; thus, we henceforth refer to them as the IL-20 subfamily cytokines. In this study, we show that primary human keratinocytes (KCs) express receptors for these cytokines and that IL-19, IL-20, IL-22, and IL-24 induce acanthosis in reconstituted human epidermis (RHE) in a dose-dependent manner. These cytokines also induce expression of the psoriasis-associated protein S100A7 and keratin 16 in RHE and cause persistent activation of Stat3 with nuclear localization. IL-22 had the most pronounced effects on KC proliferation and on the differentiation of KCs in RHE, inducing a decrease in the granular cell layer (hypogranulosis). Furthermore, gene expression analysis performed on cultured RHE treated with these cytokines showed that IL-19, IL-20, IL-22, and IL-24 regulate many of these same genes to variable degrees, inducing a gene expression profile consistent with inflammatory responses, wound healing re-epithelialization, and altered differentiation. Many of these genes have also been found to be up-regulated in psoriatic skin, including several chemokines, beta-defensins, S100 family proteins, and kallikreins. These results confirm that IL-20 subfamily cytokines are important regulators of epidermal KC biology with potentially pivotal roles in the immunopathology of psoriasis.

  6. RNA-Seq Analysis of IL-1B and IL-36 Responses in Epidermal Keratinocytes Identifies a Shared MyD88-Dependent Gene Signature.

    Science.gov (United States)

    Swindell, William R; Beamer, Maria A; Sarkar, Mrinal K; Loftus, Shannon; Fullmer, Joseph; Xing, Xianying; Ward, Nicole L; Tsoi, Lam C; Kahlenberg, Michelle J; Liang, Yun; Gudjonsson, Johann E

    2018-01-01

    IL-36 cytokines have recently emerged as mediators of inflammation in autoimmune conditions including psoriasis vulgaris (PsV) and generalized pustular psoriasis (GPP). This study used RNA-seq to profile the transcriptome of primary epidermal keratinocytes (KCs) treated with IL-1B, IL-36A, IL-36B, or IL-36G. We identified some early IL-1B-specific responses (8 h posttreatment), but nearly all late IL-1B responses were replicated by IL-36 cytokines (24 h posttreatment). Type I and II interferon genes exhibited time-dependent response patterns, with early induction (8 h) followed by no response or repression (24 h). Altogether, we identified 225 differentially expressed genes (DEGs) with shared responses to all 4 cytokines at both time points (8 and 24 h). These involved upregulation of ligands ( IL1A, IL1B , and IL36G ) and activating proteases ( CTSS ) but also upregulation of inhibitors such as IL1RN and IL36RN . Shared IL-1B/IL-36 DEGs overlapped significantly with genes altered in PsV and GPP skin lesions, as well as genes near GWAS loci linked to autoimmune and autoinflammatory diseases (e.g., PsV, psoriatic arthritis, inflammatory bowel disease, and primary biliary cholangitis). Inactivation of MyD88 adapter protein using CRISPR/Cas9 completely abolished expression responses of such DEGs to IL-1B and IL-36G stimulation. These results provide a global view of IL-1B and IL-36 expression responses in epidermal KCs with fine-scale characterization of time-dependent and cytokine-specific response patterns. Our findings support an important role for IL-1B and IL-36 in autoimmune or autoinflammatory conditions and show that MyD88 adaptor protein mediates shared IL-1B/IL-36 responses.

  7. Polymorphisms of ST2-IL18R1-IL18RAP gene cluster: a new risk for autoimmune thyroid diseases.

    Science.gov (United States)

    Wang, X; Zhu, Y F; Li, D M; Qin, Q; Wang, Q; Muhali, F S; Jiang, W J; Zhang, J A

    2016-02-01

    Interleukin 33 (IL33) / ST2 pathway and ST2-interlukin18 receptor1-interlukin18 receptor accessory protein (ST2-IL18R1-IL18RAP) gene cluster have been involved in many autoimmune diseases but few report in autoimmune thyroid diseases (AITD). In this study, we investigated whether polymorphisms of IL33, ST2, IL18R1, and IL18RAP are associated with Graves' disease (GD) and Hashimoto's thyroiditis (HT), two major forms of AITD, among a Chinese population. A total of 11 SNPs were explored in a case-control study including 417 patients with GD, 250 HT patients and 301 controls, including rs1929992, rs10975519, rs10208293, rs6543116, rs1041973, rs3732127, rs11465597, rs1035130, rs2293225, rs1035127, rs917997 of IL 33, ST2-IL18R1-IL18RAP gene cluster. Genotyping of these SNPs was performed using matrix-assisted laser desorption / ionization-time-of-flight mass spectrometer (MALDI-TOF-MS) platform from Sequenom. The frequencies of allele A and AA+AG genotype of rs6543116 (ST2) in HT patients were significantly increased compared with those of the controls (P = 0.029/0.021, OR = 1.31/1.62). And in another SNP rs917997, AA+AG genotype presented an increased frequency in HT subjects compared with controls (P = 0.046, OR = 1.53). Furthermore, the haplotype GAGCCCG from ST2-IL18R1-IL18RAP gene cluster (rs6543116, rs1041973, rs1035130, rs3732127, rs1035127, rs2293225, rs917997) was associated with increased susceptibility to GD with an OR of 2.03 (P = 0.022, 95% CI = 1.07-3.86). Some SNPs of ST2-IL18R1-IL18RAP gene cluster might increase the risk of susceptibility of HT and GD in Chinese Han population. © 2015 John Wiley & Sons Ltd.

  8. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  9. Polymorphisms of the human IL-1 receptor antagonist gene and forearm bone mineral density in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Jivka T Ivanova

    2012-01-01

    Full Text Available Context: Studies on the human interleukin 1 receptor antagonist (IL-1RA gene polymorphism have provided conflicting data regarding the bone mass and quality. Aim and Design: The objective of this case-control study was to investigate the association between the forearm bone mineral density (BMD and the IL1RA gene polymorphisms. Materials and Methods: A total of 400 postmenopausal Bulgarian women participated in this study. BMD was measured at the forearm by X-ray absorptiometry on a DTX-100 device (Osteometer Meditech, USA. A PCR product was isolated. The alleles were scored according to their length: A1 - 410 bp - 4 repeats; A2 - 240 bp - 2 repeats; A3 - 500 bp - 5 repeats; A4 - 325 bp - 3 repeats; A5 - 595 bp - 6 repeats. All analyses were evaluated for statistical significance (χ2 -test and T-test. Results: Four alleles were observed - A1, A2, A3, and A4. The A1A1 genotype was more common in cases with low BMD than in controls with normal BMD (95% vs. 90%, χ2 P < 0.01. The A2A2 genotype was equally distributed among cases and controls (both 5%. The other two genotypes (A3A3 and A4A4 as well as A1A3 were present only in controls with normal BMD. The A2A2 genotype was associated with higher BMD and the A1A1 - with lower BMD at both forearm sites. The odds ratio for low BMD in the presence of the A1A1 genotype was 2.11. The etiological factor reflecting the association between the polymorphism and the disease was 0.50. In our study sample the IL1RA genetic polymorphisms were associated with the forearm BMD. Conclusion: This genetic polymorphism may become a useful genetic marker for the study of osteoporosis.

  10. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    Science.gov (United States)

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  11. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    Science.gov (United States)

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  12. IL-22 and IDO1 Affect Immunity and Tolerance to Murine and Human Vaginal Candidiasis

    Science.gov (United States)

    De Luca, Antonella; Carvalho, Agostinho; Cunha, Cristina; Iannitti, Rossana G.; Pitzurra, Lucia; Giovannini, Gloria; Mencacci, Antonella; Bartolommei, Lorenzo; Moretti, Silvia; Massi-Benedetti, Cristina; Fuchs, Dietmar; De Bernardis, Flavia; Puccetti, Paolo; Romani, Luigina

    2013-01-01

    The ability to tolerate Candida albicans, a human commensal of the gastrointestinal tract and vagina, implicates that host defense mechanisms of resistance and tolerance cooperate to limit fungal burden and inflammation at the different body sites. We evaluated resistance and tolerance to the fungus in experimental and human vulvovaginal candidiasis (VVC) as well as in recurrent VVC (RVVC). Resistance and tolerance mechanisms were both activated in murine VVC, involving IL-22 and IL-10-producing regulatory T cells, respectively, with a major contribution by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 was responsible for the production of tolerogenic kynurenines, such that replacement therapy with kynurenines restored immunoprotection to VVC. In humans, two functional genetic variants in IL22 and IDO1 genes were found to be associated with heightened resistance to RVVC, and they correlated with increased local expression of IL-22, IDO1 and kynurenines. Thus, IL-22 and IDO1 are crucial in balancing resistance with tolerance to Candida, their deficiencies are risk factors for RVVC, and targeting tolerance via therapeutic kynurenines may benefit patients with RVVC. PMID:23853597

  13. Molecular cloning and expression of the IL-10 gene from guinea pigs.

    Science.gov (United States)

    Dirisala, Vijaya R; Jeevan, Amminikutty; Bix, Gregory; Yoshimura, Teizo; McMurray, David N

    2012-04-25

    The Guinea pig (Cavia porcellus) is one of the most relevant small animals for modeling human tuberculosis (TB) in terms of susceptibility to low dose aerosol infection, the organization of granulomas, extrapulmonary dissemination and vaccine-induced protection. It is also considered to be a gold standard for a number of other infectious and non-infectious diseases; however, this animal model has a major disadvantage due to the lack of readily available immunological reagents. In the present study, we successfully cloned a cDNA for the critical Th2 cytokine, interleukin-10 (IL-10), from inbred Strain 2 guinea pigs using the DNA sequence information provided by the genome project. The complete open reading frame (ORF) consists of 537 base pairs which encodes a protein of 179 amino acids. This cDNA sequence exhibited 87% homology with human IL-10. Surprisingly, it showed only 84% homology with the previously published IL-10 sequence from the C4-deficient (C4D) guinea pig, leading us to clone IL-10 cDNA from the Hartley strain of guinea pig. The IL-10 gene from the Hartley strain showed 100% homology with the IL-10 sequence of Strain 2 guinea pigs. In order to validate the only published IL-10 sequence existing in Genbank reported from C4D guinea pigs, genomic DNA was isolated from tissues of C4D guinea pigs. Amplification with various sets of primers showed that the IL-10 sequence reported from C4D guinea pigs contained numerous errors. Hence the IL-10 sequence that is being reported by us replaces the earlier sequence making our IL-10 sequence to be the first one accurate from guinea pig. Recombinant guinea pig IL-10 proteins were subsequently expressed in both prokaryotic and eukaryotic cells, purified and were confirmed by N-terminal sequencing. Polyclonal anti-IL-10 antibodies were generated in rabbits using the recombinant IL-10 protein expressed in this study. Taken together, our results indicate that the DNA sequence information provided by the genome project

  14. Association of duffy blood group gene polymorphisms with IL8 gene in chronic periodontitis.

    Directory of Open Access Journals (Sweden)

    Emília Ângela Sippert

    Full Text Available The antigens of the Duffy blood group system (DARC act as a receptor for the interleukin IL-8. IL-8 plays an important role in the pathogenesis of chronic periodontitis due to its chemotactic properties on neutrophils. The aim of this study was to investigate a possible association of Duffy blood group gene polymorphisms with the -353T>A, -845T>C and -738T>A SNPs of the IL8 gene in chronic periodontitis. One hundred and twenty-four individuals with chronic periodontitis and 187 controls were enrolled. DNA was extracted using the salting-out method. The Duffy genotypes and IL8 gene promoter polymorphisms were investigated by PCR-RFLP. Statistical analyses were conducted using the Chi square test with Yates correction or Fisher's Exact Test, and the possibility of associations were evaluated by odds ratio with a 95% confidence interval. When analyzed separately, for the Duffy blood group system, differences in the genotype and allele frequencies were not observed between all the groups analyzed; and, in nonsmokers, the -845C allele (3.6% vs. 0.4%, -845TC genotype (7.3% vs. 0.7% and the CTA haplotype (3.6% vs. 0.4% were positively associated with chronic periodontitis. For the first time to our knowledge, the polymorphisms of erythroid DARC plus IL8 -353T>A SNPs were associated with chronic periodontitis in Brazilian individuals. In Afro-Brazilians patients, the FY*02N.01 with IL8 -353A SNP was associated with protection to chronic periodontitis.

  15. Association of duffy blood group gene polymorphisms with IL8 gene in chronic periodontitis.

    Science.gov (United States)

    Sippert, Emília Ângela; de Oliveira e Silva, Cléverson; Visentainer, Jeane Eliete Laguila; Sell, Ana Maria

    2013-01-01

    The antigens of the Duffy blood group system (DARC) act as a receptor for the interleukin IL-8. IL-8 plays an important role in the pathogenesis of chronic periodontitis due to its chemotactic properties on neutrophils. The aim of this study was to investigate a possible association of Duffy blood group gene polymorphisms with the -353T>A, -845T>C and -738T>A SNPs of the IL8 gene in chronic periodontitis. One hundred and twenty-four individuals with chronic periodontitis and 187 controls were enrolled. DNA was extracted using the salting-out method. The Duffy genotypes and IL8 gene promoter polymorphisms were investigated by PCR-RFLP. Statistical analyses were conducted using the Chi square test with Yates correction or Fisher's Exact Test, and the possibility of associations were evaluated by odds ratio with a 95% confidence interval. When analyzed separately, for the Duffy blood group system, differences in the genotype and allele frequencies were not observed between all the groups analyzed; and, in nonsmokers, the -845C allele (3.6% vs. 0.4%), -845TC genotype (7.3% vs. 0.7%) and the CTA haplotype (3.6% vs. 0.4%) were positively associated with chronic periodontitis. For the first time to our knowledge, the polymorphisms of erythroid DARC plus IL8 -353T>A SNPs were associated with chronic periodontitis in Brazilian individuals. In Afro-Brazilians patients, the FY*02N.01 with IL8 -353A SNP was associated with protection to chronic periodontitis.

  16. Gene expression markers of age-related inflammation in two human cohorts.

    Science.gov (United States)

    Pilling, Luke C; Joehanes, Roby; Melzer, David; Harries, Lorna W; Henley, William; Dupuis, Josée; Lin, Honghuang; Mitchell, Marcus; Hernandez, Dena; Ying, Sai-Xia; Lunetta, Kathryn L; Benjamin, Emelia J; Singleton, Andrew; Levy, Daniel; Munson, Peter; Murabito, Joanne M; Ferrucci, Luigi

    2015-10-01

    Chronically elevated circulating inflammatory markers are common in older persons but mechanisms are unclear. Many blood transcripts (>800 genes) are associated with interleukin-6 protein levels (IL6) independent of age. We aimed to identify gene transcripts statistically mediating, as drivers or responders, the increasing levels of IL6 protein in blood at older ages. Blood derived in-vivo RNA from the Framingham Heart Study (FHS, n=2422, ages 40-92 yrs) and InCHIANTI study (n=694, ages 30-104 yrs), with Affymetrix and Illumina expression arrays respectively (>17,000 genes tested), were tested for statistical mediation of the age-IL6 association using resampling techniques, adjusted for confounders and multiple testing. In FHS, IL6 expression was not associated with IL6 protein levels in blood. 102 genes (0.6% of 17,324 expressed) statistically mediated the age-IL6 association of which 25 replicated in InCHIANTI (including 5 of the 10 largest effect genes). The largest effect gene (SLC4A10, coding for NCBE, a sodium bicarbonate transporter) mediated 19% (adjusted CI 8.9 to 34.1%) and replicated by PCR in InCHIANTI (n=194, 35.6% mediated, p=0.01). Other replicated mediators included PRF1 (perforin, a cytolytic protein in cytotoxic T lymphocytes and NK cells) and IL1B (Interleukin 1 beta): few other cytokines were significant mediators. This transcriptome-wide study on human blood identified a small distinct set of genes that statistically mediate the age-IL6 association. Findings are robust across two cohorts and different expression technologies. Raised IL6 levels may not derive from circulating white cells in age related inflammation. Published by Elsevier Inc.

  17. Replication by the Epistasis Project of the interaction between the genes for IL-6 and IL-10 in the risk of Alzheimer's disease

    Science.gov (United States)

    Combarros, Onofre; van Duijn, Cornelia M; Hammond, Naomi; Belbin, Olivia; Arias-Vásquez, Alejandro; Cortina-Borja, Mario; Lehmann, Michael G; Aulchenko, Yurii S; Schuur, Maaike; Kölsch, Heike; Heun, Reinhard; Wilcock, Gordon K; Brown, Kristelle; Kehoe, Patrick G; Harrison, Rachel; Coto, Eliecer; Alvarez, Victoria; Deloukas, Panos; Mateo, Ignacio; Gwilliam, Rhian; Morgan, Kevin; Warden, Donald R; Smith, A David; Lehmann, Donald J

    2009-01-01

    Background Chronic inflammation is a characteristic of Alzheimer's disease (AD). An interaction associated with the risk of AD has been reported between polymorphisms in the regulatory regions of the genes for the pro-inflammatory cytokine, interleukin-6 (IL-6, gene: IL6), and the anti-inflammatory cytokine, interleukin-10 (IL-10, gene: IL10). Methods We examined this interaction in the Epistasis Project, a collaboration of 7 AD research groups, contributing DNA samples from 1,757 cases of AD and 6,295 controls. Results We replicated the interaction. For IL6 rs2069837 AA × IL10 rs1800871 CC, the synergy factor (SF) was 1.63 (95% confidence interval: 1.10–2.41, p = 0.01), controlling for centre, age, gender and apolipoprotein E ε4 (APOEε4) genotype. Our results are consistent between North Europe (SF = 1.7, p = 0.03) and North Spain (SF = 2.0, p = 0.09). Further replication may require a meta-analysis. However, association due to linkage disequilibrium with other polymorphisms in the regulatory regions of these genes cannot be excluded. Conclusion We suggest that dysregulation of both IL-6 and IL-10 in some elderly people, due in part to genetic variations in the two genes, contributes to the development of AD. Thus, inflammation facilitates the onset of sporadic AD. PMID:19698145

  18. IL-5 and IL-5 receptor in asthma

    Directory of Open Access Journals (Sweden)

    ATC Kotsimbos

    1997-12-01

    Full Text Available Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed. The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm and a soluble isoform (alphaIL-5Rs. Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS. JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities

  19. The role of IL-4 gene 70 bp VNTR and ACE gene I/D variants in Familial Mediterranean fever.

    Science.gov (United States)

    Yigit, Serbülent; Tural, Sengul; Tekcan, Akın; Tasliyurt, Turker; Inanir, Ahmet; Uzunkaya, Süheyla; Kismali, Gorkem

    2014-05-01

    Familial Mediterranean fever (FMF) is characterized by recurrent attacks of fever and inflammation in the peritoneum, synovium, or pleura, accompanied by pain. It is an autosomal recessive disease caused by mutations in the MEFV (MEditerranean FeVer) gene. Patients with similar genotypes exhibit phenotypic diversity. As a result, the variations in different genes could be responsible for the clinical findings of this disease. In previous studies genes encoding Angiotensin-Converting Enzyme (ACE) and IL-4 (Interleukin-4) were found to be associated with rheumatologic and autoimmune diseases. In the present study we hypothesized whether ACE I/D or IL-4 70 bp variable tandem repeats (VNTR) genes are associated with FMF and its clinical findings in Turkish patients. Genomic DNA obtained from 670 persons (339 patients with FMF and 331 healthy controls) was used in the study. Genotypes for an ACE gene I/D polymorphism and IL-4 gene 70 bp VNTR were determined by polymerase chain reaction with specific primers. To our knowledge, this is the first study examining ACE gene I/D polymorphism and IL-4 gene 70 bp VNTR polymorphism in FMF patients. As a result, there was a statistically significant difference between the groups with respect to genotype distribution (pACE gene DD genotype was associated with an increased risk in FMF [pACE genotype frequencies according to the clinical characteristics, we found a statistically significant association between DD+ID genotype and fever (p=0.04). In addition IL-4 gene P1P1 genotype was associated with FMF (pACE gene and P1 allele or P1P1 genotype of IL-4 gene may be important molecular markers for susceptibility of FMF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells

    Directory of Open Access Journals (Sweden)

    Jeron Andreas

    2012-12-01

    Full Text Available Abstract Background The transcription factor (TF forkhead box P3 (FOXP3 is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs. It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. Results ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin–stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Conclusions Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.

  1. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy.

    Science.gov (United States)

    Abdelaziz, Rania R; Elkashef, Wagdi F; Said, Eman

    2015-07-01

    Hepatic encephalopathy is a serious neuropsychiatric disorder usually affecting either acute or chronic hepatic failure patients. Hepatic encephalopathy was replicated in a validated rat model to assess the potential protective efficacy of tranilast against experimentally induced hepatic encephalopathy. Thioacetamide injection significantly impaired hepatic synthetic, metabolic and excretory functions with significant increase in serum NO, IL-6 and IL-13 levels and negative shift in the oxidant/antioxidant balance. Most importantly, there was a significant increase in serum ammonia levels with significant astrocytes' swelling and vacuolization; hallmarks of hepatic encephalopathy. Tranilast administration (300 mg/kg, orally) for 15 days significantly improved hepatic functions, restored oxidant/antioxidant balance, reduced serum NO, IL-6 and IL-13 levels. Meanwhile, serum ammonia significantly declined with significant reduction in astrocytes' swelling and vacuolization. Several mechanisms can be implicated in the observed hepato- and neuroprotective potentials of tranilast, such as its anti-inflammatory potential, its antioxidant potential as well as its immunomodulatory properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas.

    Directory of Open Access Journals (Sweden)

    Hye-Eun Kim

    Full Text Available Genomic changes frequently occur in cancer cells during tumorigenesis from normal cells. Using the Illumina Human NS-12 single-nucleotide polymorphism (SNP chip to screen for gene copy number changes in primary hepatocellular carcinomas (HCCs, we initially detected amplification of 35 genes from four genomic regions (1q21-41, 6p21.2-24.1, 7p13 and 8q13-23. By integrated screening of these genes for both DNA copy number and gene expression in HCC and colorectal cancer, we selected CENPF (centromere protein F/mitosin, GMNN (geminin, DNA replication inhibitor, CDK13 (cyclin-dependent kinase 13, and FAM82B (family with sequence similarity 82, member B as common cancer genes. Each gene exhibited an amplification frequency of ~30% (range, 20-50% in primary HCC (n = 57 and colorectal cancer (n = 12, as well as in a panel of human cancer cell lines (n = 70. Clonogenic and invasion assays of NIH3T3 cells transfected with each of the four amplified genes showed that CENPF, GMNN, and CDK13 were highly oncogenic whereas FAM82B was not. Interestingly, the oncogenic activity of these genes (excluding FAM82B was highly correlated with gene-copy numbers in tumor samples (correlation coefficient, r>0.423, indicating that amplifications of CENPF, GMNN, and CDK13 genes are tightly linked and coincident in tumors. Furthermore, we confirmed that CDK13 gene copy number was significantly associated with clinical onset age in patients with HCC (P = 0.0037. Taken together, our results suggest that coincidently amplified CDK13, GMNN, and CENPF genes can play a role as common cancer-driver genes in human cancers.

  3. The roles of ADAM33, ADAM28, IL-13 and IL-4 in the development of lung injuries in children with lethal non-pandemic acute infectious pneumonia.

    Science.gov (United States)

    Baurakiades, Emanuele; Costa, Victor Horácio; Raboni, Sonia Mara; de Almeida, Vivian Rafaela Telli; Larsen, Kelly Susana Kunze; Kohler, Juliana Nemetz; Gozzo, Priscilla do Carmo; Klassen, Giseli; Manica, Graciele C M; de Noronha, Lucia

    2014-12-01

    ADAM28, ADAM33, IL-13, IL-4 and other cytokines (IL-6 and IL-10) seem to play important roles in the persistence and maintenance of acute inflammatory processes that ultimately lead to lung remodeling and pulmonary fibrosis, which may be responsible for the high morbidity and mortality rates associated with non-pandemic acute viral pneumonias in childhood. The aim of this study was to evaluate the roles of ADAM33, ADAM28, IL4, IL6, IL10 and IL13 in the development of inflammation and alveolar fibrosis due to lethal acute respiratory infections of the lower airway in a pediatric population, especially in those with viral etiology. For this study, 193 cases were selected, and samples from the cases were processed for viral antigen detection by immunohistochemistry and then separated into two groups: virus-positive (n=68) and virus-negative (n=125). Immunohistochemistry was performed to assess the presence of metalloproteinases (ADAM33 and ADAM28) and inflammatory cytokines (IL-4, IL-13, IL-6, IL-10) in the alveolar septa. The virus-positive group showed stronger immunolabeling for ADAM33, ADAM28, IL-4 and IL-13 (pplay important roles in pulmonary inflammatory reactions elicited against etiological viral agents. In addition, these mediators may affect the process of lung remodeling and the development of pulmonary fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes.

    Science.gov (United States)

    Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi

    2011-03-25

    Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  5. In vitro secretion profiles of interleukin (IL-1beta, IL-6, IL-8, IL-10, and TNF alpha after selective infection with Escherichia coli in human fetal membranes

    Directory of Open Access Journals (Sweden)

    Maida-Claros Rolando

    2007-12-01

    Full Text Available Abstract Background Chorioamniotic membranes infection is a pathologic condition in which an abnormal secretion of proinflammatory cytokines halts fetal immune tolerance. The aim of the present study was to evaluate the functional response of human chorioamniotic membranes, as well as the individual contribution of the amnion and choriodecidua after stimulation with Escherichia coli, a pathogen associated with preterm labor. Methods Explants of chorioamniotic membranes from 10 women (37–40 weeks of gestation were mounted and cultured in a Transwell system, which allowed us to test the amnion and choriodecidua compartments independently. Escherichia coli (1 × 10 6 CFU/mL was added to either the amniotic or the choriodecidual regions or both; after a 24-h incubation, the secretion of IL-1beta, IL-6, TNFalpha, IL-8, and IL-10 in both compartments was measured using a specific ELISA. Data were analyzed by Kruskal-Wallis one-way analysis of variance. Results After stimulation with Escherichia coli, the choriodecidua compartment showed an increase in the secretion of IL-1beta (21-fold, IL-6 (2-fold, IL-8 (6-fold, and IL-10 (37-fold, regardless of which side of the membrane was stimulated; TNFalpha secretion augmented (22-fold also but only when the stimulus was applied simultaneously to both sides. When the amnion was stimulated directly, the level of IL-1beta (13-fold rose significantly; however, the increase in IL-8 secretion was larger (20-fold, regardless of the primary site of infection. TNFalpha secretion in the amnion compartment rose markedly only when Escherichia coli was simultaneously applied to both sides. Conclusion Selective stimulation of fetal membranes with Escherichia coli results in a differential production of IL-1beta, IL-6, TNFalpha, IL-8, and IL-10. These tissues were less responsive when the amnion side was stimulated. This is in agreement with the hypothesis that the choriodecidua may play a primary role during an ascending

  6. Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10.

    Science.gov (United States)

    Tausendschön, Michaela; Rehli, Michael; Dehne, Nathalie; Schmidl, Christian; Döring, Claudia; Hansmann, Martin-Leo; Brüne, Bernhard

    2015-01-01

    Macrophages (MΦ) often accumulate in hypoxic areas, where they significantly influence disease progression. Anti-inflammatory cytokines, such as IL-10, generate alternatively activated macrophages that support tumor growth. To understand how alternative activation affects the transcriptional profile of hypoxic macrophages, we globally mapped binding sites of hypoxia-inducible factor (HIF)-1α and HIF-2α in primary human monocyte-derived macrophages prestimulated with IL-10. 713 HIF-1 and 795 HIF-2 binding sites were identified under hypoxia. Pretreatment with IL-10 altered the binding pattern, with 120 new HIF-1 and 188 new HIF-2 binding sites emerging. HIF-1 binding was most prominent in promoters, while HIF-2 binding was more abundant in enhancer regions. Comparison of ChIP-seq data obtained in other cells revealed a highly cell type specific binding of HIF. In MΦ HIF binding occurred preferentially in already active enhancers or promoters. To assess the roles of HIF on gene expression, primary human macrophages were treated with siRNA against HIF-1α or HIF-2α, followed by genome-wide gene expression analysis. Comparing mRNA expression to the HIF binding profile revealed a significant enrichment of hypoxia-inducible genes previously identified by ChIP-seq. Analysis of gene expression under hypoxia alone and hypoxia/IL-10 showed the enhanced induction of a set of genes including PLOD2 and SLC2A3, while another group including KDM3A and ADM remained unaffected or was reduced by IL-10. Taken together IL-10 influences the DNA binding pattern of HIF and the level of gene induction. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Liposome-mediated transfer of IL-1 receptor antagonist gene to dispersed islet cells does not prevent recurrence of disease in syngeneically transplanted NOD mice

    DEFF Research Database (Denmark)

    Saldeen, J; Sandler, S; Bendtzen, K

    2000-01-01

    transplanted non-obese diabetic (NOD) mice. NOD mouse islet cells were transfected using liposome-mediated gene transfer with a human IL-1ra cDNA construct and transplanted two days later to prediabetic NOD mice. Graft infiltration and destruction were monitored three, five and eight days posttransplantation...... by histology and determination of insulin and cytokine content. IL-1ra gene transfer resulted in transient expression of IL-1ra protein in islet cells in vitro as assessed by ELISA and of IL-1ra mRNA in transplanted islets as revealed by RT-PCR. However, both control and IL-1ra transfected NOD grafts exhibited......IL-1beta is cytotoxic to pancreatic beta-cells in vitro but its role in the vicinity of beta-cells in vivo is unknown. We explored whether liposome-mediated transfer of the interleukin 1 receptor antagonist (IL-1ra) gene to islet cells might prevent recurrence of disease in syngeneically...

  8. IL-4 Up-Regulates MiR-21 and the MiRNAs Hosted in the CLCN5 Gene in Chronic Lymphocytic Leukemia.

    Directory of Open Access Journals (Sweden)

    Natalia Ruiz-Lafuente

    Full Text Available Interleukin 4 (IL-4 induces B-cell differentiation and survival of chronic lymphocytic leukemia (CLL cells. MicroRNAs (miRNAs regulate mRNA and protein expression, and several miRNAs, deregulated in CLL, might play roles as oncogenes or tumor suppressors. We have studied the miRNA profile of CLL, and its response to IL-4, by oligonucleotide microarrays, resulting in the detection of a set of 129 mature miRNAs consistently expressed in CLL, which included 41 differentially expressed compared to normal B cells (NBC, and 6 significantly underexpressed in ZAP-70 positive patients. IL-4 stimulation brought about up-regulation of the 5p and 3p mature variants of the miR-21 gene, which maps immediately downstream to the VMP1 gene, and of the mature forms generated from the miR-362 (3p and 5p, miR-500a (3p, miR-502 (3p, and miR-532 (3p and 5p genes, which map within the third intron of the CLCN5 gene. Both genes are in turn regulated by IL-4, suggesting that these miRNAs were regulated by IL-4 as passengers from their carrier genes. Their levels of up-regulation by IL-4 significantly correlated with cytoprotection. MiR-21 has been reported to be leukemogenic, associated to bad prognosis in CLL, and the miRNA more frequently overexpressed in human cancer. Up-regulation by IL-4 of miR-21 and the miRNAs hosted in the CLCN5 locus may contribute to evasion of apoptosis of CLL cells. These findings indicate that the IL-4 pathway and the miRNAs induced by IL-4 are promising targets for the development of novel therapies in CLL.

  9. The human cumulus--oocyte complex gene-expression profile

    Science.gov (United States)

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  10. IL1RN and KRT13 Expression in Bladder Cancer: Association with Pathologic Characteristics and Smoking Status

    Directory of Open Access Journals (Sweden)

    Thomas S. Worst

    2014-01-01

    Full Text Available Purpose. To validate microarray data on cytokeratin 13 (KRT13 and interleukin-1 receptor antagonist (IL1RN expression in urothelial carcinoma of the urinary bladder (UCB and to correlate our findings with pathologic characteristics and tobacco smoking. Methods. UCB tissue samples (n=109 and control samples (n=14 were obtained from transurethral resection and radical cystectomy specimens. Immunohistochemical staining of KRT13 and IL1RN was performed and semiquantitative expression scores were assessed. Smoking status was evaluated using a standardized questionnaire. Expression scores were correlated with pathologic characteristics (tumor stage and grade and with smoking status. Results. Loss of KRT13 and IL1RN expression was observed in UCB tissue samples when compared to controls (P=0.007, P=0.008 in which KRT13 and IL1RN expression were high. IL1RN expression was significantly reduced in muscle-invasive tumors (P=0.003. In tissue samples of current smokers, a significant downregulation of IL1RN was found when compared to never smokers (P=0.013. Conclusion. Decreased expressions of KRT13 and IL1RN are common features of UCB and are associated with aggressive disease. Tobacco smoking may enhance the loss of IL1RN, indicating an overweight of proinflammatory mediators involved in UCB progression. Further validation of the influence of smoking on IL1RN expression is warranted.

  11. Adenovirus-mediated IL-12 gene therapy in combination with radiotherapy for murine liver cancer

    International Nuclear Information System (INIS)

    Wei Daoyan; Dai Bingbing; Wang Zhonghe; Chen Shishu

    2001-01-01

    Objective: To investigate the synergistic antitumor effects of adenovirus-mediated IL-12 gene therapy in combination with radiotherapy in mice bearing liver cancer. Methods: Balb/c mice bearing liver cancer received the treatment at day 1 with tumor local irradiation (TLI) of 20 Gy or mask irradiation when tumor size reached 0.6-1.0 cm. Within 1 hour after irradiation, adenovirus containing IL-12 gene or PBS was intra-tumor injected once a week. Forty-eight hours after the second injection, IFN-γ levels in sera and the supernatant of cultured spleen cells were assayed by ELISA, CTL activity of spleen cells was measured by 3 H-TdR release assay, and phenotypes of tumor-infiltrating lymphocytes were analysed by immunohistochemical staining. Results: The growth of tumors in animals treated with a combination of IL-12 gene therapy and TLI was inhibited more significantly than those with either single treatment (P + and CD8 + lymphocyte infiltration and tumor-specific cytolytic activities, and the levels of IFN-γ in sera were higher in IL-12 gene therapy and IL-12 gene therapy combined with TLI groups. Conclusion: These results suggest that IL-12 gene therapy combined with radiotherapy is more effective than both single treatment modalities and can induce specific antitumor immuno-response greatly

  12. Human osteoarthritic cartilage shows reduced in vivo expression of IL-4, a chondroprotective cytokine that differentially modulates IL-1β-stimulated production of chemokines and matrix-degrading enzymes in vitro.

    Directory of Open Access Journals (Sweden)

    Elisa Assirelli

    Full Text Available BACKGROUND: In osteoarthritis (OA, an inflammatory environment is responsible for the imbalance between the anabolic and catabolic activity of chondrocytes and, thus, for articular cartilage derangement. This study was aimed at providing further insight into the impairment of the anabolic cytokine IL-4 and its receptors in human OA cartilage, as well as the potential ability of IL-4 to antagonize the catabolic phenotype induced by IL-1β. METHODOLOGY/PRINCIPAL FINDINGS: The in vivo expression of IL-4 and IL-4 receptor subunits (IL-4R, IL-2Rγ, IL-13Rα1 was investigated on full thickness OA or normal knee cartilage. IL-4 expression was found to be significantly lower in OA, both in terms of the percentage of positive cells and the amount of signal per cell. IL-4 receptor type I and II were mostly expressed in mid-deep cartilage layers. No significant difference for each IL-4 receptor subunit was noted. IL-4 anti-inflammatory and anti-catabolic activity was assessed in vitro in the presence of IL-1β and/or IL-4 for 24 hours using differentiated high density primary OA chondrocyte also exhibiting the three IL-4 R subunits found in vivo. Chemokines, extracellular matrix degrading enzymes and their inhibitors were evaluated at mRNA (real time PCR and protein (ELISA or western blot levels. IL-4 did not affect IL-1β-induced mRNA expression of GRO-α/CXCL1, IL-8/CXCL8, ADAMTS-5, TIMP-1 or TIMP-3. Conversely, IL-4 significantly inhibited RANTES/CCL5, MIP-1α/CCL3, MIP-1β/CCL4, MMP-13 and ADAMTS-4. These results were confirmed at protein level for RANTES/CCL5 and MMP-13. CONCLUSIONS/SIGNIFICANCE: Our results indicate for the first time that OA cartilage has a significantly lower expression of IL-4. Furthermore, we found differences in the spectrum of biological effects of IL-4. The findings that IL-4 has the ability to hamper the IL-1β-induced release of both MMP-13 and CCL5/RANTES, both markers of OA chondrocytes, strongly indicates IL-4 as a

  13. Cerebrospinal fluid IL-12p40, CXCL13 and IL-8 as a combinatorial biomarker of active intrathecal inflammation.

    Directory of Open Access Journals (Sweden)

    Bibiana Bielekova

    Full Text Available Diagnosis and management of the neuroinflammatory diseases of the central nervous system (CNS are hindered by the lack of reliable biomarkers of active intrathecal inflammation. We hypothesized that measuring several putative inflammatory biomarkers simultaneously will augment specificity and sensitivity of the biomarker to the clinically useful range. Based on our pilot experiment in which we measured 18 inflammatory biomarkers in 10-fold concentrated cerebrospinal fluid (CSF derived from 16 untreated patients with highly active multiple sclerosis (MS we selected a combination of three CSF biomarkers, IL-12p40, CXCL13 and IL-8, for further validation.Concentrations of IL-12p40, CXCL13 and IL-8 were determined in a blinded fashion in CSF samples from an initial cohort (n = 72 and a confirmatory cohort (n = 167 of prospectively collected, untreated subjects presenting for a diagnostic work-up of possible neuroimmunological disorder. Diagnostic conclusion was based on a thorough clinical workup, which included laboratory assessment of the blood and CSF, neuroimaging and longitudinal follow-up. Receiver operating characteristic (ROC curve analysis in conjunction with principal component analysis (PCA, which was used to combine information from all three biomarkers, assessed the diagnostic value of measured biomarkers.Each of the three biomarkers was significantly increased in MS and other inflammatory neurological disease (OIND in comparison to non-inflammatory neurological disorder patients (NIND at least in one cohort. However, considering all three biomarkers together improved accuracy of predicting the presence of intrathecal inflammation to the consistently good to excellent range (area under the ROC curve = 0.868-0.924.Future clinical studies will determine if a combinatorial biomarker consisting of CSF IL-12p40, CXCL13 and IL-8 provides utility in determining the presence of active intrathecal inflammation in diagnostically

  14. Case-control study of IL13 polymorphisms, smoking, and rhinoconjunctivitis in Japanese women: the Kyushu Okinawa Maternal and Child Health Study

    Directory of Open Access Journals (Sweden)

    Arakawa Masashi

    2011-10-01

    Full Text Available Abstract Background Six previous studies have examined the relationships between single nucleotide polymorphisms (SNPs in the IL13 gene and allergic rhinitis, but the results have been inconsistent. However, a recent meta-analysis using data from these 6 studies has shown that the A allele of IL13 SNP rs20541 was associated with an increased risk of allergic rhinitis, whereas no such relationship existed between IL13 SNP rs1800925 and allergic rhinitis. We investigated the associations between IL13 SNPs rs1800925 and rs20541 and the risk of rhinoconjunctivitis in Japanese women. Methods Included were 393 cases who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC for rhinoconjunctivitis. Control subjects were 767 women without rhinoconjunctivitis according to the ISAAC criteria, who had also not been diagnosed with allergic rhinitis by a doctor. Adjustment was made for age, region of residence, presence of older siblings, smoking, family history of allergic rhinitis, and education. Results Compared with the GG genotype of IL13 SNP rs20541, the AA genotype, occurring in 7.1% of control subjects, was significantly positively related to the risk of rhinoconjunctivitis: the adjusted odds ratio was 1.65 (95% confidence interval: 1.05 - 2.60. SNP rs1800925 was not associated with rhinoconjunctivitis. The haplotype comprising the rs1800925 C allele and the rs20541 A allele was significantly positively related to rhinoconjunctivitis. The multiplicative interactions between the two SNPs under study and smoking on the risk of rhinoconjunctivitis were not statistically significant. Based on the recessive model, however, the additive interaction between SNP rs1800925, but not rs20541, and smoking was significant. Conclusions This study suggests that the minor genotype of IL13 SNP rs20541 and the CA haplotype are significantly positively associated with the risk of rhinoconjunctivitis. In addition, a new pattern of

  15. IL13 genetic polymorphisms, smoking, and eczema in women: a case-control study in Japan.

    Science.gov (United States)

    Miyake, Yoshihiro; Tanaka, Keiko; Arakawa, Masashi

    2011-10-21

    Several genetic association studies have examined the relationships between single nucleotide polymorphisms (SNPs) in the IL13 gene and eczema, and have provided contradictory results. We investigated the relationship between the IL13 SNPs rs1800925 and rs20541 and the risk of eczema in Japanese young adult women. Included were 188 cases who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC) for eczema. Control subjects were 1,082 women without eczema according to the ISAAC criteria, who had not been diagnosed with atopic eczema by a doctor and who had no current asthma as defined by the European Community Respiratory Health Survey criteria. Adjustment was made for age, region of residence, number of children, smoking, and education. The minor TT genotype of SNP rs1800925 was significantly associated with an increased risk of eczema in the co-dominant model: the adjusted odds ratio was 2.19 (95% confidence interval: 1.03-4.67). SNP rs20541 was not related to eczema. None of the haplotypes were significantly associated with eczema. Compared with women with the CC or CT genotype of SNP rs1800925 who had never smoked, those with the TT genotype who had ever smoked had a 2.85-fold increased risk of eczema, though the adjusted odds ratio was not statistically significant, and neither multiplicative nor additive interaction was statistically significant. Our findings suggest that the IL13 SNP rs1800925 is significantly associated with eczema in Japanese young adult women. We could not find evidence for an interaction between SNP rs1800925 and smoking with regard to eczema.

  16. IL13 genetic polymorphisms, smoking, and eczema in women: a case-control study in Japan

    Directory of Open Access Journals (Sweden)

    Arakawa Masashi

    2011-10-01

    Full Text Available Abstract Background Several genetic association studies have examined the relationships between single nucleotide polymorphisms (SNPs in the IL13 gene and eczema, and have provided contradictory results. We investigated the relationship between the IL13 SNPs rs1800925 and rs20541 and the risk of eczema in Japanese young adult women. Methods Included were 188 cases who met the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC for eczema. Control subjects were 1,082 women without eczema according to the ISAAC criteria, who had not been diagnosed with atopic eczema by a doctor and who had no current asthma as defined by the European Community Respiratory Health Survey criteria. Adjustment was made for age, region of residence, number of children, smoking, and education. Results The minor TT genotype of SNP rs1800925 was significantly associated with an increased risk of eczema in the co-dominant model: the adjusted odds ratio was 2.19 (95% confidence interval: 1.03-4.67. SNP rs20541 was not related to eczema. None of the haplotypes were significantly associated with eczema. Compared with women with the CC or CT genotype of SNP rs1800925 who had never smoked, those with the TT genotype who had ever smoked had a 2.85-fold increased risk of eczema, though the adjusted odds ratio was not statistically significant, and neither multiplicative nor additive interaction was statistically significant. Conclusions Our findings suggest that the IL13 SNP rs1800925 is significantly associated with eczema in Japanese young adult women. We could not find evidence for an interaction between SNP rs1800925 and smoking with regard to eczema.

  17. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Science.gov (United States)

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  18. Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model

    Science.gov (United States)

    Zhang, Huilan; Oak, Sameer R.; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R.; Lee, Joyce; Bell, Matt; Knight, Darryl A.; Martinez, Fernando J.; Sleeman, Matthew A.; Herzog, Erica L.; Hogaboam, Cory M.

    2014-01-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung. PMID:24325475

  19. A novel monoclonal antibody, C41, reveals IL-13Ralpha1 expression by murine germinal center B cells and follicular dendritic cells.

    Science.gov (United States)

    Poudrier, J; Graber, P; Herren, S; Berney, C; Gretener, D; Kosco-Vilbois, M H; Gauchat, J F

    2000-11-01

    Responsiveness to IL-13 involves at least two chains, IL-4Ralpha and IL-13Ralpha1. Although mouse B cells express IL-4Ralpha, little is known about their expression of IL-13Ralpha chains. To investigate this topic further, we have generated a monoclonal antibody (C41) specific for murine IL-13Ralpha1. Using C41, IL-13Ralpha1 expression was detected on germinal center (GC) B cells by flow cytometry and immunohistochemistry. In addition, IL-13Ralpha1 was observed on follicular dendritic cells, but not interdigitating dendritic cells in the T cell areas. Furthermore, resting B cells also expressed IL-13Ralpha1, and in the presence of IL-13 produced increased amounts of IgM in response to in vitro CD40 stimulation. However, C41 was unable to neutralize this bioactivity. The distribution of IL-13Ralpha1 on murine B cells and during GC reactions suggests a role for IL-13 during B cell differentiation.

  20. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    Science.gov (United States)

    2011-01-01

    Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270

  1. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    Directory of Open Access Journals (Sweden)

    Chang Shwu-Fen

    2011-03-01

    Full Text Available Abstract Background Arctium lappa (Niubang, a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC, isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2 and interferon-γ (IFN-γ production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  2. [Plasma IL-18 levels are related to insulin and are modulated by IL-18 gene polymorphisms].

    Science.gov (United States)

    Martinez-Hervas, Sergio; Martínez-Barquero, Vanesa; Nuñez Savall, Ester; Lendínez, Verónica; Olivares, Laura; Benito, Esther; Real, Jose T; Chaves, F Javier; Ascaso, Juan F

    2015-01-01

    Atherosclerosis is an inflammatory chronic disease influenced by multiple factors. Different prospective studies have shown that plasmatic levels of inflammatory markers were related to atherosclerosis and cardiovascular disease. To evaluate whether plasmatic levels of interleukin 18 (IL-18) are modulated by SNPs (single nucleotide polymorphisms) of the IL 18 gene and its possible association with insulin levels and other cardiovascular risk factors. 746 individuals were studied for a period of two years by opportunistic selection in the metropolitan area of Valencia. Parameters of lipid and glucose metabolism were analyzed by standard methodology. IL-18 was measured by ELISA. Individuals with insulin resistance showed significant higher levels of IL-18. IL 18 was significantly correlated with insulin levels and other cardiovascular risk factors. The CC genotype of the rs1834481 SNP was significantly associated with lower levels of IL-18. However, the GG genotype of the rs7559479 was associated with significant higher levels of IL-18. IL-18 is associated with insulin resistance and other cardiovascular risk factors, being those levels genetically regulated. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  3. Association of Single Nucleotide Polymorphisms in the IL-18 Gene with Production of IL-18 Protein by Mononuclear Cells from Healthy Donors

    Directory of Open Access Journals (Sweden)

    Khripko Olga Pavlovna

    2008-01-01

    Full Text Available IL-18 has proinflammatory effects and participates in both innate and adaptive cellular and humoral immunity. A number of SNPs that influence IL-18 production are found in the gene promoter region. We investigated the association of SNPs in the IL-18 promoter at −607 and −137 with the level of IL-18 protein production by PBMC from healthy donors from Southwestern Siberia. The genetic distribution of these SNPs in the promoter site was established by PCR. IL-18 protein production was determined by ELISA. Our results showed that PBMC from donors carrying allele 137C have lower levels of both spontaneous and LPS-stimulated IL-18 production. In contrast, PBMC from donors carrying allele 607A showed significant increases in spontaneous and stimulated IL-18 production compared to wild type. Our study suggests that the SNPs −607 and −137 in the promoter region of the IL-18 gene influence the level of IL-18 protein production by PBMC from healthy donors in Southwestern Siberia.

  4. Expression of serum MMP-13, TNF-α and IL-6 in patients with chronic hepatitis and liver cirrhosis

    International Nuclear Information System (INIS)

    Xu Zhengfu; Yao Dengfu; Qiu Liwei; Wu Wei; Wu Xinhua; Lu Cuihua

    2005-01-01

    Objective: To detect serum MMP-13, TNF-α and IL-6 levels of the patients with chronic hepatitis B and liver cirrhosis, and evaluate their significant changes. To explore the correlation between serum TNF-α, IL-6 and MMP-13 levels. Method: Double antibody Sandwich Enzyme-Linked Immunosorbent Assay (DAS-ELISA) was used to detect chronic hepatitis in 13 cases, Liver cirrhosis in 28 cases and MMP-13 in the 13 controls, TNF-α in the 20 controls and IL-6 in the 30 controls. Results: Compared with the controls and chronic hepatitis, the serum MMP-13 levels of the patients with liver cirrhosis were significantly higher; the serum TNF-α and IL-6 levels of patients with chronic hepatitis as well as liver cirrhosis were significantly higher; the serum TNF-α and IL-6 levels did not relate to serum MMP-13 in patients with chronic hepatitis and liver cirrhosis. Conclusions: MMP-13 has important effect on formation of liver fibrosis. TNF-α and IL-6 have little effect on expression of MMP-13 levels of the patients with chronic hepatitis and liver cirrhosis. (authors)

  5. Dynamic mathematical modeling of IL13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma allows prediction of therapeutic targets.

    Science.gov (United States)

    Raia, Valentina; Schilling, Marcel; Böhm, Martin; Hahn, Bettina; Kowarsch, Andreas; Raue, Andreas; Sticht, Carsten; Bohl, Sebastian; Saile, Maria; Möller, Peter; Gretz, Norbert; Timmer, Jens; Theis, Fabian; Lehmann, Wolf-Dieter; Lichter, Peter; Klingmüller, Ursula

    2011-02-01

    Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) share a frequent constitutive activation of JAK (Janus kinase)/STAT signaling pathway. Because of complex, nonlinear relations within the pathway, key dynamic properties remained to be identified to predict possible strategies for intervention. We report the development of dynamic pathway models based on quantitative data collected on signaling components of JAK/STAT pathway in two lymphoma-derived cell lines, MedB-1 and L1236, representative of PMBL and cHL, respectively. We show that the amounts of STAT5 and STAT6 are higher whereas those of SHP1 are lower in the two lymphoma cell lines than in normal B cells. Distinctively, L1236 cells harbor more JAK2 and less SHP1 molecules per cell than MedB-1 or control cells. In both lymphoma cell lines, we observe interleukin-13 (IL13)-induced activation of IL4 receptor α, JAK2, and STAT5, but not of STAT6. Genome-wide, 11 early and 16 sustained genes are upregulated by IL13 in both lymphoma cell lines. Specifically, the known STAT-inducible negative regulators CISH and SOCS3 are upregulated within 2 hours in MedB-1 but not in L1236 cells. On the basis of this detailed quantitative information, we established two mathematical models, MedB-1 and L1236 model, able to describe the respective experimental data. Most of the model parameters are identifiable and therefore the models are predictive. Sensitivity analysis of the model identifies six possible therapeutic targets able to reduce gene expression levels in L1236 cells and three in MedB-1. We experimentally confirm reduction in target gene expression in response to inhibition of STAT5 phosphorylation, thereby validating one of the predicted targets.

  6. Influence of correlation between HLA-G polymorphism and Interleukin-6 (IL6) gene expression on the risk of schizophrenia.

    Science.gov (United States)

    Shivakumar, Venkataram; Debnath, Monojit; Venugopal, Deepthi; Rajasekaran, Ashwini; Kalmady, Sunil V; Subbanna, Manjula; Narayanaswamy, Janardhanan C; Amaresha, Anekal C; Venkatasubramanian, Ganesan

    2018-07-01

    Converging evidence suggests important implications of immuno-inflammatory pathway in the risk and progression of schizophrenia. Prenatal infection resulting in maternal immune activation and developmental neuroinflammation reportedly increases the risk of schizophrenia in the offspring by generating pro-inflammatory cytokines including IL-6. However, it is not known how prenatal infection can induce immuno-inflammatory responses despite the presence of immuno-inhibitory Human Leukocyte Antigen-G (HLA-G) molecules. To address this, the present study was aimed at examining the correlation between 14 bp Insertion/Deletion (INDEL) polymorphism of HLA-G and IL-6 gene expression in schizophrenia patients. The 14 bp INDEL polymorphism was studied by PCR amplification/direct sequencing and IL-6 gene expression was quantified by using real-time RT-PCR in 56 schizophrenia patients and 99 healthy controls. We observed significantly low IL6 gene expression in the peripheral mononuclear cells (PBMCs) of schizophrenia patients (t = 3.8, p = .004) compared to the controls. In addition, schizophrenia patients carrying Del/Del genotype of HLA-G 14 bp INDEL exhibited significantly lower IL6 gene expression (t = 3.1; p = .004) than the Del/Ins as well as Ins/Ins carriers. Our findings suggest that presence of "high-expressor" HLA-G 14 bp Del/Del genotype in schizophrenia patients could attenuate IL-6 mediated inflammation in schizophrenia. Based on these findings it can be assumed that HLA-G and cytokine interactions might play an important role in the immunological underpinnings of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Glucocorticoid-induced reversal of interleukin-1β-stimulated inflammatory gene expression in human oviductal cells.

    Directory of Open Access Journals (Sweden)

    Stéphanie Backman

    Full Text Available Studies indicate that high-grade serous ovarian carcinoma (HGSOC, the most common epithelial ovarian carcinoma histotype, originates from the fallopian tube epithelium (FTE. Risk factors for this cancer include reproductive parameters associated with lifetime ovulatory events. Ovulation is an acute inflammatory process during which the FTE is exposed to follicular fluid containing both pro- and anti-inflammatory molecules, such as interleukin-1 (IL1, tumor necrosis factor (TNF, and cortisol. Repeated exposure to inflammatory cytokines may contribute to transforming events in the FTE, with glucocorticoids exerting a protective effect. The global response of FTE cells to inflammatory cytokines or glucocorticoids has not been investigated. To examine the response of FTE cells and the ability of glucocorticoids to oppose this response, an immortalized human FTE cell line, OE-E6/E7, was treated with IL1β, dexamethasone (DEX, IL1β and DEX, or vehicle and genome-wide gene expression profiling was performed. IL1β altered the expression of 47 genes of which 17 were reversed by DEX. DEX treatment alone altered the expression of 590 genes, whereas combined DEX and IL1β treatment altered the expression of 784 genes. Network and pathway enrichment analysis indicated that many genes altered by DEX are involved in cytokine, chemokine, and cell cycle signaling, including NFκΒ target genes and interacting proteins. Quantitative real time RT-PCR studies validated the gene array data for IL8, IL23A, PI3 and TACC2 in OE-E6/E7 cells. Consistent with the array data, Western blot analysis showed increased levels of PTGS2 protein induced by IL1β that was blocked by DEX. A parallel experiment using primary cultured human FTE cells indicated similar effects on PTGS2, IL8, IL23A, PI3 and TACC2 transcripts. These findings support the hypothesis that pro-inflammatory signaling is induced in FTE cells by inflammatory mediators and raises the possibility that

  8. Role of ACE and IL-1β Gene Polymorphisms in Erythropoeitin Hyporesponsive Patients with Chronic Kidney Disease with Anemia.

    Science.gov (United States)

    Nand, N; Deshmukh, A R; Joshi, S; Sachdeva, M P; Sakthivel

    2017-02-01

    Hyporesponse to erythropoietin is a common problem seen in around 5-10% of patients. Recently the focus from these remediable factors has been shifted to the non-modifiable innate factors i.e polymorphism of ACE and IL-1B gene and studies have shown that DD genotype and IL-1B CC genotype have lower erythropoietin requirement. The aim of our study was to evaluate the role of ACE and IL-1B gene polymorphisms in erythropoietin hyporesponse in CKD patients with anemia. A total of 50 patients were selected. After taking pre-informed written consent, they were segregated into two groups, group A and B with 25 patients in each group. Group A included CKD stage III-IV patients and Group B included CKD stage V patients who were on regular maintenance. All patients were given erythroepoietin and response was monitored using erythropoietin resistance index (ERI). Genotyping of ACE and IL-1B genes were done and serum levels of ACE and IL-1B were measured. Mean values of ERI were compared between different genotype subgroups and analysed using binary regression analysis. The study group included 6 patients with diabetic nephropathy and out of these 4(66.6%) had DD genotype. On comparing the effect of ACE polymorphism on ERI levels it was seen that the mean ERI values in DD subgroup were significantly lower (16.97±5.35, 21.88±6.25, 22.69±8.35 at 1,3 and 5th month) as compared to ID (18.16±3.39, 24.17±3.66, 32.74±9.95 and II (20.73±5.17, 27.74±7.30, 41.08±13.83 U/Kg/g/dL). In the case of IL-1B the mean ERI values were lowest in the TT subgroup (16.46±4.45, 21.96±5.77,23.98±8.48) as compared to CC (19.49 ±5.62,25.46±7.07, 33.59±12.61) and CT (18.12±4.27,24.14±5.70, 31.89±13.83 U/Kg/g/dL). The mean serum values of ACE were in a decreasing trend i.e DD> ID> II (238.05 ± 52.46, 194.73±50.28 and 162.99±39.71 ng/ml, (p 0.05). D allele positively affected the serum ACE level but there was no association between IL-1B genotype and its levels. ACE gene polymorphism

  9. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  10. The candidate genes TAF5L, TCF7, PDCD1, IL6 and ICAM1 cannot be excluded from having effects in type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Vella Adrian

    2007-11-01

    Full Text Available Abstract Background As genes associated with immune-mediated diseases have an increased prior probability of being associated with other immune-mediated diseases, we tested three such genes, IL23R, IRF5 and CD40, for an association with type 1 diabetes. In addition, we tested seven genes, TAF5L, PDCD1, TCF7, IL12B, IL6, ICAM1 and TBX21, with published marginal or inconsistent evidence of an association with type 1 diabetes. Methods We genotyped reported polymorphisms of the ten genes, nonsynonymous SNPs (nsSNPs and, for the IL12B and IL6 regions, tag SNPs in up to 7,888 case, 8,858 control and 3,142 parent-child trio samples. In addition, we analysed data from the Wellcome Trust Case Control Consortium genome-wide association study to determine whether there was any further evidence of an association in each gene region. Results We found some evidence of associations between type 1 diabetes and TAF5L, PDCD1, TCF7 and IL6 (ORs = 1.05 – 1.13; P = 0.0291 – 4.16 × 10-4. No evidence of an association was obtained for IL12B, IRF5, IL23R, ICAM1, TBX21 and CD40, although there was some evidence of an association (OR = 1.10; P = 0.0257 from the genome-wide association study for the ICAM1 region. Conclusion We failed to exclude the possibility of some effect in type 1 diabetes for TAF5L, PDCD1, TCF7, IL6 and ICAM1. Additional studies, of these and other candidate genes, employing much larger sample sizes and analysis of additional polymorphisms in each gene and its flanking region will be required to ascertain their contributions to type 1 diabetes susceptibility.

  11. Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1α in ameloblastoma

    International Nuclear Information System (INIS)

    Fuchigami, Takao; Kibe, Toshiro; Koyama, Hirofumi; Kishida, Shosei; Iijima, Mikio; Nishizawa, Yoshiaki; Hijioka, Hiroshi; Fujii, Tomomi; Ueda, Masahiro; Nakamura, Norifumi; Kiyono, Tohru; Kishida, Michiko

    2014-01-01

    Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactions are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave

  12. Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1α in ameloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Fuchigami, Takao [Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kibe, Toshiro [Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Koyama, Hirofumi; Kishida, Shosei; Iijima, Mikio [Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Nishizawa, Yoshiaki [Kagoshima University Faculty of Medicine, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Hijioka, Hiroshi; Fujii, Tomomi [Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ueda, Masahiro [Natural Science Centre for Research and Education, Kagoshima University, 1-21-24 Koorimoto, Kagoshima 890-8580 (Japan); Nakamura, Norifumi [Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kiyono, Tohru [Department of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuouku, Tokyo 104-0045 (Japan); Kishida, Michiko, E-mail: kmichiko@m2.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2014-09-05

    Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactions are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave

  13. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    International Nuclear Information System (INIS)

    Islam, Zahidul; Gray, Jennifer S.; Pestka, James J.

    2006-01-01

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1β intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38 + cells. DON-induced p38 activation occurred exclusively in the CD14 + monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response

  14. Tissue-specific expression of the human laminin alpha5-chain, and mapping of the gene to human chromosome 20q13.2-13.3 and to distal mouse chromosome 2 near the locus for the ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Loechel, F; Mattei, M G

    1997-01-01

    , heart, lung, skeletal muscle, kidney, and pancreas. The human laminin alpha5-chain gene (LAMA5) was assigned to chromosome 20q13.2-q13.3 by in situ hybridization, and the mouse gene (Lama5) was mapped by linkage analysis to a syntonic region of distal chromosome 2, close to the locus for the ragged (Ra...

  15. Antibody repertoires in humanized NOD-scid-IL2Rγ(null mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse.

    Directory of Open Access Journals (Sweden)

    Gregory C Ippolito

    Full Text Available Immunodeficient mice reconstituted with human hematopoietic stem cells enable the in vivo study of human hematopoiesis. In particular, NOD-scid-IL2Rγ(null engrafted mice have been shown to have reasonable levels of T and B cell repopulation and can mount T-cell dependent responses; however, antigen-specific B-cell responses in this model are generally poor. We explored whether developmental defects in the immunoglobulin gene repertoire might be partly responsible for the low level of antibody responses in this model. Roche 454 sequencing was used to obtain over 685,000 reads from cDNA encoding immunoglobulin heavy (IGH and light (IGK and IGL genes isolated from immature, naïve, or total splenic B cells in engrafted NOD-scid-IL2Rγ(null mice, and compared with over 940,000 reads from peripheral B cells of two healthy volunteers. We find that while naïve B-cell repertoires in humanized mice are chiefly indistinguishable from those in human blood B cells, and display highly correlated patterns of immunoglobulin gene segment use, the complementarity-determining region H3 (CDR-H3 repertoires are nevertheless extremely diverse and are specific for each individual. Despite this diversity, preferential D(H-J(H pairings repeatedly occur within the CDR-H3 interval that are strikingly similar across all repertoires examined, implying a genetic constraint imposed on repertoire generation. Moreover, CDR-H3 length, charged amino-acid content, and hydropathy are indistinguishable between humans and humanized mice, with no evidence of global autoimmune signatures. Importantly, however, a statistically greater usage of the inherently autoreactive IGHV4-34 and IGKV4-1 genes was observed in the newly formed immature B cells relative to naïve B or total splenic B cells in the humanized mice, a finding consistent with the deletion of autoreactive B cells in humans. Overall, our results provide evidence that key features of the primary repertoire are shaped by

  16. Association of polymorphic variants of IL-1β and IL-1RN genes in the development of Graves' disease in Kashmiri population (North India).

    Science.gov (United States)

    Shehjar, Faheem; Afroze, Dil; Misgar, Raiz A; Malik, Sajad A; Laway, Bashir A

    2018-04-01

    Graves' disease (GD) is a multigenic, organ specific autoimmune disorder with a strong genetic predisposition and IL-1β has been shown to be involved in its pathogenesis. The present study was aimed to determine the genetic associations between polymorphisms of IL-1β gene promoter region (-511 T>C) (rs16944), exon 5 (+3954 C>T) (rs1143634) and IL-1RN gene VNTR (rs2234663) polymorphism in patients with GD in ethnic Kashmiri population. A total of 135 Graves' disease patients and 150 healthy individuals were included in the study. PCR and PCR-based restriction analysis methods were done for IL-1RN VNTR and IL-1β gene polymorphisms respectively. We found statistically significant increased frequencies of the C/C + CT genotype (P = 0.001; odds ratio (OR) = 5.04, 95% confidence interval (CI) = 3.02-8.42) and the C allele (P = 0.001; OR = 3.10, 95% CI = 2.14-4.50) in IL-1β gene promoter polymorphism (rs16944) with GD patients compared to normal controls. Also in the exon 5 (rs1143634), a significant increase in frequency of the C/C homozygous genotype (P = 0.001; OR = 0.18, 95% CI = 0.11-0.30) and C allele (P = 0.001; OR = 0.31, 95% CI = 0.20-0.48) was observed in GD cases as against controls. For IL-1RN VNTR (rs2234663), we didn't observe any significant difference in the allelic and genotypic frequencies between cases and controls. Our findings suggest that both promoter and exon polymorphisms of IL-1β gene have a significant role in the risk of developing GD, whereas IL-1RN VNTR has no association with GD. Copyright © 2018. Published by Elsevier Inc.

  17. Influence of the IL6 Gene in Susceptibility to Systemic Sclerosis

    NARCIS (Netherlands)

    Cenit, M.C.; Simeon, C.P.; Vonk, M.C.; Callejas-Rubio, J.L.; Espinosa, G.; Carreira, P.; Blanco, F.J.; Narvaez, J.; Tolosa, C.; Roman-Ivorra, J.A.; Gomez-Garcia, I.; Garcia-Hernandez, F.J.; Gallego, M.; Garcia-Portales, R.; Egurbide, M.V.; Fonollosa, V.; Garcia de la Pena, P.; Lopez-Longo, F.J.; Gonzalez-Gay, M.A.; The Spanish Scleroderma, G.; Hesselstrand, R.; Riemekasten, G.; Witte, T.J.M. de; Voskuyl, A.E.; Schuerwegh, A.J.; Madhok, R.; Fonseca, C.; Denton, C.; Nordin, A.; Palm, O.; Laar, J.M. van; Hunzelmann, N.; Distler, J.H.; Kreuter, A.; Herrick, A.; Worthington, J.; Koeleman, B.P.; Radstake, T.R.D.J.; Martin, J.

    2012-01-01

    OBJECTIVE: Systemic sclerosis (SSc) is a genetically complex autoimmune disease; the genetic component has not been fully defined. Interleukin 6 (IL-6) plays a crucial role in immunity and fibrosis, both key aspects of SSc. We investigated the influence of IL6 gene in the susceptibility and

  18. Relationship Between IL1 Gene Polymorphisms and Periodontal Disease in Japanese Women

    OpenAIRE

    Tanaka, Keiko; Miyake, Yoshihiro; Hanioka, Takashi; Arakawa, Masashi

    2014-01-01

    Epidemiological evidence on the relationship between IL1A and/or IL1B polymorphisms and periodontal disease is inconsistent. We investigated associations between three IL1 single-nucleotide polymorphisms (SNPs) in genes encoding interleukin (IL) -1α (rs1800587) and IL-1β (rs1143634 and rs16944) and the risk of periodontal disease among young Japanese women. A case–control study was performed with a total of 1150 women, including 131 subjects who had at least one tooth with a probing pocket de...

  19. Due diligence in the characterization of matrix effects in a total IL-13 Singulex™ method.

    Science.gov (United States)

    Fraser, Stephanie; Soderstrom, Catherine

    2014-04-01

    After obtaining her PhD in Cellular and Molecular biology from the University of Nevada, Reno, Stephanie has spent the last 15 years in the field of bioanalysis. She has held positions in academia, biotech, contract research and large pharma where she has managed ligand binding assay (discovery to Phase IIb clinical) and flow cytometry (preclinical) laboratories as well as taken the lead on implementing new/emergent technologies. Currently Stephanie leads Pfizer's Regulated Bioanalysis Ligand Binding Assay group, focusing on early clinical biomarker support. Interleukin (IL)-13, a Th2 cytokine, drives a range of physiological responses associated with the induction of allergic airway diseases and inflammatory bowel diseases. Analysis of IL-13 as a biomarker has provided insight into its role in disease mechanisms and progression. Serum IL-13 concentrations are often too low to be measured by standard enzyme-linked immunosorbent assay techniques, necessitating the implementation of a highly sensitive assay. Previously, the validation of a Singulex™ Erenna(®) assay for the quantitation of IL-13 was reported. Herein we describe refinement of this validation; defining the impact of matrix interference on the lower limit of quantification, adding spiked matrix QC samples, and extending endogenous IL-13 stability. A fit-for-purpose validation was conducted and the assay was used to support a Phase II clinical trial.

  20. Association of IL-6 and MMP-3 gene polymorphisms with ...

    Indian Academy of Sciences (India)

    comprehensively and systematically performed this meta-analysis to detect whether the two gene polymorphisms are corre- .... control studies; (ii) 'failure to provide the genes' distribution details ..... biological activity of corresponding proteins such as IL-6 .... pathic scoliosis is related to inadequate calcium intake and weight.

  1. Association of single nucleotide polymorphisms of IL23R and IL17 with ulcerative colitis risk in a Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Pengli Yu

    Full Text Available BACKGROUND: Previous studies implicated that IL23R and IL17 genes play an important role in autoimmune inflammation. Genome-wide association studies have also identified multiple single nucleotide polymorphisms (SNPs in the IL23R gene region associated with inflammatory bowel diseases. This study examined the association of IL23R and IL17A gene SNPs with ulcerative colitis susceptibility in a population in China. METHODOLOGY: A total of 270 ulcerative colitis and 268 healthy controls were recruited for the analyses of 23 SNPs in the IL23R and IL17A regions. Genomic DNA was extracted and analysis of these 23 SNPs using ligase detection reaction allelic (LDR technology. Genotype and allele associations were calculated using SPSS 13.0 software package. PRINCIPAL FINDINGS: Compared to the healthy controls, the variant alleles IL23R rs7530511, and rs11805303 showed a statistically significant difference for ulcerative colitis susceptibility (0.7% vs 3.3%, P = 0.002; 60.4% vs 53.2%, P = 0.0017, respectively. The linkage disequilibrium (LD patterns of these SNPs were measured and three LD blocks from the SNPs of IL23R and one block from those of IL17A were identified. A novel association with ulcerative colitis susceptibility occurred in haplotypes of IL23R (Block1 H3 P = 0.02; Block2 H2 P = 0.019; Block3 H4 P = 0.029 and IL17A (H4 P = 0.034. Pair-wise analyses showed an interaction between the risk haplotypes in IL23R and IL17A (P = 0.014. CONCLUSIONS: Our study demonstrated that rs7530511, and rs11805303 of IL23R were significantly associated with ulcerative colitis susceptibility in the Chinese population. The most noticeable finding was the linkage of IL23R and IL17A gene region to ulcerative colitis risk due to the gene-gene interaction.

  2. IL-7 Enhances Thymic Human T Cell Development in "Human Immune System" Rag2-/-IL-2R{gamma}c-/- Mice without Affecting Peripheral T Cell Homeostasis

    NARCIS (Netherlands)

    van Lent, Anja U.; Dontje, Wendy; Nagasawa, Maho; Siamari, Rachida; Bakker, Arjen Q.; Pouw, Stephan M.; Maijoor, Kelly A.; Weijer, Kees; Cornelissen, Jan J.; Blom, Bianca; Di Santo, James P.; Spits, Hergen; Legrand, Nicolas

    2009-01-01

    IL-7 is a central cytokine in the development of hematopoietic cells, although interspecies discrepancies have been reported. By coculturing human postnatal thymus hematopoietic progenitors and OP9-huDL1 stromal cells, we found that murine IL-7 is approximately 100-fold less potent than human IL-7

  3. The impact of IL28B genotype on the gene expression profile of patients with chronic hepatitis C treated with pegylated interferon alpha and ribavirin

    Directory of Open Access Journals (Sweden)

    Younossi Zobair M

    2012-02-01

    Full Text Available Abstract Background Recent studies of CH-C patients have demonstrated a strong association between IL28B CC genotype and sustained virologic response (SVR after PEG-IFN/RBV treatment. We aimed to assess whether IL28B alleles rs12979860 genotype influences gene expression in response to PEG-IFN/RBV in CH-C patients. Methods Clinical data and gene expression data were available for 56 patients treated with PEG-IFN/RBV. Whole blood was used to determine IL28B genotypes. Differential expression of 153 human genes was assessed for each treatment time point (Days: 0, 1, 7, 28, 56 and was correlated with IL28B genotype (IL28B C/C or non-C/C over the course of the PEG-IFN/RBV treatment. Genes with statistically significant changes in their expression at each time point were used as an input for pathway analysis using KEGG Pathway Painter (KPP. Pathways were ranked based on number of gene involved separately per each study cohort. Results The most striking difference between the response patterns of patients with IL28B C/C and T* genotypes during treatment, across all pathways, is a sustained pattern of treatment-induced gene expression in patients carrying IL28B C/C. In the case of IL28B T* genotype, pre-activation of genes, the lack of sustained pattern of gene expression or a combination of both were observed. This observation could potentially provide an explanation for the lower rate of SVR observed in these patients. Additionally, when the lists of IL28B genotype-specific genes which were differentially expressed in patients without SVR were compared at their baseline, IRF2 and SOCS1 genes were down-regulated regardless of patients' IL28B genotype. Furthermore, our data suggest that CH-C patients who do not have the SOCS1 gene silenced have a better chance of achieving SVR. Our observations suggest that the action of SOCS1 is independent of IL28B genotype. Conclusions IL28B CC genotype patients with CH-C show a sustained treatment-induced gene

  4. The impact of IL28B genotype on the gene expression profile of patients with chronic hepatitis C treated with pegylated interferon alpha and ribavirin.

    Science.gov (United States)

    Younossi, Zobair M; Birerdinc, Aybike; Estep, Mike; Stepanova, Maria; Afendy, Arian; Baranova, Ancha

    2012-02-07

    Recent studies of CH-C patients have demonstrated a strong association between IL28B CC genotype and sustained virologic response (SVR) after PEG-IFN/RBV treatment. We aimed to assess whether IL28B alleles rs12979860 genotype influences gene expression in response to PEG-IFN/RBV in CH-C patients. Clinical data and gene expression data were available for 56 patients treated with PEG-IFN/RBV. Whole blood was used to determine IL28B genotypes. Differential expression of 153 human genes was assessed for each treatment time point (Days: 0, 1, 7, 28, 56) and was correlated with IL28B genotype (IL28B C/C or non-C/C) over the course of the PEG-IFN/RBV treatment. Genes with statistically significant changes in their expression at each time point were used as an input for pathway analysis using KEGG Pathway Painter (KPP). Pathways were ranked based on number of gene involved separately per each study cohort. The most striking difference between the response patterns of patients with IL28B C/C and T* genotypes during treatment, across all pathways, is a sustained pattern of treatment-induced gene expression in patients carrying IL28B C/C. In the case of IL28B T* genotype, pre-activation of genes, the lack of sustained pattern of gene expression or a combination of both were observed. This observation could potentially provide an explanation for the lower rate of SVR observed in these patients. Additionally, when the lists of IL28B genotype-specific genes which were differentially expressed in patients without SVR were compared at their baseline, IRF2 and SOCS1 genes were down-regulated regardless of patients' IL28B genotype. Furthermore, our data suggest that CH-C patients who do not have the SOCS1 gene silenced have a better chance of achieving SVR. Our observations suggest that the action of SOCS1 is independent of IL28B genotype. IL28B CC genotype patients with CH-C show a sustained treatment-induced gene expression profile which is not seen in non-CC genotype patients

  5. Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF, and IL12

    International Nuclear Information System (INIS)

    Parney, I.F.; Farr-Jones, M.A.; Kane, K.; Chang, L.-J.; Petruk, K.C.

    2002-01-01

    Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12). A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 ( 51 Cr) release assay. Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2,GM-CSF,and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells. PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of turnor subclones with limited antigenic spectra during retrovirus-mediated gene transfer. (author)

  6. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis.

    Science.gov (United States)

    Conti, Heather R; Whibley, Natasha; Coleman, Bianca M; Garg, Abhishek V; Jaycox, Jillian R; Gaffen, Sarah L

    2015-01-01

    Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.

  7. Signaling through IL-17C/IL-17RE Is Dispensable for Immunity to Systemic, Oral and Cutaneous Candidiasis

    Science.gov (United States)

    Conti, Heather R.; Whibley, Natasha; Coleman, Bianca M.; Garg, Abhishek V.; Jaycox, Jillian R.; Gaffen, Sarah L.

    2015-01-01

    Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections. PMID:25849644

  8. Profile of Inflammation-associated genes during Hepatic Differentiation of Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Joseph Ignatius Irudayam

    2015-12-01

    Full Text Available Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5, hepatoblast (day 15 and hepatocyte-like cells (day 21 were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type, the hepatic cells (days 15 and 21 had significantly higher expression of acute phase protein genes including complement factors, coagulation factors, serum amyloid A and serpins. Furthermore, hepatic phase of cells expressed proinflammatory cytokines IL18 and IL32 as well as cytokine receptors IL18R1, IL1R1, IL1RAP, IL2RG, IL6R, IL6ST and IL10RB. These cells also produced CCL14, CCL15, and CXCL- 1, 2, 3, 16 and 17 chemokines. Endoderm cells had higher levels of chemokine receptors, CXCR4 and CXCR7, than that of hepatic cells. Sirtuin family of genes involved in aging, inflammation and metabolism were differentially regulated in endoderm and hepatic phase cells. Ligands and receptors of the tumor necrosis factor (TNF family as well as downstream signaling factors TRAF2, TRAF4, FADD, NFKB1 and NFKBIB were differentially expressed during hepatic differentiation.

  9. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs

    Science.gov (United States)

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P

    2015-01-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. PMID:26395994

  10. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice.

    Science.gov (United States)

    Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J

    2015-09-01

    Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    Science.gov (United States)

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  12. Identification of a truncated splice variant of IL-18 receptor alpha in the human and rat, with evidence of wider evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Chris S. Booker

    2014-09-01

    Full Text Available Interleukin-18 (IL-18 is a pro-inflammatory cytokine which stimulates activation of the nuclear factor kappa beta (NF-κB pathway via interaction with the IL-18 receptor. The receptor itself is formed from a dimer of two subunits, with the ligand-binding IL-18Rα subunit being encoded by the IL18R1 gene. A splice variant of murine IL18r1, which has been previously described, is formed by transcription of an unspliced intron (forming a ‘type II’ IL18r1 transcript and is predicted to encode a receptor with a truncated intracellular domain lacking the capacity to generate downstream signalling. In order to examine the relevance of this finding to human IL-18 function, we assessed the presence of a homologous transcript by reverse transcription-polymerase chain reaction (RT-PCR in the human and rat as another common laboratory animal. We present evidence for type II IL18R1 transcripts in both species. While the mouse and rat transcripts are predicted to encode a truncated receptor with a novel 5 amino acid C-terminal domain, the human sequence is predicted to encode a truncated protein with a novel 22 amino acid sequence bearing resemblance to the ‘Box 1’ motif of the Toll/interleukin-1 receptor (TIR domain, in a similar fashion to the inhibitory interleukin-1 receptor 2. Given that transcripts from these three species are all formed by inclusion of homologous unspliced intronic regions, an analysis of homologous introns across a wider array of 33 species with available IL18R1 gene records was performed, which suggests similar transcripts may encode truncated type II IL-18Rα subunits in other species. This splice variant may represent a conserved evolutionary mechanism for regulating IL-18 activity.

  13. IL22/IL-22R pathway induces cell survival in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Hussein Akil

    Full Text Available Interleukin-22 (IL-22 is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1 and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM. Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.

  14. Microarray evaluation of gene expression profiles in inflamed and healthy human dental pulp: the role of IL1beta and CD40 in pulp inflammation.

    Science.gov (United States)

    Gatta, V; Zizzari, V L; Dd ' Amico, V; Salini, L; D' Aurora, M; Franchi, S; Antonucci, I; Sberna, M T; Gherlone, E; Stuppia, L; Tetè, S

    2012-01-01

    Dental pulp undergoes a number of changes passing from healthy status to inflammation due to deep decay. These changes are regulated by several genes resulting differently expressed in inflamed and healthy dental pulp, and the knowledge of the processes underlying this differential expression is of great relevance in the identification of the pathogenesis of the disease. In this study, the gene expression profile of inflamed and healthy dental pulps were compared by microarray analysis, and data obtained were analyzed by Ingenuity Pathway Analysis (IPA) software. This analysis allows to focus on a variety of genes, typically expressed in inflamed tissues. The comparison analysis showed an increased expression of several genes in inflamed pulp, among which IL1β and CD40 resulted of particular interest. These results indicate that gene expression profile of human dental pulp in different physiological and pathological conditions may become an useful tool for improving our knowledge about processes regulating pulp inflammation.

  15. Relationship between IL1 gene polymorphisms and periodontal disease in Japanese women.

    Science.gov (United States)

    Tanaka, Keiko; Miyake, Yoshihiro; Hanioka, Takashi; Arakawa, Masashi

    2014-04-01

    Epidemiological evidence on the relationship between IL1A and/or IL1B polymorphisms and periodontal disease is inconsistent. We investigated associations between three IL1 single-nucleotide polymorphisms (SNPs) in genes encoding interleukin (IL) -1α (rs1800587) and IL-1β (rs1143634 and rs16944) and the risk of periodontal disease among young Japanese women. A case-control study was performed with a total of 1150 women, including 131 subjects who had at least one tooth with a probing pocket depth of 4 mm or deeper and 1019 periodontally healthy controls. Compared with a reference group of women with the GG genotype of SNP rs16944, those with the GA genotype had a significantly reduced risk of periodontal disease, while there was no significant relationship between the AA genotype and periodontal disease. No evident relationships were observed between SNP rs1800587 or rs1143634 and periodontal disease. Our study did not reveal any evidence of interaction between the IL1 polymorphisms and smoking. The results of this study showed that the heterozygous variant genotype of the IL1 rs16944 was significantly associated with a reduced risk of periodontal disease in young Japanese women. Smoking did not significantly modify the gene-disease associations under study.

  16. Carbon monoxide releasing molecule-2 ameliorates IL-1β-induced IL-8 in human gastric cancer cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Ung, Trong Thuan; Khoi, Pham Ngoc; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2016-01-01

    Carbon monoxide (CO), a byproduct of heme oxygenase (HO), presents antioxidant, anti-inflammatory, and anti-tumor properties. Accumulating evidence supports that interleukin (IL)-8 contribute to the vascularity of human gastric cancer. However, the inhibition of IL-8 expression by CO is yet to be elucidated. Here, we utilized CO releasing molecule-2 (CORM-2) to investigate the effect of CO on IL-1β-induced IL-8 expression and the underlying molecular mechanisms in human gastric cancer AGS cells. CORM-2 dose-dependently suppressed IL-1β-induced IL-8 mRNA and protein expression as well as IL-8 promoter activity. IL-1β induced the translocation of p47 phox to activate reactive oxygen species (ROS)-producing NADPH oxidase (NOX). Moreover, IL-1β activated MAPKs (Erk1/2, JNK1/2, and p38 MAPK) and promoted nuclear factor (NF)-kB and activator protein (AP)-1 binding activities. Pharmacological inhibition and mutagenesis studies indicated that NOX, ROS, Erk1/2, and p38 MAPK are involved in IL-1β-induced IL-8 expression. Transient transfection of deletion mutant constructs of the IL-8 promoter in cells suggested that NF-kB and AP-1 are critical for IL-1β-induced IL-8 transcription. NOX-derived ROS and MAPKs (Erk1/2 and p38 MAPK) functioned as upstream activators of NF-κB and AP-1, respectively. CORM-2 pretreatment significantly mitigated IL-1β-induced activation of ROS/NF-kB and Erk1/2/AP-1 cascades, blocking IL-8 expression and thus significantly reducing endothelial cell proliferation in the tumor microenvironment.

  17. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles

    International Nuclear Information System (INIS)

    Panwar, Nishtha; Yang, Chengbin; Yin, Feng; Chuan, Tjin Swee; Yong, Ken-Tye; Yoon, Ho Sup

    2015-01-01

    RNA interference (RNAi)-based gene silencing possesses great ability for therapeutic intervention in pancreatic cancer. Among various oncogene mutations, Interleukin-8 (IL-8) gene mutations are found to be overexpressed in many pancreatic cell lines. In this work, we demonstrate IL-8 gene silencing by employing an RNAi-based gene therapy approach and this is achieved by using gold nanorods (AuNRs) for efficient delivery of IL-8 small interfering RNA (siRNA) to the pancreatic cell lines of MiaPaCa-2 and Panc-1. Upon comparing to Panc-1 cells, we found that the dominant expression of the IL-8 gene in MiaPaCa-2 cells resulted in an aggressive behavior towards the processes of cell invasion and metastasis. We have hence investigated the suitability of using AuNRs as novel non-viral nanocarriers for the efficient uptake and delivery of IL-8 siRNA in realizing gene knockdown of both MiaPaCa-2 and Panc-1 cells. Flow cytometry and fluorescence imaging techniques have been applied to confirm transfection and release of IL-8 siRNA. The ratio of AuNRs and siRNA has been optimized and transfection efficiencies as high as 88.40 ± 2.14% have been achieved. Upon successful delivery of IL-8 siRNA into cancer cells, the effects of IL-8 gene knockdown are quantified in terms of gene expression, cell invasion, cell migration and cell apoptosis assays. Statistical comparative studies for both MiaPaCa-2 and Panc-1 cells are presented in this work. IL-8 gene silencing has been demonstrated with knockdown efficiencies of 81.02 ± 10.14% and 75.73 ± 6.41% in MiaPaCa-2 and Panc-1 cells, respectively. Our results are then compared with a commercial transfection reagent, Oligofectamine, serving as positive control. The gene knockdown results illustrate the potential role of AuNRs as non-viral gene delivery vehicles for RNAi-based targeted cancer therapy applications. (paper)

  18. Frequency of distribution of inflammatory cytokines IL-1, IL-6 and TNF-alpha gene polymorphism in patients with obstructive sleep apnea.

    Science.gov (United States)

    Popko, K; Gorska, E; Potapinska, O; Wasik, M; Stoklosa, A; Plywaczewski, R; Winiarska, M; Gorecka, D; Sliwinski, P; Popko, M; Szwed, T; Demkow, U

    2008-12-01

    Obesity is one of the most commonly identified factors for the obstructive sleep apnea syndrome (OSAS). Adipose tissue is the source of many cytokines, among them there are IL-6, IL-1, and TNF-alpha. The level of inflammatory cytokines increases in people with OSAS and obesity. The aim of this study was to evaluate the distribution of genotypes in inflammatory cytokine genes in people with obesity-related OSAS. The examined group consisted of 102 person with obesity related-OSAS and 77 normal weight person without OSAS. Genotyping of DNA sequence variation was carried out by restriction enzyme (IL-1: Taq I, IL-6: Lwe I, TNF-alpha: Nco I) analysis of PCR amplified DNA. The study revealed a significant correlation between polymorphism located in the promoter region of inflammatory cytokine genes and obesity-related OSAS.

  19. IL-4 mRNA Is Downregulated in the Liver of Pancreatic Cancer Patients Suffering from Cachexia.

    Science.gov (United States)

    Prokopchuk, Olga; Steinacker, Jürgen M; Nitsche, Ulrich; Otto, Stephanie; Bachmann, Jeannine; Schubert, Elaine C; Friess, Helmut; Martignoni, Marc E

    2017-01-01

    Interleukin-4 (IL-4) together with interleukin-13 (IL-13) play an important role in inflammation and wound repair, and are known to be upregulated in human skeletal muscle after strenuous physical exercise. Additionally, these cytokines may act as autocrine growth factors in pancreatic cancer cells. We hypothesize that IL-4, IL-13, and their corresponding receptors are involved in mechanism of cancer cachexia. Tissue samples from human skeletal muscle, white fat, liver, healthy pancreas, and pancreatic ductal adenocarcinoma were analyzed by quantitative real-time polymerase chain reaction for mRNA expression levels of IL-4, IL-13, IL-4 receptor α, and IL-13 receptor α1. We demonstrate for the first time that liver IL-4 mRNA is downregulated in vivo in patients with pancreatic cancer and cachexia. Additionally, IL-4 mRNA in the liver inversely correlated with musculus psoas thickness. We speculate that suppression of IL-4 is involved in cancer cachexia, although the exact mechanisms have to be further elucidated.

  20. The Evaluation of IL6 and ESR1 Gene Polymorphisms in Primary Dysmenorrhea.

    Science.gov (United States)

    Ozsoy, Asker Zeki; Karakus, Nevin; Yigit, Serbulent; Cakmak, Bulent; Nacar, Mehmet Can; Yılmaz Dogru, Hatice

    2016-01-01

    Primary dysmenorrhea is the most common gynecological complaint with painful menstrual cramps in pelvis without any pathology. It affects about half of menstruating women, and it causes significant disruption in quality of life. We investigated the association between IL6 gene promoter and ESR1 gene XbaI and PvuII polymorphisms and primary dysmenorrhea. In this case-control study, 152 unrelated young women with primary dysmenorrhea and 150 unrelated healthy age-matched controls participated. Genomic DNA was isolated and IL6 and ESR1 gene polymorphisms were genotyped using PCR-based RFLP assay. The distribution of genotype and allele frequencies of IL6 gene promoter and ESR1 gene XbaI polymorphisms were not statistically different between patients and controls (p > 0.05). However, the genotype and allele frequencies of ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls (p = 0.009 and p = 0.021, respectively). Statistically significant associations were also observed between age and married status of primary dysmenorrhea patients and ESR1 gene PvuII polymorphism (p = 0.044 and p = 0.023, respectively). In combined genotype analyses, AG at ESR1 XbaI and TC at ESR1 PvuII loci encoded a p-value of 0.027. Thus, individuals who are heterozygote at both loci have a lower risk of developing primary dysmenorrhea. Our study suggests no strong association between IL6 gene promoter and ESR1 gene XbaI polymorphisms and primary dysmenorrhea in Turkish women. However, ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls. The potential association between ESR1 gene PvuII polymorphism and age and married status of dysmenorrhea patients deserves further consideration.

  1. Preparation and validation of radio iodinated recombinant human IL-10 for the measurement of natural human antibodies against IL-10

    DEFF Research Database (Denmark)

    de Lemos Rieper, Carina; Galle, Pia; Svenson, Morten

    2009-01-01

    activity of 75 cpm/pg. Validation of the tracer confirmed preserved antibody epitopes and receptor binding ability. A robust Radio Immuno Assay (RIA) was developed and validated to detect natural human anti-IL-10 antibodies based on the formation of (125)I-labeled IL-10-IgG complexes in solution...

  2. Stimulation of interleukin-13 expression by human T-cell leukemia virus type 1 oncoprotein Tax via a dually active promoter element responsive to NF-kappaB and NFAT.

    Science.gov (United States)

    Silbermann, Katrin; Schneider, Grit; Grassmann, Ralph

    2008-11-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein transforms human lymphocytes and is critical for the pathogenesis of HTLV-1-induced adult T-cell leukaemia. In HTLV-transformed cells, Tax upregulates interleukin (IL)-13, a cytokine with proliferative and anti-apoptotic functions that is linked to leukaemogenesis. Tax-stimulated IL-13 is thought to result in autocrine stimulation of HTLV-infected cells and thus may be relevant to their growth. The causal transactivation of the IL-13 promoter by Tax is predominantly dependent on a nuclear factor of activated T cells (NFAT)-binding P element. Here, it was shown that the isolated IL-13 Tax-responsive element (IL13TaxRE) was sufficient to mediate IL-13 transactivation by Tax and NFAT1. However, cyclosporin A, a specific NFAT inhibitor, revealed that Tax transactivation of IL13TaxRE or wild-type IL-13 promoter was independent of NFAT and that NFAT did not contribute to IL-13 upregulation in HTLV-transformed cells. By contrast, Tax stimulation was repressible by an efficient nuclear factor (NF)-kappaB inhibitor (IkBaDN), indicating the requirement for NF-kappaB. The capacity of NF-kappaB to stimulate IL13TaxRE was demonstrated by a strong response to NF-kappaB in reporter assays and by direct binding of NF-kappaB to IL13TaxRE. Thus, IL13TaxRE in the IL-13 promoter represents a dually active promoter element responsive to NF-kappaB and NFAT. Together, these results indicate that Tax causes IL-13 upregulation in HTLV-1-infected cells via NF-kappaB.

  3. Effect of Lipoglycans from Mycobacterium Chelonae on the expression of inflammatory factors IL-8 and IL-6 in human corneal epithelial cells and its possible signal transduction pathway

    Directory of Open Access Journals (Sweden)

    Chun-Zhou Tang

    2015-06-01

    Full Text Available AIM: To study the influence of Lipoglycans from Mycobacterium Chelonae(Cheon the expression of IL-6 and IL-8 in human corneal epithelia cells and its possible signal transduction pathway.METHODS: Lipoglycans was extracted by the Triton X-114 phase partitioning. Lipoglycans from Che were purified, by successive detergent and phenol extractions. Lipoglycans were separated by gel filtration on a Sephacryl 200 column and Sephacryl 100 column in series, followed by extensive dialisis. Purified Lipoglycans(50μg/mLwere added into culture medium to stimulate primary human corneal epithelial(HCEcells. Cells and supernatant were collected at 0, 6, 12, 24h after the stimulation. The IL-6 and IL-8 expression at mRNA level was assayed by using real time RT-PCR and the secreted IL-6 and IL-8 in the supernatants was measured by ELISA. Immunochemistry was used to detect the expression and location of NF-κB in HCE cells.RESULTS: After the treatment of Lipoglycans, the expression of IL-8 and IL-6 at mRNA level obviouly increased within 12h, and reached peak level at 6h(IL-8 was 36.8 times that of the blank control, and IL-6 was 32.7 times. Compared with the blank control group, the expression of IL-8 at protein level in the supernatant increased 2.8 folds at 6h(P>0.05, 13.4 folds at 12h(PPPPPCONCLUSION: Lipoglycans from Che can induce HCE cells to produce inflammatory factors(IL-6 and IL-8, and its signal transduction pathway probably is mediated by NF-κB.

  4. Expression of IL-8, IL-6 and IL-1β in Tears as a Main Characteristic of the Immune Response in Human Microbial Keratitis

    Science.gov (United States)

    Santacruz, Concepcion; Linares, Marisela; Garfias, Yonathan; Loustaunau, Luisa M.; Pavon, Lenin; Perez-Tapia, Sonia Mayra; Jimenez-Martinez, Maria C.

    2015-01-01

    Corneal infections are frequent and potentially vision-threatening diseases, and despite the significance of the immunological response in animal models of microbial keratitis (MK), it remains unclear in humans. The aim of this study was to describe the cytokine profile of tears in patients with MK. Characteristics of ocular lesions such as size of the epithelial defect, stromal infiltration, and hypopyon were analyzed. Immunological evaluation included determination of interleukine (IL)-1β, IL-6, IL-8, IL-10, IL-12 and tumor necrosis factor (TNF)-α in tear samples obtained from infected eyes of 28 patients with MK and compared with their contralateral non-infected eyes. Additionally, frequency of CD4+, CD8+, CD19+ and CD3−CD56+ cells was also determined in peripheral blood mononuclear cells in patients with MK, and compared with 48 healthy controls. Non-significant differences were observed in the size of the epithelial defect, stromal infiltration, and hypopyon. Nevertheless, we found an immunological profile apparently related to MK etiology. IL-8 > IL-6 in patients with bacterial keratitis; IL-8 > IL-6 > IL-1β and increased frequency of circulating CD3−CD56+ NK cells in patients with gram-negative keratitis; and IL-8 = IL-6 > IL-1β in patients with fungal keratitis. Characterization of tear cytokines from patients with MK could aid our understanding of the immune pathophysiological mechanisms underlying corneal damage in humans. PMID:25741769

  5. IL-27 Activates Human Trophoblasts to Express IP-10 and IL-6: Implications in the Immunopathophysiology of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Nanlin Yin

    2014-01-01

    Full Text Available Purpose. To investigate the effects of IL-27 on human trophoblasts and the underlying regulatory signaling mechanisms in preeclampsia. Methods. The expression of IL-27 and IL-27 receptor (WSX-1 was studied in the placenta or sera from patients with preeclampsia. In vitro, we investigated the effects of IL-27 alone or in combination with inflammatory cytokine tumor necrosis factor (TNF-α on the proinflammatory activation of human trophoblast cells (HTR-8/SVneo and the underlying intracellular signaling molecules. Results. The expression of IL-27 and IL-27 receptor α (WSX-1 was significantly elevated in the trophoblastic cells from the placenta of patients with preeclampsia compared with control specimens. In vitro, IL-27 could induce the expression of inflammatory factors IFN-γ-inducible protein 10 (CXCL10/IP-10 and IL-6 in trophoblasts, and a synergistic effect was observed in the combined treatment of IL-27 and TNF-α on the release of IP-10 and IL-6. Furthermore, the production of IP-10 and IL-6 stimulated by IL-27 was differentially regulated by intracellular activation of phosphatidylinositol 3-OH kinase-AKT, p38MAPK, and JAK/STAT pathways. Conclusions. These results provide a new insight into the IL-27-activated immunopathological effects mediated by distinct intracellular signal transduction molecules in preeclampsia.

  6. IL13Rα2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Gu MJ

    2018-03-01

    Full Text Available Mingjun Gu Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People’s Republic of China Aim: Papillary thyroid carcinoma (PTC is the most common type of thyroid cancer. Infiltrative growth and metastasis are the two most intractable characteristics of PTC. Interleukin-13 receptor α2 (IL13Rα2 with high affinity for Th2-derived cytokine IL-13 has been reported to be overexpressed in several tumors. In this study, an analysis of IL13Rα2 expression in PTC and matched paracancerous tissues was undertaken, and its biologic functions in PTC were assessed. Methods: IL13Rα2 and vascular endothelial growth factor (VEGF expression were detected by using real-time polymerase chain reaction and immunohistochemistry analyses. Cell proliferation, invasion, apoptosis, and caspase activity were measured with the Cell Counting Kit-8, Transwell, flow cytometry analyses, and biochemistry assay, respectively. Results: Upregulation of IL13Rα2 and VEGF was observed in PTC tissues compared with matched paracancerous tissues. Pearson’s correlation analysis indicated that IL13Rα2 mRNA level in the tested PTC tissues was positively correlated with VEGF mRNA level. Besides, inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion were detected in IL13Rα2-silenced TPC-1 cells. Increased activity of Caspase 3 and Caspase 9, along with elevated cleaved Caspase 3 and poly (ADP-ribose polymerase indicated the signal pathway of cell apoptosis induced by IL13Rα2 siRNA. In addition, downregulated metastasis- and angiogenesis-related proteins VEGF, VEGFR2, MMP2, and MMP9 indicated the decreased number of invading cells after knockdown of IL13Rα2. Conclusion: The results demonstrate that IL13Rα2 plays an important role in the progress of PTC. IL13Rα2 knockdown in PTC cells inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion. These data suggest that IL13Rα2

  7. Interleukin-33 induces mucin gene expression and goblet cell hyperplasia in human nasal epithelial cells.

    Science.gov (United States)

    Ishinaga, Hajime; Kitano, Masako; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Gabazza, Esteban C; Shah, Said Ahmad; Takeuchi, Kazuhiko

    2017-02-01

    We investigated whether IL-33 is involved in mucus overproduction and goblet cell hyperplasia in eosinophilic chronic rhinosinusitis (ECRS). IL-33 mRNA was significantly higher in the eosinophilic CRS group than in the non-eosinophilic CRS group from human nasal polyps. IL-33 induced MUC5AC mRNA and MUC5AC protein, and also goblet cell hyperplasia at air liquid interface culture in human nasal epithelial cells. In addition to that, IL-33 induced MUC5B and FOXA3, and reduces FOXJmRNA. In conclusion, our present study demonstrated that the direct evidence of IL-33 which lead to increase mucin gene and protein expression, as well as goblet cell hyperplasia. This study provides novel insights into the role of IL-33 on mucus overproduction in eosinophilic inflammation of human airways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. B-cell exposure to self-antigen induces IL-10 producing B cells as well as IL-6- and TNF-α-producing B-cell subsets in healthy humans

    DEFF Research Database (Denmark)

    Langkjær, Anina; Kristensen, Birte; Hansen, Bjarke E

    2012-01-01

    Human B cells are able to secrete IL-10 after stimulation with mitogens, but their ability to produce IL-10 and regulate T-cell responses after stimulation with self-antigens is unclear. We co-cultured thyroglobulin-pulsed B cells from healthy donors with autologous T cells and observed production...... of IL-10 and TGF-β, in addition to TNF-α and IL-6. Pulsing with foreign antigen, tetanus toxoid (TT), induced a Th1-response with minimal IL-10 production. After thyroglobulin-pulsing, 1.10±0.50% of B cells and 1.00±0.20% of CD4(+) T cells produced IL-10, compared to 0.29±0.19% of B cells (P=0.01) and 0.......13±0.15% of CD4(+) T cells (P=0.006) following TT-pulsing. Thyroglobulin-stimulated, IL-10-secreting B cells were enriched within CD5(+) and CD24(high) cells. While thyroglobulin-pulsed B cells induced only modest proliferation of CD4(+) T cells, B cells pulsed with TT induced vigorous proliferation. Thus, B...

  9. NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination.

    Directory of Open Access Journals (Sweden)

    Yoshie Kametani

    Full Text Available Immunodeficient mice transplanted with human peripheral blood mononuclear cells (PBMCs are promising tools to evaluate human immune responses to vaccines. However, these mice usually develop severe graft-versus-host disease (GVHD, which makes estimation of antigen-specific IgG production after antigen immunization difficult. To evaluate antigen-specific IgG responses in PBMC-transplanted immunodeficient mice, we developed a novel NOD/Shi-scid-IL2rγnull (NOG mouse strain that systemically expresses the human IL-4 gene (NOG-hIL-4-Tg. After human PBMC transplantation, GVHD symptoms were significantly suppressed in NOG-hIL-4-Tg compared to conventional NOG mice. In kinetic analyses of human leukocytes, long-term engraftment of human T cells has been observed in peripheral blood of NOG-hIL-4-Tg, followed by dominant CD4+ T rather than CD8+ T cell proliferation. Furthermore, these CD4+ T cells shifted to type 2 helper (Th2 cells, resulting in long-term suppression of GVHD. Most of the human B cells detected in the transplanted mice had a plasmablast phenotype. Vaccination with HER2 multiple antigen peptide (CH401MAP or keyhole limpet hemocyanin (KLH successfully induced antigen-specific IgG production in PBMC-transplanted NOG-hIL-4-Tg. The HLA haplotype of donor PBMCs might not be relevant to the antibody secretion ability after immunization. These results suggest that the human PBMC-transplanted NOG-hIL-4-Tg mouse is an effective tool to evaluate the production of antigen-specific IgG antibodies.

  10. Helicobacter pylori induces IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway.

    Science.gov (United States)

    Li, Xiang; Liu, Sheng; Luo, Jingjing; Liu, Anyuan; Tang, Shuangyang; Liu, Shuo; Yu, Minjun; Zhang, Yan

    2015-06-01

    This study investigated whether Helicobacter pylori could activate the nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome in human macrophages and the involvement of reactive oxygen species (ROS) in inflammasome activation. Phorbol-12-myristate-13-acetate (PMA)-differentiated human acute monocytic leukemia cell line THP-1 was infected with H. pylori. The levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 in supernatant were measured by ELISA. Intracellular ROS level was analyzed by flow cytometry. Quantitative real-time PCR and western blot analysis were employed to determine the mRNA and protein expression levels of NLRP3 and caspase-1 in THP-1 cells, respectively. Our results showed that H. pylori infection could induce IL-1β and IL-18 production in PMA-differentiated THP-1 cells in a dose- and time-dependent manner. Moreover, secretion of IL-1β and IL-18 in THP-1 cells following H. pylori infection was remarkably reduced by NLRP3-specific small interfering RNA treatment. In addition, the intracellular ROS level was elevated by H. pylori infection, which could be eliminated by the ROS scavenger N-acetylcysteine (NAC). Furthermore, NAC treatment could inhibit NLRP3 inflammasome formation and caspase-1 activation and suppress the release of IL-1β and IL-18 from H. pylori-infected THP-1 cells. These findings provide novel insights into the innate immune response against H. pylori infection, which could potentially be used for the prevention and treatment of H. pylori-related diseases. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Barbet, Romain; Peiffer, Isabelle; Hatzfeld, Antoinette; Charbord, Pierre; Hatzfeld, Jacques A

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1(low), BMPR1B(low), FLT4(low), LRRC32(low), and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.

  12. Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Molenaar Douwe

    2010-11-01

    Full Text Available Abstract Background Modulation of the immune system is one of the most plausible mechanisms underlying the beneficial effects of probiotic bacteria on human health. Presently, the specific probiotic cell products responsible for immunomodulation are largely unknown. In this study, the genetic and phenotypic diversity of strains of the Lactobacillus plantarum species were investigated to identify genes of L. plantarum with the potential to influence the amounts of cytokines interleukin 10 (IL-10 and IL-12 and the ratio of IL-10/IL-12 produced by peripheral blood mononuclear cells (PBMCs. Results A total of 42 Lactobacillus plantarum strains isolated from diverse environmental and human sources were evaluated for their capacity to stimulate cytokine production in PBMCs. The L. plantarum strains induced the secretion of the anti-inflammatory cytokine IL-10 over an average 14-fold range and secretion of the pro-inflammatory cytokine IL-12 over an average 16-fold range. Comparisons of the strain-specific cytokine responses of PBMCs to comparative genome hybridization profiles obtained with L. plantarum WCFS1 DNA microarrays (also termed gene-trait matching resulted in the identification of 6 candidate genetic loci with immunomodulatory capacities. These loci included genes encoding an N-acetyl-glucosamine/galactosamine phosphotransferase system, the LamBDCA quorum sensing system, and components of the plantaricin (bacteriocin biosynthesis and transport pathway. Deletion of these genes in L. plantarum WCFS1 resulted in growth phase-dependent changes in the PBMC IL-10 and IL-12 cytokine profiles compared with wild-type cells. Conclusions The altered PBMC cytokine profiles obtained with the L. plantarum WCFS1 mutants were in good agreement with the predictions made by gene-trait matching for the 42 L. plantarum strains. This study therefore resulted in the identification of genes present in certain strains of L. plantarum which might be responsible for

  13. IL-4/IL-13 Signaling Inhibits the Potential of Early Thymic Progenitors To Commit to the T Cell Lineage.

    Science.gov (United States)

    Barik, Subhasis; Miller, Mindy M; Cattin-Roy, Alexis N; Ukah, Tobechukwu K; Chen, Weirong; Zaghouani, Habib

    2017-10-15

    Early thymic progenitors (ETPs) are endowed with diverse potencies and can give rise to myeloid and lymphoid lineage progenitors. How the thymic environment guides ETP commitment and maturation toward a specific lineage remains obscure. We have previously shown that ETPs expressing the heteroreceptor (HR) comprising IL-4Rα and IL-13Rα1 give rise to myeloid cells but not T cells. In this article, we show that signaling through the HR inhibits ETP maturation to the T cell lineage but enacts commitment toward the myeloid cells. Indeed, HR + ETPs, but not HR - ETPs, exhibit activated STAT6 transcription factor, which parallels with downregulation of Notch1, a critical factor for T cell development. Meanwhile, the myeloid-specific transcription factor C/EBPα, usually under the control of Notch1, is upregulated. Furthermore, in vivo inhibition of STAT6 phosphorylation restores Notch1 expression in HR + ETPs, which regain T lineage potential. In addition, upon stimulation with IL-4 or IL-13, HR - ETPs expressing virally transduced HR also exhibit STAT6 phosphorylation and downregulation of Notch1, leading to inhibition of lymphoid, but not myeloid, lineage potential. These observations indicate that environmental cytokines play a role in conditioning ETP lineage choice, which would impact T cell development. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  15. [Association of IL-1β-511T gene rs16944 polymorphism with febrile seizures].

    Science.gov (United States)

    Ren, Xiao-Tun; Sun, Su-Zhen; Liu, Fang; Wang, Xiao-Ming

    2014-02-01

    Despite substantial research efforts worldwide, the role of inflammatory cytokine IL-1β in the onset of febrile seizures (FS) remains controversial. The aim of this study was to assess the relationship between rs16944 polymorphism of the IL-1β-511T gene and occurrence of simple FS in a sample of Han children in northern China. The IL-1β-511T gene rs16944 was genotyped by SNaPshot SNP technique in 141 FS children and 130 healthy control subjects. The genotypic and allelic frequencies in the two groups were comparatively analyzed. There were no significant differences in genotypic and allelic frequencies of rs16944 polymorphism of the IL-1β-511T gene between FS patients and control subjects (P>0.05).When the clinical data on A/A, A/G and G/G genotypes of the rs16944 polymorphism in FS patients, there was statistically significant difference in age of first onset (χ(2)=19.491, Prs16944 polymorphism of the IL-1β-511T gene and the incidence of FS in Han children in Northern China. However, the differences in genotypes of this polymorphism might be associated with pathogenesis and prognosis of simple FS in the population studied.

  16. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte

    2005-01-01

    Contracting muscle fibers produce and release IL-6, and plasma levels of this cytokine are markedly elevated in response to physical exercise. We recently showed autocrine regulation of IL-6 in human skeletal muscle in vivo and hypothesized that this may involve up-regulation of the IL-6 receptor....... Infusion of rhIL-6 to humans had no effect on the mRNA level of the IL-6 receptor, whereas there was an increase at the protein level. IL-6 receptor mRNA increased similarly in muscle of both IL-6 KO mice and wild-type mice in response to exercise. In conclusion, exercise increases IL-6 receptor production....... Therefore, we investigated IL-6 receptor regulation in response to exercise and IL-6 infusion in humans. Furthermore, using IL-6-deficient mice, we investigated the role of IL-6 in the IL-6 receptor response to exercise. Human skeletal muscle biopsies were obtained in relation to: 3 h of bicycle exercise...

  17. Radiosensitization of human endothelial cells by IL-24

    International Nuclear Information System (INIS)

    Meyn, R.E.

    2003-01-01

    Radiation therapy remains an important cancer treatment modality but despite improvements in dose delivery many patients still fail at their primary tumor site. Therefore, new strategies designed to improve local control are needed. Protocols combining radiation with anti-angiogenic agents might be of particular advantage based on their documented low toxicity. In this regard, we have been conducting preclinical investigations of a novel cytokine, mda7/IL-24. Our collaborators have shown that mda7/IL-24 protein targets the endothelial cells of the tumor microvascular system and has potent anti-angiogenic properties in both in vitro and in vivo assays. Recently, we have demonstrated that recombinant mda7/IL-24 protein radiosensitizes human endothelial cells in vitro. Specifically, 10 ng/ml of recombinant human IL-24 protein for 12 hrs reduced the survival at 2 Gy for human umbilical vein endothelial cells (HUVECs) from 0.33 to 0.12. We are also working on understanding the molecular basis for this radiosensitizing effect. Preliminary data suggest a model whereby mda7/IL-24 engages a specific receptor on the surface of endothelial cells and initiates a signal transduction pathway that modulates the cell's propensity for radiation-induced apoptosis and capacity for repairing radiation-induced DNA double strand breaks. Mechanistic insight gained from these studies may have implications for the actions of other anti-angiogenic agents and may generally explain the regulation of radiosensitivity imparted by growth factors and cytokines

  18. The evaluation of angiotensin-converting enzyme (ACE) gene I/D and IL-4 gene intron 3 VNTR polymorphisms in coronary artery disease.

    Science.gov (United States)

    Basol, Nursah; Celik, Atac; Karakus, Nevin; Ozturk, Sibel Demir; Ozsoy, Sibel Demir; Yigit, Serbulent

    2014-01-01

    Genetic polymorphism is a strong risk factor for coronary artery disease (CAD). In the present study, our aim was to evaluate angiotensin-converting enzyme (ACE) gene I/D polymorphism and interleukin-4 (IL-4) gene Intron 3 variable number of tandem repeat (VNTR) polymorphism in CAD. One hundred and twenty-four CAD patients and one hundred and twenty-three controls were enrolled. Genomic DNA was isolated and genotyped using polymerase chain reaction (PCR) analyses. The risk associated with inheriting the combined genotypes for the two polymorphisms were evaluated and it was found that the individuals who were P2P2-homozygous at IL-4 gene intron 3 VNTR and DD-homozygous at ACE gene I/D have a higher risk of developing CAD. Although, there is no correlation between IL4 VNTR polymorphism and ACE gene polymorphism and CAD, there is a strong association between CAD and co-existence of IL-4 VNTR and ACE gene polymorphisms in the Turkish population. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Differential baseline and response profile to IFN-γ gene transduction of IL-6/IL-6 receptor-α secretion discriminate primary tumors versus bone marrow metastases of nasopharyngeal carcinomas in culture

    International Nuclear Information System (INIS)

    Chou, Andy Shau-Bin; Wang, Hsin-Yi; Chen, Hung-Chang; Tsai, Ming-Hsiu; Chuang, Cheng-Keng; Liao, Shuen-Kuei

    2009-01-01

    marginal levels of IFN-γ (8.4 ~ 10.5 pg/ml), could be enhanced to produce higher levels of IFN-γ (6.8- to 10.3-fold increase) after IFN-γ transduction. Unlike P-NPCs, BM-NPCs spontaneously released IFN-γ at moderate levels (83.8 ~ 100.7 pg/ml), which were enhanced by 1.3- to 2.2-fold in the spent media of their IFN-γ-transduced counterparts. Our results showed that cultured P-NPCs and BM-NPCs could be distinguished from one another on the basis of their differential baseline secretion pattern of IFN-γ, IL-6 and IL-6Rα, and their differential response profiles to IFN-γ gene transfer of the production of these three soluble molecules. These results suggest that the IL-6 and IFN-γ pathways in a background of genetic instability be involved in the acquisition of metastatic behaviour in BM-NPCs

  20. Variable number of tandem repeat polymorphisms of the interleukin-1 receptor antagonist gene IL-1RN: a novel association with the athlete status

    Directory of Open Access Journals (Sweden)

    Ryckman Kelli K

    2010-02-01

    Full Text Available Abstract Background The interleukin-1 (IL-1 family of cytokines is involved in the inflammatory and repair reactions of skeletal muscle during and after exercise. Specifically, plasma levels of the IL-1 receptor antagonist (IL-1ra increase dramatically after intense exercise, and accumulating evidence points to an effect of genetic polymorphisms on athletic phenotypes. Therefore, the IL-1 family cytokine genes are plausible candidate genes for athleticism. We explored whether IL-1 polymorphisms are associated with athlete status in European subjects. Methods Genomic DNA was obtained from 205 (53 professional and 152 competitive non-professional Italian athletes and 458 non-athlete controls. Two diallelic polymorphisms in the IL-1β gene (IL-1B at -511 and +3954 positions, and a variable number tandem repeats (VNTR in intron 2 of the IL-1ra gene (IL-1RN were assessed. Results We found a 2-fold higher frequency of the IL-1RN 1/2 genotype in athletes compared to non-athlete controls (OR = 1.93, 95% CI = 1.37-2.74, 41.0% vs. 26.4%, and a lower frequency of the 1/1 genotype (OR = 0.55, 95% CI = 0.40-0.77, 43.9% vs. 58.5%. Frequency of the IL-1RN 2/2 genotype did not differ between groups. No significant differences between athletes and controls were found for either -511 or +3954 IL-1B polymorphisms. However, the haplotype (-511C-(+3954T-(VNTR2 was 3-fold more frequent in athletes than in non-athletes (OR = 3.02, 95% CI = 1.16-7.87. Interestingly, the IL-1RN 1/2 genotype was more frequent in professional than in non-professional athletes (OR = 1.92, 95% CI = 1.02-3.61, 52.8% vs. 36.8%. Conclusions Our study found that variants at the IL-1ra gene associate with athletic status. This confirms the crucial role that cytokine IL-1ra plays in human physical exercise. The VNTR IL-1RN polymorphism may have implications for muscle health, performance, and/or recovery capacities. Further studies are needed to assess these specific issues. As VNTR IL-1RN

  1. Interleukin-13-induced MUC5AC is regulated by 15-lipoxygenase 1 pathway in human bronchial epithelial cells.

    Science.gov (United States)

    Zhao, Jinming; Maskrey, Ben; Balzar, Silvana; Chibana, Kazuyuki; Mustovich, Anthony; Hu, Haizhen; Trudeau, John B; O'Donnell, Valerie; Wenzel, Sally E

    2009-05-01

    15-Lipoxygenase-1 (15LO1) and MUC5AC are highly expressed in asthmatic epithelial cells. IL-13 is known to induce 15LO1 and MUC5AC in human airway epithelial cells in vitro. Whether 15LO1 and/or its product 15-HETE modulate MUC5AC expression is unknown. To determine the expression of 15LO1 in freshly harvested epithelial cells from subjects with asthma and normal control subjects and to determine whether IL-13-induced 15LO1 expression and activation regulate MUC5AC expression in human bronchial epithelial cells in vitro. Human airway epithelial cells from subjects with asthma and normal subjects were evaluated ex vivo for 15LO1 and MUC5AC expression. The impact of 15LO1 on MUC5AC expression in vitro was analyzed by inhibiting 15LO1 through pharmacologic (PD146176) and siRNA approaches in human bronchial epithelial cells cultured under air-liquid interface. We analyzed 15 hydroxyeicosatetraenoic acid (15-HETE) by liquid chromatography/UV/mass spectrometry. MUC5AC and 15LO1 were analyzed by real-time RT-PCR, immunofluoresence, and Western blot. Epithelial 15LO1 expression increased with asthma severity (P < 0.0001). 15LO1 significantly correlated with MUC5AC ex vivo and in vitro. IL-13 increased 15LO1 expression and stimulated formation of two molecular species of 15-HETE esterified to phosphotidylethanolamine (15-HETE-PE). Inhibition of 15LO1 suppressed 15-HETE-PE and decreased MUC5AC expression in the presence of IL-13 stimulation. The addition of exogenous 15-HETE partially restored MUC5AC expression. Epithelial 15LO1 expression increases with increasing asthma severity. IL-13 induction of 15-HETE-PE enhances MUC5AC expression in human airway epithelial cells. High levels of 15LO1 activity could contribute to the increases of MUC5AC observed in asthma.

  2. PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma.

    Science.gov (United States)

    Hirahata, Mio; Osaki, Mitsuhiko; Kanda, Yusuke; Sugimoto, Yui; Yoshioka, Yusuke; Kosaka, Nobuyoshi; Takeshita, Fumitaka; Fujiwara, Tomohiro; Kawai, Akira; Ito, Hisao; Ochiya, Takahiro; Okada, Futoshi

    2016-05-01

    Despite recent improvements in the therapy for osteosarcoma, 30-40% of osteosarcoma patients die of this disease, mainly due to its lung metastasis. We have previously reported that intravenous injection of miR-143 significantly suppresses lung metastasis of human osteosarcoma cells (143B) in a mouse model. In this study, we examined the biological role and mechanism of miR-143 in the metastasis of human osteosarcoma cells. We identified plasminogen activator inhibitor-1 (PAI-1) as a direct target gene of miR-143. To determine the role of PAI-1 in human osteosarcoma cells, siRNA was transfected into 143B cells for knockdown of PAI-1 expression. An in vitro study showed that downregulation of PAI-1 suppressed cell invasion activity, but not proliferation. Moreover, injection of PAI-1 siRNA into a primary lesion in the osteosarcoma mouse model inhibited lung metastasis compared to control siRNA-injected mice, without influencing the proliferative activity of the tumor cells. Subsequent examination using 143B cells revealed that knockdown of PAI-1 expression resulted in downregulation of the expression and secretion of matrix metalloproteinase-13 (MMP-13), which is also a target gene of miR-143 and a proteolytic enzyme that regulates tumor-induced osteolysis. Immunohistochemical analysis using clinical samples showed that higher miR-143 expressing cases showed poor expression of PAI-1 in the primary tumor cells. All such cases belonged to the lung metastasis-negative group. Moreover, the frequency of lung metastasis-positive cases was significantly higher in PAI-1 and MMP-13 double-positive cases than in PAI-1 or MMP-13 single-positive or double-negative cases (P target gene of miR-143, regulates invasion and lung metastasis via enhancement of MMP-13 expression and secretion in human osteosarcoma cells, suggesting that these molecules could be potential therapeutic target genes for preventing lung metastasis in osteosarcoma patients. © 2016 The Authors. Cancer

  3. Increased expression of interleukin-6 (IL-6) gene transcript in relation to IL-6 promoter hypomethylation in gingival tissue from patients with chronic periodontitis.

    Science.gov (United States)

    Kobayashi, Tetsuo; Ishida, Kohei; Yoshie, Hiromasa

    2016-09-01

    DNA methylation of the cytokine genes may play a role in the pathogenesis of periodontitis. The aim of this study is to evaluate whether the alteration of interleukin-6 (IL-6) gene promoter methylation in the gingival tissue (GT) and peripheral blood (PB) is unique to chronic periodontitis (CP). DNA isolated from the GT and PB of 25 patients with (CP) and 20 healthy controls (H) was modified with sodium bisulfite and analyzed for IL-6 promoter methylation with direct sequencing. The levels of IL-6 mRNA and serum IL-6 protein were evaluated by a quantitative reverse transcription polymerase chain reaction and an enzyme-linked immunosorbent assay. The CP group showed that the overall methylation rates of IL-6 promoter that contained 19 cytosine-guanine dinucleotide (CpG) motifs were significantly decreased in GT in comparison to PB (p<0.001), which was significantly negatively correlated with the probing depth (p=0.003). The GT and PB of the H group displayed similar overall methylation rates. No significant difference was observed in the methylation rates at each CpG in GT in comparison to the PB in both groups. The levels of IL-6 mRNA in the GT and PB and serum IL-6 of the two groups were comparable. The ratio of IL-6 mRNA in the GT relative to the PB was significantly higher in the CP group than in the H group (p=0.03). The increased expression of IL-6 gene transcription may be related to IL-6 promoter hypomethylation in the GT from CP patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. IL1RL1 gene variants and nasopharyngeal IL1RL-a levels are associated with severe RSV bronchiolitis: a multicenter cohort study.

    Directory of Open Access Journals (Sweden)

    Tina E Faber

    Full Text Available Targets for intervention are required for respiratory syncytial virus (RSV bronchiolitis, a common disease during infancy for which no effective treatment exists. Clinical and genetic studies indicate that IL1RL1 plays an important role in the development and exacerbations of asthma. Human IL1RL1 encodes three isoforms, including soluble IL1RL1-a, that can influence IL33 signalling by modifying inflammatory responses to epithelial damage. We hypothesized that IL1RL1 gene variants and soluble IL1RL1-a are associated with severe RSV bronchiolitis.We studied the association between RSV and 3 selected IL1RL1 single-nucleotide polymorphisms rs1921622, rs11685480 or rs1420101 in 81 ventilated and 384 non-ventilated children under 1 year of age hospitalized with primary RSV bronchiolitis in comparison to 930 healthy controls. Severe RSV infection was defined by need for mechanical ventilation. Furthermore, we examined soluble IL1RL1-a concentration in nasopharyngeal aspirates from children hospitalized with primary RSV bronchiolitis. An association between SNP rs1921622 and disease severity was found at the allele and genotype level (p = 0.011 and p = 0.040, respectively. In hospitalized non-ventilated patients, RSV bronchiolitis was not associated with IL1RL1 genotypes. Median concentrations of soluble IL1RL1-a in nasopharyngeal aspirates were >20-fold higher in ventilated infants when compared to non-ventilated infants with RSV (median [and quartiles] 9,357 [936-15,528] pg/ml vs. 405 [112-1,193] pg/ml respectively; p<0.001.We found a genetic link between rs1921622 IL1RL1 polymorphism and disease severity in RSV bronchiolitis. The potential biological role of IL1RL1 in the pathogenesis of severe RSV bronchiolitis was further supported by high local concentrations of IL1RL1 in children with most severe disease. We speculate that IL1RL1a modifies epithelial damage mediated inflammatory responses during RSV bronchiolitis and thus may serve as a

  5. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis.

    Directory of Open Access Journals (Sweden)

    Heather R Conti

    Full Text Available Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.

  6. IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells?

    Directory of Open Access Journals (Sweden)

    Jennifer R Bailey

    Full Text Available BACKGROUND: Fibrosis is a serious consequence of Crohn's disease (CD, often necessitating surgical resection. We examined the hypothesis that IL-13 may promote collagen accumulation within the CD muscle microenvironment. METHODS: Factors potentially modulating collagen deposition were examined in intestinal tissue samples from fibrotic (f CD and compared with cancer control (C, ulcerative colitis (UC and uninvolved (u CD. Mechanisms attributable to IL-13 were analysed using cell lines derived from uninvolved muscle tissue and tissue explants. RESULTS: In fCD muscle extracts, collagen synthesis was significantly increased compared to other groups, but MMP-2 was not co-ordinately increased. IL-13 transcripts were highest in fCD muscle compared to muscle from other groups. IL-13 receptor (R α1 was expressed by intestinal muscle smooth muscle, nerve and KIR(+ cells. Fibroblasts from intestinal muscle expressed Rα1, phosphorylated STAT6 in response to IL-13, and subsequently down-regulated MMP-2 and TNF-α-induced MMP-1 and MMP-9 synthesis. Cells with the phenotype KIR(+CD45(+CD56(+/-CD3(- were significantly increased in fCD muscle compared to all other groups, expressed Rα1 and membrane IL-13, and transcribed high levels of IL-13. In explanted CD muscle, these cells did not phosphorylate STAT6 in response to exogenous IL-13. CONCLUSIONS: The data indicate that in fibrotic intestinal muscle of Crohn's patients, the IL-13 pathway is stimulated, involving a novel population of infiltrating IL-13Rα1(+, KIR(+ innate lymphoid cells, producing IL-13 which inhibits fibroblast MMP synthesis. Consequently, matrix degradation is down-regulated and this leads to excessive collagen deposition.

  7. Interleukin 1 β (IL-1B) and IL-1 antagonist receptor (IL-1RN) gene polymorphisms are associated with the genetic susceptibility and steroid dependence in patients with ulcerative colitis.

    Science.gov (United States)

    Yamamoto-Furusho, Jesús K; Santiago-Hernández, Jean J; Pérez-Hernández, Nonanzit; Ramírez-Fuentes, Silvestre; Fragoso, José Manuel; Vargas-Alarcón, Gilberto

    2011-07-01

    Ulcerative colitis (UC) is an inflammatory bowel disease of unknown etiology. Among cytokines induced in UC, interleukin 1 antagonist (IL-1ra) and interleukin 1 β (IL-1β) seems to have a central role because of its immunoregulatory and proinflammatory activities. To determine the association between IL-1RA and IL-1B gene polymorphisms and the clinical features of UC in the Mexican Mestizo population. Five polymorphisms in the IL-1 gene cluster members IL-1B (rs16944), IL1F10 (rs3811058), and IL-1RN (rs419598, rs315952, and rs315951) were genotyped by 5' exonuclease TaqMan genotyping assays in a group of 200 Mexican patients with UC and 248 ethnically matched unrelated healthy controls. We found a significant increased frequencies of IL-1RN6/1 TC (rs315952) and RN6/2 CC (rs315951) and decreased frequency of IL-1B-511 TC (rs16944) genotypes in UC patients as compared with healthy controls. In the subgroup analysis, we found a significant association between the RN6/2 GG (rs315951) and IL-1B-511 CC (rs16944) genotypes and the presence of steroid-dependence in UC patients (pC=00001, OR=15.6 and pC=0.008, OR=4.09, respectively). Patients with UC showed increased frequencies of IL-1RN "CTC" and "TCG" haplotypes when compared with healthy controls (P=0.019, OR=1.43 and P<10(-7), OR=2.63, respectively). Two haplotypes (TTG and CTG) showed decreased frequency in patients when compared with healthy controls (P=9×10(-7), OR=0.11 and P=8×10(-6), OR=0.11, respectively). IL-1 RN and IL-1B polymorphisms were associated with the genetic susceptibility to develop UC and might be associated with the presence of steroid-dependence in UC patients.

  8. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  9. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  10. IL-1RA gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules could alleviate rheumatoid arthritis.

    Science.gov (United States)

    Hu, Jianhua; Li, Hongjian; Chi, Guanhao; Yang, Zhao; Zhao, Yi; Liu, Wei; Zhang, Chao

    2015-01-01

    In order to investigate the encapsulation of interleukin 1 receptor antagonist (IL-RA) gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of interleukin 1 receptor antagonist (IL-RA) to treat Rheumatoid arthritis (RA). We transfect mesenchymal stem cells with IL-RA gene, and quantify the IL-RA proteins released from the encapsulated cells followed by microencapsulation of recombinant mesenchymal stem cells, and thus observe the permeability of APA microcapsules and evaluate clinical effects after induction and treatment of collagen-induced arthritis (CIA). The concentration of IL-RA in the supernatant was determined by IL-RA ELISA kit by run in technical triplicates using samples from three separate mice. Encapsulated IL-RA gene-transfected cells were capable of constitutive delivery of IL-RA proteins for at least 30 days. Moreover, the APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Also, it has been found that the APA microcapsules can significantly attenuate collagen induced arthritis after delivering of APA microcapsules to rats. Our results demonstrated that the nonautologous IL-RA gene-transfected stem cells are of potential utility for RA therapy.

  11. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma.

    Science.gov (United States)

    Ferreira, Manuel A R; Matheson, Melanie C; Duffy, David L; Marks, Guy B; Hui, Jennie; Le Souëf, Peter; Danoy, Patrick; Baltic, Svetlana; Nyholt, Dale R; Jenkins, Mark; Hayden, Catherine; Willemsen, Gonneke; Ang, Wei; Kuokkanen, Mikko; Beilby, John; Cheah, Faang; de Geus, Eco J C; Ramasamy, Adaikalavan; Vedantam, Sailaja; Salomaa, Veikko; Madden, Pamela A; Heath, Andrew C; Hopper, John L; Visscher, Peter M; Musk, Bill; Leeder, Stephen R; Jarvelin, Marjo-Riitta; Pennell, Craig; Boomsma, Dorret I; Hirschhorn, Joel N; Walters, Haydn; Martin, Nicholas G; James, Alan; Jones, Graham; Abramson, Michael J; Robertson, Colin F; Dharmage, Shyamali C; Brown, Matthew A; Montgomery, Grant W; Thompson, Philip J

    2011-09-10

    We aimed to identify novel genetic variants affecting asthma risk, since these might provide novel insights into molecular mechanisms underlying the disease. We did a genome-wide association study (GWAS) in 2669 physician-diagnosed asthmatics and 4528 controls from Australia. Seven loci were prioritised for replication after combining our results with those from the GABRIEL consortium (n=26,475), and these were tested in an additional 25,358 independent samples from four in-silico cohorts. Quantitative multi-marker scores of genetic load were constructed on the basis of results from the GABRIEL study and tested for association with asthma in our Australian GWAS dataset. Two loci were confirmed to associate with asthma risk in the replication cohorts and reached genome-wide significance in the combined analysis of all available studies (n=57,800): rs4129267 (OR 1·09, combined p=2·4×10(-8)) in the interleukin-6 receptor (IL6R) gene and rs7130588 (OR 1·09, p=1·8×10(-8)) on chromosome 11q13.5 near the leucine-rich repeat containing 32 gene (LRRC32, also known as GARP). The 11q13.5 locus was significantly associated with atopic status among asthmatics (OR 1·33, p=7×10(-4)), suggesting that it is a risk factor for allergic but not non-allergic asthma. Multi-marker association results are consistent with a highly polygenic contribution to asthma risk, including loci with weak effects that might be shared with other immune-related diseases, such as NDFIP1, HLA-B, LPP, and BACH2. The IL6R association further supports the hypothesis that cytokine signalling dysregulation affects asthma risk, and raises the possibility that an IL6R antagonist (tocilizumab) may be effective to treat the disease, perhaps in a genotype-dependent manner. Results for the 11q13.5 locus suggest that it directly increases the risk of allergic sensitisation which, in turn, increases the risk of subsequent development of asthma. Larger or more functionally focused studies are needed to

  12. A soluble form of IL-13 receptor alpha 1 promotes IgG2a and IgG2b production by murine germinal center B cells.

    Science.gov (United States)

    Poudrier, J; Graber, P; Herren, S; Gretener, D; Elson, G; Berney, C; Gauchat, J F; Kosco-Vilbois, M H

    1999-08-01

    A functional IL-13R involves at least two cell surface proteins, the IL-13R alpha 1 and IL-4R alpha. Using a soluble form of the murine IL-13R alpha 1 (sIL-13R), we reveal several novel features of this system. The sIL-13R promotes proliferation and augmentation of Ag-specific IgM, IgG2a, and IgG2b production by murine germinal center (GC) B cells in vitro. These effects were enhanced by CD40 signaling and were not inhibited by an anti-IL4R alpha mAb, a result suggesting other ligands. In GC cell cultures, sIL-13R also promoted IL-6 production, and interestingly, sIL-13R-induced IgG2a and IgG2b augmentation was absent in GC cells isolated from IL-6-deficient mice. Furthermore, the effects of the sIL-13R molecule were inhibited in the presence of an anti-IL-13 mAb, and preincubation of GC cells with IL-13 enhanced the sIL-13R-mediated effects. When sIL-13R was injected into mice, it served as an adjuvant-promoting production to varying degrees of IgM and IgG isotypes. We thus propose that IL-13R alpha 1 is a molecule involved in B cell differentiation, using a mechanism that may involve regulation of IL-6-responsive elements. Taken together, our data reveal previously unknown activities as well as suggest that the ligand for the sIL-13R might be a component of the IL-13R complex or a counterstructure yet to be defined.

  13. DIFFERENTIAL BINDING OF HUMAN INTERLEUKIN-1 (IL-1) RECEPTOR ANTAGONIST TO NATURAL AND RECOMBINANT SOLUBLE AND CELLULAR IL-1 TYPE-I RECEPTORS

    DEFF Research Database (Denmark)

    Svenson, Morten; Nedergaard, Susanne; Heegaard, Peter M. H.

    1995-01-01

    antagonist (IL-1ra). Recombinant soluble human IL-1RI expressed in COS cells (sIL-1RI) consists of the extracellular part of the receptor and binds all three known IL-1 species but preferentially to IL-1ra. We further characterized the sizes and binding of IL-1raBF and sIL-1RI to IL-1ra by polyacrylamide gel...... electrophoresis in the presence of sodium dodecylsulfate, ligand binding interference analyses, N-glycosidase treatment, concanavalin A affinity chromatography, and with the use of monoclonal antibodies (mAb) to human recombinant IL-1ra. We also evaluated the binding of IL-1ra to cellular IL-1RI on MRC5...... binding of both molecules to IL-1ra. Both factors blocked binding of IL-1ra to cellular IL-1RI, as did mAb to IL-1ra, but the sites on IL-1ra which bound to the mAb, and to IL-1raBF and sIL-1RI, differed. We conclude that there are important differences between the natural and recombinant forms of soluble...

  14. Interleukin-13–induced MUC5AC Is Regulated by 15-Lipoxygenase 1 Pathway in Human Bronchial Epithelial Cells

    Science.gov (United States)

    Zhao, Jinming; Maskrey, Ben; Balzar, Silvana; Chibana, Kazuyuki; Mustovich, Anthony; Hu, Haizhen; Trudeau, John B.; O'Donnell, Valerie; Wenzel, Sally E.

    2009-01-01

    Rationale: 15-Lipoxygenase-1 (15LO1) and MUC5AC are highly expressed in asthmatic epithelial cells. IL-13 is known to induce 15LO1 and MUC5AC in human airway epithelial cells in vitro. Whether 15LO1 and/or its product 15-HETE modulate MUC5AC expression is unknown. Objectives: To determine the expression of 15LO1 in freshly harvested epithelial cells from subjects with asthma and normal control subjects and to determine whether IL-13–induced 15LO1 expression and activation regulate MUC5AC expression in human bronchial epithelial cells in vitro. Methods: Human airway epithelial cells from subjects with asthma and normal subjects were evaluated ex vivo for 15LO1 and MUC5AC expression. The impact of 15LO1 on MUC5AC expression in vitro was analyzed by inhibiting 15LO1 through pharmacologic (PD146176) and siRNA approaches in human bronchial epithelial cells cultured under air–liquid interface. We analyzed 15 hydroxyeicosatetraenoic acid (15-HETE) by liquid chromatography/UV/mass spectrometry. MUC5AC and 15LO1 were analyzed by real-time RT-PCR, immunofluoresence, and Western blot. Measurements and Main Results: Epithelial 15LO1 expression increased with asthma severity (P < 0.0001). 15LO1 significantly correlated with MUC5AC ex vivo and in vitro. IL-13 increased 15LO1 expression and stimulated formation of two molecular species of 15-HETE esterified to phosphotidylethanolamine (15-HETE-PE). Inhibition of 15LO1 suppressed 15-HETE-PE and decreased MUC5AC expression in the presence of IL-13 stimulation. The addition of exogenous 15-HETE partially restored MUC5AC expression. Conclusions: Epithelial 15LO1 expression increases with increasing asthma severity. IL-13 induction of 15-HETE-PE enhances MUC5AC expression in human airway epithelial cells. High levels of 15LO1 activity could contribute to the increases of MUC5AC observed in asthma. PMID:19218191

  15. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia.

    Science.gov (United States)

    Gosmann, Christina; Mattarollo, Stephen R; Bridge, Jennifer A; Frazer, Ian H; Blumenthal, Antje

    2014-09-01

    Persistent infection with high-risk human papillomaviruses (HPV) causes epithelial hyperplasia that can progress to cancer and is thought to depend on immunosuppressive mechanisms that prevent viral clearance by the host. IL-17 is a cytokine with diverse functions in host defense and in the pathology of autoimmune disorders, chronic inflammatory diseases, and cancer. We analyzed biopsies from patients with HPV-associated cervical intraepithelial neoplasia grade 2/3 and murine skin displaying HPV16 E7 protein-induced epithelial hyperplasia, which closely models hyperplasia in chronic HPV lesions. Expression of IL-17 and IL-23, a major inducer of IL-17, was elevated in both human HPV-infected and murine E7-expressing lesions. Using a skin-grafting model, we demonstrated that IL-17 in HPV16 E7 transgenic skin grafts inhibited effective host immune responses against the graft. IL-17 was produced by CD3(+) T cells, predominantly CD4(+) T cells in human, and CD4(+) and γδ T cells in mouse hyperplastic lesions. IL-23 and IL-1β, but not IL-18, induced IL-17 production in E7 transgenic skin. Together, these findings demonstrate an immunosuppressive role for IL-17 in HPV-associated epithelial hyperplasia and suggest that blocking IL-17 in persistent viral infection may promote antiviral immunity and prevent progression to cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  16. In vitro progesterone modulation on bacterial endotoxin-induced production of IL-1β, TNFα, IL-6, IL-8, IL-10, MIP-1α, and MMP-9 in pre-labor human term placenta.

    Science.gov (United States)

    Garcia-Ruíz, G; Flores-Espinosa, P; Preciado-Martínez, E; Bermejo-Martínez, L; Espejel-Nuñez, A; Estrada-Gutierrez, G; Maida-Claros, R; Flores-Pliego, A; Zaga-Clavellina, Veronica

    2015-10-07

    During human pregnancy, infection/inflammation represents an important factor that increases the risk of developing preterm labor. The purpose of this study was to determine if pre-treatment with progesterone has an immunomodulatory effect on human placenta production of endotoxin-induced inflammation and degradation of extracellular matrix markers. Placentas were obtained under sterile conditions from pregnancies delivered at term before the onset of labor by cesarean section. Explants from central cotyledons of 10 human placentas were pre-treated with different concentrations of progesterone (0.01, 01, 1.0 μM) and then stimulated with 1000 ng/mL of LPS of Escherichia coli. Cytokines TNFα, IL-1β, IL-6, IL-8, MIP-1α, IL-10 concentrations in the culture medium were then measured by specific ELISA. Secretion profile of MMP-9 was evaluated by ELISA and zymogram. Statistical differences were determined by one-way ANOVA followed by the appropriate ad hoc test; P progesterone significantly blunted (73, 56, 56, 75, 25, 48 %) the secretion of TNF-α, IL-1β, IL-6, IL-8, MIP-1α, IL-10, respectively. The MMP-9 induced by LPS treatment was inhibited only with the highest concentration of progesterone. Mifepristone (RU486) blocked the immunosuppressive effect of progesterone. The present results support the concept that progesterone could be part of the compensatory mechanism that limits the inflammation-induced cytotoxic effects associated with an infection process during gestation.

  17. Inhibition of TC-1 tumor progression by cotransfection of Saxatilin and IL-12 genes mediated by lipofection or electroporation.

    Science.gov (United States)

    Park, Y S; Kim, K S; Lee, Y K; Kim, J S; Baek, J Y; Huang, L

    2009-01-01

    Recently, a number of reports have demonstrated that coexpression of therapeutic genes having different anticancer mechanisms is a more effective strategy for anticancer gene therapy than single gene expression. Saxatilin, a novel disintegrin from snake venom, has recently been shown to have potent antiangiogenic functions, such as inhibition of platelet aggregation, bFGF-induced proliferation of HUVEC, and vitronectin-induced smooth muscle cell migration. IL-12 is a well-known immune modulator that promotes Thl-type antitumor immune responses and inhibits angiogenesis as well. The saxatilin and/or IL-12 genes were transfected intratumorally into C57BL/6 mice carrying TC-1 transformed mouse lung endothelial cells by either lipofection or electroporation. The plasmids encoding saxatilin and IL-12 were administered to tumor tissues via novel cationic liposomes consisting of dimyristyl-glutamyl-lysine (DMKE). On the other hand, expression of the genes was also induced by electroporation after naked pDNA injection to the tumor tissues. Lipofection of saxatilin and/or IL-12 genes appeared to be slightly more effective in inhibition of tumor growth than electroporation of the same genes. Cotransfection of saxatilin and IL-12 genes was clearly more effective than individual administration of either gene. This result implies that cotransfection of saxatilin and IL-12 genes represents an innovative modality for anticancer gene therapy.

  18. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    Science.gov (United States)

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Efficacy of In Vivo Electroporation-Mediated IL-10 Gene Delivery on Survival of Skin Flaps.

    Science.gov (United States)

    Seyed Jafari, S Morteza; Shafighi, Maziar; Beltraminelli, Helmut; Weber, Benedikt; Schmid, Ralph A; Geiser, Thomas; Gazdhar, Amiq; Hunger, Robert E

    2018-04-01

    Despite advances in understanding the underlying mechanisms of flap necrosis and improvement in surgical techniques, skin flap necrosis after reconstructive surgery remains a crucial issue. We investigated the efficacy of electroporation-mediated IL-10 gene transfer to random skin flap with an aim to accelerate wound healing and improve skin flap survival. Nine male Wistar rats (300-330 g) were divided in two groups (a) control group (n = 5), only surgery no gene transfer, and (b) experimental group, received electroporation-mediated IL-10 gene transfer 24 h before the surgery as prophylaxis (n = 4). Random skin flap (McFarlane) was performed in both groups. Planimetry, Laser Doppler imaging, and immunohistochemistry were used to evaluate the effect of IL-10 gene transfer between study groups at day 7. Electroporation-mediated IL-10 gene transfer decreased percentage of flap necrosis (p value = 0.0159) and increased cutaneous perfusion compared to the control group (p value = 0.0159). In addition, Spearman's rank correlation showed a significant negative correlation between percentage of flap necrosis and Laser Index (p value = 0.0083, r -0.83, respectively). Furthermore, significantly higher mean CD31 + vessel density was detected in the experimental group compared to the control group (p value = 0.0159). Additionally, semi-quantitative image analysis showed lower inflammatory cell count in experimental group compared to control group (p value = 0.0317). In vivo electroporation-mediated IL-10 gene transfer reduced necrosis, enhanced survival and vascularity in the ischemic skin flap.

  20. Functional polymorphism of IL-1 alpha and its potential role in obesity in humans and mice.

    Directory of Open Access Journals (Sweden)

    Jae-Young Um

    Full Text Available Proinflammatory cytokines secreted from adipose tissue contribute to the morbidity associated with obesity. IL-1α is one of the proinflammatory cytokines; however, it has not been clarified whether IL-1α may also cause obesity. In this study, we investigated whether polymorphisms in IL-1α contribute to human obesity. A total of 260 obese subjects were genotyped for IL-1α C-889T (rs1800587 and IL-1α G+4845T (rs17561. Analyses of genotype distributions revealed that both IL-1α polymorphisms C-889T (rs1800587 and G+4845T (rs17561 were associated with an increase in body mass index in obese healthy women. In addition, the effect of rs1800587 on the transcriptional activity of IL-1α was explored in pre-adipocyte 3T3-L1 cells. Significant difference was found between the rs1800587 polymorphism in the regulatory region of the IL-1α gene and transcriptional activity. We extended these observations in vivo to a high-fat diet-induced obese mouse model and in vitro to pre-adipocyte 3T3-L1 cells. IL-1α levels were dramatically augmented in obese mice, and triglyceride was increased 12 hours after IL-1α injection. Taken together, IL-1α treatment regulated the differentiation of preadipocytes. IL-1α C-889T (rs1800587 is a functional polymorphism of IL-1α associated with obesity. IL-1α may have a critical function in the development of obesity.

  1. The role of IL6 and ESR1 gene polymorphisms as immunological factors of pregnancy maintenance

    Directory of Open Access Journals (Sweden)

    Kucherenko A. M.

    2013-09-01

    Full Text Available Aim. The study is aimed at the evaluation of the association of IL6 gene -174G/C polymorphism and ESR1 gene -397C/T polymorphism with recurrent pregnancy loss (RPL pathogenesis and at the investigation of the ESR1 gene -397C/T variant regulatory significance for the IL6 gene function. Methods. A case group of 75 women with RPL history and a control group of 106 unrelated healthy women, who have given birth to at least one child conceived in natural way, were genotyped by a PCR based restriction fragment length polymorphism assay. Results. There was no significant difference in IL6 -174G/C or ESR1 -397C/T genotype and allele frequencies between the case and control groups. Combined genotype distribution analysis showed significantly (p < 0.05 lower frequency of individuals homozygous for both IL6 -174G and ESR1 -397C alleles in case group (0.026 comparing to control (0.094. Conclusions. Genotype comprising IL6 -174G and ESR1 -397C alleles in homozygous state may be considered as a genetic marker of successful pregnancy maintenance during gestation early stages.

  2. Keratinocyte-derived IL-24 plays a role in the positive feedback regulation of epidermal inflammation in response to environmental and endogenous toxic stressors

    International Nuclear Information System (INIS)

    Jin, Sun Hee; Choi, Dalwoong; Chun, Young-Jin; Noh, Minsoo

    2014-01-01

    Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed that the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. - Highlights: • Cutaneous inflammatory gene signature consists of PDZK1IP1, IL-24, H19 and filaggrin. • Pro-inflammatory cytokines increase IL-24 production in human keratinocytes. • Environmental toxic stressors increase IL-24 production in human keratinocytes. • IL-24 stimulates human keratinocytes to

  3. Keratinocyte-derived IL-24 plays a role in the positive feedback regulation of epidermal inflammation in response to environmental and endogenous toxic stressors

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sun Hee [Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of); Choi, Dalwoong [Department of Public Health Science, Korea University, Seoul 136-701 (Korea, Republic of); Chun, Young-Jin [College of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Noh, Minsoo, E-mail: minsoo@alum.mit.edu [Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-10-15

    Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed that the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. - Highlights: • Cutaneous inflammatory gene signature consists of PDZK1IP1, IL-24, H19 and filaggrin. • Pro-inflammatory cytokines increase IL-24 production in human keratinocytes. • Environmental toxic stressors increase IL-24 production in human keratinocytes. • IL-24 stimulates human keratinocytes to

  4. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    Science.gov (United States)

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  5. IL-7 splicing variant IL-7δ5 induces human breast cancer cell proliferation via activation of PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Pan, Deshun; Liu, Bing; Jin, Xiaobao; Zhu, Jiayong

    2012-01-01

    Highlights: ► This study confirms the role of IL-7δ5 in breast cancer cell proliferation. ► IL-7δ5 promotes breast cancer cell proliferation and cell cycle progression. ► IL-7δ5 promotes cell proliferation via activation of PI3K/Akt pathway. -- Abstract: Various tumor cells express interleukin 7 (IL-7) and IL-7 variants. IL-7 has been confirmed to stimulate solid tumor cell proliferation. However, the effect of IL-7 variants on tumor cell proliferation remains unclear. In this study, we evaluated the role of IL-7δ5 (an IL-7 variant lacking exon 5) on proliferation and cell cycle progression of human MDA-MB-231 and MCF-7 breast cancer cells. The results showed that IL-7δ5 promoted cell proliferation and cell cycle progression from G1 phase to G2/M phase, associated with upregulation of cyclin D1 expression and the downregulation of p27 kip1 expression. Mechanistically, we found that IL-7δ5 induced the activation of Akt. Inhibition of PI3K/Akt pathway by LY294002 reversed the proliferation and cell cycle progression of MDA-MB-231 and MCF-7 cells induced by IL-7δ5. In conclusion, our findings demonstrate that IL-7δ5 variant induces human breast cancer cell proliferation and cell cycle progression via activation of PI3K/Akt pathway. Thus, IL-7δ5 may be a potential target for human breast cancer therapeutics intervention.

  6. IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment

    Science.gov (United States)

    Fang, Min; Li, Yongkui; Huang, Kai; Qi, Shanshan; Zhang, Jian; Zgodzinski, Witold; Majewski, Marek; Wallner, Grzegorz; Gozdz, Stanislaw; Macek, Pawel; Kowalik, Artur; Pasiarski, Marcin; Grywalska, Ewelina; Vatan, Linda; Nagarsheth, Nisha; Li, Wei; Zhao, Lili; Kryczek, Ilona; Wang, Guobin; Wang, Zheng; Zou, Weiping; Wang, Lin

    2018-01-01

    The expression and biological role of IL33 in colon cancer is poorly understood. In this study, we show that IL33 is expressed by vascular endothelial cells and tumor cells in the human colon cancer microenvironment. Administration of human IL33 and overexpression of murine IL33 enhanced human and murine colon cancer cell growth in vivo, respectively. IL33 stimulated cell sphere formation and prevented chemotherapy-induced tumor apoptosis. Mechanistically, IL33 activated core stem cell genes NANOG, NOTCH3, and OCT3/4 via the ST2 signaling pathway, and induced phosphorylation of c-Jun N terminal kinase (JNK) activation and enhanced binding of c-Jun to the promoters of the core stem cell genes. Moreover, IL33 recruited macrophages into the cancer microenvironment and stimulated them to produce prostaglandin E2, which supported colon cancer stemness and tumor growth. Clinically, tumor IL33 expression associated with poor survival in patients with metastatic colon cancer. Thus, IL33 dually targets tumor cells and macrophages and endows stem-like qualities to colon cancer cells to promote carcinogenesis. Collectively, our work reveals an immune-associated mechanism that extrinsically confers cancer cell stemness properties. Targeting the IL33 signaling pathway may offer an opportunity to treat patients with metastatic cancer. PMID:28249897

  7. Expression of REG family genes in human inflammatory bowel diseases and its regulation

    Directory of Open Access Journals (Sweden)

    Chikatsugu Tsuchida

    2017-12-01

    Full Text Available The pathophysiology of inflammatory bowel disease (IBD reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg family members have been reported to be expressed in Crohn's disease (CD and ulcerative colitis (UC and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iβ, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iβ, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iβ was induced by IL-22. Deletion analyses revealed that three regions (− 220 to − 211, − 179 to − 156, and − 146 to − 130 in REG Iα and the region (− 274 to− 260 in REG Iβ promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iβ, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iβ. The gene activation mechanisms of REG Iα/REG Iβ may play a role in colon mucosal regeneration in IBD.

  8. Post operative infection and sepsis in humans is associated with deficient gene expression of gammac cytokines and their apoptosis mediators.

    LENUS (Irish Health Repository)

    White, Mary

    2011-06-28

    Abstract Introduction Lymphocyte homeostasis is dependent on the γc cytokines. We hypothesised that sepsis in humans is associated with differential gene expression of the γc cytokines and their associated apoptosis mediators. Methods The study population consisted of a total of 60 patients with severe sepsis, 15 with gram negative bacteraemia, 10 healthy controls and 60 patients undergoing elective lung resection surgery. Pneumonia was diagnosed by CDC NNIC criteria. Gene expression in peripheral blood leukocytes (PBLs) of interleukin (IL)-2, 7, 15 and interferon (IFN)-γ, Bax, Bim, Bcl-2 was determined by qRT-PCR and IL-2 and IL-7 serum protein levels by ELISA. Gene expression of IL-2, 7 and IFN-γ was measured in peripheral blood leukocytes (PBL), cultured in the presence of lipopolysacharide (LPS) and CD3 binding antibody (CD3ab) Results IL-2 gene expression was lower in the bacteraemia group compared with controls, and lower still in the sepsis group (P < 0.0001). IL-7 gene expression was similar in controls and bacteraemia, but lower in sepsis (P < 0.0001). IL-15 gene expression was similar in the three groups. Bcl-2 gene expression was less (P < 0.0001) and Bim gene expression was greater (P = 0.0003) in severe sepsis compared to bacteraemic and healthy controls. Bax gene expression was similar in the three groups. In lung resection surgery patients, post-operative pneumonia was associated with a perioperative decrease in IL-2 mRNA (P < 0.0001) and IL-7 mRNA (P = 0.003). IL-2 protein levels were reduced in sepsis and bacteraemia compared to controls (P = 0.02) but similar in pneumonia and non-pneumonia groups. IL-7 protein levels were similar in all groups. In cultured PBLs, IFN-γ gene expression was decreased in response to LPS and increased in response to CD3ab with sepsis: IL-7 gene expression increased in response to LPS in controls and to CD3ab with sepsis; Bcl-2 gene expression decreased in response to combined CD3ab and IL-2 with sepsis

  9. IL-6 gene polymorphisms and sepsis in icu adult romanian patients: a prospective study

    Directory of Open Access Journals (Sweden)

    Georgescu Anca Meda

    2017-03-01

    Full Text Available Objectives: The goal of the study was to investigate the correlations between the interleukin-6 IL-6 -174 G/C and IL-6 -572 G/C gene polymorphisms and sepsis risk and severity in adult ICU patients.

  10. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production.

    Science.gov (United States)

    Zhu, Jinfang

    2015-09-01

    Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these "type 2 immune response-related" cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed. Published by Elsevier Ltd.

  11. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production

    Science.gov (United States)

    Zhu, Jinfang

    2015-01-01

    Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these “type 2 immune response-related” cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed. PMID:26044597

  12. Characterization of interleukin-8 receptors in non-human primates

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, V.; Coto, E.; Gonzalez-Roces, S.; Lopez-Larrea, C. [Hospital Central de Asturias, Oviedo (Spain)] [and others

    1996-09-01

    Interleukin-8 is a chemokine with a potent neutrophil chemoatractant activity. In humans, two different cDNAs encoding human IL8 receptors designated IL8RA and IL8RB have been cloned. IL8RA binds IL8, while IL8RB binds IL8 as well as other {alpha}-chemokines. Both human IL8Rs are encoded by two genes physically linked on chromosome 2. The IL8RA and IL8RB genes have open reading frames (ORF) lacking introns. By direct sequencing of the polymerase chain reaction products, we sequenced the IL8R genes of cell lines from four non-human primates: chimpanzee, gorilla, orangutan, and macaca. The IL8RB encodes an ORF in the four non-human primates, showing 95%-99% similarity to the human IL8RB sequence. The IL8RA homologue in gorilla and chimpanzee consisted of two ORF 98%-99% identical to the human sequence. The macaca and orangutan IL8RA homologues are pseudogenes: a 2 base pair insertion generated a sequence with several stop codons. In addition, we describe the physical linkage of these genes in the four non-human primates and discuss the evolutionary implications of these findings. 25 refs., 5 figs., 3 tabs.

  13. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    Science.gov (United States)

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  14. IL-10 down-regulates the expression of survival associated gene hspX of Mycobacterium tuberculosis in murine macrophage

    Directory of Open Access Journals (Sweden)

    Babban Jee

    2017-07-01

    Full Text Available Mycobacterium tuberculosis (MTB adopts a special survival strategy to overcome the killing mechanism(s of host immune system. Amongst the many known factors, small heat shock protein 16.3 (sHSP16.3 of MTB encoded by gene hspX has been reported to be critical for the survival of MTB. In the present study, the effect of recombinant murine interferon-gamma (rmIFN-γ and recombinant murine interleukin-10 (rmIL-10 on the expression of gene hspX of MTB in murine macrophage RAW264.7 has been investigated. By real-time RT-PCR, it was observed that three increasing concentrations (5, 25 and 50 ng/ml of rmIFN-γ significantly up-regulated the expression of hspX whereas similar concentrations of rmIL-10 (5, 25 and 50 ng/ml significantly down-regulated the hspX expression. This effect was not only dependent on the concentration of the stimulus but this was time-dependent as well. A contrasting pattern of hspX expression was observed against combinations of two different concentrations of rmIFN-γ and rmIL-10. The study results suggest that rIL-10 mediated down-regulation of hspX expression, in the presence of low concentration of rIFN-γ, could be used as an important strategy to decrease the dormancy of MTB in its host and thus making MTB susceptible to the standard anti-mycobacterial therapy used for treating tuberculosis. However, as these are only preliminary results in the murine cell line model, this hypothesis needs to be first validated in human cell lines and subsequently in animal models mimicking the latent infection using clinical isolates of MTB before considering the development of modified regimens for humans.

  15. Gene expression profiling in the inductive human hematopoietic microenvironment

    International Nuclear Information System (INIS)

    Zhao Yongjun; Chen, Edwin; Li Liheng; Gong Baiwei; Xie Wei; Nanji, Shaherose; Dube, Ian D.; Hough, Margaret R.

    2004-01-01

    Human hematopoietic stem cells (HSCs) and their progenitors can be maintained in vitro in long-term bone marrow cultures (LTBMCs) in which constituent HSCs can persist within the adherent layers for up to 2 months. Media replenishment of LTBMCs has been shown to induce transition of HSCs from a quiescent state to an active cycling state. We hypothesize that the media replenishment of the LTBMCs leads to the activation of important regulatory genes uniquely involved in HSC proliferation and differentiation. To profile the gene expression changes associated with HSC activation, we performed suppression subtractive hybridization (SSH) on day 14 human LTBMCs following 1-h media replenishment and on unmanipulated controls. The generated SSH library contained 191 differentially up-regulated expressed sequence tags (ESTs), the majority corresponding to known genes related to various intracellular processes, including signal transduction pathways, protein synthesis, and cell cycle regulation. Nineteen ESTs represented previously undescribed sequences encoding proteins of unknown function. Differential up-regulation of representative genes, including IL-8, IL-1, putative cytokine 21/HC21, MAD3, and a novel EST was confirmed by semi-quantitative RT-PCR. Levels of fibronectin, G-CSF, and stem cell factor also increased in the conditioned media of LTBMCs as assessed by ELISA, indicating increased synthesis and secretion of these factors. Analysis of our library provides insights into some of the immediate early gene changes underlying the mechanisms by which the stromal elements within the LTBMCs contribute to the induction of HSC activation and provides the opportunity to identify as yet unrecognized factors regulating HSC activation in the LTBMC milieu

  16. Immunosuppressive effect of the anti-IL-2-receptor monoclonal antibody, AMT-13, on organ-cultured fetal pancreas allograft survival

    International Nuclear Information System (INIS)

    Burkhardt, K.; Loughnan, M.S.; Diamantstein, T.; Mandel, T.E.

    1988-01-01

    Recently, prolongation of cardiac allograft survival in mice was reported using a rat anti-IL-2R mAb (AMT-13). However, its immunosuppressive action in vivo, alone and in combination with other immunosuppressants, and its effect on other organ transplants has not been extensively studied. We grafted cultured fetal pancreas from CBA (H-2k) donors to Balb/c (H-2d) mice. Recipients were treated with 10 consecutive daily injections each of 20 micrograms AMT-13 only, or with an additional mild immunosuppression of 350 rads irradiation. Control groups received rat immunoglobulin or 350 rads irradiation. Graft survival and the phenotype of infiltrating cells were assessed histologically and immunocytochemically on days 12, 17, and 21, and soluble IL-2R levels were measured in the serum with a quantitative ELISA in all recipients. Two of five grafts in the AMT-13-treated group had islets on day 12 posttransplantation despite lymphocytic infiltration in all grafts, while at this time all grafts of rat Ig treated control mice were completely rejected with only scar tissue and a few lymphocytes remaining. Additional immunosuppression with 350 rads irradiation had a marked additive effect with AMT-13. Soluble IL-2R levels in the serum of untreated recipients were not elevated compared with normal serum levels, but recipients injected with AMT-13 had multifold increased soluble IL-2R levels. The percentage of IL-2R+ cells in the grafts of AMT-13-treated animals was either normal (less than 5%) or increased (20%) in the additionally irradiated mice, providing strong evidence that the immunosuppressive effect of AMT-13 is not due to a depletion of activated IL-2R+ lymphocytes

  17. Association of interleukin 2 (IL-2), interleukin 6 (IL-6), and TNF-alpha (TNFα) gene polymorphisms with paranoid schizophrenia in a Polish population.

    Science.gov (United States)

    Paul-Samojedny, Monika; Owczarek, Aleksander; Kowalczyk, Małgorzata; Suchanek, Renata; Palacz, Marta; Kucia, Krzysztof; Fila-Daniłow, Anna; Borkowska, Paulina; Kowalski, Jan

    2013-01-01

    Numerous reports have brought attention to the potential role of cytokines in schizophrenia. The aim of the study was to determine whether polymorphisms of IL-2, IL-6, and TNFα genes are risk factors for development of paranoid schizophrenia in a Polish population. Promoter polymorphisms of IL-6 (rs1800795), TNFα (rs1800629), and IL-2 (rs2069762) genes in patients (N=115) and controls (N=135) were genotyped by PCR-RFLP and AS-PCR methods, respectively. Genotype TT and allele T for IL-2 polymorphism, and genotype AA and allele A for TNFα polymorphism were found to be significantly associated with paranoid schizophrenia. Similarly, haplotypes CTA and GTA increased the risk (4.4 times and 5.9 times, respectively) of schizophrenia. To reveal associations between Positive and Negative Symptom Scale subscales and age at onset of schizophrenia, the authors used a novel method called Grade Correspondence Analysis. This analysis revealed that patients with early age at onset have higher scores on the Negative and General subscales of PANSS, and, in that group of patients, haplotype CTA was the most represented. As far as is known, this analysis was used for the first time with reference to genetic data.

  18. Reprogrammed chondrocytes engineered to produce IL-12 provide novel ex vivo immune-gene therapy for cancer.

    Science.gov (United States)

    Tada, Hiroyuki; Kishida, Tsunao; Fujiwara, Hitoshi; Kosuga, Toshiyuki; Konishi, Hirotaka; Komatsu, Shuhei; Shiozaki, Atsushi; Ichikawa, Daisuke; Okamoto, Kazuma; Otsuji, Eigo; Mazda, Osam

    2017-03-01

    The somatic cell reprogramming technology was applied to a novel and promising ex vivo immune-gene therapy strategy for cancer. To establish a novel ex vivo cytokine gene therapy of cancer using the somatic cell reprogramming procedures. Mouse fibroblasts were converted into chondrocytes and subsequently transduced with IL-12 gene. The resultant IL-12 induced chondrogenic cells were irradiated with x-ray and inoculated into mice bearing CT26 colon cancer. The irradiation at 20 Gy or higher totally eliminated the proliferative potential of the cells, while less significantly influencing the IL-12 production from the cells. An inoculation of the irradiated IL-12 induced chondrogenic cells significantly suppressed tumor by inducing tumor-specific cytotoxic T lymphocytes, enhancing natural killer tumoricidal activity and inhibiting tumor neoangiogenesis in the mice. The somatic cell reprogramming procedures may provide a novel and effective means to treat malignancies.

  19. The Effect of IL-4 Gene Polymorphisms on Cytokine Production in Patients with Chronic Periodontitis and in Healthy Controls

    Directory of Open Access Journals (Sweden)

    Jirina Bartova

    2014-01-01

    Full Text Available Chronic periodontitis (CP is an inflammatory disease of the teeth-supporting tissues in which genetic predisposition, dental plaque bacteria, and immune mechanisms all play important roles. The aim of this study was to evaluate the occurrence of IL-4 gene polymorphisms in chronic periodontitis and to investigate the association between polymorphisms and cytokines production after bacterial stimulation. Sixty-two subjects (47 CP patients and 15 healthy controls with detected two polymorphisms in the IL-4 gene (-590C/T and intron 3 VNTR were examined. Production of cytokines (IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-17, TNFα, INFγ, and VEGF was studied after in vitro stimulation of isolated peripheral blood by mitogens (Pokeweed mitogen, Concanavalin A, dental plaque bacteria (Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Porphyromonas gingivalis, and Prevotella intermedia, and Heat Shock Protein (HSP 70 by the Luminex multiplex cytokine analysis system. The results were correlated with IL-4 genotypes in patients with CP and healthy controls. The mononuclear cells isolated from peripheral blood of CP patients with selected IL-4 polymorphisms significantly altered the production of IFNγ, IL-10, IL-1β, IL-1α, TNFα, and IL-6 after stimulation by HSP 70 or selected bacteria (from P<0.001 to P<0.05. IL-4 gene polymorphisms may influence the function of mononuclear cells to produce not only interleukin-4 but also other cytokines, especially in patients with CP.

  20. Bioprocess development for extracellular production of recombinant human interleukin-3 (hIL-3) in Pichia pastoris.

    Science.gov (United States)

    Dagar, Vikas Kumar; Adivitiya; Devi, Nirmala; Khasa, Yogender Pal

    2016-10-01

    Human interleukin-3 (hIL-3) is a therapeutically important cytokine involved in the maturation and differentiation of various cells of the immune system. The codon-optimized hIL-3 gene was cloned in fusion with the N-terminus α-mating factor signal peptide of Saccharomyces cerevisiae under an inducible alcohol oxidase 1 (AOX1) and constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. A Zeocin concentration up to 2000 mg/L was used to select hyper-producers. The shake flask cultivation studies in the Pichia pastoris GS115 host resulted a maximum recombinant hIL-3 expression level of 145 mg/L in the extracellular medium under the control of AOX1 promoter. The batch fermentation strategy allowed us to attain a fairly pure glycosylated hIL-3 protein in the culture supernatant at a final concentration of 475 mg/L with a high volumetric productivity of 4.39 mg/L/h. The volumetric product concentration achieved at bioreactor level was 3.28 folds greater than the shake flask results. The 6x His-tagged protein was purified using Ni-NTA affinity chromatography and confirmed further by western blot analysis using anti-6x His tag antibody. The glycosylation of recombinant hIL-3 protein was confirmed in a PNGase F deglycosylation reaction where it showed a molecular weight band pattern similar to E. coli produced non-glycosylated hIL-3 protein. The structural properties of recombinant hIL-3 protein were confirmed by CD and fluorescence spectroscopy where protein showed 40 % α-helix, 12 % β-sheets with an emission maxima at 343 nm. MALDI-TOF-TOF analysis was used to establish the protein identity. The biological activity of purified protein was confirmed by the human erythroleukemia TF-1 cell proliferation assay.

  1. The analysis of correlation between IL-1B gene expression and genotyping in multiple sclerosis patients.

    Science.gov (United States)

    Heidary, Masoumeh; Rakhshi, Nahid; Pahlevan Kakhki, Majid; Behmanesh, Mehrdad; Sanati, Mohammad Hossein; Sanadgol, Nima; Kamaladini, Hossein; Nikravesh, Abbas

    2014-08-15

    IL-1B is released by monocytes, astrocytes and brain endothelial cells and seems to be involved in inflammatory reactions of the central nervous system (CNS) in multiple sclerosis (MS). This study aims to evaluate the expression level of IL-1B mRNA in peripheral blood mononuclear cells (PBMCs), genotype the rs16944 SNP and find out the role of this SNP on the expression level of IL-1B in MS patients. We found that the expression level of IL-1B in MS patients increased 3.336 times more than controls in PBMCs but the rs16944 SNP in the promoter region of IL-1B did not affect the expression level of this gene and there was not association of this SNP with MS in the examined population. Also, our data did not reveal any correlation between normalized expressions of IL-1B gene with age of participants, age of onset, and disease duration. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans

    DEFF Research Database (Denmark)

    Steensberg, Adam; Fischer, Christian Philip; Keller, Charlotte

    2003-01-01

    compared with saline infusion. In addition, C-reactive protein increased 3 h post-rhIL-6 infusion and was further elevated 16 h later compared with saline infusion. rhIL-6 induced increased levels of plasma cortisol and, consequently, an increase in circulating neutrophils and a decrease in the lymphocyte......-alpha, enhances the levels not only of IL-1ra but also of IL-10. Furthermore, IL-6 induces an increase in cortisol and, consequently, in neutrocytosis and late lymphopenia to the same magnitude and with the same kinetics as during exercise, suggesting that muscle-derived IL-6 has a central role in exercise...

  3. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Veréb, Zoltán, E-mail: jzvereb@gmail.com [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Uray, Iván P., E-mail: ipuray@mdanderson.org [Clinical Cancer Prevention Department, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Fésüs, László, E-mail: fesus@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences (Hungary); Balajthy, Zoltán, E-mail: balajthy@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  4. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    International Nuclear Information System (INIS)

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-01-01

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  5. Functional and phenotypical analysis of IL-6-secreting CD4+ T cells in human adipose tissue.

    Science.gov (United States)

    de Jong, Anja J; Pollastro, Sabrina; Kwekkeboom, Joanneke C; Andersen, Stefan N; Dorjée, Annemarie L; Bakker, Aleida M; Alzaid, Fawaz; Soprani, Antoine; Nelissen, Rob G H H; Mullers, Jan B; Venteclef, Nicolas; de Vries, Niek; Kloppenburg, Margreet; Toes, René E M; Ioan-Facsinay, Andreea

    2018-03-01

    Emerging evidence indicates that a dynamic interplay between the immune system and adipocytes contributes to the disturbed homeostasis in adipose tissue of obese subjects. Recently, we observed IL-6-secretion by CD4 + T cells from the stromal vascular fraction (SVF) of the infrapatellar fat pad (IFP) of knee osteoarthritis patients directly ex vivo. Here we show that human IL-6 + CD4 + T cells from SVF display a more activated phenotype than the IL-6 - T cells, as evidenced by the expression of the activation marker CD69. Analysis of cytokines secretion, as well as expression of chemokine receptors and transcription factors associated with different Th subsets (Treg, Th1, Th2, Th17 and Tfh) revealed that IL-6-secreting CD4 + T cells cannot be assigned to a conventional Th subset. TCRβ gene analysis revealed that IL-6 + and IL-6 - CD4 + T cells appear clonally unrelated to each other, suggesting a different specificity of these cells. In line with these observations, adipocytes are capable of enhancing IL-6 production by CD4 + T cells. Thus, IL-6 + CD4 + T cells are TCRαβ T cells expressing an activated phenotype potentially resulting from an interplay with adipocytes that could be involved in the inflammatory processes in the OA joint. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mesenchymal stem cells are efficiently transduced with adenoviruses bearing type 35-derived fibers and the transduced cells with the IL-28A gene produces cytotoxicity to lung carcinoma cells co-cultured.

    Science.gov (United States)

    Suzuki, Takeo; Kawamura, Kiyoko; Li, Quanhai; Okamoto, Shinya; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Yamaguchi, Naoto; Tagawa, Masatoshi

    2014-09-25

    Transduction of human mesenchymal stem cells (MSCs) with type 5 adenoviruses (Ad5) is limited in the efficacy because of the poor expression level of the coxsackie adenovirus receptor (CAR) molecules. We examined a possible improvement of Ad-mediated gene transfer in MSCs by substituting the fiber region of type 5 Ad with that of type 35 Ad. Expression levels of CAR and CD46 molecules, which are the major receptors for type 5 and type 35 Ad, respectively, were assayed with flow cytometry. We constructed vectors expressing the green fluorescent protein gene with Ad5 or modified Ad5 bearing the type 35 fiber region (AdF35), and examined the infectivity to MSCs with flow cytometry. We investigated anti-tumor effects of MSCs transduced with interleukin (IL)-28A gene on human lung carcinoma cells with a colorimetric assay. Expression of IL-28A receptors was tested with the polymerase chain reaction. A promoter activity of transcriptional regulatory regions in MSCs was determined with a luciferase assay and a tumor growth-promoting ability of MSCs was tested with co-injection of human tumor cells in nude mice. MSCs expressed CD46 but scarcely CAR molecules, and subsequently were transduced with AdF35 but not with Ad5. Growth of MSCs transduced with the IL-28A gene remained the same as that of untransduced cells since MSCs were negative for the IL-28A receptors. The IL-28A-transduced MSCs however suppressed growth of lung carcinoma cells co-cultured, whereas MSCs transduced with AdF35 expressing the β-galactosidase gene did not. A regulatory region of the cyclooygenase-2 gene possessed transcriptional activities greater than other tumor promoters but less than the cytomegalovirus promoter, and MSCs themselves did not support tumor growth in vivo. AdF35 is a suitable vector to transduce MSCs that are resistant to Ad5-mediated gene transfer. MSCs infected with AdF35 that activate an exogenous gene by the cytomegalovirus promoter can be a vehicle to deliver the gene product

  7. Interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q

    International Nuclear Information System (INIS)

    Le Beau, M.M.; Epstein, N.D.; O'Brien, S.J.; Nienhuis, A.W.; Yang, Y.C.; Clark, S.C.; Rowley, J.D.

    1987-01-01

    The gene IL-3 encodes interleukin 3, a hematopoietic colony-stimulating factor (CSF) that is capable of supporting the proliferation of a broad range of hematopoietic cell types. By using somatic cell hybrids and in situ chromosomal hybridization, the authors localized this gene to human chromosome 5 at bands q23-31, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, IL-3 was found to be deleted in the 5q-chromosome of one patient with refractory anemia who had a del(5)(q15q33.3), of three patients with refractory anemia (two patients) or acute nonlymphocytic leukemia (ANLL) de novo who had a similar distal breakpoint [del(5)(q13q33.3)], and of a fifth patient, with therapy-related ANLL, who had a similar distal breakpoint in band q33[del(5)(q14q33.3)]. Southern blot analysis of somatic cell hybrids retaining the normal or the deleted chromosome 5 from two patients with the refractory anemia 5q- syndrome indicated that IL-3 sequences were absent from the hybrids retaining the deleted chromosome 5 but not from hybrids that had a cytologically normal chromosome 5. Thus, a small segment of chromosome 5 contains IL-3, GM-CSF, CSF-1, and FMS. The findings and earlier results indicating that GM-CSF, CSF-1, and FMS were deleted in the 5q- chromosome, suggest that loss of IL-3 or of other CSF genes may play an important role in the pathogenesis of hematologic disorders associated with a del(5q)

  8. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  9. The role of IL-17 in psoriasis.

    Science.gov (United States)

    Malakouti, Mona; Brown, Gabrielle Elena; Wang, Eva; Koo, John; Levin, Ethan C

    2015-02-01

    Psoriasis is a chronic skin condition traditionally believed to involve the Th1 pathway. Recently, the IL-23/Th17/IL-17 pathway has been highlighted in the pathogenesis of psoriasis and other autoimmune inflammatory conditions. From a clinician's perspective, we sought to review the basic science data relevant to IL-17's role in psoriasis pathogenesis. We performed a Pubmed and Web of Knowledge search for English articles starting from 1990 that discussed the Th17 pathway. Search terms such as "IL-17" and "psoriasis" were utilized. The IL-17 pathway is regulated by IL-23, a cytokine that is vital for the expansion and maintenance of the Th17 cell population. Th17 derived cytokines (IL-17A, IL-17F, IL-17A/F and IL-22) were elevated in both psoriasis-like murine models and human psoriatic lesional biopsies. Ixekizumab (anti-IL-17A) treatment of psoriasis was found to normalize levels of IL-17 downstream gene products. Both preclinical and clinical studies support the central role of IL-17 in the pathogenesis of psoriasis.

  10. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  11. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NARCIS (Netherlands)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-01-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is

  12. Introduction of the human proα1(I) collagen gene into proα1(I)-deficient Mov-13 mouse cells leads to formation of functional mouse-human hybrid type I collagen

    International Nuclear Information System (INIS)

    Schnieke, A.; Dziadek, M.; Bateman, J.; Mascara, T.; Harbers, K.; Gelinas, R.; Jaenisch, R.

    1987-01-01

    The Mov-13 mouse strain carries a retroviral insertion in the proα1(I) collagen gene that prevents transcription of the gene. Cell lines derived from homozygous embryos do not express type I collagen although normal amounts of proα2 mRNA are synthesized. The authors have introduced genomic clones of either the human or mouse proα1(I) collagen gene into homozygous cell lines to assess whether the human or mouse proα1(I) chains can associate with the endogenous mouse proα2(I) chain to form stable type I collagen. The human gene under control of the simian virus 40 promoter was efficiently transcribed in the transfected cells. Protein analyses revealed that stable heterotrimers consisting of two human α1 chains and one mouse α2 chain were formed and that type I collagen was secreted by the transfected cells at normal rates. However, the electrophoretic migration of both α1(I) and α2(I) chains in the human-mouse hybrid molecules were retarded, compared to the α(I) chains in control mouse cells. Inhibition of the posttranslational hydroxylation of lysine and proline resulted in comigration of human and mouse α1 and α2 chains, suggesting that increased posttranslational modification caused the altered electrophoretic migration in the human-mouse hybrid molecules. Amino acid sequence differences between the mouse and human α chains may interfere with the normal rate of helix formation and increase the degree of posttranslational modifications similar to those observed in patients with lethal perinatal osteogenesis imperfecta. The Mov-13 mouse system should allow the authors to study the effect specific mutations introduced in transfected proα1(I) genes have on the synthesis, assembly, and function of collagen I

  13. Closely related glycosylation patterns of recombinant human IL-2 expressed in a CHO cell line and natural IL-2

    International Nuclear Information System (INIS)

    Vita, N.; Magazin, M.; Marchese, E.; Lupker, J.; Ferrara, P.

    1990-01-01

    We report here the study of the glycosylation pattern of human recombinant (r) IL2 expressed in a Chinese hamster ovary (CHO) cell line. The human rIL2 secreted by this high-producing recombinant CHO cell line was metabolically radiolabelled with [35S]-methionine, or with [3H]-glucosamine and [3H]-galactose, purified to homogeneity, and then characterized. The electrophoretic analysis of the [35S]-methionine-labelled proteins present in the culture medium of the CHO cell line showed that the rIL2 represents approximately 12% of the total secreted proteins. Furthermore, pulse-chase experiments showed that the glycosylated rIL2 is synthesized and secreted within 30 min. The point of attachment and the structure of the carbohydrate moiety of the rIL2 was determined by: amino-terminal sequencing and fingerprint analysis of the 3H-labelled rIL2, mass spectroscopy of the amino-terminal tryptic octapeptide, and carbohydrate analysis after enzymatic (Vibrio cholerae neuraminidase and Aspergillus oryzae beta-galactosidase) or sulfuric acid hydrolysis. The results indicate that the recombinant protein possesses a sugar moiety O-linked to the threonine residue at position 3 of the polypeptide chain, and that sialic acid, galactose and N-acetyl galactosamine are components of this carbohydrate moiety. Taken together these results suggest that the recombinant molecule is identical to natural IL2

  14. Reg Gene Expression in Periosteum after Fracture and Its In Vitro Induction Triggered by IL-6

    Directory of Open Access Journals (Sweden)

    Yasuaki Tohma

    2017-10-01

    Full Text Available The periosteum is a thin membrane that surrounds the outer surface of bones and participates in fracture healing. However, the molecular signals that trigger/initiate the periosteal reaction are not well established. We fractured the rat femoral bone at the diaphysis and fixed it with an intramedullary inserted wire, and the expression of regenerating gene (Reg I, which encodes a tissue regeneration/growth factor, was analyzed. Neither bone/marrow nor muscle showed Reg I gene expression before or after the fracture. By contrast, the periosteum showed an elevated expression after the fracture, thereby confirming the localization of Reg I expression exclusively in the periosteum around the fractured areas. Expression of the Reg family increased after the fracture, followed by a decrease to basal levels by six weeks, when the fracture had almost healed. In vitro cultures of periosteal cells showed no Reg I expression, but the addition of IL-6 significantly induced Reg I gene expression. The addition of IL-6 also increased the cell number and reduced pro-apoptotic gene expression of Bim. The increased cell proliferation and reduction in Bim gene expression were abolished by transfection with Reg I siRNA, indicating that these IL-6-dependent effects require the Reg I gene expression. These results indicate the involvement of the IL-6/Reg pathway in the osteogenic response of the periosteum, which leads to fracture repair.

  15. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain.

    Science.gov (United States)

    Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe

    2012-04-01

    IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.

  16. In situ PCR detection and significance of IL-3 gene expression in irradiated hematopoietic cells of mouse bone marrow

    International Nuclear Information System (INIS)

    Peng Ruiyun; Wang Dewen; Xiong Chengqi; Gao Yabing; Li Yanping; Yang Hong; Cui Yufang

    2000-01-01

    Objective: To study the significance of endogenous interleukin 3(IL-3) gene expression in repair of irradiated mouse bone marrow. Methods: Seventy-eight LACA mice were subjected to total body irradiation with 60 Co γ-rays and were sacrificed within 4 weeks after irradiation. The bone marrow histopathological sections were stained with HE, and the expression of endogenous IL-3 gene was detected by means of immunocytochemistry,in situ hybridization(ISH) and in situ reverse transcription PCR(IS RT-PCR). Results: Obvious injury of bone marrow occurred after irradiation and then recovered within 4 weeks. IL-3 protein was obviously increased in the cytoplasm of recovering hematopoietic cells(HCs), especially on day 21 after irradiation, while its mRNA was poorly positive by ISH on days 10-21, especially day 15.IS RT-PCR showed that IL-3 mRNA was strongly positive in recovering HCs cytoplasm, especially on days 10 to 15. Conclusion: In situ RT-PCR can objectively reflect the regulation of IL-3 gene expression in bone marrow after irradiation, and the expression of endogenous IL-3 gene may play an important role in hematopoietic reconstruction of irradiated bone marrow

  17. Asthma susceptible genes in Chinese population: A meta-analysis

    Directory of Open Access Journals (Sweden)

    He Chao

    2010-09-01

    Full Text Available Abstract Background Published data regarding the associations between genetic variants and asthma risk in Chinese population were inconclusive. The aim of this study was to investigate asthma susceptible genes in Chinese population. Methods The authors conducted 18 meta-analyzes for 18 polymorphisms in 13 genes from eighty-two publications. Results Seven polymorphisms were found being associated with risk of asthma, namely: A Disintegrin and Metalloprotease 33 (ADAM33 T1-C/T (odds ratio [OR] = 6.07, 95% confidence interval [CI]: 2.69-13.73, Angiotensin-Converting Enzyme (ACE D/I (OR = 3.85, 95%CI: 2.49-5.94, High-affinity IgE receptor β chain (FcεRIβ -6843G/A (OR = 1.49, 95%CI: 1.01-2.22, Interleukin 13(IL-13 -1923C/T (OR = 2.99, 95%CI: 2.12-4.24, IL-13 -2044A/G (OR = 1.49, 95%CI: 1.07-2.08, Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES -28C/G (OR = 1.64, 95%CI: 1.09-2.46, Tumor Necrosis Factor-α (TNF-α -308G/A(OR = 1.42, 95%CI: 1.09, 1.85. After subgroup analysis by age, the ACE D/I, β2-Adrenergic Receptor (β2-AR -79G/C, TNF-α -308G/A, Interleukin 4 receptor(IL-4R -1902G/A and IL-13 -1923C/T polymorphisms were found significantly associated with asthma risk in Chinese children. In addition, the ACE D/I, FcεRIβ -6843G/A, TNF-α -308G/A, IL-13 -1923C/T and IL-13 -2044A/G polymorphisms were associated with asthma risk in Chinese adults. Conclusion ADAM33, FcεRIβ, RANTES, TNF-α, ACE, β2-AR, IL-4R and IL-13 genes could be proposed as asthma susceptible genes in Chinese population. Given the limited number of studies, more data are required to validate these associations.

  18. Identification and Characterization of a Novel IL-4 Receptor α Chain (IL-4Rα Antagonist to Inhibit IL-4 Signalling

    Directory of Open Access Journals (Sweden)

    Nayyar Ahmed

    2015-05-01

    Full Text Available Background/Aims: In recent times, allergy has become a financial, physical and psychological burden to the society as a whole. In allergic cascades, cytokine IL-4 binds to IL-4 receptor (IL-4R, consequently producing allergen-specific IgE antibodies by B cells. In addition, among other functions, IL-4 is also responsible for B and T cell proliferation and differentiation. Hence, characterization of novel antagonists that inhibit IL-4 signalling forms the overall aim of this study. Methods: Phage display was used to screen a random 12-mer synthetic peptide library with a human IL-4Rα to identify peptide candidates. Once identified, the peptides were commercially synthesized and used for in vitro immunoassays. Results: We have successfully used phage display to identify M13 phage clones that demonstrated specific binding to IL-4Rα. The peptide N1 was synthesized for use in ELISA, demonstrating significant binding to IL-4Rα and inhibiting interaction with cytokine IL-4. Furthermore, the peptide was tested in a transfected HEK-Blue IL-4 reporter cell line model, which produces alkaline phosphatase (AP. QUANTI-Blue, a substrate, breaks down in the presence of AP producing a blue coloration. Using this colorimetric analysis, >50% inhibition of IL-4 signalling was achieved. Conclusion: We have successfully identified and characterised a synthetic peptide antagonist against IL-4Rα, which effectively inhibits IL-4 interaction with the IL-4Rα in vitro. Since IL-4 interaction with IL-4Rα is a common pathway for many allergies, a prophylactic treatment can be devised by inhibiting this interaction for future treatment of allergies.

  19. Psoriasis is not associated with IL-12p70/IL-12p40 production and IL12B promoter polymorphism

    DEFF Research Database (Denmark)

    Litjens, Nicolle H R; van der Plas, Mariena J A; Ravensbergen, Bep

    2004-01-01

    Psoriasis is a type-1 T cell-mediated, chronic inflammatory disease. Since interleukin (IL)-12p70 promotes the development of type-1 T cells, we investigated whether psoriasis is associated with an increased production of this cyctokine by blood cells. Results revealed that the production of IL-12p....... The frequencies of the various genotypes for the promoter region of the gene encoding IL-12p40 (IL12B) did not differ between psoriasis patients and controls. No association was observed between the various IL12B promoter genotypes and the LPS-stimulated production of IL-12p70 or IL-12p40 by blood cells. Together......, psoriasis is not associated with a promoter polymorphism in the IL12B gene nor with the production of IL-12p70 by LPS-stimulated blood cells....

  20. Polymorphisms in IL-1 gene cluster and its association with the risk of perinatal HIV transmission, in an Indian cohort.

    Science.gov (United States)

    Ahir, Swati; Chaudhari, Deepali; Chavan, Vijay; Samant-Mavani, Padmaja; Nanavati, Ruchi; Mehta, Preeti; Mania-Pramanik, Jayanti

    2013-06-01

    Host genetic diversity plays a very important role in protecting infants exposed to HIV-1 through their mothers. IL-1 family genes are key mediators of inflammatory responses and no studies are available on its association with perinatal HIV transmission. We aimed to evaluate if single nucleotide polymorphisms in IL-1 family genes are associated with perinatal HIV transmission. Infants of HIV positive women were genotyped for five polymorphic loci in IL1 gene cluster namely; IL1R1 (rs2234650), IL1A (rs1800587), IL1B (rs16944), IL1B (rs1143634), and IL1RN (rs315952) using polymerase chain reaction with sequence specific primers (PCR-SSP) method. Haplotype block structure was determined using Haploview and statistical analysis was done using PyPop. In this cohort based observational study significantly increased frequency of CT genotype in IL1R1 (rs2234650) was observed in positive vs. negative children (76.4% vs. 42.2%, p = 0.023), while CC genotype was significantly (p = 0.022) high in exposed uninfected children compared to infected ones (51.1% vs. 17.6%). These significances, however, did not stand the Bonferroni corrections. Haplotypic analysis demonstrated that the TCCCT haplotype was significantly associated (p = 0.002) with HIV transmission and remained significant even after Bonferroni correction. The children who had the protective CC genotype at IL1R1 (rs2234650) and were still positive had the TTC haplotype for IL1A (rs1800587):IL1B (rs1143634):IL1R1 (rs2234650). In contrast, 16 out of 19 (84.2%) children who had the CT genotype and were still negative had the protective CTC haplotype for IL1A (rs1800587):IL1B (rs16944):IL1B (rs1143634). IL1R1 (rs2234650) polymorphisms CT/CC along the specific haplotypes of the IL-1 gene family can be exploited as possible markers for prediction of perinatal HIV transmission. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Genetic signature of strong recent positive selection at interleukin-32 gene in goat

    Directory of Open Access Journals (Sweden)

    Akhtar Rasool Asif

    2017-07-01

    Full Text Available Objective Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. Methods By using fixation index (FST based method, IL-32 (9375 gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and FST. Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8 in Codeml program of phylogenetic analysis by maximum liklihood. Results IL-32 is detected under positive selection using the FST simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%, bison (91.97%, camel (58.39%, cat (56.59%, buffalo (56.50%, human (56.13%, dog (50.97%, horse (54.04%, and rabbit (53.41% respectively. Conclusion This study provides evidence for IL-32 gene as under significant positive selection in goat.

  2. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans

    DEFF Research Database (Denmark)

    Starkie, Rebecca; Ostrowski, Sisse Rye; Jauffred, Sune

    2003-01-01

    and atherosclerosis. To test this hypothesis, we performed three experiments in which eight healthy males either rested (CON), rode a bicycle for 3 h (EX), or were infused with recombinant human IL-6 (rhIL-6) for 3 h while they rested. After 2.5 h, the volunteers received a bolus of Escherichia coli...... exercise and rhIL-6 infusion at physiological concentrations inhibit endotoxin-induced TNF-alpha production in humans. Hence, these data provide the first experimental evidence that physical activity mediates antiinflammatory activity and suggest that the mechanism include IL-6, which is produced...

  3. Clone-specific expression, transcriptional regulation, and action of interleukin-6 in human colon carcinoma cells

    International Nuclear Information System (INIS)

    Brozek, Wolfgang; Bises, Giovanna; Fabjani, Gerhild; Cross, Heide S; Peterlik, Meinrad

    2008-01-01

    Many cancer cells produce interleukin-6 (IL-6), a cytokine that plays a role in growth stimulation, metastasis, and angiogenesis of secondary tumours in a variety of malignancies, including colorectal cancer. Effectiveness of IL-6 in this respect may depend on the quantity of basal and inducible IL-6 expressed as the tumour progresses through stages of malignancy. We therefore have evaluated the effect of IL-6 modulators, i.e. IL-1β, prostaglandin E 2 , 17β-estradiol, and 1,25-dihydroxyvitamin D 3 , on expression and synthesis of the cytokine at different stages of tumour progression. We utilized cultures of the human colon carcinoma cell clones Caco-2/AQ, COGA-1A and COGA-13, all of which expressed differentiation and proliferation markers typical of distinct stages of tumour progression. IL-6 mRNA and protein levels were assayed by RT-PCR and ELISA, respectively. DNA sequencing was utilized to detect polymorphisms in the IL-6 gene promoter. IL-6 mRNA and protein concentrations were low in well and moderately differentiated Caco-2/AQ and COGA-1A cells, but were high in poorly differentiated COGA-13 cells. Addition of IL-1β (5 ng/ml) to a COGA-13 culture raised IL-6 production approximately thousandfold via a prostaglandin-independent mechanism. Addition of 17β-estradiol (10 -7 M) reduced basal IL-6 production by one-third, but IL-1β-inducible IL-6 was unaffected. Search for polymorphisms in the IL-6 promoter revealed the presence of a single haplotype, i.e., -597A/-572G/-174C, in COGA-13 cells, which is associated with a high degree of transcriptional activity of the IL-6 gene. IL-6 blocked differentiation only in Caco-2/AQ cells and stimulated mitosis through up-regulation of c-myc proto-oncogene expression. These effects were inhibited by 10 -8 M 1,25-dihydroxyvitamin D 3 . In human colon carcinoma cells derived from well and moderately differentiated tumours, IL-6 expression is low and only marginally affected, if at all, by PGE 2 , 1,25-dihydroxyvitamin D

  4. Interleukin-1 (IL-1 system gene expression in granulosa cells: kinetics during terminal preovulatory follicle maturation in the mare

    Directory of Open Access Journals (Sweden)

    Gérard Nadine

    2003-05-01

    Full Text Available Abstract Background A growing body of evidences suggests that the ovary is a site of inflammatory reactions, and thus, ovarian cells could represent sources and targets of the interleukin-1 (IL-1 system. The purpose of this study was to examine the IL-1 system gene expressions in equine granulosa cells, and to study the IL-1β content in follicular fluid during the follicle maturation. For this purpose, granulosa cells and follicular fluids were collected from the largest follicle at the early dominance stage (diameter 24 ± 3 mm or during the preovulatory maturation phase, at T0 h, T6 h, T12 h, T24 h and T34 h after induction of ovulation. Cells were analysed by RT-PCR and follicular fluids were studied by gel electrophoresis and immunoblotting. Results We demonstrated that interleukin-1β (IL-1β, interleukin-1 receptor 2 (IL-1R2 and interleukin-1 receptor antagonist (IL-1RA genes are expressed in equine granulosa cells. We observed that the IL-1β and IL-1RA mRNA content changed in granulosa cells during the terminal follicular maturation whereas IL-1R2 mRNA did not vary. In follicular fluid, IL-1β content fluctuated few hours after induction of ovulation. Conclusions The expression of IL-1β gene in granulosa cells and the follicular fluid IL-1β content seem to be regulated by gonadotropins suggesting that IL-1β could be an intermediate paracrine factor involved in ovulation.

  5. Variants in LTA, TNF, IL1B and IL10 genes associated with the clinical course of sepsis.

    Science.gov (United States)

    Montoya-Ruiz, Carolina; Jaimes, Fabián A; Rugeles, Maria T; López, Juan Álvaro; Bedoya, Gabriel; Velilla, Paula A

    2016-12-01

    The aim of this study was to explore the association between some SNPs of the TNF, LTA, IL1B and IL10 genes with cytokine concentrations and clinical course in Colombian septic patients. We conducted a cross-sectional study to genotype 415 septic patients and 205 patients without sepsis for the SNPs -308(G/A) rs1800629 of TNF; +252 (G/A) rs909253 of LTA; -511(A/G) rs16944 and +3953(C/T) rs1143634 of IL1B; and -1082(A/G) rs1800896, -819(C/T) rs1800871 and -592(C/A) rs1800872 of IL10. The association of theses SNPs with the following parameters was evaluated: (1) the presence of sepsis; (2) severity and clinical outcomes; (3) APACHE II and SOFA scores; and (4) procalcitonin, C-reactive protein, tumor necrosis factor, lymphotoxin alpha, interleukin 1 beta and interleukin 10 plasma concentrations. We found an association between the SNP LTA +252 with the development of sepsis [OR 1.29 (1.00-1.68)]; the SNP IL10 -1082 with sepsis severity [OR 0.53 (0.29-0.97)]; the TNF -308 with mortality [OR 0.33 (0.12-0.95)]; and the IL10 -592 and IL10 -1082 with admission to the intensive care unit (ICU) [OR 3.36 (1.57-7.18)] and [OR 0.18 (0.04-0.86)], respectively. None of the SNPs were associated with cytokine levels, procalcitonin and C-reactive protein serum concentrations, nor with APACHE II and SOFA scores. Our results suggest that these genetic variants play an important role in the development of sepsis and its clinical course.

  6. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions.

    Science.gov (United States)

    Bernal, Laura; Alvarado-Vázquez, Abigail; Ferreira, David Wilson; Paige, Candler A; Ulecia-Morón, Cristina; Hill, Bailey; Caesar, Marina; Romero-Sandoval, E Alfonso

    2017-02-01

    Macrophages orchestrate the initiation and resolution of inflammation by producing pro- and anti-inflammatory products. An imbalance in these mediators may originate from a deficient or excessive immune response. Therefore, macrophages are valid therapeutic targets to restore homeostasis under inflammatory conditions. We hypothesize that a specific mannosylated nanoparticle effectively induces gene expression in human macrophages under inflammatory conditions without undesirable immunogenic responses. THP-1 macrophages were challenged with lipopolysaccharide (LPS, 5μg/mL). Polyethylenimine (PEI) nanoparticles grafted with a mannose receptor ligand (Man-PEI) were used as a gene delivery method. Nanoparticle toxicity, Man-PEI cellular uptake rate and gene induction efficiency (GFP, CD14 or CD68) were studied. Potential immunogenic responses were evaluated by measuring the production of tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-6 and IL-10. Man-PEI did not produce cytotoxicity, and it was effectively up-taken by THP-1 macrophages (69%). This approach produced a significant expression of GFP (mRNA and protein), CD14 and CD68 (mRNA), and transiently and mildly reduced IL-6 and IL-10 levels in LPS-challenged macrophages. Our results indicate that Man-PEI is suitable for inducing an efficient gene overexpression in human macrophages under inflammatory conditions with limited immunogenic responses. Our promising results set the foundation to test this technology to induce functional anti-inflammatory genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Association analysis of the IL-1 gene cluster polymorphisms with aggressive and chronic periodontitis in the Algerian population.

    Science.gov (United States)

    Boukortt, Kawther Nourelhouda; Saidi-Ouahrani, Nadjia; Boukerzaza, Boubaker; Ouhaibi-Djellouli, Hadjira; Hachmaoui, Khalida; Benaissa, Fatima Zohra; Taleb, Leila; Drabla-Ouahrani, Hayet; Deba, Tahria; Ouledhamou, Sid Ahmed; Mehtar, Nadhera; Boudjema, Abdellah

    2015-10-01

    There is strong evidence that genetic as well as environmental factors affect the development of periodontitis. Various studies suggest that genetic polymorphisms of the interleukin-1 (IL-1) genes are associated with an increased risk of developing the pathogenesis. The aim of the present study was to investigate the possible relationship between two polymorphisms of IL-1 gene cluster IL-1B (C+3954T) (rs1143634) and IL-1A (C-889T) (rs1800587) SNPs and the aggressive and chronic periodontitis risk in a case control study in Algerian population. 279 subjects were recruited and received a periodontal examination: 128 healthy controls and 151 cases. From cases, 91 patients were having a chronic disease whereas 60 subjects with aggressive form. All these subjects were genotyped for IL-1A (C-889T) and IL-1B (C+3954T) polymorphisms using TaqMan real time PCR technology. Frequencies of IL-1 alleles, genotypes and the haplotypes were also examined. Significant differences were found in the carriage rate of both minor alleles of the IL-1A (C-889T) and IL-1B (C+3954T) polymorphisms of aggressive periodontitis cases compared with healthy controls (OR [95%CI]=1.61 [1.03-2.49], p=0.03), (OR [95%CI]=1.69 [1.09-2.63], p=0.01), respectively. The result did not reach significance with the chronic form. The studied polymorphisms of the IL-1 genes appear to be associated with susceptibility to aggressive periodontitis (AgP) in the Algerian population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fasting induces IL-1 resistance and free fatty acid-mediated up-regulation of IL-1R2 and IL-1RA

    Directory of Open Access Journals (Sweden)

    jenifer j joesting

    2014-07-01

    Full Text Available Objective: Weight loss is a near societal obsession and many diet programs use significant calorie restriction (CR including fasting/short term starvation to generate rapid effects. Fasting is also a well-recognized cause of immunosuppression especially within the innate immune system. In this study, we sought to determine if the IL-1 arm of the neuroimmune system was down-regulated by a 24 hr fast and how fasting might generate this effect. Design: Mice were allowed ad libitum access to food or had food withheld for 24 hrs. Expression of the endogenous IL-1 antagonists IL-1 receptor type 2 (IL-1R2 and IL-1 receptor antagonist (IL-1RA were determined as were sickness behaviors before and after IL-1 administration.Results: Fasting markedly increased gene expression of IL-1R2 (83-fold in adipose tissue, 9.5-fold in liver and IL-1RA (68-fold in liver. Fasted mice were protected from IL-1-induced weight loss, hypoglycemia, loss of locomotor and social anxiety. These protections were coupled to a large positive interaction of fasting and IL-1 on IL-1R2 gene expression in adipose tissue and liver (2.6-fold and 1.6-fold, respectively. Fasting not only increased IL-1RA and IL-1R2 protein 2.5-fold and 3.2-fold, respectively, in liver; but also increased IL-1R2 1.8-fold in adipose tissue. Fasting, in turn, triggered a 2.4-fold increase in plasma free-fatty acids (FFAs and a 2.1-fold increase in plasma corticosterone. Inhibition, of glucocorticoid action with mifepristone did not impact fasting-dependent IL-1R2 or IL-1RA gene expression. Administration of the FFA, palmitate, to mice increased liver IL-1R2 and IL-1RA gene expression by 14-fold and 11-fold, respectively. Conclusion: These findings indicate that fasting augments expression of endogenous IL-1 antagonists inducing IL-1 resistance. Fasting-induced increases in plasma FFAs appears to be a signal that drives immunosuppression during fasting/short term starvation.

  9. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18

    Directory of Open Access Journals (Sweden)

    Biliang Hu

    2017-09-01

    Full Text Available The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors.

  10. β-Glucan Size Controls Dectin-1-Mediated Immune Responses in Human Dendritic Cells by Regulating IL-1β Production

    Directory of Open Access Journals (Sweden)

    Matthew J. Elder

    2017-07-01

    Full Text Available Dectin-1/CLEC7A is a pattern recognition receptor that recognizes β-1,3 glucans, and its stimulation initiates signaling events characterized by the production of inflammatory cytokines from human dendritic cells (DCs required for antifungal immunity. β-glucans differ greatly in size, structure, and ability to activate effector immune responses from DC; as such, small particulate β-glucans are thought to be poor activators of innate immunity. We show that β-glucan particle size is a critical factor contributing to the secretion of cytokines from human DC; large β-glucan-stimulated DC generate significantly more IL-1β, IL-6, and IL-23 compared to those stimulated with the smaller β-glucans. In marked contrast, the secretion of TSLP and CCL22 were found to be insensitive to β-glucan particle size. Furthermore, we show that the capacity to induce phagocytosis, and the relative IL-1β production determined by β-glucan size, regulates the composition of the cytokine milieu generated from DC. This suggests that β-glucan particle size is critically important in orchestrating the nature of the immune response to fungi.

  11. The association between Interleukin (IL)-4 gene intron 3 VNTR polymorphism and alopecia areata (AA) in Turkish population.

    Science.gov (United States)

    Kalkan, Göknur; Karakus, Nevin; Baş, Yalçın; Takçı, Zennure; Ozuğuz, Pınar; Ateş, Omer; Yigit, Serbulent

    2013-09-25

    Alopecia areata (AA) is hypothesized to be an organ-specific autoimmune disease of hair follicles mediated by T cells. As immunological and genetic factors have been implicated in the pathogenesis of AA, the purpose of the present study was to investigate possible associations between the functional Interleukin (IL)-4 gene intron 3 VNTR polymorphism and AA susceptibility and disease progression in Turkish population. The study group consisted of 116 unrelated patients with AA and 125 unrelated healthy controls. Genomic DNA was isolated and IL-4 gene 70 bp VNTR polymorphism determined by using polymerase chain reaction (PCR) with specific primers. No association was observed between AA patients and controls according to genotype distribution (p=0.051). The allele distribution of IL-4 gene intron 3 VNTR polymorphism was statistically different between AA patients and control group (p=0.026). The frequency of P1 allele in patients was significantly higher than that in the control group. When the P2P2 genotype was compared with P1P2+P1P1 genotypes, a statistically significant difference was observed between patients and controls (p=0.036). Intron 3 VNTR polymorphism in the IL-4 gene was found to be associated with AA susceptibility in Turkish population. The results suggest that IL-4 VNTR polymorphism in the intron 3 region may be a risk factor for the development of AA among Turkish population. This is the first to report that intron 3 VNTR polymorphism in the IL-4 gene is associated with AA susceptibility. © 2013.

  12. Lysophosphatidic acid induces expression of genes in human oral keratinocytes involved in wound healing.

    Science.gov (United States)

    Thorlakson, Hong Huynh; Engen, Stian Andre; Schreurs, Olav; Schenck, Karl; Blix, Inger Johanne Schytte

    2017-08-01

    Epithelial cells participate in wound healing by covering wounds, but also as important mediators of wound healing processes. Topical application of the phospholipid growth factor lysophosphatidic acid (LPA) accelerates dermal wound healing and we hypothesized that LPA can play a role in human oral wound healing through its effects on human oral keratinocytes (HOK). HOK were isolated from gingival biopsies and exposed to LPA. The LPA receptor profile, signal transduction pathways, gene expression and secretion of selected cytokines were analyzed. HOK expressed the receptors LPA 1 , LPA 5 and LPA 6 and LPA activated the ERK1/2, JNK and p38 intracellular pathways, substantiated by secretion of IL-6 and IL-8. The early (2h) and intermediate (6h) gene expression profiles of HOK after LPA treatment showed a wide array of regulated genes. The majority of the strongest upregulated genes were related to chemotaxis and inflammation, and became downregulated after 6h. At 6h, genes coding for factors involved in extracellular matrix remodeling and re-epithelialization became highly expressed. IL-36γ, not earlier known to be regulated by LPA, was strongly transcribed and translated but not secreted. After stimulation with LPA, HOK responded by regulating factors and genes that are essential in wound healing processes. As LPA is found in saliva and is released by activated cells after wounding, our results indicate that LPA has a favorable physiological role in oral wound healing. This may further point towards a beneficial role for application of LPA on oral surgical or chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Associations of vascular endothelial growth factor (VEGF gene and cytokine (IL-1B, IL-4, IL-6, IL-10, TNFA genes combinations with type 2 diabetes mellitus in women

    Directory of Open Access Journals (Sweden)

    Vladimir Iosifovich Konenkov

    2012-09-01

    Full Text Available Aim. To study the association between vascular endothelial growth factor (VEGF and cytokine (IL1B, IL4, IL6, IL10 and TNFAgene polymorphism combinations with type 2 diabetes mellitus (T2DM in women. Materials and methods. 374 Caucasian women without carbohydrate metabolism disorders from 23 to 68 years of age and 212 womenwith T2DM from 28 to 69 years of age were included in the study. The combinations of polymorphism А-2578С, С+936Т in VEGFgene with polymorphism in IL1B С-31Т, IL4 С-590Т, IL6 G-174C, IL10 A-592C and А-1082G, TNFA А-238G, A-308G and A-863Cwere studied. Results. Analysis revealed 52 combined genetic variations with different rate of occurrence between diabetic and control groups(р

  14. Association of the polymorphisms of the IL-1B, IL-1RN, IL-10 and p53 genes with risk of gastric cancer in a population of high risk of Costa Rica

    International Nuclear Information System (INIS)

    Alpizar Alpizar, Wagner

    2004-01-01

    Factors that increase the risk to develop gastric cancer are studied: associated factors to diet, nitrous compounds endogenous formation, genetic predisposition, infection by Helicobacter pylori and polymorphic mixes pickles in the cut out gen of p53 tumour. Also it describes like Helicobacter pylori causes inflammation and its magnitude depends of the reaction mechanisms of the innkeeper in answer to the pathogen. The study aim was to determined the association of polymorphisms of the IL-1B, IL-IRN, IL-10 and p53 genes with the gastric cancer and gastric harms in a population of high risk in Costa Rica. Blood samples of 58 patients diagnosed with gastric cancer were analysed, 99 people with no suspicions of gastric cancer according to the diagnosis by x-Ray (contrast double gastroduodenal series), 41 patients histologically classified as I and II groups in a accordance with the Japanese classification. The analyses was carried out from DNA extracted of leucocytes. Association of the polymorphisms IL-1B-31, IL-1B-511, IL-10-592, IL-10-819 and IL-10-1082 were not found with risk to develop gastric cancer in the studied population. For IL-IB+3954, it was determined that the people with the heterozygote genotype for the T allele present more risk to develop gastric cancer (OR 3.7; IC 95% 1.34-10.2; p=0.007). For the polymorphism of IL-IRN gene it was observed that heterozygote genotype carrier people for the allele 2, present more risk to develop the illness (OR 2.94; IC 1.09-7.93; p=0.03). The allele frequencies that have been related with increase of the pro inflammatory answer are higher in the total population studied here than in other populations. According with the got results it will be necessary to carry out studies with more size of sample, with representative samples of the Costa Rican population and with samples of regions of low and high risk. (author) [es

  15. An Interleukin 13 Polymorphism Is Associated with Symptom Severity in Adult Subjects with Ever Asthma.

    Directory of Open Access Journals (Sweden)

    Simone Accordini

    Full Text Available Different genes are associated with categorical classifications of asthma severity. However, continuous outcomes should be used to catch the heterogeneity of asthma phenotypes and to increase the power in association studies. Accordingly, the aim of this study was to evaluate the association between single nucleotide polymorphisms (SNPs in candidate gene regions and continuous measures of asthma severity, in adult patients from the general population. In the Gene Environment Interactions in Respiratory Diseases (GEIRD study (www.geird.org, 326 subjects (aged 20-64 with ever asthma were identified from the general population in Verona (Italy between 2007 and 2010. A panel of 236 SNPs tagging 51 candidate gene regions (including one or more genes was analysed. A symptom and treatment score (STS and pre-bronchodilator FEV1% predicted were used as continuous measures of asthma severity. The association of each SNP with STS and FEV1% predicted was tested by fitting quasi-gamma and linear regression models, respectively, with gender, body mass index and smoking habits as potential confounders. The Simes multiple-test procedure was used for controlling the false discovery rate (FDR. SNP rs848 in the IL13 gene region (IL5/RAD50/IL13/IL4 was associated with STS (TG/GG vs TT genotype: uncorrected p-value = 0.00006, FDR-corrected p-value = 0.04, whereas rs20541 in the same gene region, in linkage disequilibrium with rs848 (r(2 = 0.94 in our sample, did not reach the statistical significance after adjusting for multiple testing (TC/CC vs TT: uncorrected p-value = 0.0003, FDR-corrected p-value = 0.09. Polymorphisms in other gene regions showed a non-significant moderate association with STS (IL12B, TNS1 or lung function (SERPINE2, GATA3, IL5, NPNT, FAM13A only. After adjusting for multiple testing and potential confounders, SNP rs848 in the IL13 gene region is significantly associated with a continuous measure of symptom severity in adult subjects with ever

  16. 15-Deoxy-Δ{sup 12,14}-prostaglandin J{sub 2} inhibits IL-13 production in T cells via an NF-κB-dependent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Marie-Christine; Tremblay, Sarah [Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke (QC), Canada J1K 2R1 (Canada); Dumais, Nancy, E-mail: nancy.dumais@usherbrooke.ca [Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke (QC), Canada J1K 2R1 (Canada)

    2013-02-15

    Highlights: ► 15d-PGJ{sub 2} decreased IL-13 mRNA transcription and secretion in activated T cells. ► IL-13 inhibition by 15d-PGJ{sub 2} is independent of PPAR-γ. ► The nuclear factor-κB mediates the 15d-PGJ{sub 2}-dependent down regulation of IL-13. -- Abstract: Interleukin (IL)-13 is a cytokine produced by activated CD4{sup +} T cells that plays a critical role in promoting allergic responses and tumor cell growth. The 15-deoxy-Δ{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}) is a natural ligand for the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), a known regulator of anti-inflammatory activities. We determined the effects of 15d-PGJ{sub 2} on IL-13 expression in the Jurkat E6.1 T-cell line and in peripheral blood mononuclear cells. Semi-quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay revealed that treatment of activated T cells with 15d-PGJ{sub 2} significantly decreased IL-13 mRNA transcription and secretion, respectively. This inhibition by 15d-PGJ{sub 2} was independent of PPAR-γ since treatment with GW9662, an irreversible antagonist of the nuclear receptor, produced no effect. Our data also revealed the involvement of nuclear factor-κB in mediating 15d-PGJ{sub 2}-dependent down regulation of IL-13 expression. Collectively, these results demonstrate the potential of 15d-PGJ{sub 2} in attenuating expression and production of IL-13 in activated T cells.

  17. Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent

    International Nuclear Information System (INIS)

    Altomare, Deborah A; Rybak, Susanna M; Pei, Jianming; Maizel, Jacob V; Cheung, Mitchell; Testa, Joseph R; Shogen, Kuslima

    2010-01-01

    Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action. In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM) cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3), transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1) or inflammation and the immune response (IL-6, COX-2). RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines. Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling. These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment

  18. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    Science.gov (United States)

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  19. Association of gene variants in TLR4 and IL-6 genes with Perthes disease

    Directory of Open Access Journals (Sweden)

    Srzentić Sanja

    2014-01-01

    Full Text Available Introduction. Perthes disease is idiopathic avascular osteonecrosis of the hip in children, with unknown etiology. Inflammation is present during development of Perthes disease and it is known that this process influences bone remodeling. Objective. Since genetic studies related to inflammation have not been performed in Perthes disease so far, the aim of this study was to analyze the association of frequencies of genetic variants of immune response genes, toll-like receptor 4 (TLR4 and interleukin-6 (IL-6, with this disease. Methods. The study cohort consisted of 37 patients with Perthes disease and 50 healthy controls. Polymorphisms of well described inflammatory mediators: TLR4 (Asp299Gly, Thr399Ile and IL-6 (G-174C, G- 597A were determined by polymerase chain reaction restriction fragment length polymorphism method. Results. IL-6 G-174C and G-597A polymorphisms were in complete linkage disequilibrium. A statistically significant increase of heterozygote subjects for IL-6 G-174C/G-597A was found in controls in comparison to Perthes patient group (p=0.047, OR=2.49, 95% CI=1.00-6.21. Also, the patient group for IL-6 G-174C/G- 597A polymorphisms was not in Hardy-Weinberg equilibrium. No statistically significant differences were found between patient and control groups for TLR4 analyzed polymorphisms. A stratified analysis by the age at disease onset also did not reveal any significant difference for all analyzed polymorphisms. Conclusion. Our study revealed that heterozygote subjects for the IL-6 G-174C/G-597A polymorphisms were significantly overrepresented in the control group than in the Perthes patient group. Consequently, we concluded that children who are heterozygous for these polymorphisms have a lower chance of developing Perthes disease than carriers of both homozygote genotypes. [Projekat Ministarstva nauke Republike Srbije, br. III41004

  20. Potentiation of electrochemotherapy by intramuscular IL-12 gene electrotransfer in murine sarcoma and carcinoma with different immunogenicity

    International Nuclear Information System (INIS)

    Sedlar, Ales; Dolinsek, Tanja; Markelc, Bostjan; Prosen, Lara; Kranjc, Simona; Bosnjak, Masa; Blagus, Tanja; Cemazar, Maja; Sersa, Gregor

    2012-01-01

    Electrochemotherapy provides good local tumor control but requires adjuvant treatment for increased local response and action on distant metastasis. In relation to this, intramuscular interleukin-12 (IL-12) gene electro-transfer, which provides systemic shedding of IL-12, was combined with local electrochemotherapy with cisplatin. Furthermore, the dependence on tumor immunogenicity and immunocompetence of the host on combined treatment response was evaluated. Sensitivity of SA-1 sarcoma and TS/A carcinoma cells to electrochemotherapy with cisplatin was tested in vitro. In vivo, intratumoral electrochemotherapy with cisplatin (day 1) was combined with a single (day 0) or multiple (days 0, 2, 4) intramuscular murine IL-12 (mIL-12) gene electrotransfer. The antitumor effectiveness of combined treatment was evaluated on immunogenic murine SA-1 sarcoma in A/J mice and moderately immunogenic murine TS/A carcinoma, in immunocompetent BALB/c and immunodeficient SCID mice. Electrochemotherapy in vitro resulted in a similar IC 50 values for both sarcoma and carcinoma cell lines. However, in vivo electrochemotherapy was more effective in the treatment of sarcoma, the more immunogenic of the tumors, resulting in a higher log cell kill, longer specific tumor growth delay, and also 17% tumor cures compared to carcinoma where no tumor cures were observed. Adjuvant intramuscular mIL-12 gene electrotransfer increased the log cell kill in both tumor models, potentiating the specific tumor growth delay by a factor of 1.8-2 and increasing tumor cure rate by approximately 20%. In sarcoma tumors, the potentiation of the response by intramuscular mIL-12 gene electrotransfer was dose-dependent and also resulted in a faster onset of tumor cures. Comparison of the carcinoma response to the combined treatment modality in immunocompetent and immunodeficient mice demonstrated that the immune system is needed both for increased cell kill and for attaining tumor cures. Based on the comparison of

  1. Nasal airway epithelial cell IL-6 and FKBP51 gene expression and steroid sensitivity in asthmatic children.

    Directory of Open Access Journals (Sweden)

    Michael Fayon

    Full Text Available Many asthmatic patients exhibit uncontrolled asthma despite high-dose inhaled corticosteroids (ICS. Airway epithelial cells (AEC have distinct activation profiles that can influence ICS response.A pilot study to identify gene expression markers of AEC dysfunction and markers of corticosteroid sensitivity in asthmatic and non-asthmatic control children, for comparison with published reports in adults.AEC were obtained by nasal brushings and primary submerged cultures, and incubated in control conditions or in the presence of 10 ng/ml TNFalpha, 10-8M dexamethasone, or both. RT-PCR-based expression of FKBP51 (a steroid hormone receptor signalling regulator, NF-kB, IL-6, LIF (an IL-6 family neurotrophic cytokine, serpinB2 (which inhibits plasminogen activation and promotes fibrin deposition and porin (a marker of mitochondrial mass were determined.6 patients without asthma (median age 11yr; min-max: 7-13, 8 with controlled asthma (11yr, 7-13; median daily fluticasone dose = 100 μg, and 4 with uncontrolled asthma (12yr, 7-14; 1000 μg fluticasone daily were included. Baseline expression of LIF mRNA was significantly increased in uncontrolled vs controlled asthmatic children. TNFalpha significantly increased LIF expression in uncontrolled asthma. A similar trend was observed regarding IL-6. Dexamethasone significantly upregulated FKBP51 expression in all groups but the response was blunted in asthmatic children. No significant upregulation was identified regarding NF-kB, serpinB2 and porin.LIF and FKBP51 expression in epithelial cells were the most interesting markers of AEC dysfunction/response to corticosteroid treatment.

  2. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  3. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy; Estudos da expressao genica mediante utilizacao de queratinocitos humanos normais transduzidos com o gene do hormonio de crscimento humano. Possivel utilizacao em terapia genica

    Energy Technology Data Exchange (ETDEWEB)

    Mathor, Monica Beatriz

    1994-12-31

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10{sup 6} cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10{sup 6} cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 {mu}M Zn{sup +2} for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs.

  4. Similarities and differences in signal transduction by interleukin 4 and interleukin 13: analysis of Janus kinase activation.

    Science.gov (United States)

    Keegan, A D; Johnston, J A; Tortolani, P J; McReynolds, L J; Kinzer, C; O'Shea, J J; Paul, W E

    1995-08-15

    The cytokines interleukin (IL) 4 and IL-13 induce many of the same biological responses, including class switching to IgE and induction of major histocompatibility complex class II antigens and CD23 on human B cells. It has recently been shown that IL-4 induces the tyrosine phosphorylation of a 170-kDa protein, a substrate called 4PS, and of the Janus kinase (JAK) family members JAK1 and JAK3. Because IL-13 has many functional effects similar to those of IL-4, we compared the ability of IL-4 and IL-13 to activate these signaling molecules in the human multifactor-dependent cell line TF-1. In this report we demonstrate that both IL-4 and IL-13 induced the tyrosine phosphorylation of 4PS and JAK1. Interestingly, although IL-4 induced the tyrosine phosphorylation of JAK3, we did not detect JAK3 phosphorylation in response to IL-13. These data suggest that IL-4 and IL-13 signal in similar ways via the activation of JAK1 and 4PS. However, our data further indicate that there are significant differences because IL-13 does not activate JAK3.

  5. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  6. Direct and indirect effects of retinoic acid on human Th2 cytokine and chemokine expression by human T lymphocytes

    Directory of Open Access Journals (Sweden)

    Deep-Dixit Vishwa

    2006-11-01

    Full Text Available Abstract Background Vitamin A (VA deficiency induces a type 1 cytokine response and exogenously provided retinoids can induce a type 2 cytokine response both in vitro and in vivo. The precise mechanism(s involved in this phenotypic switch are inconsistent and have been poorly characterized in humans. In an effort to determine if retinoids are capable of inducing Th2 cytokine responses in human T cell cultures, we stimulated human PBMCs with immobilized anti-CD3 mAb in the presence or absence of all-trans retinoic acid (ATRA or 9-cis-RA. Results Stimulation of human PBMCs and purified T cells with ATRA and 9-cis-RA increased mRNA and protein levels of IL-4, IL-5, and IL-13 and decreased levels of IFN-γ, IL-2, IL-12p70 and TNF-α upon activation with anti-CD3 and/or anti-CD28 mAbs. These effects were dose-dependent and evident as early as 12 hr post stimulation. Real time RT-PCR analysis revealed a dampened expression of the Th1-associated gene, T-bet, and a time-dependent increase in the mRNA for the Th2-associated genes, GATA-3, c-MAF and STAT6, upon treatment with ATRA. Besides Th1 and Th2 cytokines, a number of additional proinflammatory and regulatory cytokines including several chemokines were also differentially regulated by ATRA treatment. Conclusion These data provide strong evidence for multiple inductive roles for retinoids in the development of human type-2 cytokine responses.

  7. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response.

    Directory of Open Access Journals (Sweden)

    Thomas Harwardt

    2016-07-01

    Full Text Available The human cytomegalovirus (hCMV major immediate-early 1 protein (IE1 is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445 in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420 deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.

  8. Expression of SCM-1alpha/lymphotactin and SCM-1beta in natural killer cells is upregulated by IL-2 and IL-12.

    Science.gov (United States)

    Hennemann, B; Tam, Y K; Tonn, T; Klingemann, H G

    1999-07-01

    Recruitment of lymphocytes is an important feature of the host immune response against pathogens. However, the mechanisms by which lymphocytes are attracted are not yet fully understood. Recently, the cDNA of a lymphocyte-specific chemokine, lymphotactin (Lptn), was isolated from murine and human T cells and was also found to be expressed in murine NK cells and human NK cell clones. This study investigated the influence of interleukin (IL)-2 and IL-12 on the expression of Lptn, also known as SCM (single cysteine motif)-1alpha, and SCM-1beta, a 97% homolog of Lptn, in freshly isolated human NK cells and the human NK cell line NK-92. Northern blot analysis and RT-PCR confirmed that nonactivated human NK cells expressed both genes at low level. After activation with IL-2 or IL-12, the expression of both Lptn and SCM-1beta was upregulated within hours. NK-92 cells maintained in medium supplemented with IL-2 constitutively expressed SCM-1 mRNA. However, after 24 h of IL-2 starvation and subsequent culturing at various IL-2 concentrations, the expression of Lptn/SCM-1alpha was upregulated in a dose-dependent manner, whereas the expression of SCM-1beta remained consistently high. These observations indicate that NK cells, in addition to T lymphocytes, express Lptn/SCM-1alpha and SCM-1beta after cytokine activation. The upregulation of these chemokines in NK cells on activation likely acts to increase the number of effector cells reaching the site of an immune response such as inflammation.

  9. Relationship between IL-10 gene -819C/T polymorphism and the ...

    African Journals Online (AJOL)

    Background: The -819C/T polymorphism in interleukin 10 (IL-10) gene has been reported to be associated with inflammatory bowel disease (IBD) ,but the previous results are conflicting. Materials and methods: The present study aimed at investigating the association between this polymorphism and risk of IBD using a ...

  10. High dose of plasmid IL-15 inhibits immune responses in an influenza non-human primates immunogenicity model

    International Nuclear Information System (INIS)

    Yin Jiangmei; Dai Anlan; Laddy, Dominick J.; Yan Jian; Arango, Tatiana; Khan, Amir S.; Lewis, Mark G.; Andersen, Hanne; Kutzler, Michele A.; Draghia-Akli, Ruxandra; Weiner, David B.; Boyer, Jean D.

    2009-01-01

    Interleukin (IL)-15, is a cytokine that is important for the maintenance of long-lasting, high-avidity T cell response to invading pathogens and has, therefore, been used in vaccine and therapeutic platforms as an adjuvant. In addition to pure protein delivery, plasmids encoding the IL-15 gene have been utilized. However, it is critical to determine the appropriate dose to maximize the adjuvanting effects. We immunized rhesus macaques with different doses of IL-15 expressing plasmid in an influenza non-human primate immunogenicity model. We found that co-immunization of rhesus macaques with a Flu DNA-based vaccine and low doses of plasmid encoding macaque IL-15 enhanced the production of IFN-γ (0.5 mg) and the proliferation of CD4 + and CD8 + T cells, as well as T CM levels in proliferating CD8 + T cells (0.25 mg). Whereas, high doses of IL-15 (4 mg) decrease the production of IFN-γ and the proliferation of CD4 + and CD8 + T cells and T CM levels in the proliferating CD4 + and CD8 + T cells. In addition, the data of hemagglutination inhibition (HI) antibody titer suggest that although not significantly different, there appears to be a slight increase in antibodies at lower doses of IL-15. Importantly, however, the higher doses of IL-15 decrease the antibody levels significantly. This study demonstrates the importance of optimizing DNA-based cytokine adjuvants.

  11. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults.

    Science.gov (United States)

    Szpakowski, Piotr; Biet, Franck; Locht, Camille; Paszkiewicz, Małgorzata; Rudnicka, Wiesława; Druszczyńska, Magdalena; Allain, Fabrice; Fol, Marek; Pestel, Joël; Kowalewicz-Kulbat, Magdalena

    2015-01-01

    Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG), the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18) and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4(+) T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs.

  12. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults

    Directory of Open Access Journals (Sweden)

    Piotr Szpakowski

    2015-01-01

    Full Text Available Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG, the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18 and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4+ T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs.

  13. The secreted form of the p40 subunit of interleukin (IL)-12 inhibits IL-23 functions and abrogates IL-23-mediated antitumour effects

    Science.gov (United States)

    Shimozato, Osamu; Ugai, Shin-ichi; Chiyo, Masako; Takenobu, Hisanori; Nagakawa, Hiroyasu; Wada, Akihiko; Kawamura, Kiyoko; Yamamoto, Hiroshi; Tagawa, Masatoshi

    2006-01-01

    Interleukin (IL)-23 is a heterodimeric cytokine consisting of a novel p19 molecule and the p40 subunit of IL-12. Since secreted p40 can act as an antagonist for IL-12, we investigated whether p40 also inhibited IL-23-mediated immunological functions. p40 did not induce interferon (IFN)-γ or IL-17 production from splenocytes but impaired IL-23-induced cytokine production by competitive binding to the IL-23 receptors. Furthermore, a mixed population of murine colon carcinoma Colon 26 cells transduced with the p40 gene and those transduced with the IL-23 gene developed tumours in syngenic mice, whereas the IL-23-expressing Colon 26 cells were completely rejected. p40 also suppressed IFN-γ production of antigen-stimulated splenocytes and IL-23-mediated cytotoxic T-lymphocyte activities in the mice that rejected Colon 26 cells expressing IL-23. p40 can thereby antagonize IL-23 and is a possible therapeutic agent for suppression of IL-23 functions. PMID:16423037

  14. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    International Nuclear Information System (INIS)

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-01-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes

  15. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  16. Influence of IL-1 gene polymorphism on the periodontal microbiota of HIV-infected Brazilian individuals

    OpenAIRE

    Gonçalves, Lucio de Souza; Ferreira, Sônia Maria Soares; Souza, Celso Oliveira; Colombo, Ana Paula Vieira

    2009-01-01

    This study investigated the association of IL-1A (+4845) and IL-1B (+3954) gene polymorphism with the subgingival microbiota and periodontal status of HIV-infected Brazilian individuals on highly active antiretroviral therapy (HAART). One hundred and five subjects were included in the study, distributed into 2 HIV groups [29 chronic periodontitis (CP+) and 30 periodontally healthy (H+)]; and 2 non-HIV groups (29 CP- and 17 H- patients). IL-1A and B were genotyped by PCR and restriction enzyme...

  17. IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice.

    Science.gov (United States)

    Kolumam, Ganesh; Wu, Xiumin; Lee, Wyne P; Hackney, Jason A; Zavala-Solorio, Jose; Gandham, Vineela; Danilenko, Dimitry M; Arora, Puneet; Wang, Xiaoting; Ouyang, Wenjun

    2017-01-01

    Diabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. Mechanistically, when compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.

  18. Analysis of TNF-a and IL-10 gene polymorphisms in Zimbabwean ...

    African Journals Online (AJOL)

    Single nucleotide polymorphisms within the cytokine genes, TNF-α (-308 G/A), and IL-10 (-1082 A /G and -819 T/C) associated with protection and susceptibility to parasitic infections were examined in samples from school aged children in the Eastern district of Zimbabwe. Whole blood specimens were obtained from 491 ...

  19. IL1 receptor antagonist gene IL1-RN variable number of tandem repeats polymorphism and cancer risk: a literature review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available IL1 receptor antagonist (IL1RA and IL1beta (IL1β, members of the pro-inflammatory cytokine interleukin-1 (IL1 family, play a potential role against infection and in the pathogenesis of cancers. The variable number of tandem repeats (VNTR polymorphism in the second intron of the IL1 receptor antagonist gene (IL1-RN and a polymorphism in exon 5 of IL1B (IL1B+3954C>T, rs1143634 have been suggested in predisposition to cancer risk. However, studies have shown inconsistent results. To validate any association, a meta-analysis was performed with 14,854 cases and 19,337 controls from 71 published case-control studies for IL1-RN VNTR and 33 eligible studies contained 7,847 cases and 8917 controls for IL1B +3954. Odds ratios (ORs with 95% confidence intervals (CIs were calculated from comparisons to assess the strength of the association. There was significant association between the IL1-RN VNTR polymorphism and the risk of cancer for any overall comparison. Furthermore, cancer type stratification analysis revealed that there were significantly increased risks of gastric cancer, bladder cancer and other cancer groups. Infection status analysis indicated that the H. pylori or HBV/HCV infection and IL1-RN VNTR genotypes were independent factors for developing gastric or hepatocellular cancers. In addition, a borderline significant association was observed between IL1B+3954 polymorphism and the increased cancer risk. Although some modest bias could not be eliminated, this meta-analysis suggested that the IL1-RN VNTR polymorphisms may contribute to genetic susceptibility to gastric cancer. More studies are needed to further evaluate the role of the IL1B+3954 polymorphism in the etiology of cancer.

  20. Do gene polymorphism in IL-1β, TNF-α and IL-6 influence therapeutic response in patients with drug refractory epilepsy?

    Science.gov (United States)

    Tiwari, Prabhakar; Dwivedi, Rekha; Mansoori, Nasim; Alam, Rizwan; Chauhan, Ugam Kumari; Tripathi, Manjari; Mukhopadhyay, Asok Kumar

    2012-09-01

    Pro-inflammatory cytokines may play an important pathophysiological role in patients with epilepsy. To understand the role of genes encoding pro-inflammatory cytokines in epilepsy, this study aimed to evaluate the polymorphisms of the promoter regions of IL-1β-511C>T (rs16944), TNF-α-308G>A (rs1800629) and IL-6-174G>C (rs1800795) genes and to look into the interaction between these genes in influencing seizure susceptibility, seizure frequency and response to therapy. The comparative frequency of polymorphism was determined in rs16944, rs1800629 and rs1800795 using PCR-RFLP in a group of 120 persons with epilepsy (PWE) and 110 ethnically matched healthy subjects of comparable age and sex in the North Indian population. Alleles and genotypes of rs16944, rs1800629 and rs1800795 were not found to influence the odds ratio of having susceptibility to epilepsy. Also gene-gene interaction of possible nine combinations of these genes did not show any positive association with epilepsy. The genotype and allelic frequency of rs1800795 showed a significant association (prs16944 and rs1800629 were not found to have such effect. This study demonstrates that the rs16944, rs1800629 and rs1800795 polymorphism does not act as a strong susceptibility factor for epilepsy in North Indian population. The genotypic association of rs1800795 with seizure frequency and drug-refractory epilepsy raises the issue that a specific set of polymorphic genes can influence seizures and therapeutic response in epilepsy. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effects of Olive Oil on TNF-α and IL-6 in Humans: Implication in Obesity and Frailty.

    Science.gov (United States)

    Yarla, Nagendra S; Polito, Angela; Peluso, Ilaria

    2018-01-01

    Tumor necrosis factor-alpha (TNF)-α and interleukin (IL)-6 are important mediators of chronic low-grade systemic inflammation. The latter plays a central role in several obesity-related pathologies, such as diabetes, metabolic syndrome and cardiovascular diseases. Besides, these cytokines have been also implicated in geriatric and cancer-induced anorexia, cachexia, sarcopenia and frailty. Potential interventions for both obesity and frailty include dietary advice and nutraceuticals. In this context, the consumption of olive oil (OO) has been associated with the health effects of the Mediterranean diet (Med-diet). This review is aimed to discuss the OO-mediated modulation of TNF- α and IL-6 in human studies and the potential implication in obesity and frailty. The reviewed studies suggest that the improvement of postprandial TNF-α and IL-6 observed with OO consumption is affected by body mass index (BMI). The effects on TNF-α and IL-6 after medium and long-term consumptions involved many factors and the cross-talk between adipose tissue, liver, skeletal muscle and brain. Major anti-inflammatory effects were observed when OO was consumed with Med-diet, which is associated with healthy behaviors. In this context, the role of microbioma- polyphenols, diet-gene and exercise-gene interactions in the effects of OO on immune-mediated inflammatory responses involved in obesity and frailty deserves further investigation. Further studies are needed to clarify the effect of OO net of possible synergistic effects with other dietary and lifestyle factors of Mediterranean area. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Complement component C5a Promotes Expression of IL-22 and IL-17 from Human T cells and its Implication in Age-related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Klein Michael L

    2011-07-01

    Full Text Available Abstract Background Age related macular degeneration (AMD is the leading cause of irreversible blindness in elderly populations worldwide. Inflammation, among many factors, has been suggested to play an important role in AMD pathogenesis. Recent studies have demonstrated a strong genetic association between AMD and complement factor H (CFH, the down-regulatory factor of complement activation. Elevated levels of complement activating molecules including complement component 5a (C5a have been found in the serum of AMD patients. Our aim is to study whether C5a can impact human T cells and its implication in AMD. Methods Human peripheral blood mononuclear cells (PBMCs were isolated from the blood of exudative form of AMD patients using a Ficoll gradient centrifugation protocol. Intracellular staining and enzyme-linked immunosorbent assays were used to measure protein expression. Apoptotic cells were detected by staining of cells with the annexin-V and TUNEL technology and analyzed by a FACS Caliber flow cytometer. SNP genotyping was analyzed by TaqMan genotyping assay using the Real-time PCR system 7500. Results We show that C5a promotes interleukin (IL-22 and IL-17 expression by human CD4+ T cells. This effect is dependent on B7, IL-1β and IL-6 expression from monocytes. We have also found that C5a could protect human CD4+ cells from undergoing apoptosis. Importantly, consistent with a role of C5a in promoting IL-22 and IL-17 expression, significant elevation in IL-22 and IL-17 levels was found in AMD patients as compared to non-AMD controls. Conclusions Our results support the notion that C5a may be one of the factors contributing to the elevated serum IL-22 and IL-17 levels in AMD patients. The possible involvement of IL-22 and IL-17 in the inflammation that contributes to AMD may herald a new approach to treat AMD.

  3. Genetic polymorphisms of RANTES, IL1-A, MCP-1 and TNF-A genes in patients with prostate cancer

    International Nuclear Information System (INIS)

    Sáenz-López, Pablo; Carretero, Rafael; Cózar, José Manuel; Romero, José Maria; Canton, Julia; Vilchez, José Ramón; Tallada, Miguel; Garrido, Federico; Ruiz-Cabello, Francisco

    2008-01-01

    Inflammation has been implicated as an etiological factor in several human cancers, including prostate cancer. Allelic variants of the genes involved in inflammatory pathways are logical candidates as genetic determinants of prostate cancer risk. The purpose of this study was to investigate whether single nucleotide polymorphisms of genes that lead to increased levels of pro-inflammatory cytokines and chemokines are associated with an increased prostate cancer risk. A case-control study design was used to test the association between prostate cancer risk and the polymorphisms TNF-A-308 A/G (rs 1800629), RANTES-403 G/A (rs 2107538), IL1-A-889 C/T (rs 1800587) and MCP-1 2518 G/A (rs 1024611) in 296 patients diagnosed with prostate cancer and in 311 healthy controls from the same area. Diagnosis of prostate cancer was significantly associated with TNF-A GA + AA genotype (OR, 1.61; 95% CI, 1.09–2.64) and RANTES GA + AA genotype (OR, 1.44; 95% CI, 1.09–2.38). A alleles in TNF-A and RANTES influenced prostate cancer susceptibility and acted independently of each other in these subjects. No epistatic effect was found for the combination of different polymorphisms studied. Finally, no overall association was found between prostate cancer risk and IL1-A or MCP-1 polymorphisms. Our results and previously published findings on genes associated with innate immunity support the hypothesis that polymorphisms in proinflammatory genes may be important in prostate cancer development

  4. Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics.

    Science.gov (United States)

    Candolfi, Marianela; Xiong, Weidong; Yagiz, Kader; Liu, Chunyan; Muhammad, A K M G; Puntel, Mariana; Foulad, David; Zadmehr, Ali; Ahlzadeh, Gabrielle E; Kroeger, Kurt M; Tesarfreund, Matthew; Lee, Sharon; Debinski, Waldemar; Sareen, Dhruv; Svendsen, Clive N; Rodriguez, Ron; Lowenstein, Pedro R; Castro, Maria G

    2010-11-16

    Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.

  5. VNTR polymorphisms of the IL-4 and IL-1RN genes and their relationship with frailty syndrome in Mexican community-dwelling elderly.

    Science.gov (United States)

    Pérez-Suárez, Thalía Gabriela; Gutiérrez-Robledo, Luis Miguel; Ávila-Funes, José Alberto; Acosta, José Luis; Escamilla-Tilch, Mónica; Padilla-Gutiérrez, Jorge Ramón; Torres-Carrillo, Norma; Torres-Castro, Sara; López-Ortega, Mariana; Muñoz-Valle, José Francisco; Torres-Carrillo, Nora Magdalena

    2016-10-01

    Inflammation is a key event that is closely associated with the pathophysiology of frailty. The relationship of genetic polymorphisms into inflammatory cytokines with frailty remains poorly understood. The aim of this study was to investigate the association between VNTR polymorphisms of the IL-4 and IL-1RN genes with the risk of frailty. We included a sample of 630 community-dwelling elderly aged 70 and older. Both IL-4 and IL-1RN VNTR polymorphisms were genotyped by the polymerase chain reaction (PCR) method. Mean age was 77.7 years (SD = 6.0) and 52.5 % were women. The participants classified as frail were more likely to be older, had lower MMSE score (p VNTR polymorphism did not show significant differences between study groups (p > 0.05). However, we just observed a significant difference in the allelic frequencies for the A2 allele of the IL-1RN VNTR polymorphism between frail and nonfrail groups (OR 1.84, 95 % CI 1.08-3.12, p = 0.02). In addition, we analyzed the combined effect of the IL-4 and IL-1RN VNTR polymorphisms and their possible association with frailty, where the combined IL-4 (low) -IL-1Ra (high) genotype was identified as a marker of risk to frailty syndrome (OR 7.86, 95 % CI 1.83-33.69, p = 0.006). Our results suggest that both A2 allele and the combined IL-4 (low) -IL-1Ra (high) genotype might be genetic markers of susceptibility to frailty in Mexican elderly.

  6. Promoter Variation and Expression Levels of Inflammatory Genes IL1A, IL1B, IL6 and TNF in Blood of Spinocerebellar Ataxia Type 3 (SCA3) Patients.

    Science.gov (United States)

    Raposo, Mafalda; Bettencourt, Conceição; Ramos, Amanda; Kazachkova, Nadiya; Vasconcelos, João; Kay, Teresa; Bruges-Armas, Jácome; Lima, Manuela

    2017-03-01

    Age at onset in spinocerebellar ataxia type 3 (SCA3/MJD) is incompletely explained by the size of the CAG tract at the ATXN3 gene, implying the existence of genetic modifiers. A role of inflammation in SCA3 has been postulated, involving altered cytokines levels; promoter variants leading to alterations in cytokines expression could influence onset. Using blood from 86 SCA3 patients and 106 controls, this work aimed to analyse promoter variation of four cytokines (IL1A, IL1B, IL6 and TNF) and to investigate the association between variants detected and their transcript levels, evaluated by quantitative PCR. Moreover, the effect of APOE isoforms, known to modulate cytokines, was investigated. Correlations between cytokine variants and onset were tested; the cumulative modifier effects of cytokines and APOE were analysed. Patients carrying the IL6*C allele had a significant earlier onset (4 years in average) than patients carrying the G allele, in agreement with lower mRNA levels produced by IL6*C carriers. The presence of APOE*ɛ2 allele seems to anticipate onset in average 10 years in patients carrying the IL6*C allele; a larger number of patients will be needed to confirm this result. These results highlight the pertinence of conducting further research on the role of cytokines as SCA3 modulators, pointing to the presence of shared mechanisms involving IL6 and APOE.

  7. Risk of cervical cancer associated with allergies and polymorphisms in genes in the chromosome 5 cytokine cluster.

    Science.gov (United States)

    Johnson, Lisa G; Schwartz, Stephen M; Malkki, Mari; Du, Qin; Petersdorf, Effie W; Galloway, Denise A; Madeleine, Margaret M

    2011-01-01

    Human papillomavirus is the acknowledged cause of cervical cancer. We hypothesized that allergies, characterized by hyperimmune reaction to common allergens and which have been associated with various cancers, may be related to cervical cancer, and that genetic variation in cytokine genes related to allergies might impact cervical cancer risk. We investigated the risk of invasive squamous cell cervical cancer (SCC) associated with self-reported allergies and with variation in allergy-related cytokine genes using data from a case-control study (561 cases, 1,258 controls) conducted in Washington State. Logistic regression models yielded odds ratios (OR) and 95% CI. Pollen allergy, the most commonly reported allergy, was associated with reduced SCC risk (OR: 0.6; 95% CI: 0.5-0.8). Of 60 tagging single-nucleotide polymorphisms covering eight genes (CSF2, IL3, IL4, IL13, CSF2RB, IL4R, IL13RA1, IL13RA2), several were related to pollen allergies among controls: IL4R rs3024647 (dominant OR: 1.5; 95% CI: 1.0-2.3; P = 0.04), CSF2RB rs16997517 (dominant OR: 2.2; 95% CI: 1.0-4.7; P = 0.04), and IL13 rs1800925 (per-allele OR: 1.7; 95% CI: 1.3-2.4; P = 0.0007). Two variants were inversely associated with SCC risk: IL4R rs3024656 (per-allele OR: 0.8; 95% CI: 0.6-1.0; P = 0.03) and CSF2RB rs16997517 (dominant OR: 0.4; 95% CI: 0.2-0.9; P = 0.04). Pollen allergies were related to reduced SCC risk. CSF2RB rs16997517 was directly related to pollen allergies in controls and to reduced SCC risk. If other studies confirm these results, the mechanism behind allergy-associated immune response associated with SCC risk may be worth exploring in the context of therapeutic or prophylactic vaccines. ©2011 AACR.

  8. Identification of high-affinity anti-IL-1 α autoantibodies in normal human serum as an interfering substance in a sensitive enzyme-linked immunosorbent assay for IL-1 α

    International Nuclear Information System (INIS)

    Mae, N.; Liberato, D.J.; Chizzonite, R.; Satoh, H.

    1991-01-01

    A highly reproducible, sensitive, and specific sandwich enzyme-linked immunosorbent assay (ELISA) for recombinant human IL-1 α (rhIL-1 alpha) has been developed. Results from this ELISA have demonstrated that the concentration of rhIL-1 α added to normal human serum (NHS) decreased by 16.3% after 3 h and 24.9% after 6 h at room temperature. Molecular exclusion column chromatography with Sephacryl S-300 HR revealed that 125I-labeled IL-1 α added to normal human serum rapidly formed higher molecular weight complexes without indication of proteolytic degradation. The observed reduction in immunoreactivity was correlated with this protein complex formation and accounted for the apparent instability of rhIL-1 α in NHS. Immunoblot analysis indicated that the molecular weight of the binding protein was 150-160K, and the IL-1 α binding activity was removed and recovered from NHS by Protein-G affinity chromatography; indicating that the binding protein was IL-1 α-specific IgG. The binding of 125I-labeled IL-1 α to the serum binding proteins could be inhibited by unlabeled IL-1 alpha (IC50 = 7.4 x 10(-11) M) but not by unlabeled IL-1 β. Kinetic analysis with 125I-labeled IL-1 alpha revealed that the average binding affinity of these IL-1 α-specific IgGs was 4.7 x 10(10) M-1. These results suggest that these autoantibodies may interfere with the detection of IL-1 α in human serum by various assay systems and also could be a regulator of circulating IL-1 α

  9. In Vitro Generation of IL-35-expressing Human Wharton's Jelly-derived Mesenchymal Stem Cells Using Lentiviral Vector.

    Science.gov (United States)

    Amari, Afshin; Ebtekar, Massoumeh; Moazzeni, Seyed Mohammad; Soleimani, Masoud; Mohammadi Amirabad, Leila; Tahoori, Mohammad Taher; Massumi, Mohammad

    2015-08-01

    Human Wharton's Jelly-derived Mesenchymal Stem Cells (hWJ-MSCs) are easily available cells without transplant rejection problems or ethical concerns compared to bone-marrow-derived MSCs for prospective clinical applications. These cells display immunosuppressive properties and may be able to play an important role in autoimmune disorders. Regulatory T-cells (Treg) are important to prevent autoimmune disease development. Interleukin 35 (IL-35) induces the proliferation of Treg cell populations and reduces the activity of T helper 17 (Th17) and T helper 1 (Th1) cells, which play a central role in initiation of inflammation and autoimmune disease. Recent studies identified IL-35 as a new inhibitory cytokine required for the suppressive function of Treg cells. We created IL-35-producing hWJ-MSCs as a good vehicle for reduction of inflammation and autoimmune diseases. We isolated hWJ-MSCs based on explant culture. HWJ-MSCs were transduced at MOI=50 (Multiplicity of Infection) with lentiviral particles harboring murine Interleukin 35 (mIL-35). Expression of IL-35 in hWJ-MSCs was quantified by an IL-35 ELISA kit. IL-35 bioactivity was analyzed by inhibiting the proliferation of mouse splenocytes using CFSE cell proliferation kit. Frequency of CD4+CD25+CD127 low/neg Foxp3+ Treg cells was measured by flow cytometry. There was an up to 85% GFP positive transduction rate, and the cells successfully released a high level of mIL-35 protein (750 ng/ml). IL-35 managed to inhibit CD4+ T cell proliferation with PHA, and improved the frequency of Treg cells. Our data suggest that transduced hWJ-MSCs overexpressing IL-35 may provide a useful approach for basic research on gene therapy for autoimmune disorders.

  10. Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hedi ePeterson

    2013-10-01

    Full Text Available Pluripotency in human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs is regulated by three transcription factors - OCT3/4, SOX2 and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behaviour of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11 and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFβ signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.

  11. MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.

    Directory of Open Access Journals (Sweden)

    Mervi Toriseva

    Full Text Available Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13 in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13(-/- and wild type (WT mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42% at day 21 in Mmp13(-/- mice. Granulation tissue in Mmp13(-/- mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13(-/- mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13(-/- mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13(-/- granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13(-/- mice compared to WT mice. Mmp13(-/- mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis.

  12. Elucidation of IL-1/TGF-beta interactions in mouse chondrocyte cell line by genome-wide gene expression

    DEFF Research Database (Denmark)

    Takahashi, N; Rieneck, K; van der Kraan, P M

    2005-01-01

    To elucidate the antagonism between interleukin-1 (IL-1) and transforming growth factor-beta (TGF-beta) at the gene expression level, as IL-1 and TGF-beta are postulated to be critical mediators of cartilage degeneration/protection in rheumatic diseases....

  13. Distribution of polymorphisms IL4-590 C/T and IL4 RP2 in the human populations of Madeira, Azores, Portugal, Cape Verde and Guinea-Bissau.

    Science.gov (United States)

    Berenguer, Anabela G; Câmara, Rita A; Brehm, António D; Oliveira, Susana; Fernandes, Ana T

    2012-01-01

    The IL4 gene is located on chromosome 5q23.3-31.2. Polymorphisms within this cytokine gene, like the derivative allele T of IL4-590, have been reported as being associated to elevated IgE serum levels and asthma. In the present work, the allelic and genotypic frequency of the IL4-590 and IL4 RP2 polymorphisms was carried out in 599 individuals from Madeira, Azores, Portugal mainland, Cape Verde and Guinea-Bissau and in a sample of 101 asthmatics from Madeira population. In all populations the polymorphisms were in LD and presented a significant dissimilar allelic and genotypic distribution (pMadeira when compared to Azores. Significant differences regarding both loci were found between Madeira population and the group of asthmatics. Genotype 183183TT frequency is higher for African populations while 253253CC prevails in Caucasian populations. The existence of a Hardy-Weinberg Disequilibrium in Guinea-Bissau population not observed in neutral markers leads to the hypothesis of natural selection occurring in these loci probably associated to a rapid population growth an hypothesis strengthened by neutral STRs D5S818 and CSF1PO gene diversity.

  14. Suppression of IL-6 Gene by shRNA Augments Gemcitabine Chemosensitization in Pancreatic Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hai-Bo Xing

    2018-01-01

    Full Text Available Pancreatic adenocarcinoma has an exceedingly poor prognosis, accounting for five-year survival of less than 5%. Presently, improving the efficacy of pancreatic adenocarcinoma treatment has been the focus of medical researchers worldwide. Recently, it has been suggested that deregulation of interleukin- (IL- 6 is caused by a key gene involved in the beginning and development of pancreatic adenocarcinoma. Herein, we investigated whether suppression of IL-6 could augment gemcitabine sensitivity in the PANC-1 cells. We found considerably higher expression of IL-6 in pancreatic adenocarcinoma tissues than that in the adjacent nontumorous tissues. Suppression of IL-6 by shRNA resulted in apoptosis as well as inhibition of cell proliferation and tumorigenicity. In addition, suppression of IL-6 remarkably promoted antitumor effect of gemcitabine, indicating that the combination of shRNA targeting IL-6 with gemcitabine may provide a potential clinical approach for pancreatic cancer therapy.

  15. Mechanical and IL-1β Responsive miR-365 Contributes to Osteoarthritis Development by Targeting Histone Deacetylase 4

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2016-03-01

    Full Text Available Mechanical stress plays an important role in the initiation and progression of osteoarthritis. Studies show that excessive mechanical stress can directly damage the cartilage extracellular matrix and shift the balance in chondrocytes to favor catabolic activity over anabolism. However, the underlying mechanism remains unknown. MicroRNAs (miRNAs are emerging as important regulators in osteoarthritis pathogenesis. We have found that mechanical loading up-regulated microRNA miR-365 in growth plate chondrocytes, which promotes chondrocyte differentiation. Here, we explored the role of the mechanical responsive microRNA miR-365 in pathogenesis of osteoarthritis (OA. We found that miR-365 was up-regulated by cyclic loading and IL-1β stimulation in articular chondrocytes through a mechanism that involved the transcription factor NF-κB. miR-365 expressed significant higher level in rat anterior cruciate ligament (ACL surgery induced OA cartilage as well as human OA cartilage from primary OA patients and traumatic OA Patients. Overexpression of miR-365 in chondrocytes increases gene expression of matrix degrading enzyme matrix metallopeptidase 13 (MMP13 and collagen type X (Col X. The increase in miR-365 expression in OA cartilage and in response to IL-1 may contribute to the abnormal gene expression pattern characteristic of OA. Inhibition of miR-365 down-regulated IL-1β induced MMP13 and Col X gene expression. We further showed histone deacetylase 4 (HDAC4 is a direct target of miR-365, which mediates mechanical stress and inflammation in OA pathogenesis. Thus, miR-365 is a critical regulator of mechanical stress and pro-inflammatory responses, which contributes cartilage catabolism. Manipulation of the expression of miR-365 in articular chondrocytes by miR-365 inhibitor may be a potent therapeutic target for the prevention and treatment of osteoarthritis.

  16. Expression and activation of the oxytocin receptor in airway smooth muscle cells: Regulation by TNFα and IL-13

    Directory of Open Access Journals (Sweden)

    Siddiqui Salman

    2010-07-01

    Full Text Available Abstract Background During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma. Method Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL samples from healthy subjects and those with asthma. Results PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL-13 and tumor necrosis factor (TNFα stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL fluid derived from healthy subjects as well as from those with asthma. Conclusion Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a

  17. Requirements for growth and IL-10 expression of highly purified human T regulatory cells

    Science.gov (United States)

    Bonacci, Benedetta; Edwards, Brandon; Jia, Shuang; Williams, Calvin; Hessner, Martin J.; Gauld, Stephen; Verbsky, James

    2013-01-01

    Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimulation with a superagonistic anti-CD28 antibody (clone 9D4) and IL-2 partially reversed the proliferative defect, and this correlated with reversal of the defective calcium mobilization in these cells. Dendritic cells were effective at promoting TR cell proliferation, and under these conditions the proliferative capacity of TR cells was comparable to conventional CD4 lymphocytes. Blocking TGF-β activity abrogated IL-10 expression from these cells, while addition of TGF-β resulted in IL-10 production. These data demonstrate that highly purified populations of TR cells are anergic even in the presence of high doses of IL-2. Furthermore, antigen presenting cells provide proper co-stimulation to overcome the anergic phenotype of TR cells, and under these conditions they are highly sensitive to IL-2. In addition, these data demonstrate for the first time that TGF-β is critical to enable human TR cells to express IL-10. PMID:22562448

  18. Human skin gene expression: Natural (trans) resveratrol versus five resveratrol analogs for dermal applications.

    Science.gov (United States)

    Lephart, Edwin D; Andrus, Merritt B

    2017-09-01

    Resveratrol (RV) is a polyphenolic compound naturally produced by plants. Polyphenolic compounds incorporated into medicinal products are beneficial but, RV is rapidly metabolized with an associated decline in biological activity. This study tested RV as the standard and compared five structurally modified RV analogs: butyrate, isobutyrate, palmitoate, acetate, and diacetate (to improve functionality) at 1% concentration(s) for 24 h in epiderm full thickness cultures by gene array/qPCR mRNA analysis. When silent mating type information regulation 2 homolog 1, extracellular elements (collagen1A1, 3A1, 4A1; elastin, tissue inhibitor of matrix metalloproteinase 1, fibrillin 1 laminin beta1 and matrix metalloproteinase 9), anti-aging and aging genes, inflammatory biomarkers (interleukin-1A [IL1A], IL1R2, IL-6 and IL-8), nerve growth factor, and the antioxidants (proliferating cell nuclear antigen, catalase, superoxide dismutase and metallothionein 1H/2H) were evaluated, ranking each from highest-to-lowest for gene expression: butyrate > isobutyrate > diacetate > acetate > palmitoate. This study showed that the butyrate and isobutyrate analogs are more biologically active compared to resveratrol and have potential use in topical applications to improve dermal and other health applications. Impact statement Resveratrol has been reported to have a wide variety of health benefits but its rapid metabolism especially after oral ingestion results in very low bioavailability. Notably, the first human skin gene expression study of resveratrol was not published until 2014. The purpose of this study was to determine if increased stability and biological activity could be obtained by modifying the chemical structure of natural (trans) resveratrol and quantifying human gene expression by qPCR of skin biomarkers that enhance dermal health. Five resveratrol analogs were synthesized that increased their lipophilic index to enhance tissue penetration and augment

  19. Keratinocyte-derived IL-24 plays a role in the positive feedback regulation of epidermal inflammation in response to environmental and endogenous toxic stressors.

    Science.gov (United States)

    Jin, Sun Hee; Choi, Dalwoong; Chun, Young-Jin; Noh, Minsoo

    2014-10-15

    Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed that the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions.

    Science.gov (United States)

    Spinler, Jennifer K; Sontakke, Amrita; Hollister, Emily B; Venable, Susan F; Oh, Phaik Lyn; Balderas, Miriam A; Saulnier, Delphine M A; Mistretta, Toni-Ann; Devaraj, Sridevi; Walter, Jens; Versalovic, James; Highlander, Sarah K

    2014-06-19

    The vertebrate gut symbiont Lactobacillus reuteri has diversified into separate clades reflecting host origin. Strains show evidence of host adaptation, but how host-microbe coevolution influences microbial-derived effects on hosts is poorly understood. Emphasizing human-derived strains of L. reuteri, we combined comparative genomic analyses with functional assays to examine variations in host interaction among genetically distinct ecotypes. Within clade II or VI, the genomes of human-derived L. reuteri strains are highly conserved in gene content and at the nucleotide level. Nevertheless, they share only 70-90% of total gene content, indicating differences in functional capacity. Human-associated lineages are distinguished by genes related to bacteriophages, vitamin biosynthesis, antimicrobial production, and immunomodulation. Differential production of reuterin, histamine, and folate by 23 clade II and VI strains was demonstrated. These strains also differed with respect to their ability to modulate human cytokine production (tumor necrosis factor, monocyte chemoattractant protein-1, interleukin [IL]-1β, IL-5, IL-7, IL-12, and IL-13) by myeloid cells. Microarray analysis of representative clade II and clade VI strains revealed global regulation of genes within the reuterin, vitamin B12, folate, and arginine catabolism gene clusters by the AraC family transcriptional regulator, PocR. Thus, human-derived L. reuteri clade II and VI strains are genetically distinct and their differences affect their functional repertoires and probiotic features. These findings highlight the biological impact of microbe:host coevolution and illustrate the functional significance of subspecies differences in the human microbiome. Consideration of host origin and functional differences at the subspecies level may have major impacts on probiotic strain selection and considerations of microbial ecology in mammalian species. © The Author(s) 2014. Published by Oxford University Press on

  1. Interactions between Diet, Lifestyle and IL10, IL1B, and PTGS2/COX-2 Gene Polymorphisms in Relation to Risk of Colorectal Cancer in a Prospective Danish Case-Cohort Study

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Holst, René; Kopp, Tine Iskov

    2013-01-01

    Genetically determined low COX-2 and high IL-1β activity were associated with increased risk of CRC in this northern Caucasian cohort. Furthermore, interactions were found between IL10, IL1b, and PTGS2 and diet and lifestyle factors in relation to CRC. The present study demonstrates that gene...

  2. Expression analysis of asthma candidate genes during human and murine lung development.

    Science.gov (United States)

    Melén, Erik; Kho, Alvin T; Sharma, Sunita; Gaedigk, Roger; Leeder, J Steven; Mariani, Thomas J; Carey, Vincent J; Weiss, Scott T; Tantisira, Kelan G

    2011-06-23

    Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.

  3. Comparison of Gene Expression by Sheep and Human Blood Stimulated with the TLR4 Agonists Lipopolysaccharide and Monophosphoryl Lipid A.

    Directory of Open Access Journals (Sweden)

    Perenlei Enkhbaatar

    Full Text Available Animal models that mimic human biology are important for successful translation of basic science discoveries into the clinical practice. Recent studies in rodents have demonstrated the efficacy of TLR4 agonists as immunomodulators in models of infection. However, rodent models have been criticized for not mimicking important characteristics of the human immune response to microbial products. The goal of this study was to compare genomic responses of human and sheep blood to the TLR4 agonists lipopolysaccharide (LPS and monophosphoryl lipid A (MPLA.Venous blood, withdrawn from six healthy human adult volunteers (~ 28 years old and six healthy adult female sheep (~3 years old, was mixed with 30 μL of PBS, LPS (1μg/mL or MPLA (10μg/mL and incubated at room temperature for 90 minutes on a rolling rocker. After incubation, 2.5 mL of blood was transferred to Paxgene Blood RNA tubes. Gene expression analysis was performed using an Agilent Bioanalyzer with the RNA6000 Nano Lab Chip. Agilent gene expression microarrays were scanned with a G2565 Microarray Scanner. Differentially expressed genes were identified.11,431 human and 4,992 sheep probes were detected above background. Among them 1,029 human and 175 sheep genes were differentially expressed at a stringency of 1.5-fold change (p 1.5-fold changes in human samples. Genes of major inflammatory mediators, such as IL-1, IL-6 and IL-8, TNF alpha, NF-kappaB, ETS2, PTGS2, PTX3, CXCL16, KYNU, and CLEC4E were similarly (>2-fold upregulated by LPS and MPLA in both species.The genomic responses of peripheral blood to LPS and MPLA in sheep are quite similar to those observed in humans, supporting the use of the ovine model for translational studies that mimic human inflammatory diseases and the study of TLR-based immunomodulators.

  4. IL-17a and IL-22 Induce Expression of Antimicrobials in Gastrointestinal Epithelial Cells and May Contribute to Epithelial Cell Defense against Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Beverly R E A Dixon

    Full Text Available Helicobacter pylori colonization of the human stomach can lead to adverse clinical outcomes including gastritis, peptic ulcers, or gastric cancer. Current data suggest that in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization. Specifically, CD4+ T cell responses impact the pathology elicited in response to H. pylori. Because gastritis is believed to be the initiating host response to more detrimental pathological outcomes, there has been a significant interest in pro-inflammatory T cell cytokines, including the cytokines produced by T helper 17 cells. Th17 cells produce IL-17A, IL-17F, IL-21 and IL-22. While these cytokines have been linked to inflammation, IL-17A and IL-22 are also associated with anti-microbial responses and control of bacterial colonization. The goal of this research was to determine the role of IL-22 in activation of antimicrobial responses in models of H. pylori infection using human gastric epithelial cell lines and the mouse model of H. pylori infection. Our data indicate that IL-17A and IL-22 work synergistically to induce antimicrobials and chemokines such as IL-8, components of calprotectin (CP, lipocalin (LCN and some β-defensins in both human and primary mouse gastric epithelial cells (GEC and gastroids. Moreover, IL-22 and IL-17A-activated GECs were capable of inhibiting growth of H. pylori in vitro. While antimicrobials were activated by IL-17A and IL-22 in vitro, using a mouse model of H. pylori infection, the data herein indicate that IL-22 deficiency alone does not render mice more susceptible to infection, change their antimicrobial gene transcription, or significantly change their inflammatory response.

  5. A gene network bioinformatics analysis for pemphigoid autoimmune blistering diseases.

    Science.gov (United States)

    Barone, Antonio; Toti, Paolo; Giuca, Maria Rita; Derchi, Giacomo; Covani, Ugo

    2015-07-01

    In this theoretical study, a text mining search and clustering analysis of data related to genes potentially involved in human pemphigoid autoimmune blistering diseases (PAIBD) was performed using web tools to create a gene/protein interaction network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was employed to identify a final set of PAIBD-involved genes and to calculate the overall significant interactions among genes: for each gene, the weighted number of links, or WNL, was registered and a clustering procedure was performed using the WNL analysis. Genes were ranked in class (leader, B, C, D and so on, up to orphans). An ontological analysis was performed for the set of 'leader' genes. Using the above-mentioned data network, 115 genes represented the final set; leader genes numbered 7 (intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFNG), interleukin (IL)-2, IL-4, IL-6, IL-8 and tumour necrosis factor (TNF)), class B genes were 13, whereas the orphans were 24. The ontological analysis attested that the molecular action was focused on extracellular space and cell surface, whereas the activation and regulation of the immunity system was widely involved. Despite the limited knowledge of the present pathologic phenomenon, attested by the presence of 24 genes revealing no protein-protein direct or indirect interactions, the network showed significant pathways gathered in several subgroups: cellular components, molecular functions, biological processes and the pathologic phenomenon obtained from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The molecular basis for PAIBD was summarised and expanded, which will perhaps give researchers promising directions for the identification of new therapeutic targets.

  6. Adrenomedullin Regulates IL-1β Gene Expression in F4/80+ Macrophages during Synovial Inflammation

    Science.gov (United States)

    Takano, Shotaro; Miyagi, Masayuki; Inoue, Gen; Aikawa, Jun; Iwabuchi, Kazuya; Takaso, Masashi

    2017-01-01

    Adrenomedullin (AM) plays an important role in the regulation of inflammatory processes; however, the role and expression of AM in synovial inflammation have not been determined. To investigate the expression and role of AM in inflamed synovial tissue (ST), the gene expression profiles of AM in the ST, including synovial macrophages and fibroblasts, of a murine patellar surgical dislocation model were characterized. In addition, the effects of interleukin- (IL-) 1β and AM in cultured synovial cells were also examined. CD11c+ macrophages were found to be elevated in ST of the surgically dislocated patella. Higher gene expression of CD11c, IL-1β, AM, receptor activity-modifying proteins 2 (RAMP2), and 3 (RAMP3) was also observed in ST obtained from the dislocated side. AM expression was also significantly increased in synovial fibroblasts and macrophages in response to IL-1β treatment. Synovial macrophages also highly expressed RAMP3 compared to fibroblasts and this expression was further stimulated by exogenously added IL-1β. Further, the treatment of the F4/80-positive cell fraction obtained from ST with AM inhibited IL-1β expression. Taken together, these findings demonstrated that AM was produced by synovial fibroblasts and macrophages in inflamed ST and that increased levels of AM may exert anti-inflammatory effects on synovial macrophages. PMID:28299347

  7. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    unknown. Therefore we aim to examine the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of 141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear regression...... correlated (Plinear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...... analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...

  8. Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

    Science.gov (United States)

    Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E

    1996-05-31

    Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.

  9. Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Julia Diegelmann

    Full Text Available BACKGROUND: Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. METHODOLOGY/PRINCIPAL FINDINGS: Expression studies were performed by microarray analysis, quantitative PCR (qPCR, reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes, many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes. Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. CONCLUSIONS/SIGNIFICANCE: IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV.

  10. GENETIC SUSCEPTIBILITY TO RESPIRATORY SYNCYTIAL VIRUS BRONCHIOLITIS IN PRETERM CHILDREN IS ASSOCIATED WITH AIRWAY REMODELING GENES AND INNATE IMMUNE GENES

    NARCIS (Netherlands)

    Siezen, Christine L. E.; Bont, Louis; Hodemaekers, Hennie M.; Ermers, Marieke J.; Doornbos, Gerda; van't Slot, Ruben; Wijmenga, Ciska; van Hottwelingen, Hans C.; Kimpen, Jan L. L.; Kimman, Tjeerd G.; Hoebee, Barbara; Janssen, Riny

    Prematurity is a risk factor for severe respiratory syncytial virus bronchiolitis. We show that genetic factors in innate immune genes (IFNA13, IFNAR2, STAT2. IL27, NFKBIA, C3, IL1RN, TLR5), in innate and adaptive immunity (IFNG), and in airway remodeling genes (ADAM33 and TGFBR1), affect disease

  11. Innate and adaptive immunity gene expression of human keratinocytes cultured of severe burn injury.

    Science.gov (United States)

    Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Lanziani, Larissa Elias; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    Evaluate the expression profile of genes related to Innate and Adaptive Immune System (IAIS) of human Primary Epidermal keratinocytes (hPEKP) of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific IAIS PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 63% of these genes were differentially expressed, of which 77% were repressed and 23% were hyper-regulated. Among these, the following genes (fold increase or decrease): IL8 (41), IL6 (32), TNF (-92), HLA-E (-86), LYS (-74), CCR6 (- 73), CD86 (-41) and HLA-A (-35). This study contributes to the understanding of the molecular mechanisms underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  12. Features of progression of chronic hepatitis C in children with different variants of polymorphism of the gene IL-28B

    Directory of Open Access Journals (Sweden)

    Berezenko V.S.

    2016-03-01

    Full Text Available Purpose. To study the features of the progression of chronic hepatitis C in children with different variants of polymorphism of the gene IL-28B. Materials and methods. The study involved 57 children aged 3–18 years with CHC. All patients were involved in clinical, laboratory and instrumental examination. The stage of fibrosis was assessed morphologicallyon a scale METAVIR, by the calculation method — Fibro Test, on APRI index, and by the concentration of hyaluronic acid (HA, transforming growth factor TGF- β1 in serum usingIFA. The SNP genotypes of rs8099917 and rs12979860 lociin IL-28B were determinedby the method of the polymer chain reaction (PCR. A statistical analysis of the data was conducted. Resume. Most of the patients were children with chronic hepatitis C who had genotype CT at rs12979860 locus of the gene IL-28B (54% and the TT geno-type at rs8099917 locus (60%. It was found that fibrogenesis in the liver of patients with chronic hepatitis C depends on the polymorphism of the gene IL-28B. Unfavorable genotypevariants for the development of liver fibrosis are: TT (rs12979860, CT (rs12979860 and TG/GG (rs8099917. Variants CC (rs12979860 and TT (rs8099917 have a beneficial effect on the course of chronic hepatitis C, including patients with a lower stage of fibrosis. To determine the risk of progression of chronic hepatitis C it may be sufficient to determine the polymorphism of rs12979860locusin the gene IL-28B. Conclusions.The polymorphism variants CC (rs12979860 and TT (rs8099917of the gene IL-28Bare more favorable (lower severity of fibrosis in the progression of chronic hepatitis C in children. Variant TT (rs12979860 in the polymorphism of the gene IL-28B is associated with the progression of hepatitis — faster development of liver fibrosis.

  13. Genetic polymorphisms of the IL6 and NOD2 genes are risk factors for inflammatory reactions in leprosy.

    Science.gov (United States)

    Sales-Marques, Carolinne; Cardoso, Cynthia Chester; Alvarado-Arnez, Lucia Elena; Illaramendi, Ximena; Sales, Anna Maria; Hacker, Mariana de Andréa; Barbosa, Mayara Garcia de Mattos; Nery, José Augusto da Costa; Pinheiro, Roberta Olmo; Sarno, Euzenir Nunes; Pacheco, Antonio Guilherme; Moraes, Milton Ozório

    2017-07-01

    The pathways that trigger exacerbated immune reactions in leprosy could be determined by genetic variations. Here, in a prospective approach, both genetic and non-genetic variables influencing the amount of time before the development of reactional episodes were studied using Kaplan-Meier survival curves, and the genetic effect was estimated by the Cox proportional-hazards regression model. In a sample including 447 leprosy patients, we confirmed that gender (male), and high bacillary clinical forms are risk factors for leprosy reactions. From the 15 single nucleotide polymorphisms (SNPs) at the 8 candidate genes genotyped (TNF/LTA, IFNG, IL10, TLR1, NOD2, SOD2, and IL6) we observed statistically different survival curves for rs751271 at the NOD2 and rs2069845 at the IL6 genes (log-rank p-values = 0.002 and 0.023, respectively), suggesting an influence on the amount of time before developing leprosy reactions. Cox models showed associations between the SNPs rs751271 at NOD2 and rs2069845 at IL6 with leprosy reactions (HRGT = 0.45, p = 0.002; HRAG = 1.88, p = 0.0008, respectively). Finally, IL-6 and IFN-γ levels were confirmed as high, while IL-10 titers were low in the sera of reactional patients. Rs751271-GT genotype-bearing individuals correlated (p = 0.05) with lower levels of IL-6 in sera samples, corroborating the genetic results. Although the experimental size may be considered a limitation of the study, the findings confirm the association of classical variables such as sex and clinical forms with leprosy, demonstrating the consistency of the results. From the results, we conclude that SNPs at the NOD2 and IL6 genes are associated with leprosy reactions as an outcome. NOD2 also has a clear functional pro-inflammatory link that is coherent with the exacerbated responses observed in these patients.

  14. Education, tobacco smoking, alcohol consumption, and IL-2 and IL-6 gene polymorphisms in the survival of head and neck cancer

    Directory of Open Access Journals (Sweden)

    R.V.M. López

    2011-10-01

    Full Text Available The association of education, tobacco smoking, alcohol consumption, and interleukin-2 (IL-2 +114 and -384 and -6 (IL-6 -174 DNA polymorphisms with head and neck squamous cell carcinoma (HNSCC was investigated in a cohort study of 445 subjects. IL-2 and IL-6 genotypes were determined by real-time PCR. Cox regression was used to estimate hazard ratios (HR and 95% confidence intervals (95%CI of disease-specific survival according to anatomical sites of the head and neck. Mean age was 56 years and most patients were males (87.6%. Subjects with 5 or more years of schooling had better survival in larynx cancer. Smoking had no effect on HNSCC survival, but alcohol consumption had a statistically significant effect on larynx cancer. IL-2 gene +114 G/T (HR = 0.52; 95%CI = 0.15-1.81 and T/T (HR = 0.22; 95%CI = 0.02-3.19 genotypes were associated with better survival in hypopharynx cancer. IL-2 +114 G/T was a predictor of poor survival in oral cavity/oropharynx cancer and larynx cancer (HR = 1.32; 95%CI = 0.61-2.85. IL-2 -384 G/T was associated with better survival in oral cavity/oropharynx cancer (HR = 0.80; 95%CI = 0.45-1.42 and hypopharynx cancer (HR = 0.68; 95%CI = 0.21-2.20, but an inverse relationship was observed for larynx cancer. IL-6 -174 G/C was associated with better survival in hypopharynx cancer (HR = 0.68; 95%CI = 0.26-1.78 and larynx cancer (HR = 0.93; 95%CI = 0.42-2.07, and C/C reduced mortality in larynx cancer. In general, our results are similar to previous reports on the value of education, smoking, alcohol consumption, and IL-2 and IL-6 genetic polymorphisms for the prognosis of HNSCC, but the risks due to these variables are small and estimates imprecise.

  15. Research Upregulation of CD23 (FcεRII Expression in Human Airway Smooth Muscle Cells (huASMC in Response to IL-4, GM-CSF, and IL-4/GM-CSF

    Directory of Open Access Journals (Sweden)

    Lew D Betty

    2005-05-01

    Full Text Available Abstract Background Airway smooth muscle cells play a key role in remodeling that contributes to airway hyperreactivity. Airway smooth muscle remodeling includes hypertrophy and hyperplasia. It has been previously shown that the expression of CD23 on ASMC in rabbits can be induced by the IgE component of the atopic serum. We examined if other components of atopic serum are capable of inducing CD23 expression independent of IgE. Methods Serum starved huASMC were stimulated with either IL-4, GM-CSF, IL-13, IL-5, PGD2, LTD4, tryptase or a combination of IL-4, IL-5, IL-13 each with GM-CSF for a period of 24 h. CD23 expression was analyzed by flow cytometry, western blot, and indirect immunofluorescence. Results The CD23 protein expression was upregulated in huASMC in response to IL-4, GM-CSF, and IL-4/GM-CSF. The percentage of cells with increased fluorescence intensity above the control was 25.1 ± 4.2% (IL-4, 15.6 ± 2.7% (GM-CSF and 32.9 ± 13.9% (IL-4/GMCSF combination(n = 3. The protein content of IL-4/GMCSF stimulated cells was significantly elevated. Expression of CD23 in response to IL-4, GM-CSF, IL-4/GM-CSF was accompanied by changes in cell morphology including depolymerization of isoactin fibers, cell spreading, and membrane ruffling. Western blot revealed abundant expression of the IL-4Rα and a low level expression of IL-2Rγc in huASMC. Stimulation with IL-4 resulted in the phosphorylation of STAT-6 and an increase in the expression of the IL-2Rγc. Conclusion CD23 on huASMC is upregulated by IL-4, GM-CSF, and IL-4/GM-CSF. The expression of CD23 is accompanied by an increase in cell volume and an increase in protein content per cell, suggesting hypertrophy. Upregulation of CD23 by IL-4/GM-CSF results in phenotypic changes in huASMC that could play a role in cell migration or a change in the synthetic function of the cells. Upregulation of CD23 in huASMC by IL-4 and GM-CSF can contribute to changes in huASMC and may provide an avenue

  16. The dichotomous pattern of IL-12r and IL-23R expression elucidates the role of IL-12 and IL-23 in inflammation.

    Directory of Open Access Journals (Sweden)

    Gaëlle Chognard

    Full Text Available IL-12 and IL-23 cytokines respectively drive Th1 and Th17 type responses. Yet, little is known regarding the biology of these receptors. As the IL-12 and IL-23 receptors share a common subunit, it has been assumed that these receptors are co-expressed. Surprisingly, we find that the expression of each of these receptors is restricted to specific cell types, in both mouse and human. Indeed, although IL-12Rβ2 is expressed by NK cells and a subset of γδ T cells, the expression of IL-23R is restricted to specific T cell subsets, a small number of B cells and innate lymphoid cells. By exploiting an IL-12- and IL-23-dependent mouse model of innate inflammation, we demonstrate an intricate interplay between IL-12Rβ2 NK cells and IL-23R innate lymphoid cells with respectively dominant roles in the regulation of systemic versus local inflammatory responses. Together, these findings support an unforeseen lineage-specific dichotomy in the in vivo role of both the IL-12 and IL-23 pathways in pathological inflammatory states, which may allow more accurate dissection of the roles of these receptors in chronic inflammatory diseases in humans.

  17. Identification of an IL-1-induced gene expression pattern in AR+ PCa cells that mimics the molecular phenotype of AR- PCa cells.

    Science.gov (United States)

    Thomas-Jardin, Shayna E; Kanchwala, Mohammed S; Jacob, Joan; Merchant, Sana; Meade, Rachel K; Gahnim, Nagham M; Nawas, Afshan F; Xing, Chao; Delk, Nikki A

    2018-06-01

    In immunosurveillance, bone-derived immune cells infiltrate the tumor and secrete inflammatory cytokines to destroy cancer cells. However, cancer cells have evolved mechanisms to usurp inflammatory cytokines to promote tumor progression. In particular, the inflammatory cytokine, interleukin-1 (IL-1), is elevated in prostate cancer (PCa) patient tissue and serum, and promotes PCa bone metastasis. IL-1 also represses androgen receptor (AR) accumulation and activity in PCa cells, yet the cells remain viable and tumorigenic; suggesting that IL-1 may also contribute to AR-targeted therapy resistance. Furthermore, IL-1 and AR protein levels negatively correlate in PCa tumor cells. Taken together, we hypothesize that IL-1 reprograms AR positive (AR + ) PCa cells into AR negative (AR - ) PCa cells that co-opt IL-1 signaling to ensure AR-independent survival and tumor progression in the inflammatory tumor microenvironment. LNCaP and PC3 PCa cells were treated with IL-1β or HS-5 bone marrow stromal cell (BMSC) conditioned medium and analyzed by RNA sequencing and RT-QPCR. To verify genes identified by RNA sequencing, LNCaP, MDA-PCa-2b, PC3, and DU145 PCa cell lines were treated with the IL-1 family members, IL-1α or IL-1β, or exposed to HS-5 BMSC in the presence or absence of Interleukin-1 Receptor Antagonist (IL-1RA). Treated cells were analyzed by western blot and/or RT-QPCR. Comparative analysis of sequencing data from the AR + LNCaP PCa cell line versus the AR - PC3 PCa cell line reveals an IL-1-conferred gene suite in LNCaP cells that is constitutive in PC3 cells. Bioinformatics analysis of the IL-1 regulated gene suite revealed that inflammatory and immune response pathways are primarily elicited; likely facilitating PCa cell survival and tumorigenicity in an inflammatory tumor microenvironment. Our data supports that IL-1 reprograms AR + PCa cells to mimic AR - PCa gene expression patterns that favor AR-targeted treatment resistance and cell survival. © 2018 Wiley

  18. Analysis of MxA, IL-4, and IRF-1 genes in Filipino patients with subacute sclerosing panencephalitis.

    Science.gov (United States)

    Pipo-Deveza, J R; Kusuhara, K; Silao, C L T; Lukban, M B; Salonga, A M; Sanchez, B C; Kira, R; Takemoto, M; Torisu, H; Hara, T

    2006-08-01

    Subacute sclerosing panencephalitis (SSPE) is a chronic and debilitating disease of the central nervous system caused by a latent measles virus infection. Three candidate genes, MxA, IL-4, and IRF-1 genes were shown to be associated with SSPE in Japanese patients. These genes have been suggested to play a role in the establishment of persistent viral infection in the central nervous system. Sixty Filipino SSPE patients and 120 healthy control subjects were included in the study. Single nucleotide polymorphisms at promoter regions ( IL-4-590C/T and MXA-88G/T) were screened using PCR-RFLP method. Genotyping was done for GT repeat polymorphism within intron 7 of IRF-1. The TT genotype of MXA, as well as the CT genotype of IL-4, were seen a little more frequently among the SSPE patients as compared to the control subjects. The values though, did not reach statistical significance. IRF-1 analysis did not differ between the two groups. Our study failed to demonstrate a significant association between IL-4, MXA, or IRF-1, and SSPE in the Filipino population. Our results might be explained by a greater contribution of environmental factors such as the socio-economic and nutritional factors in the susceptibility of Filipinos to SSPE other than genetic factors.

  19. IL12RB2 gene is associated with the age of type 1 diabetes onset in Croatian family Trios.

    Directory of Open Access Journals (Sweden)

    Marina Pehlić

    Full Text Available BACKGROUND: Common complex diseases are influenced by both genetic and environmental factors. Many genetic factors overlap between various autoimmune diseases. The aim of the present study is to determine whether four genetic variants known to be risk variants for several autoimmune diseases could be associated with an increased susceptibility to type 1 diabetes mellitus. METHODS AND FINDINGS: We genotyped four genetic variants (rs2358817, rs1049550, rs6679356, rs9865818 within VTCN1, ANXA11, IL12RB2 and LPP genes respectively, in 265 T1DM family trios in Croatian population. We did not detect association of these polymorphisms with T1DM. However, quantitative transmission disequilibrium test (QTDT, orthogonal model revealed a significant association between the age of onset of T1DM and IL12RB2 rs6679356 variant. An earlier onset of T1DM was associated with the rs6679356 minor dominant allele C (p = 0.005. The association remained significant even after the Bonferroni correction for multiple testing and permutation. CONCLUSIONS: Variants originally associated with juvenile idiopathic arthritis (VTCN1 gene, sarcoidosis (ANXA11 gene, primary biliary cirrhosis (IL12RB2 gene and celiac disease (LPP gene were not associated with type 1 diabetes in our dataset. Nevertheless, association of IL12RB2 rs6679356 polymorphism with the age of T1DM onset suggests that this gene plays a role in defining the time of disease onset.

  20. Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dianliang; Zheng, Hongmei; Zhou, Yanbing [Department of General Surgery, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003 (China); Tang, Xingming; Yu, Baojun; Li, Jieshou [Research Institute of General Surgery, Jinlin Hospital, Nanjing University, Nanjing 210093 (China)

    2007-03-14

    IL-1beta has been implicated in inflammatory episode. In view of the inflammatory nature of cancer cachexia, we determined the predictive value of IL-1B-31 T/C, -511 C/T, +3954 C/T and IL-1RN VNTR gene polymorphisms on the occurrence of cachexia associated with locally advanced gastric cancer. The study included 214 patients and 230 healthy volunteers. Genomic DNA was prepared from peripheral blood leukocytes. Genotypes and allele frequencies were determined in patients and healthy controls using restriction fragment length polymorphism analysis of polymerase chain reaction products. The overall frequencies of IL-1B-31 T, -511 T, +3954 T and IL-1RN VNTR alleles in patients with locally advanced gastric cancer were all comparable with those in controls. No significant differences were found in the distribution of IL-1B-31 T, -511 T and IL-1RN VNTR between patients with cachexia and without. Patients with cachexia showed a significantly higher prevalence of IL-1B+3954 T allele than those without (P = 0.018). In a logistic regression analysis adjusted for actual weight, carcinoma location and stage, the IL-1B+3954 CT genotype was associated with an odds ratio of 2.512 (95% CI, 1.180 – 5.347) for cachexia. The IL-1B+3954 T allele is a major risk for cachexia from locally gastric cancer. Genetic factors studied are not likely to play an important role in the determination of susceptibility to locally advanced gastric cancer.

  1. Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer

    International Nuclear Information System (INIS)

    Zhang, Dianliang; Zheng, Hongmei; Zhou, Yanbing; Tang, Xingming; Yu, Baojun; Li, Jieshou

    2007-01-01

    IL-1beta has been implicated in inflammatory episode. In view of the inflammatory nature of cancer cachexia, we determined the predictive value of IL-1B-31 T/C, -511 C/T, +3954 C/T and IL-1RN VNTR gene polymorphisms on the occurrence of cachexia associated with locally advanced gastric cancer. The study included 214 patients and 230 healthy volunteers. Genomic DNA was prepared from peripheral blood leukocytes. Genotypes and allele frequencies were determined in patients and healthy controls using restriction fragment length polymorphism analysis of polymerase chain reaction products. The overall frequencies of IL-1B-31 T, -511 T, +3954 T and IL-1RN VNTR alleles in patients with locally advanced gastric cancer were all comparable with those in controls. No significant differences were found in the distribution of IL-1B-31 T, -511 T and IL-1RN VNTR between patients with cachexia and without. Patients with cachexia showed a significantly higher prevalence of IL-1B+3954 T allele than those without (P = 0.018). In a logistic regression analysis adjusted for actual weight, carcinoma location and stage, the IL-1B+3954 CT genotype was associated with an odds ratio of 2.512 (95% CI, 1.180 – 5.347) for cachexia. The IL-1B+3954 T allele is a major risk for cachexia from locally gastric cancer. Genetic factors studied are not likely to play an important role in the determination of susceptibility to locally advanced gastric cancer

  2. Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin.

    Science.gov (United States)

    Pilkington, Suzanne M; Ogden, Stephanie; Eaton, Laura H; Dearman, Rebecca J; Kimber, Ian; Griffiths, Christopher E M

    2018-01-01

    Langerhans' cells (LC) play pivotal roles in skin immune responses, linking innate and adaptive immunity. In aged skin there are fewer LC and migration is impaired compared with young skin. These changes may contribute to declining skin immunity in the elderly, including increased skin infections and skin cancer. Interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) are mandatory signals for LC migration and previous studies suggest that IL-1β signalling may be dysregulated in aged skin. Therefore, we sought to explore the mechanisms underlying these phenomena. In skin biopsies of photoprotected young ( 70 years) human skin ex vivo, we assessed the impact of trauma, and mandatory LC mobilizing signals on LC migration and gene expression. Biopsy-related trauma induced LC migration from young epidermis, whereas in aged skin, migration was greatly reduced. Interleukin-1β treatment restored LC migration in aged epidermis whereas TNF-α was without effect. In uncultured, aged skin IL-1β gene expression was lower compared with young skin; following culture, IL-1βmRNA remained lower in aged skin under control and TNF-α conditions but was elevated after culture with IL-1β. Interleukin-1 receptor type 2 (IL1R2) gene expression was significantly increased in aged, but not young skin, after cytokine treatment. Keratinocyte-derived factors secreted from young and aged primary cells did not restore or inhibit LC migration from aged and young epidermis, respectively. These data suggest that in aged skin, IL-1β signalling is diminished due to altered expression of IL1B and decoy receptor gene IL1R2. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology.

  3. DMPD: LPS induction of gene expression in human monocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11257452 LPS induction of gene expression in human monocytes. Guha M, Mackman N. Ce...ll Signal. 2001 Feb;13(2):85-94. (.png) (.svg) (.html) (.csml) Show LPS induction of gene expression in human... monocytes. PubmedID 11257452 Title LPS induction of gene expression in human monocytes. Authors Guha M, Ma

  4. Infectivity enhanced adenoviral-mediated mda-7/IL-24 gene therapy for ovarian carcinoma

    NARCIS (Netherlands)

    Leath, CA; Kataram, M; Bhagavatula, P; Gopalkrishnan, RV; Dent, P; Fisher, PB; Pereboev, A; Carey, D; Lebedeva, [No Value; Haisma, HJ; Alvarez, RD; Curiel, DT; Mahasreshti, PJ

    Objective. Melanoma differentiation associated gene-7 [mda-7/interleukin (IL)-24] has been identified as a novel anti-cancer agent, which specifically induces apoptosis in cancer cells but not in normal epithelial, endothelial and fibroblast cells. The objective of this study was to evaluate the

  5. IL-27 induces a pro-inflammatory response in human fetal membranes mediating preterm birth.

    Science.gov (United States)

    Yin, Nanlin; Wang, Hanbing; Zhang, Hua; Ge, Huisheng; Tan, Bing; Yuan, Yu; Luo, Xiaofang; Olson, David M; Baker, Philip N; Qi, Hongbo

    2017-09-01

    Inflammation at the maternal-fetal interface has been shown to be involved in the pathogenesis of preterm birth. Interleukin 27 (IL-27), a heterodimeric cytokine, is known to mediate an inflammatory response in some pregnancy complications. In this study, we aimed to determine whether IL-27 could induce an inflammatory reaction at the maternal-fetal interface that would mediate the onset of preterm birth. We found elevated expression of IL-27 in human peripheral serum and elevated expression of its specific receptor (wsx-1) on fetal membranes in cases of preterm birth. Moreover, the release of inflammatory markers (CXCL10, IFN-γ, MCP-1, IL-6, IL-1β and TNF-α), especially CXCL10, was markedly augmented upon stimulation of IL-27 in the fetal membranes. Additionally, IL-27 and IFN-γ cooperated to amplify the expression of CXCL10 in the fetal membranes. Moreover, the production of CXCL10 was increased in IL-27-treated fetal membrane through JNK, PI3K or Erk signaling pathways. Finally, MMP2 and MMP9 were activated by IL-27 in human fetal membranes, which may be related to the onset of preterm premature rupture of membranes (pPROM). In conclusion, for the first time, we reported that the aberrant expression of IL-27 could mediate an excessive inflammatory response in fetal membranes through the JNK, PI3K or Erk signaling pathways, which contributes to preterm birth. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparative study of polymorphism frequencies of the CYP2D6, CYP3A5, CYP2C8 and IL-10 genes in Mexican and Spanish women with breast cancer.

    Science.gov (United States)

    Alcazar-González, Gregorio Antonio; Calderón-Garcidueñas, Ana Laura; Garza-Rodríguez, María Lourdes; Rubio-Hernández, Gabriela; Escorza-Treviño, Sergio; Olano-Martin, Estibaliz; Cerda-Flores, Ricardo Martín; Castruita-Avila, Ana Lilia; González-Guerrero, Juan Francisco; le Brun, Stéphane; Simon-Buela, Laureano; Barrera-Saldaña, Hugo Alberto

    2013-10-01

    Pharmacogenetic studies in breast cancer (BC) may predict the efficacy of tamoxifen and the toxicity of paclitaxel and capecitabine. We determined the frequency of polymorphisms in the CYP2D6 gene associated with activation of tamoxifen, and those of the genes CYP2C8, CYP3A5 and DPYD associated with toxicity of paclitaxel and capecitabine. We also included a IL-10 gene polymorphism associated with advanced tumor stage at diagnosis. Genomic DNAs from 241 BC patients from northeast Mexico were genotyped using DNA microarray technology. For tamoxifen processing, CYP2D6 genotyping predicted that 90.8% of patients were normal metabolizers, 4.2% ultrarapid, 2.1% intermediate and 2.9% poor metabolizers. For paclitaxel and the CYP2C8 gene, 75.3% were normal, 23.4% intermediate and 1.3% poor metabolizers. Regarding the DPYD gene, only one patient was a poor metabolizer. For the IL-10 gene, 47.1% were poor metabolizers. These results contribute valuable information towards personalizing BC chemotherapy in Mexican women.

  7. GENOTYPE DIFFERENCE OF –572 G>C AND -174 G>C IL-6 GENE POLYMORPHISM BETWEEN BALINESE POSTMENOPAUSAL WOMEN WITH OSTEOPOROSIS AND WITHOUT OSTEOPOROSIS

    Directory of Open Access Journals (Sweden)

    E Yulianto

    2013-09-01

    Full Text Available Background: Osteoporosis is a silent metabolic disease characterized by diminished bone mass and change in bone microstructure which cause increment of fracture risk. Until now, osteoporosis still becomes one of major health problems around the world. In Indonesia, the incidence of osteoporosisis 25%. Previous study have shown the relation between osteoporosis and IL-6 gene polymorphism at-572G>C and -174 G>C. There are some controversies about the correlation between thesepolymorphism and osteoporosis because of different result between each study. Genotype G polymorphism at -572 G>C of IL-6 gene has been correlated with lower Bone mineral density (BMD and Genotype G polymorphism at -174G>C of IL-6 gene has been correlated with higher BMD value.In Indonesia, there are still no study about the association between IL-6 gene polymorphism and osteoporosis. In the future this IL-6 gene polymorphism could be used as a genetic marker for osteoporosis in postmenopausal woman. The objective of this study is to determine the difference ofgenotype of -572G>C and -174G>C polymorphism of IL-6 gene and osteoporosis in Balinese postmenopausal women.Method: This research design is a case control study. Sample was obtained at orthopedic outpatient clinic of Sanglah General Hospital, Bali-Indonesia from June 2012 untilNovember 2012. The diagnosis of osteoporosis is described as BMD value with T score ≤ -2.5 SDusing DEXA. All sample’s peripheral blood are taken to be isolated for DNA and analyzed for IL-6 gene polymorphism at -572G>C and -174G>C using Real Time PCR. Data obtained was analyzed with chi square test using SPSS.Results: This research found 11 osteoporosis sample from total 52 with no difference sample characteristic between case and control (p > 0.05. Using Chi square test,There was a significant differences between genotype -572 G>C; IL-6 gene polymorphism in Balinese postmenopausal woman with osteoporosis and in Balinese

  8. IL-25 or IL-17E protects against high-fat diet-induced hepatic steatosis in mice dependent upon IL-13 activation of STAT6

    Science.gov (United States)

    IL-25 is a member of IL-17 cytokine family and has immune-modulating activities. The role of IL-25 in maintaining lipid metabolic homeostasis remains unknown. Here, we investigated the effects of exogenous IL-25 or deficiency of IL-25 on lipid accumulation in the liver. Mice were injected with IL-25...

  9. Lack of association between rheumatoid arthritis and genetic variants rs10889677, rs11209026 and rs2201841 of IL-23R gene.

    Science.gov (United States)

    Paradowska-Gorycka, Agnieszka; Malinowski, Damian; Haladyj, Ewa; Olesinska, Marzena; Safranow, Krzysztof; Pawlik, Andrzej

    2018-01-19

    Rheumatoid arthritis (RA) is an autoimmune diseases, where different genetic variants in cytokine genes may play a pathogenic role. A GWAS in autoimmune diseases highlighted the IL-23R gene as a one of the susceptibility factors. We examined three candidate single nucleotide polymorphisms (SNPs) rs10889677, rs11209026 and rs2201841 of the IL-23R gene, as well as determined their possible association with RA in a Polish population. The IL-23R gene polymorphisms were genotyped for 422 RA patients and 348 healthy individuals using TaqMan SNP genotyping assay. The genotypes frequency did not deviate from HWE in each examined group. A comparison of the allele as well as genotype frequencies of the IL-23R polymorphisms under codominant, dominant and recessive genetic model revealed no significant differences between RA patients and healthy subjects. We also demonstrated that IL-23R rs2201841 and rs11209026 as well as rs11209026 and rs10889677 were in complete linkage disequilibrium (D'=1.0). Our genotype-phenotype analysis demonstrated that in carriers of rs10889677C and/or rs2201841A allele the RF, extra-articular manifestations and erosion were more frequent present than in patients with rs10889677A and/or rs2201841A allele, although this association was not significant. Present findings indicated that the autoimmune disease-associated genetic variants in IL-23R gene are not associated with RA in the Polish population. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  10. An essential role of syntaxin 3 protein for granule exocytosis and secretion of IL-1α, IL-1β, IL-12b, and CCL4 from differentiated HL-60 cells.

    Science.gov (United States)

    Naegelen, Isabelle; Plançon, Sébastien; Nicot, Nathalie; Kaoma, Tony; Muller, Arnaud; Vallar, Laurent; Tschirhart, Eric J; Bréchard, Sabrina

    2015-03-01

    Besides their roles in the killing of pathogens, neutrophils have the capacity to package a variety of cytokines into cytoplasmic granules for subsequent release upon inflammatory conditions. Because the rapid secretion of cytokines orchestrates the action of other immune cells at the infection site and thus, can contribute to the development and chronicity of inflammatory diseases, we aimed to determine the intracellular SNARE machinery responsible for the regulation of cytokine secretion and degranulation. From a constructed gene-expression network, we first selected relevant cytokines for functional validation by the CBA approach. We established a cytokine-secretion profile for human neutrophils and dHL-60 cells, underlining their similar ability to secrete a broad variety of cytokines within proinflammatory conditions mimicked by LPS stimulation. Secondly, after screening of SNARE genes by microarray experiments, we selected STX3 for further functional studies. With the use of a siRNA strategy, we show that STX3 is clearly required for the maximal release of IL-1α, IL-1β, IL-12b, and CCL4 without alteration of other cytokine secretion in dHL-60 cells. In addition, we demonstrate that STX3 is involved in MMP-9 exocytosis from gelatinase granules, where STX3 is partly localized. Our results suggest that the secretion of IL-1α, IL-1β, IL-12b, and CCL4 occurs during gelatinase degranulation, a process controlled by STX3. In summary, these findings provide first evidence that STX3 has an essential role in trafficking pathways of cytokines in neutrophil granulocytes. © Society for Leukocyte Biology.

  11. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro.

    Science.gov (United States)

    Sárvári, Anitta K; Veréb, Zoltán; Uray, Iván P; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. IL-29 Enhances CXCL10 Production in TNF-α-stimulated Human Oral Epithelial Cells.

    Science.gov (United States)

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2017-08-01

    Interleukin-29 (IL-29) is a cytokine belonging to the Type III interferon family. It was recently detected in the gingival crevicular fluid of periodontitis patients. However, the role of IL-29 in the pathogenesis of periodontal disease remains unknown. The aim of this study was to examine the effects of IL-29 on C-X-C motif chemokine ligand 10 (CXCL10) production in human oral epithelial cells. We measured CXCL10 production in TR146 cells, which is a human oral epithelial cell line, using an enzyme-linked immunosorbent assay. We used a Western blot analysis to detect IL-29 receptor expression and the phosphorylation levels of signal transduction molecules, including p38 mitogen-activated protein kinases (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor (NF)- κB p65, in the TR146 cells. The TR146 cells expressed the IL-29 receptor. IL-29 induced CXCL10 production in the TR146 cells. IL-29 significantly enhanced CXCL10 production in tumor necrosis factor (TNF)-α-stimulated TR146 cells. The p38 MAPK, STAT3, and NF-κB pathways were found to be related to the IL-29-induced enhancement of CXCL10 production in TNF-α-stimulated TR146 cells. IL-29 promotes T helper 1-cell accumulation in periodontal lesions by inducing CXCL10 production in oral epithelial cells.

  13. THE INFLUENCE OF POLYMORPHISM IN THE INFLAMMATORY GENES IL-1, ß IL-6, IL-10, PPAR?2 AND COX-2 IN PATIENTS WITH MULTIPLE MYELOMA UNDERGOING AUTOLOGOUS BONE MARROW TRANSPLANTATION

    DEFF Research Database (Denmark)

    Vangsted, Annette; Klausen, Tobias W.; Gimsing, Peter

    2007-01-01

    in genes involved in the inflammatory response in 348 patients undergoing high dose treatment followed by autologous tem cell transplantation. We found that the polymorphism in IL-1ß T-31C significantly influence overall survival (p=0.02). Homozygous carriers of the variant C-allele had a significantly...

  14. PROMOTER POLYMORPHISM OF IL-1β GENE IN PATIENTS WITH A HISTORY OF ACUTE MYOCARDIAL INFARCTION

    Directory of Open Access Journals (Sweden)

    A. V. Shevchenko

    2010-01-01

    Full Text Available We have performed analysis of associations between IL-1β gene promoter polymorphism (-511C/T and -31 T/C variants, and conventional cardiovascular risk factors in the patients living in the West Siberia who had previously a history of myocardial infarction (MI. We are shown a strong linkage disequilibrium between IL-1β -31C/T (rs1143627, and IL-1β-511T/C (rs16944. Significant differences in frequency distributions of some compound genotypes were observed between healthy and patients with a history of MI. E.g., frequency of IL-1β-31CC/-511CT genotype was detected in 5.5 % of healthy population, while being absent among MI patients. A frequency of IL-1β (-31/-511 CC/CT genotype showed significant differences between MI patients under 55 years, as compared to healthy persons. Hence, the analyzed IL-1β promoter polymorphisms may be considered as an additional constitutional factor predisposing for vascular alterations.

  15. Interleukin-22 (IL-22) Gingival Gene Expression and GCF Concentration in Periodontal Health and Disease

    OpenAIRE

    Amini Behbahani A; Sattari M; Mofid R; Ganji A

    2014-01-01

    IL-22 is a cytokine that is assumed to improve anti-microbial defense of epidermal and epithelial cells and the cells of gastrointestinal and respiratory systems. With respect to absence of enough relevant articles in this regard the aim of this study was to evaluate the correlation between IL-22 gene expression in gingival tissues as well as its concentration in GCF and periodontal diseases. Gingival samples obtained from 60 patients of three different groups (healthy, gingivitis and chronic...

  16. Eco RI RFLP in the human IGF II gene

    Energy Technology Data Exchange (ETDEWEB)

    Cocozza, S; Garofalo, S; Robledo, R; Monticelli, A; Conti, A; Chiarotti, L; Frunzio, R; Bruni, C B; Varrone, S

    1988-03-25

    The probe was a 500 bp cDNA containing exons 2-3 and 4 of the human IGF II gene. The clone was isolated by screening a human liver cDNA library with synthetic oligonucleotides. Eco RI digestion of genomic DNA and hybridization with the IGF II probe detects a two allele polymorphism with allelic fragments of 13.5 kb and 10.5 kb. The frequency was studied 38 unrelated Caucasians: Human IGF II gene was localized on the short arm of chromosome 11 (p15) by in situ hybridization. Codominant segregation was observed in 2 Caucasian families (10 individuals).

  17. Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus by qRT-PCR

    Directory of Open Access Journals (Sweden)

    Iona E. Maher

    2014-03-01

    Full Text Available Investigation of the immune response of the koala (Phascolarctos cinereus is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV, which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala’s susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1 and Th2 lymphocyte responses are important to an individual’s susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala’s adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4, interleukin 6 (IL-6, interleukin 10 (IL-10 and interferon gamma (IFNγ along with CD4 and CD8β. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A. Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not

  18. Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus) by qRT-PCR.

    Science.gov (United States)

    Maher, Iona E; Griffith, Joanna E; Lau, Quintin; Reeves, Thomas; Higgins, Damien P

    2014-01-01

    Investigation of the immune response of the koala (Phascolarctos cinereus) is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV), which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala's susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1) and Th2 lymphocyte responses are important to an individual's susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala's adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10) and interferon gamma (IFNγ) along with CD4 and CD8β. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A). Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not consistently up-regulated by

  19. Effects of exogenous and endogenous IL-2 on irradiated human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Zhang Lansheng; Wang Ninghai; Luan Meiling

    1993-08-01

    Human peripheral blood lymphocytes were irradiated with 1 to 40 Gy of γ-ray, and then cultured with PHA to prepare supernatant containing IL-2 for observation of kinetics of endogenous IL-2 production and reversion of lymphocyte proliferation after adding a highly purified IL-2. IL-2 activity was determined by the ability to sustain IL-2 dependent cell line (CTLL), lymphocyte proliferation was determined by 3 H-TdR incorporation and T lymphocyte subsets by monoclonal antibodies. The experimental results showed that lymphocytes exposed to 60 Co synthesized less DNA than nonirradiated lymphocytes. The inhibitory effect can partially reversed by purified IL-2 at the γ-ray dose range of 1 to 10 Gy, while irradiation with 2.5 Gy resulted in a reduction of T cells and T subsets, and increase in CD + 4 /CD + 8 ratio. The ratio of subsets recovered after adding IL-2. The kinetics of IL-2 production showed that the endogenous IL-2 production rose markedly with increasing dose of irradiation at the range of 1 to 10 Gy, and the peak of IL-2 production was at the γ-ray dose of 10 Gy

  20. Association of gene polymorphisms of interleukin-10 (IL-10 with recurrent miscarriage (RM after fertilization in vitro (IVF

    Directory of Open Access Journals (Sweden)

    K. P. Golovatyuk

    2017-02-01

    Full Text Available The objective: to study genotype frequencies and allelic variants of gene IL-10-1082G>A (rs1800896, depending on the reproductive status and evaluation association with RM after IVF among the residents of Odessa region of Ukraine. Under supervision there were 240 patients of the main group with the RM after IVF and 100 apparently healthy fertile women in the control group K with a history of at least one term delivery and lack of spontaneous abortion episodes. SNPs typing of the genes for immune response in was used the polymerase chain reaction with the melting reaction products in the presence of "adjacent" oligonucleotides. It has been established that the carriers of AA genotype of the gene IL-10-1082G>A, which have been women-residents of Odessa region of Ukraine, had a high probability of occurrence of  RM during pregnancy after IVF (OR 2,56; 95% CI 1,51 - 4,35. Typing of SNPs of the immune response gene IL-10 (rs1800896 can be used as a method of early diagnosis and pregravid prediction of reproductive losses in women with RM after IVF.

  1. Cutting edge: A critical functional role for IL-23 in psoriasis.

    Science.gov (United States)

    Tonel, Giulia; Conrad, Curdin; Laggner, Ute; Di Meglio, Paola; Grys, Katarzyna; McClanahan, Terrill K; Blumenschein, Wendy M; Qin, Jian-Zhong; Xin, Hong; Oldham, Elizabeth; Kastelein, Robert; Nickoloff, Brian J; Nestle, Frank O

    2010-11-15

    Interleukin-23 is a key cytokine involved in the generation of Th17 effector cells. Clinical efficacy of an anti-p40 mAb blocking both IL-12 and IL-23 and disease association with single nucleotide polymorphisms in the IL23R gene raise the question of a functional role of IL-23 in psoriasis. In this study, we provide a comprehensive analysis of IL-23 and its receptor in psoriasis and demonstrate its functional importance in a disease-relevant model system. The expression of IL-23 and its receptor was increased in the tissues of patients with psoriasis. Injection of a mAb specifically neutralizing human IL-23 showed IL-23-dependent inhibition of psoriasis development comparable to the use of anti-TNF blockers in a clinically relevant xenotransplant mouse model of psoriasis. Together, our results identify a critical functional role for IL-23 in psoriasis and provide the rationale for new treatment strategies in chronic epithelial inflammatory disorders.

  2. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation.

    Science.gov (United States)

    Yuan, Y; Zhang, G Q; Chai, W; Ni, M; Xu, C; Chen, J Y

    2016-10-01

    Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1.Cite this article: Y. Yuan, G. Q. Zhang, W. Chai,M. Ni, C. Xu, J

  3. The role of genetic variation across IL-1β, IL-2, IL-6, and BDNF in antipsychotic-induced weight gain.

    Science.gov (United States)

    Fonseka, Trehani M; Tiwari, Arun K; Gonçalves, Vanessa F; Lieberman, Jeffrey A; Meltzer, Herbert Y; Goldstein, Benjamin I; Kennedy, James L; Kennedy, Sidney H; Müller, Daniel J

    2015-01-01

    Antipsychotics with high weight gain-inducing propensities influence the expression of immune and neurotrophin genes, which have been independently related to obesity indices. Thus, we investigated whether variants in the genes encoding interleukin (IL)-1β, IL-2, and IL-6 and brain-derived neurotrophic factor (BDNF) Val66Met are associated with antipsychotic-induced weight gain (AIWG). Nineteen polymorphisms were genotyped using Taqman(®) assays in 188 schizophrenia patients on antipsychotic treatment for up to 14 weeks. Mean weight change (%) from baseline was compared across genotypic groups using analysis of covariance (ANCOVA). Epistatic effects between cytokine polymorphisms and BDNF Val66Met were tested using Model-Based Multifactor Dimensionality Reduction. In European patients, IL-1β rs16944*GA (P = 0.013, Pcorrected = 0.182), IL-1β rs1143634*G (P = 0.001, Pcorrected = 0.014), and BDNF Val66Met (Val/Val, P = 0.004, Pcorrected = 0.056) were associated with greater AIWG, as were IL-1β rs4849127*A (P = 0.049, Pcorrected = 0.784), and IL-1β rs16944*GA (P = 0.012, Pcorrected = 0.192) in African Americans. BDNF Val66Met interacted with both IL-1β rs13032029 (Val/Met+ TT, PPerm = 0.029), and IL-6 rs2069837 (Val/Val+ AA, PPerm = 0.021) in Europeans, in addition to IL-1β rs16944 (Val/Val+ GA, PPerm = 0.006) in African Americans. SNPs across IL-1β and BDNF Val66Met may influence AIWG. Replication of these findings in larger, independent samples is warranted.

  4. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma.

    Science.gov (United States)

    Halwani, Rabih; Sultana, Asma; Vazquez-Tello, Alejandro; Jamhawi, Amer; Al-Masri, Abeer A; Al-Muhsen, Saleh

    2017-11-01

    In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.

  5. Glutamine and alanine-induced differential expression of intracellular IL-6, IL-8, and TNF-α in LPS-stimulated monocytes in human whole-blood.

    Science.gov (United States)

    Raspé, C; Czeslick, E; Weimann, A; Schinke, C; Leimert, A; Kellner, P; Simm, A; Bucher, M; Sablotzki, A

    2013-04-01

    To investigate the effects of the commonly-used immunomodulators l-glutamine, l-alanine, and the combination of both l-alanyl-l-glutamine (Dipeptamin(®)) on intracellular expression of IL-6, IL-8, and TNF-α during endotoxemia, lipopolysaccharide (LPS)-stimulated human monocytes in a whole blood system were investigated by flow cytometry. Whole blood of twenty-seven healthy volunteers was stimulated with LPS and incubated with three different amino acid solutions (1. l-glutamine, 2. l-alanine, 3. l-alanyl-l-glutamine, each concentration 2 mM, 5 mM, incubation time 3 h). CD14(+) monocytes were phenotyped in whole-blood and intracellular expression of cytokines was assessed by flow cytometry. Our investigations showed for the first time in whole blood probes, imitating best physiologically present cellular interactions, that l-glutamine caused a dose-independent inhibitory effect on IL-6 and TNF-α production in human monocytes stimulated with LPS. However, l-alanine had contrary effects on IL-6 expression, significantly upregulating expression of IL-6 in LPS-treated monocytes. The impact of l-alanine on the expression of TNF-α was comparable with glutamine. Neither amino acid was able to affect IL-8 production in LPS-stimulated monocytes. The combination of both did not influence significantly IL-6 and IL-8 expression in monocytes during endotoxemia, however strongly reduced TNF-α production. For the regulation of TNF-α, l-glutamine, l-alanine and the combination of both show a congruent and exponentiated downregulating effect during endotoxemia, for the modulation of IL-6, l-glutamine and l-alanine featured opposite regulation leading to a canceling impact of each other when recombining both amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Estimation by limiting dilution analysis of human IL 2-secreting T cells: detection of IL 2 produced by single lymphokine-secreting T cells

    International Nuclear Information System (INIS)

    Vie, H.; Miller, R.A.

    1986-01-01

    We present here a culture method for the estimation, in human blood, of the number of lymphocytes that can respond to mitogen by producing interleukin 2 (IL 2). T cells are cultured at limiting dilutions with PHA or Con A in the presence of Epstein Barr virus-transformed human lymphoblastoid cells (EB-LCL), and supernatants are tested 3 days later for IL 2 content by a cell proliferation assay. The distribution of negative wells follows the expected Poisson single-hit relationship, suggesting that the assay is sensitive to single cells of a single limiting cell type. On average, 16.3% of peripheral blood mononuclear cells can produce IL 2 in such clonal cultures (mean of 12 determinations; SD = 5.6%). Surprisingly, irradiation (up to 2000 rad) of the titrated responder cell population diminishes the estimated frequencies by less than 50%. The ability to detect IL 2 levels in cultures containing only a single, nonproliferating T lymphocyte allows us to estimate the amount of IL 2 generated by an individual effector cell during a 3-day culture interval after mitogen stimulation. The average responding, irradiated T cell generates 0.92 pg of IL 2 (median) within 3 days. The method presented provides a straightforward way to provide independent estimates of responding cell number and of lymphokine production per cell in a variety of clinical situations

  7. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity.

    Directory of Open Access Journals (Sweden)

    Zhonghan Yang

    Full Text Available Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies.

  8. Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

    Directory of Open Access Journals (Sweden)

    Marjorie S Morgan

    Full Text Available The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin's protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host's protective response allowing these mites to survive in the skin.

  9. Sarcoptes scabiei Mites Modulate Gene Expression in Human Skin Equivalents

    Science.gov (United States)

    Morgan, Marjorie S.; Arlian, Larry G.; Markey, Michael P.

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin. PMID:23940705

  10. Chromosomal localization of the human diazepam binding inhibitor gene

    International Nuclear Information System (INIS)

    DeBernardi, M.A.; Crowe, R.R.; Mocchetti, I.; Shows, T.B.; Eddy, R.L.; Costa, E.

    1988-01-01

    The authors have used in situ chromosome hybridization and human-mouse somatic cell hybrids to map the gene(s) for human diazepam binding inhibitor (DBI), an endogenous putative modulator of the γ-aminobutyric acid receptor acting at the allosteric regulatory center of this receptor that includes the benzodiazepine recognition site. In 784 chromosome spreads hybridized with human DBI cDNA, the distribution of 1,476 labeled sites revealed a significant clustering of autoradiographic grains (11.3% of total label) on the long arm of chromosome 2 (2q). Furthermore, 63.5% of the grains found on 2q were located on 2q12-21, suggesting regional mapping of DBI gene(s) to this segment. Secondary hybridization signals were frequently observed on other chromosomes and they were statistically significant mainly for chromosomes 5, 6, 11, and 14. In addition, DNA from 32 human-mouse cell hybrids was digested with BamHI and probed with human DBI cDNA. A 3.5-kilobase band, which probably represents the human DBI gene, was assigned to chromosome 2. Four higher molecular weight bands, also detected in BamHI digests, could not be unequivocally assigned. A chromosome 2 location was excluded for the 27-, 13-, and 10-kilobase bands. These results assign a human DBI gene to chromosome 2 (2q12-21) and indicate that three of the four homologous sequences detected by the human DBI probe are located on three other chromosomes

  11. Role of IL-21 in HTLV-1 infections with emphasis on HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).

    Science.gov (United States)

    Rajaei, Taraneh; Farajifard, Hamid; Rafatpanah, Houshang; Bustani, Reza; Valizadeh, Narges; Rajaei, Bahareh; Rezaee, Seyed Abdolrahim

    2017-06-01

    Interleukin-21 (IL-21) enhances the survival and cytotoxic properties of cytotoxic T cells (CTLs) and exhibits essential roles in controlling chronic viral infections. HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic progressive inflammatory disease of the nervous system. The main determinant of disease progression is efficiency of the CTL response to Human T lymphotropic virus types I (HTLV-1). In this study, the expression of host IL-21 and HTLV-I Tax and proviral load (PVL) was evaluated to understand the role and mechanism of IL-21 in HTLV-1 infections and the subsequent development of HAM/TSP. A cross-sectional study was carried out on 20 HAM/TSP patients, 20 asymptomatic HTLV-1 carriers (ACs) and 20 healthy controls (HCs) to evaluate the expression of IL-21 and Tax and PVL in non-activated and phorbol myristate acetate (PMA)-ionomycin-activated peripheral blood mononuclear cells (PBMCs). The mean mRNA expression of IL-21 in the non-activated and activated PBMCs was higher (by 5-13 times) in the HAM/TSP patients than in ACs and HCs (p Tax and PVL was observed in the HAM/TSP subjects than ACs (p Tax gene expression was positively correlated with PVL (R = 0.595, p = 0.000) and IL-21 gene expression (R = 0.395, p = 0.021) in the HTLV-1-infected subjects. In conclusion, the increase in IL-21 mRNA expression may reflect the attempt of infected T cells to induce an appropriate antiviral response, and the decrease in IL-21 protein expression may reflect the inhibition of IL-21 mRNA translation by viral factors in favour of virus evasion and dissemination.

  12. Seasonal influenza A/H3N2 virus infection and IL-1Β, IL-10, IL-17, and IL-28 polymorphisms in Iranian population.

    Science.gov (United States)

    Rogo, Lawal Dahiru; Rezaei, Farhad; Marashi, Seyed Mahdi; Yekaninejad, Mir Saeed; Naseri, Maryam; Ghavami, Nastaran; Mokhtari-Azad, Talat

    2016-12-01

    Increased blood cytokines is the main immunopathological process that were attributed to severe clinical outcomes in cases of influenza A/H3N2 virus infection. The study was aimed to investigate the polymorphisms of IL-1β, IL-10, IL-17, and IL-28 genes to find the possibility of their association with the clinical outcome of influenza A/H3N2 virus infection among the infected patients in Iran. This is a Case-Control study in which influenza A/H3N2 virus positive confirmed with real-time PCR were the cases. DNA samples from groups were genotyped for polymorphisms in rs16944 (IL-1β), rs1800872 (IL-10), rs2275913 (IL-17), and rs8099917 (IL-28). Confidence interval (95%CI) and Odds ratio (OR) were calculated. IL-17 rs2275913 (GG and AG) were associated with risk of infection with that were statistically significant (P rs16944) (GG) was associated with reduced risk of infection (P < 0.01, OR = 0.46). Genotype GG and GT of IL-10 (rs1800872) were associated with increased risk of infection with influenza A/H3N2 virus (P < 0.05, OR = 2.04-2.58). In addition, IL-28 (rs8099917) genotypes GG (P < 0.05, OR = 0.49) and TG (P < 0.05, OR = 0.59) were associated with reduced risk of ILI symptom while genotype TT (P < 0.01, OR = 4.31) was associated with increased risk of ILI symptom. The results of this study demonstrated that polymorphisms of genes involved in the inflammatory and anti-inflammatory process affect the outcome of disease caused by influenza A/H3N2 virus. Thorough insight on host immune response at the time of influenza A virus infection is required to ensure adequate patient care in the case of feature outbreaks. J. Med. Virol. 88:2078-2084, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Identification and characterization of human GUKH2 gene in silico.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  14. A 1.7-Mb YAC contig around the human BDNF gene (11p13): integration of the physical, genetic, and cytogenetic maps in relation to WAGR syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, M.F.; Martin, A.; Houlgatte, R. [Genetique Moleculaire et Biologie du Development, Villejuif (France)] [and others

    1994-11-01

    WAGR (Wilms tumor, aniridia, genito-urinary abnormalities, mental retardation) syndrome in humans is associated with deletions of the 11p13 region. The brain-derived neurotrophic factor (BDNF) gene maps to this region, and its deletion seems to contribute to the severity of the patient`s mental retardation. Yeast artificial chromosomes (YACs) carrying the BDNF gene have been isolated and characterized. Localization of two known exons of this gene leads to a minimal estimation of its size of about 40 kb. Chimerism of the BDNF YACs has been investigated by fluorescence in situ hybridization and chromosome assignment on somatic cell hybrids. Using the BDNF gene, YAC end sequence tagged sites (STS), and Genethon microsatellite markers, the authors constructed a 1.7-Mb contig and refined the cytogenetic map at 11p13. The resulting integrated physical, genetic, and cytogenetic map constitutes a resource for the characterization of genes that may be involved in the WAGR syndrome. 42 refs., 2 figs., 3 tabs.

  15. IL-27 Modulates Chemokine Production in TNF-α -Stimulated Human Oral Epithelial Cells.

    Science.gov (United States)

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Ozaki, Kazumi; Matsuo, Takashi

    2017-01-01

    Interleukin-27 (IL-27) is a cytokine which belongs to the IL-12 family. However, the role of IL-27 in the pathogenesis of periodontal disease is uncertain. The aim of this study was to examine the effect of IL-27 on chemokine production in TNF-α-stimulated human oral epithelial cells (TR146). We measured chemokine production in TR146 by ELISA. We used western blot analysis to detect the phosphorylation levels of signal transduction molecules, including STAT1 and STAT3 in TR146. We used inhibitors to examine the role of STAT1 and STAT3 activation. IL-27 increased CXCR3 ligands production in TNF-α-stimulated TR146. Meanwhile, IL-27 suppressed IL-8 and CCL20 production induced by TNF-α. STAT1 phosphorylation level in IL-27 and TNF-α-stimulated TR146 was enhanced in comparison to TNF-α-stimulated TR146. STAT3 phosphorylation level in IL-27-treated TR146 did not change by TNF-α. Both STAT1 inhibitor and STAT3 inhibitor decreased CXCR3 ligands production. STAT1 inhibitor overrode the inhibitory effect of IL-27 on IL-8 and CCL20 production in TNF-α-stimulated TR146. Meanwhile, STAT3 inhibitor did not modulate IL-8 and CCL20 production. IL-27 might control leukocyte migration in periodontal lesion by modulating chemokine production from epithelial cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. IL2RA/CD25 Gene Polymorphisms: Uneven Association with Multiple Sclerosis (MS) and Type 1 Diabetes (T1D)

    Science.gov (United States)

    Alcina, Antonio; Fedetz, María; Ndagire, Dorothy; Fernández, Oscar; Leyva, Laura; Guerrero, Miguel; Abad-Grau, María M.; Arnal, Carmen; Delgado, Concepción; Lucas, Miguel; Izquierdo, Guillermo; Matesanz, Fuencisla

    2009-01-01

    Background IL-2 receptor (IL2R) alpha is the specific component of the high affinity IL2R system involved in the immune response and in the control of autoimmunity. Methods and Results Here we perform a replication and fine mapping of the IL2RA gene region analyzing 3 SNPs previously associated with multiple sclerosis (MS) and 5 SNPs associated with type 1 diabetes (T1D) in a collection of 798 MS patients and 927 matched Caucasian controls from the south of Spain. We observed association with MS in 6 of 8 SNPs. The rs1570538, at the 3′- UTR extreme of the gene, previously reported to have a weak association with MS, is replicated here (P = 0.032). The most associated T1D SNP (rs41295061) was not associated with MS in the present study. However, the rs35285258, belonging to another independent group of SNPs associated with T1D, showed the maximal association in this study but different risk allele. We replicated the association of only one (rs2104286) of the two IL2RA SNPs identified in the recently performed genome-wide association study of MS. Conclusions These findings confirm and extend the association of this gene with MS and reveal a genetic heterogeneity of the associated polymorphisms and risk alleles between MS and T1D suggesting different immunopathological roles of IL2RA in these two diseases. PMID:19125193

  17. Gastric epithelial expression of IL-12 cytokine family in Helicobacter pylori infection in human: is it head or tail of the coin?

    Directory of Open Access Journals (Sweden)

    Fadi Al-Sammak

    Full Text Available Recently, there has been a growing interest in an expanding group of cytokines known as "IL-12 family". The so far gained knowledge about these cytokines, as crucial playmakers in mucosal immunity, has not yet been sufficiently investigated in the context of Helicobacter pylori infection. All genes encoding the monomeric components of these cytokines and their corresponding receptors were examined in gastric epithelial cell lines (AGS and MKN-28 after being infected with 4 H. pylori strains: BCM-300, P1 wild-type, and P1-derived isogenic mutants lacking cytotoxin-associated gene A (cagA or virulence gene virB7 (multiplicity of infection=50. Both infected and uninfected samples were analyzed after 24h and 48h using real-time quantitative polymerase chain reaction (RT-qPCR. Gene expression analysis demonstrated a strong upregulation of IL23A (encodes p19 by infection, whereas IL23R, Epstein-Barr virus-induced gene 3 (EBI3, IL6ST, IL12A, and IL27RA were found to be expressed, but not regulated, or to a lesser extent. Transcripts of IL12RB2, IL12B, IL12RB1, and IL27A were not detected. Interestingly, P1 resulted in stronger alterations of expression than CagA mutant and BCM-300, particularly for IL23A (59.7-fold versus 32.4- and 6.7-fold, respectively in AGS after 48h, P<.05, whereas no changes were seen with VirB7 mutant. In a proof-of-principle experiment, we demonstrated epithelial-derived expression of IL-12, p19, and Ebi3 in gastric mucosa of gastritis patients using immunohistochemistry (IHC. Unlike IL-12 and Ebi3, increased immunostaining of p19 was observed in H. pylori gastritis. Herein, we highlight the potential role of gastric epithelial cells in mucosal immunity, not only because they are predominant cell type in mucosa and initial site of host-bacterial interaction, but also as a major contributor to molecules that are thought to be primarily expressed by immune cells so far. Of these molecules, p19 was the most relevant one to H

  18. The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases.

    Science.gov (United States)

    Walsh, Patrick T; Fallon, Padraic G

    2018-04-01

    The recently discovered interleukin (IL)-36 family of cytokines form part of the broader IL-1 family and are emerging as important mediators of inflammatory disease. The IL-36 subfamily consists of three ligands-IL-36α, IL-36β, and IL-36γ-and the natural antagonist IL-36Ra. The cytokines exert their effects through a specific IL-36 receptor consisting of IL-36R and IL-1RAcP chains. IL-36 cytokines can direct both innate and adaptive immune responses by acting on parenchymal, stromal, and specific immune cell subsets. In humans, inactivating mutations in the gene encoding the IL-36R antagonist, which lead to unregulated IL-36R signaling, lead to an autoinflammatory condition termed deficiency of the IL-36R antagonist, which primarily manifests as a severe form of pustular psoriasis. While such discoveries have prompted deeper mechanistic studies highlighting the important role of IL-36 cytokines in psoriatic skin inflammation, it is now evident that IL-36 cytokines can also play important roles in inflammatory disorders in other organs, such as the gastrointestinal tract and the lungs. Given these emerging roles, strategies to specifically target the expression and activity of the IL-36 family have the potential to uncover novel therapeutic approaches aimed at treating inflammatory diseases in humans. © 2016 New York Academy of Sciences.

  19. [Brd3 promotes IL-6 production via enhancing acetylase CBP recruitment and histone 3 acetylation within IL6 promoter].

    Science.gov (United States)

    Ren, Wenhui; Sun, Donghao; Wang, Chunmei; Li, Nan

    2016-10-01

    Objective To investigate the role of bromodomain containing 3 (Brd3) in LPS-triggered interleukin-6 (IL-6) production in macrophages and the underlying mechanism. Methods CRISPR-Cas9 technology was used to screen an RAW264.7 cell line with Brd3 knockout (Brd3 -/- ). The Brd3 -/- cells were used as an experimental group, and the parential cells expressing wide-type Brd3 as a control group. The IL-6 level in cell culture supernatant was detected by ELISA after 100 ng/mL LPS challenging. Effect of Brd3 knockout on the expression and activation of signal pathways involved in IL-6 expression, including the NF-κB and mitogen-activated protein kinase (MAPK) pathways were examined by Western blot analysis. Chromatin immunoprecipitation (ChIP) assay was used to evaluate the recruitment of acetylase CREB-binding protein (CBP) to IL6 gene promoter and the acetylation level of histone 3 within IL6 gene promoter. Results LPS treatment significantly downregulated Brd3 expression in mouse peritoneal macrophages. LPS-induced production of IL-6 was significantly inhibited in Brd3 -/- macrophages. The expressions and activation of signal molecules within NF-κB and MAPK pathways were barely affected. Brd3 knockout significantly decreased the recruitment of acetylase CBP to IL6 gene promoter, and the acetylation level of histone3 within IL6 gene promoter was also repressed. Conclusion Brd3 promotes LPS-triggered IL-6 production via promoting the recruitment of CBP to IL6 promoter and enhancing the acetylation level of histone 3 within IL6 promoter.

  20. Genome-wide association study of genetic variants in LPS-stimulated IL-6, IL-8, IL-10, IL-1ra and TNF-α cytokine response in a Danish Cohort

    DEFF Research Database (Denmark)

    Larsen, Margit Hørup; Albrechtsen, Anders; Thørner, Lise Wegner

    2013-01-01

    Cytokine response plays a vital role in various human lipopolysaccharide (LPS) infectious and inflammatory diseases. This study aimed to find genetic variants that might affect the levels of LPS-induced interleukin (IL)-6, IL-8, IL-10, IL-1ra and tumor necrosis factor (TNF)-α cytokine production....

  1. Cdh13 and AdipoQ gene knockout alter instrumental and Pavlovian drug conditioning.

    Science.gov (United States)

    King, C P; Militello, L; Hart, A; St Pierre, C L; Leung, E; Versaggi, C L; Roberson, N; Catlin, J; Palmer, A A; Richards, J B; Meyer, P J

    2017-09-01

    Genome-wide association studies in humans have suggested that variants of the cadherin-13 (CDH13) gene are associated with substance use disorder, subjective response to amphetamine, and attention deficit hyperactivity disorder. To examine the role of the Cdh13 and its peptide ligand adiponectin (AdipoQ) in addiction-related behaviors, we assessed Cdh13 knockout (KO) rats and AdipoQ KO mice using intravenous cocaine self-administration and conditioned place preference (CPP) paradigms. During intravenous cocaine self-administration, male Cdh13 heterozygous (+/-) and KO (-/-) rats showed increased cue-induced reinstatement compared with wild-type (WT) rats when presented with a cocaine-paired stimulus, whereas female Cdh13 rats showed no differences across genotype. Cdh13 -/- rats showed higher responding for a saccharin reinforcer and learned the choice reaction time (RT) task more slowly than WTs. However, we found no differences between Cdh13 -/- and +/+ rats in responding for sensory reinforcement, number of premature responses in the RT task, tendency to approach a Pavlovian food cue, CPP and locomotor activation to cocaine (10 or 20 mg/kg). In AdipoQ -/- mice, there was a significant increase in CPP to methamphetamine (1 mg/kg) but not to a range of d-amphetamine doses (0.5, 1, 2 and 4 mg/kg). Taken together, these data suggest that Cdh13 and AdipoQ regulate sensitivity to psychomotor stimulants and palatable rewards without producing major changes in other behaviors. In humans, these two genes may regulate sensitivity to natural and drug rewards, thus influencing susceptibility to the conditioned drug effects and relapse. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells.

    Science.gov (United States)

    Mathew, Nimitha R; Baumgartner, Francis; Braun, Lukas; O'Sullivan, David; Thomas, Simone; Waterhouse, Miguel; Müller, Tony A; Hanke, Kathrin; Taromi, Sanaz; Apostolova, Petya; Illert, Anna L; Melchinger, Wolfgang; Duquesne, Sandra; Schmitt-Graeff, Annette; Osswald, Lena; Yan, Kai-Li; Weber, Arnim; Tugues, Sonia; Spath, Sabine; Pfeifer, Dietmar; Follo, Marie; Claus, Rainer; Lübbert, Michael; Rummelt, Christoph; Bertz, Hartmut; Wäsch, Ralph; Haag, Johanna; Schmidts, Andrea; Schultheiss, Michael; Bettinger, Dominik; Thimme, Robert; Ullrich, Evelyn; Tanriver, Yakup; Vuong, Giang Lam; Arnold, Renate; Hemmati, Philipp; Wolf, Dominik; Ditschkowski, Markus; Jilg, Cordula; Wilhelm, Konrad; Leiber, Christian; Gerull, Sabine; Halter, Jörg; Lengerke, Claudia; Pabst, Thomas; Schroeder, Thomas; Kobbe, Guido; Rösler, Wolf; Doostkam, Soroush; Meckel, Stephan; Stabla, Kathleen; Metzelder, Stephan K; Halbach, Sebastian; Brummer, Tilman; Hu, Zehan; Dengjel, Joern; Hackanson, Björn; Schmid, Christoph; Holtick, Udo; Scheid, Christof; Spyridonidis, Alexandros; Stölzel, Friedrich; Ordemann, Rainer; Müller, Lutz P; Sicre-de-Fontbrune, Flore; Ihorst, Gabriele; Kuball, Jürgen; Ehlert, Jan E; Feger, Daniel; Wagner, Eva-Maria; Cahn, Jean-Yves; Schnell, Jacqueline; Kuchenbauer, Florian; Bunjes, Donald; Chakraverty, Ronjon; Richardson, Simon; Gill, Saar; Kröger, Nicolaus; Ayuk, Francis; Vago, Luca; Ciceri, Fabio; Müller, Antonia M; Kondo, Takeshi; Teshima, Takanori; Klaeger, Susan; Kuster, Bernhard; Kim, Dennis Dong Hwan; Weisdorf, Daniel; van der Velden, Walter; Dörfel, Daniela; Bethge, Wolfgang; Hilgendorf, Inken; Hochhaus, Andreas; Andrieux, Geoffroy; Börries, Melanie; Busch, Hauke; Magenau, John; Reddy, Pavan; Labopin, Myriam; Antin, Joseph H; Henden, Andrea S; Hill, Geoffrey R; Kennedy, Glen A; Bar, Merav; Sarma, Anita; McLornan, Donal; Mufti, Ghulam; Oran, Betul; Rezvani, Katayoun; Shah, Omid; Negrin, Robert S; Nagler, Arnon; Prinz, Marco; Burchert, Andreas; Neubauer, Andreas; Beelen, Dietrich; Mackensen, Andreas; von Bubnoff, Nikolas; Herr, Wolfgang; Becher, Burkhard; Socié, Gerard; Caligiuri, Michael A; Ruggiero, Eliana; Bonini, Chiara; Häcker, Georg; Duyster, Justus; Finke, Jürgen; Pearce, Erika; Blazar, Bruce R; Zeiser, Robert

    2018-03-01

    Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD + leukemia cells. This synergized with the allogeneic CD8 + T cell response, leading to long-term survival in six mouse models of FLT3-ITD + AML. Sorafenib-related IL-15 production caused an increase in CD8 + CD107a + IFN-γ + T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD + AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8 + T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.

  3. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

    Science.gov (United States)

    Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin

    2014-05-01

    Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

  4. Requirements for growth and IL-10 expression of highly purified human T regulatory cells

    OpenAIRE

    Bonacci, Benedetta; Edwards, Brandon; Jia, Shuang; Williams, Calvin; Hessner, Martin J.; Gauld, Stephen; Verbsky, James

    2012-01-01

    Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimu...

  5. IL-4 induces cAMP and cGMP in human monocytic cells

    Directory of Open Access Journals (Sweden)

    B. Dugas

    1995-01-01

    Full Text Available Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min and cAMP (20 – 25 min in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1 IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2 cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive.

  6. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy.

    Directory of Open Access Journals (Sweden)

    Evonne eChin-Smith

    2014-05-01

    Full Text Available Store-operated calcium (Ca2+ entry (SOCE can be mediated by two novel proteins, STIM/Orai. We have previously demonstrated that members of the TRPC family, putative basal and store operated calcium entry channels, are present in human myometrium and regulated by labor associated stimuli IL-1β and mechanical stretch. Although STIM and Orai isoforms (1-3 have been reported in other smooth muscle cell types, there is little known about the expression or gestational regulation of STIM and Orai expression in human myometrium. Total RNA was isolated from lower segment human myometrial biopsies obtained at caesarean section from women at the time of preterm no labor (PTNL, preterm labor (PTL, term non-labor (TNL and term with labor (TL; primary cultured human uterine smooth muscle cells, and a human myometrial cell line (hTERT-HM. STIM1-2, and Orai1-3 mRNA expression was assessed by quantitative real-time PCR. All five genes were expressed in myometrial tissue and cultured cells. Orai2 was the most abundant Orai isoform in human myometrium. Expression of STIM1-2/Orai1-3 did not alter with the onset of labor. Orai1 mRNA expression in cultured cells was enhanced by IL-1β treatment. This novel report of STIM1-2 and Orai1-3 mRNA expression in pregnant human myometrium and Orai1 regulation by IL-1β indicates a potential role for these proteins in calcium signaling in human myometrium during pregnancy.

  7. Polymorphisms in Th1/Th2 Cytokine Genes, Hormone Replacement Therapy, and Risk of Non-Hodgkin Lymphoma

    International Nuclear Information System (INIS)

    Zhu, Gongjian; Pan, Dongsheng; Zheng, Tongzhang; Lan, Qing; Chen, Xuezhong; Chen, Yingtai; Kim, Christopher; Bi, Xiaofeng; Holford, Theodore; Boyle, Peter; Leaderer, Brian; Chanock, Stephen J.; Rothman, Nathaniel; Zhang, Yawei

    2011-01-01

    We conducted a population-based case–control study in Connecticut women to test the hypothesis that genetic variations in Th1 and Th2 cytokine genes modify the relationship between hormone replacement therapy (HRT) and risk of non-Hodgkin lymphoma (NHL). Compared to women without a history of HRT use, women with a history of HRT use had a significantly decreased risk of NHL if they carried IFNGR2 (rs1059293) CT/TT genotypes (OR = 0.5, 95%CI: 0.3–0.9), IL13 (rs20541) GG genotype (OR = 0.6, 95%CI: 0.4–0.9), and IL13 (rs1295686) CC genotype (OR = 0.6, 95%CI: 0.4–0.8), but not among women who carried IFNGR2 CC, IL13 AG/AA, and IL13CT/TT genotypes. A similar pattern was also observed for B-cell lymphoma but not for T-cell lymphoma. A statistically significant interaction was observed for IFNGR2 (rs1059293 P for interaction = 0.024), IL13(rs20541 P for interaction = 0.005), IL13 (rs1295686 P for interaction = 0.008), and IL15RA (rs2296135 P for interaction = 0.049) for NHL overall; IL13 (rs20541 P for interaction = 0.0009), IL13(rs1295686 P for interaction = 0.0002), and IL15RA (rs2296135 P for interaction = 0.041) for B-cell lymphoma. The results suggest that common genetic variation in Th1/Th pathway genes may modify the association between HRT and NHL risk.

  8. IL-2/anti-IL-2 mAb immunocomplexes: A renascence of IL-2 in cancer immunotherapy?

    Czech Academy of Sciences Publication Activity Database

    Tomala, Jakub; Kovář, Marek

    2016-01-01

    Roč. 5, č. 3 (2016), e1102829 ISSN 2162-402X R&D Projects: GA ČR GA13-12885S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Anti-IL-2 mAb * cancer immunotherapy * IL-2 Subject RIV: EE - Microbiology, Virology Impact factor: 7.719, year: 2016

  9. Effect of TNFα on activities of different promoters of human apolipoprotein A-I gene

    International Nuclear Information System (INIS)

    Orlov, Sergey V.; Mogilenko, Denis A.; Shavva, Vladimir S.; Dizhe, Ella B.; Ignatovich, Irina A.; Perevozchikov, Andrej P.

    2010-01-01

    Research highlights: → TNFα stimulates the distal alternative promoter of human apoA-I gene. → TNFα acts by weakening of promoter competition within apoA-I gene (promoter switching). → MEK1/2 and nuclear receptors PPARα and LXRs take part in apoA-I promoter switching. -- Abstract: Human apolipoprotein A-I (ApoA-I) is a major structural and functional protein component of high-density lipoproteins. The expression of the apolipoprotein A-I gene (apoA-I) in hepatocytes is repressed by pro-inflammatory cytokines such as IL-1β and TNFα. Recently, two novel additional (alternative) promoters for human apoA-I gene have been identified. Nothing is known about the role of alternative promoters in TNFα-mediated downregulation of apoA-I gene. In this article we report for the first time about the different effects of TNFα on two alternative promoters of human apoA-I gene. Stimulation of HepG2 cells by TNFα leads to activation of the distal alternative apoA-I promoter and downregulation of the proximal alternative and the canonical apoA-I promoters. This effect is mediated by weakening of the promoter competition within human apoA-I 5'-regulatory region (apoA-I promoter switching) in the cells treated by TNFα. The MEK1/2-ERK1/2 cascade and nuclear receptors PPARα and LXRs are important for TNFα-mediated apoA-I promoter switching.

  10. Polymorphism in the 5' upstream regulatory and 3' untranslated regions of the HLA-G gene in relation to soluble HLA-G and IL-10 expression

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F; Rizzo, Roberta; Melchiorri, Loredana

    2006-01-01

    The nonclassical human leukocyte antigen (HLA) class Ib gene HLA-G may be important for the induction and maintenance of immune tolerance between the mother and the semi-allogeneic fetus during pregnancy. Expression of HLA-G can influence cytokine and cytotoxic T-lymphocyte responses. Different HLA......-G peripheral blood mononuclear cells after lipopolysaccharide (LPS) stimulation. This study finds that polymorphism in the 5' upstream regulatory region (5'URR) of the HLA-G gene may also be implicated in differences in IL-10 secretion. However, this may also be due to linkage disequilibrium with the 14-bp...

  11. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis.

    Directory of Open Access Journals (Sweden)

    Paméla Gasse

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice. METHODS: The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice. RESULTS: We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt(+ γδ T cells and to a lesser extent by CD4αβ(+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis. CONCLUSIONS: Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.

  12. A BCR/ABL-hIL-2 DNA Vaccine Enhances the Immune Responses in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Yanan Qin

    2013-01-01

    Full Text Available The use of a DNA vaccine encoding the BCR/ABL fusion gene is thought to be a promising approach for patients with chronic myeloid leukemia (CML to eradicate minimal residual disease after treatment with chemotherapy or targeted therapy. In this study, our strategy employs genetic technology to create a DNA vaccine encoding the BCR/ABL fusion and human interleukin-2 (hIL-2 genes. The successfully constructed plasmids BCR/ABL-pIRES-hIL-2, BCR/ABL-pIRES, and pIRES-hIL-2 were delivered intramuscularly to BALB/c mice at 14-day intervals for three cycles. The transcription and expression of the BCR/ABL and hIL-2 genes were found in the injected muscle tissues. The interferon-γ (IFN-γ serum levels were increased, and the splenic CD4+/CD8+ T cell ratio was significantly decreased in the BCR/ABL-pIRES-hIL-2-injected mice. Furthermore, specific antibodies against K562 cells could be detected by indirect immunofluorescence. These results indicate that a DNA vaccine containing BCR/ABL and hIL-2 together may elicit increased in vivo humoral and cellular immune responses in BALB/c mice.

  13. Low expression of IL-18 and IL-18 receptor in human skeletal muscle is associated with systemic and intramuscular lipid metabolism-Role of HIV lipodystrophy

    DEFF Research Database (Denmark)

    Lindegaard, Birgitte; Hvid, Thine; Wolsk Mygind, Helene

    2018-01-01

    receptor (R) expression would be altered in patients with HIV-lipodystrophy. DESIGN AND METHODS: Twenty-three HIV-infected patients with LD and 15 age-matched healthy controls were included in a cross-sectional study. Biopsies from the vastus lateralis muscle were obtained and IL-18 and IL-18R m......-18 mRNA is expressed in human skeletal muscle but a role for IL-18 in muscle has not been identified. Patients with HIV-infection and lipodystrophy (LD) are characterized by lipid and glucose disturbances and increased levels of circulating IL-18. We hypothesized that skeletal muscle IL-18 and IL-18......RNA expression were measured by real-time PCR and sphingolipids (ceramides, sphingosine, sphingosine-1-Phosphate, sphinganine) were measured by HPLC. Insulin resistance was assessed by HOMA and the insulin response during an OGTT. RESULTS: Patients with HIV-LD had a 60% and 54% lower level of muscular IL-18...

  14. Hepatitis C Virus E2 Protein Induces Upregulation of IL-8 Pathways and Production of Heat Shock Proteins in Human Thyroid Cells.

    Science.gov (United States)

    Hammerstad, Sara Salehi; Stefan, Mihaela; Blackard, Jason; Owen, Randall P; Lee, Hanna J; Concepcion, Erlinda; Yi, Zhengzi; Zhang, Weijia; Tomer, Yaron

    2017-02-01

    Thyroiditis is one of the most common extrahepatic manifestations of hepatitis C virus (HCV) infection. By binding to surface cell receptor CD81, HCV envelope glycoprotein E2 mediates entry of HCV into cells. Studies have shown that different viral proteins may individually induce host responses to infection. We hypothesized that HCV E2 protein binding to CD81 expressed on thyroid cells activates a cascade of inflammatory responses that can trigger autoimmune thyroiditis in susceptible individuals. Human thyroid cell lines ML-1 and human thyrocytes in primary cell culture were treated with HCV recombinant E2 protein. The expression of major proinflammatory cytokines was measured at the messenger RNA and protein levels. Next-generation transcriptome analysis was used to identify early changes in gene expression in thyroid cells induced by E2. HCV envelope protein E2 induced strong inflammatory responses in human thyrocytes, resulting in production of interleukin (IL)-8, IL-6, and tumor necrosis factor-α. Furthermore, the E2 protein induced production of several heat shock proteins including HSP60, HSP70p12A, and HSP10, in human primary thyrocytes. In thyroid cell line ML-1, RNA sequencing identified upregulation of molecules involved in innate immune pathways with high levels of proinflammatory cytokines and chemokines and increased expression of costimulatory molecules, specifically CD40, known to be a major thyroid autoimmunity gene. Our data support a key role for HCV envelope protein E2 in triggering thyroid autoimmunity through activation of cytokine pathways by bystander mechanisms. Copyright © 2017 by the Endocrine Society

  15. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  17. Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging.

    Science.gov (United States)

    Primiani, Christopher T; Ryan, Veronica H; Rao, Jagadeesh S; Cam, Margaret C; Ahn, Kwangmi; Modi, Hiren R; Rapoport, Stanley I

    2014-01-01

    Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable transcriptional regulatory networks that operate

  18. Phagocytosis of haemozoin (malarial pigment enhances metalloproteinase-9 activity in human adherent monocytes: Role of IL-1beta and 15-HETE

    Directory of Open Access Journals (Sweden)

    Giribaldi Giuliana

    2008-08-01

    Full Text Available Abstract Background It has been shown previously that human monocytes fed with haemozoin (HZ or trophozoite-parasitized RBCs displayed increased matrix metalloproteinase-9 (MMP-9 enzyme activity and protein/mRNA expression and increased TNF production, and showed higher matrix invasion ability. The present study utilized the same experimental model to analyse the effect of phagocytosis of: HZ, delipidized HZ, beta-haematin (lipid-free synthetic HZ and trophozoites on production of IL-1beta and MMP-9 activity and expression. The second aim was to find out which component of HZ was responsible for the effects. Methods Native HZ freshly isolated from Plasmodium falciparum (Palo Alto strain, Mycoplasma-free, delipidized HZ, beta-haematin (lipid-free synthetic HZ, trophozoites and control meals such as opsonized non-parasitized RBCs and inert latex particles, were fed to human monocytes. The production of IL-1beta by differently fed monocytes, in presence or absence of specific MMP-9 inhibitor or anti-hIL-1beta antibodies, was quantified in supernatants by ELISA. Expression of IL-1beta was analysed by quantitative real-time RT-PCR. MMP-9 activity and protein expression were quantified by gelatin zymography and Western blotting. Results Monocytes fed with HZ or trophozoite-parasitized RBCs generated increased amounts of IL-1beta and enhanced enzyme activity (in cell supernatants and protein/mRNA expression (in cell lysates of monocyte MMP-9. The latter appears to be causally related to enhanced IL-1beta production, as enhancement of both expression and enzyme activity were abrogated by anti-hIL-1beta Abs. Upregulation of IL-1beta and MMP-9 were absent in monocytes fed with beta-haematin or delipidized HZ, indicating a role for HZ-attached or HZ-generated lipid components. 15-HETE (15(S,R-hydroxy-6,8,11,13-eicosatetraenoic acid a potent lipoperoxidation derivative generated by HZ from arachidonic acid via haem-catalysis was identified as one mediator

  19. A Brief History of IL-1 and IL-1 Ra in Rheumatology

    Directory of Open Access Journals (Sweden)

    Jean-Michel Dayer

    2017-05-01

    Full Text Available The history of what, in 1979, was called interleukin-1 (IL-1, orchestrator of leukocyte inter-communication, began many years before then, initially by the observation of fever induction via the endogenous pyrogen (EP (1974 and then in rheumatology on the role in tissue destruction in rheumatoid diseases via the induction of collagenase and PGE2 in human synovial cells by a mononuclear cell factor (MCF (1977. Since then, the family has exploded to presently 11 members as well as many membrane-bound and soluble receptor forms. The discovery of a natural Interleukin-1 receptor antagonist (IL-1Ra in human biological fluids has highlighted the importance of IL-1 and IL-1Ra in human diseases. Evidence delineating its role in autoinflammatory syndromes and the elucidation of the macromolecular complex referred to as “inflammasome” have been instrumental to our understanding of the link with IL-1. At present, the IL-1blockade as therapeutic approach is crucial for many hereditary autoinflammatory diseases, as well as for adult-onset Still’s disease, crystal-induced arthropathies, certain skin diseases including neutrophil-triggered skin diseases, Behçet’s disease and deficiency of IL-1Ra and other rare fever syndromes. Its role is only marginally important in rheumatoid arthritis and is still under debate with regard to osteoarthritis, type 2 diabetes mellitus, cardiovascular diseases and cancer. This brief historical review focuses on some aspects of IL-1, mainly IL-1β and IL-Ra, in rheumatology. There are many excellent reviews focusing on the IL-1 family in general or with regard to specific diseases or biological discoveries.

  20. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Increasing the biological activity of IL-2 and IL-15 through complexing with anti-IL-2 mAbs and Il-15Ralfa-Fc chimera

    Czech Academy of Sciences Publication Activity Database

    Votavová, Petra; Tomala, Jakub; Kovář, Marek

    2014-01-01

    Roč. 195, č. 1 (2014), s. 1-10 ISSN 0165-2478 R&D Projects: GA ČR GAP301/11/0325; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR GA13-12885S Institutional support: RVO:61388971 Keywords : IL-2 * IL-15 * chimera Subject RIV: EC - Immunology Impact factor: 2.512, year: 2014

  2. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    Science.gov (United States)

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  4. Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors

    Science.gov (United States)

    Raviprakash, Nune; Manna, Sunil Kumar

    2014-01-01

    BACKGROUND AND PURPOSE One of the first steps in host defence is the migration of leukocytes. IL-8 and its receptors are a chemokine system essential to such migration. Up-regulation of these receptors would be a viable strategy to treat dysfunctional host defence. Here, we studied the effects of the plant glycoside oleandrin on responses to IL-8 in a human monocytic cell line. EXPERIMENTAL APPROACH U937 cells were incubated with oleandrin (1-200 ng mL−1) for either 1 h (pulse) or for 24 h (non-pulse). Apoptosis; activation of NF-κB, AP-1 and NFAT; calcineurin activity and IL-8 receptors (CXCR1 and CXCR2) were measured using Western blotting, RT-PCR and reporter gene assays. KEY RESULTS Pulse exposure to oleandrin did not induce apoptosis or cytoxicity as observed after non-pulse exposure. Pulse exposure enhanced activation of NF-κB induced by IL-8 but not that induced by TNF-α, IL-1, EGF or LPS. Exposure to other apoptosis-inducing compounds (azadirachtin, resveratrol, thiadiazolidine, or benzofuran) did not enhance activation of NF-κB. Pulse exposure to oleandrin increased expression of IL-8 receptors and chemotaxis, release of enzymes and activation of NF-κB, NFAT and AP-1 along with increased IL-8-mediated calcineurin activation, and wound healing. Pulse exposure increased numbers of cell surface IL-8 receptors. CONCLUSIONS AND IMPLICATIONS Short-term (1 h; pulse) exposure to a toxic glycoside oleandrin, enhanced biological responses to IL-8 in monocytic cells, without cytoxicity. Pulse exposure to oleandrin could provide a viable therapy for those conditions where leukocyte migration is defective. PMID:24172227

  5. Fisetin inhibits IL-31 production in stimulated human mast cells: Possibilities of fisetin being exploited to treat histamine-independent pruritus.

    Science.gov (United States)

    Che, Denis Nchang; Cho, Byoung Ok; Shin, Jae Young; Kang, Hyun Ju; Kim, Young-Soo; Jang, Seon Il

    2018-05-15

    Interleukin-31 (IL-31) is a recently discovered cytokine that is tightly linked to the pathogenesis of pruritus seen in atopic dermatitis. Flavonoids, like fisetin, are naturally occurring molecules with antioxidant, cytoprotective, and anti-inflammatory actions. the present study sought to investigate whether fisetin modulates IL-31 and histamine release in human mast cells (HMC-1). HMC-1 cells were pretreated with fisetin at various doses and stimulated with phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PI) for different time intervals. We evaluated IL-31 production and histamine release and signaling mechanism of the action of fisetin on IL-31 production. We also investigated the effects of fisetin on scratching behaviors in mice. Fisetin decreased PI-stimulated mRNA expression and production of IL-31 in HMC-1 cells. Fisetin inhibited PI-induced phosphorylation of mitogen-activated protein kinases that further suppressed nuclear factor (NF-κB) activation and translocation to the nucleus through the inhibition of IκB-α phosphorylation. Fisetin also prevented mast cell release of histamine in HMC-1 cells. Mice in-vivo studies show that fisetin reduced scratching behaviors in mice. These pharmacological actions of fisetin provide new suggestions that fisetin can be of potential use for the treatment of pruritus that cannot be treated with histamine receptor blockers alone. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. IL-1β and TNFα inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: implications for the anti-inflammatory action of n-3 fatty acids.

    Science.gov (United States)

    Muredda, Laura; Kępczyńska, Małgorzata A; Zaibi, Mohamed S; Alomar, Suliman Y; Trayhurn, Paul

    2018-05-01

    Regulation of the expression of GPCR fatty acid receptor genes has been examined in human adipocytes differentiated in culture. TNFα and IL-1β induced a marked reduction in GPR120 expression, mRNA level falling 17-fold at 24 h in adipocytes incubated with TNFα. In contrast, GPR84 mRNA was dramatically increased by these cytokines (>500-fold for IL-1β at 4 h); GPR41 expression was also stimulated. Rosiglitazone did not affect GPR84 expression, but GPR120 and GPR41 expression increased. Dexamethasone, insulin, linoleic and docosahexaenoic acids (DHA), and TUG891 (GPR120 agonist) had little effect on GPR120 and GPR84 expression. TUG891 did not attenuate the pro-inflammatory actions of TNFα and IL-1β. DHA slightly countered the actions of IL-1β on CCL2, IL6 and ADIPOQ expression, though not on secretion of these adipokines. GPR120 and GP84 gene expression in human adipocytes is highly sensitive to pro-inflammatory mediators; the inflammation-induced inhibition of GPR120 expression may compromise the anti-inflammatory action of GPR120 agonists.

  7. Polymorphisms in Th1/Th2 Cytokine Genes, Hormone Replacement Therapy, and Risk of Non-Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Gongjian; Pan, Dongsheng [Gansu Provincial Academy of Medical Sciences, Gansu Provincial Tumor Hospital, Lanzhou (China); Yale University School of Public Health, New Haven, CT (United States); Zheng, Tongzhang [Yale University School of Public Health, New Haven, CT (United States); Lan, Qing [Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD (United States); Chen, Xuezhong [Gansu Provincial Academy of Medical Sciences, Gansu Provincial Tumor Hospital, Lanzhou (China); Chen, Yingtai [Yale University School of Public Health, New Haven, CT (United States); Cancer Institute/Hospital, Chinese Academy of Medical Sciences, Beijing, P.R. (China); Kim, Christopher [Yale University School of Public Health, New Haven, CT (United States); Bi, Xiaofeng [Yale University School of Public Health, New Haven, CT (United States); Cancer Institute/Hospital, Chinese Academy of Medical Sciences, Beijing, P.R. (China); Holford, Theodore [Yale University School of Public Health, New Haven, CT (United States); Boyle, Peter [International Prevention Research Institute, Lyon (France); Leaderer, Brian [Yale University School of Public Health, New Haven, CT (United States); Chanock, Stephen J. [Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD (United States); Core Genotyping Facility, Department of Health and Human Services, Advanced Technology Center, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Rothman, Nathaniel [Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD (United States); Zhang, Yawei, E-mail: yawei.zhang@yale.edu [Yale University School of Public Health, New Haven, CT (United States)

    2011-07-28

    We conducted a population-based case–control study in Connecticut women to test the hypothesis that genetic variations in Th1 and Th2 cytokine genes modify the relationship between hormone replacement therapy (HRT) and risk of non-Hodgkin lymphoma (NHL). Compared to women without a history of HRT use, women with a history of HRT use had a significantly decreased risk of NHL if they carried IFNGR2 (rs1059293) CT/TT genotypes (OR = 0.5, 95%CI: 0.3–0.9), IL13 (rs20541) GG genotype (OR = 0.6, 95%CI: 0.4–0.9), and IL13 (rs1295686) CC genotype (OR = 0.6, 95%CI: 0.4–0.8), but not among women who carried IFNGR2 CC, IL13 AG/AA, and IL13CT/TT genotypes. A similar pattern was also observed for B-cell lymphoma but not for T-cell lymphoma. A statistically significant interaction was observed for IFNGR2 (rs1059293 P{sub for} {sub interaction} = 0.024), IL13(rs20541 P{sub for} {sub interaction} = 0.005), IL13 (rs1295686 P{sub for} {sub interaction} = 0.008), and IL15RA (rs2296135 P{sub for} {sub interaction} = 0.049) for NHL overall; IL13 (rs20541 P{sub for} {sub interaction} = 0.0009), IL13(rs1295686 P{sub for} {sub interaction} = 0.0002), and IL15RA (rs2296135 P{sub for} {sub interaction} = 0.041) for B-cell lymphoma. The results suggest that common genetic variation in Th1/Th pathway genes may modify the association between HRT and NHL risk.

  8. Identification of NR4A2 as a transcriptional activator of IL-8 expression in human inflammatory arthritis.

    LENUS (Irish Health Repository)

    Aherne, Carol M

    2009-10-01

    Expression of the orphan nuclear receptor NR4A2 is controlled by pro-inflammatory mediators, suggesting that NR4A2 may contribute to pathological processes in the inflammatory lesion. This study identifies the chemoattractant protein, interleukin 8 (IL-8\\/CXCL8), as a molecular target of NR4A2 in human inflammatory arthritis and examines the mechanism through which NR4A2 modulates IL-8 expression. In TNF-alpha-activated human synoviocyte cells, enhanced expression of IL-8 mRNA and protein correspond to temporal changes in NR4A2 transcription and nuclear distribution. Ectopic expression of NR4A2 leads to robust changes in endogenous IL-8 mRNA levels and co-treatment with TNF-alpha results in significant (p<0.001) secretion of IL-8 protein. Transcriptional effects of NR4A2 on the human IL-8 promoter are enhanced in the presence of TNF-alpha, suggesting molecular crosstalk between TNF-alpha signalling and NR4A2. A dominant negative IkappaB kinase antagonizes the combined effects of NR4A2 and TNF-alpha on IL-8 promoter activity. Co-expression of NR4A2 and the p65 subunit of NF-kappaB enhances IL-8 transcription and functional studies indicate that transactivation occurs independently of NR4A2 binding to DNA or heterodimerization with additional nuclear receptors. The IL-8 minimal promoter region is sufficient to support NR4A2 and NF-kappaB\\/p65 co-operative activity and NR4A2 can interact with NF-kappaB\\/p65 on a 39bp sequence within this region. In patients treated with methotrexate for active inflammatory arthritis, a reduction in NR4A2 synovial tissue levels correlate significantly (n=10, r=0.73, p=0.002) with changes in IL-8 expression. Collectively, these data delineate an important role for NR4A2 in modulating IL-8 expression and reveal novel transcriptional responses to TNF-alpha in human inflammatory joint disease.

  9. Genetic regulation of parasite infection: empirical evidence of the functional significance of an IL4 gene SNP on nematode infections in wild primates

    Directory of Open Access Journals (Sweden)

    Kappeler Peter M

    2011-04-01

    Full Text Available Abstract Background Susceptibility to parasite infection affects fitness-related processes, such as mate choice and survival, yet its genetic regulation remains poorly understood. Interleukin-4 (IL4 plays a central role in the humoral immune defence against nematode parasite infections, inducing IgE switch and regulation of worm expulsion from the intestines. The evolutionary and functional significance of single nucleotide polymorphisms (SNPs in IL4-genes is known, yet empirical information on the effect of IL4 SNPs on gastro-intestinal infections is lacking. Using samples from a population of wild red-fronted lemurs (Eulemur fulvus rufus, Primates: Lemuridae, from western Madagascar, we explored the association of IL4-gene promoter polymorphisms with nematode infections and investigated a possible functional role of the IL4 polymorphism on male reproductive success. Results Using sequence analyses of lemur DNA we detected a new SNP in the IL4 gene promoter area. Carriers of the genotype T/T showed higher nematode infection intensities than individuals of genotypes C/T and C/C. Genetic population analyses using data from more than 10 years, suggested higher reproductive success of T/T males than expected. Conclusions Our results suggest a regulatory effect of an IL4 gene promoter polymorphism on the intensity of parasite infections in a natural population of red-fronted lemurs, with a seemingly disadvantageous genotype represented in low frequencies. Long-term population analyses, however, point in the direction of a negative frequency-dependent association, giving a fitness advantage to the rare genotype. Due to low frequencies of the genotype in question conclusive evidence of a functional role of IL4 polymorphism cannot be drawn here; still, we suggest the use of IL4 polymorphism as a new molecular tool for quick assessment of individual genetic constitution with regard to nematode infection intensities, contributing to a better

  10. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy.

    Science.gov (United States)

    Michel, S; Busato, F; Genuneit, J; Pekkanen, J; Dalphin, J-C; Riedler, J; Mazaleyrat, N; Weber, J; Karvonen, A M; Hirvonen, M-R; Braun-Fahrländer, C; Lauener, R; von Mutius, E; Kabesch, M; Tost, J

    2013-03-01

    Genetic susceptibility and environmental influences are important contributors to the development of asthma and atopic diseases. Epigenetic mechanisms may facilitate gene by environment interactions in these diseases. We studied the rural birth cohort PASTURE (Protection against allergy: study in rural environments) to investigate (a) whether epigenetic patterns in asthma candidate genes are influenced by farm exposure in general, (b) change over the first years of life, and (c) whether these changes may contribute to the development of asthma. DNA was extracted from cord blood and whole blood collected at the age of 4.5 years in 46 samples per time point. DNA methylation in 23 regions in ten candidate genes (ORMDL1, ORMDL2, ORMDL3, CHI3L1, RAD50, IL13, IL4, STAT6, FOXP3, and RUNX3) was assessed by pyrosequencing, and differences between strata were analyzed by nonparametric Wilcoxon-Mann-Whitney tests. In cord blood, regions in ORMDL1 and STAT6 were hypomethylated in DNA from farmers' as compared to nonfarmers' children, while regions in RAD50 and IL13 were hypermethylated (lowest P-value (STAT6) = 0.001). Changes in methylation over time occurred in 15 gene regions (lowest P-value (IL13) = 1.57*10(-8)). Interestingly, these differences clustered in the genes highly associated with asthma (ORMDL family) and IgE regulation (RAD50, IL13, and IL4), but not in the T-regulatory genes (FOXP3, RUNX3). In this first pilot study, DNA methylation patterns change significantly in early childhood in specific asthma- and allergy-related genes in peripheral blood cells, and early exposure to farm environment seems to influence methylation patterns in distinct genes. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  11. Structure and chromosomal localization of the human renal kallikrein gene

    International Nuclear Information System (INIS)

    Evans, B.A.; Yun, Z.X.; Close, J.A.

    1988-01-01

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7

  12. Palmitate and insulin synergistically induce IL-6 expression in human monocytes

    Directory of Open Access Journals (Sweden)

    Lumpkin Charles K

    2010-11-01

    Full Text Available Abstract Background Insulin resistance is associated with a proinflammatory state that promotes the development of complications such as type 2 diabetes mellitus (T2DM and atherosclerosis. The metabolic stimuli that initiate and propagate proinflammatory cytokine production and the cellular origin of proinflammatory cytokines in insulin resistance have not been fully elucidated. Circulating proinflammatory monocytes show signs of enhanced inflammation in obese, insulin resistant subjects and are thus a potential source of proinflammatory cytokine production. The specific, circulating metabolic factors that might stimulate monocyte inflammation in insulin resistant subjects are poorly characterized. We have examined whether saturated nonesterified fatty acids (NEFA and insulin, which increase in concentration with developing insulin resistance, can trigger the production of interleukin (IL-6 and tumor necrosis factor (TNF-α in human monocytes. Methods Messenger RNA and protein levels of the proinflammatory cytokines IL-6 and TNF-α were measured by quantitative real-time PCR (qRT-PCR and Luminex bioassays. Student's t-test was used with a significance level of p Results Esterification of palmitate with coenzyme A (CoA was necessary, while β-oxidation and ceramide biosynthesis were not required, for the induction of IL-6 and TNF-α in THP-1 monocytes. Monocytes incubated with insulin and palmitate together produced more IL-6 mRNA and protein, and more TNF-α protein, compared to monocytes incubated with palmitate alone. Incubation of monocytes with insulin alone did not affect the production of IL-6 or TNF-α. Both PI3K-Akt and MEK/ERK signalling pathways are important for cytokine induction by palmitate. MEK/ERK signalling is necessary for synergistic induction of IL-6 by palmitate and insulin. Conclusions High levels of saturated NEFA, such as palmitate, when combined with hyperinsulinemia, may activate human monocytes to produce

  13. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2.

    LENUS (Irish Health Repository)

    Stevens, Niall T

    2009-03-01

    Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and\\/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.

  14. Cytokines (interleukin-9, IL-17, IL-22, IL-25 and IL-33 and asthma

    Directory of Open Access Journals (Sweden)

    Rahim Farahani

    2014-01-01

    Full Text Available Asthma is a reversible airway obstruction that is characterized by constriction of airway smooth muscle, hyper secretion of mucus, edema and airway hyper responsiveness (AHR, mucus secretion and thickening of the basement membrane underlying the airway epithelium. During the process of airway inflammation, complex interactions of innate and adaptive immune cells as well as structural cells and their cytokines have many important roles. It was believed that airway inflammation is orchestrated by allergen specific T helper (Th 2 cells, which recruit and accumulate in the lungs and produce a range of different effector cytokines. However, more recent studies have revealed the potential collaboration of other helper T cells and their cytokines in this process. Th17 cell may have a role in severe asthma and chronic obstructive pulmonary disease (COPD. Interleukin (IL-9-producing subset called Th9 cell, Th22 cells which primarily secrete IL-22, IL-13 and tumor necrosis factor-α and Th25 cells via producing IL-25 are believed to be important for initiating allergic reactions and developing airway inflammation. Cytokines are important in asthma and play a critical role in orchestrating the allergic inflammatory response, although the precise role of each cytokine remains to be determined. The aim of this review is to summarize the current knowledge about the possible roles of newly identified helper T cells derived cytokines (IL-9, 17, 22, 25 and IL-33 in asthma. The potential therapeutic applications emerging from the roles of these cytokines will be discussed as well.

  15. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  16. Anti-Allergic Inflammatory Activity of Interleukin-37 Is Mediated by Novel Signaling Cascades in Human Eosinophils

    Directory of Open Access Journals (Sweden)

    Jing Zhu

    2018-06-01

    Full Text Available IL-1 family regulatory cytokine IL-37b can suppress innate immunity and inflammatory activity in inflammatory diseases. In this study, IL-37b showed remarkable in vitro suppression of inflammatory tumor necrosis factor-α, IL-1β, IL-6, CCL2, and CXCL8 production in the coculture of human primary eosinophils and human bronchial epithelial BEAS-2B cells with the stimulation of bacterial toll-like receptor-2 ligand peptidoglycan, while antagonizing the activation of intracellular nuclear factor-κB, PI3K–Akt, extracellular signal-regulated kinase 1/2, and suppressing the gene transcription of allergic inflammation-related PYCARD, S100A9, and CAMP as demonstrated by flow cytometry, RNA-sequencing, and bioinformatics. Results therefore elucidated the novel anti-inflammation-related molecular mechanisms mediated by IL-37b. Using the house dust mite (HDM-induced humanized asthmatic NOD/SCID mice for preclinical study, intravenous administration of IL-37b restored the normal plasma levels of eosinophil activators CCL11 and IL-5, suppressed the elevated concentrations of Th2 and asthma-related cytokines IL-4, IL-6, and IL-13 and inflammatory IL-17, CCL5, and CCL11 in lung homogenate of asthmatic mice. Histopathological results of lung tissue illustrated that IL-37b could mitigate the enhanced mucus, eosinophil infiltration, thickened airway wall, and goblet cells. Together with similar findings using the ovalbumin- and HDM-induced allergic asthmatic mice further validated the therapeutic potential of IL-37b in allergic asthma. The above results illustrate the novel IL-37-mediated regulation of intracellular inflammation mechanism linking bacterial infection and the activation of human eosinophils and confirm the in vivo anti-inflammatory activity of IL-37b on human allergic asthma.

  17. Human eosinophils are direct targets to nanoparticles: Zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the pro-inflammatory cytokines IL-1β and IL-8.

    Science.gov (United States)

    Silva, Luis Rafael; Girard, Denis

    2016-09-30

    Zinc oxide NPs (ZnO) have been recently proposed as novel candidates for the treatment of allergic inflammatory diseases. Paradoxically, recent data suggested that ZnO could cause eosinophilic airway inflammation in rodents. Despite the above observations, there are currently no studies reporting direct interaction between a given NP and human eosinophils themselves. In this study, freshly isolated human eosinophils were incubated with ZnO and several cellular functions were studied. We found that ZnO delay human eosinophil apoptosis, partially by inhibiting caspases and by preventing caspase-4 and Bcl-xL degradation. ZnO do not induce production of reactive oxygen species but increase de novo protein synthesis. In addition, ZnO were found to increase the production of the proinflammatory IL-1β and IL-8 cytokines. Using a pharmacological approach, we demonstrated that inhibition of caspase-1 reversed the ability of ZnO to induce IL-1β and IL-8 production, whereas inhibition of caspase-4 only reversed that of IL-8. Our results indicate the necessity of conducting studies to determine the potential of using NP as nanotherapies, particularly in diseases in which eosinophils may be involved. We conclude that, indeed, human eosinophils represent potential new direct targets to NPs, ZnO in the present case. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells.

    Science.gov (United States)

    Miranda, Dante; Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra; Montoya, Margarita

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.

  19. Molecular cloning, expression, and in silico structural analysis of guinea pig IL-17.

    Science.gov (United States)

    Dirisala, Vijaya R; Jeevan, Amminikutty; Ramasamy, Suresh K; McMurray, David N

    2013-11-01

    Interleukin-17A (IL-17A) is a potent proinflammatory cytokine and the signature cytokine of Th17 cells, a subset which is involved in cytokine and chemokine production, neutrophil recruitment, promotion of T cell priming, and antibody production. IL-17 may play an important role in tuberculosis and other infectious diseases. In preparation for investigating its role in the highly relevant guinea pig model of pulmonary tuberculosis, we cloned guinea pig IL-17A for the first time. The complete coding sequence of the guinea pig IL-17A gene (477 nucleotides; 159 amino acids) was subcloned into a prokaryotic expression vector (pET-30a) resulting in the expression of a 17 kDa recombinant guinea pig IL-17A protein which was confirmed by mass spectrometry analysis. Homology modeling of guinea pig IL-17A revealed that the three-dimensional structure resembles that of human IL-17A. The secondary structure predicted for this protein showed the presence of one extra helix in the N-terminal region. The expression profile of IL-17A was analyzed quantitatively in spleen, lymph node, and lung cells from BCG-vaccinated guinea pigs by real-time PCR. The guinea pig IL-17A cDNA and its recombinant protein will serve as valuable tools for molecular and immunological studies in the guinea pig model of pulmonary TB and other human diseases.

  20. Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils.

    Science.gov (United States)

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Shima, Yoshihito; Ohshima, Shiro; Fujimoto, Minoru; Yamadori, Tomoki; Kawase, Ichiro; Tanaka, Toshio

    2004-06-01

    We have previously shown that fisetin, a flavonol, inhibits IL-4 and IL-13 synthesis by allergen- or anti-IgE-antibody-stimulated basophils. This time, we investigated the inhibition of IL-4 and IL-13 production by basophils by other flavonoids and attempted to determine the fundamental structure of flavonoids related to inhibition. We additionally investigated whether flavonoids suppress leukotriene C4 synthesis by basophils and IL-4 synthesis by T cells in response to anti-CD3 antibody. Highly purified peripheral basophils were stimulated for 12 h with anti-IgE antibody alone or anti-IgE antibody plus IL-3 in the presence of various concentrations of 18 different kinds of flavones and flavonols. IL-4 and IL-13 concentrations in the supernatants were then measured. Leukotriene C4 synthesis was also measured after basophils were stimulated for 1 h in the presence of flavonoids. Regarding the inhibitory activity of flavonoids on IL-4 synthesis by T cells, peripheral blood mononuclear cells were cultured with flavonoids in anti-CD3-antibody-bound plates for 2 days. Luteolin, fisetin and apigenin were found to be the strongest inhibitors of both IL-4 and IL-13 production by basophils but did not affect leukotriene C4 synthesis. At higher concentrations, these flavonoids suppressed IL-4 production by T cells. Based on a hierarchy of inhibitory activity, the basic structure for IL-4 inhibition by basophils was determined. Due to the inhibitory activity of flavonoids on IL-4 and IL-13 synthesis, it can be expected that the intake of flavonoids, depending on the quantity and quality, may ameliorate allergic symptoms or prevent the onset of allergic diseases. Copyright 2004 S. Karger AG, Basel

  1. Evaluation of the Role of -137G/C Single Nucleotide Polymorphism (rs187238 and Gene Expression Levels of the IL-18 in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Fatemeh Hoseini

    2018-03-01

    Full Text Available Objectives: Interleukin-18 (IL-18 is a proinflammatory and proatherogenic cytokine, and its genetic variations may contribute to the development of coronary artery disease (CAD. We sought to investigate the role of -137G/C polymorphism and gene expression levels of IL-18 in patients with CAD. Methods: The study population included 100 patients with angiographically proven CAD and 100 matched controls. Total RNA and DNA were extracted from leukocytes using appropriate kits. The genotype of -137G/C polymorphism and gene expression level of IL-18 was determined using allele-specific polymerase chain reaction (PCR and real-time (RT-PCR assay, respectively. Results: The genotypic and allelic distribution of IL-18 -137G/C polymorphism was not significantly different between the two groups (p > 0.050. Moreover, the -137G/C polymorphism did not increase the risk of CAD in dominant and recessive genetic models (p > 0.050. However, subgroup analysis of CAD patients revealed that the IL-18 -137G/C polymorphism was significantly associated with increased risk of CAD in hypertensive patients (odds ratio (OR = 7.51; 95% confidence interval (CI: 1.24–25.17; p = 0.019 and smokers (OR = 4.90; 95% CI: 1.21–19.70; p = 0.031 but not in the diabetic subpopulation (p = 0.261. The genotype distribution of IL-18 -137G/C genetic polymorphism was significantly different among patients with one, two, and three stenotic vessels (p < 0.050. The gene expression level of IL-18 was significantly higher in the CAD group than the control group (p < 0.001. Moreover, the carriers of CC genotype had significantly lower gene expression levels of IL-18 than carriers of GG genotype (p < 0.050.Conclusions: The -137G/C polymorphism of IL-18 may be associated with the CAD risk in hypertensive and smoker subgroup of CAD patients. The -137G/C polymorphism seems to play an important role in determining the severity of CAD. Increased IL-18 gene expression level is a significant risk

  2. Microarray analysis of gene expression alteration in human middle ear epithelial cells induced by micro particle.

    Science.gov (United States)

    Song, Jae-Jun; Kwon, Jee Young; Park, Moo Kyun; Seo, Young Rok

    2013-10-01

    The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). The HMEEC was treated with PM (300 μg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. In humans IL-6 is released from the brain during and after exercise and paralleled by enhanced IL-6 mRNA expression in the hippocampus of mice

    DEFF Research Database (Denmark)

    Rasmussen, Per; Vedel, J-C; Olesen, J

    2011-01-01

    Aim: Plasma interleukin-6 (IL-6) increases during exercise by release from active muscles and during prolonged exercise also from the brain. The IL-6 release from muscles continues into recovery and we tested whether the brain also releases IL-6 in recovery from prolonged exercise in humans....... Additionally, it was evaluated in mice whether brain release of IL-6 reflected enhanced IL-6 mRNA expression in the brain as modulated by brain glycogen levels. Methods: Nine healthy male subjects completed 4 h of ergometer rowing while the arterio-jugular venous difference (a-v diff) for IL-6 was determined....... The IL-6 mRNA and the glycogen content were determined in mouse hippocampus, cerebellum and cortex before and after 2 h treadmill running (N = 8). Results: At rest, the IL-6 a-v diff was negligible but decreased to -2.2 ± 1.9 pg ml(-1) at the end of exercise and remained low (-2.1 ± 2.1 pg ml(-1) ) 1 h...

  4. Interactions between diet, lifestyle and IL10, IL1B, and PTGS2/COX-2 gene polymorphisms in relation to risk of colorectal cancer in a prospective Danish case-cohort study.

    Directory of Open Access Journals (Sweden)

    Vibeke Andersen

    Full Text Available BACKGROUND & AIMS: Diet contributes to colorectal cancer development and may be potentially modified. We wanted to identify the biological mechanisms underlying colorectal carcinogenesis by assessment of diet-gene interactions. METHODS: The polymorphisms IL10 C-592A (rs1800872, C-rs3024505-T, IL1b C-3737T (rs4848306, G-1464C (rs1143623, T-31C (rs1143627 and PTGS2 (encoding COX-2 A-1195G (rs689466, G-765C (rs20417, and T8473C (rs5275 were assessed in relation to risk of colorectal cancer (CRC and interaction with diet (red meat, fish, fibre, cereals, fruit and vegetables and lifestyle (non-steroid-anti-inflammatory drug use and smoking status was assessed in a nested case-cohort study of nine hundred and seventy CRC cases and 1789 randomly selected participants from a prospective study of 57,053 persons. RESULTS: IL1b C-3737T, G-1464C and PTGS2 T8473C variant genotypes were associated with risk of CRC compared to the homozygous wildtype genotype (IRR=0.81, 95%CI: 0.68-0.97, p=0.02, and IRR=1.22, 95%CI: 1.04-1.44, p=0.02, IRR=0.75, 95%CI: 0.57-0.99, p=0.04, respectively. Interactions were found between diet and IL10 rs3024505 (P-value for interaction (P(int; meat=0.04, fish=0.007, fibre=0.0008, vegetables=0.0005, C-592A (P(int; fibre=0.025, IL1b C-3737T (Pint; vegetables=0.030, NSAID use=0.040 and PTGS2 genotypes G-765C (P(int; meat=0.006, fibre=0.0003, fruit 0.004, and T8473C (P(int; meat 0.049, fruit=0.03 and A-1195G (P(int; meat 0.038, fibre 0.040, fruit=0.059, vegetables=0.025, and current smoking=0.046. CONCLUSIONS: Genetically determined low COX-2 and high IL-1β activity were associated with increased risk of CRC in this northern Caucasian cohort. Furthermore, interactions were found between IL10, IL1b, and PTGS2 and diet and lifestyle factors in relation to CRC. The present study demonstrates that gene-environment interactions may identify genes and environmental factors involved in colorectal carcinogenesis.

  5. Effects of β-D-mannuronic acid, as a novel non-steroidal anti-inflammatory medication within immunosuppressive properties, on IL17, RORγt, IL4 and GATA3 gene expressions in rheumatoid arthritis patients

    Directory of Open Access Journals (Sweden)

    Barati A

    2017-03-01

    Full Text Available Anis Barati,1 Ahmad Reza Jamshidi,2,* Hossein Ahmadi,1 Zahra Aghazadeh,1 Abbas Mirshafiey1,* 1Department of Immunology, School of Public Health, 2Iranian Institute for Health Sciences Research, Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran *These authors contributed equally to this work Abstract: Rheumatoid arthritis (RA is the most common form of chronic inflammatory arthritis characterized by pain, swelling and destruction of joints, with a resultant disability. Disease-modifying anti-rheumatic drugs (DMARDs and biological drugs can interfere with the disease process. In this study, the effect of β-D-mannuronic acid (M2000 as a novel non-steroidal anti-inflammatory drug (NSAID with immunosuppressive and anti-inflammatory effects together with antioxidant effects was evaluated on IL17, RORγt, IL4 and GATA3 gene expression in 12 RA patients. Previously, M2000 driven from sodium alginate (natural product; patented, DEU: 102016113018.4 has shown a notable efficacy in experimental models of multiple sclerosis, RA and nephrotic syndrome. This study was performed on 12 patients with RA who had an inadequate response to conventional treatments. During this trial, patients were permitted to continue the conventional therapy excluding NSAIDs. M2000 was administered orally at a dose of 500 mg twice daily for 12 weeks. The peripheral blood mononuclear cells (PBMCs were collected before and after treatment to evaluate the expression levels of IL4, GATA3, IL17 and RORγt. The gene expression results showed that M2000 has a potent efficacy, so that it could not only significantly decrease IL17 and RORγt levels but also increase IL4 and GATA3 levels after 12 weeks of treatment. Moreover, the gene expression results were in accordance with the clinical and preclinical assessments. In conclusion, M2000 as a natural novel agent has therapeutic and immunosuppressive properties on RA patients (identifier

  6. Role of the IL-12/IL-35 balance in patients with Sjögren syndrome.

    Science.gov (United States)

    Fogel, Olivier; Rivière, Elodie; Seror, Raphaèle; Nocturne, Gaetane; Boudaoud, Saida; Ly, Bineta; Gottenberg, Jacques-Eric; Le Guern, Véronique; Dubost, Jean-Jacques; Nititham, Joanne; Taylor, Kimberly E; Chanson, Philippe; Dieudé, Philippe; Criswell, Lindsey A; Jagla, Bernd; Thai, Alice; Mingueneau, Michael; Mariette, Xavier; Miceli-Richard, Corinne

    2017-09-12

    An interferon signature is involved in the pathogenesis of primary Sjögren syndrome (pSS), but whether the signature is type 1 or type 2 remains controversial. Mouse models and genetic studies suggest the involvement of T H 1 and type 2 interferon pathways. Likewise, polymorphisms of the IL-12A gene (IL12A), which encodes for IL-12p35, have been associated with pSS. The IL-12p35 subunit is shared by 2 heterodimers: IL-12 and IL-35. We sought to confirm genetic association of the IL12A polymorphism and pSS and elucidate involvement of the IL-12/IL-35 balance in patients with pSS by using functional studies. The genetic study involved 673 patients with pSS from 2 French pSS cohorts and 585 healthy French control subjects. Functional studies were performed on sorted monocytes, irrespective of whether they were stimulated. IL12A mRNA expression and IL-12 and IL-35 protein levels were assessed by using quantitative RT-PCR and ELISA and a multiplex kit for IL-35 and IL-12, respectively. We confirmed association of the IL12A rs485497 polymorphism and pSS and found an increased serum protein level of IL-12p70 in patients with pSS carrying the risk allele (P = .016). Serum levels of IL-12p70 were greater in patients than control subjects (P = .0001), especially in patients with more active disease (P = .05); conversely, IL-35 levels were decreased in patients (P = .0001), especially in patients with more active disease (P = .05). In blood cellular subsets both IL12p35 and EBV-induced gene protein 3 (EBI3) mRNAs were detected only in B cells, with a trend toward a lower level among patients with pSS. Our findings emphasize involvement of the IL-12/IL-35 balance in the pathogenesis of pSS. Serum IL-35 levels were associated with low disease activity, in contrast with serum IL-12p70 levels, which were associated with more active disease. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Associations of polymorphisms in the cytokine genes IL1β (rs16944), IL6 (rs1800795), IL12b (rs3212227) and growth factor VEGFA (rs2010963) with anthracosilicosis in coal miners in Russia and related genotoxic effects.

    Science.gov (United States)

    Volobaev, Valentin P; Larionov, Aleksey V; Kalyuzhnaya, Ekaterina E; Serdyukova, Ekaterina S; Yakovleva, Svetlana; Druzhinin, Vladimir G; Babich, Olga O; Hill, Elena G; Semenihin, Victor A; Panev, Nikolay I; Minina, Varvara I; Sivanesan, Saravana Devi; Naoghare, Pravin; da Silva, Juliana; Barcelos, Gustavo R M; Prosekov, Alexander Y

    2018-04-13

    Anthracosilicosis (AS), a prevalent form of pneumoconiosis among coal miners, results from the accumulation of carbon and silica in the lungs from inhaled coal dust. This study investigated genotoxic effects and certain cytokine genes polymorphic variants in Russian coal miners with АS. Peripheral leukocytes were sampled from 129 patients with AS confirmed by X-ray and tissue biopsy and from 164 asymptomatic coal miners. Four single-nucleotide polymorphisms were genotyped in the extracted DNA samples: IL1β T-511C (rs16944), IL6 C-174G (rs1800795), IL12b A1188C (rs3212227) and VEGFA C634G (rs2010963). Genotoxic effects were assessed by the analysis of chromosome aberrations in cultured peripheral lymphocytes. The mean frequency of chromatid-type aberrations and chromosome-type aberrations, namely, chromatid-type breaks and dicentric chromosomes, was found to be higher in AS patients [3.70 (95% confidence interval {CI}, 3.29-4.10) and 0.28 (95% CI, 0.17-0.38)] compared to the control group [2.41 (95% CI, 2.00-2.82) and 0.09 (95% CI, 0.03-0.15)], respectively. ILgene T/T genotype (rs16944) was associated with AS [17.83% in AS patients against 4.35% in healthy donors, odds ratio = 4.77 (1.88-12.15), P < 0.01]. A significant increase in the level of certain chromosome interchanges among AS donors is of interest because such effects are typical for radiation damage and caused by acute oxidative stress. IL1β T allele probably may be considered as an AS susceptibility factor among coal miners.

  8. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    Science.gov (United States)

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  9. Pharmacogenetics of efficacy and safety of HCV treatment in HCV-HIV coinfected patients: significant associations with IL28B and SOCS3 gene variants.

    Directory of Open Access Journals (Sweden)

    Francesc Vidal

    Full Text Available This was a safety and efficacy pharmacogenetic study of a previously performed randomized trial which compared the effectiveness of treatment of hepatitis C virus infection with pegylated interferon alpha (pegIFNα 2a vs. 2b, both with ribavirin, for 48 weeks, in HCV-HIV coinfected patients.The study groups were made of 99 patients (efficacy pharmacogenetic substudy and of 114 patients (safety pharmacogenetic substudy. Polymorphisms in the following candidate genes IL28B, IL6, IL10, TNFα, IFNγ, CCL5, MxA, OAS1, SOCS3, CTLA4 and ITPA were assessed. Genotyping was carried out using Sequenom iPLEX-Gold, a single-base extension polymerase chain reaction. Efficacy end-points assessed were: rapid, early and sustained virological response (RVR, EVR and SVR, respectively. Safety end-points assessed were: anemia, neutropenia, thrombocytopenia, flu-like syndrome, gastrointestinal disturbances and depression. Chi square test, Student's T test, Mann-Whitney U test and logistic regression were used for statistic analyses.As efficacy is concerned, IL28B and CTLA4 gene polymorphisms were associated with RVR (p<0.05 for both comparisons. Nevertheless, only polymorphism in the IL28B gene was associated with SVR (p = 0.004. In the multivariate analysis, the only gene independently associated with SVR was IL28B (OR 2.61, 95%CI 1.2-5.6, p = 0.01. With respect to safety, there were no significant associations between flu-like syndrome or depression and the genetic variants studied. Gastrointestinal disturbances were associated with ITPA gene polymorphism (p = 0.04. Anemia was associated with OAS1 and CTLA4 gene polymorphisms (p = 0.049 and p = 0.045, respectively, neutropenia and thromobocytopenia were associated with SOCS3 gene polymorphism (p = 0.02 and p = 0.002, respectively. In the multivariate analysis, the associations of the SOCS3 gene polymorphism with neutropenia (OR 0.26, 95%CI 0.09-0.75, p = 0.01 and thrombocytopenia (OR

  10. Association between polymorphic markers of IL-10 gene and chronic diseases of the upper respiratory tract in children living under technogenic pressure

    Directory of Open Access Journals (Sweden)

    Lyudmila Borisovna Masnavieva

    2015-03-01

    Full Text Available Respiratory diseases are among the leading causes of infant morbidity. Disturbances of functioning of the immune system play an important role in their development. Interleukin-10 (IL-10 is a key regulator of the immune response. Mononucleotide substitutions at positions (-1082, (-819 and (-592 of IL-10 gene results in low level of the protein production. Our purpose was to study the associations between polymorphic markers of IL-10 gene and chronic respiratory diseases in children living under conditions of anthropogenic pressure. 189 adolescents living in a city with high levels of air pollution and 82 from a city with a moderate level of contamination were examined. Children with chronic upper airway pathology in remission were identified. Blood samples from all children were tested for allelic variants -1082G / A, -592C / A, -819C / T of IL-10 gene in. Analysis of associations between polymorphic variants and the presence of chronic respiratory diseases was conducted. The -592C allele of IL-10 gene was less common among children with chronic diseases of the respiratory tract living in conditions of moderate air pollution than in the healthy comparison group. Similar association has not been established in thr group of children living in conditions of high air pollution. Thus, the C allele of the polymorphic -592C/A locus marks resistance to the development of a chronic disease of the upper respiratory tract in children living in conditions of moderate air pollution, while in conditions of high level of pollution contribution of genetic factors in its development is leveled.

  11. IL-1β-specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes.

    Science.gov (United States)

    Kim, Nari; Sun, Hwa-Young; Youn, Min-Young; Yoo, Joo-Yeon

    2013-04-01

    To determine the functional specificity of inflammation, it is critical to orchestrate the timely activation and repression of inflammatory responses. Here, we explored the PAF1 (RNA polymerase II associated factor)-mediated signal- and locus-specific repression of genes induced through the pro-inflammatory cytokine interleukin (IL)-1β. Using microarray analysis, we identified the PAF1 target genes whose expression was further enhanced by PAF1 knockdown in IL-1β-stimulated HepG2 hepatocarcinomas. PAF1 bound near the transcription start sites of target genes and dissociated on stimulation. In PAF1-deficient cells, more elongating RNA polymerase II and acetylated histones were observed, although IL-1β-mediated activation and recruitment of nuclear factor κB (NF-κB) were not altered. Under basal conditions, PAF1 blocked histone acetyltransferase general control non-depressible 5 (GCN5)-mediated acetylation on H3K9 and H4K5 residues. On IL-1β stimulation, activated GCN5 discharged PAF1 from chromatin, allowing productive transcription to occur. PAF1 bound to histones but not to acetylated histones, and the chromatin-binding domain of PAF1 was essential for target gene repression. Moreover, IL-1β-induced cell migration was similarly controlled through counteraction between PAF1 and GCN5. These results suggest that the IL-1β signal-specific exchange of PAF1 and GCN5 on the target locus limits inappropriate gene induction and facilitates the timely activation of inflammatory responses.

  12. [Phylogenetic analysis of human/swine/avian gene reassortant H1N2 influenza A virus isolated from a pig in China].

    Science.gov (United States)

    Chen, Yixiang; Meng, Xueqiong; Liu, Qi; Huang, Xia; Huang, Shengbin; Liu, Cuiquan; Shi, Kaichuang; Guo, Jiangang; Chen, Fangfang; Hu, Liping

    2008-04-01

    Our aim in this study was to determine the genetic characterization and probable origin of the H1N2 swine influenza virus (A/Swine/Guangxi/13/2006) (Sw/GX/13/06) from lung tissue of a pig in Guangxi province, China. Eight genes of Sw/GX/13/06 were cloned and genetically analyzed. The hemagglutinin (HA), nucleoprotein (NP), matrix (M) and non-structural (NS) genes of Sw/GX/13/06 were most closely related to genes from the classical swine H1N1 influenza virus lineage. The neuraminidase (NA) and PB1 genes were most closely related to the corresponding genes from the human influenza H3N2 virus lineage. The remaining two genes PA and PB2 polymerase genes were most closely related to the genes from avian influenza virus lineage. Phylogenetic analyses revealed that Sw/GX/13/06 was a human/swine/avian H1N2 virus, and closely related to H1N2 viruses isolated from pigs in United States (1999-2001) and Korea (2002). To our knowledge, Sw/GX/13/06 was the first triple-reassortant H1N2 influenza A virus isolated from a pig in China. Whether the Sw/GX/13/06 has a potential threat to breeding farm and human health remains to be further investigated.

  13. Distant homology between yeast photoreactivating gene fragment and human genomic digests

    International Nuclear Information System (INIS)

    Meechan, P.J.; Milam, K.M.; Cleaver, J.E.

    1985-01-01

    Hybridization of DNA coding for the yeast DNA photolyase to human genomic DNA appears to allow one to determine whether a conserved enzyme is coded for in human cells. Under stringent conditions (68 0 C), hybridization is not found between the cloned yeast fragment (YEp13-phr1) and human or chick genomic digests. At less stringent conditions (60 0 C), hybridization is observed with chick digests, indicating evolutionary divergence even among organisms capable of photo-reactivation. At 50 0 C, weak hybridization with human digests was observed, indicating further divergence from the cloned gene. Data concerning the precise extent of homology and methods to clone the chick gene for use as another probe are discussed

  14. Transforming growth factor beta-1 and interleukin-17 gene transcription in peripheral blood mononuclear cells and the human response to infection.

    LENUS (Irish Health Repository)

    White, Mary

    2012-02-01

    INTRODUCTION: The occurrence of severe sepsis may be associated with deficient pro-inflammatory cytokine production. Transforming growth factor beta-1 (TGFbeta-1) predominantly inhibits inflammation and may simultaneously promote IL-17 production. Interleukin-17 (IL-17) is a recently described pro-inflammatory cytokine, which may be important in auto-immunity and infection. We investigated the hypothesis that the onset of sepsis is related to differential TGFbeta-1 and IL-17 gene expression. METHODS: A prospective observational study in a mixed intensive care unit (ICU) and hospital wards in a university hospital. Patients (59) with severe sepsis; 15 patients with gram-negative bacteraemia but without critical illness and 10 healthy controls were assayed for TGFbeta-1, IL-17a, IL-17f, IL-6 and IL-1beta mRNA in peripheral blood mononuclear cells (PBMC) by quantitative real-time PCR and serum protein levels by ELISA. RESULTS: TGFbeta-1 mRNA levels are reduced in patients with bacteraemia and sepsis compared with controls (p=0.02). IL-6 mRNA levels were reduced in bacteraemic patients compared with septic patients and controls (p=0.008). IL-1beta mRNA levels were similar in all groups, IL-17a and IL-17f mRNA levels are not detectable in peripheral blood mononuclear cells. IL-6 protein levels were greater in patients with sepsis than bacteraemic and control patients (p<0.0001). Activated TGFbeta-1 and IL-17 protein levels were similar in all groups. IL-1beta protein was not detectable in the majority of patients. CONCLUSIONS: Down regulation of TGFbeta-1 gene transcription was related to the occurrence of infection but not the onset of sepsis. Interleukin-17 production in PBMC may not be significant in the human host response to infection.

  15. Effects of phosphorylatable short peptide-conjugated chitosan-mediated IL-1Ra and igf-1 gene transfer on articular cartilage defects in rabbits.

    Directory of Open Access Journals (Sweden)

    Ronglan Zhao

    Full Text Available Previously, we reported an improvement in the transfection efficiency of the plasmid DNA-chitosan (pDNA/CS complex by the utilization of phosphorylatable short peptide-conjugated chitosan (pSP-CS. In this study, we investigated the effects of pSP-CS-mediated gene transfection of interleukin-1 receptor antagonist protein (IL-1Ra combined with insulin-like growth factor-1 (IGF-1 in rabbit chondrocytes and in a rabbit model of cartilage defects. pBudCE4.1-IL-1Ra+igf-1, pBudCE4.1-IL-1Ra and pBudCE4.1-igf-1 were constructed and combined with pSP-CS to form pDNA/pSP-CS complexes. These complexes were transfected into rabbit primary chondrocytes or injected into the joint cavity. Seven weeks after treatment, all rabbits were sacrificed and analyzed. High levels of IL-1Ra and igf-1 expression were detected both in the cell culture supernatant and in the synovial fluid. In vitro, the transgenic complexes caused significant proliferation of chondrocytes, promotion of glycosaminoglycan (GAG and collagen II synthesis, and inhibition of chondrocyte apoptosis and nitric oxide (NO synthesis. In vivo, the exogenous genes resulted in increased collagen II synthesis and reduced NO and GAG concentrations in the synovial fluid; histological studies revealed that pDNA/pSP-CS treatment resulted in varying degrees of hyaline-like cartilage repair and Mankin score decrease. The co-expression of both genes produced greater effects than each single gene alone both in vitro and in vivo. The results suggest that pSP-CS is a good candidate for use in gene therapy for the treatment of cartilage defects and that igf-1 and IL-1Ra co-expression produces promising biologic effects on cartilage defects.

  16. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2.

    Science.gov (United States)

    Li, Hongxia; Yu, Juhua; Li, Jianlin; Tang, Yongkai; Yu, Fan; Zhou, Jie; Yu, Wenjuan

    2016-04-01

    Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13

    OpenAIRE

    Sankaran, Vijay G.; Menne, Tobias F.; Šćepanović, Danilo; Vergilio, Jo-Anne; Ji, Peng; Kim, Jinkuk; Thiru, Prathapan; Orkin, Stuart H.; Lander, Eric S.; Lodish, Harvey F.

    2011-01-01

    Many human aneuploidy syndromes have unique phenotypic consequences, but in most instances it is unclear whether these phenotypes are attributable to alterations in the dosage of specific genes. In human trisomy 13, there is delayed switching and persistence of fetal hemoglobin (HbF) and elevation of embryonic hemoglobin in newborns. Using partial trisomy cases, we mapped this trait to chromosomal band 13q14; by examining the genes in this region, two microRNAs, miR-15a and -16-1, appear as t...

  18. A human repair gene ERCC5 is involved in group G xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Shiomi, Tadahiro

    1994-01-01

    In E. coli, ultraviolet-induced DNA damage is removed by the coordinated action of UVR A, B, C, and D proteins (1). In Saccharomyces cerevisiae, more than ten genes have been reported to be involved in excision repair (2). The nucleotide excision repair pathway has been extensively studied in these organisms. To facilitate studying nucleotide excision repair in mammalian cells. Ultraviolet-sensitive rodent cell mutants have been isolated and classified into 11 complementation groups (9,10). The human nucleotide excision repair genes which complement the defects of the mutants have been designated as the ERCC (excision repair cross-complementing) genes; a number is added to refer to the particular rodent complementation group that is corrected by the gene. Recently, several human DNA repair genes have been cloned using rodent cell lines sensitive to ultraviolet. These include ERCC2 (3), ERCC3 (4), and ERCC6 (5), which correspond to the defective genes in the ultraviolet-sensitive human disorders xeroderma pigmentosum (XP) group D (6) and group B (4), and Cockayne's syndrome (CS) group B (7), respectively. The human excision repair gene ERCC5 was cloned after DNA-mediated gene transfer of human HeLa cell genomic DNA into the ultraviolet-sensitive mouse mutant XL216, a member of rodent complementation group 5 (11,12) and the gene was mapped on human chromosome 13q32.3-q33.1 by the replication R-banding fluorescence in situ hybridization method (13). The ERCC5 cDNA encodes a predicted 133 kDa nuclear protein that shares some homology with product of the yeast DNA repair gene RAD 2. Transfection with mouse ERCC5 cDNA restored normal levels of ultraviolet-resistance to XL216 cells. Microinjection of ERCC5 cDNA specifically restored the defect of XP group G cells (XP-G) as measured by unscheduled DNA synthesis (UDS), and XP-G cells stably transformed with ERCC5 cDNA showed nearly normal ultraviolet resistance. (J.P.N.)

  19. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Perkins Timothy N

    2012-02-01

    Full Text Available Abstract Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis, and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2. Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75 and high (150 × 106μm2/cm2 amounts, respectively (p 6μm2/cm2 induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p FOS, ATF3, IL6 and IL8 early and over time (2, 4, 8, and 24 h. Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2 revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and

  20. Gene polymorphisms and febrile neutropenia in acute leukemia--no association with IL-4, CCR-5, IL-1RA, but the MBL-2, ACE, and TLR-4 are associated with the disease in Turkish patients: a preliminary study.

    Science.gov (United States)

    Pehlivan, Mustafa; Sahin, Handan Haydaroğlu; Ozdilli, Kurşat; Onay, Hüseyin; Ozcan, Ali; Ozkinay, Ferda; Pehlivan, Sacide

    2014-07-01

    The aim of this study was to investigate the mannose-binding lectin 2 (MBL-2), interleukin (IL)-4, Toll-like receptor 4 (TLR-4), angiotensin converting enzyme (ACE), chemokine receptor 5 (CCR-5), and IL-1 receptor antagonist (RA) gene polymorphisms (GPs) in acute leukemias (ALs) and to evaluate their roles in febrile neutropenia (FN) resulting from chemotherapy. The study included 60 AL patients hospitalized between the period of July 2001 and August 2006. Polymorphisms for the genes ACE(I/D), CCR-5, IL-1RA, MBL-2, TLR-4, and IL-4 were typed by polymerase chain reaction (PCR) and/or PCR-restriction fragment length polymerase. Genotype frequencies for these genes were compared in the patient and control groups. The relationships between the genotypes and the body distribution of infections, pathogens, the duration of neutropenia, and febrile episodes in AL patients were evaluated. No significant differences in either the genotype distribution or the allelic frequencies of TLR-4, IL-4, CCR-5, IL-1RN GPs were observed between patients and healthy controls. The AB/BB genotype (53.3%) in the MBL-2 gene was found to be significantly higher in the AL patients compared with control groups. There were correlations between the presence of MBL-2, TLR-4, and ACE polymorphisms and clinical parameters due to FN. Overall, bacteremia was more common in MBL BB and ACE DD. Gram-positive bacteremia was more common in ACE for ID versus DD genotype. Gram-negative bacteremia was more common for both the MBL-2 AB/BB genotype and TLR-4 AG genotype. Median durations of febrile episodes were significantly shorter in ACE DD and MBL AB/BB. Although TLR-4, ACE, and MBL-2 GPs have been extensively investigated in different clinical pictures, this is the first study to evaluate the role of these polymorphisms in the genetic etiopathogenesis of FN in patients with ALs. As a conclusion, TLR-4, ACE, and MBL-2 genes might play roles in the genetic etiopathogenesis of FN in patients with ALs.

  1. Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.

    Science.gov (United States)

    Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank

    2016-06-01

    TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Association study of IL10, IL1beta, and IL1RN and schizophrenia using tag SNPs from a comprehensive database: suggestive association with rs16944 at IL1beta.

    Science.gov (United States)

    Shirts, Brian H; Wood, Joel; Yolken, Robert H; Nimgaonkar, Vishwajit L

    2006-12-01

    Genetic association studies of several candidate cytokine genes have been motivated by evidence of immune dysfunction among patients with schizophrenia. Intriguing but inconsistent associations have been reported with polymorphisms of three positional candidate genes, namely IL1beta, IL1RN, and IL10. We used comprehensive sequencing data from the Seattle SNPs database to select tag SNPs that represent all common polymorphisms in the Caucasian population at these loci. Associations with 28 tag SNPs were evaluated in 478 cases and 501 unscreened control individuals, while accounting for population sub-structure using the genomic control method. The samples were also stratified by gender, diagnostic category, and exposure to infectious agents. Significant association was not detected after correcting for multiple comparisons. However, meta-analysis of our data combined with previously published association studies of rs16944 (IL1beta -511) suggests that the C allele confers modest risk for schizophrenia among individuals reporting Caucasian ancestry, but not Asians (Caucasians, n=819 cases, 1292 controls; p=0.0013, OR=1.24, 95% CI 1.09, 1.41).

  3. The role of single nucleotide polymorphism of IL-6 and IL-10 cytokine on pain severity and pain relief after radiotherapy in multiple myeloma patients with painful bone destructions

    Directory of Open Access Journals (Sweden)

    Rudzianskiene Milda

    2014-01-01

    Full Text Available Multiple myeloma (MM cells interact with bone marrow stromal cells stimulating transcription and secretion of cytokines like IL-6 and IL-10, which are implicated in the progression and dissemination of MM. Regulation of cytokines secretion is under genetic control through genetic polymorphisms in their coding and promoter sequences. It seems that single nucleotide polymorphism (SNP in the promoter region of various genes may regulate the plasma concentrations of cytokines. Cytokines could be also hypothesized to function as pain modulators as peripheral nociceptors are sensitized by cytokines. The aim was to determine if the SNP of IL-6 and IL-10 cytokines could influence the analgesic response of radiotherapy in the treatment of painful bone destructions in MM patients. 30 patients (19 women and 11 men, median age: 67 years with MM and painful bone destructions were treated with palliative radiotherapy. Pain was evaluated according to the visual analogue scale and analgesics intake. Pain scores and analgesics use were measured prior to radiotherapy as well as 4, 12 and 24 weeks afterward. Opioid analgesics were converted to the morphine-equivalent daily dose (MEDD. Genomic DNA was extracted from peripheral blood leukocytes and IL-6 and IL-10 gene promoter polymorphisms were analysed with polymerase chain reaction. 60% of patients reported severe pain prior to radiotherapy, which decreased to 13% at the first follow-up visit (p <0.001. The MEDD on admission to the hospital was 75 mg/day which decreased to 46 mg/day at the first follow-up visit (p = 0.033. A significant parameter in pain relief was: age < 65 years (p=0.029. We analysed 6 SNPs in the gene promoter region of IL-6 (-597 G/A, -572 G/C, -174 G/C and IL-10 (-592 A/C, -819 C/T, -1082 A/G as well as their relation with pain severity and analgesic consumption. Patients who are IL-10 -1082 A/G carriers are prone to respond better to radiotherapy than other patients (p<0.05. A borderline

  4. The Association of the Immune Response Genes to Human Papillomavirus-Related Cervical Disease in a Brazilian Population

    Directory of Open Access Journals (Sweden)

    Amanda Vansan Marangon

    2013-01-01

    Full Text Available The genetic variability of the host contributes to the risk of human papillomavirus (HPV-related cervical disease. Immune response genes to HPV must be investigated to define patients with the highest risk of developing malignant disease. The aim of this study was to investigate the association of polymorphic immune response genes, namely KIR, HLA class I and II, and single-nucleotide polymorphisms (SNPs of cytokines with HPV-related cervical disease. We selected 79 non-related, admixed Brazilian women from the state of Paraná, southern region of Brazil, who were infected with high carcinogenic risk HPV and present cervical intraepithelial neoplasia grade 3 (CIN3, and 150 HPV-negative women from the same region matched for ethnicity. KIR genes were genotyped using an in-house PCR-SSP. HLA alleles were typed using a reverse sequence-specific oligonucleotide technique. SNPs of TNF −308G>A, IL6 −174G>C, IFNG +874T>A, TGFB1 +869T>C +915G>C, and IL10 −592C>A −819C>T −1082G>A were evaluated using PCR-SSP. The KIR genes were not associated with HPV, although some pairs of i(inhibitoryKIR-ligands occurred more frequently in patients, supporting a role for NK in detrimental chronic inflammatory and carcinogenesis. Some HLA haplotypes were associated with HPV. The associations of INFG and IL10 SNPs potentially reflect impaired or invalid responses in advanced lesions.

  5. The Association of the Immune Response Genes to Human Papillomavirus-Related Cervical Disease in a Brazilian Population

    Science.gov (United States)

    Marangon, Amanda Vansan; Guelsin, Gláucia Andreia Soares; Visentainer, Jeane Eliete Laguila; Borelli, Sueli Donizete; Watanabe, Maria Angélica Ehara; Consolaro, Márcia Edilaine Lopes; Caleffi-Ferracioli, Katiany Rizzieri; Rudnick, Cristiane Conceição Chagas; Sell, Ana Maria

    2013-01-01

    The genetic variability of the host contributes to the risk of human papillomavirus (HPV)-related cervical disease. Immune response genes to HPV must be investigated to define patients with the highest risk of developing malignant disease. The aim of this study was to investigate the association of polymorphic immune response genes, namely KIR, HLA class I and II, and single-nucleotide polymorphisms (SNPs) of cytokines with HPV-related cervical disease. We selected 79 non-related, admixed Brazilian women from the state of Paraná, southern region of Brazil, who were infected with high carcinogenic risk HPV and present cervical intraepithelial neoplasia grade 3 (CIN3), and 150 HPV-negative women from the same region matched for ethnicity. KIR genes were genotyped using an in-house PCR-SSP. HLA alleles were typed using a reverse sequence-specific oligonucleotide technique. SNPs of TNF −308G>A, IL6 −174G>C, IFNG +874T>A, TGFB1 +869T>C +915G>C, and IL10 −592C>A −819C>T −1082G>A were evaluated using PCR-SSP. The KIR genes were not associated with HPV, although some pairs of i(inhibitory)KIR-ligands occurred more frequently in patients, supporting a role for NK in detrimental chronic inflammatory and carcinogenesis. Some HLA haplotypes were associated with HPV. The associations of INFG and IL10 SNPs potentially reflect impaired or invalid responses in advanced lesions. PMID:23936772

  6. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research.

    Science.gov (United States)

    Riccio, Evelyn K P; Pratt-Riccio, Lilian R; Bianco-Júnior, Cesare; Sanchez, Violette; Totino, Paulo R R; Carvalho, Leonardo J M; Daniel-Ribeiro, Cláudio Tadeu

    2015-04-18

    The neotropical, non-human primates (NHP) of the genus Saimiri and Aotus are recommended by the World Health Organization as experimental models for the study of human malaria because these animals can be infected with the same Plasmodium that cause malaria in humans. However, one limitation is the lack of immunological tools to assess the immune response in these models. The present study focuses on the development and comparative use of molecular and immunological methods to evaluate the cellular immune response in Saimiri sciureus. Blood samples were obtained from nineteen uninfected Saimiri. Peripheral blood mononuclear cells (PBMC) from these animals and splenocytes from one splenectomized animal were cultured for 6, 12, 18, 24, 48, 72 and 96 hrs in the presence of phorbol-12-myristate-13-acetate and ionomycin. The cytokine levels in the supernatant were detected using human and NHP cytometric bead array Th1/Th2 cytokine kits, the Bio-Plex Pro Human Cytokine Th1/Th2 Assay, enzyme-linked immunosorbent assay, enzyme-linked immunospot assays and intracellular cytokine secretion assays. Cytokine gene expression was examined through TaqMan® Gene Expression Real-Time PCR using predesigned human gene-specific primers and probes or primers and probes designed based on published S. sciureus cytokine sequences. The use of five assays based on monoclonal antibodies specific for human cytokines facilitated the detection of IL-2, IL-4 and/or IFN-γ. TaqMan array plates facilitated the detection of 12 of the 28 cytokines assayed. However, only seven cytokines (IL-1A, IL-2, IL-10, IL-12B, IL-17, IFN-β, and TNF) presented relative expression levels of at least 70% of the gene expression observed in human PBMC. The use of primers and probes specific for S. sciureus cytokines facilitated the detection of transcripts that showed relative expression below the threshold of 70%. The most efficient evaluation of cytokine gene expression, in PBMC and splenocytes, was observed

  7. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    Science.gov (United States)

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  8. Regulated gene expression in cultured type II cells of adult human lung.

    Science.gov (United States)

    Ballard, Philip L; Lee, Jae W; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R; Fischer, Horst; Illek, Beate; Gonzales, Linda W; Kolla, Venkatadri; Matthay, Michael A

    2010-07-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.

  9. Influence of IL15 gene variations on the clinical features, treatment response and risk of developing childhood acute lymphoblastic leukemia in Latvian population.

    Science.gov (United States)

    Rots, Dmitrijs; Kreile, Madara; Nikulshin, Sergejs; Kovalova, Zhanna; Gailite, Linda

    2018-02-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Modern treatment protocols allow achievement of long-term event-free survival rates in up to 85% of cases, although the treatment response varies among different patient groups. It is hypothesized that treatment response is influenced by the IL15 gene variations, although research results are conflicting. To analyze IL15 gene variations influence treatment response, clinical course and the risk of developing ALL we performed a case-control and family-based study. The study included 81 patients with childhood ALL. DNA samples of both or one biological parent were available for 62 of ALL patients and 130 age and gender adjusted healthy samples were used as a control group. Analyzed IL15 gene variations: rs10519612, rs10519613 and rs17007695 were genotyped using PCR-RFLP assay. Our results shows that IL15 gene variations haplotypes are associated with the risk of developing childhood ALL (p variations separately. The variations rs10519612 and rs1059613 in a recessive pattern of inheritance were associated with hyperdiploidy (p = 0.048). Analyzed genetic variations had no impact on other clinical features and treatment response (assessed by the minimal residual disease) in our study.

  10. Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth.

    Directory of Open Access Journals (Sweden)

    Je Seon Song

    Full Text Available There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38 and anterior deciduous teeth (n = 31 extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP, tissue development (IGF2BP, MAB21L2, and PAX3, and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18. The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18, myocontraction (PDE3B, CASQ2, and MYH10, and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21. The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.

  11. Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth.

    Science.gov (United States)

    Song, Je Seon; Hwang, Dong Hwan; Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun

    2013-01-01

    There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.

  12. Purification, crystallization and preliminary X-ray diffraction analysis of the IL-20-IL-20R1-IL-20R2 complex

    Energy Technology Data Exchange (ETDEWEB)

    Logsdon, Naomi J.; Allen, Christopher E.; Rajashankar, Kanagalaghatta R.; Walter, Mark R. (Cornell); (UAB)

    2012-02-08

    Interleukin-20 (IL-20) is an IL-10-family cytokine that regulates innate and adaptive immunity in skin and other tissues. In addition to protecting the host from various external pathogens, dysregulated IL-20 signaling has been shown to contribute to the pathogenesis of human psoriasis. IL-20 signals through two cell-surface receptor heterodimers, IL-20R1-IL-20R2 and IL-22R1-IL-20R2. In this report, crystals of the IL-20-IL-20R1-IL-20R2 ternary complex have been grown from polyethylene glycol solutions. The crystals belonged to space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = 111, c = 135 {angstrom}, and diffracted X-rays to 3 {angstrom} resolution. The crystallographic asymmetric unit contains one IL-20-IL-20R1-IL-20R2 complex, corresponding to a solvent content of approximately 54%.

  13. IL-2 absorption affects IFN-gamma and IL-5, but not IL-4 producing memory T cells in double color cytokine ELISPOT assays.

    Science.gov (United States)

    Quast, Stefan; Zhang, Wenji; Shive, Carey; Kovalovski, Damian; Ott, Patrick A; Herzog, Bernhard A; Boehm, Bernhard O; Tary-Lehmann, Magdalena; Karulin, Alexey Y; Lehmann, Paul V

    2005-09-01

    Cytokine assays are gaining increasing importance for human immune monitoring because they reliably detect antigen-specific T cells in primary PBMC, even at low clonal sizes. Double color ELISPOT assays permit the simultaneous visualization of cells producing two different cytokines. Permitting the simultaneous assessment of type 1 and 2 immunity and due to the limited numbers of PBMC available from human study subjects, double color assays should be particularly attractive for clinical trials. Since the performance of double color assays has not yet been validated, we set out to compare them to single color measurements. Testing the recall antigen-induced cytokine response of PBMC, we found that double color assays regularly provided lower numbers of IFN-gamma and IL-5 spots than single color measurements when IL-2 detection was part of the double color assay. We showed that the inhibitory effect resulted from IL-2 absorption and could be overcome by either antibody free preactivation cultures or by inclusion of anti-CD28 antibody. In contrast, the simultaneous detection of IL-2 did not affect the numbers of IL-4 spots. Therefore, unlike IL-2/IL-4 and IFN-gamma/IL-5 assays, IL-2/IFN-gamma, and IL-2/IL-5 assays require compensation for the IL-2 capture to provide accurate numbers for the frequencies of cytokine producing memory T cells.

  14. Polarized secretion of interleukin (IL-6 and IL-8 by human airway epithelia 16HBE14o- cells in response to cationic polypeptide challenge.

    Directory of Open Access Journals (Sweden)

    Alison Wai-ming Chow

    Full Text Available BACKGROUND: The airway epithelium participates in asthmatic inflammation in many ways. Target cells of the epithelium can respond to a variety of inflammatory mediators and cytokines. Damage to the surface epithelium occurs following the secretion of eosinophil-derived, highly toxic cationic proteins. Moreover, the surface epithelium itself is responsible for the synthesis and release of cytokines that cause the selective recruitment, retention, and accumulation of various inflammatory cells. To mimic the damage seen during asthmatic inflammation, the bronchial epithelium can be challenged with highly charged cationic polypeptides such as poly-L-arginine. METHODOLOGY/PRINCIPAL FINDINGS: In this study, human bronchial epithelial cells, 16HBE14o- cells, were "chemically injured" by exposing them to poly-l-arginine as a surrogate of the eosinophil cationic protein. Cytokine antibody array data showed that seven inflammatory mediators were elevated out of the 40 tested, including marked elevation in interleukin (IL-6 and IL-8 secretion. IL-6 and IL-8 mRNA expression levels were elevated as measured with real-time PCR. Cell culture supernatants from apical and basolateral compartments were collected, and the IL-6 and IL-8 production was quantified with ELISA. IL-6 and IL-8 secretion by 16HBE14o- epithelia into the apical compartment was significantly higher than that from the basolateral compartment. Using specific inhibitors, the production of IL-6 and IL-8 was found to be dependent on p38 MAPK, ERK1/2 MAPK, and NF-kappaB pathways. CONCLUSIONS/SIGNIFICANCE: The results clearly demonstrate that damage to the bronchial epithelia by poly-L-arginine stimulates polarized IL-6 and IL-8 secretion. This apically directed secretion of cytokines may play an important role in orchestrating epithelial cell responses to inflammation.

  15. Polymorphisms in the TNFA and IL6 genes represent risk factors for autoimmune thyroid disease.

    Directory of Open Access Journals (Sweden)

    Cecília Durães

    Full Text Available Autoimmune thyroid disease (AITD comprises diseases including Hashimoto's thyroiditis and Graves' disease, both characterized by reactivity to autoantigens causing, respectively, inflammatory destruction and autoimmune stimulation of the thyroid-stimulating hormone receptor. AITD is the most common thyroid disease and the leading form of autoimmune disease in women. Cytokines are key regulators of the immune and inflammatory responses; therefore, genetic variants at cytokine-encoding genes are potential risk factors for AITD.Polymorphisms in the IL6-174 G/C (rs1800795, TNFA-308 G/A (rs1800629, IL1B-511 C/T (rs16944, and IFNGR1-56 T/C (rs2234711 genes were assessed in a case-control study comprising 420 Hashimoto's thyroiditis patients, 111 Graves' disease patients and 735 unrelated controls from Portugal. Genetic variants were discriminated by real-time PCR using TaqMan SNP genotyping assays.A significant association was found between the allele A in TNFA-308 G/A and Hashimoto's thyroiditis, both in the dominant (OR = 1.82, CI = 1.37-2.43, p-value = 4.4×10(-5 and log-additive (OR = 1.64, CI = 1.28-2.10, p-value = 8.2×10(-5 models. The allele C in IL6-174 G/C is also associated with Hashimoto's thyroiditis, however, only retained significance after multiple testing correction in the log-additive model (OR = 1.28, CI = 1.06-1.54, p-value = 8.9×10(-3. The group with Graves' disease also registered a higher frequency of the allele A in TNFA-308 G/A compared with controls both in the dominant (OR = 1.85, CI = 1.19-2.87, p-value = 7.0×10(-3 and log-additive (OR = 1.69, CI = 1.17-2.44, p-value = 6.6×10(-3 models. The risk for Hashimoto's thyroiditis and Graves' disease increases with the number of risk alleles (OR for two risk alleles is, respectively, 2.27 and 2.59.This study reports significant associations of genetic variants in TNFA and IL6 with the risk for AITD, highlighting the

  16. Short-term acetaminophen consumption enhances the exercise-induced increase in Achilles peritendinous IL-6 in humans

    DEFF Research Database (Denmark)

    Gump, Brian S; McMullan, David R; Cauthon, David J

    2013-01-01

    Through an unknown mechanism the cyclooxygenase (COX) inhibitor acetaminophen (APAP) alters tendon mechanical properties in humans when consumed during exercise. Interleukin-6 (IL-6) is produced by tendon during exercise and is a potent stimulator of collagen synthesis. In non-tendon tissue, IL-6...... is upregulated in presence of COX-inhibitors and may contribute to alterations in extracellular matrix turnover, possibly due to inhibition of prostaglandin E2 (PGE2). We evaluated the effects of APAP on IL-6 and PGE2 in human Achilles peritendinous tissue after 1-hour of treadmill exercise. Subjects were...... randomly assigned to a placebo (n=8, 26±1 y) or APAP (n=8, 25±1 y) group. Each subject completed a non-exercise and exercise experiment consisting of 6-hours of microdialysis. Drug (APAP, 1000 mg) or placebo was administered in a double-blind manner during both experiments. PGE2 and IL-6 were determined...

  17. Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Christopher T Primiani

    Full Text Available Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases.Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades.We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains and Aging (22 to 78 years, 144 brains intervals, in transcription levels of 39 genes.Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1.Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable transcriptional regulatory networks

  18. Coordinated Gene Expression of Neuroinflammatory and Cell Signaling Markers in Dorsolateral Prefrontal Cortex during Human Brain Development and Aging

    Science.gov (United States)

    Primiani, Christopher T.; Ryan, Veronica H.; Rao, Jagadeesh S.; Cam, Margaret C.; Ahn, Kwangmi; Modi, Hiren R.; Rapoport, Stanley I.

    2014-01-01

    Background Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Hypothesis Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. Methods We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Results Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Conclusions Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable

  19. Membrane Microdomains and Cytoskeleton Organization Shape and Regulate the IL-7 Receptor Signalosome in Human CD4 T-cells*

    Science.gov (United States)

    Tamarit, Blanche; Bugault, Florence; Pillet, Anne-Hélène; Lavergne, Vincent; Bochet, Pascal; Garin, Nathalie; Schwarz, Ulf; Thèze, Jacques; Rose, Thierry

    2013-01-01

    Interleukin (IL)-7 is the main homeostatic regulator of CD4 T-lymphocytes (helper) at both central and peripheral levels. Upon activation by IL-7, several signaling pathways, mainly JAK/STAT, PI3K/Akt and MAPK, induce the expression of genes involved in T-cell differentiation, activation, and proliferation. We have analyzed the early events of CD4 T-cell activation by IL-7. We have shown that IL-7 in the first few min induces the formation of cholesterol-enriched membrane microdomains that compartmentalize its activated receptor and initiate its anchoring to the cytoskeleton, supporting the formation of the signaling complex, the signalosome, on the IL-7 receptor cytoplasmic domains. Here we describe by stimulated emission depletion microscopy the key roles played by membrane microdomains and cytoskeleton transient organization in the IL-7-regulated JAK/STAT signaling pathway. We image phospho-STAT5 and cytoskeleton components along IL-7 activation kinetics using appropriate inhibitors. We show that lipid raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3 phosphorylation. Drug-induced disassembly of the cytoskeleton inhibits phospho-STAT5 formation, transport, and translocation into the nucleus that controls the transcription of genes involved in T-cell activation and proliferation. We fit together the results of these quantitative analyses and propose the following mechanism. Activated IL-7 receptors embedded in membrane microdomains induce actin-microfilament meshwork formation, anchoring microtubules that grow radially from rafted receptors to the nuclear membrane. STAT5 phosphorylated by signalosomes are loaded on kinesins and glide along the microtubules across the cytoplasm to reach the nucleus 2 min after IL-7 stimulation. Radial microtubules disappear 15 min later, while transversal microtubules, independent of phospho-STAT5 transport, begin to bud from the microtubule organization center. PMID:23329834

  20. Effects of overexpression of IL-1 receptor-associated kinase on NFkappaB activation, IL-2 production and stress-activated protein kinases in the murine T cell line EL4.

    Science.gov (United States)

    Knop, J; Wesche, H; Lang, D; Martin, M U

    1998-10-01

    The association and activation of the IL-1 receptor-associated protein kinase (IRAK) to the IL-1 receptor complex is one of the earliest events detectable in IL-1 signal transduction. We generated permanent clones of the murine T cell line EL4 6.1 overexpressing human (h)IRAK to evaluate the role of this kinase in IL-1 signaling. Overexpression of hIRAK enhanced IL-1-stimulated activation of the transcription factor NFkappaB, whereas a truncated form (N-IRAK) specifically inhibited IL-1-dependent NFkappaB activity. In clones stably overexpressing hIRAK a weak constitutive activation of NFkappaB correlated with a low basal IL-2 production which was enhanced in an IL-1-dependent manner. Compared to the parental cell line the dose-response curve of IL-1-induced IL-2 production was shifted in both potency and efficacy. These results demonstrate that IRAK directly triggers NFkappaB-mediated gene expression in EL4 cells. Qualitatively different effects were observed for the IL-1-induced activation of stress-activated protein (SAP) kinases: permanent overexpression of IRAK did not affect the dose dependence but prolonged the kinetics of IL-1-induced activation of SAP kinases, suggesting that this signaling branch may be regulated by distinct mechanisms.

  1. Genetic variants in IL-6 and IL-10 genes and susceptibility to hepatocellular carcinoma in HCV infected patients.

    Science.gov (United States)

    Sghaier, Ikram; Mouelhi, Leila; Rabia, Noor A; Alsaleh, Bano R; Ghazoueni, Ezzedine; Almawi, Wassim Y; Loueslati, Besma Yacoubi

    2017-01-01

    Hepatitis C virus (HCV) infection is the major cause of hepatocellular carcinoma (HCC), a common primary liver malignancy, and the third leading cause of cancer-related death. The HCC risk increases with the severity of liver inflammation, and the clinical course of HCV infection depends on a balance between pro- and anti-inflammatory cytokines. The former includes interleukin (IL)-6, while the latter includes IL-10. However, the exact pathogenic mechanisms underlying IL-6 and IL-10 effects remain unclear. The present study evaluated 174 chronic HCV Tunisian patients. Polymorphisms of IL-6 (rs1880242, rs1474847, rs2069840, rs1800797, rs1800796, rs2069845, rs2069827, rs1474348, rs1800795), and IL-10 (rs1800896, rs1800871, rs1800872, rs1554286, rs1878672, rs1518111) were determined by real-time PCR. Notable differences between chronic HCV-infected patients and HCC patients were observed for the three IL-10 SNPs; rs1800871 (-819T/C), rs1800872 (-592A/C), and rs1878672. Carriage of IL-6 rs1800796 G/G genotype, IL-6 rs1474358 C-allele, and IL-6 rs1800797 A-allele was more frequent in chronic HCV-infected patients than in HCC patients. On the other hand, IL-6 rs1474358 GG genotype had a favourable factor for HCC establishment. IL-10 and IL-6 SNPs markedly influence the clinical outcomes of HCV infection. These SNPs could be used as biomarkers for early detection and molecular therapy for preventing HCC, and prognostic factors for predicting the clinical outcomes of HCC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. IL-2 induction of IL-1 beta mRNA expression in monocytes. Regulation by agents that block second messenger pathways

    DEFF Research Database (Denmark)

    Kovacs, E J; Brock, B; Varesio, L

    1989-01-01

    We have previously shown that in mixed cultures of PBL incubation with human rIL-2 induces the rapid expression of IL-1 alpha and IL-1 beta mRNA. Because studies have demonstrated that IL-2R can be expressed on the surface of human peripheral blood monocytes, we chose to investigate whether IL-1 ...

  3. A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bustamente, Carlos; Clark, Andrew G.

    2005-01-01

    Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect...... such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved...

  4. Expression of IL-18, IL-18 Binding Protein, and IL-18 Receptor by Normal and Cancerous Human Ovarian Tissues: Possible Implication of IL-18 in the Pathogenesis of Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Liat Medina

    2014-01-01

    Full Text Available Proinflammatory cytokine IL-18 has been shown to be elevated in the sera of ovarian carcinoma patients. The aim of the study was to examine the levels and cellular origin of IL-18, IL-18 binding protein, and IL-18 receptor in normal and cancerous ovarian tissues. Ovarian tissue samples were examined by immunohistochemical staining for IL-18, IL-18BP, and IL-18R and mRNA of these cytokines was analyzed with semiquantitative PT-PCR. IL-18 levels were significantly higher in cancerous ovarian tissues (P=0.0007, IL-18BP levels were significantly higher in normal ovarian tissues (P=0.04, and the ratio of IL-18/IL-18BP was significantly higher in cancerous ovarian tissues (P=0.036. Cancerous ovarian tissues expressed significantly higher IL-18 mRNA levels (P=0.025, while there was no difference in the expression of IL-18BP mRNA and IL-18R mRNA between cancerous and normal ovarian tissues. IL-18 and IL-18BP were expressed dominantly in the epithelial cells of both cancerous and normal ovarian tissues, while IL-18R was expressed dominantly in the epithelial cells of cancerous ovarian tissues but expressed similarly in the epithelial and stromal cells of normal cancerous tissues. This study indicates a possible role of IL-18, IL-18BP, and IL-18R in the pathogenesis of epithelial ovarian carcinoma.

  5. Retnla down-regulation and IL-13-rich environment correlate with inflammation severity in experimental actinomycetoma by Nocardia brasiliensis.

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrián G; Salinas-Carmona, Mario C

    2013-04-01

    Nocardia brasiliensis (Nb) is a facultative intracellular pathogen that may cause actinomycetoma when immune response is unable to control the pathogenic invasion. We used comparative real-time PCR to evaluate the expression level of molecules indicative of either classical or alternative activation of macrophages, as well as of cytokines involved in macrophage polarization, during the experimental infection in BALB/c mice. We found induction or increased expression of the pro-inflammatory markers csf2/GM-CSF, interferon-gamma, and nos2/iNOS. The expression of Ym1 and IL-13, which are usually related with alternative activation of macrophage, was also increased. However, retnla/FIZZ1 expression decreased sharply during the infection. We concluded that Nb infection induces both a pro-inflammatory and anti-inflammatory environment, in which there is a strong inverse correlation between IL-13 and retnla expression. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism.

    Science.gov (United States)

    Lee, Young Ah; Nam, Young Hee; Min, Arim; Kim, Kyeong Ah; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Mirelman, David; Shin, Myeong Heon

    2014-01-01

    Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs) contain large amounts of cysteine proteases (CPs), one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells) were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP)-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2) did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis. © Y.A. Lee et al., published by EDP Sciences, 2014.

  7. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism

    Directory of Open Access Journals (Sweden)

    Lee Young Ah

    2014-01-01

    Full Text Available Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs contain large amounts of cysteine proteases (CPs, one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2 did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis.

  8. Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction

    Directory of Open Access Journals (Sweden)

    Ou Chern-Han

    2007-11-01

    Full Text Available Abstract Background Ganoderma lucidum has been widely used as a herbal medicine for promoting health and longevity in China and other Asian countries. Polysaccharide extracts from Ganoderma lucidum have been reported to exhibit immuno-modulating and anti-tumor activities. In previous studies, F3, the active component of the polysaccharide extract, was found to activate various cytokines such as IL-1, IL-6, IL-12, and TNF-α. This gave rise to our investigation on how F3 stimulates immuno-modulating or anti-tumor effects in human leukemia THP-1 cells. Results Here, we integrated time-course DNA microarray analysis, quantitative PCR assays, and bioinformatics methods to study the F3-induced effects in THP-1 cells. Significantly disturbed pathways induced by F3 were identified with statistical analysis on microarray data. The apoptosis induction through the DR3 and DR4/5 death receptors was found to be one of the most significant pathways and play a key role in THP-1 cells after F3 treatment. Based on time-course gene expression measurements of the identified pathway, we reconstructed a plausible regulatory network of the involved genes using reverse-engineering computational approach. Conclusion Our results showed that F3 may induce death receptor ligands to initiate signaling via receptor oligomerization, recruitment of specialized adaptor proteins and activation of caspase cascades.

  9. Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction.

    Science.gov (United States)

    Cheng, Kun-Chieh; Huang, Hsuan-Cheng; Chen, Jenn-Han; Hsu, Jia-Wei; Cheng, Hsu-Chieh; Ou, Chern-Han; Yang, Wen-Bin; Chen, Shui-Tein; Wong, Chi-Huey; Juan, Hsueh-Fen

    2007-11-09

    Ganoderma lucidum has been widely used as a herbal medicine for promoting health and longevity in China and other Asian countries. Polysaccharide extracts from Ganoderma lucidum have been reported to exhibit immuno-modulating and anti-tumor activities. In previous studies, F3, the active component of the polysaccharide extract, was found to activate various cytokines such as IL-1, IL-6, IL-12, and TNF-alpha. This gave rise to our investigation on how F3 stimulates immuno-modulating or anti-tumor effects in human leukemia THP-1 cells. Here, we integrated time-course DNA microarray analysis, quantitative PCR assays, and bioinformatics methods to study the F3-induced effects in THP-1 cells. Significantly disturbed pathways induced by F3 were identified with statistical analysis on microarray data. The apoptosis induction through the DR3 and DR4/5 death receptors was found to be one of the most significant pathways and play a key role in THP-1 cells after F3 treatment. Based on time-course gene expression measurements of the identified pathway, we reconstructed a plausible regulatory network of the involved genes using reverse-engineering computational approach. Our results showed that F3 may induce death receptor ligands to initiate signaling via receptor oligomerization, recruitment of specialized adaptor proteins and activation of caspase cascades.

  10. A major population of mucosal memory CD4+ T cells, coexpressing IL-18Rα and DR3, display innate lymphocyte functionality

    DEFF Research Database (Denmark)

    Holmkvist, P.; Roepstorff, K.; Uronen-Hansson, H.

    2015-01-01

    induction of IL-5, IL-13, GM-CSF, and IL-22 was IL-12 independent. IL-18Rα+DR3+CD4+ T cells with similar functionality were present in human skin, nasal polyps, and, in particular, the intestine, where in chronic inflammation they localized with IL-18-producing cells in lymphoid aggregates. Collectively......, these results suggest that human memory IL-18Rα+DR3+CD4+ T cells may contribute to antigen-independent innate responses at barrier surfaces.......Mucosal tissues contain large numbers of memory CD4+ T cells that, through T-cell receptor-dependent interactions with antigen-presenting cells, are believed to have a key role in barrier defense and maintenance of tissue integrity. Here we identify a major subset of memory CD4+ Tcells at barrier...

  11. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse

    Science.gov (United States)

    Arrieta, M C; Madsen, K; Doyle, J; Meddings, J

    2008-01-01

    Background: Defects in the small intestinal epithelial barrier have been associated with inflammatory bowel disease but their role in the causation of disease is still a matter of debate. In some models of disease increased permeability appears to be a very early event. The interleukin 10 (IL10) gene-deficient mouse spontaneously develops colitis after 12 weeks of age. These mice have been shown to have increased small intestinal permeability that appears early in life. Furthermore, the development of colitis is dependent upon luminal agents, as animals do not develop disease if raised under germ-free conditions. Aims: To determine if the elevated small bowel permeability can be prevented, and if by doing so colonic disease is prevented or attenuated. Methods: IL10 gene-deficient (IL10−/−) mice) were treated with AT-1001 (a zonulin peptide inhibitor), a small peptide previously demonstrated to reduce small intestinal permeability. Small intestinal permeability was measured, in vivo, weekly from 4 to 17 weeks of age. Colonic disease was assessed at 8 weeks in Ussing chambers, and at 17 weeks of age inflammatory cytokines and myeloperoxidase were measured in the colon. Colonic permeability and histology were also endpoints. Results: Treated animals showed a marked reduction in small intestinal permeability. Average area under the lactulose/mannitol time curve: 5.36 (SE 0.08) in controls vs 3.97 (SE 0.07) in the high-dose AT-1001 group, p<0.05. At 8 weeks of age there was a significant reduction of colonic mucosal permeability and increased electrical resistance. By 17 weeks of age, secretion of tumour necrosis factor α (TNFα) from a colonic explant was significantly lower in the treated group (25.33 (SE 4.30) pg/mg vs 106.93 (SE 17.51) pg/ml in controls, p<0.01). All other markers also demonstrated a clear reduction of colitis in the treated animals. Additional experiments were performed which demonstrated that AT-1001 was functionally active only in the small

  12. Impact of IL1B gene polymorphisms and interleukin 1B levels on susceptibility to spontaneous preterm birth.

    Science.gov (United States)

    Langmia, Immaculate M; Apalasamy, Yamunah D; Omar, Siti Z; Mohamed, Zahurin

    2016-11-01

    Genetic factors influence susceptibility to preterm birth (PTB) and the immune pathway of PTB that involves the production of cytokines such as interleukins has been implicated in PTB disease. The aim of this study is to investigate the association of interleukin 1β (IL1B) gene polymorphisms and IL1B levels with spontaneous PTB. Peripheral maternal blood from 495 women was used for extraction of DNA and genotyping was carried out using the Sequenom MassARRAY platform. Maternal plasma was used to measure IL1B levels. There was no significant association between the allelic and genotype distribution of IL1B single nucleotide polymorphism (SNP) (rs1143634, rs1143627, rs16944) and the risk of PTB among Malaysian Malay women (rs1143634, P=0.722; rs1143627, P=0.543; rs16944, P=0.615). However, IL1B levels were significantly different between women who delivered preterm compared with those who delivered at term (P=0.030); high mean levels were observed among Malay women who delivered at preterm (mean=32.52) compared with term (mean=21.68). IL1B SNPs were not associated with IL1B plasma levels. This study indicates a significant association between IL1B levels and reduced risk of PTB among the Malaysian Malay women. This study shows the impact of IL1B levels on susceptibility to PTB disease; however, the high levels of IL1B observed among women in the preterm group are not associated with IL1B SNPs investigated in this study; IL1B high levels may be because of other factors not explored in this study and therefore warrant further investigation.

  13. Molecular characterization of a human G20P[28] rotavirus a strain with multiple genes related to bat rotaviruses.

    Science.gov (United States)

    Esona, Mathew D; Roy, Sunando; Rungsrisuriyachai, Kunchala; Gautam, Rashi; Hermelijn, Sandra; Rey-Benito, Gloria; Bowen, Michael D

    2018-01-01

    Group A rotaviruses are the major cause of severe gastroenteritis in the young of mammals and birds. This report describes characterization of an unusual G20P[28] rotavirus strain detected in a 24month old child from Suriname. Genomic sequence analyses revealed that the genotype constellation of the Suriname strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] was G20-P[28]-I13-R13-C13-M12-A23-N13-T15-E20-H15. Genes VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4 and NSP5 were recently assigned novel genotypes by the Rotavirus Classification Working Group (RCWG). Three of the 11 gene segments (VP7, VP4, VP6) were similar to cognate gene sequences of bat-like human rotavirus strain Ecu534 from Ecuador and the VP7, NSP3 and NSP5 gene segments of strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] were found to be closely related to gene sequences of bat rotavirus strain 3081/BRA detected in Brazil. Although distantly related, the VP1 gene of the study strain and bat strain BatLi09 detected in Cameroon in 2014 are monophyletic. The NSP1 gene was found to be most closely related to human strain QUI-35-F5 from Brazil. These findings suggest that strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] represents a zoonotic infection from a bat host. Published by Elsevier B.V.

  14. Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils.

    Science.gov (United States)

    Higa, Shinji; Hirano, Toru; Kotani, Mayumi; Matsumoto, Motonobu; Fujita, Akihito; Suemura, Masaki; Kawase, Ichiro; Tanaka, Toshio

    2003-06-01

    Activation of mast cells and basophils through allergen stimulation releases chemical mediators and synthesizes cytokines. Among these cytokines, IL-4, IL-13, and IL-5 have major roles in allergic inflammation. We sought to determine the potency of flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) for the inhibition of cytokine expression and synthesis by human basophils. The inhibitory effect of flavonoids on cytokine expression by stimulated KU812 cells, a human basophilic cell line, and freshly purified peripheral blood basophils was measured by means of semiquantitative RT-PCR and ELISA assays. The effects of flavonoids on transcriptional activation of the nuclear factor of activated T cells were assessed by means of electrophoretic mobility shift assays. Fisetin suppressed the induction of IL-4, IL-13, and IL-5 mRNA expression by A23187-stimulated KU812 cells and basophils in response to cross-linkage of the IgE receptor. Fisetin reduced IL-4, IL-13, and IL-5 synthesis (inhibitory concentration of 50% [IC(50)] = 19.4, 17.7, and 17.4 micromol/L, respectively) but not IL-6 and IL-8 production by KU812 cells. In addition, fisetin inhibited IL-4 and IL-13 synthesis by anti-IgE antibody-stimulated human basophils (IC(50) = 5.1 and 6.2 micromol/L, respectively) and IL-4 synthesis by allergen-stimulated basophils from allergic patients (IC(50) = 4.8 micromol/L). Among the flavonoids examined, kaempferol and quercetin showed substantial inhibitory activities in cytokine expression but less so than those of fisetin. Fisetin inhibited nuclear localization of nuclear factor of activated T cells c2 by A23187-stimulated KU812 cells. These results provide evidence of a novel activity of the flavonoid fisetin that suppresses the expression of T(H)2-type cytokines (IL-4, IL-13, and IL-5) by basophils.

  15. Investigation of Chemokine Receptor CCR2V64Il Gene Polymorphism and Migraine without Aura in the Iranian Population

    Directory of Open Access Journals (Sweden)

    Alireza Zandifar

    2013-01-01

    Full Text Available Background and Objectives. Migraine is a multifactorial common neurovascular disease with a polygenic inheritance. Inflammation plays an important part in migraine pathophysiology. C-C chemokine receptor 2 (CCR2 is an important chemokine for monocyte aggregation and transendothelial monocyte migration. The aim of our study was to investigate the association of migraine with CCR2V64Il polymorphism in the Iranian population. Methods. We assessed 103 patients with newly diagnosed migraine and 100 healthy subjects. Genomic DNA samples were extracted from peripheral blood and genotypes of CCR2V64Il gene polymorphism were determined. For measuring the severity of headache, every patient filled out the MIGSEV questionnaire. Results. There were no significant differences in the distribution of both 64Il allele and heterozygote (GA genotype of CCR2 gene polymorphism (P=0.396; OR=0.92, 95% CI = 0.50–1.67 and P=0.388; OR=0.91, 95% CI = 0.47–1.73, resp. between case and control groups. There was no significant difference of alleles frequency between three grades of MIGSEV (P=0.922. Conclusions. In conclusion our results revealed no association between CCR2V64Il polymorphism and susceptibility to migraine and also headache severity in the Iranian population.

  16. Increased expression of Interleukin-13 and connective tissue growth factor, and their potential roles during foreign body encapsulation of subcutaneous implants.

    Science.gov (United States)

    Ward, W Kenneth; Li, Allen G; Siddiqui, Yasmin; Federiuk, Isaac F; Wang, Xiao-Jing

    2008-01-01

    The purpose of this study was to better understand whether interleukin-13 (IL-13) and connective tissue growth factor (CTGF) are highly expressed during foreign body encapsulation of subcutaneous devices. Mock biosensors were implanted into rats for three lengths of time (7-, 21- and 48-55 days) to address different stages of the foreign body response. Using quantitative real-time PCR and immunofluorescence, the expression of IL13, CTGF, collagen 1, decorin and fibronectin were measured in this tissue. IL-13, a product of Th2 cells, was highly expressed at all time points, with greatest expression at day 21. The IL-13 expression was paralleled by increased presence of T-cells at all time points. CTGF was also found to be more highly expressed in foreign body tissue than in controls. Collagen and decorin were highly expressed at the middle and later stages. Given the increased expression of IL-13 and CTGF in foreign body tissue, and their roles in other fibrotic disorders, these cytokines may well contribute to the formation of the foreign body capsule. Since the peak gene expression of IL-13 occurred later than the previously-reported TGFbeta expression peak, IL-13 is probably not the major stimulus to TGFbeta expression during foreign body encapsulation and may contribute to fibrosis independently.

  17. IL-17A, IL-17RC polymorphisms and IL17 plasma levels in Tunisian patients with rheumatoid arthritis

    Science.gov (United States)

    Chahbi, Mayssa; Haouami, Youssra; Sfar, Imen; Abdelmoula, Leila; Ben Abdallah, Taieb; Gorgi, Yousr

    2018-01-01

    Background Interleukin-17 (IL-17), a cytokine mainly secreted by Th17 cells, seems to play a significant role in the pathogenesis of rheumatoid arthritis (RA). Functional genetic polymorphisms in IL-17 and its receptor genes can influence either qualitatively or quantitatively their functions. Therefore, we aimed to study the impact of IL17-A and IL17RC polymorphisms on plasma level of IL-17 and RA susceptibility and severity. Methods In this context, IL-17A*rs2275913 and IL-17RC*rs708567 polymorphisms were investigated together with the quantification of IL17 plasma level in 115 RA patients and 91 healthy control subjects matched in age, sex and ethnic origin. Results There were no statistically significant associations between IL-17A and IL-17RC studied polymorphisms and RA susceptibility. In contrast, IL-17A plasma levels were significantly higher in patients (55.07 pg/ml) comparatively to controls (4.75 pg/ml), p<10E-12. A ROC curve was used to evaluate the performance of plasma IL-17 in detecting RA. Given 100% specificity, the highest sensitivity of plasma IL-17A was 61.7% at a cut-off value of 18.25 pg/ml; p < 10E-21, CI = [0.849–0.939]. Analytic results showed that the IgM-rheumatoid factor and anti-CCP antibodies were significantly less frequent in patients with the IL-17RC*A/A genotype than those carrying *G/G and *G/A genotypes; p = 0.013 and p = 0.015, respectively. Otherwise, IL-17 plasma levels’ analysis showed a significant association with the activity of RA (DAS28≥5.1 = 74.71 pg/ml vs. DAS28<5.1 = 11.96 pg/ml), p<10E-6. Conclusion IL-17A*rs2275913 (G/A) and IL-17RC*rs708567 (G/A) polymorphisms did not seem to influence RA susceptibility in Tunisian population. This result agrees with those reported previously. Plasma IL-17A level seems to be predictive of severe RA occurrence. PMID:29584788

  18. Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Saioa Márquez

    2017-06-01

    Full Text Available Human monocyte-derived dendritic cells (DCs exposed to pathogen-associated molecular patterns (PAMPs undergo bioenergetic changes that influence the immune response. We found that stimulation with PAMPs enhanced glycolysis in DCs, whereas oxidative phosphorylation remained unaltered. Glucose starvation and the hexokinase inhibitor 2-deoxy-d-glucose (2-DG modulated cytokine expression in stimulated DCs. Strikingly, IL23A was markedly induced upon 2-DG treatment, but not during glucose deprivation. Since 2-DG can also rapidly inhibit protein N-glycosylation, we postulated that this compound could induce IL-23 in DCs via activation of the endoplasmic reticulum (ER stress response. Indeed, stimulation of DCs with PAMPs in the presence of 2-DG robustly activated inositol-requiring protein 1α (IRE1α signaling and to a lesser extent the PERK arm of the unfolded protein response. Additional ER stressors such as tunicamycin and thapsigargin also promoted IL-23 expression by PAMP-stimulated DCs. Pharmacological, biochemical, and genetic analyses using conditional knockout mice revealed that IL-23 induction in ER stressed DCs stimulated with PAMPs was IRE1α/X-box binding protein 1-dependent upon zymosan stimulation. Interestingly, we further evidenced PERK-mediated and CAAT/enhancer-binding protein β-dependent trans-activation of IL23A upon lipopolysaccharide treatment. Our findings uncover that the ER stress response can potently modulate cytokine expression in PAMP-stimulated human DCs.

  19. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8.

    LENUS (Irish Health Repository)

    Bergin, David A

    2010-12-01

    Hereditary deficiency of the protein α-1 antitrypsin (AAT) causes a chronic lung disease in humans that is characterized by excessive mobilization of neutrophils into the lung. However, the reason for the increased neutrophil burden has not been fully elucidated. In this study we have demonstrated using human neutrophils that serum AAT coordinates both CXCR1- and soluble immune complex (sIC) receptor-mediated chemotaxis by divergent pathways. We demonstrated that glycosylated AAT can bind to IL-8 (a ligand for CXCR1) and that AAT-IL-8 complex formation prevented IL-8 interaction with CXCR1. Second, AAT modulated neutrophil chemotaxis in response to sIC by controlling membrane expression of the glycosylphosphatidylinositol-anchored (GPI-anchored) Fc receptor FcγRIIIb. This process was mediated through inhibition of ADAM-17 enzymatic activity. Neutrophils isolated from clinically stable AAT-deficient patients were characterized by low membrane expression of FcγRIIIb and increased chemotaxis in response to IL-8 and sIC. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased AAT binding to IL-8, increased AAT binding to the neutrophil membrane, decreased FcγRIIIb release from the neutrophil membrane, and normalization of chemotaxis. These results provide new insight into the mechanism underlying the effect of AAT augmentation therapy in the pulmonary disease associated with AAT deficiency.

  20. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rachel C Williams

    Full Text Available Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts.We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts.We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival